11.12.2012 Views

Ternary Alloy Systems Phase Diagrams, Crystallographic and ...

Ternary Alloy Systems Phase Diagrams, Crystallographic and ...

Ternary Alloy Systems Phase Diagrams, Crystallographic and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

L<strong>and</strong>olt-Börnstein<br />

Numerical Data <strong>and</strong> Functional Relationships in Science <strong>and</strong> Technology<br />

New Series / Editor in Chief: W. Martienssen<br />

Group IV: Physical Chemistry<br />

Volume 11<br />

<strong>Ternary</strong> <strong>Alloy</strong> <strong>Systems</strong><br />

<strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong><br />

Thermodynamic Data<br />

critically evaluated by MSIT ®<br />

Subvolume D<br />

Iron <strong>Systems</strong><br />

Part 5<br />

Selected <strong>Systems</strong> from Fe-N-V to Fe-Ti-Zr<br />

Editors<br />

G. Effenberg <strong>and</strong> S. Ilyenko<br />

Authors<br />

Materials Science <strong>and</strong> International Team, MSIT ®


ISSN 1615-2018 (Physical Chemistry)<br />

ISBN 978-3-540-70885-8 Springer Berlin Heidelberg New York<br />

Library of Congress Cataloging in Publication Data<br />

Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie<br />

Editor in Chief: W. Martienssen<br />

Vol. IV/11D5: Editors: G. Effenberg, S. Ilyenko<br />

At head of title: L<strong>and</strong>olt-Börnstein. Added t.p.: Numerical data <strong>and</strong> functional relationships in science <strong>and</strong> technology.<br />

Tables chiefly in English.<br />

Intended to supersede the Physikalisch-chemische Tabellen by H. L<strong>and</strong>olt <strong>and</strong> R. Börnstein of which the 6th ed. began publication in 1950 under title:<br />

Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik.<br />

Vols. published after v. 1 of group I have imprint: Berlin, New York, Springer-Verlag<br />

Includes bibliographies.<br />

1. Physics--Tables. 2. Chemistry--Tables. 3. Engineering--Tables.<br />

I. Börnstein, R. (Richard), 1852-1913. II. L<strong>and</strong>olt, H. (Hans), 1831-1910.<br />

III. Physikalisch-chemische Tabellen. IV. Title: Numerical data <strong>and</strong> functional relationships in science <strong>and</strong> technology.<br />

QC61.23 502'.12 62-53136<br />

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation,<br />

reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, <strong>and</strong> storage in data banks. Duplication of this<br />

publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, <strong>and</strong><br />

permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.<br />

Springer is a part of Springer Science+Business Media<br />

springeronline.com<br />

© Springer-Verlag Berlin Heidelberg 2009<br />

Printed in Germany<br />

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement,<br />

that such names are exempt from the relevant protective laws <strong>and</strong> regulations <strong>and</strong> therefore free for general use.<br />

Product Liability: The data <strong>and</strong> other information in this h<strong>and</strong>book have been carefully extracted <strong>and</strong> evaluated by experts from the original literature.<br />

Furthermore, they have been checked for correctness by authors <strong>and</strong> the editorial staff before printing. Nevertheless, the publisher can give no<br />

guarantee for the correctness of the data <strong>and</strong> information provided. In any individual case of application, the respective user must check the correctness<br />

by consulting other relevant sources of information.<br />

Cover layout: Erich Kirchner, Heidelberg<br />

Typesetting: Materials Science International Services GmbH, Stuttgart<br />

Printing <strong>and</strong> Binding: AZ Druck, Kempten/Allgäu<br />

SPIN: 1221 0152 63/3020 - 5 4 3 2 1 0 – Printed on acid-free paper


Editors: Günter Effenberg<br />

Svitlana Ilyenko<br />

Associate Editor: Oleks<strong>and</strong>r Dovbenko<br />

MSI, Materials Science International Services GmbH<br />

Postfach 800749, D-70507, Stuttgart, Germany<br />

http://www.matport.com<br />

Authors: Materials Science International Team, MSIT ®<br />

The present series of books results from collaborative evaluation programs performed by MSI <strong>and</strong><br />

authored by MSIT ® . In this program data <strong>and</strong> knowledge are contributed by many individuals <strong>and</strong><br />

accumulated over almost twenty years, now. The content of this volume is a subset of the ongoing MSIT ®<br />

Evaluation Programs. Authors of this volume are:<br />

Nataliya Bochvar, Moscow, Russia Marina<br />

Bulanova, Kyiv, Ukraine Gabriele<br />

Cacciamani, Genova, Italy Hailin Chen,<br />

Changsha, China Gautam Ghosh, Evanston,<br />

USA Lesley Cornish, R<strong>and</strong>burg, South<br />

Africa Damian M. Cupid, Freiberg, Germany<br />

Yong Du, Changsha, China Olga<br />

Fabrichnaya, Freiberg, Germany Yulia<br />

Fartushna, Kyiv, Ukraine Baiyun Huang,<br />

Changsha, China Volodymyr Ivanchenko,<br />

Kyiv, Ukraine Jozefien De Keyzer, Heverlee,<br />

Belgium Natalia Kol’chugina, Moscow,<br />

Russia Kostyantyn Korniyenko, Kyiv,<br />

Ukraine Artem Kozlov, Clausthal-Zellerfeld,<br />

Germany Viktor Kuznetsov, Moscow, Russia<br />

Shuhong Liu, Changsha, China<br />

Hans Leo Lukas, Stuttgart, Germany<br />

Pankaj Nerikar, Gainesville, USA Pierre<br />

Perrot, Lille, France Tatiana Pryadko,<br />

Kyiv, Ukraine Peter Rogl, Vienna, Austria<br />

Lazar Rokhlin, Moscow, Russia Hans<br />

Jürgen Seifert, Freiberg, Germany Elena<br />

Semenova, Kyiv, Ukraine Weihua Sun,<br />

Changsha, China Jean-Claude Tedenac,<br />

Montpellier, France Vasyl Tomashik,<br />

Kyiv, Ukraine Lyudmilla Tretyachenko,<br />

Kyiv, Ukraine Tamara Velikanova, Kyiv,<br />

Ukraine Andy Watson, Leeds, U.K. Wei<br />

Xiong, Changsha, China Honghui Xu,<br />

Changsha, China Chao Zhang, Changsha,<br />

China Lijun Zhang, Changsha, China<br />

Weiwei Zhang, Changsha, China


Institutions<br />

The content of this volume is produced by MSI, Materials Science International Services GmbH <strong>and</strong> the<br />

international team of materials scientists, MSIT ® . Contributions to this volume have been made from the<br />

following institutions:<br />

The Baikov Institute of Metallurgy, Academy of<br />

Sciences, Moscow, Russia<br />

Central South University, Research Institute of<br />

Powder Metallurgy, State Key Laboratory for<br />

Powder Metallurgy, Changsha, China<br />

I.M. Frantsevich Institute for Problems of<br />

Materials Science, National Academy of Sciences,<br />

Kyiv, Ukraine<br />

Institute for Semiconductor Physics, National<br />

Academy of Sciences, Kyiv, Ukraine<br />

Katholieke Universiteit Leuven, Department<br />

Metaalkunde en Toegepaste Materiaalkunde,<br />

Heverlee, Belgium<br />

G.V. Kurdyumov Institute for Metal Physics,<br />

National Academy of Sciences, Kyiv, Ukraine<br />

Max-Planck-Institut für Metallforschung,<br />

Institut für Werkstoffwissenschaft,<br />

Pulvermetallurgisches Laboratorium, Stuttgart,<br />

Germany<br />

Moscow State University, Department of General<br />

Chemistry, Moscow, Russia<br />

Northwestern University, Department of<br />

Materials Science <strong>and</strong> Engineering, Evanston,<br />

USA<br />

School of Chemical <strong>and</strong> Metallurgical<br />

Engineering, The University of the<br />

Witwatersr<strong>and</strong>, DST/NRF Centre of Excellence<br />

for Strong Material, South Afrika<br />

Technische Universität Bergakademie Freiberg,<br />

Institut für Werkstoffwissenschaft, Freiberg,<br />

Germany<br />

Technische Universität Clausthal, Metallurgisches<br />

Zentrum, Clausthal-Zellerfeld, Germany<br />

Universita di Genova, Dipartimento di Chimica,<br />

Genova, Italy<br />

Universität Wien, Institut für Physikalische<br />

Chemie, Wien, Austria<br />

Universite de Lille I, Laboratoire de Métallurgie<br />

Physique, Villeneuve d’ASCQ, France<br />

Universite de Montpellier II, Laboratorie de<br />

Physico-chimie de la Materiere Montpellier,<br />

France<br />

University of Florida, Department of Materials<br />

Science <strong>and</strong> Engineering, Gainesville, USA<br />

University of Leeds, Department of Materials,<br />

School of Process, Environmental <strong>and</strong> Materials<br />

Engineering, Leeds, UK


Preface<br />

The sub-series <strong>Ternary</strong> <strong>Alloy</strong> <strong>Systems</strong> of the L<strong>and</strong>olt-Börnstein New Series provides reliable <strong>and</strong><br />

comprehensive descriptions of the materials constitution, based on critical intellectual evaluations of all<br />

data available at the time <strong>and</strong> it critically weights the different findings, also with respect to their<br />

compatibility with today’s edge binary phase diagrams. Selected are ternary systems of importance to<br />

alloy development <strong>and</strong> systems which gained in the recent years otherwise scientific interest. In one<br />

ternary materials system, however, one may find alloys for various applications, depending on the chosen<br />

composition.<br />

Reliable phase diagrams provide scientists <strong>and</strong> engineers with basic information of eminent<br />

importance for fundamental research <strong>and</strong> for the development <strong>and</strong> optimization of materials. So<br />

collections of such diagrams are extremely useful, if the data on which they are based have been<br />

subjected to critical evaluation, like in these volumes. Critical evaluation means: there where<br />

contradictory information is published data <strong>and</strong> conclusions are being analyzed, broken down to the firm<br />

facts <strong>and</strong> re-interpreted in the light of all present knowledge. Depending on the information available this<br />

can be a very difficult task to achieve. Critical evaluations establish descriptions of reliably known phase<br />

configurations <strong>and</strong> related data.<br />

The evaluations are performed by MSIT ® , Materials Science International Team, a group of scientists<br />

working together since 1984. Within this team skilled expertise is available for a broad range of methods,<br />

materials <strong>and</strong> applications. This joint competence is employed in the critical evaluation of the often<br />

conflicting literature data. Particularly helpful in this are targeted thermodynamic <strong>and</strong> atomistic<br />

calculations for individual equilibria, driving forces or complete phase diagram sections.<br />

Conclusions on phase equilibria may be drawn from direct observations e.g. by microscope, from<br />

monitoring caloric or thermal effects or measuring properties such as electric resistivity, electro-magnetic<br />

or mechanical properties. Other examples of useful methods in materials chemistry are massspectrometry,<br />

thermo-gravimetry, measurement of electro-motive forces, X-ray <strong>and</strong> microprobe analyses.<br />

In each published case the applicability of the chosen method has to be validated, the way of actually<br />

performing the experiment or computer modeling has to be validated as well <strong>and</strong> the interpretation of the<br />

results with regard to the material’s chemistry has to be verified. Therefore insight in materials<br />

constitution <strong>and</strong> phase reactions is gained from many distinctly different types of experiments,<br />

calculation <strong>and</strong> observations. Intellectual evaluations which interpret all data simultaneously reveal the<br />

chemistry of the materials system best.<br />

An additional degree of complexity is introduced by the material itself, as the state of the material<br />

under test depends heavily on its history, in particular on the way of homogenization, thermal <strong>and</strong><br />

mechanical treatments. All this is taken into account in an MSIT ® expert evaluation.<br />

To include binary data in the ternary evaluation is m<strong>and</strong>atory. Each of the three-dimensional ternary<br />

phase diagrams has edge binary systems as boundary planes; their data have to match the ternary data<br />

smoothly. At the same time each of the edge binary systems A-B is a boundary plane for many other<br />

ternary A-B-X systems. Therefore combining systematically binary <strong>and</strong> ternary evaluations increases<br />

confidence <strong>and</strong> reliability in both ternary <strong>and</strong> binary phase diagrams. This has started systematically for<br />

the first time here, by the MSIT ® Evaluation Programs applied to the L<strong>and</strong>olt-Börnstein New Series. The<br />

degree of success, however, depends on both the nature of materials <strong>and</strong> scientists!<br />

The multitude of correlated or inter-dependant data requires special care. Within MSIT ® an evaluation<br />

routine has been established that proceeds knowledge driven <strong>and</strong> applies both, human based expertise <strong>and</strong><br />

electronically formatted data <strong>and</strong> software tools. MSIT ® internal discussions take place in almost all<br />

evaluation works <strong>and</strong> on many different specific questions the competence of a team is added to the work<br />

of individual authors. In some cases the authors of earlier published work contributed to the knowledge


ase by making their original data records available for re-interpretation. All evaluation reports published<br />

here have undergone a thorough review process in which the reviewers had access to all the original data.<br />

In publishing we have adopted a st<strong>and</strong>ard format that presents the reader with the data for each ternary<br />

system in a concise <strong>and</strong> consistent manner, as applied in the “MSIT ® Workplace <strong>Phase</strong> <strong>Diagrams</strong><br />

Online”. The st<strong>and</strong>ard format <strong>and</strong> special features of the L<strong>and</strong>olt-Börnstein compendium are explained in<br />

the Introduction to the volume.<br />

In spite of the skill <strong>and</strong> labor that have been put into this volume, it will not be faultless. All criticisms<br />

<strong>and</strong> suggestions that can help us to improve our work are very welcome. Please contact us via<br />

effenberg@msiwp.com. We hope that this volume will prove to be as useful for the materials scientist<br />

<strong>and</strong> engineer as the other volumes of L<strong>and</strong>olt-Börnstein New Series <strong>and</strong> the previous works of MSIT ®<br />

have been. We hope that the L<strong>and</strong>olt Börnstein Sub-series, <strong>Ternary</strong> <strong>Alloy</strong> <strong>Systems</strong> will be well received<br />

by our colleagues in research <strong>and</strong> industry.<br />

On behalf of the participating authors we want to thank all those who contributed their comments <strong>and</strong><br />

insight during the evaluation process. In particular we thank the reviewers - Pierre Perrot,<br />

Tamara Velikanova, Hans Leo Lukas, Marina Bulanova, Mikhail Turchanin, Nataliya Bochvar,<br />

Olga Fabrichnaya <strong>and</strong> Viktor Kuznetsov.<br />

We all gratefully acknowledge the dedicated scientific desk editing by Oleks<strong>and</strong>ra Berezhnytska,<br />

Mariya Saltykova <strong>and</strong> Oleks<strong>and</strong>r Rogovtsov.<br />

Günter Effenberg, Svitlana Ilyenko <strong>and</strong> Oleks<strong>and</strong>r Dovbenko Stuttgart, March 2008


Foreword<br />

Can you imagine a world without iron <strong>and</strong> steel? No? I can’t either.<br />

The story of mankind is intimately linked to the discovery <strong>and</strong> successful use of metals <strong>and</strong> their<br />

alloys. Amongst them iron <strong>and</strong> steel - we could define steel as ‘a generally hard, strong, durable,<br />

malleable alloy of iron <strong>and</strong> carbon, usually containing between 0.2 <strong>and</strong> 1.5 percent carbon, often with<br />

other constituents such as manganese, Chromium, nickel, molybdenum, copper, tungsten, Cobalt, or<br />

silicon, depending on the desired alloy properties, <strong>and</strong> widely used as a structural material’, have shaped<br />

our material world.<br />

The story of iron takes us back to the period of the Hittite Empire around 1300 BC, when iron started<br />

to replace bronze as the chief metal used for weapons <strong>and</strong> tools. Until today the story remains<br />

uncompleted <strong>and</strong> the social <strong>and</strong> economic impact of the iron <strong>and</strong> steel industry is now beyond<br />

imagination. In the year 2005 1.13 billion tons of crude steel were produced. Compared to 2004 this is an<br />

increase of 6.8%. That same year the steel production in China increased from 280.5 to almost 350<br />

million tons. Concerning stainless steel: according to the International Stainless Steel Forum (ISSF), the<br />

global production forecast for 2006 now st<strong>and</strong>s at 27.8 million metric tons of stainless crude steel, up<br />

14.3% compared to 2005.<br />

An English poem from the 19 th century tells us<br />

Gold is for the mistress<br />

Silver for the maid<br />

Copper for the craftsman<br />

Cunning at his trade<br />

Good said the baron<br />

Sitting in his hall<br />

But iron, cold iron<br />

Is master of them all<br />

It is still actual <strong>and</strong> true.<br />

The list of different steel grades <strong>and</strong> related applications is impressive <strong>and</strong> still growing: low carbon<br />

strip steels for automotive applications, low carbon structural steels, engineering steels, stainless steels,<br />

cast irons, <strong>and</strong>, more recently: dual phase steels, TRIP-steels, TWIP-steels, maraging steels, …<br />

The list of applications seems endless: a wide range of properties from corrosion resistance to high<br />

tensile strength is covered. These properties depend on the percentage of carbon, the alloying elements,<br />

<strong>and</strong> increasingly on the thermo-mechanical treatments that aim at optimizing the microstructure.<br />

Yet many potential improvements remain unexplored, also due to the increasing complexity of the<br />

new steel grades. For instance, a recently patent protected new die steel for hot deformation has the<br />

following composition specifications: C 0.46 – 0.58; Si 0.18 – 0.40; Mn 0.45 – 0.75, Cr 0.80 – 1.20; Ni<br />

1.30 – 1.70; Mo 0.35 – 0.65; V 0.18 – 0.25; Al 0.01 – 0.04; Ti 0.002 – 0.04; B 0.001 – 0.003; Zr 0.02 –<br />

0.04; Fe remaining.


Although many properties of steel are directly related to non-equilibrium states, it remains a fact that<br />

the equilibrium state creates the reference frame for all changes that might occur in any material - <strong>and</strong><br />

consequently would effect its properties in use - that is actually not in its thermodynamic equilibrium<br />

state. This is what these volumes in the L<strong>and</strong>olt-Börnstein series st<strong>and</strong> for: they have collected the most<br />

reliable data on the possible phase equilibria in ternary iron based alloys. Therefore this first volume of<br />

data, as well as the other ones in a series of four to appear, is of immeasurable value for metallurgists <strong>and</strong><br />

materials engineers that improve the properties of existing steels <strong>and</strong> develop new <strong>and</strong> more complex<br />

steel grades. It is about materials, it is about quality of life.<br />

The well-recognized quality label of MSIT ® , the Materials Science International Team, also applies to<br />

the present volume of the L<strong>and</strong>olt-Börnstein series. It should be available for every materials engineer,<br />

scientist <strong>and</strong> student.<br />

Prof. Dr. ir. Patrick Wollants<br />

Chairman - Department of Metallurgy <strong>and</strong> Materials Engineering<br />

Katholieke Universiteit Leuven<br />

Belgium


Contents<br />

IV/11D5 <strong>Ternary</strong> <strong>Alloy</strong> <strong>Systems</strong><br />

<strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Subvolume D Iron <strong>Systems</strong><br />

Part 5 Selected <strong>Systems</strong> from Fe-N-V to Fe-Ti-Zr<br />

Introduction<br />

Data Covered.......................................................................................................................................XIII<br />

General ................................................................................................................................................XIII<br />

Structure of a System Report..............................................................................................................XIII<br />

Introduction.................................................................................................................................XIII<br />

Binary <strong>Systems</strong> ...........................................................................................................................XIII<br />

Solid <strong>Phase</strong>s ................................................................................................................................XIV<br />

Quasibinary <strong>Systems</strong>....................................................................................................................XV<br />

Invariant Equilibria......................................................................................................................XV<br />

Liquidus, Solidus, Solvus Surfaces ............................................................................................. XV<br />

Isothermal Sections......................................................................................................................XV<br />

Temperature – Composition Sections .........................................................................................XV<br />

Thermodynamics..........................................................................................................................XV<br />

Notes on Materials Properties <strong>and</strong> Applications.........................................................................XV<br />

Miscellaneous ..............................................................................................................................XV<br />

References................................................................................................................................XVIII<br />

General References .............................................................................................................................XIX<br />

<strong>Ternary</strong> <strong>Systems</strong><br />

Fe–N–V (Iron – Nitrogen – Vanadium)..................................................................................................1<br />

Fe–Na–O (Iron – Sodium – Oxygen)....................................................................................................14<br />

Fe–Nb–Ni (Iron – Niobium – Nickel)...................................................................................................33<br />

Fe–Nb–P (Iron – Niobium – Phosphorus) ............................................................................................43<br />

Fe–Nb–Si (Iron – Niobium – Silicon)...................................................................................................55<br />

Fe–Nb–Zr (Iron – Niobium – Zirconium).............................................................................................69<br />

Fe–Nd–Si (Iron – Neodynium – Silicon)..............................................................................................82<br />

Fe–Ni–P (Iron – Nickel – Phosphorus).................................................................................................96<br />

Fe–Ni–S (Iron – Nickel – Sulfur)........................................................................................................113<br />

Fe–Ni–Sb (Iron – Nickel – Antimony) ...............................................................................................155<br />

Fe–Ni–Si (Iron – Nickel – Silicon) .....................................................................................................171<br />

Fe–Ni–Ti (Iron – Nickel – Titanium)..................................................................................................188<br />

Fe–Ni–V (Iron – Nickel – Vanadium) ................................................................................................212<br />

Fe–Ni–W (Iron – Nickel – Tungsten) .................................................................................................225<br />

Fe–Ni–Zn (Iron – Nickel – Zinc) ........................................................................................................245<br />

Fe–Ni–Zr (Iron – Nickel – Zirconium) ...............................................................................................256


Fe–O–Pb (Iron – Oxygen – Lead).......................................................................................................268<br />

Fe–O–Si (Iron – Oxygen – Silicon) ....................................................................................................281<br />

Fe–O–U (Iron – Oxygen – Uranium)..................................................................................................322<br />

Fe–O–W (Iron – Oxygen – Tungsten) ................................................................................................330<br />

Fe–O–Y (Iron – Oxygen – Yttrium) ...................................................................................................346<br />

Fe–O–Zr (Iron – Oxygen – Zirconium) ..............................................................................................359<br />

Fe–P–Si (Iron – Phosphorus – Silicon)...............................................................................................375<br />

Fe–S–Ti (Iron – Sulfur – Titanium) ....................................................................................................393<br />

Fe–Si–Ti (Iron – Silicon – Titanium)..................................................................................................410<br />

Fe–Si–V (Iron – Silicon – Vanadium) ................................................................................................428<br />

Fe–Si–Zr (Iron – Silicon – Zirconium) ...............................................................................................447<br />

Fe–Sm–Ti (Iron – Samarium – Titanium) ..........................................................................................458<br />

Fe–Sn–Zr (Iron – Tin – Zirconium) ....................................................................................................480<br />

Fe–Ti–V(Iron – Titanium – Vanadium)..............................................................................................493<br />

Fe–Ti–Y (Iron – Titanium – Yttrium).................................................................................................504<br />

Fe-Ti-Zr (Iron – Titanium – Zirconium).............................................................................................518


Introduction<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Data Covered<br />

The series focuses on light metal ternary systems <strong>and</strong> includes phase equilibria of importance<br />

for alloy development, processing or application, reporting on selected ternary systems of<br />

importance to industrial light alloy development <strong>and</strong> systems which gained otherwise scientific<br />

interest in the recent years.<br />

General<br />

The series provides consistent phase diagram descriptions for individual ternary systems.<br />

The representation of the equilibria of ternary systems as a function of temperature results<br />

in spacial diagrams whose sections <strong>and</strong> projections are generally published in the literature.<br />

<strong>Phase</strong> equilibria are described in terms of liquidus, solidus <strong>and</strong> solvus projections, isothermal<br />

<strong>and</strong> quasibinary sections; data on invariant equilibria are generally given in the form<br />

of tables.<br />

The world literature is thoroughly <strong>and</strong> systematically searched back to the year 1900.<br />

Then, the published data are critically evaluated by experts in materials science <strong>and</strong><br />

reviewed. Conflicting information is commented upon <strong>and</strong> errors <strong>and</strong> inconsistencies<br />

removed wherever possible. It considers those, <strong>and</strong> only those data, which are firmly established,<br />

comments on questionable findings <strong>and</strong> justifies re-interpretations made by the<br />

authors of the evaluation reports.<br />

In general, the approach used to discuss the phase relationships is to consider changes<br />

in state <strong>and</strong> phase reactions which occur with decreasing temperature. This has influenced<br />

the terminology employed <strong>and</strong> is reflected in the tables <strong>and</strong> the reaction schemes<br />

presented.<br />

The system reports present concise descriptions <strong>and</strong> hence do not repeat in the text facts<br />

which can clearly be read from the diagrams. For most purposes the use of the compendium is<br />

expected to be self-sufficient. However, a detailed bibliography of all cited references is given to<br />

enable original sources of information to be studied if required.<br />

Structure of a System Report<br />

Introduction 1<br />

The constitutional description of an alloy system consists of text <strong>and</strong> a table/diagram section<br />

which are separated by the bibliography referring to the original literature (see Fig. 1). The<br />

tables <strong>and</strong> diagrams carry the essential constitutional information <strong>and</strong> are commented on in<br />

the text if necessary.<br />

Where published data allow, the following sections are provided in each report:<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_1<br />

ß Springer 2009<br />

1


2 1<br />

Introduction<br />

. Fig. 1<br />

Structure of a system report<br />

Introduction<br />

The opening text reviews briefly the status of knowledge published on the system <strong>and</strong> outlines<br />

the experimental methods that have been applied. Furthermore, attention may be drawn to<br />

questions which are still open or to cases where conclusions from the evaluation work<br />

modified the published phase diagram.<br />

Binary <strong>Systems</strong><br />

Where binary systems are accepted from st<strong>and</strong>ard compilations reference is made to these<br />

compilations. In other cases the accepted binary phase diagrams are reproduced for the<br />

convenience of the reader. The selection of the binary systems used as a basis for the evaluation<br />

of the ternary system was at the discretion of the assessor.<br />

DOI: 10.1007/978-3-540-70890-2_1 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Solid <strong>Phase</strong>s<br />

The tabular listing of solid phases incorporates knowledge of the phases which is necessary or<br />

helpful for underst<strong>and</strong>ing the text <strong>and</strong> diagrams. Throughout a system report a unique phase<br />

name <strong>and</strong> abbreviation is allocated to each phase.<br />

<strong>Phase</strong>s with the same formulae but different space lattices (e.g. allotropic transformation)<br />

are distinguished by:<br />

– small letters (h), high temperature modification (h2 >h1) (r), room temperature modification<br />

(1), low temperature modification (l1 >l2) – Greek letters, e.g., ε, ε’<br />

– Roman numerals, e.g., (I) <strong>and</strong> (II) for different pressure modifications.<br />

In the table “Solid <strong>Phase</strong>s” ternary phases are denoted by * <strong>and</strong> different phases are<br />

separated by horizontal lines.<br />

Quasibinary <strong>Systems</strong><br />

Quasibinary (pseudobinary) sections describe equilibria <strong>and</strong> can be read in the same way as<br />

binary diagrams. The notation used in quasibinary systems is the same as that of vertical<br />

sections, which are reported under “Temperature – Composition Sections”.<br />

Invariant Equilibria<br />

The invariant equilibria of a system are listed in the table “Invariant Equilibria” <strong>and</strong>, where<br />

possible, are described by a constitutional “Reaction Scheme” (Fig. 2).<br />

The sequential numbering of invariant equilibria increases with decreasing temperature,<br />

one numbering for all binaries together <strong>and</strong> one for the ternary system.<br />

Equilibria notations are used to indicate the reactions by which phases will be<br />

– decomposed (e- <strong>and</strong> E-type reactions)<br />

– formed (p- <strong>and</strong> P-type reactions)<br />

– transformed (U-type reactions)<br />

For transition reactions the letter U (Übergangsreaktion) is used in order to reserve the<br />

letter T to denote temperature. The letters d <strong>and</strong> D indicate degenerate equilibria which do not<br />

allow a distinction according to the above classes.<br />

Liquidus, Solidus, Solvus Surfaces<br />

Introduction 1<br />

The phase equilibria are commonly shown in triangular coordinates which allow a reading of<br />

the concentration of the constituents in at.%. In some cases mass% scaling is used for better<br />

data readability (see Figs. 3 <strong>and</strong> 4).<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_1<br />

ß Springer 2009<br />

3


4 1<br />

Introduction<br />

. Fig. 2<br />

Typical reaction scheme<br />

DOI: 10.1007/978-3-540-70890-2_1 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Hypothetical liqudus surface showing notation employed<br />

In the polythermal projection of the liquidus surface, monovariant liquidus grooves<br />

separate phase regions of primary crystallization <strong>and</strong>, where available, isothermal lines contour<br />

the liquidus surface (see Fig. 3).<br />

Isothermal Sections<br />

<strong>Phase</strong> equilibria at constant temperatures are plotted in the form of isothermal sections (see<br />

