27.02.2017 Views

Semester One Notebook Etienne

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Honors Chemistry<br />

Class Policies and Grading<br />

The students will receive a Unit Outline at the beginning of each Unit. It will<br />

have information about the assignments that they will do, what it’s grade<br />

classification will be, what action they will need to do to complete the<br />

assignment and when it is due.<br />

The students will receive a Weekly Memo of the activities they will be<br />

responsible for that week. It will serve to inform the students of the learning<br />

goal for the week. It will also give the students any special information<br />

about that week.<br />

The students will also receive daily lectures and assignments that are<br />

designed to teach and re-enforce information related to the learning goal.<br />

This will be time in which new material will be taught and reviewed and will<br />

give the students the opportunity to ask questions regarding the concepts<br />

being taught.<br />

The students will work with a Lab partner and also be in a Lab group, but it<br />

will be up to the individual student to do his or her part of all assignments<br />

and the individual student will ultimately be responsible for all information<br />

presented in the class.<br />

The students will be required to follow all District and School Policies and to<br />

follow all Lab Safety Procedures, which they will be given and will sign,<br />

while performing labs. Students should come to class on time and with the<br />

supplies needed for that class.<br />

The following grading policy will be used.<br />

Percent of Final Grade<br />

<strong>Notebook</strong> 40%<br />

Test/Projects 30%<br />

Labs/Quizzes 20%<br />

Work 10%<br />

The students will be given a teacher generated Mid Term and a District<br />

Final.


Unit 1<br />

Measurement Lab<br />

Separation of Mixtures Lab with Lab Write Up<br />

Unit 2<br />

Flame Test Lab<br />

Nuclear Decay Lab<br />

Element Marketing Project<br />

Unit 3<br />

Golden Penny Lab with Lab Write Up<br />

Molecular Geometry<br />

Research Presentation on a Chemical<br />

Mid Term<br />

Unit 4<br />

Double Displacement Lab<br />

Stoichiometry Lab with Lab Write Up<br />

Mole Educational Demonstration Project<br />

Unit 5<br />

Gas Laws Lab with Lab Write Up<br />

States of Matter Lab<br />

Teach a Gas Law Project<br />

Unit 6<br />

Dilutions Lab<br />

Titration Lab<br />

District Final


Unit 1 (22 days)<br />

Chapter 1 Introduction to Chemistry<br />

Honors Chemistry<br />

2016/2017 Syllabus<br />

3 days<br />

1.1 The Scope of Chemistry 1.3 Thinking Like a Scientist<br />

1.2 Chemistry and You 1.4 Problem Solving in Chemistry<br />

Chapter 2 Matter and Change<br />

2.1 Properties of Matter 2.3 Elements and Compounds<br />

2.2 Mixtures 2.4 Chemical Reactions<br />

Chapter 3 Scientific Measurement<br />

9 days<br />

10 days<br />

3.1 Using and Expressing Measurements 3.3 Solving Conversion Problems<br />

3.2 Units of Measurement<br />

Unit 2 (15 days)<br />

Chapter 4 Atomic Structure<br />

5 days<br />

4.1 Defining the Atom 4.3 Distinguishing Among Atoms<br />

4.2 Structure of the Nuclear Atom<br />

Chapter 5 Electrons in Atoms<br />

5 days<br />

5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms<br />

5.3 Atomic Emission Spectrum and the Quantum Mechanical Model<br />

Chapter 6 The Periodic Table<br />

6.1 Organizing the Elements 6.3 Periodic Trends<br />

6.2 Classifying Elements<br />

Unit 3 (22 days)<br />

Chapter 25 Nuclear Chemistry<br />

25.1 Nuclear Radiation 25.3 Fission and Fusion<br />

25.2 Nuclear Transformations 25.4 Radiation in Your Life<br />

Chapter 7 Ionic and Metallic Bonding<br />

7.1 Ions 7.3 Bonding in Metals<br />

7.2 Ionic Bonds and Ionic Compounds<br />

Chapter 8 Covalent Bonding<br />

5 days<br />

6 days<br />

8 days<br />

8 days<br />

8.1 Molecular Compounds 8.3 Bonding Theories<br />

8.2 The Nature of Covalent Bonding 8.4 Polar Bonds and Molecules<br />

Unit 4 (14 days)<br />

Chapter 9 Chemical Names and Formulas<br />

6 days<br />

9.1 Naming Ions 9.3 Naming & Writing Formulas Molecular Compounds<br />

9.2 Naming and Writing Formulas for Ionic Compounds 9.4 Names for Acids and Bases<br />

Chapter 22 Hydrocarbons Compounds<br />

22.1 Hydrocarbons 22.4 Hydrocarbon Rings<br />

Chapter 23 Functional Groups<br />

4 days<br />

4 days<br />

23.1 Introduction to Functional Groups 23.4 Alcohols, Ethers, and Amines


Unit 5 (28 days)<br />

Chapter 10 Chemical Quantities 8 days<br />

10.1 The Mole: A Measurement of Matter 10.3 % Composition & Chem. Formulas<br />

10.2 Mole-Mass and Mole-Volume Relationships<br />

Chapter 11 Chemical Reactions 8 days<br />

11.1 Describing Chemical Reactions 11.3 Reactions in Aqueous Solutions<br />

11.2 Types of Chemical Reactions<br />

Chapter 12 Stoichiometry 12 days<br />

12.1 The Arithmetic of Equations 12.3 Limiting Reagent and % Yield<br />

12.2 Chemical Calculations<br />

Unit 6 (22 days)<br />

Chapter 13 States of Matter 6 days<br />

13.1 The Nature of Gases 13.3 The Nature of Solids<br />

13.2 The Nature of Liquids 13.4 Changes in State<br />

Chapter 14 The Behavior of Gases 10 days<br />

14.1 Properties of Gases 14.3 Ideal Gases<br />

14.2 The Gas Laws 14.4 Gases: Mixtures and Movement<br />

Chapter 15 Water and Aqueous Systems 6 days<br />

15.1 Water and its Properties 15.3 Heterogeneous Aqueous Systems<br />

15.2 Homogeneous Aqueous Systems<br />

Unit 7 (18 days)<br />

Chapter 16 Solutions 8 days<br />

16.1 Properties of Solutions 16.3 Colligative Properties of Solutions<br />

16.2 Concentrations of Solutions 16.4 Calc. Involving Colligative Property<br />

Chapter 17 Thermochemistry 5 days<br />

17.1 The Flow of Energy 17.3 Heat in Changes of State<br />

17.2 Measuring and Expressing Enthalpy Change 17.4 Calculating Heats in Reactions<br />

Chapter 18 Reaction Rates and Equilibrium 5 days<br />

18.1 Rates of Reactions 18.3 Reversible Reaction & Equilibrium<br />

18.2 The Progress of Chemical Reactions 18.5 Free Energy and Entropy<br />

Unit 8 (14 days)<br />

Chapter 19 Acid and Bases 10 days<br />

19.1 Acid-Base Theories 19.4 Neutralization Reactions<br />

19.2 Hydrogen Ions and Acidity 19.5 Salts in Solutions<br />

19.3 Strengths of Acids and Bases<br />

Chapter 20 Oxidation-Reduction Reactions 4 days<br />

20.1 The Meaning of Oxidation and Reduction 20.3 Describing Redox Equations<br />

20.2 Oxidation Numbers


Lorenzo Walker Technical High School<br />

MUSTANG LABORATORIES<br />

Chemistry Safety<br />

Safety in the MUSTANG LABORATORIES - Chemistry Laboratory<br />

Working in the chemistry laboratory is an interesting and rewarding experience. During your labs, you will be actively<br />

involved from beginning to end—from setting some change in motion to drawing some conclusion. In the laboratory, you<br />

will be working with equipment and materials that can cause injury if they are not handled properly.<br />

However, the laboratory is a safe place to work if you are careful. Accidents do not just happen; they are caused—by<br />

carelessness, haste, and disregard of safety rules and practices. Safety rules to be followed in the laboratory are listed<br />

below. Before beginning any lab work, read these rules, learn them, and follow them carefully.<br />

General<br />

1. Be prepared to work when you arrive at the lab. Familiarize yourself with the lab procedures before beginning the lab.<br />

2. Perform only those lab activities assigned by your teacher. Never do anything in the laboratory that is not called for in<br />

the laboratory procedure or by your teacher. Never work alone in the lab. Do not engage in any horseplay.<br />

3. Work areas should be kept clean and tidy at all times. Only lab manuals and notebooks should be brought to the work<br />

area. Other books, purses, brief cases, etc. should be left at your desk or placed in a designated storage area.<br />

4. Clothing should be appropriate for working in the lab. Jackets, ties, and other loose garments should be removed. Open<br />

shoes should not be worn.<br />

5. Long hair should be tied back or covered, especially in the vicinity of open flame.<br />

6. Jewelry that might present a safety hazard, such as dangling necklaces, chains, medallions, or bracelets should not be<br />

worn in the lab.<br />

7. Follow all instructions, both written and oral, carefully.<br />

8. Safety goggles and lab aprons should be worn at all times.<br />

9. Set up apparatus as described in the lab manual or by your teacher. Never use makeshift arrangements.<br />

10. Always use the prescribed instrument (tongs, test tube holder, forceps, etc.) for handling apparatus or equipment.<br />

11. Keep all combustible materials away from open flames.<br />

12. Never touch any substance in the lab unless specifically instructed to do so by your teacher.<br />

13. Never put your face near the mouth of a container that is holding chemicals.<br />

14. Never smell any chemicals unless instructed to do so by your teacher. When testing for odors, use a wafting motion to<br />

direct the odors to your nose.<br />

15. Any activity involving poisonous vapors should be conducted in the fume hood.<br />

16. Dispose of waste materials as instructed by your teacher.<br />

17. Clean up all spills immediately.<br />

18. Clean and wipe dry all work surfaces at the end of class. Wash your hands thoroughly.<br />

19. Know the location of emergency equipment (first aid kit, fire extinguisher, fire shower, fire blanket, etc.) and how to use them.<br />

20. Report all accidents to the teacher immediately.<br />

Handling Chemicals<br />

21. Read and double check labels on reagent bottles before removing any reagent. Take only as much reagent as you<br />

need.<br />

22. Do not return unused reagent to stock bottles.<br />

23. When transferring chemical reagents from one container to another, hold the containers out away from your body.<br />

24. When mixing an acid and water, always add the acid to the water.<br />

25. Avoid touching chemicals with your hands. If chemicals do come in contact with your hands, wash them immediately.<br />

26. Notify your teacher if you have any medical problems that might relate to lab work, such as allergies or asthma.<br />

27. If you will be working with chemicals in the lab, avoid wearing contact lenses. Change to glasses, if possible, or notify<br />

the teacher.<br />

Handling Glassware<br />

28. Glass tubing, especially long pieces, should be carried in a vertical position to minimize the likelihood of breakage and<br />

to avoid stabbing anyone.<br />

29. Never handle broken glass with your bare hands. Use a brush and dustpan to clean up broken glass. Dispose of the<br />

glass as directed by your teacher.


