11.12.2012 Views

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Lectures</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Quantum</strong> <strong>Optics</strong> <strong>and</strong><br />

<strong>Quantum</strong> Informati<strong>on</strong><br />

Julien Laurat<br />

Laboratoire Kastler Brossel, Paris<br />

Université P. et M. Curie<br />

Ecole Normale Supérieure <strong>and</strong> CNRS<br />

julien.laurat@upmc.fr<br />

Taiwan-France joint school, Nantou, May 2011


<strong>Quantum</strong> Informati<strong>on</strong> Science<br />

Over the last 20 years, QIS has developed driven by the prospect to<br />

exploit capabilities from the quantum realm to accomplish tasks<br />

difficult or even impossible with traditi<strong>on</strong>al methods of informati<strong>on</strong><br />

processing.<br />

<strong>Quantum</strong> communicati<strong>on</strong>, the art of transferring a quantum state<br />

from <strong>on</strong>e place to another. It led for instance to the dem<strong>on</strong>strati<strong>on</strong> of<br />

quantum cryptography, an absolutely secure way to transmit<br />

informati<strong>on</strong>, <strong>and</strong> even to commercially available quantum key<br />

distributi<strong>on</strong> systems <strong>and</strong> a network deployed in a metropolitan area.<br />

<strong>Quantum</strong> computati<strong>on</strong>, where bits are replaced by qubits. It<br />

detains the promise of computing power bey<strong>on</strong>d the capabilities of<br />

any classical computer. For instance, P. Shor showed that a quantum<br />

computer can factorize a large number efficiently, i.e. in a polynomial<br />

time, while it is an exp<strong>on</strong>entially difficult problem for classical<br />

algorithms. Bey<strong>on</strong>d its fundamental interest for underst<strong>and</strong>ing<br />

quantum complexity, it is of practical importance as the difficulty of<br />

factoring numbers is the basis of encrypti<strong>on</strong> systems, such as the RSA<br />

scheme.<br />

A third directi<strong>on</strong> is quantum metrology <strong>and</strong> enhanced sensing.<br />

M.A. Nielsen, L. Chuang, <strong>Quantum</strong> computati<strong>on</strong> <strong>and</strong> <strong>Quantum</strong> Informati<strong>on</strong>,<br />

Cambridge Univ. Press<br />

S.M. Barnett, <strong>Quantum</strong> Informati<strong>on</strong>, Oxford Univ. Press<br />

H.A. Bachor,T.C. Ralph, A guide to experiments in quantum optics, Wiley-VCH


C<strong>on</strong>tent of the lectures<br />

Lecture 1 Introducti<strong>on</strong> to quantum noise,<br />

squeezed light <strong>and</strong> entanglement generati<strong>on</strong><br />

Quantizati<strong>on</strong> of light, C<strong>on</strong>tinuous-variable,<br />

Homodyne detecti<strong>on</strong>, Gaussian states,<br />

Optical parametric oscillators,<br />

Entanglement, Teleportati<strong>on</strong><br />

Lecture 2 <strong>Quantum</strong> state engineering<br />

C<strong>on</strong>diti<strong>on</strong>al preparati<strong>on</strong>, N<strong>on</strong>-Gaussian<br />

states, Schrödinger cat states, Hybrid<br />

approaches, <strong>Quantum</strong> detectors, POVM<br />

<strong>and</strong> detector tomography<br />

Lecture 3 Optical quantum memories.<br />

<strong>Quantum</strong> repeaters, atomic ensembles,<br />

DLCZ, EIT, Phot<strong>on</strong>-echo, Matter-Matter<br />

entanglement


Lecture 1<br />

<strong>Quantum</strong> noise,<br />

squeezed light <strong>and</strong><br />

entanglement<br />

generati<strong>on</strong><br />

Julien Laurat<br />

Laboratoire Kastler Brossel, Paris<br />

Université P. et M. Curie<br />

Ecole Normale Supérieure <strong>and</strong> CNRS<br />

julien.laurat@upmc.fr<br />

Taiwan-France joint school, Nantou, May 2011


Lecture 1<br />

• Light quantizati<strong>on</strong>, discrete vs<br />

c<strong>on</strong>tinuous representati<strong>on</strong><br />

• Measuring <strong>and</strong> characterizing<br />

optical c<strong>on</strong>tinuous variables<br />

• How to generate squeezed light ?<br />

• <strong>Quantum</strong> correlati<strong>on</strong>s <strong>and</strong><br />

entanglement in the CV regime


What Are We Speaking About ?<br />

An introductive example : noise in a light beam<br />

Light<br />

Detector<br />

Scope<br />

Range<br />

In this lecture, we will focus <strong>on</strong><br />

informati<strong>on</strong> carried by travelling light fields<br />

<strong>and</strong> we wil be interested in the<br />

quantum mechanical nature of light.<br />

In the limit of unity<br />

quantum efficiency <strong>and</strong> no<br />

electric noise, the measured<br />

fluctuati<strong>on</strong>s are <strong>on</strong>ly due to<br />

the noise of the light:<br />

it can be classical noise<br />

(e.g. 1/f noise) or quantum<br />

noise (e.g. shot noise).