Fig. 4).<br />

Temperature – Composition Sections<br />

Introduction 1<br />

Non-quasibinary T-x sections (or vertical sections, isopleths, polythermal sections) show the<br />

phase fields where generally the tie lines are not in the same plane as the section. The notation<br />

employed for the latter (see Fig. 5) is the same as that used for binary <strong>and</strong> quasibinary phase<br />

diagrams.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_1<br />

ß Springer 2009<br />

5


6 1<br />

Introduction<br />

. Fig. 4<br />

Hypotheticcal isothermal section showing notation employed<br />

Thermodynamics<br />

Experimental ternary data are reported in some system reports <strong>and</strong> reference to thermodynamic<br />

modeling is made.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Noteworthy physical <strong>and</strong> chemical materials properties <strong>and</strong> application areas are briefly<br />

reported if they were given in the original constitutional <strong>and</strong> phase diagram literature.<br />

Miscellaneous<br />

In this section noteworthy features are reported which are not described in preceding paragraphs.<br />

These include graphical data not covered by the general report format, such as lattice<br />

spacing – composition data, p-T-x diagrams, etc.<br />

DOI: 10.1007/978-3-540-70890-2_1 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Hypothetical vertical section showing notation employed<br />

References<br />

Introduction 1<br />

The publications which form the bases of the assessments are listed in the following manner:<br />

[1974Hay] Hayashi, M., Azakami, T., Kamed, M., “Effects of Third Elements on the<br />

Activity of Lead in Liquid Copper Base <strong>Alloy</strong>s” (in Japanese), Nippon Kogyo Kaishi, 90, 51-<br />

56 (1974) (Experimental, Thermodyn., 16)<br />

This paper, for example, whose title is given in English, is actually written in Japanese. It<br />

was published in 1974 on pages 51- 56, volume 90 of Nippon Kogyo Kaishi, the Journal of the<br />

Mining <strong>and</strong> Metallurgical Institute of Japan. It reports on experimental work that leads to<br />

thermodynamic data <strong>and</strong> it refers to 16 cross-references.<br />

Additional conventions used in citing are:<br />

# to indicate the source of accepted phase diagrams<br />

* to indicate key papers that significantly contributed to the underst<strong>and</strong>ing of the system.<br />

St<strong>and</strong>ard reference works given in the list “General References” are cited using their<br />

abbreviations <strong>and</strong> are not included in the reference list of each individual system.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_1<br />

ß Springer 2009<br />

7


8 1<br />

Introduction<br />

General References<br />

[C.A.] Chemical Abstracts - pathways to published research in the world’s journal <strong>and</strong> patent literature -<br />

http://www.cas.org/<br />

[Curr.Cont.] Current Contents - bibliographic multidisciplinary current awareness Web resource - http://www.<br />

isinet.com/products/cap/ccc/<br />

[E] Elliott, R.P., Constitution of Binary <strong>Alloy</strong>s, First Supplement, McGraw-Hill, New York (1965)<br />

[G] Gmelin H<strong>and</strong>book of Inorganic Chemistry, 8th ed., Springer-Verlag, Berlin<br />

[H] Hansen, M. <strong>and</strong> Anderko, K., Constitution of Binary <strong>Alloy</strong>s, McGraw-Hill, New York (1958)<br />

[L-B] L<strong>and</strong>olt-Boernstein, Numerical Data <strong>and</strong> Functional Relationships in Science <strong>and</strong> Technology (New<br />

Series). Group 3 (Crystal <strong>and</strong> Solid State Physics), Vol. 6, Eckerlin, P., K<strong>and</strong>ler, H. <strong>and</strong> Stegherr, A.,<br />

Structure Data of Elements <strong>and</strong> Intermetallic <strong>Phase</strong>s (1971); Vol. 7, Pies, W. <strong>and</strong> Weiss, A., Crystal<br />

Structure of Inorganic Compounds, Part c, Key Elements: N, P, As, Sb, Bi, C (1979); Group 4:<br />

Macroscopic <strong>and</strong> Technical Properties of Matter, Vol. 5, Predel, B., <strong>Phase</strong> Equilibria, <strong>Crystallographic</strong><br />

<strong>and</strong> Thermodynamic Data of Binary <strong>Alloy</strong>s, Subvol. a: Ac-Au … Au-Zr (1991); Springer-Verlag,<br />

Berlin.<br />

[Mas] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, ASM, Metals Park, Ohio (1986)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park,<br />

Ohio (1990)<br />

[P] Pearson, W.B., A H<strong>and</strong>book of Lattice Spacings <strong>and</strong> Structures of Metals <strong>and</strong> <strong>Alloy</strong>s, Pergamon Press,<br />

New York, Vol. 1 (1958), Vol. 2 (1967)<br />

[S] Shunk, F.A., Constitution of Binary <strong>Alloy</strong>s, Second Supplement, McGraw-Hill, New York (1969)<br />

[V-C] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s,<br />

ASM, Metals Park, Ohio (1985)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s,<br />

2nd edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_1 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Index of <strong>Alloy</strong> <strong>Systems</strong><br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Index of <strong>Ternary</strong> Iron <strong>Alloy</strong> <strong>Systems</strong> Fe-N-V to Fe-Ti-Zr<br />

Fe–N–V (Iron – Nitrogen – Vanadium)<br />

Fe–Na–O (Iron – Sodium – Oxygen)<br />

Fe–Nb–Ni (Iron – Niobium – Nickel)<br />

Fe–Nb–P (Iron – Niobium – Phosphorus)<br />

Fe–Nb–Si (Iron – Niobium – Silicon)<br />

Fe–Nb–Zr (Iron – Niobium – Zirconium)<br />

Fe–Nd–Si (Iron – Neodynium – Silicon)<br />

Fe–Ni–P (Iron – Nickel – Phosphorus)<br />

Fe–Ni–S (Iron – Nickel – Sulfur)<br />

Fe–Ni–Sb (Iron – Nickel – Antimony)<br />

Fe–Ni–Si (Iron – Nickel – Silicon)<br />

Fe–Ni–Ti (Iron – Nickel – Titanium)<br />

Fe–Ni–V (Iron – Nickel – Vanadium)<br />

Fe–Ni–W (Iron – Nickel – Tungsten)<br />

Fe–Ni–Zn (Iron – Nickel – Zinc)<br />

Fe–Ni–Zr (Iron – Nickel – Zirconium)<br />

Fe–O–Pb (Iron – Oxygen – Lead)<br />

Fe–O–Si (Iron – Oxygen – Silicon)<br />

Fe–O–U (Iron – Oxygen – Uranium)<br />

Fe–O–W (Iron – Oxygen – Tungsten)<br />

Fe–O–Y (Iron – Oxygen – Yttrium)<br />

Fe–O–Zr (Iron – Oxygen – Zirconium)<br />

Fe–P–Si (Iron – Phosphorus – Silicon)<br />

Fe–S–Ti (Iron – Sulfur – Titanium)<br />

Fe–Si–Ti (Iron – Silicon – Titanium)<br />

Fe–Si–V (Iron – Silicon – Vanadium)<br />

Fe–Si–Zr (Iron – Silicon – Zirconium)<br />

Fe–Sm–Ti (Iron – Samarium – Titanium)<br />

Fe–Sn–Zr (Iron – Tin – Zirconium)<br />

Fe–Ti–V (Iron – Titanium – Vanadium)<br />

Fe–Ti–Y (Iron – Titanium – Yttrium)<br />

Fe-Ti-Zr (Iron – Titanium – Zirconium)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Index of <strong>Alloy</strong> <strong>Systems</strong> 2<br />

DOI: 10.1007/978-3-540-70890-2_2<br />

ß Springer 2009<br />

1


Iron – Nitrogen – Vanadium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Pierre Perrot<br />

Introduction<br />

Vanadium has a strong affinity for N <strong>and</strong> forms fine nitrides <strong>and</strong> carbonitrides in steels which<br />

improve their strength <strong>and</strong> the toughness by pinning the grain growth to a considerable extent.<br />

Experimental investigations on phase equilibria <strong>and</strong> thermodynamics, mainly related to the<br />

nitrogen solubilities in liquid, α <strong>and</strong> γ phases are gathered in Table 1. Few experimental<br />

information exists in the ternary phase diagram [1978ElS] <strong>and</strong> Calphad assessments<br />

[1991Oht2] are useful to get an insight to the equilibria between phases. A review on the<br />

phase equilibria in the Fe-N-V system may be found in [1983Rag, 1984Rag, 1987Rag1,<br />

1993Rag]. A Calphad assessment of the Fe-N-V system has been carried out by [1991Oht2].<br />

Binary <strong>Systems</strong><br />

The Fe-V has been carefully reviewed by [1984Smi] <strong>and</strong> the thermodynamic assessment<br />

proposed by [1991Kum] reproduces well the accepted diagram. According to new experimental<br />

works [2005Ust1, 2005Ust2], the σ phase would be unstable <strong>and</strong> a phase separation would<br />

be observed below 650˚C. A further confirmation is needed to accept this new version of the<br />

Fe-V diagram at low temperatures. The Fe-N phase diagram in the solid state is accepted from<br />

the review of [1987Wri]. The Calphad assessment carried out by [1991Fri] <strong>and</strong> justified by the<br />

model proposed by [1994Fer] gives an insight on the phase equilibria under high nitrogen<br />

pressures. The N-V phase diagram in the solid state given by [Mas2] is reproduced from the<br />

extensive review of [1989Car]. A Calphad assessment of the N-V system has been carried out<br />

by [1991Oht1], then updated by [1997Du]. These assessments do not take into account the<br />

δ’V 32N 26 phase but agree to propose for the nitrides V 2N <strong>and</strong> VN incongruent melting points<br />

under 0.1 MPa N2 higher than those accepted by [Mas2]. The N-V diagram accepted in the<br />

present report is that proposed by [1997Du].<br />

Solid <strong>Phase</strong>s<br />

Fe–N–V 3<br />

The solid phases are shown in Table 2. Three vanadium nitrides are stable. The most stable,<br />

easily precipitated in steels is VN which presents a large non stoichiometry <strong>and</strong> may be<br />

obtained under very low nitrogen potential. The hexagonal subnitride V2N, exhibits a<br />

structure εFe 3N like, but no solid solutions have been reported between these two phases.<br />

The iron nitride γ’Fe 4N is characterized by a high saturation magnetization <strong>and</strong> a low<br />

coercitivity <strong>and</strong> many efforts has been devoted to enhance its magnetic properties by metallic<br />

substitution. Many metastable phases of the type Fe 4–xM xN have been prepared by mechanical<br />

alloying, but no report seems to exist in which M st<strong>and</strong>s for V. Despite this, self-consistent<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_3<br />

ß Springer 2009<br />

1


2 3<br />

Fe–N–V<br />

b<strong>and</strong> structure calculations were performed for the V 4N, V 3FeN <strong>and</strong> VFe 3N materials<br />

[2006San]. They were found non magnetic <strong>and</strong> their crystal structure calculated at 752.9,<br />

742.7 <strong>and</strong> 704.9 pm respectively, whereas twice lattice parameter for Fe 4N gives 757.4 pm.<br />

[2006San] reports for γ’Fe 4N a lattice parameter of 717.1 pm.<br />

Isothermal Sections<br />

The nitrogen solubility in liquid (Fe,V) alloys has been considerably investigated as shown in<br />

Table 1, <strong>and</strong> was shown to increase with the V content, but the increase of the nitrogen<br />

dissolved in the melt may be limited by the precipitation of VN for high V content of the alloy.<br />

A useful empirical expression of the N solubility in liquid alloys at 1580˚C has been proposed<br />

by [1963Kor]:<br />

ðmass% NÞ ¼0:043 þ 0:0185 ðmass% VÞþ0:00113 ðmass% VÞ 2 ð< 6 mass% VÞ<br />

The precipitation is observed when the solubility product (mass% V)(mass% N) is<br />

reached. As liquid Fe can dissolve a large amount of V before precipitating as VN, the<br />

solubility product cannot be precisely represented by the product of concentrations, but by<br />

the product of the activities. Another problem concerns the composition of the VN nitride in<br />

equilibrium with the liquid alloy. [1965Eva] considers that its composition is V1.41N whereas<br />

most authors consider that it is VN. The lattice parameter measurement carried out by<br />

[1987Mor] identifies the precipitated nitride as VN. It is probable that VN in equilibrium<br />

with iron rich (Fe,V) alloys <strong>and</strong> that the V content of the nitride increases with that of the<br />

alloy. According to [1963ElT], a Fe-8V (mass%) alloy precipitates VN once the N content<br />

reaches 0.20 mass% at 1600˚C under 8 kPa of N2 pressure; a Fe-15V (mass%) alloy precipitates<br />

VN once the N content reaches 0.27 mass% at 1600˚C under 77 kPa of N2 pressure.<br />

The nitrogen solubility in liquid alloys seems independent on the temperature for the Fe-1V<br />

(mass%) [1958Kas]. Below 1 mass% V in the alloy, it decreases when the temperature raises,<br />

above 1 mass% V in the alloy, it increases with the temperature [1987Mor].<br />

The solubility of nitrogen generated by H2-NH3 atmospheres at 400-600˚C on α(Fe,V)<br />

alloys up to 0.05 mass% V [1955Tur] seems independent on the V content of the alloy. The<br />

formation of VN is not observed at nitrogen potentials under which iron nitrides are not<br />

formed. The V content of the alloy was probably too small <strong>and</strong> the nitrogen solubility<br />

measured in α <strong>and</strong> γ alloys [1958Fou, 1962Kor2] up to 1 mass% V was shown to increase<br />

with the V concentration.<br />

The solubility product of VN in α <strong>and</strong> γ alloys has been evaluated by [1962Kor2] <strong>and</strong><br />

accepted by [2004Ked] to model the nitrogen diffusion profile during nitriding:<br />

In a ðFe; VÞ alloys : log10ðmass% VÞðmass% NÞ ¼2:45 ð7830=TÞ<br />

In g ðFe; VÞ alloys : log10ðmass% VÞðmass% NÞ ¼2:27 ð7070=TÞ<br />

At 700˚C, the solubility product of VN in (αFe) is 2.5 · 10 –6 which is in agreement with<br />

the formation of VN observed by [1973Gul] in an alloy Fe-0.18 mass% V-0.04 mass% N. At<br />

1350˚C, the solubility product of VN in (γFe) is 0.0082 which is in agreement with the<br />

observation of [1973Gul] that pure iron may absorb up to 0.2 mass% VN. The solubility<br />

product of VN in (αFe) has been measured at 5.3 · 10 –6 <strong>and</strong> 1.7 · 10 –5 at 700 <strong>and</strong> 800˚C,<br />

respectively, by [1973Koy] using internal friction measurements. The N solubility under<br />

DOI: 10.1007/978-3-540-70890-2_3 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


0.1 MPa of N 2 pressure in iron rich alloys (< 2 mass% V) at 1200˚C (α <strong>and</strong> γ solid alloys) <strong>and</strong><br />

1600˚C (liquid alloy) is shown in Fig. 1.<br />

Due to the lack of experimental information with the exception of the nitrogen solubilities<br />

in α, γ <strong>and</strong> liquid phases, the isothermal sections have been calculated. The isothermal sections<br />

at 1200 <strong>and</strong> 1600˚C, presented in Figs. 2 <strong>and</strong> 3 respectively, are mainly from [1991Oht2]<br />

slightly modified to take into account the non stoichiometry of the binary compounds <strong>and</strong> the<br />

solubility of N into (γFe) according to the accepted Fe-N diagram. Although a partial<br />

solubility is probable, it has never been measured.<br />

Temperature – Composition Sections<br />

The vertical section through the Fe-N-V diagram at 3 mass% V calculated by [1991Oht2], is<br />

shown in Fig. 4. The original figure has been slightly modified in order to remove the very<br />

improbable shrinkage present at 900 <strong>and</strong> 1400˚C in the three-phase field α+γ+VN. It looks like<br />

the binary Fe-N phase diagram calculated by [1991Fri] with an enlarged α domain. The<br />

isobaric curves have not been calculated, but the nitrogen potentials (0.1 MPa at 1600˚C<br />

<strong>and</strong> 0.044 mass% N) increase strongly with the N content. Below 800˚C, they may be obtained<br />

with H2-NH3 atmospheres, but above this temperature, there is no known mean to impose<br />

such high nitrogen potentials. The vertical section along the Fe-VN path (< 1 mass% VN) is<br />

shown in Fig. 5. The easy precipitation of VN in the α <strong>and</strong> γ solid phases appears clearly in<br />

both Figs. 4 <strong>and</strong> 5. In the liquid phase at 1600˚C, VN precipitates under 0.1 MPa N 2 for a V<br />

content in the alloys higher than 10 mass%.<br />

Thermodynamics<br />

Fe–N–V 3<br />

The interaction coefficient between N <strong>and</strong> V in liquid iron calculated by [1960Mae] from<br />

solubility measurements was found e N (V) =(∂ log10 f N / ∂ mass% V) = – 0.11 at 1600-1750˚C,<br />

where f N = (mass% N in pure Fe) / (mass% N in the alloy). Such a value, is in a very good<br />

agreement with that calculated from the data of [1958Kas] (–0.095 at 1600˚C) <strong>and</strong> with<br />

the later measurements carried out by [1960Peh] (–0.10 at 1606˚C), [1961Rao] (–0.094 at<br />

1700˚C), [1962Kor1] (–0.106 at 1580˚C), [1963ElT] (–0.094 at 1600˚C), [1965Eva] (–0.093<br />

at 1600˚C <strong>and</strong> –0.079 at 1750˚C), [1975Pom] (–0.12 at 1600˚C, –0.099 at 1800˚C <strong>and</strong> –0.093 at<br />

1900˚C), [1981Wad] (–0.10 at 1600˚C, –0.087 at 1700˚C <strong>and</strong> –0.076 at 1800˚C) <strong>and</strong> [1987Mor]<br />

(–0.107 at 1600˚C). [1963Kor] proposes a more precise expression of the interaction parameter<br />

at 1580˚C, which may be used up to 6 mass% V in the alloy: e N (V) = –0.159 + 0.016<br />

(mass% V), which agrees with the preceding values. [1963ElT] proposes, in the temperature<br />

range 1600-1740˚C the following expression: e N (V) = 0.075 – 317 / T, which is more representative<br />

in a wide temperature range than more recent expressions [1981Wad, 1987Mor]. This<br />

expression, extrapolated at 2200˚C leads to e N (V) = – 0.052 which agrees well with the<br />

experimental value of –0.062 obtained by [1968Uda] at 2140-2240˚C by arc melting or<br />

levitation melting under N 2 atmospheres <strong>and</strong> with the experimental value of – 0.05 obtained<br />

by [1969Wad] with the same method.<br />

The interaction coefficient may be expressed in mole fractions. At 1600˚C [1966Sch,<br />

1987Mor]: ε N (V) =(∂ ln γN / ∂ x V) = – 20 at 1600˚C, where γ N =(x N pure Fe / x N in the<br />

alloy). For higher V content of the alloy, the preceding primary interaction coefficients cannot<br />

be used <strong>and</strong> it is necessary to define secondary <strong>and</strong> sometimes ternary interaction coefficients<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_3<br />

ß Springer 2009<br />

3


4 3<br />

Fe–N–V<br />

<strong>and</strong> to take into account the auto-interaction coefficient [2001Hut]. Indeed, under high<br />

nitrogen pressure (> 0.1 MPa) <strong>and</strong> high V content (> 6 mass%), N has a strong effect on its<br />

own activity coefficient. So, [2003Hut] describes the nitrogen solubility in (Fe,V) alloys up to<br />

45 mass% V between 1800 <strong>and</strong> 2000˚C by using interaction coefficients of high order.<br />

The interaction coefficients between N <strong>and</strong> V in α <strong>and</strong> γ iron have been calculated by<br />

[1958Fou] from solubility measurements <strong>and</strong> found eN (V) = – 2.2, –1.0, –0.47, –0.33 <strong>and</strong> –0.18<br />

at 750, 850, 950, 1050 <strong>and</strong> 1200˚C respectively. The slope of the curve does not seem present a<br />

break at the α/γ transition of the alloy. These values are confirmed by the measurements of<br />

[1962Kor2] which proposes e N (V) = – 0.4 at 1000˚C.<br />

A general discussion on the interaction parameters in alloys may be found in [1966Sch].<br />

A method of calculation based on equivalent carbon concentration was developed by<br />

[1967Sch].<br />

Table 3 presents the Gibbs energy of dissolution of N 2 in liquid Fe-V alloys measured by<br />

[1975Pom]. The enthalpy of dissolution of N2, positive for pure Fe, decreases when the V<br />

content in the alloy increases, passes through zero for Fe-1V (mass%) then becomes more <strong>and</strong><br />

more negative. The nitrogen solubility in the Fe-1V (mass%) does not change with temperature,<br />

an observation already made by [1958Kas].<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Main experimental investigations are gathered in Table 4. Vanadium, which in the liquid state<br />

absorbs readily nitrogen, greatly increases its solubility in Fe base alloys without VN precipitation.<br />

By solidification, these alloys precipitate VN, leading to a structural hardening of the<br />

steel <strong>and</strong> an improvement of its tribological behavior, mechanical properties, especially under<br />

fatigue loading <strong>and</strong> of its corrosion resistance. The easy absorption of N by (Fe,V) liquid alloys<br />

without VN precipitation allows the preparation of HNS (High Nitrogen Steels, that are steels<br />

with more than 0.5 mass% N) by using high nitrogen pressures. For instance, a Fe-12 mass%<br />

Valloy at 1700˚C may absorb 0.503, 0.674, 0.847 <strong>and</strong> 1.400 mass% N under nitrogen pressures<br />

of 0.372, 0.743, 1.86 <strong>and</strong> 2.27 MPa, respectively [2003Siw].<br />

Vanadium <strong>and</strong> nitrogen cosegregation towards the surface has been observed on a Fe-3<br />

mass% V annealed at 570-740˚C under a N 2-H 2 atmosphere (1 to 10 Pa N 2) leading to a<br />

nitrogen content of 4 to 30 ppm inside the alloy [1995Ueb]. N segregation gives a twodimensional<br />

surface compound whose composition is VN 1.0 ±0.1. VN precipitates were also<br />

observed by nitriding Fe-V alloys up to 3.3 at.% in a salt bath at 570˚C [2003Gou]. VN<br />

precipitates as platelets, forming tweed structures, typical of a Guinier-Preston zone, due to a<br />

tetragonal distortion of the matrix.<br />

Miscellaneous<br />

The nitrogen diffusion was investigated in the solid [1966Koe, 1973Bel, 1977Bor] <strong>and</strong> liquid<br />

[1981Ers] alloys. In solid <strong>and</strong> liquid alloys, V has for effect to decrease the nitrogen diffusion<br />

coefficient <strong>and</strong> to increase the activation energy of the diffusion. In pure αFe, the N diffusion<br />

coefficient is given by:<br />

DN /cm 2 ·s –1 = 0.005 exp(–9260 / T), which corresponds to an activation energy of<br />

77 kJ·mol –1 . In a V added with 0.75 mass% V, the N diffusion coefficient is given by:<br />

DOI: 10.1007/978-3-540-70890-2_3 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


D N /cm 2 ·s –1 = 0.0066 exp(–13 300 / T), which corresponds to an activation energy of<br />

110.9 kJ·mol –1 . Using the positron annihilation technique, [1990Wan] observes, on dilute<br />

Fe-V alloys (0.29 mass% V) annealed at 500˚C under a 80H 2-20NH 3 atmosphere, the formation<br />

of VN clusters inside the Fe matrix. As V does not diffuse in Fe at so low temperature, it is<br />

clear that N greatly enhances the V diffusion in Fe.<br />

The nitrogen diffusion profile during the nitriding of a Fe-Valloy (0.5 <strong>and</strong> 1.0 mass% V) at<br />

550-580˚C has been modeled by [2000Gou, 2004Ked]. The increase of the V content affects the<br />

thickness of the nitrided layer, due to the formation of VN precipitates. After 70 h of diffusion<br />

at 570˚C, the nitrided layer is 72 μm thick for pure Fe <strong>and</strong> 215 μm thick for Fe added with<br />

1 mass% V. [2005Kam] presents a trapping model <strong>and</strong> points out that a realistic diffusion<br />

model must take into account both precipitation <strong>and</strong> trapping.<br />

The morphologies of the nitrided layers at 580˚C under H 2-NH 3 atmospheres were<br />

compared by [2005Hos] on two Fe-V alloys (2 <strong>and</strong> 4 mass% V). The difference observed<br />

was caused by a discontinuous coarsening reaction occurring on the Fe-4%V alloy, caused by<br />

an uptake of excess nitrogen in the nitrided zone. It was observed, on the Fe-2V (mass%)<br />

[2006Hos] that the hydrogen uptake was larger than that necessary to precipitate V as VN <strong>and</strong><br />

to saturate the ferrite matrix. Three types of nitrogen were recognized: nitrogen in the<br />

stoichiometric VN, nitrogen adsorbed at the (αFe)/VN interface <strong>and</strong> nitrogen dissolved<br />

interstitially in the ferrite matrix. The excess nitrogen uptake is partly due to the immobile<br />

nitrogen at the interface (αFe)/VN <strong>and</strong> partly due to the mobile nitrogen supersaturated in the<br />

(αFe) matrix. The supersaturation of the ferrite is due to the misfit stress field surrounding the<br />

nitride precipitates. The excess nitrogen dissolved at the interface (αFe)/VN was shown to<br />

decrease with increasing temperature [2007Hos].<br />

The presence of V in liquid Fe at 1600˚C was shown to increase the rate of dissolution of<br />

N 2 by comparison with pure Fe [1995Ono].<br />

. Table 1<br />

Investigations of the Fe-N-V <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1955Tur] Nitrogen solubility in α(Fe,V) alloys,<br />

sampling method<br />

[1958Fou] Nitrogen solubility in α <strong>and</strong> γ(Fe,V)<br />

alloys, Sievert’s method<br />

[1958Kas] Nitrogen solubility in liquid (Fe,V) alloys,<br />

Sievert’s method<br />

[1960Mae] Nitrogen solubility in liquid (Fe,V) alloys,<br />

Sampling method<br />

[1960Peh] Nitrogen solubility in liquid (Fe,V) alloys,<br />

Sievert’s method<br />

[1961Rao] Nitrogen solubility in liquid (Fe,V) alloys,<br />

Sievert’s method<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–N–V 3<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

500-600˚C, < 0.05 mass% V, H 2-NH 3<br />

atmospheres<br />

750-120˚C, < 0.5 mass% V, < 0.1 MPa of<br />

N 2 pressures<br />

1600˚C, < 10 mass% V, < 0.1 MPa of N2<br />

pressure<br />

1600-1750˚C, < 8 mass% V, 0.1 MPa of N 2<br />

pressure<br />

1606˚C, < 12 mass% V, < 0.1 MPa of N 2<br />

pressure<br />

1687-1760˚C, < 20 mass% V, < 0.1 MPa of<br />

N 2 pressure<br />

DOI: 10.1007/978-3-540-70890-2_3<br />

ß Springer 2009<br />

5


6 3<br />

Fe–N–V<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1962Kor1] Nitrogen solubility in liquid (Fe,V) alloys,<br />

Sievert’s method<br />

[1962Kor2] VN solubility in α (Fe,V) alloys, Sievert’s<br />

method<br />

[1963ElT] Nitrogen solubility in liquid (Fe,V) alloys,<br />

Sievert’s method<br />

[1963Kor] VN solubility in liquid (Fe,V) alloys,<br />

Sievert’s method<br />

[1965Eva] Nitrogen solubility in liquid (Fe,V) alloys,<br />

Sievert’s method<br />

[1968Uda] Nitrogen solubility in liquid (Fe,V) arc<strong>and</strong><br />

levitation melted alloys<br />

[1969Wad] Nitrogen solubility in liquid (Fe,V)<br />

levitation melted alloys<br />

[1973Gul] VN solubility in α <strong>and</strong> γFe, phase analysis<br />

by electron microscopy<br />

[1973Koy] VN solubility in αFe, internal friction,<br />

chemical analysis<br />

[1975Pom] Nitrogen solubility in liquid (Fe,V)<br />

melted by plasma<br />

[1978ElS] XRD, Metallography, Electron Probe<br />

Microanalysis (EPMA)<br />

[1981Wad] Nitrogen solubility in liquid (Fe,V)<br />

Sievert’s method<br />

[1987Mor] Solubility if VN in liquid (Fe,V), XRD,<br />

chemical analysis<br />

[2001Hut] Nitrogen solubility in liquid (Fe,V)<br />

Levitation melted alloys<br />

[2003Hut] Nitrogen solubility in liquid (Fe,V)<br />

levitation melted alloys<br />

[2003Siw] Nitrogen solubility in liquid (Fe,V)<br />

levitation melted alloys<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

1580˚C, < 12 mass% V, 0.1 MPa of N 2<br />

pressure<br />

900-1300˚C, < 1 mass% V, 0.1 MPa of N 2<br />

pressure<br />

1600-1750˚C, < 20 mass% V, < 0.1 MPa of<br />

N 2 pressure<br />

900-1300˚C, < 1 mass% V, 0.1 MPa of<br />

N 2 pressure<br />

1600-1750˚C, < 16 mass% V, 0.1 MPa of<br />

N 2 pressure<br />

2140-2240˚C, < 6 mass% V, < 0.1 MPa of<br />

N 2 pressure<br />

1800-2200˚C, < 50 mass% V, < 0.1 MPa of<br />

N 2 pressure<br />

700-1350˚C, < 0.18 mass% V,<br />

< 0.04 mass% V<br />

700-800˚C, < 0.12 mass% V,<br />

< 0.024 mass% N<br />

1790-2150˚C, < 11 mass% V, < 0.4 mass% N,<br />

< 0.1 MPa of N 2 pressure<br />

1100-1200˚C, Fe-N-V constitution diagram<br />

(~1 mPa N 2)<br />

1600-1800˚C, < 15 mass% V, < 0.1 MPa of<br />

N2 pressure<br />

1600-1700˚C, < 25 mass% V, < 0.35 mass%<br />

N, < 0.1 MPa of N 2 pressure<br />

1900˚C, < 12.2 mass% V, 0.1 to 2.1 MPa of<br />

N 2 pressure<br />

1800-2000˚C, < 45 mass% V, 1 kPa to 2.5<br />

MPa of N 2 pressure<br />

1700˚C, < 12 mass% V, < 0.4 MPa of N 2<br />

pressure, < 1.4 mass% N<br />

DOI: 10.1007/978-3-540-70890-2_3 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–N–V 3<br />