30. Always lubricate glassware (tubing, thistle tubes, thermometers, etc.) with water or glycerin before attempting to insert<br />

it into a rubber stopper.<br />

31. Never apply force when inserting or removing glassware from a stopper. Use a twisting motion. If a piece of glassware<br />

becomes "frozen" in a stopper, take it to your teacher.<br />

32. Do not place hot glassware directly on the lab table. Always use an insulating pad of some sort.<br />

33. Allow plenty of time for hot glass to cool before touching it. Hot glass can cause painful burns. (Hot glass looks cool.)<br />

Heating Substances<br />

34. Exercise extreme caution when using a gas burner. Keep your head and clothing away from the flame.<br />

35. Always turn the burner off when it is not in use.<br />

36. Do not bring any substance into contact with a flame unless instructed to do so.<br />

37. Never heat anything without being instructed to do so.<br />

38. Never look into a container that is being heated.<br />

39. When heating a substance in a test tube, make sure that the mouth of the tube is not pointed at yourself or anyone<br />

else.<br />

40. Never leave unattended anything that is being heated or is visibly reacting.<br />

First Aid in the MUSTANG LABORATORIES - Chemistry Laboratory<br />

Accidents do not often happen in well-equipped chemistry laboratories if students understand safe laboratory procedures<br />

and are careful in following them. When an occasional accident does occur, it is likely to be a minor one.<br />

The instructor will assist in treating injuries such as minor cuts and burns. However, for some types of injuries, you must<br />

take action immediately. The following information will be helpful to you if an accident occurs.<br />

1. Shock. People who are suffering from any severe injury (for example, a bad burn or major loss of blood) may be in a<br />

state of shock. A person in shock is usually pale and faint. The person may be sweating, with cold, moist skin and a weak,<br />

rapid pulse. Shock is a serious medical condition. Do not allow a person in shock to walk anywhere—even to the campus<br />

security office. While emergency help is being summoned, place the victim face up in a horizontal position, with the feet<br />

raised about 30 centimeters. Loosen any tightly fitting clothing and keep him or her warm.<br />

2. Chemicals in the Eyes. Getting any kind of a chemical into the eyes is undesirable, but certain chemicals are<br />

especially harmful. They can destroy eyesight in a matter of seconds. Because you will be wearing safety goggles at all<br />

times in the lab, the likelihood of this kind of accident is remote. However, if it does happen, flush your eyes with water<br />

immediately. Do NOT attempt to go to the campus office before flushing your eyes. It is important that flushing with water<br />

be continued for a prolonged time—about 15 minutes.<br />

3. Clothing or Hair on Fire. A person whose clothing or hair catches on fire will often run around hysterically in an<br />

unsuccessful effort to get away from the fire. This only provides the fire with more oxygen and makes it burn faster. For<br />

clothing fires, throw yourself to the ground and roll around to extinguish the flames. For hair fires, use a fire blanket to<br />

smother the flames. Notify campus security immediately.<br />

4. Bleeding from a Cut. Most cuts that occur in the chemistry laboratory are minor. For minor cuts, apply pressure to the<br />

wound with a sterile gauze. Notify campus security of all injuries in the lab. If the victim is bleeding badly, raise the<br />

bleeding part, if possible, and apply pressure to the wound with a piece of sterile gauze. While first aid is being given,<br />

someone else should notify the campus security officer.<br />

5. Chemicals in the Mouth. Many chemicals are poisonous to varying degrees. Any chemical taken into the mouth<br />

should be spat out and the mouth rinsed thoroughly with water. Note the name of the chemical and notify the campus<br />

office immediately. If the victim swallows a chemical, note the name of the chemical and notify campus security<br />

immediately.<br />

If necessary, the campus security officer or administrator will contact the Poison Control Center, a hospital emergency<br />

room, or a physician for instructions.<br />

6. Acid or Base Spilled on the Skin.<br />

Flush the skin with water for about 15 minutes. Take the victim to the campus office to report the injury.<br />

7. Breathing Smoke or Chemical Fumes.<br />

All experiments that give off smoke or noxious gases should be conducted in a well-ventilated fume hood. This will make<br />

an accident of this kind unlikely. If smoke or chemical fumes are present in the laboratory, all persons—even those who<br />

do not feel ill—should leave the laboratory immediately. Make certain that all doors to the laboratory are closed after the<br />

last person has left. Since smoke rises, stay low while evacuating a smoke-filled room. Notify campus security<br />

immediately.


MUSTANG LABORATORIES<br />

COMMITMENT TO SAFETY IN THE LABORATORY<br />

As a student enrolled in Chemistry at Lorenzo Walker Technical High<br />

School, I agree to use good laboratory safety practices at all times. I<br />

also agree that I will:<br />

1. Conduct myself in a professional manner, respecting both my personal safety and the safety of<br />

others in the laboratory.<br />

2. Wear proper and approved safety glasses or goggles in the laboratory at all times.<br />

3. Wear sensible clothing and tie back long hair in the laboratory. Understand that open-toed shoes<br />

pose a hazard during laboratory classes and that contact lenses are an added safety risk.<br />

4. Keep my lab area free of clutter during an experiment.<br />

5. Never bring food or drink into the laboratory, nor apply makeup within the laboratory.<br />

6. Be aware of the location of safety equipment such as the fire extinguisher, eye wash station, fire<br />

blanket, first aid kit. Know the location of the nearest telephone and exits.<br />

7. Read the assigned lab prior to coming to the laboratory.<br />

8. Carefully read all labels on all chemical containers before using their contents, remove a small<br />

amount of reagent properly if needed, do not pour back the unused chemicals into the original<br />

container.<br />

9. Dispose of chemicals as directed by the instructor only. At no time will I pour anything down the<br />

sink without prior instruction.<br />

10. Never inhale fumes emitted during an experiment. Use the fume hood when instructed to do so.<br />

11. Report any accident immediately to the instructor, including chemical spills.<br />

12. Dispose of broken glass and sharps only in the designated containers.<br />

13. Clean my work area and all glassware before leaving the laboratory.<br />

14. Wash my hands before leaving the laboratory.<br />

NAME __________________________<br />

JAMIE ETIENNE<br />

PERIOD ________________________<br />

3<br />

PARENT NAME ____________________________<br />

JUNIE J NICOLAS<br />

PARENT NUMBER _________________________<br />

239 601 8366<br />

SIGNATURE ____________________________<br />

DATE ____________________________________<br />

8/25/16


Chapter 1<br />

Unit 1<br />

Introduction to Chemistry<br />

The students will learn why and how to solve problems using<br />

chemistry.<br />

Identify what is science, what clearly is not science, and what superficially<br />

resembles science (but fails to meet the criteria for science).<br />

Students will identify a phenomenon as science or not science.<br />

Inference<br />

Hypothesis<br />

Science<br />

Observation<br />

Identify which questions can be answered through science and which<br />

questions are outside the boundaries of scientific investigation, such as<br />

questions addressed by other ways of knowing, such as art, philosophy, and<br />

religion.<br />

Students will differentiate between problems and/or phenomenon that can and<br />

those that cannot be explained or answered by science.<br />

Students will differentiate between problems and/or phenomenon that can and<br />

those that cannot be explained or answered by science.<br />

Observation<br />

Inference<br />

Hypothesis<br />

Theory<br />

Controlled experiment<br />

Describe how scientific inferences are drawn from scientific observations<br />

and provide examples from the content being studied.<br />

Students will conduct and record observations.<br />

Students will make inferences.<br />

Students will identify a statement as being either an observation or inference.<br />

Students will pose scientific questions and make predictions based on<br />

inferences.<br />

Inference<br />

Observation<br />

Hypothesis<br />

Controlled experiment<br />

Identify sources of information and assess their reliability according to the<br />

strict standards of scientific investigation.<br />

Students will compare and assess the validity of known scientific information<br />

from a variety of sources:


Print vs. print<br />

Online vs. online<br />

Print vs. online<br />

Students will conduct an experiment using the scientific method and compare<br />

with other groups.<br />

Controlled experiment<br />

Investigation<br />

Peer Review<br />

Accuracy<br />

Precision<br />

Percentage Error<br />

Chapter 2<br />

Matter and Change<br />

The students will learn what properties are used to describe<br />

matter and how matter can change its form.<br />

Differentiate between physical and chemical properties and physical and<br />

chemical changes of matter.<br />

Students will be able to identify physical and chemical properties of various<br />

substances.<br />

Students will be able to identify indicators of physical and chemical changes.<br />

Students will be able to calculate density.<br />

mass<br />

physical property<br />

volume<br />

chemical property<br />

vapor<br />

extensive property<br />

Chapter 3<br />

mixture<br />

intensive property<br />

solution<br />

element<br />

compound<br />

Scientific Measurements<br />

The students will be able to solve conversion problems using<br />

measurements.<br />

Determine appropriate and consistent standards of measurement for the<br />

data to be collected in a survey or experiment.<br />

Students will participate in activities to collect data using standardized<br />

measurement.<br />

Students will be able to manipulate/convert data collected and apply the data<br />

to scientific situations.<br />

Scientific notation<br />

International System of Units (SI)<br />

Significant figures<br />

Accepted value<br />

Experimental value<br />

Percent error<br />

Dimensional analysis


Benchmark for cahpter 3<br />

The students will be able to solve conversion problems using mesurement<br />

kelvin and celcious<br />

add 273 to celcious<br />

king henery died by drining clocolate milk<br />

kilo 1000<br />

hecto100<br />

deka 10<br />

base 1<br />

deci 0.1<br />

centi 0.01<br />

milli 0.001


To use the Stair-Step method, find the prefix the original measurement starts with. (ex. milligram)<br />

If there is no prefix, then you are starting with a base unit.<br />

Find the step which you wish to make the conversion to. (ex. decigram)<br />

Count the number of steps you moved, and determine in which direction you moved (left or right).<br />

The decimal in your original measurement moves the same number of places as steps you moved and in the<br />

same direction. (ex. milligram to decigram is 2 steps to the left, so 40 milligrams = .40 decigrams)<br />

If the number of steps you move is larger than the number you have, you will have to add zeros to hold the<br />

places. (ex. kilometers to meters is three steps to the right, so 10 kilometers would be equal to 10,000 m)<br />

That’s all there is to it! You need to be able to count to 6, and know your left from your right!<br />

1) Write the equivalent<br />

a) 5 dm =_______m 0.5<br />

b) 4 mL = ______L 0.004 c) 8 g = _______mg<br />

8000<br />

d) 9 mg =_______g 0.009<br />

e) 2 mL = ______L 0.002 f) 6 kg = _____g 6000<br />

g) 4 cm =_______m 0.04<br />

h) 12 mg = ______ 0.012 g i) 6.5 cm 3 = _______L 0.650<br />

j) 7.02 mL =_____cm 0.702<br />

3 k) .03 hg = _______ 30 dg l) 6035 mm _____cm 603.5<br />

m) .32 m = _______cm 32<br />

n) 38.2 g = _____kg 0.382


2. <strong>One</strong> cereal bar has a mass of 37 g. What is the mass of 6 cereal bars? Is that more than or less<br />

than 1 kg? Explain your answer. The mass of 6 cereal bars is 222g. it is les than 1kg becauue i kg is 1000 g<br />

3. Wanda needs to move 110 kg of rocks. She can carry l0 hg each trip. How many trips must she<br />

make? Explain your answer. She must make 1100 trips because kg is 10x more than hg so she must make<br />

10x more trips than the amount of rocks<br />

4. Dr. O is playing in her garden again She needs 1 kg of potting soil for her plants. She has 750 g.<br />

How much more does she need? Explain your answer.<br />

5. Weather satellites orbit Earth at an altitude of 1,400,000 meters. What is this altitude in kilometers?<br />

6. Which unit would you use to measure the capacity? Write milliliter or liter.<br />

a) a bucket __________<br />

b) a thimble __________<br />

c) a water storage tank__________<br />

d) a carton of juice__________<br />

7. Circle the more reasonable measure:<br />

a) length of an ant 5mm or 5cm<br />

b) length of an automobile 5 m or 50 m<br />

c) distance from NY to LA 450 km or 4,500 km<br />

d) height of a dining table 75 mm or 75 cm<br />

8. Will a tablecloth that is 155 cm long cover a table that is 1.6 m long? Explain your answer.<br />

9. A dollar bill is 15.6 cm long. If 200 dollar bills were laid end to end, how many meters long would<br />

the line be?<br />

10. The ceiling in Jan’s living room is 2.5 m high. She has a hanging lamp that hangs down 41 cm.<br />

Her husband is exactly 2 m tall. Will he hit his head on the hanging lamp? Why or why not?