Quantizati<strong>on</strong> of the Electromagnetic Field<br />

We are not going to detail the quantizati<strong>on</strong> procedure for the free<br />

electromagnetic field, but give here the basic steps <strong>and</strong> analogies,<br />

which enable to introduce useful notati<strong>on</strong>s.<br />

More details can be found for instance in ”Introducti<strong>on</strong> to QO”.<br />

• Maxwell equati<strong>on</strong>s in vacuum (no charges, no currents)<br />

• Give the Helmholtz equati<strong>on</strong> for the E field:<br />

• Classical Plane wave decompositi<strong>on</strong> (l: 2 polarizati<strong>on</strong>s, k: wave vector)<br />

• By injecting this decompositi<strong>on</strong> into the Helmholtz equati<strong>on</strong> :


Quantizati<strong>on</strong> of the Electromagnetic Field<br />

• For each wave vector:<br />

This equati<strong>on</strong> is similar to the <strong>on</strong>e describing the evoluti<strong>on</strong> of a<br />

harm<strong>on</strong>ic oscillator with frequency , which can be described<br />

by a vector a, functi<strong>on</strong> of p (positi<strong>on</strong>) <strong>and</strong> q (momentum).<br />

• By analogy, we introduce an operator a<br />

<strong>and</strong> define a field operator :<br />

We can also define the quadrature operators:<br />

Where <strong>and</strong> can be identified to<br />

the creati<strong>on</strong> <strong>and</strong> annihilati<strong>on</strong> operators for<br />

harm<strong>on</strong>ic oscillators<br />

• By c<strong>on</strong>sidering Fourier-limited wavepackets, it can be shown finally for <strong>on</strong>e mode<br />

(<strong>on</strong>e dimensi<strong>on</strong> quantized harm<strong>on</strong>ic oscillator) :<br />

Total number<br />

of phot<strong>on</strong>s


Two Possible Descripti<strong>on</strong>s<br />

Quantizati<strong>on</strong> of the electromagnetic field<br />

Modes are quantized harm<strong>on</strong>ic oscillators<br />

2 possible observables for the descripti<strong>on</strong>:<br />

Energy or Electric field<br />

Discrete degree of freedom<br />

number of phot<strong>on</strong>s N=a + a<br />

(measured by phot<strong>on</strong> counting)<br />

C<strong>on</strong>tinuous degree of freedom<br />

quadratures P <strong>and</strong> Q<br />

(fluctuati<strong>on</strong>s measured by<br />

homodyning, photodiodes)


Quantizati<strong>on</strong> of the electromagnetic field<br />

Modes are quantized harm<strong>on</strong>ic oscillators<br />

2 possible observables for the descripti<strong>on</strong>:<br />

Energy or Electric field<br />

Discrete Variables<br />

<strong>Quantum</strong> bits or “qu-bits” have been<br />

introduced in this descripti<strong>on</strong>.<br />

e.g. presence/absence of a phot<strong>on</strong> in <strong>on</strong>e<br />

mode, orthog<strong>on</strong>al polarizati<strong>on</strong> modes (H/V),…<br />

Discrete degree of freedom<br />

number of phot<strong>on</strong>s N=a + a<br />

(measured by phot<strong>on</strong> counting)<br />

C<strong>on</strong>tinuous degree of freedom<br />

quadratures P <strong>and</strong> Q<br />

(fluctuati<strong>on</strong>s measured by<br />

homodyning, photodiodes)


Quantizati<strong>on</strong> of the electromagnetic field<br />

Modes are quantized harm<strong>on</strong>ic oscillators<br />

2 possible observables for the descripti<strong>on</strong>:<br />

Energy or Electric field<br />

Discrete Variables<br />

<strong>Quantum</strong> bits or “qu-bits” have been<br />

introduced in this descripti<strong>on</strong>.<br />

e.g. presence/absence of a phot<strong>on</strong> in <strong>on</strong>e<br />

mode, orthog<strong>on</strong>al polarizati<strong>on</strong> modes (H/V),…<br />

A c<strong>on</strong>venient tool : the density matrix<br />

For a pure state:<br />

For a mixed state:<br />

Example :<br />

Discrete degree of freedom<br />

number of phot<strong>on</strong>s N=a + a<br />

(measured by phot<strong>on</strong> counting)<br />

C<strong>on</strong>tinuous degree of freedom<br />

quadratures P <strong>and</strong> Q<br />

(fluctuati<strong>on</strong>s measured by<br />

homodyning, photodiodes)<br />

Written in the Fock basis, the density matrix is very illustrative for discrete systems.