Lattice Parameters<br />

[pm] Comments/References<br />

α, (αFe,αV,δFe) cI2<br />

(αV) Im3m a = 302.40 at 25˚C [Mas2]<br />

< 1910 W dissolves 13 at.% N at 1959˚C<br />

[1997Du]<br />

(δFe)<br />

1538 - 1394<br />

a = 293.15 [Mas2]<br />

(αFe) a = 286.65 pure Fe at 20˚C [Mas2]<br />

< 912 dissolves up to 0.4 at.% N at 590˚C<br />

α(Fe0.5V0.5) a = 292.0 [1984Smi]<br />

(γFe) cF4 a = 364.67 at 915˚C [Mas2, V-C2]<br />

1394 - 912 Fm3m dissolves up to 10.3 at.% N at 650˚C<br />

Cu [1987Wri] <strong>and</strong> 1.4 at.% V at 1150˚C<br />

[1984Smi]<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0 triple point α-γ-ε at 8.4 GPa, 430˚C<br />

σ, VFe tP30 29.6 to 60.1 at.% V<br />

< 1252 P42/mnm a = 886.5 at 29.6 at.% V [1984Smi]<br />

σCrFe c = 460.5<br />

a = 895.0<br />

c = 462.0<br />

at 50 at.% V [1984Smi]<br />

a = 901.5<br />

c = 464.2<br />

at 60 at.% V [1984Smi]<br />

α”Fe16N2 tI* a = 572 ordered fcc structure, metastable<br />

I4/mmn c = 629<br />

[1987Wri]<br />

γ’, Fe4N cP5 a = 378.7 19.4 to 20.6 at.% N. Ordered fcc<br />

< 680 Pm3m<br />

Fe4N<br />

structure [1987Rag2]<br />

ε, Fe3N hP10 15.8 to 33.2 at.% N [1987Rag2]<br />

< 580 P6322 a = 469.96 ± 0.03 εFe3NatRT[1999Lei] Fe3N c = 438.04 ± 0.03<br />

a = 471.8 εFe3N1.10 [2001Lei]<br />

c = 438.8 Lattice parameters decrease<br />

slightly with decrease in nitrogen<br />

content [2001Lei]<br />

a = 479.1<br />

c = 441.9<br />

εFe3N1.39 [2001Lei]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_3<br />

ß Springer 2009<br />

7


8 3<br />

Fe–N–V<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice Parameters<br />

[pm] Comments/References<br />

ζFe2N oP12 a = 551.2 at 25˚C [1987Rag2]<br />

< 500 Pbcn b = 482.0<br />

Fe2N c = 441.6<br />

βV2N hP3 24.2 to 32.9 at.% N [1984Rag]<br />

< 2409 P63/mmc a = 283.68 to 284.08 [1984Rag]<br />

(under 0.1 MPa N2) Fe3N c=454.21 to 455.01<br />

δVN cF8 33 to 50 at.% N [Mas2]<br />

< 2119 Fm3m<br />

(under 0.1 MPa N2) NaCl<br />

< 3000<br />

a = 406.62 at 42 at.% N [1984Rag]<br />

(under 1 GPa N2) a = 413.98 at 50 at.% N [1984Rag]<br />

δ’V32N26 tP* - 43 to 46 at.% N [Mas2]<br />

< 520 P42/nmc -<br />

. Table 3<br />

Thermodynamic Data of Reaction or Transformation<br />

Reaction or Transformation<br />

Temperature<br />

[˚C]<br />

Quantity, per mol of<br />

atoms [J, mol, K] Comments<br />

½N2 Ð {N} (in Liquid Fe) 2000 ΔrH˚ = + 5600 [1975Pom]<br />

½N2 Ð {N} (in Liquid Fe + 1 mass% V) 1790-2130 ΔrG˚ = – 340 + 23.0 T [1975Pom]<br />

½N2 Ð {N} (in Liquid Fe + 2 mass% V) 1790-2110 ΔrG˚ = – 7660 + 25.7 T [1975Pom]<br />

½N2 Ð {N} (in Liquid Fe + 5.2 mass% V) 1810-2110 ΔrG˚ = – 28700 + 29.7 T [1975Pom]<br />

½N2 Ð {N} (in Liquid Fe + 7.4 mass% V) 1830-2150 ΔrG˚ = – 42100 + 32.5 T [1975Pom]<br />

½N2Ð {N} (in Liquid Fe + 11.1 mass% V) 1830-2150 ΔrG˚ = – 61100 + 37.3 T [1975Pom]<br />

VN Ð {V} + {N} (Ref: 1 mass% in liquid Fe) 1600-1700 ΔrG˚ = 167000 – 83.7 T [1987Mor]<br />

DOI: 10.1007/978-3-540-70890-2_3 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 4<br />

Investigations of the Fe-N-V Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1966Koe] Damping capacity, diffusion coefficient < 800˚C, < 4 mass% V, < 0.4 mass% N<br />

[1973Bel] X-Ray <strong>and</strong> electron diffraction, MEB,<br />

hardness measurements<br />

[1977Bor] XRD, micrography, thickness <strong>and</strong><br />

hardness measurements<br />

[1977Kra] XRD, electron microscopy, crystal<br />

parameters<br />

[1981Ers] Diffusion coefficient of N in liquid alloys,<br />

volumetric method<br />

[1990Wan,<br />

1993Wan]<br />

Positron annihilation spectroscopy,<br />

observation of VN clusters<br />

400-700˚C, < 9 mass% V, diffusion layer<br />

formation<br />

500-900˚C, < 15.6 mass% V, H 2-NH 3<br />

atmospheres, layer growth kinetics<br />

< 800˚C, < 2 at.% V, < 3 at.% N, H 2-NH 3<br />

atmospheres, local atomic arrangements<br />

1600˚C, < 8 mass% V, 0.1 MPa of N 2<br />

pressure<br />

500˚C, Fe + 0.29 mass% V, 80H 2-20NH 3<br />

atmosphere<br />

[1995Ono] Isotopic exchange reaction 1600-1750˚C, 0.1 MPa of N 2 pressure,<br />

kinetics of dissolution<br />

[1995Ueb] Auger Electron Spectroscopy (AES), low<br />

energy electron diffraction<br />

[2003Gou] XRD, TEM, Electron Microprobe<br />

Microanalysis (EPMA)<br />

[2005Hos] XRD, SEM, EPMA, hardness<br />

measurements<br />

[2006Hos] XRD, SEM, EPMA, hardness<br />

measurements<br />

[2007Hos] XRD, SEM, EPMA, hardness<br />

measurements<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–N–V 3<br />

570-740˚C, Fe-3 mass% V-N (4 to 30 ppm<br />

N), 1 to 10 Pa of N 2 pressure,<br />

Fe-V (< 3.3 at.% V) nitridized at 570˚C in<br />

a nitriding fused salt bath. VN formation.<br />

580˚C, 2 <strong>and</strong> 4 mass% V, H 2-NH 3<br />

atmospheres, morphology<br />

580˚C, 2 mass% V, H 2-NH 3 atmospheres,<br />

excess N uptake<br />

520-600˚C, 2 mass% V, 9H2-91NH3<br />

atmospheres, excess N uptake<br />

DOI: 10.1007/978-3-540-70890-2_3<br />

ß Springer 2009<br />

9


10 3<br />

Fe–N–V<br />

. Fig. 1<br />

Fe-N-V. The Fe rich corner at 1200 <strong>and</strong> 1600˚C under 0.1 MPa of N 2 pressure<br />

DOI: 10.1007/978-3-540-70890-2_3 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-N-V. Isothermal section at 1200˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–N–V 3<br />

DOI: 10.1007/978-3-540-70890-2_3<br />

ß Springer 2009<br />

11


12 3<br />

Fe–N–V<br />

. Fig. 3<br />

Fe-N-V. Isothermal section at 1600˚C<br />

DOI: 10.1007/978-3-540-70890-2_3 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-N-V. Partial vertical section at 3 mass% V<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–N–V 3<br />

DOI: 10.1007/978-3-540-70890-2_3<br />

ß Springer 2009<br />

13


14 3<br />

Fe–N–V<br />

. Fig. 5<br />

Fe-N-V. Calculated Fe-VN partial vertical section<br />

DOI: 10.1007/978-3-540-70890-2_3 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–N–V 3<br />

[1955Tur] Turkdogan, E.T., Ignatowicz, S., Pearson, J., “The Effect of <strong>Alloy</strong>ing Elements on the Solubility of<br />

Nitrogen in Iron. II. The Solubility of Nitrogen in α-Iron Containing up to 0.051% Vanadium”, J. Iron<br />

Steel Inst., 181, 227–231 (1955) (Experimental, <strong>Phase</strong> Relations, 22)<br />

[1958Fou] Fountain, R.W., Chipman, J., “Solubility <strong>and</strong> Precipitation of Vanadium Nitride in α- <strong>and</strong> γ-Iron”,<br />

Trans. Met. Soc. AIME, 212, 737–748 (1958) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 29)<br />

[1958Kas] Kashyap, V.C., Parlee, N., “Solubility of Nitrogen in Liquid Iron <strong>and</strong> Iron <strong>Alloy</strong>s”, Trans. Met. Soc.<br />

AIME, 212, 86–91 (1958) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 19)<br />

[1960Mae] Maekawa, S., Nakagawa, Y., “Solubility of Nitrogen in Liquid Iron <strong>and</strong> Iron <strong>Alloy</strong>s. II. Effect of Nickel,<br />

Cobalt, Molybdenum, Chromium <strong>and</strong> Vanadium on the Solubility in Liquid Iron” (in Japanese), Tetsu<br />

to Hagane, 46(9), 972–976 (1960) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 8)<br />

[1960Peh] Pehlke, R.D., Elliott, J.F., “Solubility of Nitrogen in Liquid Iron <strong>Alloy</strong>s. I. Thermodynamics”, Trans.<br />

Metall. Soc. AIME, 218, 1088–1101 (1960) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 32)<br />

[1961Rao] Rao, M.M., Parlee, N., “The Solubility of N in Liquid Fe-V <strong>and</strong> Fe-Ti <strong>Alloy</strong>s <strong>and</strong> the Equilibrium in<br />

Reaction xTi + N = δTi xN” (in French), Mem. Sci. Rev. Met., 58(1), 52–60 (1961) (Experimental, <strong>Phase</strong><br />

Relations, Thermodyn., 6)<br />

[1962Kor1] Korolev, L.G., Morozov, A.N., “Solubility of N in Liquid Fe-V <strong>Alloy</strong>s” (in Russian), Izv. Vyss. Uchebn.<br />

Zaved., Chern. Metall., 5(7), 27–30 (1962) (Experimental, <strong>Phase</strong> Relations, 5)<br />

[1962Kor2] Korolev, L.G., Morozov, A.N., “Equilibrium of N with V in γFe” (in Russian), Izv. Vyss. Uchebn. Zaved.,<br />

Chern. Metall., 5(9), 39–42 (1962) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 4)<br />

[1963ElT] El Tayeb, N.M., Parlee, N.A.D., “The Solubility of Nitrogen <strong>and</strong> the Precipitation of Vanadium Nitride<br />

in Liquid Iron-Vanadium <strong>Alloy</strong>s”, Trans. Met. Soc. AIME, 227, 929–934 (1963) (Experimental, <strong>Phase</strong><br />

Relations, Thermodyn., 11)<br />

[1963Kor] Korolev, L.G., Morozov, A.N., “Formation of V Nitride in Liquid Fe” (in Russian), Izv. Vyss. Uchebn.<br />

Zaved., Chern. Metall., 6(4), 45–49 (1963) (Experimental, <strong>Phase</strong> Relations, Thermodyn, 3)<br />

[1965Eva] Evans, D.B., Pehlke, R.D., “Equilibria of Nitrogen with Refractory Metals Titanium, Zirconium,<br />

Columbium, Vanadium, <strong>and</strong> Tantalum in Liquid Iron”, Trans. Met. Soc. AIME, 233, 1620–1624 (1965)<br />

(Experimental, <strong>Phase</strong> Relations, Thermodyn., 14)<br />

[1966Koe] K̅ster, W., Horn, W., “Damping Investigation on Nitrided Iron-Molybdenum <strong>and</strong> Iron-Vanadium<br />

<strong>Alloy</strong>s” (in German), Arch. Eisenhuettenwes., 37, 245–252 (1966) (Experimental, Morphology, Mechan.<br />

Prop., Transport Phenomena, 22)<br />

[1966Sch] Schenck, H., Steinmetz, E., “Activity, St<strong>and</strong>art Condition <strong>and</strong> Coeffitient of Activity” (in German),<br />

Stahleisen-Sonderberichte, Düsseldorf: Verlag Stahleisen, (7), 1–36 (1966) (Thermodyn., Review, 161)<br />

[1967Sch] Schεrmann, E., Kunze, H.D., “Equivalent Interaction Parameters fort he N <strong>and</strong> S Solubilities, Activities<br />

<strong>and</strong> Activity Coefficients in Three- <strong>and</strong> Multicomponent <strong>Alloy</strong>s at 1600˚C” (in German), Giessereiforschung,<br />

19, 101–108 (1967) (Theory, Calculation, Thermodyn., 10)<br />

[1968Uda] Uda, M., Wada, T., “Solubility of Nitrogen in Arc-Melted <strong>and</strong> Levitation-Melted Iron <strong>and</strong> Iron <strong>Alloy</strong>s”,<br />

Trans. Nat. Res. Inst. Met. (Jpn.), 10(2), 79–91 (1968) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 40)<br />

[1969Wad] Wada, H., “Solubility of Nitrogen in Molten Fe-V <strong>Alloy</strong>”, Trans. Iron Steel Inst. Jpn., 9, 399–403 (1969),<br />

translated from J. Jpn Inst. Met., 33, 720 (1969) (Experimental, Morphology, <strong>Phase</strong> Relations, Thermodyn.,<br />

8)<br />

[1973Bel] Belotskiy, A.V., Marchevskaya, E.I., Permyakov, V.G., “Nitride-<strong>Phase</strong> Formation in Fe-V-N System”,<br />

Russ. Metall., (3), 103–105 (1973) (Experimental, <strong>Phase</strong> Relations, Transport Phenomena, 8)<br />

[1973Gul] Gulyaev, A.P., Anashenko, V.N., Karchevskaya, N.I., Larina, O.D., Matrosov, Yu.I., “Solubility of<br />

Vanadium <strong>and</strong> Niobium Nitrides in Iron”, Met. Sci. Heat Treat., 15(8), 643–645 (1973), translated from<br />

Metalloved. Term. Obrab. Met., (8), 6-8 (1973) (Experimental, Kinetics, Morphology, <strong>Phase</strong> Relations, 4)<br />

[1973Koy] Koyama, S., Ishii, T., Narita, K., “Solubility of Vanadium Carbide <strong>and</strong> Nitride in Ferritic Fe” (in<br />

Japanese), J. Jpn. Inst. Met., 37(2), 191–196 (1973) (Experimental, <strong>Phase</strong> Relations, 23)<br />

[1975Pom] Pomarin, Yu.M., Grigorenko, G.M., Lakomskiy, V.I., “Solubility of Nitrogen in Liquid Iron <strong>Alloy</strong>s with<br />

Vanadium or Niobium”, Russ. Metall., (5), 61–65 (1975), translated from Izv. Akad. Nauk SSSR, Met.,<br />

(5), 74-77 (1975) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 15)<br />

[1977Bor] Bor, S., Atasoy, Ö.E., “The Nitriding of Fe-V <strong>Alloy</strong>s”, Metall. Trans. A, 8A(6), 975–979 (1977) (Experimental,<br />

Morphology, Kinetics, Surface Phenomena, 14)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_3<br />

ß Springer 2009<br />

15


16 3<br />

Fe–N–V<br />

[1977Kra] Krawitz, A., “X-Ray Studies of Fe-Mo <strong>and</strong> Fe-V <strong>Alloy</strong>s Nitrided by Constant Activity Aging”, Scr.<br />

Metall., 11(2), 117–122 (1977) (Crys. Structure, Experimental, 17)<br />

[1978ElS] El-Shahat, M.F., Holleck, H., “The Constitution of the <strong>Systems</strong> V-(Fe,Co,Ni,)-N” (in German),<br />

Monatsh. Chem., 109(1), 193–207 (1978) (Crys. Structure, Experimental, Morphology, <strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, 14)<br />

[1981Ers] Ershov, G.S., Kasatkin, A.A., “Influence of <strong>Alloy</strong>ing Elements on the Diffusion of Nitrogen in Liquid<br />

Iron”, Russ. Metall., (3), 24–27 (1981) (Experimental, Transport Phenomena, 13)<br />

[1981Wad] Wada, H., Pehlke, R.D., “Nitrogen Solubility in Liquid Fe-V <strong>and</strong> Fe-Cr-Ni-V <strong>Alloy</strong>s”, Metall. Trans. B,<br />

12B, 333–339 (1981) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 10)<br />

[1983Rag] Raghavan, V., “The Fe-N-V (Iron-Nitrogen-Vanadium) System”, Trans. Ind. Inst. Met., 36(4/5), xviixxiii<br />

(1983) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 36)<br />

[1984Rag] Raghavan, V., “The Fe-N-V (Iron-Nitrogen-Vanadium) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 5(2),<br />

194–198 (1984) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 36)<br />

[1984Smi] Smith, J.P., “The Fe-V (Iron-Vanadium) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 5(2), 184–194 (1984)<br />

(Crys. Structure, <strong>Phase</strong> Diagram, Review, Thermodyn., 99)<br />

[1987Mor] Morita, Z., Tanaka, T., Yanai, T., “Equilibria of Nitride Forming Reactions in Liquid Iron <strong>Alloy</strong>s”,<br />

Metall. Trans. B, 18B, 195–202 (1987) (Crys. Structure, Experimental, <strong>Phase</strong> Relations, Thermodyn., 29)<br />

[1987Rag1] Raghavan, V., “The Fe-N-V (Iron-Nitrogen-Vanadium) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Ind. Inst. Techn., Delhi, 1, 211–216 (1987) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Review, 32)<br />

[1987Rag2] Raghavan, V., “The Fe-N (Iron-Nitrogen) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s”, Ind. Inst.<br />

Techn., Delhi, 1, 143–144 (1987) (Crys. Structure, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 7)<br />

[1987Wri] Wriedt, H.A., Gokcen, N.A., Nafziger, R.H., “The Fe-N (Iron-Nitrogen) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong><br />

Diagams, 8(4), 355–377 (1987) (Crys. Structure, <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Phase</strong> Relations, Thermodyn.,<br />

Review, *, #, 126)<br />

[1989Car] Carlson, O.N., Smith, J.F., Nafziger, R.H., “The V-N (Vanadium-Nitrogen) System” in “<strong>Phase</strong> Diagams<br />

of Binary Vanadium <strong>Alloy</strong>s”, ASM Int., Materials Park, OH, 148–158 (1989) (<strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Crys. Strucrure, Thermodyn., Review, 59)<br />

[1990Wan] Wang, X.-G., Zhang, H., “A Vacancy Complex in the Dilute Fe-V-N <strong>Alloy</strong> Identified by Positron<br />

Annihilation Spectroscopy”, Phys. Status Solidi A, 119(1), K15-K19 (1990) (Crys. Structure, Experimental,<br />

Transport Phenomena, 7)<br />

[1991Fri] Frisk, K., “A Thermodynamic Evaluation of the Fe-Ni-N System”, Z. Metallkd., 82, 59–66 (1991) (<strong>Phase</strong><br />

Diagram, Assessment, Thermodyn., 36)<br />

[1991Kum] Kumar, K.C.H., Raghavan, V., “A Thermodynamic Reassessment of the Fe-V System”, Calphad, 15(3),<br />

307–314 (1991) (<strong>Phase</strong> Diagram, Thermodyn., Assessment, 24)<br />

[1991Oht1] Ohtani, H., Hillert, M., “A Thermodynamic Assessment of the V-N System”, Calphad, 15(1), 11–24<br />

(1991) (<strong>Phase</strong> Diagram, Assessment, Thermodyn., 27)<br />

[1991Oht2] Ohtani, H., Hillert, M., “A Thermodynamic Assesment of the Fe-N-V System”, Calphad, 15(1), 25–39<br />

(1991) (Calculation, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 24)<br />

[1993Rag] Raghavan, V., “Fe-N-V (Iron-Nitrogen-Vanadium)”, J. <strong>Phase</strong> Equilib., 14(5), 631–632 (1993) (<strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Review, 7)<br />

[1993Wan] Wang, X.-G., Zhang, H., “Precipitation in Dilute Fe-V-N <strong>Alloy</strong>”, Acta Metall. Sin., 29(5), A199-A202<br />

(1993) (Crys. Structure, Experimental, Transport Phenomena, 12)<br />

[1994Fer] Fern<strong>and</strong>ez-Guillermet, A., Du, H., “Thermodynamic Analysis of the Fe-N System Using the<br />

Compound-Energy Model with Prediction of the Vibrational Entropy”, Z. Metallkd., 85(3), 154–163<br />

(1994) (<strong>Phase</strong> <strong>Diagrams</strong>, Theory, Assessment, 75)<br />

[1995Ono] Ono, H., Morita, K., Sano, N., “Effect of Ti, Zr, V <strong>and</strong> Cr on the Rate of Nitrogen Dissolution<br />

into Molten Iron”, Met. Mat. Trans. B, 26B(5), 991–995 (1995) (Experimental, Kinetics, Surface<br />

Phenomena, 11)<br />

[1995Ueb] Uebing, C., “Cosegregation-Induced <strong>Phase</strong> Transition on Fe-3%V-N (110): The Formation of a VN<br />

Surface Compound”, Surf. Sci., 341(1-2), L1125–L1130 (1995) (Experimental, Interface Phenomena,<br />

<strong>Phase</strong> Relations, 20)<br />

[1997Du] Du, Y., Schmid-Fetzer, R., Ohtani, H., “Thermodynamic Assessment of the V-N System”, Z. Metallkd.,<br />

88(7), 545–556 (1997) (Assessment, Experimental, <strong>Phase</strong> Relations, Review, Thermodyn., 72)<br />

DOI: 10.1007/978-3-540-70890-2_3 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–N–V 3<br />

[1999Lei] Leineweber, A., Jacobs, H., Hüning, F., Lueken, H., Schilder, H., Kockelmann, W., “ε-Fe 3N:<br />

Magnetic Structure, Magnetization <strong>and</strong> Temperature Dependent Disorder of Nitrogen”, J. <strong>Alloy</strong>s<br />

Compd., 288(1-2), 79–87 (1999) (Experimental, Crys. Structure, 40)<br />

[2000Gou] Goune, M., Belmonte, T., Fiorani, J.M., Michel, H., “Modelling of Diffusion-Precipitation in Nitrided<br />

<strong>Alloy</strong>ed Iron”, Thin Solid Films, 377, 543–549 (2003) (Calculation, Interface Phenomena, <strong>Phase</strong> Relations,<br />

27)<br />

[2001Hut] Hutny, A., Siwka, J., “Investigation of Nitrogen Solubility in Liquid Fe-V <strong>Alloy</strong> with the Use of<br />

Levitation Technique”, Arch. Metall., 46(2), 197–206 (2001) (Experimental, <strong>Phase</strong> Relations, Thermodyn.,<br />

12)<br />

[2001Lei] Leineweber, A., Jacobs, H., Hünning, F., Luecken, H., Kockelmann, W., “Nitrogen Ordering <strong>and</strong><br />

Ferromagnetic Properties of ε-Fe3N1+x (0.10 < x < 0.39) <strong>and</strong> ε-Fe3(N0.80C0.20)1.38”, J. <strong>Alloy</strong>s Compd., 316,<br />

21–38 (2001) (Experimental, Crys. Structure, 47)<br />

[2003Gou] Goune, M., Belmonte, T., Redjaimia, A., Weisbecker, P., Fiorani, J.M., Mochel, H., “Thermodynamic<br />

<strong>and</strong> Structure Studies on Nitrided Fe-1.62%Mn <strong>and</strong> Fe-0.56%V <strong>Alloy</strong>s”, Mater. Sci. Eng. A, 351, 23–30<br />

(2003) (Crys. Structure, Experimental, Interface Phenomena, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 22)<br />

[2003Hut] Hutny, A., Siwka, J., “The Dependence of Activity Coefficient on Intensive Thermodynamic Parameters<br />

in a Liquid Fe-N-V <strong>Alloy</strong>”, Mater. Sci. Forum, 426-432, 963–968 (2003) (Experimental, <strong>Phase</strong> Relations,<br />

Thermodyn., 10)<br />

[2003Siw] Siwka, J., Kaputkina, L.M., Shaidurova, E.S., Hutny, A., “The Crystallization, Structure <strong>and</strong> Work<br />

Hardening of Casting Fe-N-V <strong>Alloy</strong>s”, Mater. Sci. Forum, 426-432, 4405–4410 (2003) (Experimental,<br />

Mechan. Prop., <strong>Phase</strong> Relations, 15)<br />

[2004Ked] Keddam, M., Djeghlal, M.E., Barrallier, L., Hadjadj, R., “A Computer Simulation of Nitrogen Profiles in<br />

Fe-V-N <strong>Ternary</strong> System”, J. <strong>Alloy</strong>s Compd., 378(1-2), 163–166 (2004) (Calculation, Transport Phenomena,<br />

Kinetics, 10)<br />

[2005Hos] Hosmani, S.S., Schacherl, R.E., Mittemeijer, E.J., “Nitriding Behavior of Fe-4 wt% V <strong>and</strong> Fe-2 wt% V<br />

<strong>Alloy</strong>s”, Acta Mater., 53(7), 2069–2079 (2005) (Experimental, Interface Phenomena, Mechan. Prop.,<br />

Morphology, 31)<br />

[2005Kam] Kamminga, J.D., Janssen, G.C.A.M., “Calculation of Nitrogen Depth Profiles in Nitrided Fe-Mn <strong>and</strong><br />

Fe-V”, Surf. Coat. Technol., 200(1-4), 909–912 (2005) (Calculation, Transport Phenomena, Kinetics, 10)<br />

[2005Ust1] Ustinovshchikov, Yu.I., Pushrarev, B.E., Sapegina, I.V., “Mechanism of Sigma-<strong>Phase</strong> Formation in the<br />

Fe-V System”, Inorg. Mater. (Engl. Trans.), 41(8), 822–826 (2005), translated from Neorg. Mater., 41(8),<br />

938-943 (2005) (Crystal Structure, Experimental, Mechan. Prop., Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, 12)<br />

[2005Ust2] Ustinovshikov, Y., Pushkarev, B., Sapegina, I., “<strong>Phase</strong> Transformations in <strong>Alloy</strong>s of the Fe-V System”,<br />

J. <strong>Alloy</strong>s Compd., 398(1-2), 133–138 (2005) (Crystal Structure, Experimental, Mechan. Prop., <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, 9)<br />

[2006Hos] Hosmani, S.S., Schacherl, R.E., Mittemeijer, E.J., “Nitrogen Uptake by an Fe-V <strong>Alloy</strong>: Quantitative<br />

Analysis of Excess Nitrogen”, Acta Mater., 54(10), 2783–2792 (2006) (Experimental, Interface Phenomena,<br />

Kinetics, Morphology, 38)<br />

[2006San] Dos Santos, A.V., Krause, J.C., Kuhnen, C.A., “Electronic Structure Calculations <strong>and</strong> Ground State<br />