Using SI Units<br />

Match the terms in Column II with the descriptions in Column I. Write the letters of the correct term in<br />

the blank on the left.<br />

Column I Column II<br />

_____ k 1. distance between two points<br />

a. time<br />

_____ e 2. SI unit of length<br />

_____ m 3. tool used to measure length<br />

_____ g 4. units obtained by combining other units<br />

_____ 5. amount of space occupied by an object<br />

_____ h 6. unit used to express volume<br />

_____ f 7. SI unit of mass<br />

_____ 8. amount of matter in an object<br />

_____ g 9. mass per unit of volume<br />

_____ 10. temperature scale of most laboratory thermometers<br />

_____ l 11. instrument used to measure mass<br />

_____ a 12. interval between two events<br />

_____ 13. SI unit of temperature<br />

_____ 14. SI unit of time<br />

_____ 15. instrument used to measure temperature<br />

b. volume<br />

c. mass<br />

d. density<br />

e. meter<br />

f. kilogram<br />

g. derived<br />

h. liter<br />

i. second<br />

j. Kelvin<br />

k. length<br />

1. balance<br />

m. meterstick<br />

n. thermometer<br />

o. Celsius<br />

Circle the two terms in each group that are related. Explain how the terms are related.<br />

16. Celsius degree, mass, Kelvin _____________________________________________________<br />

they are both measures of temperature<br />

________________________________________________________________________________<br />

17. balance, second, mass __________________________________________________________<br />

balnce is the instrament you use to weigh mass<br />

________________________________________________________________________________<br />

18. kilogram, liter, cubic centimeter __________________________________________________<br />

one cubic cm is one leter<br />

________________________________________________________________________________<br />

19. time, second, distance __________________________________________________________<br />

a second is a measure of time<br />

________________________________________________________________________________<br />

20. decimeter, kilometer, Kelvin _____________________________________________________<br />

a decimeter is 0.01 of a meret and a kilometer is 1000 of a meter<br />

________________________________________________________________________________


1. How many meters are in one kilometer? __________<br />

1000<br />

2. What part of a liter is one milliliter? __________ 0.001<br />

3. How many grams are in two dekagrams? __________ 20<br />

4. If one gram of water has a volume of one milliliter, what would the mass of one liter of water be in<br />

kilograms?__________ 1kg<br />

5. What part of a meter is a decimeter? __________<br />

0.10<br />

In the blank at the left, write the term that correctly completes each statement. Choose from the terms<br />

listed below.<br />

Metric SI standard ten<br />

prefixes ten tenth<br />

6. An exact quantity that people agree to use for comparison is a ______________ standarc ten .<br />

7. The system of measurement used worldwide in science is _______________ metric .<br />

8. SI is based on units of _______________ ten .<br />

9. The system of measurement that was based on units of ten was the _______________ si<br />

system.<br />

10. In SI, _______________ prefixes are used with the names of the base unit to indicate the multiple of ten<br />

that is being used with the base unit.<br />

11. The prefix deci- means _______________ tenth .


Standards of Measurement<br />

Fill in the missing information in the table below.<br />

Prefix<br />

S.I prefixes and their meanings<br />

Meaning<br />

milli-<br />

0.001<br />

centi-<br />

0.01<br />

deci- 0.1<br />

deka-<br />

10<br />

hecto- 100<br />

killo-<br />

1000<br />

Circle the larger unit in each pair of units.<br />

1. millimeter, kilometer 4. centimeter, millimeter<br />

2. decimeter, dekameter 5. hectogram, kilogram<br />

3. hectogram, decigram<br />

6. In SI, the base unit of length is the meter. Use this information to arrange the following units of<br />

measurement in the correct order from smallest to largest.<br />

Write the number 1 (smallest) through 7 - (largest) in the spaces provided.<br />

_____ 7 a. kilometer<br />

_____ 2 b. centimeter<br />

_____ 4 c. meter<br />

_____ 6 e. hectometer<br />

_____ 1 f. millimeter<br />

_____ 3 g. decimeter<br />

_____ 5 d. dekameter<br />

Use your knowledge of the prefixes used in SI to answer the following questions in the spaces<br />

provided.<br />

7. <strong>One</strong> part of the Olympic games involves an activity called the decathlon. How many events do you<br />

think make up the decathlon?_____________________________________________________<br />

10<br />

8. How many years make up a decade? _______________________________________________<br />

10<br />

9. How many years make up a century? ______________________________________________<br />

100<br />

10. What part of a second do you think a millisecond is? __________________________________<br />

0.01


The Learning Goal for this assignment is:<br />

Notes Section<br />

when exponent is 10^0 the number stays the same<br />

+ exponent move right<br />

- exponent move left<br />

must be 1-9.99<br />

small numbers have negitive exponents<br />

large numbers have postitve exponents<br />

1. 7,485 6. 1.683<br />

2. 884.2 7. 3.622<br />

3. 0.00002887 8. 0.00001735<br />

4. 0.05893 9. 0.9736<br />

5. 0.006162 10. 0.08558<br />

11. 6.633 X 10−⁴ 16. 1.937 X 10⁴<br />

12. 4.445 X 10−⁴ 17. 3.457 X 10⁴<br />

13. 2.182 X 10−³ 18. 3.948 X 10−⁵<br />

14. 4.695 X 10² 19. 8.945 X 10⁵<br />

15. 7.274 X 10⁵ 20. 6.783 X 10²


SCIENTIFIC NOTATION RULES<br />

How to Write Numbers in Scientific Notation<br />

Scientific notation is a standard way of writing very large and very small numbers so that they're<br />

easier to both compare and use in computations. To write in scientific notation, follow the form<br />

N X 10 ᴬ<br />

where N is a number between 1 and 10, but not 10 itself, and A is an integer (positive or negative<br />

number).<br />

RULE #1: Standard Scientific Notation is a number from 1 to 9 followed by a decimal and the<br />

remaining significant figures and an exponent of 10 to hold place value.<br />

Example:<br />

5.43 x 10 2 = 5.43 x 100 = 543<br />

8.65 x 10 – 3 = 8.65 x .001 = 0.00865<br />

****54.3 x 10 1 is not Standard Scientific Notation!!!<br />

RULE #2: When the decimal is moved to the Left the exponent gets Larger, but the value of the<br />

number stays the same. Each place the decimal moves Changes the exponent by one (1). If you<br />

move the decimal to the Right it makes the exponent smaller by one (1) for each place it is moved.<br />

Example:<br />

6000. x 10 0 = 600.0 x 10 1 = 60.00 x 10 2 = 6.000 x 10 3 = 6000<br />

(Note: 10 0 = 1)<br />

All the previous numbers are equal, but only 6.000 x 10 3 is in proper Scientific Notation.


RULE #3: To add/subtract in scientific notation, the exponents must first be the same.<br />

Example:<br />

(3.0 x 10 2 ) + (6.4 x 10 3 ); since 6.4 x 10 3 is equal to 64. x 10 2 . Now add.<br />

(3.0 x 10 2 )<br />

+ (64. x 10 2 )<br />

67.0 x 10 2 = 6.70 x 10 3 = 6.7 x 10 3<br />

67.0 x 10 2 is mathematically correct, but a number in standard scientific notation can only<br />

have one number to the left of the decimal, so the decimal is moved to the left one place and<br />

one is added to the exponent.<br />

Following the rules for significant figures, the answer becomes 6.7 x 10 3 .<br />

RULE #4: To multiply, find the product of the numbers, then add the exponents.<br />

Example:<br />

(2.4 x 10 2 ) (5.5 x 10 –4 ) = ? [2.4 x 5.5 = 13.2]; [2 + -4 = -2], so<br />

(2.4 x 10 2 ) (5.5 x 10 –4 ) = 13.2 x 10 –2 = 1.3 x 10 – 1<br />

RULE #5: To divide, find the quotient of the number and subtract the exponents.<br />

Example:<br />

(3.3 x 10 – 6 ) / (9.1 x 10 – 8 ) = ? [3.3 / 9.1 = .36]; [-6 – (-8) = 2], so<br />

(3.3 x 10 – 6 ) / (9.1 x 10 – 8 ) = .36 x 10 2 = 3.6 x 10 1


Convert each number from Scientific Notation to real numbers:<br />

1. 7.485 X 10³ 6. 1.683 X 10⁰<br />

7485<br />

1.683<br />

2. 8.842 X 10² 7. 3.622 10⁰<br />

884.2 3.622<br />

3. 2.887 X 10−⁵ 0.00002887<br />

8. 1.735 X 10−⁵<br />

0.00001735<br />

4. 5.893 X 10−² 0.05893<br />

9. 9.736 X 10−¹<br />

.9736<br />

5. 6.162 X 10−³ 0.006162<br />

10. 8.558 X 10−²<br />

0.08558<br />

Convert each number from a real number to Scientific Notation:<br />

11. 0.0006633<br />

16. 1,937,000<br />

6.633 x 10 -4<br />

1.937x 10^6<br />

12. 0.0004445<br />

17. 34,570<br />

4.445 x 10 -4<br />

3.457 x 10^4<br />

13. 0.002182<br />

18. 0.00003948<br />

2.182 x 10 -3<br />

3.948 x 10^-5<br />

14. 469.5<br />

4.695 x 10 2 19. 894,500<br />

8.945 x 10^5<br />

15. 727,400<br />

20. 678.3<br />

7.27400 x 10 5<br />

6.783 x 10^2


The Learning Goal for this assignment is:<br />

Notes Section:<br />

all nono 0 # are significant<br />

0's that are between non0 numbers are significant<br />

Question Sig Figs Question Add & Subtract Question Multiple & Divide<br />

1 4 1 55.36 1 20,000<br />

2 4 2 84.2 2 94<br />

3 3 3 115.4 3 300<br />

4 3 4 0.8 4 7<br />

5 4 5 245.53 5 62<br />

6 3 6 34.5 6 0.005<br />

7 3 7 74.0 7 4,000<br />

8 2 8 53.287 8 3,900,000<br />

9 2 9 54.876 9 2<br />

10 2 10 40.19 10 30,000,000<br />

11 3 11 7.7 11 1,200<br />

12 2 12 67.170 12 0.2<br />

13 3 13 81.0 13 0.87<br />

14 4 14 73.290 14 0.049<br />

15 4 15 29.789 15 2,000<br />

16 3 16 39.53 16 0.5<br />

17 4 17 70.58 17 1.9<br />

18 2 18 86.6 18 0.05<br />

19 2 19 64.990 19 230<br />

20 1 20 36.0 20 460,000


Significant Figures Rules<br />

There are three rules on determining how many significant figures are in a<br />

number:<br />

1. Non-zero digits are always significant.<br />

2. Any zeros between two significant digits are significant.<br />

3. A final zero or trailing zeros in the DECIMAL PORTION ONLY are<br />

significant.<br />

Please remember that, in science, all numbers are based upon measurements (except for a very few<br />

that are defined). Since all measurements are uncertain, we must only use those numbers that are<br />

meaningful.<br />

Not all of the digits have meaning (significance) and, therefore, should not be written down. In<br />

science, only the numbers that have significance (derived from measurement) are written.<br />

Rule 1: Non-zero digits are always significant.<br />

If you measure something and the device you use (ruler, thermometer, triple-beam, balance, etc.)<br />

returns a number to you, then you have made a measurement decision and that ACT of measuring<br />

gives significance to that particular numeral (or digit) in the overall value you obtain.<br />

Hence a number like 46.78 would have four significant figures and 3.94 would have three.<br />

Rule 2: Any zeros between two significant digits are significant.<br />

Suppose you had a number like 409. By the first rule, the 4 and the 9 are significant. However, to<br />

make a measurement decision on the 4 (in the hundred's place) and the 9 (in the one's place), you<br />

HAD to have made a decision on the ten's place. The measurement scale for this number would have<br />

hundreds, tens, and ones marked.<br />

Like the following example:<br />

These are sometimes called "captured zeros."<br />

If a number has a decimal at the end (after the one’s place) then all digits (numbers) are significant<br />

and will be counted.<br />

In the following example the zeros are significant digits and highlighted in blue.<br />

960.<br />

70050.


Rule 3: A final zero or trailing zeros in the decimal portion ONLY are<br />

significant.<br />

This rule causes the most confusion among students.<br />

In the following example the zeros are significant digits and highlighted in blue.<br />

0.07030<br />

0.00800<br />

Here are two more examples where the significant zeros are highlighted in blue.<br />

When Zeros are Not Significant Digits<br />

4.7 0 x 10−³<br />

6.5 0 0 x 10⁴<br />

Zero Type # 1 : Space holding zeros in numbers less than one.<br />

In the following example the zeros are NOT significant digits and highlighted in red.<br />

0.09060<br />

0.00400<br />

These zeros serve only as space holders. They are there to put the decimal point in its correct<br />

location.<br />

They DO NOT involve measurement decisions.<br />

Zero Type # 2 : Trailing zeros in a whole number.<br />

In the following example the zeros are NOT significant digits and highlighted in red.<br />

200<br />

25000<br />

For addition and subtraction, look at the decimal portion (i.e., to the right of the decimal point)<br />

of the numbers ONLY. Here is what to do:<br />

1) Count the number of significant figures in the decimal portion of each number in the problem. (The<br />

digits to the left of the decimal place are not used to determine the number of decimal places in the<br />

final answer.)<br />

2) Add or subtract in the normal fashion.<br />

3) Round the answer to the LEAST number of places in the decimal portion of any number in the<br />

problem<br />

The following rule applies for multiplication and division:<br />

The LEAST number of significant figures in any number of the problem determines the number of<br />

significant figures in the answer.<br />

This means you MUST know how to recognize significant figures in order to use this rule.