<strong>Quantum</strong> C<strong>on</strong>tinuous-Variables<br />

Quantizati<strong>on</strong> of the electromagnetic field<br />

Modes are quantized harm<strong>on</strong>ic oscillators<br />

2 possible observables for the descripti<strong>on</strong>:<br />

Energy or Electric field<br />

Discrete degree of freedom<br />

number of phot<strong>on</strong>s N=a + a<br />

(measured by phot<strong>on</strong> counting)<br />

C<strong>on</strong>tinuous degree of freedom<br />

quadratures P <strong>and</strong> Q<br />

(fluctuati<strong>on</strong>s measured by<br />

homodyning, photodiodes)<br />

Why using them?<br />

- Perfect detectors, high<br />

rates/b<strong>and</strong>width<br />

- Deterministic operati<strong>on</strong>s<br />

- N<strong>on</strong>-gaussian states/cluster<br />

states with many potential<br />

applicati<strong>on</strong>s in Q. computing<br />

<strong>and</strong> communicati<strong>on</strong>


<strong>Quantum</strong> C<strong>on</strong>tinuous-Variables<br />

Quantizati<strong>on</strong> of the electromagnetic field<br />

Modes are quantized harm<strong>on</strong>ic oscillators<br />

2 possible observables for the descripti<strong>on</strong>:<br />

Energy or Electric field<br />

Q A<br />

Q<br />

Amplitude<br />

Fresnel Diagram for the Electromagnetic Field<br />

Phase<br />

P A<br />

P<br />

Discrete degree of freedom<br />

number of phot<strong>on</strong>s N=a + a<br />

(measured by phot<strong>on</strong> counting)<br />

C<strong>on</strong>tinuous degree of freedom<br />

quadratures P <strong>and</strong> Q<br />

(fluctuati<strong>on</strong>s measured by<br />

homodyning, photodiodes)<br />

Why using them?<br />

- Perfect detectors, high<br />

rates/b<strong>and</strong>width<br />

- Deterministic operati<strong>on</strong>s<br />

- N<strong>on</strong>-gaussian states/cluster<br />

states with many potential<br />

applicati<strong>on</strong>s in Q. computing<br />

<strong>and</strong> communicati<strong>on</strong>


Q A<br />

Q<br />

<strong>Quantum</strong> C<strong>on</strong>tinuous-Variables<br />

Quantizati<strong>on</strong> of the electromagnetic field<br />

Modes are quantized harm<strong>on</strong>ic oscillators<br />

2 possible observables for the descripti<strong>on</strong>:<br />

Energy or Electric field<br />

P A<br />

Fano factor F<br />

P<br />

Phasor Diagram<br />

Discrete degree of freedom<br />

number of phot<strong>on</strong>s N=a + a<br />

(measured by phot<strong>on</strong> counting)<br />

C<strong>on</strong>tinuous degree of freedom<br />

quadratures P <strong>and</strong> Q<br />

(fluctuati<strong>on</strong>s measured by<br />

homodyning, photodiodes)<br />

Why using them?<br />

- Perfect detectors, high<br />

rates/b<strong>and</strong>width<br />

- Deterministic operati<strong>on</strong>s<br />

- N<strong>on</strong>-gaussian states/cluster<br />

states with many potential<br />

applicati<strong>on</strong>s in Q. computing<br />

<strong>and</strong> communicati<strong>on</strong>


Q A<br />

Q<br />

<strong>Quantum</strong> C<strong>on</strong>tinuous-Variables<br />

Quantizati<strong>on</strong> of the electromagnetic field<br />

Modes are quantized harm<strong>on</strong>ic oscillators<br />

2 possible observables for the descripti<strong>on</strong>:<br />

Energy or Electric field<br />

P A<br />

P<br />

Squeezing<br />

One can have :<br />

“Noise<br />

reducti<strong>on</strong>”<br />

or “Squeezing”<br />

Discrete degree of freedom<br />

number of phot<strong>on</strong>s N=a + a<br />

(measured by phot<strong>on</strong> counting)<br />

C<strong>on</strong>tinuous degree of freedom<br />

quadratures P <strong>and</strong> Q<br />

(fluctuati<strong>on</strong>s measured by<br />

homodyning, photodiodes)<br />

Why using them?<br />

- Perfect detectors, high<br />

rates/b<strong>and</strong>width<br />

- Deterministic operati<strong>on</strong>s<br />

- N<strong>on</strong>-gaussian states/cluster<br />

states with many potential<br />

applicati<strong>on</strong>s in Q. computing<br />

<strong>and</strong> communicati<strong>on</strong>


<strong>Quantum</strong> C<strong>on</strong>tinuous-Variables<br />

Quantizati<strong>on</strong> of the electromagnetic field<br />

Modes are quantized harm<strong>on</strong>ic oscillators<br />

2 possible observables for the descripti<strong>on</strong>:<br />

Energy or Electric field<br />

1<br />

Coherent state<br />

Vacuum<br />

Number state<br />

Intensity squeezing<br />

Squeezed Vacuum<br />