Properties of V 4N, FeV 3N <strong>and</strong> VFe 3N Nitrides <strong>and</strong> Ordered FeV 3 <strong>and</strong> VFe 3 Compounds”, Physica B, 382<br />

(1-2), 290–299 (2006) (Crys. Structure, Electronic Structure, Calculation, 43)<br />

[2007Hos] Hosmani, S.S., Schacherl, R.E., Mittemeijer, E.J., “Kinetics of Nitriding Fe-2 wt% V <strong>Alloy</strong>: Mobile <strong>and</strong><br />

Immobile Excess Nitrogen”, Metall. Mater. Trans. A, 38A(1), 7–16 (2007) (Experimental, Kinetics, 28)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_3<br />

ß Springer 2009<br />

17


Iron – Sodium – Oxygen<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Kostyantyn Korniyenko, Hans Leo Lukas<br />

Introduction<br />

Knowledge of the phase equilibria in the iron-sodium-oxygen system <strong>and</strong> free energies of<br />

formation of sodium ferrites at elevated temperatures is necessary, in the first instance, with a<br />

view to analyze the corrosion behavior of sodium in nuclear reactors <strong>and</strong> to address the problem<br />

of scabbing <strong>and</strong> scaffolding in blast furnaces that is due to high alkali content. Information about<br />

phase relations in the Fe-Na-O system is presented in literature by the Fe 3O 4-NaFeO 2 quasibinary<br />

section [1984Dai2], liquidus surface of the partial FeO-Fe 2O 3-NaFeO 2 system [1984Dai2],<br />

isothermal sections <strong>and</strong> phase relations at different temperatures <strong>and</strong> composition ranges<br />

[1975Cla, 1976Bal2, 1977Kni, 1981Lin, 1984Dai2, 1986Igu, 1993Sri, 1999Kal, 2003Hua2,<br />

2003Lyk] <strong>and</strong> temperature-composition sections [1940Kni, 1960The, 1962The, 1984Dai1,<br />

1984Dai2]. Crystal structure data obtained by powder- or single crystal X-ray diffraction are<br />

published by [1959Col, 1960The, 1962Roo, 1962The, 1963Sch, 1967Rom, 1970Gro, 1971Tsc,<br />

1974Bar, 1974Rie, 1975Cla, 1975Kol, 1976Bal1, 1976Bal2, 1977Bra, 1977Kni, 1978Bra1,<br />

1978Bra2, 1978Bra3, 1980Kes, 1981Kes, 1981Oka, 1985Fru, 1986Igu, 1997Ded, 2002Ama,<br />

2003Sob1, 2003Sob2]. Thermodynamic aspects of the Fe-Na-O system are reflected in<br />

[1970Gro, 1977Kni, 1977Sha, 1981Lin, 1984Ban, 1984Dai1, 1984Dai2, 1985Ban1, 1985Ban2,<br />

1987Yam, 1988Bha, 1996Zha, 1999Kal, 2003Hua1, 2003Hua2, 2003Lyk]. The applied experimental<br />

techniques as well as the studied temperature <strong>and</strong> composition ranges are listed in<br />

Table 1. Reviews of literature data present information concerning phase equilibria <strong>and</strong> crystal<br />

structures [1989Rag], thermodynamics [1981Lin, 1999Kal] as well as systematics of crystal<br />

structures of the Fe-Na-O phases [1978Zve, 1982Bau, 1998Wu, 2000Mat, 2003Mue].<br />

In future further studies are desirable on the liquidus <strong>and</strong> solidus surfaces in the area FeO-<br />

Na 2O-NaO 3-Fe 2O 3 as well as on invariant equilibria. More details of isothermal sections at<br />

different temperatures would be useful. New informations may help to find new practical<br />

applications of sodium ferrites.<br />

Binary <strong>Systems</strong><br />

The Fe-Na, Fe-O <strong>and</strong> Na-O binary systems are accepted as compiled in [Mas2]. The assessment<br />

of the Na-O system is published with more details by [1987Wri].<br />

Solid <strong>Phase</strong>s<br />

Fe–Na–O 4<br />

<strong>Crystallographic</strong> data of all known unary, binary <strong>and</strong> ternary solid phases are compiled in<br />

Table 2. Compositions of the all reported ternary phases, except the τ 9 <strong>and</strong> τ 12 phases, lie along<br />

the Na 2O-FeO or Na 2O-Fe 2O 3 sections. The composition of the τ 6 phase, established by<br />

[1959Col, 1962The, 1999Kal] as“Na 10Fe 16O 29”, was later refined by [1962Roo, 1967Rom,<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

1


2 4<br />

Fe–Na–O<br />

1987Yam, 1996Zha, 1999Kal]tobe“Na 3Fe 5O 9”. For the τ 2 phase the st<strong>and</strong>ard Gibbs energy of<br />

formation was determined by [1984Dai1] using emf, but no crystal structure data are known.<br />

For many of the ternary phases the temperature range of stability is not known, except the<br />

temperature of preparation. The crystal structures of the phases τ 11, τ 12 <strong>and</strong> τ 13 also are<br />

unknown <strong>and</strong> need further experimental clarification.<br />

Quasibinary <strong>Systems</strong><br />

The section Fe 2O 3-Na 2O is quasibinary, at least in solid state at lower temperatures. In the<br />

range Fe 2O 3-NaFeO 2 [1940Kni, 1984Dai1] assume a simple eutectic near 1150˚C <strong>and</strong> Na/(Na<br />

+Fe) = 0.36, whereas [1960The, 1962The] found in solid state the τ 6 phase, stable between<br />

1100 <strong>and</strong> 755˚C. Additionally they found a metastable solid solution of Na 2OinγFe 2O 3,<br />

decomposing on heating above 650˚C. The pure Fe2O3 before melting decomposes into Fe3O4<br />

<strong>and</strong> O2 gas. Thus the two-phase field L + Fe2O3 must end before it reaches the Fe2O3 side of the<br />

section. The liquidus temperature of NaFeO 2 is assumed as 1330˚C [1940Kni, 1984Dai1].<br />

Between NaFeO 2 (τ 1´´´-τ 1´) <strong>and</strong> Na 2O there are at least five more phases in this quasibinary<br />

section, well established by the determination of their crystal structures: Na 4Fe 2O 5 (τ 4),<br />

Na 14Fe 6O 16 (τ 8), Na 3FeO 3 (τ 10), Na 8Fe 2O 7 (τ 5) <strong>and</strong> Na 5FeO 4 (τ 7). On the temperature ranges<br />

of stability <strong>and</strong> on equilibria with melt no experimental data are published for these phases. A<br />

further phase, τ 13, between τ 6 <strong>and</strong> τ 1´, postulated by [1981Lin], was denied by [1962The,<br />

1999Kal]. In Fig. 1 the Fe rich part of this section is constructed. The equilibria between gas,<br />

liquid, Fe2O3 <strong>and</strong> Fe3O4 must be taken as tentative only. The Fe rich liquid, due to Fe +2 ions<br />

does not reach the section <strong>and</strong> Na rich liquid may dissolve more O than corresponding to the<br />

section, due to peroxide or ozonide ions known in the binary Na-O liquid. On the transition<br />

between both cases data are lacking.<br />

The section FeO-Na 2O is quasibinary in the range Na 2FeO 2-Na 2O[1984Dai1, 1984Dai2].<br />

Between Na 2FeO 2 <strong>and</strong> FeO it is clearly a not quasibinary isopleth, Fig. 2. At lower temperatures<br />

also the range Na 2OtoNa 4FeO 3 looses the quasibinary character. [2003Hua2] calculated<br />

an invariant reaction: Na(liq) + Na4FeO3 Ð Na2O+(αFe) at 421˚C. This temperature may be<br />

a reasonable estimate. [1993Sri] found this reaction experimentally <strong>and</strong> located it somewhere<br />

between 353 <strong>and</strong> 487˚C.<br />

The Fe 3O 4-NaFeO 2 section is approximately quasibinary. The Fe 3O 4 phase has some<br />

homogeneity range towards a composition NaFe 5O 8, corresponding to the spinel structure<br />

of γFe 3O 4, in which the divalent Fe +2 ions may be replaced by 0.5(Fe +3 +Na +1 ). Due to the<br />

difference between this direction <strong>and</strong> the section plane the tie lines of the two-phase fields<br />

containing γFe 3O 4 are slightly outside the section plane. Contrary to a strictly quasibinary<br />

section all these fields contain a trace of FeO <strong>and</strong> thus are three-phase fields. Figure 3 shows<br />

this approximately quasibinary section as published by [1984Dai2] with correction of a typing<br />

error. The horizontal lines at ca. 1150 <strong>and</strong> 980˚C correspond to the invariant four-phase<br />

equilibria L Ð γFe 3O 4 + αFeO + τ 1´´´ <strong>and</strong> τ 1´´´ Ð τ 1´´, γFe 3O 4, αFeO, respectively.<br />

Invariant Equilibria<br />

[1984Dai2] constructed the liquidus surface of the FeO-Fe2O3-NaFeO2 partial system. These<br />

authors mention four invariant four-phase reactions. In Fig. 4 the corresponding reaction<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


scheme is tentatively constructed. It covers the area Fe-Na 2FeO 2-NaFeO 2-Fe 2O 3. The τ 6 phase<br />

is tentatively included, assuming no participation in an invariant equilibrium. The three-phase<br />

equilibria of the quasibinary part Na 2O-Na 2FeO 2 can be approximated as degenerate fourphase<br />

equilibria with Fe in equilibrium. By this consideration the congruent melting point of<br />

Na 2FeO 2 in the quasibinary part of the Na 2O-FeO section is also a degenerate maximum of the<br />

three-phase equilibrium L + Fe + Na 2FeO 2. Thus only the formation of the three-phase<br />

equilibrium L + τ1 + τ2 remains unsolved in the reaction scheme. The compositions of liquid<br />

in the invariant equilibria are too unprecise to justify a tabulation. In Fig. 4 the polymorphic<br />

transformations of (Fe) <strong>and</strong> NaFeO 2 (τ 1) are neglected. As at both compositions all phases are<br />

nearly stoichiometric, all these transformations are degenerate with the equations (δFe) Ð<br />

(γFe), (γFe) Ð (αFe), τ 1´´´ Ð τ 1´´ or τ 1´´ Ð τ 1´. All other phases participating remain in<br />

equilibrium at higher <strong>and</strong> lower temperatures without taking part at the reactions. <strong>Phase</strong> τ 12<br />

was not mentioned by [1984Dai2] <strong>and</strong> is not implemented in Fig. 4.<br />

Outside the range of Fig. 4 the existence of the invariant four-phase equilibrium<br />

L(Na) + Na4FeO3 Ð (Fe) +Na2O is well established, its temperature is inside the interval<br />

487-353˚C [1993Sri], but could not be located more precisely.<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

The liquidus surface projection of the partial FeO-Fe 2O 3-NaFeO 2 system is shown in Fig. 5,<br />

based on [1984Dai2]. Isotherms at the temperatures of 1300, 1400 <strong>and</strong> 1500˚C are plotted. No<br />

data concerning solidus or solvus surfaces were found in literature.<br />

Isothermal Sections<br />

Fe–Na–O 4<br />

The isothermal section of the partial Fe-Fe 2O 3-NaFeO 2 system at 1000˚C is shown in Fig. 6,as<br />

constructed by [1986Igu], based on experimental studies of the FeO-Na 2O solid solution in<br />

equilibrium with Ar-H 2-H 2O mixtures. The shapes of the single phase fields of the FeO-Na 2O<br />

<strong>and</strong> Fe3O4-Na2O solid solutions agree well with the findings of [1975Cla, 1976Bal2, 2003Lyk],<br />

except, that [1976Bal2, 2003Lyk] postulate the existence of τ12, which is not mentioned by<br />

[1975Cla, 1984Dai2, 1986Igu]. [1986Igu] also ignored the τ 6 phase, which is reported to be<br />

stable at 1000˚C [1962The, 1999Kal].<br />

Participation of the τ 6 phase in equilibria at 1000˚C was also reported in the works of<br />

[1960The] <strong>and</strong> [1962The, 1999Kal] devoted to constitution of the NaFeO 2-Fe 2O 3 temperature-composition<br />

section. The partial isothermal section at 1000˚C in the FeO-Fe 3O 4-<br />

NaFe 5O 8-NaFeO 2 range was also experimentally constructed by [2003Lyk]. These authors<br />

report the τ13 phase, but do not show the τ6 phase. In general, their data conform to the data of<br />

[1986Igu] satisfactorily. In their studies of corrosion of steel by liquid Na [1977Kni] found at<br />

650˚C the τ 3 phase in equilibrium with (αFe) <strong>and</strong> liquid sodium, while at 400˚C the tie line Naτ<br />

3 is replaced by an equilibrium between Na 2O <strong>and</strong> (αFe). In the calculations of [2003Hua2]<br />

the corresponding four-phase reaction was located at 421˚C. [1993Sri] experimentally confirmed<br />

this four-phase reaction to happen between 353 <strong>and</strong> 487˚C. [1981Lin] used the<br />

SOLGAMIX-PV computer program to calculate phase equilibria in the temperature range<br />

from 447 to 607˚C in the partial Na-Na 2O-Fe 2O 3-Fe system. They reported the ternary phases<br />

τ1, τ2, τ3, τ5, τ6, τ7, τ10 <strong>and</strong> τ13 to take part in equilibria in this temperature interval. However,<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

3


4 4<br />

Fe–Na–O<br />

they do not mention the eutectoid decomposition of FeO at 570˚C, due to which FeO should<br />

not take part in equilibria far below 570˚C. The 595˚C isothermal section, constructed by<br />

[1984Dai2] from their experimental data (Fig. 7), differs as far as the three iron oxides FeO,<br />

Fe 3O 4 <strong>and</strong> Fe 2O 3 all are in equilibrium with NaFeO 2 (τ 1), whereas [1981Lin] show them in<br />

equilibrium with Na 3Fe 5O 9 (τ 6)orNa 4Fe 6O 11 (τ 13). [1984Dai2] left the phases τ 4, τ 8, τ 10, τ 5<br />

<strong>and</strong> τ7 outside their investigated range. [2003Hua2] published six calculated isothermal<br />

sections between 25 <strong>and</strong> 727˚C. In this calculation they did not include the phases τ2, τ4, τ6,<br />

τ 8, τ 9, τ 11, τ 12 <strong>and</strong> τ 13. The thermodynamic dataset used for the calculation is published. Apart<br />

from the excluded phases these sections agree well with Fig. 7. The phase τ 5 appears to be<br />

stable only above 364˚C <strong>and</strong> the invariant reaction L(Na) + Na 4FeO 3 Ð Fe +Na 2O is located at<br />

421˚C. Some of the dashed lines in the O rich part of Fig. 7 may be replaced by equilibria with<br />

Na- <strong>and</strong> O rich liquid.<br />

Temperature – Composition Sections<br />

Besides the partially or approximately quasibinary sections shown in Figs. 1 to 3 the temperature-composition<br />

section NaFeO 2-FeO is shown in Fig. 8 based on data of [1984Dai1,<br />

1984Dai2]. The authors qualify this section as qualitative representation of the phases in<br />

this section.<br />

Thermodynamics<br />

Information about thermodynamic properties of the Fe-Na-O alloys is widely represented in<br />

the literature. Data concerned the reactions are listed in Table 3. The chemical equilibria of<br />

gas-slag reactions have been studied by [1984Ban, 1985Ban1, 1985Ban2] to clarify the effect of<br />

soda on the thermodynamic properties of slags in the hot metal treatment. The FeO-Na 2O<br />

slags were studied at 1610˚C being equilibrated with p CO2 = 1.013 bar by using a platinum<br />

crucible. The influence of slag composition on the activity of iron oxide <strong>and</strong> the Fe 3+ /Fe 2+<br />

ratios has been determined. It has been clarified, that the results can be expressed in terms of<br />

the Lumsden’s regular solution model over a wide range of compositions. [1984Dai1], besides<br />

the results presented in Table 3, also have estimated the st<strong>and</strong>ard Gibbs energies of formation<br />

of the compounds Na 2FeO 4,Na 2FeO 2 <strong>and</strong> Na 4FeO 3 referred to the pure elements iron, sodium<br />

<strong>and</strong> oxygen.<br />

Table 4 presents results of vapor pressure measurements. The oxygen <strong>and</strong> sodium partial<br />

pressures were calculated by [1984Dai1] from the Gibbs energy functions. [1984Dai2]<br />

obtained an expression for the oxygen partial pressure of the three-phase equilibrium α +<br />

(Fe) + Na2Fe2O4 in the temperature range 760 to 910˚C. Oxygen <strong>and</strong> sodium potential ranges<br />

at 650˚C for the stability of selected equilibria in the Fe-Na-O system were determined by<br />

[1977Kni].<br />

[2003Lyk] proposed a thermodynamic model for solid solutions of sodium in the α phase,<br />

that provides a possibility to establish a relation between the equiliubrium oxygen pressure,<br />

composition of the α phase <strong>and</strong> temperature.<br />

Thermodynamic calculations of isothermal sections of the Fe-Na-O system at the temperatures<br />

up to 727˚C were carried out by [2003Hua2] using the Thermo-Calc code. Thermodynamic<br />

data of the ternary phases Na4FeO3(s), Na3FeO3(s), Na5FeO4(s) <strong>and</strong> Na8Fe2O7(s)<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


have been assessed <strong>and</strong> compiled to a database by reviewing literature data together with DSC<br />

<strong>and</strong> vapor pressure measurements conducted by the authors themselves.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Sodium ferrites have been used, in particular, as reference electrodes in conjunction with<br />

sodium-iron-conducting solid electrolytes <strong>and</strong>, more recently, in sodium <strong>and</strong> antimony<br />

sensors, because of their good electronic conductivity [1996Kal, 1996Zha, 1999Kal], which<br />

produces a rapid response of the sensor. Literature data about properties of the Fe-Na-O alloys<br />

concern mainly the magnetic properties (Table 5). The magnetic interaction in the structural<br />

units {Fe 2O 7} 8– , built of two corner-sharing FeO 4 tetrahedra, in the τ 5 phase was studied by<br />

[1981Kes] in the temperature range from 4.2 to 500 K (–269 to 227˚C). The hypothesis of<br />

magnetically isolated {Fe 2O 7} 8 groups was corroborated by Mössbauer spectroscopy between<br />

1.5 <strong>and</strong> 77 K (–271.7 <strong>and</strong> –196˚C). Authors of [1967Rom] have determined that the τ6 phase<br />

crystals possess antiferromagnetic properties <strong>and</strong> a possible arrangement of magnetic spins<br />

was discussed. Magnetic properties of the τ 7 phase are reported in [1980Kes] <strong>and</strong> [1985Fru].<br />

The susceptibility obeys a Curie-Weiss law down to 4.2 K, within experimental error, with<br />

effective magnetic moment μ eff = 5.83·μ B, very close to the spin-only value 5.92·μ B, <strong>and</strong> the<br />

Curie temperature is θ = –13 K. At low temperature the magnetic ordering takes place (the<br />

Néel temperature T N = 5.40 K). Authors of [1975Cla] <strong>and</strong> [1976Bal2] have investigated<br />

magnetic properties of alloys from the Fe-Fe 2O 3-NaFeO 2 partial system annealed at 1000˚C.<br />

It was established, in particular, that with increasing sodium content of the alloys the Néel<br />

temperature values decrease. In opinion of [1997Ded], the Fe-Na-O system is prospective for<br />

the study of derivatives of iron in higher oxidation states. The use of oxidizer in abundance in<br />

solid-state oxidation synthesis can get novel information about valent possibilities of transition<br />

metals. For the first time the data about quadrupole <strong>and</strong> magnetic interactions of iron in<br />

higher oxidation state in the Fe-Na-O system (the Na 2O 2-Fe 2O 3 section) were obtained by<br />

[1997Ded].<br />

Miscellaneous<br />

Fe–Na–O 4<br />

The mechanism of iron transport by liquid sodium in non-isothermal loop system was studied<br />

by [1975Kol]. The loop system was constructed from an AISI Type 316 steel. The sodium was<br />

heated from 400˚C to 700˚C in the heated zone of the system <strong>and</strong> cooled down reversibly in the<br />

cooled zone. In the cooled zone four specimen holders were invariably mounted, the exposition<br />

temperatures being 650, 600, 500 <strong>and</strong> 400˚C. Based on the obtained results a model for<br />

the transport of iron from the heated zone to the cooled zone was proposed.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

5


6 4<br />

Fe–Na–O<br />

. Table 1<br />

Investigations of the Fe-Na-O <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1940Kni] as<br />

quoted by<br />

[1984Dai1]<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

Thermal analysis The NaFeO 2-Fe 2O 3 section<br />

[1960The] X-ray diffraction 300-700˚C, NaFeO2-Fe2O3 section<br />

[1962Roo] as<br />

quoted by<br />

[1999Kal]<br />

Crystal structure studies Na3Fe5O9 [1962The] Dilatometry, X-ray diffraction ≤ 1300˚C, NaFeO2-Fe2O3 section<br />

[1963Sch] X-ray diffraction, solubility tests Room temperature, NaFeO2-Fe2O3 section<br />

[1967Rom] X-ray diffraction (single crystals,<br />

Weissenberg goniometer), Patterson<br />

methods, heavy-atom technique<br />

1100˚C, room temperature,<br />

complete crystal structure of<br />

Na3Fe5O9<br />

[1970Gro] X-ray diffraction, solution calorimetry 500-600˚C, ΔH of Na 4FeO 3<br />

[1971Tsc] X-ray diffraction 450˚C, 650˚C, three phases in the<br />

Na2O-NaFeO2 section<br />

[1974Bar] X-ray diffraction > 600˚C, Na4FeO3 as corrosion<br />

product of Na steel<br />

[1974Rie] Guinier X-ray diffraction Crystal structure of Na4FeO3 [1975Cla] X-ray diffraction, chemical analysis 1000˚C, Fe-Fe2O3-NaFeO2 partial<br />

system<br />

[1976Bal1] as<br />

quoted by<br />

[2003Lyk]<br />

Crystal structure studies NaFe2O3 [1976Bal2] X-ray diffraction, chemical analysis 1000˚C, the Fe-Fe2O3-NaFeO2 partial system<br />

[1977Bra] X-ray diffraction Crystal structure of Na4Fe2O5 [1977Kni] Bendix “time of flight” mass<br />

spectrometer vapor pressure<br />

measurements (Knudsen cell unit<br />

attachment)<br />

[1977Sha] as<br />

quoted by<br />

[1981Lin, 1999Kal]<br />

Partial pressures of Na <strong>and</strong> O, 350-<br />

600˚C, 0 to 60 at.% O<br />

Emf 522-775˚C, NaFeO 2<br />

[1978Bra1] X-ray Guinier-Simon diffraction<br />

technique (single crystals)<br />

Crystal structure of Na 5FeO 4<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1978Bra2] X-ray diffraction (rotation of single<br />

crystal, Weissenberg, precision filming<br />

techniques)<br />

[1978Bra3] X-ray Guinier-Simon diffraction<br />

technique (single crystals)<br />

[1981Oka] X-ray diffraction, kinetics of<br />

transformation<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

Crystal structure of Na 14Fe 6O 16<br />

Crystal structure of Na 8Fe 2O 7<br />

NaFeO 2<br />

[1984Ban] Slag-iron equilibria studies FeO-Fe2O3-Na2O partial system<br />

[1984Dai1] Emf, acid-solution calorimetry 500-1400˚C, whole range of<br />

compositions<br />

[1984Dai2] X-ray diffraction, DTA, high-temperature<br />

microscopy, emf<br />

500-1400˚C, whole range of<br />

compositions, phase diagram <strong>and</strong><br />

thermodynamics<br />

[1985Ban1] Gas-slag reactions studying 1610˚C, FeO-Fe2O3-Na2O partial<br />

system<br />

[1985Ban2] Gas-slag reactions studying 1610˚C, FeO-Fe2O3-Na2O partial<br />

system<br />

[1985Fru] Magnetic structure by neutron<br />

diffraction<br />

≤ –173˚C, Na5FeO4<br />

[1986Igu] Reduction <strong>and</strong> fire flame techniques 1000˚C, FeO-Fe2O3-Na2O partial<br />

system<br />

[1987Yam] Emf 577-1227˚C, Fe2O3-Na2O section<br />

[1988Bha] Emf 350-600˚C, Na4FeO3 [1993Sri] Pseudo-isopiestic equilibrations, insodium<br />

equilibrations, DTA, solid state<br />

reactions, X-ray diffraction<br />

[1996Zha] as<br />

quoted by<br />

[1999Kal]<br />

< 700˚C, 0 to 60 at.% O<br />

Emf ≤ 1050˚C, Fe 2O 3-Na 3Fe 5O 9 section<br />

[1997Ded] Mössbauer spectroscopy, EPR, X-ray<br />

diffraction<br />

[1999Kal] Emf, isothermal equilibration, X-ray<br />

diffraction<br />

[2002Ama] X-ray diffraction (rotation of single<br />

crystal)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

≤ 480˚C, Na 2O 2-Fe 2O 3 section<br />

NaFeO 2-Fe 2O 3 section<br />

Na 9Fe 2O 7<br />

Fe–Na–O 4<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

7


8 4<br />

Fe–Na–O<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[2003Hua1] High temperature mass spectrometry<br />

(Knudsen effusion), X-ray diffraction<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

25-447˚C, Na 4FeO 3<br />

[2003Lyk] Emf 827-1027˚C, FeO-Fe3O4-NaFeO2 partial system<br />

[2003Sob1] X-ray diffraction (single crystal) Na3FeO3 [2003Sob2] X-ray diffraction (single crystal) Complete crystal structure of<br />

Na 3FeO 3<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(δFe) (h2) cI2 a = 293.15 T = 1390˚C [Mas2],<br />

1538 - 1394 Im3m<br />

W<br />

dissolves 0.029 at.% O at 1528˚C<br />

(γFe) (h1) cF4 a = 364.67 T = 915˚C [Mas2],<br />

1394 - 912 Fm3m<br />

Cu<br />

dissolves 0.0098 at.% O at 1392˚C<br />

(αFe) (r) cI2 a = 286.65 T = 25˚C [Mas2], dissolves<br />

< 912 Im3m<br />

W<br />

0.00008 at.% O at 912˚C<br />

(εFe) (I) hP2 a = 246.8 T = 25˚C [Mas2]<br />

> 1.3·10 5 bar P63/mmc Mg<br />

c = 396 High pressure phase<br />

(βNa) (r) cI2 a = 428.865 T = 25˚C [1987Wri]<br />

97.8 - (–233) Im3m<br />

W<br />

(αNa) (l) hP2 a = 376.7 T = −268˚C [1987Wri]<br />

< –233 P63/mmc<br />

Mg<br />

c = 615.4<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

α, Fe1–xOx (wüstite)<br />

cF8 x = 0.5126 to 0.5457 [Mas2], dissolves<br />

1424 - 570 Fm3m<br />

NaCl<br />

8 at.% Na (as Na2O) at 1000˚C [1976Bal]<br />

a = 430.88 Fe48.5O51.5, 20˚C [E]<br />

a = 428.00 Fe47.2O52.8, 20˚C [E]<br />

a = 431 Fe47.35O52.65, 1000˚C,<br />

pO2 = 1.2·10 –15 bar [1975Cla]<br />

Nay(Fe1–xOx) 1–y a = 433 x = 0.5265, y = 0.0537, T = 1000˚C,<br />

pO2 = 1.2·10 –15 bar [1975Cla]<br />

a = 434.5 x = 0.5265, y = 0.1020, T = 1000˚C,<br />

pO2 = 1.2·10 –15 bar [1975Cla]<br />

γFe3O4 (h) cF56 57.1 to 58.02 at.% O [Mas2]<br />

1596 - 580 Fd3m a = 843.96 at 25˚C [V-C2]<br />

MgAl2O4 Fe replaced by 0 to 3.5 at.% Na, at 1000˚C in<br />

equilibrium with Ar-H2-H2O mixture<br />

[1986Igu]<br />

βFe3O4 (r) mC224 - ~57.1 at.% O [Mas2]<br />

< 580 Cc<br />

βFe3O4 αFe3O4 (hp) m*14 - ~57.1 at.% O [Mas2]<br />

> 2.5·10 5 bar High pressure phase<br />

β, Fe2O3 hR30 a = 503.42 59.82 to ~60 at.% O [Mas2]<br />

< 1457 R3c c = 1374.73 p = 1 bar [V-C2]<br />

Al2O3 a = 503.5<br />

c = 1372<br />

[1981Oka]<br />

ε (Fe-O) c** - metastable; ~51.3 to ~53.5 at.% O [Mas2];<br />

labelled as “P´ (wüstite)” [Mas2]<br />

η (Fe-O) mP500? - metastable; ~52 to ~54 at.% O [Mas2];<br />

P21/m labelled as “P´´ (wüstite)” [Mas2]<br />

κ (Fe-O) hR6 - metastable; 51.3 to 53.2 at.% O [Mas2];<br />

R3<br />

NiO (l)<br />

Fe–Na–O 4<br />

labelled as “wüstite (low-temperature)”<br />

[Mas2]<br />

λ (Fe-O) cI80 - metastable; ~60 at.% O; labelled as<br />

Ia3<br />

Mn2O3 “βFe2O3”[Mas2] γFe2O3 tP60 metastable; ~60 at.% O; labelled also as<br />

P43212 μ (Fe-O)<br />

a = c = 833 [1981Oka]<br />

a = c = 833.9 T = 300˚C [1960The]<br />

a = c = 840.7 T = 380˚C [1960The]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