How Many Significant Digits for Each Number?<br />

1) 2359 = ______ 4<br />

2) 2.445 x 10−⁵= ______ 4<br />

3) 2.93 x 10⁴= ______ 3<br />

4) 1.30 x 10−⁷= ______ 3<br />

5) 2604 = ______ 4<br />

6) 9160 = ______ 3<br />

7) 0.0800 = ______ 2<br />

8) 0.84 = ______ 2<br />

9) 0.0080 = ______ 2<br />

10) 0.00040 = ______ 2<br />

11) 0.0520 = ______ 2<br />

12) 0.060 = ______ 1<br />

13) 6.90 x 10−¹= ______ 2<br />

14) 7.200 x 10⁵= ______ 2<br />

15) 5.566 x 10−²= ______ 4<br />

16) 3.88 x 10⁸= ______ 3<br />

17) 3004 = ______ 4<br />

18) 0.021 = ______ 2<br />

19) 240 = ______ 2<br />

20) 500 = ______ 1


For addition and subtraction, look at the decimal portion (i.e., to the right of the decimal point) of the<br />

numbers ONLY. Here is what to do:<br />

1) Count the number of significant figures in the decimal portion of each number in the problem. (The<br />

digits to the left of the decimal place are not used to determine the number of decimal places in the<br />

final answer.)<br />

2) Add or subtract in the normal fashion.<br />

3) Round the answer to the LEAST number of places in the decimal portion of any number in the<br />

problem.<br />

Solve the Problems and Round Accordingly...<br />

1) 43.287 + 5.79 + 6.284 = _______<br />

2) 87.54 - 3.3 = _______<br />

3) 99.1498 + 6.5397 + 9.7 = _______ 115.3895=155.4<br />

4) 5.868 - 5.1 = _______<br />

5) 59.9233 + 86.21 + 99.396 = _______<br />

6) 7.7 + 26.756 = _______ 34.5<br />

7) 66.8 + 2.3 + 4.8516 = _______ 74.0<br />

8) 9.7419 + 43.545 = _______ 53.278<br />

9) 4.8976 + 48.4644 + 1.514 = _______ 54.876<br />

10) 4.335 + 35.85 = _______ 40.19<br />

11) 9.448 - 1.7 = _______ 7.7<br />

12) 75.826 - 8.6555 = _______ 67.170<br />

13) 57.2 + 23.814 = _______ 81.0<br />

14) 77.684 - 4.394 = _______ 73.290<br />

15) 26.4496 + 3.339 = _______ 29.789<br />

16) 9.6848 + 29.85 = _______ 39.53<br />

17) 63.11 + 2.5412 + 4.93 = _______ 70.58<br />

18) 11.2471 + 75.4 = _______ 86.6<br />

19) 73.745 - 8.755 = _______ 64.990<br />

20) 6.5238 + 1.7 + 27.79 = _______ 36.0


The following rule applies for multiplication and division:<br />

The LEAST number of significant figures in any number of the problem determines the number of<br />

significant figures in the answer.<br />

This means you MUST know how to recognize significant figures in order to use this rule.<br />

Solve the Problems and Round Accordingly...<br />

1) 0.6 x 65.0 x 602 = __________<br />

23478=20,000<br />

2) 720 ÷ 7.7 = __________<br />

93.50649351= 94<br />

3) 929 x 0.3 = __________<br />

278.7= 300<br />

4) 300 ÷ 44.31 = __________<br />

344.31= 300<br />

5) 608 ÷ 9.8 = __________<br />

62.04081633= 62<br />

6) 0.06 x 0.079 = __________<br />

0.005<br />

7) 0.008 x 72.91 x 7000 = __________<br />

4,000<br />

8) 73.94 x 67 x 780 = __________<br />

3900000<br />

9) 0.62 x 0.097 x 40 = __________<br />

2<br />

10) 600 x 10 x 5030 = __________<br />

30,000,000<br />

11) 5200 ÷ 4.46 = __________<br />

1,200<br />

12) 0.0052 x 0.4 x 107 = __________<br />

.2<br />

13) 0.099 x 8.8 = __________ 0.87<br />

14) 0.0095 x 5.2 = __________<br />

15) 8000 ÷ 4.62 = __________<br />

2000<br />

0.5<br />

0.049<br />

16) 0.6 x 0.8 = __________<br />

17) 2.84 x 0.66 = __________<br />

1.9<br />

0.05<br />

18) 0.5 x 0.09 = __________<br />

230<br />

19) 8100 ÷ 34.84 = __________<br />

460000<br />

20) 8.24 x 6.9 x 8100 = __________


Dimensional Analysis<br />

This is a way to convert from one unit of a given substance to<br />

another unit using ratios or conversion units. What this video<br />

www.youtube.com/watch?v=aZ3J60GYo6U<br />

Let’ look at a couple of examples:<br />

1. Convert 2.6 qt to mL.<br />

First we need a ratio or conversion unit so that we can go from quarts to milliliters. 1.00 qt = 946 mL<br />

Next write down what you are starting with<br />

2.6 qt<br />

Then make you conversion tree<br />

2.6 qt<br />

Then fill in the units in your ratio so that you can cancel out the original unit and will be left with the<br />

unit you need for the answer. Cross out units, one at a time that are paired, and one on top one on<br />

the bottom.<br />

2.6 qt mL<br />

qt<br />

Now fill in the values from the ratio.<br />

2.6 qt 946 mL<br />

1.00 qt<br />

Now multiply all numbers on the top and multiply all numbers on the bottom and write them as a<br />

fraction.<br />

2.6 qt 946 mL = 2,459.6 mL<br />

1.00 qt 1.00<br />

Now divide the top number by the bottom number and write that number with the unit that was not<br />

crossed out.


1qt=32 oz 1gal = 4qts 1.00 qt = 946 mL 1L = 1000mL<br />

2. Convert 8135.6 mL to quarts<br />

8135.6ml<br />

1qt<br />

=<br />

81356<br />

8.6qt<br />

946ml<br />

946<br />

3. Convert 115.2 oz to mL<br />

115.2 1qt<br />

32oz<br />

946ml<br />

1qt<br />

=<br />

10879.2<br />

32 34056ml<br />

4. Convert 2.3 g to Liters<br />

2.3gal<br />

4qts<br />

946ml<br />

1l<br />

=<br />

8703.3<br />

8.7L<br />

1gal<br />

1qt<br />

1000ml<br />

1000<br />

5. Convert 8.42 L to oz<br />

8.42l 1000ml<br />

1l<br />

1qt<br />

946ml<br />

32oz<br />

1qt<br />

=<br />

269440<br />

946<br />

285oz<br />

Go to http://science.widener.edu/svb/tutorial/ chose #7 “Converting Volume” and do 5 more in the<br />

space provided.<br />

1. Convert _________ 195 oz to _________ L<br />

195 oz 1 qt<br />

946 ml 1 L<br />

32 oz<br />

1 qt 1000ml<br />

=<br />

5.7646875 L<br />

5.77 L<br />

2. Convert _________ 6.24L to _________ oz<br />

6.24L 1000ml<br />

1L<br />

1Qt<br />

946ml<br />

32oz<br />

1Qt<br />

=<br />

34.0377167<br />

34.1oz<br />

3. Convert _________ 35g to _________ L<br />

.35g 1Qt 946ml<br />

32oz<br />

1Qt<br />

1l<br />

1000ml<br />

=<br />

1.3422<br />

1.32L<br />

4. Convert _________<br />

7.19L<br />

to _________<br />

7.19L 1000ml 1Qt<br />

1L<br />

946ml<br />

32oz<br />

1qt<br />

=<br />

243.2135307<br />

243oz<br />

5. Convert _________ 275.2oz to _________ L<br />

2.752 oz 1qt<br />

946ml<br />

32oz 1qt<br />

1L<br />

1000ml<br />

=<br />

8.1356<br />

8.136L


Chapter 4<br />

Unit 2<br />

Atomic Structure<br />

The students will learn what makes up atoms and how are<br />

atoms of one element different from atoms of another element.<br />

Explore the scientific theory of atoms (also known as atomic theory) by<br />

describing changes in the atomic model over time and why those changes<br />

were necessitated by experimental evidence.<br />

Students will be able to draw/identify each atomic model.<br />

Students will be able to compare/contrast the different atomic models.<br />

Students will be able to describe how results of experimental evidence caused<br />

the atomic model to change.<br />

proton<br />

electron<br />

neutron<br />

nucleus<br />

electron cloud<br />

Explore the scientific theory of atoms (also known as atomic theory) by<br />

describing the structure of atoms in terms of protons, neutrons and<br />

electrons, and differentiate among these particles in terms of their mass,<br />

electrical charges and locations within the atom.<br />

Students will compare/contrast the characteristics of subatomic particles.<br />

atomic number<br />

mass number<br />

isotope<br />

atomic mass unit (amu)<br />

atomic mass


Chapter 5<br />

Electrons in Atoms<br />

The students will be able to describe the arrangement of<br />

electrons in atoms and predict what will happen when<br />

electrons in atoms absorb or release energy.<br />

Describe the quantization of energy at the atomic level.<br />

Students will participate in activities to view emission spectrums using a<br />

diffraction grating or a spectroscope.<br />

Students will be able to explain how the spectrum lines relate to electron motion.<br />

energy level<br />

atomic orbital<br />

quantum mechanical model<br />

Chapter 6<br />

The Periodic Table<br />

The student will learn what information the periodic table<br />

provides and how periodic trends can be explained.<br />

Relate properties of atoms and their position in the periodic table to the<br />

arrangement of their electrons.<br />

Students will be able to compare and contrast metals, nonmetals, and metalloids.<br />

Students will be able to describe the traits of various families on the periodic<br />

table.<br />

Students will be able to explain periodicity.<br />

Students will write/represent electron configuration of various elements.<br />

Students will be able to use a periodic table to calculate the number of p + , e - , and<br />

n 0 .<br />

Students will be able to calculate the average weight of mass.<br />

periodic law<br />

halogen<br />

metals<br />

noble gas<br />

nonmetals<br />

transition metal<br />

metalloid<br />

atomic radius<br />

alkali metal<br />

ionization energy<br />

alkaline earth metal<br />

electronegativity


The Learning Goal for this assignment is:<br />

Notes Section<br />

http://www.learner.org/interactives/periodic/basics_interactive.html


Atoms Are Building Blocks<br />

Atoms are the basis of chemistry. They are the basis for everything in the Universe. You<br />

should start by remembering that matter is composed of atoms. Atoms and the study of<br />

atoms are a world unto themselves. We're going to cover basics like atomic structure<br />

and bonding between atoms.<br />

Smaller Than Atoms?<br />

Are there pieces of matter that are smaller than atoms?<br />

Sure there are. You'll soon be learning that atoms are<br />

composed of pieces like electrons, protons, and neutrons.<br />

But guess what? There are even smaller particles moving<br />

around in atoms. These super-small particles can be found<br />

inside the protons and neutrons. Scientists have many<br />

names for those pieces, but you may have heard of<br />

nucleons and quarks. Nuclear chemists and physicists<br />

work together at particle accelerators to discover the<br />

presence of these tiny, tiny, tiny pieces of matter.<br />

Even though super-tiny atomic particles exist, you only<br />

need to remember the three basic parts of an atom: electrons, protons, and neutrons.<br />

What are electrons, protons, and neutrons? A picture works best to show off the idea.<br />

You have a basic atom. There are three types of pieces in that atom: electrons, protons,<br />

and neutrons. That's all you have to remember. Three things! As you know, there are<br />

almost 120 known elements in the periodic table. Chemists and physicists haven't<br />

stopped there. They are trying to make new ones in labs every day. The thing that<br />

makes each of those elements different is the number of electrons, protons, and<br />

neutrons. The protons and neutrons are always in the center of the atom. Scientists call<br />

the center region of the atom the nucleus. The nucleus in<br />

a cell is a thing. The nucleus in an atom is a place where<br />

you find protons and neutrons. The electrons are always<br />

found whizzing around the center in areas called shells or<br />

orbitals.<br />

You can also see that each piece has either a "+", "-", or a<br />

"0." That symbol refers to the charge of the particle. Have<br />

you ever heard about getting a shock from a socket, static<br />

electricity, or lightning? Those are all different types of<br />

electric charges. Those charges are also found in tiny particles of matter. The electron<br />

always has a "-", or negative, charge. The proton always has a "+", or positive, charge. If<br />

the charge of an entire atom is "0", or neutral, there are equal numbers of positive and<br />

negative pieces. Neutral means there are equal numbers of electrons and protons. The<br />

third particle is the neutron. It has a neutral charge, also known as a charge of zero. All<br />

atoms have equal numbers of protons and electrons so that they are neutral. If there are<br />

more positive protons or negative electrons in an atom, you have a special atom called<br />

an ion.