Zoology of states<br />

Discrete degree of freedom<br />

number of phot<strong>on</strong>s N=a + a<br />

(measured by phot<strong>on</strong> counting)<br />

C<strong>on</strong>tinuous degree of freedom<br />

quadratures P <strong>and</strong> Q<br />

(fluctuati<strong>on</strong>s measured by<br />

homodyning, photodiodes)<br />

Why using them?<br />

- Perfect detectors, high<br />

rates/b<strong>and</strong>width<br />

- Deterministic operati<strong>on</strong>s<br />

- N<strong>on</strong>-gaussian states/cluster<br />

states with many potential<br />

applicati<strong>on</strong>s in Q. computing<br />

<strong>and</strong> communicati<strong>on</strong>


<strong>Quantum</strong> C<strong>on</strong>tinuous-Variables<br />

Quantizati<strong>on</strong> of the electromagnetic field<br />

Modes are quantized harm<strong>on</strong>ic oscillators<br />

2 possible observables for the descripti<strong>on</strong>:<br />

Energy or Electric field<br />

1<br />

Coherent state<br />

Vacuum<br />

Number state<br />

Intensity squeezing<br />

Squeezed Vacuum<br />

Zoology of states<br />

Gaussian<br />

states<br />

N<strong>on</strong>-Gaussian<br />

states<br />

Discrete degree of freedom<br />

number of phot<strong>on</strong>s N=a + a<br />

(measured by phot<strong>on</strong> counting)<br />

C<strong>on</strong>tinuous degree of freedom<br />

quadratures P <strong>and</strong> Q<br />

(fluctuati<strong>on</strong>s measured by<br />

homodyning, photodiodes)<br />

Why using them?<br />

- Perfect detectors, high<br />

rates/b<strong>and</strong>width<br />

- Deterministic operati<strong>on</strong>s<br />

- N<strong>on</strong>-gaussian states/cluster<br />

states with many potential<br />

applicati<strong>on</strong>s in Q. computing<br />

<strong>and</strong> communicati<strong>on</strong>


Lecture 1<br />

• Light quantizati<strong>on</strong>, discrete vs<br />

c<strong>on</strong>tinuous representati<strong>on</strong><br />

• Measuring <strong>and</strong> characterizing<br />

optical c<strong>on</strong>tinuous variables<br />

• How to generate squeezed light ?<br />

• <strong>Quantum</strong> correlati<strong>on</strong>s <strong>and</strong><br />

entanglement in the CV regime


Measuring Optical C<strong>on</strong>tinuous-Variables<br />

THE tool : Homodyne detecti<strong>on</strong><br />

<strong>Quantum</strong> state<br />

50/50<br />

Photocurrent<br />

subtracti<strong>on</strong><br />

Local oscillator<br />

Adjustable Phase<br />

Local oscillator


Measuring Optical C<strong>on</strong>tinuous-Variables<br />

THE tool : Homodyne detecti<strong>on</strong><br />

<strong>Quantum</strong> state<br />

50/50<br />

Photocurrent<br />

subtracti<strong>on</strong><br />

Local oscillator<br />

Adjustable Phase<br />

• Annihilati<strong>on</strong> operators of the mixed modes:<br />

• After subtracti<strong>on</strong>, the resulting photocurrent operator is:<br />

• Mean Value <strong>and</strong> variance for :<br />

Local oscillator<br />

For large phot<strong>on</strong> number in lo:


Measuring Optical C<strong>on</strong>tinuous-Variables<br />

THE tool : Homodyne detecti<strong>on</strong><br />

<strong>Quantum</strong> state<br />

50/50<br />

Photocurrent<br />

subtracti<strong>on</strong><br />

Local oscillator<br />

Adjustable Phase<br />

• Annihilati<strong>on</strong> operators of the mixed modes:<br />

• After subtracti<strong>on</strong>, the resulting photocurrent operator is:<br />

• Mean Value <strong>and</strong> variance for :<br />

Local oscillator<br />

- Overall Efficiency -<br />

Photodiode efficiency<br />

Interference Visibility V<br />

tot = .V2<br />

(ex: 0.99 x 0.992 =0.97)<br />

For large phot<strong>on</strong> number in lo:


Measuring Optical C<strong>on</strong>tinuous-Variables<br />

THE tool : Homodyne detecti<strong>on</strong><br />

<strong>Quantum</strong> state<br />

What we obtain ? Example of a squeezed state<br />

Photocurrent <strong>Quantum</strong> state<br />

Phase<br />

50/50<br />

Photocurrent<br />

subtracti<strong>on</strong><br />

Local oscillator<br />

Adjustable Phase<br />

Local oscillator<br />

- Overall Efficiency -<br />

Photodiode efficiency<br />

Interference Visibility V<br />

tot = .V2<br />

(ex: 0.99 x 0.992 =0.97)<br />

Probability distributi<strong>on</strong> P (X, ) Variance<br />

TF : Noise spectrum


The Wigner Functi<strong>on</strong><br />

For c<strong>on</strong>tinuous-variable, the density matrix is useful, but not easy to interpret.<br />