9


10 4<br />

Fe–Na–O<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

ν (Fe-O) m*100 metastable; ~60 at.% O; labelled as “εFe2O3” [Mas2]<br />

a = 1299<br />

b = 1021<br />

c = 844<br />

β = 95.33˚<br />

[S]<br />

γ, Na2O cF12 33.3 at.% O [Mas2]<br />

< 1134 ± 4 Fm3m<br />

CaF2 a = 556 [E]<br />

βNa2O2 (h) cF12 ~50 at.% O; labelled as “Na2O2-II” [Mas2]<br />

675 - (~512) Fm3m<br />

CaF2 a = 666<br />

c = 993<br />

[1989Rag]<br />

αNa2O2 (r) hP9 ~50 at.% O; labelled as “Na2O2-I” [Mas2]<br />

≲ 512 P62m<br />

Fe2 P a = 620.7<br />

c = 447.1<br />

[E]<br />

a = 620.8<br />

c = 446.9<br />

[1989Rag]<br />

γNaO2 (r) cF8 ~66.7 at.% O; labelled as “NaO2 (I)” [Mas2]<br />

552 - (–50) Fm3m<br />

NaCl a = 549 T = 25˚C [E]<br />

βNaO2 (l1) cP12 ~66.7 at.% O; labelled as “NaO2 (II)” [Mas2]<br />

(–50) - (–77) Pa3<br />

FeS2 (pyrite) a = 546 T = –70˚C [E]<br />

αNaO2 (l2) oP6 ~66.7 at.% O; labelled as “NaO2 (III)” [Mas2]<br />

< –77 Pnnm<br />

FeS2 (marcasite) a = 426<br />

b = 554<br />

c = 344<br />

T = –100˚C [E]<br />

θ (Na-O) oP6 - metastable; ~50 at.% O; labelled as “Na2O2- < –77 Pnnm<br />

FeS2 (marcasite)<br />

Q” [Mas2]<br />

ρ, NaO3 tI* ~75 at.% O [Mas2]<br />

I4/mmm a = 1043<br />

c = 688<br />

[1962Kuz]<br />

a = 1165<br />

c = 766<br />

[1964Kuz]<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–Na–O 4<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

τ1´´´, NaFeO2 (h2) - - by dilatometry distinguished from τ1´´ 1330 - 1010<br />

[1962The]<br />

τ1´´, βNaFeO2 (h1) oP16 a = 567.2 [1981Oka]<br />

1010 - 760 Pna21 b = 731.6<br />

c = 537.7<br />

τ1´, αNaFeO2 (r) hR12 a = 301.9 [1981Oka]<br />

< 760 R3m c = 1593.4<br />

CsICl2 a = 302.5<br />

c = 1609.4<br />

[2000Mat]<br />

τ2,Na2FeO2 < 801<br />

- - [1984Dai1]<br />

τ3,Na4FeO3 mC32 a = 1096 single crystals prepared at 630˚C, 10 d<br />

Cc b = 582 [1974Rie]<br />

Na4FeO3 c = 822<br />

β = 114˚<br />

τ4,Na4Fe2O5 mP44 a = 1187 single crystals prepared at 600˚C, 6 d<br />

P21/n b = 567 [1977Bra]<br />

Na4Fe2O5 c = 917<br />

β = 104.5˚<br />

τ5,Na8Fe2O7 mP68 a = 872 [1977Bra]<br />

P21/c b = 1102<br />

Na8Ga2O7 c = 1010<br />

β = 107.7˚<br />

a = 870 single crystals prepared at 600˚C, 7 d<br />

b = 1101<br />

c = 1009<br />

β = 107.6˚<br />

[1978Bra1]<br />

τ6,Na3Fe5O9 mC68 a = 1339 single crystals prepared at 1100˚C<br />

1100 - 755 C2/c b = 1207 [1967Rom]<br />

Na3Fe5O9 c = 529<br />

β = 89.17˚ labelled as “Na10Fe16O29” [1959Col,<br />

1962The, 1999Kal]<br />

τ7,Na5FeO4 oP80 a = 1033 single crystals prepared at 650˚C, 7 d<br />

Pbca b = 597 [1978Bra2]<br />

Na5FeO4 c = 1808<br />

a = 1026.7<br />

b = 591.3<br />

c = 1780<br />

T = –173˚C [1985Fru]<br />

a = 1027.9<br />

b = 592.3<br />

c = 1791.4<br />

T = –270.5˚C [1985Fru]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

11


12 4<br />

Fe–Na–O<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

τ8,Na14Fe6O16 aP36 a = 1142 single crystals prepared at 650˚C, 7 d<br />

P1 b = 827 [1978Bra3]<br />

Na14Fe6O16 c = 595<br />

α = 109.3˚<br />

β = 87.7˚<br />

γ = 111.4˚<br />

τ9,Na9Fe2O7 oP72 a = 956.2 single crystals prepared at 450˚C<br />

Pca21 b = 999.1 [2002Ama]<br />

Na9Fe2O7 c = 1032.3<br />

τ10, Na3FeO3 mP28 a = 579.9 single crystals prepared at 650˚C, 14 d, no<br />

P21/n b = 1265.9 single phase product available [2003Sob1,<br />

Na3FeO3 c = 582.8<br />

β = 116.02˚<br />

2003Sob2]<br />

τ11, NaFe5O8 cF56 ? - [1975Cla, 1976Bal2, 1986Igu]. Inside<br />

Fd3m ?<br />

metastable solid solution of γFe2O3 after<br />

MgAl2O4 ?<br />

[1960The]<br />

τ12, NaFe2O3 < 1047<br />

- - [1976Bal1, 2003Lyk]<br />

τ13, Na4Fe6O11 - - [1981Lin]. <strong>Phase</strong> does not exist after<br />

[1999Kal]<br />

. Table 3<br />

Thermodynamic Data of Reactions or Transformations<br />

Reaction or Transformation<br />

FeO(s) + 2Na2O(s) →<br />

Na4FeO3(s) 3Na2O(s) + Fe(s) → Na4FeO3(s) + 2Na(l)<br />

Na4FeO3(s) → NaFeO2(s) +<br />

Na2O(s) + Na(l)<br />

Ca(s) + 2NaF(s) + 2FeO(s) →<br />

Na2FeO2(s) + CaF2(s) + Fe(s)<br />

Temperature<br />

[˚C]<br />

Quantity, per mole of<br />

atoms [kJ, mol, K] Comments<br />

25˚C ΔH = – 13.12 ± 0.3<br />

kJ·mol –1<br />

[1970Gro] acid solution<br />

calorimetry<br />

500-600 ΔG = 49.89 – 0.07·T [1970Gro] derived from<br />

acid solution calorimetry<br />

500-600 ΔG = 93.02 – 0.01·T [1970Gro] derived from<br />

acid solution calorimetry<br />

522-775 ΔG = –776.6 + 0.208·T [1977Sha, 1981Lin,<br />

1999Kal] emf<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 3 (continued)<br />

Reaction or Transformation<br />

Na 2O(s) + Fe 2O 3(s) →<br />

Na 2Fe 2O 4(s)<br />

FeO(s) + Na2O(s) →<br />

Na2FeO2(s)<br />

FeO(s) + 2Na2O(s) →<br />

Na4FeO3(s) 1/2 {5Fe2O3(s) + 3Na2O(s)} →<br />

Na3Fe5O9(s) 4Na(l) + Fe(s) + 3/2O 2(g) →<br />

Na 4FeO 3(s)<br />

Na 4FeO 3(s) → Na 3FeO 3(s) +<br />

Na(g)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

Temperature<br />

[˚C]<br />

Quantity, per mole of<br />

atoms [kJ, mol, K] Comments<br />

522-775 ΔG = –171.970 –<br />

0.009456·T<br />

500-1400 ΔG = –86 –<br />

61.89·10 –3 ·T<br />

657-774 ΔG = –160.2 –<br />

0.003909·10 –3 ·T<br />

774-1005 ΔG = –157.2 –<br />

1.332·10 –3 ·T<br />

1005-1132 ΔG = –147.3 –<br />

13.37·10 –3 ·T<br />

362-512 ΔG = –237.425 +<br />

83.1·10 –3 ·T<br />

561-731 ΔG = –247.086 +<br />

89.435·10 –3 ·T<br />

657-725 ΔG = –232.582 +<br />

69.61·10 –3 ·T<br />

500-1400 ΔG = –119.106 +<br />

0.114·T<br />

500-1400 ΔG = –147.998 +<br />

0.165·T<br />

< 1132 ΔG = –(248.6 ± 1.1) –<br />

(2.447 ± 1.188)·10 –3 ·T<br />

752-864 ΔG = –153.978 +<br />

32.32·10 –3 ·T<br />

450-600 ΔG = –1212.202 +<br />

0.3511·T<br />

317-444 ΔG (Na 4FeO 3)=<br />

–11168.629 +<br />

0.33834·T<br />

MSIT 1<br />

Fe–Na–O 4<br />

[1977Sha, 1999Kal] emf<br />

[1984Dai1] emf<br />

[1987Yam] emf<br />

[1987Yam] emf<br />

[1987Yam] emf<br />

[1996Zha, 1999Kal] emf<br />

[1996Zha, 1999Kal] emf<br />

[1999Kal] emf<br />

[1984Dai1] acid-solution<br />

calorimetry<br />

[1984Dai1] acid-solution<br />

calorimetry<br />

[1987Yam] emf<br />

[1999Kal] emf<br />

[1988Bha] emf<br />

[2003Hua1] Knudsen cell<br />

effusion<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

13


14 4<br />

Fe–Na–O<br />

. Table 4<br />

Vapor Pressure Measurements<br />

<strong>Phase</strong>(s) Temperature [˚C] Pressure [bar] Comments<br />

Fe(s), FeO(s), Na2Fe2O4(s) 600 log10 (pO2) = –25.27 [1984Dai1] tabulated<br />

600 log10 (pNa) = –7.14<br />

data<br />

900 log10 (pO2) = –19.6<br />

900 log10 (pNa) = –1.24<br />

Fe(s), Na2Fe2O4(s), Na2FeO2(s) 600 log10 (pO2) = –29.85<br />

600 log10 (pNa) = –2.56<br />

Fe(s), Na2FeO2(s), Na4FeO3(s) 600 log10 (pO2) = –29.95<br />

log10 (pNa) = –2.50<br />

Na2Fe2O4(s), Na4FeO3(s), 600 log10 (pO2) = –29.69<br />

Na2FeO2(s)<br />

log10 (pNa) = –2.56<br />

Fe(s), Na(l), Na4FeO3(s) 600 log10 (pO2) = –32.55<br />

log10 (pNa) = –1.53<br />

. Table 5<br />

Investigations of the Fe-Na-O Materials Properties<br />

Reference Method/Experimental Technique Type of Property<br />

[1967Rom] Magnetic property studies,<br />

Mössbauer spectroscopy<br />

Magnetic susceptibility, magnetic ordering of the<br />

τ 6 phase<br />

[1975Cla] Faraday magnetic technique Magnetic susceptibility of the Fe-Fe2O3-NaFeO2 partial system phases<br />

[1976Bal2] Faraday magnetic technique Magnetic susceptibility of the Fe-Fe2O3-NaFeO2 partial system phases<br />

[1980Kes] Magnetic property studies,<br />

Mössbauer spectroscopy<br />

[1981Kes] Magnetic property studies,<br />

Mössbauer spectroscopy<br />

Magnetic susceptibility, magnetic ordering of the<br />

τ 7 phase<br />

Magnetic susceptibility, magnetic ordering of the<br />

τ 5 phase<br />

[1985Fru] Neutron diffraction Magnetic structure of the τ7 phase<br />

[1997Ded] Mössbauer spectroscopy Magnetic structure of Na2O2-Fe2O3 section<br />

phases, quadrupol interactions<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-Na-O. The partially quasibinary section NaFeO 2 -Fe 2O 3<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Na–O 4<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

15


16 4<br />

Fe–Na–O<br />

. Fig. 2<br />

Fe-Na-O. The partially quasibinary section Na 2O – FeO<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-Na-O. The approximately quasibinary section Fe 3O 4-NaFeO 2<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Na–O 4<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

17


18 4<br />

. Fig. 4<br />

Fe-Na-O. Reaction scheme of the partial system Fe-Fe2O3-NaFeO2-Na2FeO2. The phases (αFe), (γFe) <strong>and</strong> (δFe) are not distinguished <strong>and</strong> called Fe.<br />

Also τ 1’, τ 1’’ <strong>and</strong> τ 1’’’ are not distinguished <strong>and</strong> called NaFeO2 Fe–Na–O<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-Na-O. Liquidus surface projection of the partial FeO-Fe 2O 3-NaFeO 2 system<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Na–O 4<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

19


20 4<br />

Fe–Na–O<br />

. Fig. 6<br />

Fe-Na-O. Isothermal section of the partial Fe-Fe 2O 3-NaFeO 2 system at 1000˚C; equilibrated with<br />

Ar-H 2-H 2O mixtures<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 7<br />

Fe-Na-O. Isothermal section at 595˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Na–O 4<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

21


22 4<br />

Fe–Na–O<br />

. Fig. 8<br />

Fe-Na-O. Temperature - composition section NaFeO 2-FeO<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–Na–O 4<br />

[1940Kni] Knick, R., Kohlmeyer, E.J., “About the Melting Properties of the Soda-Iron Oxide Mixtures” (in<br />

German), Z. Anorg. Allg. Chem., 244, 67–84 (1940) (<strong>Phase</strong> Diagram, Experimental, *) as quoted by<br />

[1984Dia1]<br />

[1959Col] Collonques, R., Thery, J., “Preparation <strong>and</strong> Properties of Sodium Ferrites”, Bull. Soc. Chim. Fr., 1959,<br />

1141–1144 (1959) (Crys. Structure, Experimental) as quoted by [1999Kal]<br />

[1960The] Thery, J., Collongues, R., “The Fe 2O 3-Na 2O System” (in French), Compt. Rend., 250, 1070–1072 (1960)<br />

(Crys. Structure, <strong>Phase</strong> Diagram, Experimental, *, 9)<br />

[1962Kuz] Kuznetsov, V.G., Tokareva, S.A., Dobrolyubova, M.S., “X-ray Diffraction Investigation of the Sodium<br />

Ozonide NaO 3” (in Russian), Zh. Neorg. Khim., 7(5), 967–970 (1962) (Crys. Structure, Experimental, 7)<br />

[1962Roo] Rooymans, C.J.M., “New Compound in the Na 2O-Fe 2O 3 System”, J. Phys. Soc. Jpn., 17, 722–723 (1962)<br />

(Crys. Structure, Experimental) as quoted by [1999Kal]<br />

[1962The] Thery, J., “Alkali Metal Ferrates <strong>and</strong> Their Hydrolysis Products”, Ann. Chim. (Paris), 7, 207–238 (1962)<br />

(Crys. Structure, <strong>Phase</strong> Diagram, Experimental, 42)<br />

[1963Sch] Scholder, R., Mansmann, M., “Compounds of the So-Called β-Alumina Type” (in German), Z. Anorg.<br />

Allg. Chem., 321(5-6), 246–261 (1963) (Crys. Structure, Experimental, 19)<br />

[1964Kuz] Kuznetsov, V.G., Bakulina, V.M., Tokareva, S.A., Zimina, A.N., “X-ray Diffraction Investigation of the<br />

Sodium Ozonide NaO 3” (in Russian), Zh. Struct. Khim., 5(1), 142–144 (1964) (Crys. Structure,<br />

Experimental, 8)<br />

[1967Rom] Romers, C., Rooymans, C.J.M., de Graaf, R.A.G., “The Preparation, Crystal Structure <strong>and</strong> Magnetic<br />

Properties of Na 3Fe 5O 9”, Acta Cryst., 22(6), 766–771 (1967) (Crys. Structure, Experimental, Review,<br />

Magn. Prop., 21)<br />

[1970Gro] Gross, P., Wilson, G.L., “Composition <strong>and</strong> Heat of Combination of a Double Oxide of Iron <strong>and</strong><br />

Sodium”, J. Chem. Soc. (A), 11, 1913–1916 (1970) (Crys. Structure, <strong>Phase</strong> Relations, Thermodyn.,<br />

Experimental, 10)<br />

[1971Tsc] Tschudy, A., Kessler, H., “The Na 2O-NaFeO 2 System. Characterization of Three <strong>Ternary</strong> Compounds”<br />

(in French), Compt. Rend., Ser. C., 273(21), 1435–1437 (1971) (Crys. Structure, Experimental, 4)<br />

[1974Bar] Barker, M.G., Wood, D.J., “The Corrosion of Chromium, Iron <strong>and</strong> Stainless Steel in Liquid Sodium”,<br />

J. Less-Com. Met., 35, 315–323 (1974) (Crys. Structure, Morphology, <strong>Phase</strong> Relations, Experimental, 16)<br />

[1974Rie] Rieck, H., Hoppe, R., “The First Oxoferrate (II): Na 4{FeO 3}” (in German), Naturwissenschaften, 61(3),<br />

126–127 (1974) (Crys. Structure, Experimental, 9)<br />

[1975Cla] Claude, J.M., El Balkhi, A.M., Jeannot, F., Gleitzer, C., Aubry, J., “The Fe-Fe 2O 3-NaFeO 2 System. I. The<br />

Solubility of Na in Wustite at p O2 = 1.2·10 –15 bar <strong>and</strong> 1000˚C” (in French), Mem. Sci. Rev. Met., 72(7-8),<br />

599–603 (1975) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, Magn. Prop., *, 12)<br />

[1975Kol] Kolster, B.H., “Mechanism of Fe <strong>and</strong> Cr Transport by Liquid Sodium in Non-Isothermal Loop<br />

<strong>Systems</strong>”, J. Nucl. Mater., 55(2), 155–168 (1975) (Crys. Structure, Morphology, Experimental, Transport<br />

Phenomena, 19)<br />

[1976Bal1] El Balkhi, A.M., Zanne, M., Gleitzer, C., “Preparation <strong>and</strong> Properties of the Sodium-Ferrite (II, III)<br />

Oxide. NaFe 2O 3” (in French), J. Solid State Chem., 18, 293–297 (1976) (Crys. Structure, Experimental)<br />

as quoted by [2003Lyk]<br />

[1976Bal2] El Balkhi, A.M., Zanne, M., Gleitzer, C., Aubry, J., “The Fe-FeO-NaFeO 2 System. II. Equilibrium Limits<br />

<strong>and</strong> Properties of Wustite Containing Na” (in French), Mem. Sci. Rev. Metall., 73(2), 761–768 (1976)<br />

(Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, Magn. Prop., *, 5)<br />

[1977Bra] Brachtel, G., Hoppe, R., “The First Oxoferrate (III) with Single Layer Structure: Na 4Fe 2O 5”<br />

(in German), Naturwissenschaften, 64(5), 271–272 (1977) (Crys. Structure, Experimental, 8)<br />

[1977Kni] Knights, C.F., Phillips, B.A., “<strong>Phase</strong> <strong>Diagrams</strong> <strong>and</strong> Thermodynamic Studies of the Cs-Cr-O, Na-Cr-O<br />

<strong>and</strong> Na-Fe-O <strong>Systems</strong> <strong>and</strong> their Relationships to the Corrosion of Steels by Caesium <strong>and</strong> Sodium”,<br />

Special Publ. Chem. Soc., 30, 134–145 (1977) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Thermodyn., Experimental, *, 43)<br />

[1977Sha] Shaiu, B.J., Wu, P.C.S., Chiotti, P., “Thermodynamic Properties of Double Oxides of Sodium Oxide<br />

with Oxides of Chromium, Nickel <strong>and</strong> Iron”, J. Nucl. Mater., 67, 13–23 (1977) (Thermodyn., Experimental)<br />

as quoted by [1981Lin] <strong>and</strong> [1999Kal]<br />

[1978Bra1] Brachtel, G., Hoppe, R., “On Oxoferrate with "Isolated" Anions: Na 8Fe 2O 7” (in German), Z. Anorg.<br />

Allg. Chem., 438, 15–24 (1978) (Crys. Structure, Experimental, 36)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

23


24 4<br />

Fe–Na–O<br />

[1978Bra2] Brachtel, G., Hoppe, R., “New Oxoferrates (III). On the Knowledge of Na 5FeO 4” (in German),<br />

Z. Anorg. Allg. Chem., 446, 77–86 (1978) (Crys. Structure, Experimental, 18)<br />

[1978Bra3] Brachtel, G., Hoppe, R., “New Oxoferrates (III). On the Knowledge of Na 14{Fe 6O 16}” (in German),<br />

Z. Anorg. Allg. Chem., 446, 87–96 (1978) (Crys. Structure, Experimental, 18)<br />

[1978Zve] Zvezdinskaya, L.V., Smirnova, N.L., Belov, N.V., “System of Polymorphic Transition Between<br />

Structural Types of <strong>Ternary</strong> ABX 2 Compounds”, Sov. Phys.-Crystallogr. (Engl. Transl.), 23(3), 293–296<br />

(1978) (Crys. Structure, Review, 22)<br />

[1980Kes] Kessler, H., Son, L., “Study of the Magnetic Interactions between Na 5FeO 4 <strong>and</strong> {FeO 4} 5– Discrete<br />

Anions” (in French), Rev. Chimie Miner., 17(6), 541–547 (1980) (Crys. Structure, Experimental, Magn.<br />

Prop., 13)<br />

[1981Kes] Kessler, H., Ly, S., “Magnetic Interactions of {Fe 2O 7} 8– Groups in Na 8Fe 2O 7” (in French), J. Solid State<br />

Chem., 39, 22–28 (1981) (Crys. Structure, Experimental, Magn. Prop., 20)<br />

[1981Lin] Lindemer, T.B., Besmann, T.M., Johnson, C.E., “Thermodynamic Review <strong>and</strong> Calculations - Alkali-<br />

Metal Oxide <strong>Systems</strong> with Nuclear Fuels, Fission, Products <strong>and</strong> Structural Materials”, J. Nucl. Mater.,<br />

100(1-3), 178–226 (1981) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Calculation, Review, 280)<br />

[1981Oka] Okamoto, S., “Crystallization <strong>and</strong> <strong>Phase</strong> Transformation Sodium Orthoferrites”, J. Solid State Chem.,<br />

39, 240–245 (1981) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 10)<br />

[1982Bau] Baur, W.H., McLarnan, T.J., “Observed Wurtzite Derivatives <strong>and</strong> Related Dipolar Tetrahedral<br />

Structures”, J. Solid State Chem., 42, 300–321 (1982) (Crys. Structure, Review, 93)<br />

[1984Ban] Ban-ya, S., Hino, M., Takezoe, H., “Thermodynamics of Fe tO-Na 2O, Fe tO-SiO 2-Na 2O, Fe tO-P 2O 5-<br />

Na 2O <strong>and</strong> Fe tO-P 2O 5-SiO 2-Na 2O Slags in Equilibrium with Solid Iron”, Second Int. Symp. Metal. Slags<br />

<strong>and</strong> Fluxes (Proc. Conf.), Lake Tahoe, Nevada, U.S.A., 1984, The Metall. Soc. AIME, Warrendale,<br />

Pennsylvania, 395–416 (1984) (<strong>Phase</strong> Relations, Thermodyn., Experimental, 42)<br />

[1984Dai1] Dai, W., Seetharaman, S., Staffansson, L.-J., “A Thermodynamic Study of the System Fe-Na-O”, Sc<strong>and</strong>.<br />

J. Metall., 13(1), 32–38 (1984) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Experimental, #, 20)<br />

[1984Dai2] Dai, W., Seetharaman, S., Staffanson, L.-J., “<strong>Phase</strong> Relationships in the System Fe-Na-O”, Metall. Trans.<br />

B, 15B, 319–327 (1984) (Morphology, <strong>Phase</strong> Diagram, Thermodyn., Experimental, #, 24)<br />

[1985Ban1] Ban-Ya, S., Hino, M., Takezoe, H., “Activities of the Constituents <strong>and</strong> Fe 3+ /Fe 2+ Equilibrium in Fe tO-<br />

Na 2O <strong>and</strong> Fe tO-SiO 2-Na 2O Slags” (in Japanese), Tetsu To Hagane, 15, 1765–1772 (1985) (<strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Thermodyn., Calculation, Experimental, 42)<br />

[1985Ban2] Ban-Ya, S., Hino, M., Takezoe, H., “Thermodynamic Properties of Fe tO-Na 2O, Fe tO-SiO 2-Na 2O, Fe tO-<br />

P 2O 5-Na 2O <strong>and</strong> Fe tO-P 2O 5-SiO 2-Na 2O Slags”, Trans. Iron Steel Inst. Jpn., 25(11), 1122–1131 (1985)<br />

(<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Experimental, 42)<br />

[1985Fru] Fruchart, D., Soubeyroux, J., Kessler, H., Lassalle, J.-M., “Magnetic Structure of Na 5FeO 4” (in French),<br />

J. Solid State Chem., 57, 191–196 (1985) (Crys. Structure, Experimental, Magn. Prop., 8)<br />

[1986Igu] Iguchi, Y., Amahiro, Y., Hirao, J., “Equilibrium Between FeO-M 2O (M = Na, Li) Solid Solution <strong>and</strong><br />

Oxygen in Gas <strong>Phase</strong> at 1273 K” (in Japanese), J. Jpn. Inst. Met., 50(3), 282–287 (1986) (Crys. Structure,<br />

<strong>Phase</strong> Relations, Thermodyn., Experimental, #, 27)<br />

[1987Wri] Wriedt, H.A., “The Na-O (Sodium-Oxygen) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 8(3), 234–246 (1987)<br />

(Assessment, Review, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Crys. Structure, 100)<br />

[1987Yam] Yamaguchi, S., Kaneko, Y., Iguchi, Y., “Activity Measurements of Na 2OinNa 2O-Fe 2O 3 System by EMF<br />

Method Using Sodium β Alumina as a Solid Electrolyte”, Trans. Jpn. Inst. Met., 28(12), 986–993 (1987)<br />

(Thermodyn., Experimental, 10)<br />

[1988Bha] Bhat, N.P., Borgstedt, H.U., “Thermodynamic Stability of Na 4FeO 3 <strong>and</strong> Threshold Oxygen Levels in<br />

Sodium for the Formation of this Compound on AISI 316 Steel Surfaces”, J. Nucl. Mater., 158, 7–11<br />

(1988) (Thermodyn., Calculation, Experimental, 20)<br />

[1989Rag] Raghavan, V., “The Fe-Na-O (Iron-Sodium-Oxygen) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Indian Inst. Met., Calcutta, 5, 206–212 (1989) (Crys. Structure, <strong>Phase</strong> Diagram, Review, 17)<br />

[1993Sri] Sridharan, R., Gnanasekaran, T., Mathews, C.K., “<strong>Phase</strong> Equilibrium Studies in the Na-Fe-O System”,<br />

J. <strong>Alloy</strong>s Compd., 191, 9–13 (1993) (<strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, Experimental, *, 14)<br />

[1996Kal] Kale, G.M., Davidson, A.J., Fray, D.J., “Solid State Sensor for Measuring Antimony in Non-Ferrous<br />

Metals”, Solid State Ionics, 86-88, 1101–1105 (1996) (<strong>Phase</strong> Relations, Thermodyn., Experimental) as<br />

quoted by [1999Kal]<br />

[1996Zha] Zhang, L., Fray, D.J., Dekeyser, J.C., De Schutter, F., “Reference Electrode of Simple Galvanic Cells for<br />

Developing Sodium Sensors for Use in Molten Aluminium”, Metall. Mater. Trans. B., 27B, 794–800<br />

(1996) (<strong>Phase</strong> Relations, Thermodyn., Experimental) as quoted by [1999Kal]<br />

DOI: 10.1007/978-3-540-70890-2_4 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Na–O 4<br />

[1997Ded] Dedushenko, S.K., Kholodkovskaya, L.N., Perfiliev, Yu.D., Kiselev, Yu.M., Saprykin, A.A., Kamozin,<br />

P.N., Lemesheva, D.G., “On the Possible Existence of Unusual Higher Oxidation States of Iron in<br />

the Na-Fe-O System”, J. <strong>Alloy</strong>s Compd., 262-263, 78–80 (1997) (Crys. Structure, Experimental, Magn.<br />

Prop., 6)<br />

[1998Wu] Wu, E.J., Tepesch, P.D., Ceder, G., “Size <strong>and</strong> Charge Effects on the Structural Stability of LiMO 2 (M =<br />