Looking at Ions<br />

We haven’t talked about ions before, so let’s get down to basics. The<br />

atomic number of an element, also called a proton number, tells you the<br />

number of protons or positive particles in an atom. A normal atom has a<br />

neutral charge with equal numbers of positive and negative particles.<br />

That means an atom with a neutral charge is one where the number of<br />

electrons is equal to the atomic number. Ions are atoms with extra<br />

electrons or missing electrons. When you are missing an electron or<br />

two, you have a positive charge. When you have an extra electron<br />

or two, you have a negative charge.<br />

What do you do if you are a sodium (Na) atom? You have eleven<br />

electrons — one too many to have an entire shell filled. You need to<br />

find another element that will take that electron away from you. When you lose that<br />

electron, you will you’ll have full shells. Whenever an atom has full shells, we say it is<br />

"happy." Let's look at chlorine (Cl). Chlorine has seventeen electrons and only needs<br />

one more to fill its third shell and be "happy." Chlorine will take your extra sodium<br />

electron and leave you with 10 electrons inside of two filled shells. You are now a happy<br />

atom too. You are also an ion and missing one electron. That missing electron gives you<br />

a positive charge. You are still the element sodium, but you are now a sodium ion (Na + ).<br />

You have one less electron than your atomic number.<br />

Ion Characteristics<br />

So now you've become a sodium ion. You have ten electrons.<br />

That's the same number of electrons as neon (Ne). But you<br />

aren't neon. Since you're missing an electron, you aren't really<br />

a complete sodium atom either. As an ion you are now<br />

something completely new. Your whole goal as an atom was<br />

to become a "happy atom" with completely filled electron<br />

shells. Now you have those filled shells. You have a lower<br />

energy. You lost an electron and you are "happy." So what<br />

makes you interesting to other atoms? Now that you have<br />

given up the electron, you are quite electrically attractive.<br />

Other electrically charged atoms (ions) of the opposite charge<br />

(negative) are now looking at you and seeing a good partner to<br />

bond with. That's where the chlorine comes in. It's not only chlorine. Almost any ion with<br />

a negative charge will be interested in bonding with you.


Electrovalence<br />

Don't get worried about the big word. Electrovalence is just another word for something<br />

that has given up or taken electrons and become an ion. If you look at the periodic table,<br />

you might notice that elements on the left side usually become positively charged ions<br />

(cations) and elements on the right side get a negative charge (anions). That trend<br />

means that the left side has a positive valence and the right side has a negative<br />

valence. Valence is a measure of how much an atom wants to bond with other atoms. It<br />

is also a measure of how many electrons are excited about bonding with other atoms.<br />

There are two main types of bonding, covalent and electrovalent. You may have heard<br />

of the term "ionic bonds." Ionic bonds are electrovalent bonds. They are just groups of<br />

charged ions held together by electric forces. When in the presence of other ions, the<br />

electrovalent bonds are weaker because of outside electrical forces and attractions.<br />

Sodium and chlorine ions alone have a very strong bond, but as soon as you put those<br />

ions in a solution with H + (Hydrogen ion), OH - (Hydroxide), F - (Fluorine ion) or Mg ++<br />

(Magnesium ion), there are charged distractions that break the Na-Cl bond.<br />

Look at sodium chloride (NaCl) one more time. Salt is a very strong bond when it is<br />

sitting on your table. It would be nearly impossible to break those ionic/electrovalent<br />

bonds. However, if you put that salt into some water (H2O), the bonds break very<br />

quickly. It happens easily because of the electrical attraction of the water. Now you have<br />

sodium (Na + ) and chlorine (Cl - ) ions floating around the solution. You should remember<br />

that ionic bonds are normally strong, but they are very weak in water.


Neutron Madness<br />

We have already learned that ions are atoms that are<br />

either missing or have extra electrons. Let's say an atom<br />

is missing a neutron or has an extra neutron. That type of<br />

atom is called an isotope. An atom is still the same<br />

element if it is missing an electron. The same goes for<br />

isotopes. They are still the same element. They are just a<br />

little different from every other atom of the same element.<br />

For example, there are a lot of carbon (C) atoms in the<br />

Universe. The normal ones are carbon-12. Those atoms have 6 neutrons. There are a<br />

few straggler atoms that don't have 6. Those odd ones may have 7 or even 8 neutrons.<br />

As you learn more about chemistry, you will probably hear about carbon-14. Carbon-14<br />

actually has 8 neutrons (2 extra). C-14 is considered an isotope of the element carbon.<br />

Messing with the Mass<br />

If you have looked at a periodic table, you may have noticed that the atomic mass of<br />

an element is rarely an even number. That happens because of the isotopes. If you are<br />

an atom with an extra electron, it's no big deal. Electrons don't have much of a mass<br />

when compared to a neutron or proton.<br />

Atomic masses are calculated by figuring out the<br />

amounts of each type of atom and isotope there are in<br />

the Universe. For carbon, there are a lot of C-12, a<br />

couple of C-13, and a few C-14 atoms. When you<br />

average out all of the masses, you get a number that is a<br />

little bit higher than 12 (the weight of a C-12 atom). The<br />

average atomic mass for the element is actually 12.011.<br />

Since you never really know which carbon atom you are<br />

using in calculations, you should use the average mass<br />

of an atom.<br />

Bromine (Br), at atomic number 35, has a greater variety of isotopes. The atomic mass<br />

of bromine (Br) is 79.90. There are two main isotopes at 79 and 81, which average out<br />

to the 79.90amu value. The 79 has 44 neutrons and the 81 has 46 neutrons. While it<br />

won't change the average atomic mass, scientists have made bromine isotopes with<br />

masses from 68 to 97. It's all about the number of neutrons. As you move to higher<br />

atomic numbers in the periodic table, you will probably find even more isotopes for<br />

each element.


Summary


Electron Configuration<br />

Color the sublevel:<br />

s = Red<br />

d = Green<br />

p = Blue<br />

f = Orange<br />

S<br />

S<br />

P<br />

D<br />

F<br />

Write in sublevels<br />

Write period, sublevel and super scripts.<br />

Ctrl Shift =<br />

gives you super scripts


The Learning Goal for this assignment is:<br />

www.youtube.com/watch?v=jtYzEzykFdg<br />

www.youtube.com/watch?<br />

annotation_id=annotation_2076&feature=iv&src_vid=jtYzEzykFdg&v=cOlac8ruD_0<br />

www.youtube.com/watch?<br />

annotation_id=annotation_570977&feature=iv&src_vid=cOlac8ruD_0&v=lR2vqHZWb5A<br />

Notes Section


Electron Configuration<br />

In order to write the electron configuration for an atom you must know the 3 rules of<br />

electron configurations.<br />

1. Aufbau<br />

Notation<br />

nO e<br />

where<br />

n is the energy level<br />

O is the orbital type (s, p, d, or f)<br />

e is the number of electrons in that orbital shell<br />

Principle<br />

electrons will first occupy orbitals of the lowest energy level<br />

2. Hund rule<br />

when electrons occupy orbitals of equal energy, one electron enters each orbital until<br />

all the orbitals contain one electron with the same spin.<br />

3. Pauli exclusion principle<br />

an orbital contains a maximum of 2 electrons and<br />

paired electrons will have opposite spin


In the space below, write the unabbreviated electron configurations of the following elements:<br />

1) sodium 1s 2 , 2s 2 , 2p 6 , 3s 1 __________________________<br />

2) iron<br />

3) bromine<br />

1s 2 ,2s 2 ,2p 6 ,3s 2 ,3p 6 ,4s 2 ,3d 6 __________________________<br />

1s 2 ,2s 2 ,2p 6 ,3s 2 ,3d 6 ,4s 2 ,3d 10 ,_______ 4p 5<br />

4) barium ________________________________________________<br />

5) neptunium ________________________________________________<br />

In the space below, write the abbreviated electron configurations of the following elements:<br />

6) cobalt ________________________________________________<br />

[Ag] 4s 2 ,3d 7<br />

7) silver ________________________________________________<br />

[Kr] 5s 2 ,4d 9<br />

8) tellurium ________________________________________________<br />

[Kr] 5s 2 , 4d 10 ,5p 4<br />

9) radium ________________________________________________<br />

[Rn] 7s 2 [Rn] 7s 2 ,6d 1 ,5f 14<br />

10) lawrencium ________________________________________________<br />

Determine what elements are denoted by the following electron configurations:<br />

11) 1s²s²2p⁶3s²3p⁴ ____________________<br />

sulfer<br />

12) 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s¹ ____________________<br />

rubidium<br />

13) [Kr] 5s²4d¹⁰5p³ ____________________<br />

antimony<br />

14) [Xe] 6s²4f¹⁴5d⁶ ____________________<br />

osmium<br />

15) [Rn] 7s²5f¹¹ ____________________<br />

ferium<br />

Identify the element or determine that it is not a valid electron configuration:<br />

16) 1s²2s²2p⁶3s²3p⁶4s²4d¹⁰4p⁵ ____________________<br />

not valid configuration<br />

17) 1s²2s²2p⁶3s³3d⁵ ____________________<br />

not valid configuration<br />

18) [Ra] 7s²5f⁸ ____________________<br />

berkelium<br />

19) [Kr] 5s²4d¹⁰5p⁵ ____________________<br />

20) [Xe] ____________________<br />

1)sodium 1s 2 2s 2 2p 6 3s 1 2)iron 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6<br />

3)bromine 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 4)barium 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2<br />

5)neptunium 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 5 6)cobalt [Ar] 4s 2 3d 7<br />

7)silver [Kr] 5s 2 4d 9 8)tellurium[Kr] 5s 2 4d 10 5p 4<br />

9)radium [Rn] 7s 2 10)lawrencium[Rn] 7s 2 5f 14 6d 1<br />

1s 2 2s 2 2p 6 3s 2 3p 4 sulfur 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 rubidium<br />

[Kr] 5s 2 4d 10 5p 3 antimony [Xe] 6s 2 4f 14 5d 6 osmium<br />

[Rn] 7s 2 5f 11 einsteinium 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 4d 10 4p 5 not valid (take a look at “4d”)<br />

1s 2 2s 2 2p 6 3s 3 3d 5 not valid (3p comes after 3s) [Ra] 7s 2 5f 8 not valid (radium isn’t a noble gas)<br />

[Kr] 5s 2 4d 10 5p 5 valid iodine<br />

20)[Xe] not valid (an element can’t be its own electron configuration)


Create groups for these Scientist and explain your groupings<br />

(use the information you got from your research)


Research the Scientist and summarize their contributions to the Atomic Theory<br />

Antoine Henri Becquerel<br />

Niels Bohr<br />

Louis de Barogilie<br />

Glenn Seaborg<br />

Hantaro Nagaoka<br />

Democritus<br />

Marie and Pierre Curie<br />

Eugene Goldstein<br />

Dmitri Mendeleev<br />

J.J. Thomson<br />

James Chadwick<br />

Erwin Shrodinger<br />

John Dalton<br />

Lothar Meyer<br />

Robert Millikan<br />

J.W. Dobereiner<br />

Ernest Rutherford


The Learning Goal for this Assignment is<br />

Alkali Metals<br />

Alkali Earth Metals<br />

Transitional Metals<br />

Inter Transitional Metals<br />

Metals<br />

Metalloids<br />

Non Metals<br />

Noble Gases


Using Wikipedia, define the 8 categories of elements on the<br />

left page.<br />

Color your periodic table similar to the one on<br />

pages 168—169 of your book.<br />

alkali metals<br />

alkaline metals<br />

other metals<br />

transitional metals<br />

lanthanoids<br />

metalloids<br />

non metals<br />

halogens<br />

noble gases<br />

unknown elements<br />

actinoids


Atomic Size<br />

Define Atomic Size: The size of an atom determined by the size and mass of and nucleus and<br />

the number of energy levels<br />

Explanation:<br />

when looking at groups the size of the atom increases as we go from top to<br />

bottom because we are adding energy levels<br />

When looking at the period the size increases from right to left because as we<br />

increase neutrons and protons which has more gravity and pulls the electrons<br />

in tighter making them smaller.