Another tool : the Wigner functi<strong>on</strong>, which is a quasi-probability distributi<strong>on</strong>.<br />

Marginal distributi<strong>on</strong>s for (what is measured with homodyne detecti<strong>on</strong>) are<br />

obtained by projecti<strong>on</strong> of the Wigner functi<strong>on</strong> <strong>on</strong> the axis defined by , i.e. by<br />

integrating it over the orthog<strong>on</strong>al directi<strong>on</strong>.<br />

Importantly, <strong>on</strong>e can also obtain <strong>and</strong> W from the marginal distributi<strong>on</strong>s : this is the<br />

goal of tomography. It requires to use rec<strong>on</strong>structi<strong>on</strong> algorithm, such as Rad<strong>on</strong><br />

transform or Maximum-likelihood algorithm. [see A.Lvovsky, RMP 81, 299 (2009)]<br />

Wigner functi<strong>on</strong><br />

<strong>and</strong> some<br />

projecti<strong>on</strong>s for a<br />

squeezed state<br />

From A. Ourjoumtsev PhD Thesis


The Wigner Functi<strong>on</strong>: Functi<strong>on</strong>:<br />

Negativity<br />

(From A. Ourjoumtsev PhD Thesis)<br />

Wigner functi<strong>on</strong> of<br />

a single-phot<strong>on</strong><br />

The Wigner functi<strong>on</strong> is a quasi-probability<br />

distributi<strong>on</strong>: it can take negative values.<br />

Huds<strong>on</strong>-Piquet Theorem for pure state:<br />

Gaussian state Positive Wigner functi<strong>on</strong><br />

N<strong>on</strong>-Gaussian state Negative Wigner functi<strong>on</strong>


The Wigner Functi<strong>on</strong>: Functi<strong>on</strong>:<br />

Negativity<br />

(From A. Ourjoumtsev PhD Thesis)<br />

Wigner functi<strong>on</strong> of<br />

a single-phot<strong>on</strong><br />

The Wigner functi<strong>on</strong> is a quasi-probability<br />

distributi<strong>on</strong>: it can take negative values.<br />

Huds<strong>on</strong>-Piquet Theorem for pure state:<br />

Gaussian state Positive Wigner functi<strong>on</strong><br />

N<strong>on</strong>-Gaussian state Negative Wigner functi<strong>on</strong><br />

Negativity at the origin, W(0,0)


Measuring Optical CV : a Summary<br />

Squeezed Vacuum<br />

(or other <strong>Quantum</strong> states!) state<br />

Density matrix<br />

Homodyne detecti<strong>on</strong><br />

50/50<br />

Photocurrent<br />

subtracti<strong>on</strong><br />

Local oscillator<br />

Adjustable Phase<br />

Photocurrent vs phase<br />

Give the marginal distributi<strong>on</strong>s<br />

By rec<strong>on</strong>structi<strong>on</strong> algorithm (Rad<strong>on</strong>, MaxLik) Variance, Fourier Transform<br />

Wigner functi<strong>on</strong><br />

Noise spectrum


Interlude: CV for Atomic Ensembles<br />

N 2-level atoms<br />

N fictitious 1/2 spins described<br />

by a collective spin<br />

Collective spin operators<br />

Individual spins aligned al<strong>on</strong>g Oz<br />

Heisenberg inequality


Interlude: CV for Atomic Ensembles<br />

N 2-level atoms<br />

N fictitious 1/2 spins described<br />

by a collective spin<br />

Some atomic states…<br />

Collective spin operators<br />

Individual spins aligned al<strong>on</strong>g Oz<br />

Heisenberg inequality<br />

Uncorrelated spins Correlated spins<br />

Spin coherent state Spin squeezed state


Lecture 1<br />

• Light quantizati<strong>on</strong>, discrete vs<br />

c<strong>on</strong>tinuous representati<strong>on</strong><br />

• Measuring <strong>and</strong> characterizing<br />

optical c<strong>on</strong>tinuous variables<br />

• How to generate squeezed light ?<br />

• <strong>Quantum</strong> correlati<strong>on</strong>s <strong>and</strong><br />

entanglement in the CV regime


How to Generate Squeezed Light ?<br />

Squeezed light generati<strong>on</strong> requires the use<br />

of n<strong>on</strong>-linear effects. We focus here <strong>on</strong> the<br />

case of degenerate parametric interacti<strong>on</strong> in<br />

n<strong>on</strong>-linear (2) crystals.<br />

pump<br />

signal<br />

idler<br />

‘Degenerate’: signal <strong>and</strong> idler<br />

identical (frequency, polarizati<strong>on</strong>)