Transition Metal) Compounds”, Philos. Mag. B, 77(4), 1039–1047 (1998) (Crys. Structure, Review, 22)<br />

[1999Kal] Kale, G.M., Srikanth, S., “Electrochemical Determination of the Gibbs Energy of Formation of<br />

Na 2Fe 2O 4 <strong>and</strong> Na 3Fe 5O 9 Employing Na-β-Al 2O 3 Solid Electrolyte”, J. Am. Ceram. Soc., 83(1), 175–180<br />

(1999) (<strong>Phase</strong> Relations, Thermodyn., Experimental, 24)<br />

[2000Mat] Mather, G.C., Dussarrat, C., Etourneau, J., West, A.R., “A Review of Cation-Ordered Rock Salt<br />

Superstructure Oxides”, J. Mater. Chem., 10, 2219–2230 (2000) (Crys. Structure, Review, 55)<br />

[2002Ama] Amann, P., Moeller, A., “Na 9{FeO 3}{FeO 4} a Mixed Valent Oxoferrat (II, III) with Isolated {FeO 3} 4– <strong>and</strong><br />

{FeO 4} 5– Anions”, Z. Anorg. Allg. Chem., 628, 917–919 (2002) (Crys. Structure, Experimental, 12)<br />

[2003Hua1] Huang, J., Furukawa, T., Aoto, K., “Thermodynamic Study of Sodium-Iron Oxides. Part I. Mass<br />

Spectrometric Study of Na-Fe Oxides”, Thermochim. Acta, 405(1), 61–66 (2003) (Thermodyn., Experimental,<br />

20)<br />

[2003Hua2] Huang, J., Furukawa, T., Aoto, K., “Thermodynamic Study of Sodium-Iron Oxides. Part II. <strong>Ternary</strong><br />

<strong>Phase</strong> Diagram of the Na-Fe-O System”, Thermochim. Acta, 405(1), 67–72 (2003) (<strong>Phase</strong> Diagram,<br />

Thermodyn., Assessment, Calculation, *, 15)<br />

[2003Lyk] Lykasov, A.A., Pavlovskaya, M.S., “<strong>Phase</strong> Equilibria in the Fe-Na-O System Between 1100 <strong>and</strong> 1300 K”,<br />

Inorg. Mater., 39(10), 1088–1091 (2003) translated from Neorg. Mater., 39(10), 1260-1263, (2003)<br />

(<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Calculation, Experimental, *, 6)<br />

[2003Mue] Mueller-Buschbaum, H., “The Crystal Chemistry of AM 2O 4 Oxometallates”, J. <strong>Alloy</strong>s Compd., 349,<br />

49–104 (2003) (Crys. Structure, Review, 476)<br />

[2003Sob1] Sobotka, B.M., Moeller, A., “Crystal Structure of Na 3FeO 3” (in German), Anorg. Kristallstr. Kristallchem.,<br />

20, 153 (2003) (Crys. Structure, Experimental, 2)<br />

[2003Sob2] Sobotka, B.M., Moeller, A., “Synthesis of Na 3FeO 3, a <strong>Ternary</strong> Oxoferrate (III) with a Chain Structure”<br />

(in German), Z. Anorg. Allg. Chem., 629, 2063–2065 (2003) (Crys. Structure, Experimental, 21)<br />

[E] Elliott, R.P., Constitution of Binary <strong>Alloy</strong>s, First Supplement, McGraw-Hill, New York (1965)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[S] Shunk, F.A., Constitution of Binary <strong>Alloy</strong>s, Second Supplement, McGraw-Hill, New York (1969)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_4<br />

ß Springer 2009<br />

25


Iron – Niobium – Nickel<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Volodymyr Ivanchenko, Tetyana Pryadko<br />

Introduction<br />

Nickel steels <strong>and</strong> superalloys have found an increasing use in applications that required a<br />

combination of high strength, ductility <strong>and</strong> corrosion resistance at high temperatures. These<br />

applications have led to interest in the precipitation hardening characteristics of nickel base<br />

alloys. It has been established that in Nb bearing austenitic steels the Laves phase NbFe 2 can<br />

produce considerable precipitation hardening.<br />

[1975Pan] investigated alloys on the Nb 2Fe-NbNi 3 section <strong>and</strong> found it to be a quasibinary<br />

one of the simple eutectic type. Crystal structures of phases formed in the ternary alloys at 950˚<br />

C along NbFe-NbNi <strong>and</strong> NbFe2-NbNi2 joins have been studied by [1981Var]. Growth crystallography<br />

of directionally solidified (αFe)+(Nb,Ni)Fe 2 eutectic alloy was investigated by<br />

[1980Tew].<br />

The phase relations in alloys obtained by quenching directly from the melt were studied by<br />

[1982Osi, 1984Ska, 1989Sav]. [1989Sav] gives the phase distribution on the composition<br />

triangle for cast alloys quenched from liquid state at different cooling rates, up to 10 6 ˚C·s –1 .<br />

When the alloys were quenched directly from the melt at cooling rates up to 10 4 -10 6 ˚C·s –1 , all<br />

the three Laves forms C14 (λ 1), C15 (λ 2), <strong>and</strong> C36 (λ 3) appeared. Using the electron concentration<br />

considerations <strong>and</strong> comparisons with the isothermal sections in the related Co-Fe-Nb<br />

<strong>and</strong> Co-Nb-Ni systems, [1989Sav] comes to the unusual conclusion that the phase distribution<br />

obtained by quenching directly from the melt is closer to the equilibrium conditions <strong>and</strong><br />

proposed the isothermal section at 1200˚C. This section was reproduced by [1992Rag1], but<br />

with a comment, that it clearly required confirmation <strong>and</strong> should be considered purely<br />

tentative. [2001Tak] <strong>and</strong> [2005Tak] studied phase equilibria among γ, NbNi 3 <strong>and</strong> NbFe 2<br />

phases. Isothermal section at 1200˚C was presented. It was redrawn by [2004Rag] from<br />

[2001Tak]. An attempt to estimate the concentration stability of topologically closed-packed<br />

phases was performed by [1992Mes] by calculation of the change in the factor of the electron<br />

concentration.<br />

The works on the phase relations, structures <strong>and</strong> thermodynamics are summarized in<br />

Table 1.<br />

Binary <strong>Systems</strong><br />

Fe–Nb–Ni 5<br />

The Fe-Nb system is accepted from [1993Bej]. The Fe-Ni system is taken from the recent<br />

assessment of [2008Kuz]. The Nb-Ni system is accepted according to [1998Oka].<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_5<br />

ß Springer 2009<br />

1


2 5<br />

Fe–Nb–Ni<br />

Solid <strong>Phase</strong>s<br />

The isostructural phases Nb 6Fe 7 <strong>and</strong> Nb 7Fe 6 form a continuous solid solution μ [1981Var,<br />

1989Sav, 2001Tak, 2005Tak]. The composition dependences of cell parameters obey the<br />

Vegard’s law [1981Var].<br />

The effects of Ni content on the lattice parameters of the stoichiometric λ1 (NbFe2) phase<br />

<strong>and</strong> the Fe rich λ1 phase in equilibrium with γ phase are shown in Fig. 1, together with their<br />

calculated values (thin lines) based on Vegard’s law according to [2005Tak].<br />

A new ternary intermetallic phase was found at the composition around Ni-22Nb-20Fe<br />

(at.%) by [2001Tak]. It’s crystal structure has been identified as ordered hexagonal (hP24 with<br />

stacking sequence of abcbcb).<br />

The amorphous state can be formed in alloys located along line parallel to the Fe-Ni side of<br />

the composition triangle with 25-50 at.% Nb under quenching from the liquid state with a<br />

cooling rate of ~10 6 K·s –1 [1984Ska].<br />

Under ordering of (NbxFe1–x)Ni3 compound atoms of Nb are distributed in the both<br />

sublattice of Fe <strong>and</strong> Ni [1985Val]. Nb atoms try to set places to form a maximal number of Nb-<br />

Nb pairs [1987Val]. [1993Zhi] reported, that under annealing of quenched by spinning Ni-16<br />

Fe-6Nb (at.%) <strong>and</strong> Ni-16Fe-4Nb (at.%), ordering of the γ phase occurs. Nucleation <strong>and</strong><br />

growth of the ordered γ’’- <strong>and</strong> γ’ phases proceed in an accelerated manner, although the<br />

mechanisms of nucleation are different. The fact that the density of quench-induced defects is<br />

relatively low is probably due to their relaxation <strong>and</strong> migration to sinks such as Nb rich areas.<br />

This can promote an accelerated phase transformation <strong>and</strong> ordering processes in the γ-matrix.<br />

The formation of tetrahedral stacking faults in the matrix during annealing also points to the<br />

relaxation of quench-induced defects. Thus the main factor accelerating phase transformations<br />

from the γ- into the γ’ phase is an excessive vacancy density. In the transformation from<br />

the γ- into the γ" phase, two more factors are operative: (1) dendritic segregation, that is, a<br />

higher Nb <strong>and</strong> Fe content in the interbranch spaces of dendritic cells; <strong>and</strong> (2) stresses, resulting<br />

from melt quenching, which promote the development of a sub-grain structure.<br />

[1989Sav] reported about the formation under rapid crystallization of C15 (λ 2) <strong>and</strong> C36<br />

(λ3) Laves phases in the Fe-Nb-Ni system <strong>and</strong> based on the electron concentration consideration<br />

contended that they are equilibrium phases. These results are in contradiction with the<br />

results of [2001Tak] <strong>and</strong> [2005Tak]. Therefore the C15 (λ 2) <strong>and</strong> C36 (λ 3) Laves phases<br />

discovered by [1989Sav] must be regarded as metastable. Crystal structures of solid phases<br />

formed in the Fe-Nb-Ni system are presented in Table 2.<br />

Quasibinary <strong>Systems</strong><br />

According to [1975Pan] the NbFe2-NbNi3 section is quasibinary of the eutectic type. The<br />

eutectic reaction is at 1290˚C <strong>and</strong> 70 mol% NbNi 3 (16.2Fe-27Nb-56.8Ni (at.%) [1975Pan]. No<br />

phase diagram was presented by [1975Pan]. Presented values are in good accordance with<br />

[2001Tak, 2005Tak].<br />

DOI: 10.1007/978-3-540-70890-2_5 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Invariant Equilibria<br />

Only one three-phase invariant equilibrium was experimentally recorded in the Fe-Nb-Ni<br />

system by [1975Pan]. It is presented in Table 3.<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

The solubility of Nb in Fe-30 mass% Ni (29.6 at.%) austenite at 1250˚C is about 3.4 mass%<br />

(2.1 at.%) <strong>and</strong> at 800˚C is about 1 mass% (0.6 at.%) [1971Lei].<br />

Isothermal Sections<br />

The isothermal section at 1200˚C presented in Fig. 2 is taken from [2005Tak]. In the Fe rich<br />

corner a three-phase domain (λ1+(δFe)+γ) is drawn tentatively to account for the (δFe) phase<br />

which exists at this temperature. The section at the same temperature constructed by<br />

[1989Sav] is omitted here since it obviously presents metastable state, see above section<br />

“Introduction”.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–Nb–Ni 5<br />

On aging at 800˚C of the Fe-30Ni-5Nb (mass%) alloy quenched from 1250˚C the hardness<br />

increases from 150 to 220 H V (1.471 to 2.158GPa).The precipitation of NbFe 2 is a heterogeneous<br />

process occurring mainly on dislocations on (111) γ planes <strong>and</strong> on grain boundaries. The<br />

rate of growth of NbFe 2 precipitate beyond the peak hardness is very slow <strong>and</strong> as a result no<br />

overaging was observed after aging at 800˚C for 250 h <strong>and</strong> at 700˚C for 1000 h [1971Lei]. The<br />

rate of solid solution hardening per 1 at.% Nb in Ni-Fe matrix alloys is larger than in Ni matrix<br />

alloys [1990Cho].<br />

Magnetically soft alloys of the Fe-Ni system are used extensively in instrument building.<br />

This is connected with a favorable combination of a number of properties: single phase alloys<br />

in a stable condition over a wide concentration range, absence of allotropic transformations<br />

which cause development of internal stresses, existence of ordering <strong>and</strong> the possible effect of<br />

alloying on the degree of ordering, <strong>and</strong> passage of the constants for magnetic crystallographic<br />

anisotropy K I <strong>and</strong> magnetostriction i s through a zero value in the range 70-80% Ni. However,<br />

alloys of the Fe-Ni system have low strength <strong>and</strong> wear resistance which limit their use for<br />

example as magnetic recording heads.<br />

One of the most widespread methods for improving the mechanical properties of these<br />

alloys is alloying with elements which form solid solutions. Nb is one from such elements. His<br />

solid solution strengthening is observed which causes a specific increase in mechanical<br />

properties.<br />

The origin of high magnetic permeability in “Hardperm” of the Fe-Nb-Ni system was<br />

studied by [1976Hin]. The effect of structure on the hardness <strong>and</strong> permeability of Fe-Nb-Ni<br />

alloys was presented by [1979Wen]. Magnetic properties of intermetallic phases have been<br />

studied by [1982Osi].<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_5<br />

ß Springer 2009<br />

3


4 5<br />

Fe–Nb–Ni<br />

Magnetic properties, electrical resistivity <strong>and</strong> hardness of Ni-based alloys were studied by<br />

[1974Mas, 1978Mas]. <strong>Alloy</strong>s with a very high permeability were proposed.<br />

An investigation of the structures of Fe-Nb-Ni alloys has been carried out by means of<br />

TEM supplemented by electron diffraction <strong>and</strong> X-ray diffraction analysis [1979Wen]. As the<br />

proportion of modulated structures increases, the hardness of the alloy also increases, but vice<br />

versa in the case of its magnetic permeability. The introduction of solute atoms of Nb would<br />

lower the degree of ordering in Ni3Fe alloy, but fortunately only certain degree of ordering was<br />

sufficient to yield conditions for high permeability. A preprecipitating phase possessing the fcc<br />

(ordered) Ni 3Nb (γ’) structure <strong>and</strong> being coherent with the matrix, was observed in the Fe-<br />

Nb-Ni alloy. This phase appears to promote the formation of modulated structures <strong>and</strong> exert a<br />

strengthening effect on matrix.<br />

Examination of the temperature dependence of the magnetic susceptibility of the Laves<br />

phase NbFe 2 has shown it to be a temperature-independent paramagnetic (χ = 9.6 · 10 –6<br />

m 3 ·kg –1 ). Substitution of the iron atoms by nickel ones along the section NbFe2-NbNi3 causes<br />

a smooth increase in magnetic susceptibility which reaches 1.82 · 10 –5 m 3 ·kg –1 for an alloy with<br />

46.67 at.% Fe + 22.5 at.% Ni + 30.83 at.% Nb (70 mol% NbFe 2, 30 mol% NbNi 3). The Nb 6Fe 7<br />

<strong>and</strong> Nb 7Ni 6 compounds are temperature-independent paramagnetics with magnetic susceptibilities<br />

of 1.85 · 10 –5 <strong>and</strong> 0.6 · 10 –5 m 3 ·kg –1 , respectively, i.e. the 3d b<strong>and</strong> for these compounds<br />

is completely filled <strong>and</strong> the magnetic properties are determined by the S conductivity electrons<br />

which have temperature-independent susceptibility [1982Osi].<br />

A strengthening effect is observed for microcrystalline alloys of the system Fe-Nb-Ni<br />

prepared by quenching from the melt with low-temperature heat treatment. Strengthening<br />

of these alloys is due to the effect of crystallite refinement in the initial stages of primary<br />

recrystallization <strong>and</strong> precipitation of the NbNi 3 phase. Low-temperature heat treatment<br />

provides preparation of the most effective magnetic permeability in the frequency range<br />

0.5-1 MHz for alloys Ni-16Fe-4Nb (at.%); Ni-16Fe-6Nb (at.%). Use of the rapid quenching<br />

method makes it possible to achieve a marked increase in mechanical properties of alloys of<br />

the system Fe-Nb-Ni compared with the properties of alloys prepared by traditional technology<br />

with retention of a high level of magnetic characteristics at frequencies of 0.5-1 MHz<br />

[1992Sos].<br />

<strong>Phase</strong> hardening during martensite transformation as well as the hard particles of NbNi3<br />

<strong>and</strong> NbFe 2-type have the effect of increasing the degree of recovery of shape <strong>and</strong> partially<br />

constrict transformation hysteresis in Fe-Nb-Ni alloys due to effective prevent dislocation<br />

movement [1985Kov1, 1985Kov2, 1989Kov]. In Fe-30.5Ni-(2.9-4.3)Nb (at.%) alloys, the<br />

γ 00 -particles having a mean dimension more than 10 nm do not transform to another<br />

structure. However, the particle deformation takes place, providing an effect equivalent to<br />

inhomogeneous deformation of the martensite. The stored strain level causes a small tetragonal<br />

distortion of the martensite. The tetragonality is not a consequence of the ordered<br />

structure of the precipitates (D022) but rather is due to the tetragonal symmetry of the Bain<br />

strain. The particles can be considered as memory elements which are responsible for the<br />

shape memory effect in the steels, despite the relatively small tetragonality of α phase <strong>and</strong> the<br />

relatively wide thermal hysteresis [1993Kov].<br />

Investigations of the Fe-Nb-Ni materials properties are summarized in Table 4.<br />

DOI: 10.1007/978-3-540-70890-2_5 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Miscellaneous<br />

[1980Rus] studied martensite aging in Fe-13.4Ni-2.6Fe (at.%) alloy. It proceeds in two stages.<br />

At the preisolation stage (300-450˚C) there occure the formation of Ni <strong>and</strong> Nb enriched<br />

submicroregions <strong>and</strong> Fe atomic ordering. The second stage heating temperature 450˚C results<br />

in isolation of disperse particles of Ni- <strong>and</strong> Nb-based intermetallic phases. The first stage<br />

produces the main strengthening. Aligned lamellar microstructure was obtained on alloy with<br />

a nominal composition of Fe-12Nb-17.7Ni (at.%) directionally solidified at a growth rate of<br />

0.5 cm·h –1 with the temperature gradient in the liquid-solid interface of about 200˚C·cm –1 .<br />

The orientation relationship between (αFe) matrix phase <strong>and</strong> lamellas of ε(Nb,Ni)Fe 2 intermetallic<br />

phase has been expressed as {111} α //{001} ε growth direction <strong>and</strong> (112) α//(010) ε at<br />

the α-ε interface.<br />

It was shown by [1993Zhi] that upon heat treatment of rapidly quenched alloys,<br />

γ 00 (superstructure of the D0 22 type)- <strong>and</strong> γ’ (superstructure of the L1 2 type)- phase precipitation<br />

precedes the formation of the stable NbNi3 phase. Fine precipitates of the Ll2 type ordered<br />

phase observed upon annealing in the alloys with 6 <strong>and</strong> 8 at.% Nb result from ordering<br />

processes in the Ni base γ solid solution. The processes develop actively upon annealing at<br />

900 - 1100˚C in the alloy where the long-range order in the initial state has been suppressed by<br />

rapid quenching.<br />

. Table 1<br />

Investigations of the Fe-Nb-Ni <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1975Pan] Optical metallography, X-ray<br />

diffraction, DTA<br />

[1980Rus] NGR, DSC, dilatometry, resistivity,<br />

Vickers hardness<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

NbFe 2 - NbNi 3 join, quasibinary section<br />

Fe-2.6 at.% Nb 13.4 at.% Ni, water quenching<br />

from 1200˚C, annealed for 1 h at 250-750˚C<br />

[1980Tew] SEM, TEM, electron diffraction Directionally solidified Fe-12 at.% Nb-17.7 at.% Ni<br />

alloy, (αFe)+NbFe 2<br />

[1981Var] Optical metallography, X-ray<br />

diffraction, EDAX<br />

950˚C, then quenched. NbFe-NbNi <strong>and</strong> NbFe 2-<br />

NbNi 2 joins<br />

[1984Ska] XRD 35 to 50 at.% Nb, < 85 at.% Ni, quenched with<br />

rates from 10 2 to 10 6 K·s –1<br />

[1985Val] XRD, Neutron diffraction, resistivity<br />

measurements<br />

[1987Val] Neutron diffraction on alloy with<br />

different Ni isotopic composition<br />

Ni 3Fe 1–xNb x, water quenched from 1100˚C with<br />

tempering at 900˚C<br />

Nb 0.3Fe 0.7Ni 3 annealed at 850˚C <strong>and</strong> slow cooled<br />

to room temperature<br />

[1989Sav] X-ray diffraction Ni-Nb <strong>and</strong> Fe-Nb quenched from the melt at<br />

cooling rates up to 10 4 -10 6 ˚C·s –1<br />

[1992Sos] Optical microscopy, TEM, XRD,<br />

microhardness, crystallographic<br />

texture<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

Fe–Nb–Ni 5<br />

16 at.% Fe, < 8 at.% Nb, rapid quenching by<br />

spinning, heat treatment in the temperature<br />

range 300-1000˚C for 1 h<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_5<br />

ß Springer 2009<br />

5


6 5<br />

Fe–Nb–Ni<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1993Zhi] SEM, XRD, electron microdifraction,<br />

phase ordering investigation<br />

[1993Kov] X-ray diffraction, TEM, shape<br />

memory effect investigation<br />

[2001Tak] SEM, TEM, XRD, EPMA (Electron<br />

Probe Microanalysis)<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

Ni 85–xFe 15Nb x (x = 4, 6, 8); rapid quenching by<br />

spinning, annealed 200-1200˚C<br />

100 h at 1200˚C then water quenched, aged at<br />

650˚C for 6 to 100 h., 31 mass % Ni, 4.6 to 6.8<br />

mass% Nb. Shape memory effect<br />

1200-1250˚C, 15 to 25 at.% Nb, 5 to 25 at.% Fe,<br />

phase diagram<br />

[2005Tak] SEM, TEM, XRD, EPMA 1200˚C, 15 to 40 at.% Ni, 15 to 35 at.% Nb, phase<br />

diagram<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice Parameters<br />

[pm] Comments/References<br />

(δFe) cI2 a = 293.15 pure Fe at 1394˚C [V-C2, Mas2]<br />

1538 - 1190 Im3m<br />

W<br />

0-3.27 at.% Nb at 1370˚C [1993Bej]<br />

0-3.8 at.% Ni at 1514˚C [2008Kuz]<br />

(αFe) cI2 a = 286.65 pure Fe at 25˚C [Mas2]<br />

< 912 Im3m 0-0.73 at.% Nb at 960˚C [1993Bej]<br />

W 0-4.7 at.% Ni at 347˚C [2008Kuz]<br />

γ, (γFe,Ni) cF4 a = 354 Ni-10 at.% Fe<br />

Fm3m<br />

Cu<br />

a = 355.2 Ni-10 at.% Fe-2 at.% Nb [1990Cho]<br />

(γFe) a = 364.67 pure Fe at 915˚C [Mas2]<br />

1394 - 912 0-1.0 at.% Nb at 1190˚C [1993Bej]<br />

(Ni) a = 352.40 pure Ni at 25˚C [Mas2]<br />

< 1455 0-12.4 at.% Nb at 1282˚C [1998Oka]<br />

(Nb) cI2 a = 330.04 pure Nb at 25˚C [Mas2]<br />

< 2469 Im3m 0-4.2 at.% Ni at 1295˚C [1998Oka]<br />

W 0-7.0 at.% Fe at 1500˚C [1993Bej]<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

DOI: 10.1007/978-3-540-70890-2_5 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Nb–Ni 5<br />

Lattice Parameters<br />

[pm] Comments/References<br />

λ1,Nb1–y(Fe1–xNix) 2 hP12 Laves <strong>Phase</strong><br />

P63/mmc x < 0.45, - 0.23 < y < 0.26<br />

MgZn2 [2005Tak]<br />

NbFe2 32-37 at.% Nb [1993Bej]<br />

< 1630 a = 483.8<br />

c = 788.9<br />

33.3 at.% Nb [2005Tak]<br />

a = 481.0<br />

c = 785.2<br />

27.1 at.% Nb [2005Tak]<br />

μ, (Fe,Nb,Ni) hP13<br />

Nb6Fe7 R3m a = 492.8 48-52 at.% Nb [1993Bej]<br />

< 1520 Fe7W6 c = 2683<br />

Nb7Ni6 a = 489.6 Nb49.6Ni50.4 [2002Jou]<br />

< 1295 c = 2661.4<br />

a = 495.9<br />

c = 2699.8<br />

Nb56..9Ni43.1 [2002Jou]<br />

FeNi3 cP4 a = 355.23 63 to 85 at.% Ni [2008Kuz]<br />

< 517 Pm3m<br />

AuCu3 FeNi (metastable) tP2 a = 357.9 [2008Kuz]<br />

P4/mmm<br />

AuCu<br />

c = 357.9<br />

NbNi3 oP8 22.7-27.5 at.% Nb [1998Oka]<br />

< 1402 Pmmm a = 511.6 [1991Gup]<br />

βCu3Ti b = 425.9<br />

c = 456.5<br />

NbNi8 tI* a = 1080 11.1 at.% Nb [1991Gup]<br />

< 535 - c = 360<br />

* τ, (Fe,Nb,Ni) hP24 - Fe-22Nb-58Ni [2001Tak]<br />

λ2,Nb1–y(FexNi1–x) 2 cF24 - Laves phase. Probably metastable<br />

Fd3m<br />

[1989Sav]<br />

MgCu2 0.35 < x < 0.67; y < 0.25<br />

λ3, Nb(FeNi) 2 hP24 - Laves phase. Probably metastable<br />

P63/mmc [1989Sav]<br />

MgNi2 ~ 40 at.% Fe <strong>and</strong> 40 at.% Ni<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_5<br />

ß Springer 2009<br />

7


8 5<br />

Fe–Nb–Ni<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

γ ’ cP4 Nearly the same<br />

Pm3m<br />

AuCu 3<br />

Lattice Parameters<br />

[pm] Comments/References<br />

parameters as those of<br />

the mother γ phase<br />

Metastable phase formed by aging a<br />

rapid quenched melt Ni-16at.%<br />

Fe-(6, 8) at.% Nb [1993Zhi]<br />

γ ’’ tI8 a = 361.4 Metastable [1993Kov, 1993Zhi]<br />

I4/mmm c = 757.6<br />

TiAl 3 ?<br />

. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

Nb Ni<br />

L Ð NbFe2 + NbNi3 1290 e L 16.2 27 56.8<br />

NbFe2 38.8 29.9 31.3<br />

NbNi3 5.1 25.6 69.3<br />

. Table 4<br />

Investigations of the Fe-Nb-Ni Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1971Lei] XRD, electron diffraction technique,<br />

TEM, hardness measurements<br />

[1972Mas,<br />

1974Mas]<br />

Electrical resistivity, initial<br />

permeability, coercive force,<br />

hardness<br />

[1976Hin] Electrical resistivity, crystal<br />

anisotropy, magnetostriction,<br />

[1978Mas] Magnetric permeability, coercive<br />

force<br />

Fe 67.3Ni 29.6Nb 3.1 (in at.%), quenched from<br />

1250˚C, aged at 700-800˚C, hardening<br />

950-1350˚C, 73-85 mass% Ni, 6-25 mass% Fe,<br />

high permeability alloys<br />

80 mass% Ni, 10 to 20 mass % Fe, alloys with<br />

high magnetic permeability<br />

Initial <strong>and</strong> maximum permeability<br />

DOI: 10.1007/978-3-540-70890-2_5 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 4 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1979Wen] TEM, X-ray diffraction, magnetic<br />

properties, Vickers hardness<br />

[1981Tai] X-ray diffraction, Vickers hardness,<br />

rolling texture<br />

Effect of modulated structure on hardness<br />

<strong>and</strong> magnetic permeability<br />

79Ni-8Nb-13Fe (mass%) alloy; after cold<br />

rolling with reduction of 50 <strong>and</strong> 94%<br />

[1982Osi] Magnetic susceptibility, Curie points 20-800˚C, NbFe 2 - NbNi 3 join.<br />

Magnetic properties of the Laves<br />

phase λ 1<br />

[1985Kov1]<br />

[1985Kov2]<br />

Optical microscopy, XRD, resistivity,<br />

tensile test, bending deflection<br />

[1989Kov] Optical microscopy, resistivity,<br />

bending deflection measurements<br />

Mechanical properties <strong>and</strong> the degree of<br />

recovery of shape (shape memory alloys)<br />

The degree of recovery of shape<br />

[1990Cho] Instron type testing machine 10 to 20 mass % Ni, < 4 mass% Nb,<br />

compressive flow stress at 77 K.<br />

[1992Sos] Coercive force, magnetic<br />

permeability, microhardness<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–Ni 5<br />

16 mass% Fe, < 4 mass% Nb, mechanical<br />

properties after rapid quenching<br />

DOI: 10.1007/978-3-540-70890-2_5<br />

ß Springer 2009<br />

9


10 5<br />

Fe–Nb–Ni<br />

. Fig. 1<br />

Fe-Nb-Ni. Change in lattice parameters of the λ 1-NbFe 2 Laves phase with Ni content (line -<br />

calculation; empty circles - stoichiometric composition, filled circles - Fe-rich compositions<br />