Define Ionization Energy:<br />

Ionization Energy<br />

The energy required to remove and electron from an atom<br />

Explanation:<br />

the ionization of the periods go from up to down because it is harder to take an<br />

electron from the first period because it is closer to the nucleus<br />

the ionization of groups go from left to right because more mass means the<br />

nucleus is makes the energy levels compact together due to gravity


Electronegativity<br />

Define Electronegativity: the ability of an atom to attract electrons when the atom is in the<br />

compound<br />

Explanation:<br />

the arrow pointing to the top is based on energy levels<br />

the arrow pointing to the right is based on mass


Ion Size<br />

Define Ion Size:<br />

cation positive 13-1 anion negative 15-18<br />

Explanation:<br />

cations give up electrons anion take electrons anions stay in the same<br />

period<br />

cations move one period up more mass means it attracts more electrons


50<br />

Unit 3<br />

Chapter 25 Nuclear Chemistry<br />

The students will learn what happens when an unstable<br />

nucleus decays and how nuclear chemistry affects their lives.<br />

Explore the theory of electromagnetism by comparing and contrasting the<br />

different parts of the electromagnetic spectrum in terms of wavelength,<br />

frequency, and energy, and relate them to phenomena and applications.<br />

<br />

<br />

<br />

Students will be able to compare and contrast the different parts of the<br />

electromagnetic spectrum.<br />

Students will be able to apply knowledge of the EMS to real world phenomena.<br />

Students will be able to quantitatively compare the relationship between energy,<br />

wavelength, and frequency of the EMS.<br />

amplitude<br />

wavelength<br />

frequency<br />

hertz<br />

electromagnetic radiation<br />

photon<br />

Planck’s constant<br />

Explain and compare nuclear reactions (radioactive decay, fission and<br />

fusion), the energy changes associated with them and their associated<br />

safety issues.<br />

<br />

<br />

<br />

Students will be able to compare and contrast fission and fusion reactions.<br />

Students will be able to complete nuclear decay equations to identify the type of<br />

decay.<br />

Students will participate in activities to calculate half-life.<br />

radioactivity<br />

nuclear radiation<br />

alpha particle<br />

beta particle<br />

gamma ray<br />

positron<br />

½ life<br />

transmutation<br />

fission<br />

fusion


Chapter 7<br />

Ionic and Metallic Bonding<br />

The students will learn how ionic compounds form and how<br />

metallic bounding affects the properties of metals.<br />

Compare the magnitude and range of the four fundamental forces<br />

(gravitational, electromagnetic, weak nuclear, strong nuclear).<br />

<br />

Students will compare/contrast the characteristics of each fundamental force.<br />

gravity<br />

electromagnetic<br />

strong<br />

weak<br />

Distinguish between bonding forces holding compounds together and other<br />

attractive forces, including hydrogen bonding and van der Waals forces.<br />

<br />

<br />

<br />

Students will be able to compare/contrast traits of ionic and covalent bonds.<br />

Students will be able to compare/contrast basic attractive forces between<br />

molecules.<br />

Students will be able to predict the type of bond or attractive force between<br />

atoms or molecules.<br />

ionic bond<br />

covalent bond<br />

metallic bond<br />

polar covalent bond<br />

hydrogen bond<br />

van der Waals forces<br />

London dispersion forces<br />

Chapter 8<br />

Covalent Bonding<br />

The students will learn how molecular bonding is different<br />

than ionic bonding and electrons affect the shape of a<br />

molecule and its properties.<br />

Interpret formula representations of molecules and compounds in terms of<br />

composition and structure.<br />

<br />

<br />

<br />

Students will be able to interpret chemical formulas in terms of # of atoms.<br />

Students will be able to differentiate between ionic and molecular compounds.<br />

Students will be able to list various VSEPR shapes and identify examples of<br />

each.<br />

Students will be able to predict shapes of various compounds.<br />

Molecule<br />

empirical formula<br />

<br />

Atom<br />

Electron<br />

Element<br />

Compound<br />

51


Name ____________________<br />

Go to the web site www.darvill.clara.net/emag<br />

1. Click on “How the waves fit into the spectrum” and fill in this table:<br />

>: look out for the<br />

RED words on the web site!<br />

frequency<br />

Low __________, Long wavelength<br />

High frequency, Short ______________<br />

wavelength<br />

Radio Waves<br />

microwaves<br />

infra red<br />

visible light<br />

ultraviolet rays<br />

x-rays<br />

Gamma rays<br />

communications<br />

2. Click on “Radio waves”. They are used for _______________________<br />

3. Click on “Microwaves”. They are used for cooking, mobile _________, phones _______ speed cameras and _________. radar<br />

4. Click on “Infra-red”. These waves are given off by _____ hot<br />

objects<br />

_________. They are used for remote controls,<br />

cameras in police ____________ lights , and alarm systems.<br />

5. Click on “Visible Light”. This is used in ___ DVDplayers and _______<br />

laser<br />

printers, and for seeing where we’re going.<br />

6. “UV” stands for “ ________ ultra-violet ___________”. light This can damage the _________ retina in your eyes, and cause<br />

sunburn and even _______ skin cancer. Its uses include detecting forged ______ bank _______. notes<br />

7. X-rays are used to see inside people, and for _________ airport security.<br />

8. Gamma rays are given off by some ________________ radioactive substances. We can use them to kill ________ cancer cells,<br />

which is called R_______________ adiation .<br />

9. My Quiz score is ____%. 100<br />

52


10. Name ________________________________<br />

Go to the web site www.darvill.clara.net/emag<br />

Name How they’re made Uses Dangers<br />

Gamma rays<br />

x-rays<br />

ultra-violet light<br />

visible light<br />

infra red light<br />

microwaves<br />

radio waves<br />

Gamma rays are given off by<br />

stars, and by some radioactive<br />

substances<br />

given off by stars, and strongly by<br />

some types of nebula<br />

ultra violet light is made by special<br />

lamps<br />

and given off in large quantities by<br />

the sun<br />

visible light is made by anything<br />

hot enough to glow<br />

infra red light is made by anything<br />

that gives off heat<br />

life stars lamps and flames<br />

Microwaves are basically extremely<br />

high frequency radio waves, and are<br />

made by various types of transmitter<br />

Radio waves are made by various<br />

types of transmitter like stars, sparks<br />

and lightning<br />

they are used to kill cancer cells<br />

X-rays are used by doctors to see<br />

inside people. X-Rays are also used<br />

in airport security checks, to see<br />

inside your luggage<br />

getting a sun tan, detecting forged bank<br />

notes in shops, and hardening some types<br />

of dental filling kill microbes cause that<br />

body to produce vitamin D<br />

We use light to see things<br />

remote controls for TVs and video<br />

recorders, and physiotherapists use<br />

heat lamps to help heal sports<br />

injuries<br />

to cook many types of food, Mobile<br />

phones use microwaves, Wifi also<br />

uses microwaves<br />

used mainly for communications.<br />

Gamma rays cause cell<br />

damage and can cause<br />

a variety of cancers<br />

X-Rays can cause cell<br />

damage and cancers<br />

Large doses of UV can<br />

damage the retina in<br />

your eyes<br />

Too much light can<br />

damage the retina in<br />

your eye<br />

The danger to people<br />

from too much Infra-Red<br />

radiation is very simple -<br />

overheating<br />

Prolonged exposure to<br />

significant levels of<br />

microwaves is known to<br />

cause "cataracts" in your<br />

eyes<br />

Large doses of radio<br />

waves are believed to<br />

cause cancer, leukemia<br />

and other disorders<br />

_____ Frequency _____ frequency,<br />

Short wavelength ______ long Wavelength<br />

high<br />

low<br />

53


Learning Goal for this section:<br />

Explain and compare nuclear reactions (radioactive decay, fission and fusion),<br />

the energy changes associated with them and their associated safety issues.<br />

Notes Section:<br />

a nucleus has neutrons and protons outside has electron<br />

AMU= Atomic mass unit<br />

N- 1AMU neutral charge (+,-)<br />

P- 1AMU positive +<br />

E- none negative -<br />

ALPHA PARTICLES - 24 He<br />

86 and beyond has at least one radioactive particle<br />

isotope is an element with different masses in atom<br />

some may be radioactive(radioactive isotope)<br />

carbon 14 - carbon molecule that dose not happen alot but everything has<br />

carbon<br />

the shroud of Turin<br />

shroud piece of cloth<br />

Turin city of Italy<br />

shroud of Turin cloth that wrapped Jesus body - not really<br />

carbon 14 because we know that carbon decays and we know the half life we<br />

can figure out how much time has passed- CARBON DATEING<br />

90 238 U - 90 234 Th ALPHA RADIATION gives up a helium 24 He<br />

protons go down by 2<br />

BETA PARTICLES- negative beta particle E-, positive beta particle E converts<br />

neutrons to protons<br />

carbon 14( 6<br />

14<br />

C) - 7<br />

14<br />

N stable go up by one<br />

can go through paper but not plastic or above in density<br />

boron( 58 B)- 48 Be a proton become a neutron go down by one<br />

GAMMA RADIATION- It is never alone associated with other type of nuclear<br />

decay you need led to protect your self it is just energy and is normally kept in<br />

led under ground and in limestone<br />

HALF LIFEcarbon<br />

14---100 g start 20 mins 50g end- 50g start 40mins 25g- 25g start 60<br />

mins 12.5g<br />

54


The Nucleus<br />

A typical model of the atom is called the Bohr Model, in<br />

honor of Niels Bohr who proposed the structure in 1913. The Bohr atom consists of a central nucleus<br />

composed of neutrons and protons, which is surrounded by electrons which “orbit” around the nucleus.<br />

Protons carry a positive charge of one and have a mass of about 1 atomic mass unit or amu (1 amu =1.7x10-<br />

27 kg, a very, very small number). Neutrons are electrically “neutral” and also have a mass of about 1 amu. In<br />

contrast electron carry a negative charge and have mass of only 0.00055 amu. The number of protons in a<br />

nucleus determines the element of the atom. For example, the number of protons in uranium is 92 and the<br />

number in neon is 10. The proton number is often referred to as Z.<br />

Atoms with different numbers of protons are called elements, and are arranged in the periodic table with<br />

increasing Z.<br />

Atoms in nature are electrically neutral so the number of electrons orbiting the nucleus equals the number of<br />

protons in the nucleus.<br />

Neutrons make up the remaining mass of the nucleus and provide a means to “glue” the protons in place.<br />

Without neutrons, the nucleus would split apart because the positive protons would repel each other. Elements<br />

can have nucleii with different numbers of neutrons in them. For example hydrogen, which normally only has<br />

one proton in the nucleus, can have a neutron added to its nucleus to from deuterium, ir have two neutrons<br />

added to create tritium, which is radioactive. Atoms of the same element which vary in neutron number are<br />

called isotopes. Some elements have many stable isotopes (tin has 10) while others have only one or two. We<br />

express isotopes with the nomenclature Neon-20 or 20 Ne 10, with twenty representing the total number of<br />

neutrons and protons in the atom, often referred to as A, and 10 representing the number of protons (Z).<br />

Alpha Particle<br />

Decay<br />

Alpha decay is a radioactive process in which a<br />

particle with two neutrons and two protons is<br />

ejected from the nucleus of a radioactive atom. The particle is identical to the nucleus of a helium atom.<br />

Alpha decay only occurs in very heavy elements such as uranium, thorium and radium. The nuclei of these<br />

atoms are very “neutron rich” (i.e. have a lot more neutrons in their nucleus than they do protons) which makes<br />

emission of the alpha particle possible.<br />

After an atom ejects an alpha particle, a new parent atom is formed which has two less neutrons and two less<br />

protons. Thus, when uranium-238 (which has a Z of 92) decays by alpha emission, thorium-234 is created<br />