How to Generate Squeezed Light ?<br />

Squeezed light generati<strong>on</strong> requires the use<br />

of n<strong>on</strong>-linear effects. We focus here <strong>on</strong> the<br />

case of degenerate parametric interacti<strong>on</strong> in<br />

n<strong>on</strong>-linear (2) crystals.<br />

pump<br />

signal<br />

idler<br />

‘Degenerate’: signal <strong>and</strong> idler<br />

identical (frequency, polarizati<strong>on</strong>)<br />

• Hamilt<strong>on</strong>ian associated to this process (down c<strong>on</strong>versi<strong>on</strong> <strong>and</strong> up c<strong>on</strong>versi<strong>on</strong>):<br />

• It leads to the temporal evoluti<strong>on</strong><br />

• This gives for the quadratures after the interacti<strong>on</strong> :<br />

One quadrature is amplified while the<br />

orthog<strong>on</strong>al <strong>on</strong>e is deamplified.<br />

Degenerate case


Pulsed Parametric Amplificati<strong>on</strong><br />

Requires intense pulses.<br />

Squeezing increases with<br />

pump power.<br />

Opt. p Lett. 29, 1267 (2004)


CW Parametric Amplificati<strong>on</strong> in a Cavity<br />

Another soluti<strong>on</strong>: use a cw less<br />

intense pump laser <strong>and</strong> a cavity<br />

which is res<strong>on</strong>ant <strong>on</strong> the comm<strong>on</strong><br />

signal-idler mode <strong>and</strong> enhances the<br />

n<strong>on</strong>-linear interacti<strong>on</strong>.<br />

‘Optical Parametric Oscillator’, which<br />

can oscillate above a given<br />

threshold.<br />

(Output coupler R,T)<br />

- R=1 for all the mirrors, but the output coupler R<br />

- Losses L (absorpti<strong>on</strong>, interfaces,..)<br />

- Pump power normalized to the threshold :<br />

c : cavity b<strong>and</strong>width


CW Parametric Amplificati<strong>on</strong> in a Cavity<br />

Another soluti<strong>on</strong>: use a cw less<br />

intense pump laser <strong>and</strong> a cavity<br />

which is res<strong>on</strong>ant <strong>on</strong> the comm<strong>on</strong><br />

signal-idler mode <strong>and</strong> enhances the<br />

n<strong>on</strong>-linear interacti<strong>on</strong>.<br />

‘Optical Parametric Oscillator’, which<br />

can oscillate above a given<br />

threshold.<br />

Maximum squeezing : at threshold, at<br />

zero frequency.<br />

Squeezing <strong>on</strong>ly depends <strong>on</strong> the<br />

escape efficiency T/(T+L)<br />

Ex. : T=10%, L=1% -->V=1-10/11~0.09 (~10dB)<br />

(Output coupler R,T)<br />

- R=1 for all the mirrors, but the output coupler R<br />

- Losses L (absorpti<strong>on</strong>, interfaces,..)<br />

- Pump power normalized to the threshold :<br />

c : cavity b<strong>and</strong>width


CW Parametric Amplificati<strong>on</strong> in a Cavity<br />

See also works from Paris, Copenhaguen, Tokyo, Naples, Canberra,…<br />

Phys. Rev. A 81, 013814 (2010)<br />

~12 dB of<br />

squeezing (94%)


GW Detecti<strong>on</strong> <strong>and</strong> <strong>Quantum</strong> Imaging<br />

Class.Quant.Grav.27:084027 (2010)<br />

Science 301, 940 (2003)


Effect of Losses <strong>on</strong> Squeezed Light<br />

Model of losses in quantum optics<br />

Intensity loss : 1-<br />

Can be modelled by a beam<br />

splitter with reflectivity R=1<strong>and</strong><br />

transmitivity T= .<br />

Vacuum fluctuati<strong>on</strong>s are<br />

entering by the empty port.<br />

What is<br />

the noise<br />

after the<br />

loss?


Effect of Losses <strong>on</strong> Squeezed Light<br />

Model of losses in quantum optics<br />

Intensity loss : 1-<br />

Can be modelled by a beam<br />

splitter with reflectivity R=1<strong>and</strong><br />

transmitivity T= .<br />

Vacuum fluctuati<strong>on</strong>s are<br />

entering by the empty port.<br />

Calculati<strong>on</strong>s<br />

• We linearize the fluctuati<strong>on</strong>s :<br />

<strong>and</strong> obtain for a quadrature P:<br />

• We calculate the noise variance :<br />

=V’<br />

• The beam-splitter gives:<br />

=V<br />

=1 (shot)<br />

What is<br />

the noise<br />

after the<br />

loss?<br />

<strong>and</strong><br />

V’ goes to 1 (shot) for str<strong>on</strong>g losses ( =0), ok!<br />

=0 (uncorrelated)