DOI: 10.1007/978-3-540-70890-2_5 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-Nb-Ni. Isothermal section at 1200˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–Ni 5<br />

DOI: 10.1007/978-3-540-70890-2_5<br />

ß Springer 2009<br />

11


12 5<br />

Fe–Nb–Ni<br />

References<br />

[1971Lei] Leitch, K., Chaturvedi, M., “Aging Behavior of Fe-30Ni <strong>Alloy</strong>s Containing Niobium”, Metall. Trans.,<br />

2(5), 1407-1413 (Crys. Structure, Morphology, <strong>Phase</strong> Relations, Experimental, Kinetics, Mechan.<br />

Prop., 25)<br />

[1972Mas] Masumoto, H., Murakami, Y., Hinai, M., “Magnetic Characteristics of Ni-Fe-Nb <strong>Alloy</strong>s”, Trans. Jpn.<br />

Inst. Met., 13(3), 182-185 (1972), translated from J. Jpn. Ins. Met., 35(10), 985-988 (1971) (Experimental,<br />

Electr. Prop., Magn. Prop., 23)<br />

[1974Mas] Masumoto, H., Murakami, Y., Hinai, M., “Magnetic Properties of High Permeability <strong>Alloy</strong>s Hardperm<br />

in the Ni-Fe-Nb System”, J. Jpn. Inst. Met., 38(3), 238-241 (1974) (<strong>Phase</strong> Relations, Electr. Prop., Magn.<br />

Prop., Experimental, 4)<br />

[1975Pan] Panteleimonov, L.A., Aleshina, L.V., “<strong>Alloy</strong>s of the Fe 2Nb-Ni 3Nb System” (in Russian), Vestn. Moskov.<br />

Univ., (Khim), 16(5), 630-634 (1975) (Crys. Structure, Morphology, <strong>Phase</strong> Diagram, Experimental, #, 3)<br />

[1976Hin] Hinai, M., “The Origin of High Magnetic Permeability in Hardperm of the Ni-Fe-Nb System”, Trans.<br />

Jpn. Inst. Met., 17(11), 693-698 (1976), translated from J. Jpn. Ins. Met., 40(7), 682-686 (1976) (<strong>Phase</strong><br />

Relations, Experimental, Magn. Prop., 21)<br />

[1978Mas] Masumoto, H., Hinai, M., Murakami, Y., “The Influence of Sheet Thickness <strong>and</strong> Heat Treatment on the<br />

Magnetic Properties of Hardperm <strong>Alloy</strong>s in the Ni-Fe-Nb System”, Trans. Jpn. Inst. Met., 19(7), 385-389<br />

(1978) (<strong>Phase</strong> Relations, Experimental, Magn. Prop., 8) cited from abstract<br />

[1979Wen] Wenchong, X., Junjian, W., Xiujin, S., Zhihua, L., “An Investigation of Magnetic Ni-Fe-Mo <strong>and</strong> Ni-Fe-<br />

Nb <strong>Alloy</strong>s” (in Chinese), Acta Metall. Sin., 15(2), 252-258 (1979) (<strong>Phase</strong> Relations, Experimental,<br />

Magn. Prop., 8) cited from abstract<br />

[1980Rus] Rusanenko, V.V., Perkas, M.D., Shaposhnikov, N.G., Edneral, A.F. “Ageing of Fe-Ni-Nb <strong>and</strong> Fe-Ni-Nb-Co<br />

<strong>Alloy</strong>s Martensite” (in Russian), Metallofizika, 2(6), 56-62 (1980) (<strong>Phase</strong> Relations, Experimental, Electr.<br />

Prop., Mechan. Prop., 12)<br />

[1980Tew] Tewari, S.N., “Growth Crystallography of Directionally Solidified Fe-Nb-Ni Eutectic <strong>Alloy</strong>”, Metallography,<br />

13(4), 379-381 (1980) (Crys. Structure, Morphology, <strong>Phase</strong> Relations, Experimental, 2)<br />

[1981Tai] Tai, L.C., Tan, Z.J., “A Note on the Rolling Texture of Nickel-Iron-Niobium <strong>Alloy</strong>”, Texture of<br />

Crystalline Solids, 4(3), 153-157 (1981) (Morphology, Experimental, Mechan. Prop., 7)<br />

[1981Var] Varli, K.K., Druzhinia, T.I., D’yakonova, N.P., Pirogova, S.E., Rutman, A.M., “The Influence of <strong>Alloy</strong>ing<br />

with Cobalt <strong>and</strong> Nickel on the <strong>Phase</strong> Stability of the Fe-Nb System” (in Russian), Izv. Vys. Ucheb. Zaved.<br />

Chern. Metall., (9), 116-118 (1981) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 3)<br />

[1982Osi] Osipova, L.V., Panteleymonov, L.A., “Magnetic Properties of Fe-Ni-Zr <strong>and</strong> Fe-Ni-Nb <strong>Alloy</strong>s”, Russ.<br />

Metall., (3), 183-185 (1982), translated from Izv. Akad. Nauk, Met., (3), 205-207 (1982) (Experimental,<br />

Magn. Prop., 8)<br />

[1984Ska] Skakov, Y.A., Dyakonova, N.P., Savin, V.V., Semina, V.K., Sharshatkina, A.V., “Influence of Cooling<br />

Rate of Melt on Structure of <strong>Phase</strong>s in Fe-Co-Nb <strong>and</strong> Fe-Ni-Nb <strong>Systems</strong>” (in Russian), Izv. Vys. Ucheb.<br />

Zaved. Chern. Metall., (5), 85-90 (1984) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 6)<br />

[1985Kov1] Koval’, Yu.N., Kozlov, A.P., Monastyrskii, G.E., “Martensitic Transformation <strong>and</strong> Memory Shape Effect<br />

in Fe-Nb-Ni <strong>Alloy</strong>s”, Akad. Nauk Ukr. SSR, Metallofizika, 7(4), 53-59 (1985) (Crys. Structure, Morphology,<br />

<strong>Phase</strong> Relations, Experimental, Mechan. Prop., 15)<br />

[1985Kov2] Koval’, Yu.N., Kozlov, A.P., Monastyrskii, G.E., “The Effect of <strong>Phase</strong> Hardening on the Shape-Memory<br />

Effect in Fe-Ni-Nb <strong>Alloy</strong>s” (in Russian), Akad. Nauk Ukr. SSR Metallofizika, 7(5), 95-99 (1985)<br />

(Morphology, <strong>Phase</strong> Relations, Experimental, Mechan. Prop., 5)<br />

[1985Val] Valiyev, E.Z., Men’shikov, A.Z., Panakhov, T.M., “The Structural State of <strong>Alloy</strong>s Ni 3(Fe 1–xTi x) <strong>and</strong><br />

Ni 3(Fe 1–xNb x) During Atomic Ordering”, Phys. Met. Metallogr., 59(1), 123-129 (1985) (Crys. Structure,<br />

<strong>Phase</strong> Relations, Experimental, Electr. Prop., 14)<br />

[1987Val] Valiev, E.Z., Menshikov, A.Z., “Nature of K State in <strong>Alloy</strong>ed Permalloys” (in Russian), Fiz. Met.<br />

Metolloved., 63(5), 1030-1032 (1987) (Experimental, Crys. Structure, <strong>Phase</strong> Relations, 6)<br />

[1989Kov] Koval, Yu.N., Kozlov, A.P., Monastyrskii, G.E., “Influence of Work Hardening Caused by Martensitic<br />

Transformation on the Shape Memory Effect in Fe-Ni-Nb <strong>Alloy</strong>s”, Scr. Metall., 23(10), 1731-1734<br />

(1989) (Morphology, <strong>Phase</strong> Relations, Experimental, Mechan. Prop., 3)<br />

[1989Sav] Savin, V.V., “Formation <strong>and</strong> Stability of Laves <strong>Phase</strong>s in the System Ni-Fe-Nb”, Phys. Met. Metallogr.,<br />

68, 140-146 (1989), translated from Fiz. Met. Metalloved., 68(1), 143-149 (1989) (Crys. Structure, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Experimental, 16)<br />

DOI: 10.1007/978-3-540-70890-2_5 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Nb–Ni 5<br />

[1990Cho] Choi, G., Shinoda, T., Mishima, Y., Suzuki, T., “Solid Solution Hardening in <strong>Ternary</strong> Ni-Y(Y:Co, Pd,<br />

Fe)-Nb <strong>Alloy</strong>s”, ISIJ Int., 30(9), 780-785 (1990) (Thermodyn., Experimental, Kinetics, 20)<br />

[1991Gup] Gupta, K.L., “The Nb-Ni (Niobium-Nickel) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Nickel <strong>Alloy</strong>s”,<br />

Indian Inst. Met., Calcutta, Part 2, 151 (1991) (<strong>Phase</strong> Diagram, Review, 1)<br />

[1992Mes] Meshkov, L.L., Nesterenko, S.N., Uskova, E.N., “The Laws of <strong>Phase</strong> Equilibria in <strong>Ternary</strong> <strong>Systems</strong> of<br />

Refractory Transition Metals with Group VIIIB Metals”, Russ. Metall., (6), 140-144 (1992), translated<br />

from Izv. Ross. Akad. Nauk. Met., (6), 153-157 (1992) (<strong>Phase</strong> Relations, Calculation, 10)<br />

[1992Rag1] Raghavan, V., “The Fe-Nb-Ni (Iron-Niobium-Nickel) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Indian Inst. Met., Calcutta, 6B, 1025-1027 (1992) (Crys. Structure, <strong>Phase</strong> Diagram, Review, 11)<br />

[1992Rag2] Raghavan, V., “The Fe-Nb (Iron-Niobium) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s”, Indian<br />

Inst. Met., Calcutta, 6A, 38 (1992) (Crys. Structure, <strong>Phase</strong> Diagram, Review, 2)<br />

[1992Sos] Sosnin, V.V., Glezer, A.M., Zhigalina, O.M., “Structure <strong>and</strong> Properties of Microcrystalline <strong>Alloy</strong>s of the<br />

System Ni-Fe-Nb(Mo)”, Met. Sci. Heat Treat., 34(3-4), 195-202 (1992) (Crys. Structure, Morphology,<br />

Experimental, Magn. Prop., Mechan. Prop., 12)<br />

[1993Bej] Bejarano, J.M.Z., Gama, S., Ribeiro, C.A., Effenberg, G., “The Iron-Niobiun <strong>Phase</strong> Diagram”, Z.<br />

Metallkd., 84(3), 160-164 (1993) (Crys. Structure, Morphology, <strong>Phase</strong> Diagram, Experimental, #, 6)<br />

[1993Kov] Koval, Yu.N., Monastyrsky, G.E., “Reversible Martensite Transformation <strong>and</strong> Shape Memory Effect in<br />

Fe-Ni-Nb”, Scr. Metall. Mater., 28(1), 41-46 (1993) (Morphology, Experimental, Kinetics, 15)<br />

[1993Zhi] Zhigalina, O.M., Sosnin, V.V., Glezer, A.M., “The Effects of Heat Treatment on <strong>Phase</strong> Transformations<br />

in Rapidly Quenched Ni-Fe-Nb <strong>Alloy</strong>s”, Phys. Met. Metallogr., 75(2), 205-209 (1993), translated<br />

from Fiz. Met. Metallov., 75(2), 132-139 (1993) (Crys. Structure, Morphology, <strong>Phase</strong> Relations, Experimental,<br />

12)<br />

[1998Oka] Okamoto, H., “Nb-Ni (Niobium-Nickel)”, J. <strong>Phase</strong> Equilib., 19(3), 289 (1998) (<strong>Phase</strong> Diagram,<br />

Review, #, 7)<br />

[2001Tak] Takeyama, M., Morita, S., Yamauchi, A., Yamanaka, M., Matsuo, T., “<strong>Phase</strong> Equilibria Among γ,<br />

Ni 3Nb-δ <strong>and</strong> Fe 2Nb-ε <strong>Phase</strong>s in Ni-Nb-Fe <strong>and</strong> Ni-Nb-Fe-Cr <strong>Systems</strong> at Elevated Temperatures”, Proc.<br />

Int. Sympos., TMS-Miner. Metals & Mater. Soc., 333-344 (2001) (Crys. Structure, Morphology, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Experimental, #, 17)<br />

[2002Jou] Joubert, J.-M., Feutelais, Y., “Contribution of the Rietveld Method to Non-Stoichiometric <strong>Phase</strong><br />

Modeling. Part II: γ -Tl 5Te 3 <strong>and</strong> μ - Nb-Ni as Experimental Examples”, Calphad, 26(3), 427-438 (2002)<br />

(Crys. Structure, Calculation, Experimental, 15)<br />

[2004Rag] Raghavan, V., “Fe-Nb-Ni (Iron-Niobium-Nickel)”, J. <strong>Phase</strong> Equilib. Diffus., 25(6), 552 (2004) (<strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Review, 7)<br />

[2005Tak] Takeyama, M., Gomi, N., Morita, S., Matsuo, T., “<strong>Phase</strong> Equilibria <strong>and</strong> Lattice Parameters of Fe 2Nb<br />

Laves <strong>Phase</strong> in Fe-Ni-Nb <strong>Ternary</strong> System at Elevated Temperatures”, Mater. Res. Soc. Symp. Proc., 842,<br />

461-466 (2005) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, #, 11)<br />

[2008Kuz] Kuznetsov, V., “Fe-Ni (Iron-Nickel)”, MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg,<br />

G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published (2008) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, 41)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_5<br />

ß Springer 2009<br />

13


Iron – Niobium – Phosphorus<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Gabriele Cacciamani, Lesley Cornish, Damian M. Cupid, Jozefien De Keyzer<br />

Introduction<br />

The Fe-Nb-P system is only partially known. The main work on this system was done in the<br />

sixties by [1962Vog] who investigated the Fe rich corner. [1962Vog] prepared 250 alloy<br />

compositions in the Fe-FeP-Nb region from pure iron, red phosphorus <strong>and</strong> sheet niobium<br />

(purities not stated). The phase equilibria were studied by thermal analysis (cooling rate of 0.5<br />

to 2˚C·s –1 ), metallography, ray diffraction, hardness <strong>and</strong> magnetic measurements. Even though<br />

[1962Vog] presented a liquidus surface covering the Fe-FeP-NbP 2-Nb region of the system,<br />

their experimental measurements were limited to the Fe-FeP-Nb region. This is also the most<br />

important corner since niobium is used as a strengthening element in steels <strong>and</strong> phosphorus is<br />

a common impurity in steels [1987Gra]. The system was reviewed by [1988Rag].<br />

Binary <strong>Systems</strong><br />

The accepted binary Fe-Nb phase diagram is that from [1993Bej]. A thermodynamic calculation<br />

of the Fe-Nb system is from [2000Tof]. It incorporates many data points <strong>and</strong> is preferred<br />

to the earlier calculation of [1994Sri]. Both of these show the peritectic formation of the μ<br />

phase, rather than the earlier reported congruent formation [1986Pau].<br />

The Fe-P system is accepted from the critical assessment of [2002Per].<br />

The Nb-P phase diagram is not known, except for the partial diagram postulated by<br />

[1962Vog] to accommodate the NbP <strong>and</strong> NbP 2 phases [1931Hei].<br />

Solid <strong>Phase</strong>s<br />

Crystal structure data on unary, binary <strong>and</strong> ternary phase are summarized in Table 1.<br />

Since the Nb-P phase diagram not known, all binary Nb-P structures found in literature<br />

have been reported here, but it is not clear which are stable phases in the system.<br />

Three ternary compounds were identified by [1962Vog] in the Fe-FeP-Nb region. FeNbP<br />

(τ 1) is a well-established, congruently melting phase with the Co 2Si type structure [1962Vog,<br />

1966Run, 1965Kan1, 1973Mae]. The other two compounds melt incongruently <strong>and</strong> correspond<br />

to the formulae FeNb 2P(τ 2) <strong>and</strong> FeNb 4P(τ 3). The crystal structure of FeNb 4P has been<br />

determined by [1977Pal].<br />

Quasibinary <strong>Systems</strong><br />

Fe–Nb–P 6<br />

In the Fe-FeP-Nb region, [1962Vog] found three quasibinary systems of the simple eutectic<br />

type: Fe-τ 1 (Fig. 1), Fe 2Nb-τ 1 (Fig. 2), <strong>and</strong> FeP-τ 1, together with two quasibinaries of the<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_6<br />

ß Springer 2009<br />

1


2 6<br />

Fe–Nb–P<br />

simple peritectic type: Fe 2P-τ 1 (Fig. 3), <strong>and</strong> τ 1-τ 2, which they drew schematically. Three of these<br />

quasibinary sections are included in the FeP-Nb section. However, the quasibinary character of<br />

the FeP-Nb section does not extend to pure FeP because, at higher temperatures, this phase is<br />

in equilibrium with liquid <strong>and</strong> gas <strong>and</strong> tie lines are presumably not in the plane of the section.<br />

Additionally, [1965Kan1] reported a wider solubility range in τ 1 at 800˚C. These data are given<br />

in Table 2.<br />

Invariant Equilibria<br />

The reaction scheme shown in Fig. 4 is based on the work of [1962Vog]. The temperature <strong>and</strong><br />

composition of the U 2 reaction (see Table 2), which was added by [1988Rag], were changed to<br />

be consistent with the currently accepted Fe-Nb binary system [1993Bej]. In the solid state, the<br />

three-phase univariant line arising from the eutectoid reaction in the Fe-Nb system at 1190˚C<br />

passes through the ternary region to return to the Fe-Nb side <strong>and</strong> culminate in the peritectoid<br />

reaction at 960˚C. This situation arises, as the γ phase (γFe) in the Fe-P system is fully enclosed by<br />

aloop.<br />

Liquidus Surface<br />

Even though [1962Vog] presented a liquidus surface covering the Fe-FeP-NbP2-Nb region of<br />

the system, their experimental measurements were limited to the Fe-FeP-Nb region. The rest<br />

of the system was inferred from the known binary <strong>and</strong> ternary compounds, <strong>and</strong> using<br />

compatibility triangles. The surface for the Fe-FeP-Nb region has been redrawn in Fig. 5<br />

using the currently accepted binary data. Reaction U 2 was introduced by [1988Rag] to account<br />

for the presence of the μ phase in the Fe-Nb system (not included by [1962Vog]), <strong>and</strong> altered<br />

here to be consistent with the currently accepted Fe-Nb binary of [1993Bej].<br />

[1997Vav] studied the metastable (rapidly-cooled) liquidus around Fe 3P in order to obtain<br />

amorphous phases.<br />

Isothermal Sections<br />

[1988Rag] has drawn isothermal sections (at.% <strong>and</strong> mass%) at 25˚C using the data of<br />

[1962Vog] <strong>and</strong> adding μ, <strong>and</strong> this is redrawn here to be consistent with the currently accepted<br />

Fe-Nb binary system (Fig. 6). [1965Kan1] determined an isothermal section for the iron rich<br />

region at 800˚C. Their results indicated a wider homogeneity range for FeNbP (τ1) extending<br />

towards Fe3P, rather than the line compound of [1962Vog] at room temperature. Niobium<br />

drastically lowers the solubility of phosphorus in (αδFe) at 1000˚C [1965Kan2].<br />

For non-equilibrium alloys (annealed rapidly-cooled specimens), [1997Vav] showed that<br />

Fe 2P extends further into the ternary than Fe 3P, <strong>and</strong> there was a (αδFe) + Fe 3P+Fe 2P threephase<br />

field at 1.1 at.% Nb.<br />

DOI: 10.1007/978-3-540-70890-2_6 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Temperature – Composition Sections<br />

[1962Vog] has drawn a number of vertical sections, including those between Fe 3P-NbFeP (Fig.<br />

7) (with some apparently unresolved data points at about 1050˚C); Fe 3Nb-Nb 4FeP, at 2 mass%<br />

Nb (Fig. 8) <strong>and</strong> at 2 mass% P. The latter is inconsistent with the currently accepted Fe-Nb<br />

binary diagram because of μ in the latter, but [1962Vog] only had one alloy in that region.<br />

A small region of amorphous phases was found in the Fe3P region <strong>and</strong> a metastable Fe2P<br />

phase was identified [1989Bab, 1997Vav].<br />

Thermodynamics<br />

The vapor pressure of phosphorus on liquid Fe-Nb-P alloys has been measured by the<br />

transportation method at 1400˚C by [1984Ban] (Table 3) <strong>and</strong> by Knudsen effusion method<br />

by [1979Yam, 1983Yam] at 1600˚C.<br />

The two authors calculated an interaction coefficient eNb P defined as:<br />

e Nb<br />

P<br />

@IngNb P ¼<br />

@xNb Xp!0<br />

on the basis of the Chipman interstitial solution model.<br />

According to [1984Ban] eNb P = –16.1±1.6 while according to [1979Yam, 1983Yam] itis<br />

eNb P = –5.4±1.2. A calculation performed by [1993Din] at 1600˚C produced a value of<br />

= –6.92.<br />

e Nb<br />

P<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–Nb–P 6<br />

Phosphorous is a glass-forming element <strong>and</strong> is used in the manufacture of iron-based<br />

amorphous magnetically soft materials [1997Vav]. Unfortunately, phosphorus is also one of<br />

the most harmful elements for steel products so that efforts have been made to remove<br />

phosphorus from molten iron in the steelmaking process, or employ alloying additions<br />

(e.g. Nb) that react to form precipitates <strong>and</strong> thus tie up P [1987Gra]. Iron phosphides may<br />

improve resistance to scale formation, but, unless rectified, phosphorous segregates to the<br />

grain boundaries, <strong>and</strong> also forms low melting point eutectics. These result in the impairment<br />

of mechanical properties from reduced grain boundary cohesion <strong>and</strong> temper embrittlement<br />

[1984Moe]. High Fe content alloys were studied [1984Moe], <strong>and</strong> P was consistently enriched<br />

at the grain boundaries, usually with Nb, but not in equilibrium conditions. Increased Nb<br />

decreased the grain boundary P segregation, as did increasing tempering temperature. The<br />

influence of various elements on the segregation of phosphorus atoms in iron was examined<br />

by Mössbauer spectroscopy [1999Vav], <strong>and</strong> ranked in decreasing influence as: Mn > Si > V ><br />

Nb > Mo.<br />

Experimental studies of properties are summarized in Table 4.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_6<br />

ß Springer 2009<br />

3


4 6<br />

Fe–Nb–P<br />

Miscellaneous<br />

Crystallization kinetics were derived by [1990Bab1] using DTA <strong>and</strong> electrical resistance under<br />

isothermal conditions. Mössbauer measurements undertaken by [1973Mae] indicated that Fe<br />

atoms only occupied the smaller lattice positions. Similar work by [1990Bab2, 1999Vav,<br />

2000Vav] on rapidly-quenched alloys, showed that metastable Fe2P made the stable formation<br />

of amorphous Fe3P difficult. Metastable Fe2P was anti-ferromagnetic [1999Vav]. [1962Vog]<br />

found that alloys containing (αδFe) were ferromagnetic; their other compositions were<br />

paramagnetic.<br />

. Table 1<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

αδ, (αδFe) cI2 up to 4.9 at.% P at 1048˚C [1997Hin]<br />

Im3m up to 3.2 at.% Nb at 1373˚C [1986Pau]<br />

W up to 0.7 at.% Nb at 961˚C [1986Pau]<br />

(δFe)<br />

1538 - 1394<br />

a = 293.15 pure Fe at 1390˚C [V-C2, Mas2]<br />

(αFe)<br />

< 912<br />

a = 286.65 pure Fe at 25˚C [Mas2]<br />

(γFe) cF4 a = 364.67 pure Fe at 915˚C [V-C2, Mas2]<br />

< 1394 - 912 Fm3m up to 0.6 at.% P at 1150˚C [1997Hin]<br />

Cu up to 0.9 at.% Nb at 1210˚C [1986Pau]<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

(Nb) cI2 a = 330.04 at 25˚C [Mas2]<br />

< 2469 Im3m<br />

W<br />

(P) (I) cP1<br />

Pm3m<br />

αPo<br />

a = 220 to 227 10 to 32 GPa [V-C2]<br />

(P) (II) hR6 a = 337.7 high pressure phase,<br />

R3m<br />

As<br />

c = 880.6 5 to 11.1 GPa [V-C2]<br />

(P) (red) c*66 a = 1131 sublimation at 1 bar triple point at 576˚C, > 36.3<br />

< 417<br />

bar; triple point at 589.6˚C at 1 atm [Mas2, V-C2]<br />

(P) (white) c** a = 718 at 25˚C [Mas2]<br />

< 44.14 ? common form of elemental P, probably less stable<br />

P (white)<br />

than P (red) at 25˚C [Mas2]<br />

DOI: 10.1007/978-3-540-70890-2_6 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(P) (black) oC8 a = 331.36 at 25˚C [Mas2, V-C2]<br />

Cmca b = 1047.8<br />

P (black) c = 437.63<br />

ε, NbFe2 hP12 a = 483.8 32 to 37 at.% Nb [1993Bej]<br />

< 1630 P63/mmc MgZn2 c = 788.9<br />

μ, Nb6Fe7 hR39 a = 492.8 48.0-52.0 at.% Nb [1993Bej]<br />

≲ 1520 R3m<br />

Fe7W6 c = 268.3 “FeNb” [1986Pau]<br />

Nb3Fe2 1490 - 1460<br />

- - metastable [1991Bej]<br />

Fe3P tI32 a = 910.8 25 at.% P [Mas2, V-C2]<br />

< 1166 I4 c = 445.5<br />

Ni3P a = 917.4<br />

c = 452.99<br />

at 678˚C [2002Per]<br />

Fe2P hP9 a = 586.4 33.3 at.% P<br />

< 1370 P62m<br />

Fe2P c = 346.0 [Mas2, V-C2]<br />

Fe2P (I) oP12 a = 577.5 at 800˚C <strong>and</strong> 80 kbar [Mas2, V-C2]<br />

Pnma b = 357.1<br />

Co2Si c = 664.1<br />

FeP oP8 a = 520.8 [V-C2]<br />

< 1370 Pnma b = 316<br />

MnP c = 581.2<br />

FeP2 oP6 a = 497.29 [1934Mei]<br />

Pnnm b = 565.68<br />

FeS2 (marcasite)<br />

c = 272.3<br />

FeP4 mP30 a = 461.9 [1978Jei]<br />

P21/c b = 1367.0<br />

FeP4 c = 700.2<br />

β =101.48˚<br />

FeP4 (I) oC20 a = 500.5 at 1100˚C <strong>and</strong> 60 kbar [1978Sug]<br />

C2221 b = 1021.3<br />

FeP4 c = 553.0<br />

Nb3P tP32 a = 1012.8 [V-C2]<br />

P42/n Ti3P c = 508.9<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–P 6<br />

DOI: 10.1007/978-3-540-70890-2_6<br />

ß Springer 2009<br />

5


6 6<br />

Fe–Nb–P<br />

. Table 1 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

Nb2P oP54 a = 1807.9 [V-C2]<br />

Pmma b = 342.5<br />

Nb2P c = 1385.8<br />

Nb7P4 mC44 a = 1495.0 [V-C2]<br />

C2/m b = 344.0<br />

Nb7P4 c = 1384.8<br />

β = 104.74˚<br />

Nb5P3 oP64 a = 2538.4 [V-C2]<br />

Pnma b = 343.3<br />

Nb5As3 c=1148.3<br />

Nb8P5 oP54 a = 2620.0 [V-C2]<br />

Pbam b = 946.5<br />

Nb8P5 c = 346.4<br />

NbP tI8 a = 333.4 [V-C2]<br />

I41md NbAs<br />

c = 1137.6<br />

Nb4P7 tP29 a = 746.8 [V-C2]<br />

P4m2<br />

V4P7 c=764.9<br />

NbP2 mC12 a = 887.15 [V-C2]<br />

C2 b=326.63<br />

NbSb2 c = 751.94<br />

β = 119.10˚<br />

Nb2P5 oP28 a = 1674.2 prepared at 5 GPa [V-C2]<br />

Pnma b = 335.0<br />

Nb2P5 c=791.2<br />

* τ1, NbFeP oP12 a = 613.9 [1966Run, V-C2]<br />

< 1820 Pnma b = 358.5 Congruent melting point [1962Vog]<br />

Co2Si c=700.6<br />

* τ2, Nb2FeP<br />

≲ 1585<br />

- - Incongruent melting point [1962Vog]<br />

* τ3,Nb4FeP tP12 a = 613.0 [V-C2]<br />

≲ 1545 P4/mcc<br />

CoNb4Si c = 500.6 Incongruent melting point [1962Vog]<br />

DOI: 10.1007/978-3-540-70890-2_6 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