(which has a Z of 90).<br />

Because alpha particles contain two protons, they have a positive charge of two. Further, alpha particles are<br />

very heavy and very energetic compared to other common types of radiation. These characteristics allow alpha<br />

particles to interact readily with materials they encounter, including air, causing many ionizations in a very short<br />

distance. Typical alpha particles will travel no more than a few centimeters in air and are stopped by a sheet of<br />

paper.<br />

55


Beta Particle Decay<br />

Beta decay is a radioactive process in which an electron is emitted from the nucleus of a radioactive<br />

atom Because this electron is from the nucleus of the atom, it is called a beta particle to distinguish it<br />

from the electrons which orbit the atom.<br />

Like alpha decay, beta decay occurs in isotopes which are “neutron rich” (i.e. have a lot more<br />

neutrons in their nucleus than they do protons). Atoms which undergo beta decay are located below<br />

the line of stable elements on the chart of the nuclides, and are typically produced in nuclear reactors.<br />

When a nucleus ejects a beta particle, one of the neutrons in the nucleus is transformed into a proton.<br />

Since the number of protons in the nucleus has changed, a new daughter atom is formed which has<br />

one less neutron but one more proton than the parent. For example, when rhenium-187 decays<br />

(which has a Z of 75) by beta decay, osmium-187 is created (which has a Z of 76). Beta particles<br />

have a single negative charge and weigh only a small fraction of a neutron or proton. As a result, beta<br />

particles interact less readily with material than alpha particles. Depending on the beta particles<br />

energy (which depends on the radioactive atom), beta particles will travel up to several meters in air,<br />

and are stopped by thin layers of metal or plastic.<br />

Positron emission or beta plus decay (β+ decay) is a subtype of radioactive decay called beta decay,<br />

in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron<br />

and an electron neutrino (νe). Positron emission is mediated by the weak force.<br />

An example of positron emission (β+ decay) is shown with magnesium-23 decaying into sodium-23:<br />

23 Mg12 → 23 Na11 + e +<br />

Because positron emission decreases proton number relative to neutron number, positron decay<br />

happens typically in large "proton-rich" radionuclides. Positron decay results in nuclear transmutation,<br />

changing an atom of one chemical element into an atom of an element with an atomic number that is<br />

less by one unit.<br />

Positron emission should not be confused with electron emission or beta minus decay (β− decay),<br />

which occurs when a neutron turns into a proton and the nucleus emits an electron and an<br />

antineutrino.<br />

56


Gamma<br />

Radiation<br />

After a decay reaction, the nucleus is often in an<br />

“excited” state. This means that the decay has<br />

resulted in producing a nucleus which still has<br />

excess energy to get rid of. Rather than emitting another beta or alpha particle, this energy is lost by<br />

emitting a pulse of electromagnetic radiation called a gamma ray. The gamma ray is identical in<br />

nature to light or microwaves, but of very high energy.<br />

Like all forms of electromagnetic radiation, the gamma ray has no mass and no charge. Gamma rays<br />

interact with material by colliding with the electrons in the shells of atoms. They lose their energy<br />

slowly in material, being able to travel significant distances before stopping. Depending on their initial<br />

energy, gamma rays can travel from 1 to hundreds of meters in air and can easily go right through<br />

people.<br />

It is important to note that most alpha and beta emitters also emit gamma rays as part of their decay<br />

process. However, their is no such thing as a “pure” gamma emitter. Important gamma emitters<br />

including technetium-99m which is used in nuclear medicine, and cesium-137 which is used for<br />

calibration of nuclear instruments.<br />

Half Life<br />

Half-life is the time required for the quantity of a<br />

radioactive material to be reduced to one-half its<br />

original value.<br />

All radionuclides have a particular half-life, some<br />

of which a very long, while other are extremely<br />

short. For example, uranium-238 has such a<br />

long half life, 4.5x109 years, that only a small fraction has decayed since the earth was formed. In<br />

contrast, carbon-11 has a half-life of only 20 minutes. Since this nuclide has medical applications, it<br />

has to be created where it is being used so that enough will be present to conduct medical studies.<br />

5<br />

7


The Learning Goal for this assignment is:<br />

Distinguish between bonding forces holding<br />

compounds together and other attractive<br />

forces, including hydrogen bonding and van der<br />

Waals forces.<br />

Introduction to Ionic Compounds<br />

Those molecules that consist of charged ions with opposite charges are called IONIC. These ionic<br />

compounds are generally solids with high melting points and conduct electrical current. Ionic<br />

compounds are generally formed from metal and a non-metal elements. See Ionic Bonding below.<br />

Ionic Compound Example<br />

For example, you are familiar with the fairly benign unspectacular behavior of common white<br />

crystalline table salt (NaCl). Salt consists of positive sodium ions (Na + ) & negative chloride ions (Cl - ).<br />

On the other hand the element sodium is a silvery gray metal composed of neutral atoms which react<br />

vigorously with water or air. Chlorine as an element is a neutral greenish-yellow, poisonous, diatomic<br />

gas (Cl2).<br />

The main principle to remember is that ions are completely different in physical and chemical<br />

properties from the neutral atoms of the elements.<br />

The notation of the + and - charges on ions is very important as it conveys a definite meaning.<br />

Whereas elements are neutral in charge, IONS have either a positive or negative charge depending<br />

upon whether there is an excess of protons (positive ion) or excess of electrons (negative ion).<br />

Formation of Positive Ions<br />

Metals usually have 1-4 electrons in the outer energy level. The electron arrangement of a rare gas is<br />

most easily achieved by losing the few electrons in the newly started energy level. The number of<br />

electrons lost must bring the electron number "down to" that of a prior rare gas.<br />

How will sodium complete its octet?<br />

First examine the electron arrangement of the atom. The atomic number is eleven, therefore, there<br />

are eleven electrons and eleven protons on the neutral sodium atom. Here is the Bohr diagram and<br />

Lewis symbol for sodium:<br />

58


This analysis shows that sodium has only one electron in its outer level. The nearest rare gas is neon<br />

with 8 electron in the outer energy level. Therefore, this electron is lost so that there are now eight<br />

electrons in the outer energy level, and the Bohr diagrams and Lewis symbols for sodium ion and<br />

neon are identical. The octet rule is satisfied.<br />

Ion Charge?<br />

What is the charge on sodium ion as a result of losing one electron? A comparison of the atom and<br />

the ion will yield this answer.<br />

Sodium Atom<br />

Sodium Ion<br />

11 p+ to revert to 11 p + Protons are identical in<br />

12 n an octet 12 n<br />

the atom and ion.<br />

Positive charge is<br />

11 e- lose 1 electron 10 e-<br />

caused by lack of<br />

0 charge + 1 charge<br />

electrons.<br />

Formation of Negative Ions<br />

How will fluorine complete its octet?<br />

First examine the electron arrangement of the atom. The atomic number is nine, therefore, there are<br />

nine electrons and nine protons on the neutral fluorine atom. Here is the Bohr diagram and Lewis<br />

symbol for fluorine:<br />

This analysis shows that fluorine already has seven electrons in its outer level. The nearest rare gas<br />

is neon with 8 electron in the outer energy level. Therefore only one additional electron is needed to<br />

complete the octet in the fluorine atom to make the fluoride ion. If the one electron is added, the Bohr<br />

diagrams and Lewis symbols for fluorine and neon are identical. The octet rule is satisfied.<br />

59


Ion Charge?<br />

What is the charge on fluorine as a result of adding one electron? A comparison of the atom and the<br />

ion will yield this answer.<br />

Fluorine Atom Fluoride Ion *<br />

9 p+ to complete 9 p + Protons are identical in<br />

10 n octet 10 n<br />

9 e- add 1 electron 10 e-<br />

0 charge - 1 charge<br />

the atom and ion.<br />

Negative charge is<br />

caused by excess<br />

electrons<br />

* The "ide" ending in the name signifies a simple negative ion.<br />

Summary Principle of Ionic Compounds<br />

An ionic compound is formed by the complete transfer of electrons from a metal to a nonmetal and<br />

the resulting ions have achieved an octet. The protons do not change. Metal atoms in Groups 1-3<br />

lose electrons to non-metal atoms with 5-7 electrons missing in the outer level. Non-metals gain 1-4<br />

electrons to complete an octet.<br />

Octet Rule<br />

Elemental atoms generally lose, gain, or share electrons with other atoms in order to achieve the<br />

same electron structure as the nearest rare gas with eight electrons in the outer level.<br />

The proper application of the Octet Rule provides valuable assistance in predicting and explaining<br />

various aspects of chemical formulas.<br />

Introduction to Ionic Bonding<br />

Ionic bonding is best treated using a simple<br />

electrostatic model. The electrostatic model<br />

is simply an application of the charge<br />

principles that opposite charges attract and<br />

similar charges repel. An ionic compound<br />

results from the interaction of a positive and<br />

negative ion, such as sodium and chloride in<br />

common salt.<br />

The IONIC BOND results as a balance<br />

between the force of attraction between<br />

opposite plus and minus charges of the ions<br />

and the force of repulsion between similar<br />

negative charges in the electron clouds. In<br />

crystalline compounds this net balance of<br />

forces is called the LATTICE ENERGY.<br />

Lattice energy is the energy released in the<br />

formation of an ionic compound.<br />

DEFINITION: The formation of an IONIC<br />

BOND is the result of the transfer of one or<br />

more electrons from a metal onto a nonmetal.<br />

60


Metals, with only a few electrons in the outer energy level, tend to lose electrons most readily. The<br />

energy required to remove an electron from a neutral atom is called the IONIZATION POTENTIAL.<br />

Energy + Metal Atom ---> Metal (+) ion + e-<br />

Non-metals, which lack only one or two electrons in the outer energy level have little tendency to lose<br />

electrons - the ionization potential would be very high. Instead non-metals have a tendency to gain<br />

electrons. The ELECTRON AFFINITY is the energy given off by an atom when it gains electrons.<br />

Non-metal Atom + e- --- Non-metal (-) ion + energy<br />

The energy required to produce positive ions (ionization potential) is roughly balanced by the energy<br />

given off to produce negative ions (electron affinity). The energy released by the net force of<br />

attraction by the ions provides the overall stabilizing energy of the compound.<br />

Notes Section:<br />

.. ..<br />

Mg .. B .. .P<br />

..<br />

..<br />

S<br />

..<br />

in alpha particle decay a proton is ejected from the Nucleus when a<br />

hydrogen hits the nucleus it make the number of protons go down by<br />

two and the total mass goes down by four. it is based on half life and in<br />

every half life half of the substance that you have will go through a<br />

transmutation. it is the same process for beta particle decay except that<br />

in beta particle decay the mass stays the same the only thing that<br />

changes is that the mass does not change only the number of protons<br />

do. Gamma radiation does not do anything it is just excess that is given<br />

off in alpha or beta particle radiation and accounts for less than 1%.<br />

There is no such thing as pure gamma radiation it is only given off as a<br />

byproduct of alpha of beta particle radiation.<br />

61


The Learning Goal for this assignment is:<br />

Introduction to Covalent Bonding:<br />

Bonding between non-metals consists of two electrons shared between two atoms. Using the Wave<br />

Theory, the covalent bond involves an overlap of the electron clouds from each atom. The electrons<br />

are concentrated in the region between the two atoms. In covalent bonding, the two electrons shared<br />

by the atoms are attracted to the nucleus of both atoms. Neither atom completely loses or gains<br />

electrons as in ionic bonding.<br />

There are two types of covalent bonding:<br />

1. Non-polar bonding with an equal sharing of electrons.<br />

2. Polar bonding with an unequal sharing of electrons. The number of shared electrons depends on<br />

the number of electrons needed to complete the octet.<br />

NON-POLAR BONDING results when two identical non-metals equally share electrons between<br />

them. <strong>One</strong> well known exception to the identical atom rule is the combination of carbon and hydrogen<br />

in all organic compounds.<br />

Hydrogen<br />

The simplest non-polar covalent molecule is hydrogen. Each hydrogen<br />

atom has one electron and needs two to complete its first energy level.<br />

Since both hydrogen atoms are identical, neither atom will be able to<br />

dominate in the control of the electrons. The electrons are therefore<br />

shared equally. The hydrogen covalent bond can be represented in a<br />

variety of ways as shown here:<br />

The "octet" for hydrogen is only 2 electrons since the nearest rare gas is<br />

He. The diatomic molecule is formed because individual hydrogen atoms<br />

containing only a single electron are unstable. Since both atoms are<br />

identical a complete transfer of electrons as in ionic bonding is<br />

impossible.<br />

Instead the two hydrogen atoms SHARE both electrons equally.<br />

Oxygen<br />

Molecules of oxygen, present in about 20% concentration in air are<br />

also covalent molecules. See the graphic on the left of the Lewis Dot<br />

Structure.<br />

There are 6 electrons in the outer shell, therefore, 2 electrons are<br />

needed to complete the octet. The two oxygen atoms share a total of<br />

four electrons in two separate bonds, called double bonds.<br />

The two oxygen atoms equally share the four electrons.<br />

62


POLAR BONDING results when two different non-metals unequally share electrons between them.<br />