Effect of Losses <strong>on</strong> Squeezed Light<br />

Model of losses in quantum optics<br />

Intensity loss : 1-<br />

Can be modelled by a beam<br />

splitter with reflectivity R=1<strong>and</strong><br />

transmitivity T= .<br />

Vacuum fluctuati<strong>on</strong>s are<br />

entering by the empty port.<br />

Calculati<strong>on</strong>s<br />

• We linearize the fluctuati<strong>on</strong>s :<br />

<strong>and</strong> obtain for a quadrature P:<br />

• We calculate the noise variance :<br />

=V’<br />

• The beam-splitter gives:<br />

=V<br />

=1 (shot)<br />

What is<br />

the noise<br />

after the<br />

loss?<br />

<strong>and</strong><br />

V’ goes to 1 (shot) for str<strong>on</strong>g losses ( =0), ok!<br />

Some illlustrative values…..<br />

V=0.1 (10dB squeezing)<br />

10% loss give:<br />

V’=0.2 (7dB squeezing)<br />

Squeezing is very<br />

sensitive to losses!<br />

=0 (uncorrelated)


Lecture 1<br />

• Light quantizati<strong>on</strong>, discrete vs<br />

c<strong>on</strong>tinuous representati<strong>on</strong><br />

• Measuring <strong>and</strong> characterizing<br />

optical c<strong>on</strong>tinuous variables<br />

• How to generate squeezed light ?<br />

• <strong>Quantum</strong> correlati<strong>on</strong>s <strong>and</strong><br />

entanglement in the CV regime


Classical Correlati<strong>on</strong>s of Light Beams<br />

A simple example : intensity « correlati<strong>on</strong>s » is easy to obtain….<br />

Linear Correlati<strong>on</strong> coefficient<br />

For a very noisy incident beam, the<br />

correlati<strong>on</strong> goes to 1!


Classical Correlati<strong>on</strong>s of Light Beams<br />

A simple example : intensity « correlati<strong>on</strong>s » is easy to obtain….<br />

Questi<strong>on</strong> : How to define the quantum character of<br />

correlati<strong>on</strong>s between two beams in the CV regime?<br />

Involving 1 quadrature<br />

Gemellity<br />

QND Correlati<strong>on</strong><br />

Normalized linear correlati<strong>on</strong> coefficient<br />

For a very noisy incident beam, the<br />

correlati<strong>on</strong> goes to 1 !<br />

Involving 2 quadratures<br />

Inseparability<br />

EPR Correlati<strong>on</strong>s


« One Quadrature » Criteria<br />

Two beams, <strong>on</strong>e quadature<br />

Q<br />

Q<br />

Field 1 Field 2<br />

P<br />

- Difference between the fluctuati<strong>on</strong>s<br />

- Noise <strong>on</strong> this difference<br />

G=1 for two independent lasers (also<br />

for the previous case with noisy beam)<br />

- C<strong>on</strong>diti<strong>on</strong>al Variance V(P 1 |P 2 )<br />

P


« One Quadrature » Criteria<br />

Two beams, <strong>on</strong>e quadature<br />

Q<br />

Q<br />

Field 1 Field 2<br />

P<br />

- Difference between the fluctuati<strong>on</strong>s<br />

- Noise <strong>on</strong> this difference<br />

G=1 for two independent lasers (also<br />

for the previous case with noisy beam)<br />

- C<strong>on</strong>diti<strong>on</strong>al Variance V(P 1 |P 2 )<br />

P<br />

Gemellity : G


<strong>Quantum</strong> Intensity Correlati<strong>on</strong>s<br />

With a type-II optical parametric oscillator<br />

Optical Cavity<br />

CW Pump<br />

NL Crystal (2)<br />

Type-II Phase matching<br />

Signal H<br />

<strong>and</strong> Idler V<br />

Noise <strong>on</strong> the intensity<br />

difference ?<br />

J. Laurat et al., Phys. Rev. Lett 91, 213601 (2003); <strong>Optics</strong> Lett. 30, 1177 (2005); arXiv:quant-ph/0510063


<strong>Quantum</strong> Intensity Correlati<strong>on</strong>s<br />

With a type-II optical parametric oscillator<br />

Optical Cavity<br />

CW Pump<br />

NL Crystal (2)<br />

Type-II Phase matching<br />

G=0.11


« Two Quadratures » Criteria<br />

A double correlati<strong>on</strong> : « EPR Paradox »<br />

Phys. Rev. 47, 777 (1935)


« Two Quadratures » Criteria<br />

A double correlati<strong>on</strong> : « EPR Paradox »<br />

Inseparabilty (Duan) :


« Two Quadratures » Criteria<br />

A double correlati<strong>on</strong> : « EPR Paradox »<br />

Inseparabilty (Duan) :


How to Generate CV Entanglement ?<br />

Entanglement <strong>and</strong> Squeezing : a change in basis<br />

-Using 2 type-I OPO <strong>and</strong><br />

mixing the two squeezed<br />

light <strong>on</strong> BS<br />

- Using 1 type II OPO


How to Generate CV Entanglement ?<br />

Entanglement <strong>and</strong> Squeezing : a change in basis<br />

J. Laurat et al., Phys. Rev. A 71, 022313 (2005)<br />

Separability = 0.33 ± 0.02 < 1<br />

EPR: Vc 1 .Vc 2 = 0.42 ± 0.05


How to Generate CV Entanglement ?<br />

With <strong>on</strong>e squeezed beam?<br />

Squeezing s1<br />

?