<strong>One</strong> well known exception to the identical atom rule is the combination of carbon and hydrogen in all<br />

organic compounds.<br />

The non-metal closer to fluorine in the Periodic Table has a greater tendency to keep its own electron<br />

and also draw away the other atom's electron. It is NOT completely successful. As a result, only<br />

partial charges are established. <strong>One</strong> atom becomes partially positive since it has lost control of its<br />

electron some of the time. The other atom becomes partially negative since it gains electron some of<br />

the time.<br />

Hydrogen Chloride<br />

Hydrogen Chloride forms a polar covalent molecule. The graphic<br />

on the left shows that chlorine has 7 electrons in the outer shell.<br />

Hydrogen has one electron in its outer energy shell. Since 8<br />

electrons are needed for an octet, they share the electrons.<br />

However, chlorine gets an unequal share of the two electrons,<br />

although the electrons are still shared (not transferred as in ionic<br />

bonding), the sharing is unequal. The electrons spends more of the<br />

time closer to chlorine. As a result, the chlorine acquires a "partial"<br />

negative charge. At the same time, since hydrogen loses the<br />

electron most - but not all of the time, it acquires a "partial" charge.<br />

The partial charge is denoted with a small Greek symbol for delta.<br />

Water<br />

Water, the most universal compound on all of the earth, has the property of<br />

being a polar molecule. As a result of this property, the physical and<br />

chemical properties of the compound are fairly unique.<br />

Dihydrogen Oxide or water forms a polar covalent molecule. The graphic on<br />

the left shows that oxygen has 6 electrons in the outer shell. Hydrogen has<br />

one electron in its outer energy shell. Since 8 electrons are needed for an<br />

octet, they share the electrons.<br />

Notes Section:<br />

1. count the valence electrons<br />

2. find the central atom and bond the other atoms to it. Subtract the number of electrons in the bond from<br />

the total . Add the lone pairs to the terminal atoms. Add the lone pairs to the central atom or double or triple<br />

bonds<br />

3. Find out if any lone pairs are needed and count the valence electrons<br />

63


C 2 H 6 O Ethanol CH 3 CH 2 O<br />

Step 1<br />

Find valence e- for all atoms. Add them together.<br />

C: 4 x 2 = 8<br />

H: 1 x 6 = 6<br />

O: 6<br />

Total = 20<br />

Step 2<br />

Find octet e- for each atom and add them together.<br />

C: 8 x 2 = 16<br />

H: 2 x 6 = 12<br />

O: 8<br />

Total = 36<br />

Step 3<br />

Subtract Step 1 total from Step 2.<br />

Gives you bonding e-.<br />

36 – 20 = 16e-<br />

Step 4<br />

Find number of bonds by diving the number in step 3 by 2<br />

(because each bond is made of 2 e-)<br />

16e- / 2 = 8 bond pairs<br />

These can be single, double or triple bonds.<br />

Step 5<br />

Determine which is the central atom<br />

Find the one that is the least electronegative.<br />

Use the periodic table and find the one farthest<br />

away from Fluorine or<br />

The one that only has 1 atom.<br />

64


Step 6<br />

Put the atoms in the structure that you think it will<br />

have and bond them together.<br />

Put Single bonds between atoms.<br />

Step 7<br />

Find the number of nonbonding (lone pairs) e-.<br />

Subtract step 3 number from step 1.<br />

20 – 16 = 4e- = 2 lone pairs<br />

Step 8<br />

Complete the Octet Rule by adding the lone<br />

pairs.<br />

Then, if needed, use any lone pairs to make<br />

double and triple bonds so that all atoms meet<br />

the Octet Rule.<br />

See Step 4 for total number of bonds.<br />

65


Linear<br />

Molecular Geometry<br />

Orbital Equation Lone Pairs Angle<br />

sp AX 2 None 180<br />

BeCl 2<br />

Beryllium Di-Chloride<br />

Cl<br />

Be<br />

Cl<br />

66<br />

element bond lone pair<br />

C


Trigonal Planar<br />

Molecular Geometry<br />

Orbital Equation Lone Pairs Angle<br />

Sp 2 Ax 2 none 120<br />

BF 3<br />

F<br />

B<br />

F<br />

F<br />

Boron Tri-Fluoride<br />

element bond lone pair<br />

C<br />

67


Bent<br />

Molecular Geometry<br />

Orbital Equation Lone Pairs Angle<br />

sp 2 Ax 2 E 1 116<br />

O 3<br />

Trioxide<br />

O<br />

O<br />

O<br />

element bond lone pair<br />

C<br />

C<br />

V<br />

C<br />

68


Tetrahedral<br />

Molecular Geometry<br />

Orbital Equation Lone Pairs Angle<br />

sp 3 Ax 4 none 109.5<br />

PO 4<br />

3-<br />

3-<br />

O<br />

O<br />

P<br />

O<br />

O<br />

Phosphate<br />

element bond lone pair<br />

69


Trigonal Pyramidal<br />

Molecular Geometry<br />

Orbital Equation Lone Pairs Angle<br />

sp 3 Ax 3 E 1 107<br />

PH 3<br />

H<br />

P<br />

H<br />

H<br />

Phosphorus trihydride<br />

element bond lone pair<br />

C<br />

70


Bent<br />

Molecular Geometry<br />

Orbital Equation Lone Pairs Angle<br />

sp 3 Ax 2 E 2 2 104.5<br />

H 2 O<br />

H<br />

O<br />

H<br />

Dihydrogen Oxide<br />

element bond lone pair<br />

C<br />

71


Trigonal Bipyramidal<br />

Molecular Geometry<br />

Orbital Equation Lone Pairs Angle<br />

sp 3 d Ax 5 none 120,90<br />

PCl 5<br />

Cl<br />

Cl<br />

Cl<br />

P<br />

Cl<br />

Cl<br />

Phosphorus penta-chloride<br />

el bond lone pair<br />

C<br />

72


T-shaped<br />

Molecular Geometry<br />

Orbital Equation Lone Pairs Angle<br />

sp 3 d Ax 3 E 2 2 90<br />

ClF 3<br />

F<br />

Cl<br />

F<br />

F<br />

Chlorine tri-fluoride<br />

element bond lone pair<br />

C<br />

73


Octahedral<br />

Molecular Geometry<br />

Orbital Equation Lone Pairs Angle<br />

sp 3 d 2 Ax 6 none 90<br />

SF 6<br />

F<br />

F<br />

F<br />

S<br />

F<br />

F<br />

F<br />

74<br />

Sulfur Hexa-Fluoride<br />

element bond lone pair<br />

C


Square Planar<br />

Molecular Geometry<br />

Orbital Equation Lone Pairs Angle<br />

sp 3 d 2 Ax 4 E 2 2 90<br />

ICl 4<br />

-<br />

—<br />

Cl<br />

Cl<br />

I<br />

Cl<br />

Cl<br />

Iodine Tetra-Chloride<br />

element bond lone pair<br />

C<br />

75


Orbitals Equation Lone Pairs Angle<br />

Name<br />

sp AX2 none 180<br />

Linear<br />

sp 2 AX2 none 120<br />

Trigonal Planar<br />

sp 2 AX2E 1 116<br />

Bent<br />

sp 3 AX4 none 109.5<br />

Tetrahedral<br />

sp 3 AX3E 1 107<br />

Trigonal Pyramidal<br />

sp 3 AX2E2 2 104.5<br />

Bent<br />

sp 3 d AX5 none 120, 90 Trigonal Bipyramidal<br />

sp 3 d AX3E2 2 90<br />

T-shaped<br />

sp 3 d 2 AX6 None 90<br />

Octahedral<br />

Sp 3 d 2 Ax4E2 2 90<br />

Square Planar<br />

76


Name Formula Charge<br />

Dichromate Cr₂O₇ 2-<br />

Sulfate SO₄ 2-<br />

Hydrogen Carbonate HCO₃ 1-<br />

Hypochlorite ClO 1-<br />

Phosphate PO₄ 3-<br />

Nitrite NO₂ 1-<br />

Chlorite ClO₂ 1-<br />

Dihydrogen phosphate H₂PO₄ 1-<br />

Chromate CrO₄ 2-<br />

Carbonate CO₃ 2-<br />

Hydroxide OH 1-<br />

Hydrogen phosphate HPO₄ 2-<br />

Ammonium NH₄ 1+<br />

Acetate C₂H₃O₂ 1-<br />

Perchlorate ClO₄ 1-<br />

Permanganate MnO₄ 1-<br />

Chlorate ClO₃ 1-<br />

Hydrogen Sulfate HSO₄ 1-<br />

Phosphite PO₃ 3-<br />

Sulfite SO₃ 2-<br />

Silicate SiO₃ 2-<br />

Nitrate NO₃ 1-<br />

Hydrogen Sulfite HSO₃ 1-<br />

Oxalate C₂O₄ 2-<br />

Cyanide CN 1-<br />

Hydronium H₃O 1+<br />

Thiosulfate S₂O₃ 2-<br />

77


Chapter 9<br />

Unit 4<br />

Chemical Names and Formulas<br />

The students will learn how the periodic table helps them<br />

determine the names and formulas of ions and compounds.<br />

Chapter 22 Hydrocarbon Compounds<br />

The student will learn how Hydrocarbons are named and the<br />

general properties of Hydrocarbons.<br />

Describe how different natural resources are produced and how their rates<br />

of use and renewal limit availability.<br />

<br />

<br />

<br />

Students will explore local, national, and global renewable and nonrenewable<br />

resources.<br />

Students will explain the environmental costs of the use of renewable and<br />

nonrenewable resources.<br />

Students will explain the benefits of renewable and nonrenewable resources.<br />

Nuclear reactors<br />

Natural gas<br />

Petroleum<br />

Refining<br />

Coal<br />

78


Chapter 23 Functional Groups<br />

The student will learn what effects functional groups have on<br />

organic compounds and how chemical reactions are used in<br />

organic compounds.<br />

Describe the properties of the carbon atom that make the diversity of carbon<br />

compounds possible.<br />

Identify selected functional groups and relate how they contribute to<br />

properties of carbon compounds.<br />

<br />

<br />

Students will identify examples of important carbon based molecules.<br />

Students will create 2D or 3D models of carbon molecules and explain why this<br />

molecule is important to life.<br />

covalent bond<br />

single bond<br />

double bond<br />

triple bond<br />

monomer<br />

polymer<br />

79


http://www.bbc.co.uk/education/guides/zm9hvcw/revision<br />

A homologous series is a family of hydrocarbons with similar<br />

chemical properties who share the same general formula.<br />

There are three Series alkanes, alkenes, and cycoalkanes.<br />

alkanes end in -ane.<br />

How Alkanes Names are Made<br />

The longest unbranched chain that has the functional group is<br />

called the parent molecule. Name the branches to indicate the<br />

number of branches Each branch is numbered indivdualy and a<br />

comma between numbers and a dash between numbers and<br />

letters<br />

Alkenes<br />

They all end in ene. They all contain a double bond. Nameing<br />

them has the same rules as alkanes but the double bond must be<br />

identified.<br />

Cycloalkanes<br />

All names begin with Cyclo- and end in -ane. They have the<br />

same general Formula As Alkenes but contain only single<br />

bonds . used mostly for motor fuel Natural Gas ,Kerosene,<br />

Diesel ECT.<br />

All hydrocarbons can undergo combustion reactions with<br />

enough oxygen. Alkenes go through and additonal reaction<br />

because of the double bond<br />

Isomers<br />

Isomers are compounds with the same molecular formulae but<br />

different structural formulae.<br />

They have the same number of each type of atom but may have<br />

different physical and chemical properties.<br />

81


82

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!