How to Generate CV Entanglement ?<br />

With <strong>on</strong>e squeezed beam?<br />

Squeezing s1<br />

?<br />

Always entangled…<br />

Sometimes EPR entangled : needs good<br />

squeezing <strong>and</strong> importantly good purity


How to Generate CV Entanglement ?<br />

With <strong>on</strong>e squeezed beam?<br />

Squeezing s1<br />

?<br />

Always entangled…<br />

Sometimes EPR entangled : needs good<br />

squeezing <strong>and</strong> importantly good purity<br />

arXiv:1103.1817


<strong>Quantum</strong> Teleportati<strong>on</strong><br />

1- Measurements<br />

2- Transmissi<strong>on</strong> (classical channel)<br />

3- Modulati<strong>on</strong>s<br />

First teleporati<strong>on</strong> of a coherent states with Fidelity above 0.5 (1/2=classical strategy)<br />

A. Furusawa et al., Unc<strong>on</strong>diti<strong>on</strong>al quantum teleportati<strong>on</strong>, Science 282, 706 (1998)<br />

First teleportati<strong>on</strong> of a cat states<br />

N. Lee et al., Teleportati<strong>on</strong> of n<strong>on</strong>-classical wave-packets of light, Science 332, 330 (2011)<br />

0<br />

0


Multimode Entanglement : Cluster States<br />

CV Cluster states<br />

Quadrature correlati<strong>on</strong>s verifying:


Multimode Entanglement : Cluster States<br />

CV Cluster states<br />

Quadrature correlati<strong>on</strong>s verifying:<br />

How to build them? With squeezers <strong>and</strong> beam splitters<br />

With other phase combinati<strong>on</strong>s:<br />

M. Yukawa et al., Experimental generati<strong>on</strong> of four-modes CV cluster states, Phys. Rev. A 78, 012301 (2008)


A last Level of Correlati<strong>on</strong>s : N<strong>on</strong>-locality<br />

Violati<strong>on</strong> of a Bell Inequality<br />

The multiple correlati<strong>on</strong>s cannot be described by a<br />

local hidden variables<br />

Fields with Gaussian statistics (Positive Wigner<br />

functi<strong>on</strong>) : can always be mapped into<br />

stochastic equati<strong>on</strong>s for fluctuating fields,<br />

which c<strong>on</strong>stitute the local « hidden » variables<br />

accounting for all the observed quantities…<br />

N<strong>on</strong>-Gaussian states with<br />

Negative Wigner functi<strong>on</strong>s<br />

A str<strong>on</strong>gly active field:<br />

Schrodinger cat states,<br />

CV qubit, distillati<strong>on</strong><br />

Hybrid Schemes<br />

Requires n<strong>on</strong>-Gaussian<br />

measurements or n<strong>on</strong>-Gaussian<br />

ressources


A last Level of Correlati<strong>on</strong>s : N<strong>on</strong>-locality<br />

Violati<strong>on</strong> of a Bell Inequality<br />

The multiple correlati<strong>on</strong>s cannot be described by a<br />

local hidden variables<br />

Fields with Gaussian statistics (Positive Wigner<br />

functi<strong>on</strong>) : can always be mapped into<br />

stochastic equati<strong>on</strong>s for fluctuating fields,<br />

which c<strong>on</strong>stitute the local « hidden » variables<br />

accounting for all the observed quantities…<br />

Single-phot<strong>on</strong> subtracti<strong>on</strong>s<br />

N<strong>on</strong>-Gaussian states with<br />

Negative Wigner functi<strong>on</strong>s<br />

A str<strong>on</strong>gly active field:<br />

Schrodinger cat states,<br />

CV qubit, distillati<strong>on</strong><br />

Hybrid Schemes<br />

Requires n<strong>on</strong>-Gaussian<br />

measurements or n<strong>on</strong>-Gaussian<br />

ressources<br />

Requires efficiency>95%, 6dB<br />

squeezing, high-purity of the<br />

initial state…<br />

And gives at most S=2.05<br />

R. Garcia-Patr<strong>on</strong> et al., Phys. Rev. Lett. 93, 130409 (2004); <strong>and</strong> many other proposals since then…


Summary<br />

• C<strong>on</strong>tinuous-variable regime<br />

• Measuring optical CV<br />

• Squezed light generati<strong>on</strong> by<br />

parametric amplificati<strong>on</strong><br />

• <strong>Quantum</strong> correlati<strong>on</strong>s : 5 levels<br />

Gaussian: Twins, QND,EPR<br />

N<strong>on</strong>-Gaussian : Bell-type<br />

Trend: Hybrid schemes (next lecture!)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!