Nb P<br />

L+τ1 Ð τ2 ~1750 p1 L 21.3 57.8 20.9<br />

L+τ2 Ð τ3 1660 p2 L 10.1 80.0 9.9<br />

L Ð τ3 + (Nb) ~1600 e1 L 9.2 82.4 8.4<br />

L Ð ε + τ1 1555 e2 L 52.6 33.3 14.1<br />

L+τ1 Ð ε + τ2 1537 U1 L 38.9 48.6 12.5<br />

L+ε Ð μ + τ2 ~1510 U2 L ~41 ~51.5 ~7.5<br />

L+τ2 Ð μ + τ3 1503 U3 L 39.5 56.8 3.7<br />

L Ð μ + τ3 + (Nb) 1489 E1 L 36.3 61.2 2.5<br />

L+τ1 Ð Fe2P 1405 p4 L 64.7 2.0 33.3<br />

L Ð τ1 + FeP ~1400 e4 L 46.5 7.7 45.8<br />

L Ð τ1 +(αδFe) ~1303 e6 L 83.5 8.2 8.3<br />

L Ð ε + τ1 +(αδFe) 1295 E2 L 84.0 9.3 6.7<br />

L+τ1 Ð FeP + Fe2P 1275 U4 L 58.9 1.8 39.3<br />

L+Fe2PÐ τ1 +Fe3P 1125 U5 L 76.0 0.5 23.5<br />

L Ð μ + τ3 + (Nb) 1045 E3 L 82.6 0.7 16.7<br />

. Table 3<br />

Vapor Pressure Measurements<br />

<strong>Phase</strong>(s) Temperature [˚C] Pressure [bar] Comments<br />

Liquid (x Nb = 0.032,<br />

xP = 0.164)<br />

Liquid (xNb = 0.049,<br />

xP = 0.196)<br />

Liquid (xNb = 0.057,<br />

xP = 0.200)<br />

Liquid (x Nb = 0.064,<br />

xP = 0.209)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

1400 p P = 4.9·10 –5<br />

1400 p P = 5.1·10 –5<br />

1400 pP = 6.0·10 –5<br />

1400 p P = 4.0·10 –5<br />

MSIT 1<br />

Fe–Nb–P 6<br />

[1984Ban] transportation<br />

method<br />

[1984Ban] transportation<br />

method<br />

[1984Ban] transportation<br />

method<br />

[1984Ban] transportation<br />

method<br />

DOI: 10.1007/978-3-540-70890-2_6<br />

ß Springer 2009<br />

7


8 6<br />

Fe–Nb–P<br />

. Table 4<br />

Investigations of the Fe-Nb-P Materials Properties<br />

Reference<br />

Method / Experimental<br />

Technique Type of Property<br />

[1973Mae] Mössbauer Site occupancy; ordering<br />

[1984Moe] Auger electrons P grain boundary enrichment<br />

[1990Bab1] DTA, electrical resistance, TEM Kinetics; time dependence of crystallization<br />

volume<br />

[1990Bab2] Mössbauer Site occupancy; ordering<br />

[1999Vav] Mössbauer <strong>Phase</strong> identification; magnetic studies<br />

DOI: 10.1007/978-3-540-70890-2_6 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-Nb-P. The (αδFe) - τ 1 quasibinary system<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–P 6<br />

DOI: 10.1007/978-3-540-70890-2_6<br />

ß Springer 2009<br />

9


10 6<br />

Fe–Nb–P<br />

. Fig. 2<br />

Fe-Nb-P. The NbFe 2 - τ 1 quasibinary system<br />

DOI: 10.1007/978-3-540-70890-2_6 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-Nb-P. The Fe 2P-τ 1 quasibinary system<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–P 6<br />

DOI: 10.1007/978-3-540-70890-2_6<br />

ß Springer 2009<br />

11


12 6<br />

Fe–Nb–P<br />

. Fig. 4<br />

Fe-Nb-P. Partial reaction scheme in the Fe-FeP-Nb region<br />

DOI: 10.1007/978-3-540-70890-2_6 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-Nb-P. Partial liquidus projection in the Fe-FeP-Nb region<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–P 6<br />

DOI: 10.1007/978-3-540-70890-2_6<br />

ß Springer 2009<br />

13


14 6<br />

Fe–Nb–P<br />

. Fig. 6<br />

Fe-Nb-P. Partial isothermal section at 25˚C<br />

DOI: 10.1007/978-3-540-70890-2_6 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 7<br />

Fe-Nb-P. Vertical section τ 1 -Fe 3P<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–P 6<br />

DOI: 10.1007/978-3-540-70890-2_6<br />

ß Springer 2009<br />

15


16 6<br />

Fe–Nb–P<br />

. Fig. 8<br />

Fe-Nb-P. Section at 2 mass% Nb, plotted in at.%<br />

DOI: 10.1007/978-3-540-70890-2_6 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–Nb–P 6<br />

[1931Hei] Heinerth, E., Biltz, W., (in German) Z. Anorg. Allg. Chem., 198, 168-177 (1931) (<strong>Phase</strong> Diagram,<br />

Experimental, 12) quoted in [1962Vog]<br />

[1934Mei] Meisel, K., “Crystal Structure of FeP 2” (in German), Z. Anorg. Chem., 218(4), 360-364 (1934) (<strong>Phase</strong><br />

Diagram, Crys. Structure, Experimental, 5)<br />

[1962Vog] Vogel, R., Bleichroth W., “The Iron-Phosphorus-Niobium <strong>Ternary</strong> System” (in German), Arch.<br />

Eisenhuttenwesen., 33(1), 195-210 (1962) (<strong>Phase</strong> Diagram, Experimental, #, *, 27)<br />

[1965Kan1] Kaneko, H., Nishizawa, T., Tamaki, K., “Phosphide-<strong>Phase</strong>s in <strong>Ternary</strong> <strong>Alloy</strong>s of Fe, P <strong>and</strong> Other<br />

Elements” (in Japanese), Nippon Kinzoku Gakkai-shi, 29(2), 159-165 (1965) (<strong>Phase</strong> Diagram, Morphology,<br />

Experimental, 24)<br />

[1965Kan2] Kaneko, H., Nishizawa, T., Tamaki, K., Tanifuji, A., “Solubility of Phosphorus in α <strong>and</strong> γ Iron” (in<br />

Japanese), Nippon Kinzoku Gakkai-shi, 29(2), 166-170 (1965) (Experimental, 20)<br />

[1966Run] Rundqvist, S., Nawapong, P.C., “The Crystal Structure of ZrFeP <strong>and</strong> Related Compounds”, Acta Chem.<br />

Sc<strong>and</strong>., 20(8), 2250-2254 (1966) (Crys. Structure, Experimental, 9)<br />

[1973Mae] Maeda, Y., Takashima, Y., “Mössbauer Studies of FeNiP <strong>and</strong> Related Compounds”, J. Inorg. Nucl.<br />

Chem., 35(6), 1963-1969 (1973) (Crys. Structure, Thermodyn., Experimental, Electronic Structure, 12)<br />

[1977Pal] Palfii, Ya.F., Kuzma, Yu.B., “New <strong>Ternary</strong> Phosphides with the Nb 4CoSi Type Structure”, Dopov. Akad.<br />

Nauk Ukrain. RSR, A(3), 262-265 (1977) (Experimental, 3)<br />

[1978Jei] Jeitschko, W., Baun, D.J., “Synthesis <strong>and</strong> Crystal Structure of the Iron Polyphosphide FeP4”, Acta<br />

Crystallogr., 34B, 3196-3201 (1978) (<strong>Phase</strong> Diagram, Crys. Structure, Experimental, 30)<br />

[1978Sug] Sugitani, M., Kinomura, N., Koizumi, M., “Preparation <strong>and</strong> Properties of a New Iron Phosphide FeP 4”,<br />

J. Solid State Chem., 26(2), 195-201 (1978) (Crys. Structure, Experimental, 14)<br />

[1979Yam] Yamada, K., Kato, E., “Mass Spectrometric Determination of Activities of Phosphorus in Liquid<br />

Fe-P-Si, Al, Ti, V, Cr, Co, Ni, Nb <strong>and</strong> Mo <strong>Alloy</strong>s” (in Japanese), Tetsu to Hagane (J. Iron Steel Inst. Jpn.),<br />

65(2), 273-280 (1979) (Experimental, Thermodyn., 40)<br />

[1983Yam] Yamada, K., Kato, E., “Effect of Dilute Concentrations of Si, Al, Ti, V, Cr, Co, Ni, Nb <strong>and</strong> Mo on the<br />

Activity Coefficient of P in Liquid Fe”, Trans. Iron Steel Inst. Jpn., 23(1), 51-55 (1983) (Experimental,<br />

Thermodyn., 16) translated from [1979Yam]<br />

[1984Ban] Ban-Ya, S., Maruyama, N., Kawase, Y., “Effects of Ti, V, Cr, Mn, Co, Ni, Cu, Nb, Mo <strong>and</strong> W on the<br />

Activity of Phosphorus in Liquid Iron” (in Japanese), Tetsu to Hagane, 70(1), 65-72 (1984) (Thermodyn.,<br />

Experimental, 21)<br />

[1984Moe] Moeller, R., Grabke, H.J., “Grain Boundary Segregation of Phosphorus in Fe-Nb-P <strong>and</strong> Fe-Nb-C-P<br />

<strong>Alloy</strong>s”, Scr. Metall., 18, 527-530 (1984) (Experimental, Kinetics, 7)<br />

[1986Pau] Paul, E., Swartzendruber, L.J., “The Fe-Nb (Iron-Niobium) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 7(3),<br />

248-254 (1986) (Assessment, Crys. Structure, Magn. Prop., <strong>Phase</strong> Diagram, Review, Thermodyn., 83)<br />

[1987Gra] Grabke, H.J., Moller, R., Erhart, H., Brenner, S.S., “Effects of the <strong>Alloy</strong>ing Elements Ti, Nb, Mo <strong>and</strong> V<br />

on the Grain Boundary Segregation of P in Iron <strong>and</strong> Steels”, Surf. Interface Anal., 10, 202-209 (1987)<br />

(Experimental, Phys. Prop., 20)<br />

[1988Rag] Raghavan, V., “The Fe-Nb-P (Iron-Niobium-Phosphorus) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Indian Inst. Met., Calcutta, 3, 111-119 (1988) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Review, 7)<br />

[1989Bab] Babaeva, R.M., Vavilova, V.V., Kovneristyi, Yu.K., “Metastable <strong>Phase</strong> Equilibria <strong>and</strong> Inclination to<br />

Amorphization of the <strong>Alloy</strong>s in the <strong>Systems</strong> Fe-P-M (M: Mo, Nb, V)” (in Russian), Dokl. Akad. Nauk<br />

SSSR, 304(1), 139-142 (1989) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 5)<br />

[1990Bab1] Babaeva, R.M., Vavilova, V.V., Kovneristyi, Y.K., Musin, V.R., “Kinetics of Crystallization<br />

of Amorphous-<strong>Alloy</strong>s of Fe-P-M (M = Mo, Nb, V) <strong>Systems</strong>”, Russ. J. Inorg. Chem. (Engl. Transl.),<br />

35(8), 1224-1226 (1990), translated from Zh. Neorg. Khim., 35, 2147-2150 (1990) (Experimental,<br />

Morphology, Thermodyn., 7)<br />

[1990Bab2] Babaeva, R.M., Baldokhin, Yu.V., Kolotyrkin, P.Ya., Vavilova, V.V., “Mössbauer Study of Rapidly<br />

Quenched <strong>Alloy</strong>s of the <strong>Systems</strong> Fe-P-M (M: Mo, Nb, V)” (in Russian), Dokl. Akad. Nauk SSSR, 310(2),<br />

366-371 (1990) (Crys. Structure, Experimental, <strong>Phase</strong> Relations, 7)<br />

[1991Bej] Bejarano, J.M.Z., Gama, S., Ribeiro, C.A., Effenberg, G., Santos, C., “On the Existence of the Fe 2Nb 3<br />

<strong>Phase</strong> in the Fe-Nb System”, Z. Metallkd., 82(8), 615-620 (1991) (Assessment, Experimental, <strong>Phase</strong><br />

Diagram, 8)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_6<br />

ß Springer 2009<br />

17


18 6<br />

Fe–Nb–P<br />

[1993Bej] Bejarano, J.M.Z., Gama, S., Ribeiro, C.A., Effenberg, G., “The Iron-Niobium <strong>Phase</strong> Diagram”,<br />

Z. Metallkd., 84(3), 160-164 (1993) (Experimental, <strong>Phase</strong> Diagram, 6)<br />

[1993Din] Ding, X., Wang, W., Han, Q., “Thermodynamic Calculation of Fe-P-j System Melt”, Acta Metall. Sin.<br />

(China), 29(12), B527-B532 (1993) (Calculation, Theory, Thermodyn., 7)<br />

[1994Sri] Srikanth, S., Petric, A., “A Thermodynamic Evaluation of the Fe-Nb System”, Z. Metallkd., 85, 164-170<br />

(1994) (Calculation, Thermodyn., 49)<br />

[1997Hin] Hino, M., Nagasaka, T., Ban-Ya, S., “Activity of Phosphorus in α-Fe <strong>and</strong> <strong>Phase</strong> Diagram of Fe-Fe 2P<br />

System Above 1273 K”, Z. Metallkd., 88(12), 938-944 (1997) (Thermodyn., <strong>Phase</strong> Diagram, Experimental,<br />

34)<br />

[1997Vav] Vavilova, V.V., Kovneristyi, Y.K., “Preparation <strong>and</strong> Thermal Stability of Fe-P-M (M = Mo, V, Nb, Mn,<br />

Si) Amorphous <strong>Alloy</strong>s”, Inorg. Mater. (Engl. Trans.), 33(3), 275-281 (1997), translated from Neorgan.<br />

Mater., 33(3), 333-339 (1997) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 15)<br />

[1999Vav] Vavilova, V.V., Baldokhin, Yu.V., “Mössbauer Study of Rapidly Quenched Fe-P-E <strong>Alloy</strong>s (E = V, Nb,<br />

Mo, Mn, Si)”, Russ. Metall., (1), 132-139, (1999), translated from Russ. Akad. Nauk, Met., (1), 103-112<br />

(1999) (Experimental, <strong>Phase</strong> Relations, 20)<br />

[2000Vav] Vavilova, V.V., Kovneristyi, Y.K., “Preparation <strong>and</strong> Thermal Stability of Fe-P-M (M = Mo, V, Nb, Mn,<br />

Si) Amorphous <strong>Alloy</strong>s”, Inorg. Mater., 33(3), 275-281 (1997) (Experimental, <strong>Phase</strong> Relations, 13)<br />

[2000Tof] Toffolon, C., Servant, C., “Thermodynamic Assessment of the Fe-Nb System”, Calphad, 24(2), 97-112<br />

(2000) (Assessment, Calculation, <strong>Phase</strong> Relations, Thermodyn., #, *, 40)<br />

[2002Per] Perrot, P., Batista, S., Xing X., “Fe-P (Iron-Phosphorus)”, MSIT Binary Evaluation Program, in MSIT<br />

Workplace, Effenberg, G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; Document<br />

ID: 20.16107.1.20, (2002) (<strong>Phase</strong> Diagram, Assessment, Crys. Structure, <strong>Phase</strong> Relations, #, 23)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_6 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Niobium – Silicon<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Ludmila Tretyachenko<br />

Introduction<br />

Only a few experimental works were performed to determine phase equilibria in the Fe-Nb-Si<br />

system. [1956Gol] noted an extreme complexity of the phase diagram of this system <strong>and</strong> an<br />

existence of numerous ternary compounds. The isothermal section at 1000˚C was published<br />

by [1960Gol]. At least six compounds were found to exist in this system. Their exact<br />

compositions <strong>and</strong> crystal structures were not determined. A possibility of three more compounds<br />

was suggested. The compositions <strong>and</strong> crystal structure of six ternary compounds were<br />

established as a result of further investigations [1963Spi, 1965Gla, 1967Mar, 1969Yar, 1969Jei,<br />

1975Ste, 1980Ste, 1982Mal, 1983Mal].<br />

The homogeneity range boundary of the Laves phase at 1300˚C was determined by<br />

[1967Den]. The regions of the Laves <strong>and</strong> μ phases at 1100˚C were studied by [1972Sin].<br />

[1982Mal] investigated the phase equilibria in the range of 30 to 50 at.% Si at the temperature<br />

interval from 1000 to 1200˚C.<br />

Solid solutions based on the binary Laves phase NbFe 2 were studied by [1963Bar, 1967Den,<br />

1972Sin, 1985Tro, 1986Bla].<br />

Literature data on the phase equilibria <strong>and</strong> the ternary compounds were used by [1984Rag,<br />

1987Rag] to construct a tentative liquidus surface projection <strong>and</strong> the isothermal section at<br />

1150˚C.<br />

Investigations performed during last years concerned the structure <strong>and</strong> properties, such as<br />

magnetic, amorphous <strong>and</strong> nanocrystalline niobium alloys [1993Gao, 1994Gao, 2001Rix,<br />

2001Tur, 2005Bar, 2005Pen, 2005Tur, 2006Tur1, 2006Tur2].<br />

The only investigation of thermodynamic properties of the Fe-Nb-Si alloys was carried out<br />

by [1989Sud].<br />

The experimental investigations of the structure of alloys <strong>and</strong> the phase equilibria in the<br />

Fe-Nb-Si system are listed in Table 1.<br />

Binary <strong>Systems</strong><br />

The binary phase diagrams are accepted from [1993Bej] (Fe-Nb), [1982Kub] (Fe-Si) <strong>and</strong><br />

[Mas2] (Nb-Si).<br />

Solid <strong>Phase</strong>s<br />

Fe–Nb–Si 7<br />

Data on solid phases pertinent to the Fe-Nb-Si system are listed in Table 2.<br />

Significant solubility of the third element in the binary compounds was found only for the<br />

NbFe 2 (λ) <strong>and</strong> Nb 19Fe 21 (μ) phases.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_7<br />

ß Springer 2009<br />

1


2 7<br />

Fe–Nb–Si<br />

The λ phase homogeneity range reaches 25 at.% Si at 1300˚C [1967Den] <strong>and</strong> at 1100˚C<br />

[1972Sin]. [1960Gol] reported the silicon solubility in NbFe 2 at 1000˚C to be 25 at.% Si at 38<br />

at.% Nb. However, in the isothermal section at 1000˚C presented by [1960Gol] the homogeneity<br />

range of the λ phases is extended up to ~ 34 at.% Si.<br />

Silicon additions to the λ phase replace iron atoms rather than niobium <strong>and</strong> decrease<br />

the c parameter whereas the a parameter remains nearly constant along the isopleth ~33 at.%<br />

Nb. [1972Sin] did not reveal the c parameter to change along the constant niobium line<br />

30 at.% Nb.<br />

The μ phase was considered to be σ phase by [1960Gol].<br />

The solubility in other binary phases does not exceed 1 at.% Nb or Si.<br />

The homogeneity ranges of the ternary phases E, V, τ 1, τ 3 <strong>and</strong> τ 4 are insignificant, about 1<br />

at.%. The single phase τ 2 was found in the range of 38.4 to 40.4 at.% Nb at 40.4 at.% Si<br />

[1979Ste]. The Nb 4FeSi phase (τ 4) was detected by [1965Gla]. However, [1972Sin] did not<br />

reveal this phase. [1980Ste] reported an existence of two modifications of the τ3 compound.<br />

The high temperature βNb4Fe3Si5 phase (Nb4Fe3Si5 type crystal structure [1982Mal]) was<br />

found to transform at 1130 ± 10˚C into a low temperature modification αNb 4Fe 3Si 5, for which<br />

the MgZn 2 crystal structure type was detected. The relation of the αNb 4Fe 3Si 5 to the NbFe 2<br />

Laves phase, which has the same crystal structure, is not clear.<br />

The ternary phase Nb 6Fe 16Si 7 (Cu 6Mg 16Si 7 type, D8 a) was obtained after annealing of an<br />

amorphous material prepared by mechanical alloying [2001Rix]. For the first time Nb 6Fe 16Si 7<br />

was identified by [1992Rix] in an annealed melt spun Fe 73.5Cu 1Nb 3Si 13.5B 9 alloy <strong>and</strong> was<br />

supposed to be stabilized by a certain B content. It was considered to be metastable. The alloy<br />

of the stoichiometric composition Nb:Fe:Si = 6:16:7 analyzed by [2001Rix] after a heat<br />

treatment at 900˚C for 1 h contained mainly the Nb 6Fe 16Si 7 phase. The Nb 6Fe 16Si 7 phase<br />

persisted after the heat treatment at 1050˚C for 90 h. The crystalline Nb 6Fe 16Si 7 also could be<br />

synthesized by melting pressed tablets of the elemental powders [2001Rix].<br />

It should be noted that [1960Gol] reported a phase with unknown structure in the region<br />

near the composition of Nb 6Fe 16Si 7 in the section at 1000˚C.<br />

Liquidus Surface<br />

Melting temperatures of investigated alloys have been determined in argon arc furnace using<br />

an optical pyrometer [1960Gol]. The results are shown in the concentration triangle but fields<br />

of primary crystallization of phases were not delimited.<br />

[1978Hao] found a eutectic, which had the composition 2.16Nb-74.61Fe-22.23Si (in at.%,<br />

4.5Nb-83.5Fe-12Si mass%) <strong>and</strong> melted at 1360˚C. The compositions of phases in the eutectic<br />

were not determined but [1978Hao] proposed the phase composition of the eutectic to be<br />

NbSi2 + Fe(Si), what is impossible. The eutectic may be composed from NbFe2 + (Fe).<br />

A tentative liquidus surface projection was constructed by [1984Rag] using the data of<br />

[1960Gol] <strong>and</strong> [1978Hao] as well as an assumption that none of the ternary compounds has a<br />

primary solidification field. The phase diagram of the Fe-Nb accepted by [1984Rag] does not<br />

correspond to the last version of this system [1993Bej]. Moreover, the eutectic reported by<br />

[1978Hao] is a three-phase eutectic, but not a four-phase, as assumed by [1984Rag]. So, the<br />

liquidus surface is not given here.<br />

DOI: 10.1007/978-3-540-70890-2_7 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Isothermal Sections<br />

The isothermal section at 1000˚C was reported by [1960Gol]. <strong>Phase</strong> equilibria involving six<br />

ternary phases were shown in this section. However, the compositions of the ternary phases<br />

were not determined exactly. Additionally three possible ternary phases not included in the<br />

presented equilibria were shown tentatively. The binary phase diagrams accepted by [1960Gol]<br />

do not correspond to the up to date versions [1993Bej, Mas2]. The λ phase field was found to<br />

be very wide (~ 15 - 40 at.% Nb) <strong>and</strong> to extend up to ~ 34 at.% Si.<br />

The isothermal section at 1000˚C reported by [1960Gol] was redrawn in the review by<br />

[1961Eng].<br />

[1967Den] determined the boundaries of the λ phase field at 1300˚C. It was shown that<br />

this field is smaller than that by [1960Gol] at 1000˚C. [1967Den] reported also that the size of<br />

the λ field was smaller by up to 2 at.% Nb at 1000˚C than at 1300˚C.<br />

A partial isothermal section in the region of the λ <strong>and</strong> μ phases at 1100˚C was published by<br />

[1972Sin]. The size of the λ phase field was found to be close to that determined by [1967Den],<br />

from ~ 25 to ~ 35 at.% Nb <strong>and</strong> up to 25 at.% Si.<br />

Both the λ <strong>and</strong> μ phase fields extend along constant niobium lines [1960Gol, 1963Bar,<br />

1967Den, 1972Sin]. Bewilderment arises from the statement of [1986Bla] that the homogeneity<br />

range of the phase with the MgZn 2 type crystal structure (Friauf - Laves phase) extends<br />

from NbFe 2 up to Nb 0.2Si 0.8Fe 2, that is along the line of constant Fe content of 66.7 at.% at Si<br />

content from 0 up to 26.7 at.%.<br />

[1982Mal] published the partial section in the region of silicon content above 30 at.%,<br />

which shows the phase equilibria in the temperature range of 1000 - 1200˚C. The phase<br />

equilibria in this region involve NbFeSi2, Nb4Fe4Si7, NbFe3Si5, NbFeSi2 <strong>and</strong> NbFeSi ternary<br />

phases.<br />

The data by [1967Den, 1972Sin, 1982Mal] as well as those by [1965Gla, 1975Ste, 1979Ste,<br />

1980Ste, 1985Gle1, 2001Ito, 2005Tur, 2006Tur1] were used to construct the isothermal section<br />

at ~ 1150˚C (Fig. 1).<br />

Calculations of the α - γ (bcc - fcc) phase equilibria were performed by [1989Kum]. The<br />

calculated partial isothermal sections are shown in Figs. 2 to 5.<br />

Thermodynamics<br />

Partial <strong>and</strong> integral enthalpies of dissolution (ΔH d) <strong>and</strong> mixing (ΔH mix, ΔH i) were determined<br />

by calorimetry [1989Sud] <strong>and</strong> are given in Table 3. A thermodynamic model used for<br />

calculation of the bcc - fcc equilibrium in the ternary system Fe-Nb-Si is presented by<br />

[1989Kum].<br />

Notes on Materials Properties <strong>and</strong> Application<br />

Fe–Nb–Si 7<br />

Mechanical properties of Fe-Si alloys with additions of niobium were investigated by<br />

[1985Gle1, 1985Gle2]. It was found that alloying of the high-silicon iron containing 11 at.%<br />

Si with niobium (up to 3 at.%) decreased the transition temperature from ductile to brittle<br />

fracture <strong>and</strong> extended a temperature range of plasticity.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_7<br />

ß Springer 2009<br />

3


4 7<br />

Fe–Nb–Si<br />

Investigations of magnetic <strong>and</strong> electric properties of these alloys were carried out by<br />

[1985Gle2]. It was revealed that niobium does not cause practically any change in magnetostriction,<br />

specific magnetic losses, magnetic induction <strong>and</strong> coercive force of high-silicon iron.<br />

A number of works concerned magnetic properties of Fe-Si alloys with addition of<br />

niobium rapidly quenched by melt spinning [2001Tur, 2005Bar, 2005Tur, 2006Tur1,<br />

2006Tur2] (amorphous or nanocrystalline materials). [2001Tur] revealed Nb to enhance the<br />

coercivity (about 10 times) in the alloys Fe100–(x+y)SixNby. However, the coercive force is nearly<br />

temperature independent up to about 400˚C in Fe 76Si 20Nb 2. An increase in the local magnetic<br />

stiffness with increasing Nb content was found by [2005Bar]. An increase of the coercive field,<br />

H c, <strong>and</strong> the Curie temperature, T C, for Fe 80–xSi 20Nb x (0 ≤ x ≤ 10) were reported [2005Tur].<br />

The temperature dependence of the coercive field in the melt-spun alloys was reported by<br />

[2006Tur1]. Magnetic transitions in the nanocrystalline alloy were investigated by [2006Tur2].<br />

Magnetic properties of the Laves phases were examined by [1960Gol]. He reported that a<br />

boundary exists, which divides the Laves phase field into two parts in accordance with<br />

magnetic properties of the alloys. However, the ferromagnetism of the alloys in the region of<br />

the Laves phase shown by [1960Gol] seems more probable to be explained by the presence of<br />

Fe based phases in these alloys.<br />

Microhardness of the alloys Nb 1–xSi xFe 2 was measured by [1986Bla] (for Nb 0.8Si 0.2Fe 2 also<br />

by [1985Tro]). Microhardness values were found to decrease from 10418 N·mm –2 to 7853<br />

N·mm –2 for Nb 0.2Si 0.8Fe 2. However, it should be reminded that all the alloys from NbFe 2 up to<br />

Nb 0.2Si 0.8Fe 2 were considered to be continuous solid solutions of the MgZn 2 type that contradicts<br />

to other available data.<br />

The influence of Nb doping on thermoelectric properties of βFeSi2 has been studied by<br />

[2001Ito]. The electrical resistivity, thermoelectric power <strong>and</strong> thermal conductivity were<br />

measured in the range from room temperature to 900˚C.<br />

Resistance to oxidation of some Fe-Nb-Si alloys has been studied by [1960Gol] at 1000˚C<br />

in still air. Only negligible oxidation was observed for the 55Fe-20Nb-25Si (at.%) alloy. That is<br />

the composition where [2001Rix] has found the new compound Nb 6Fe 16Si 7.<br />

An oxidation study in slowly flowing oxygen was carried out at 1150˚C by [1978Hao]. The<br />

85Fe-8.5Nb-6.5Si (mass%) (80.3Fe-3.7Nb-16Si (at.%)) was found to be oxidized at a catastrophic<br />

rate. Resistance to oxidation of the eutectic found by [1978Hao] at the composition<br />

of 83.5Fe-4.5Nb-12Si (mass%) (75.9Fe-2.4Nb-21.7Si (at.%)) was poor. The specific gravity of<br />

this eutectic was detected to be 8000 kg·m –3 .<br />

Miscellaneous<br />

<strong>Alloy</strong>s Fe-(1 to 3)Nb-11Si (at.%) have been studied after a stepped heat treatment from<br />

1000˚C, 1 h down to 500˚C, 100 h <strong>and</strong> further cooling to room temperature [1985Gle1,<br />

1985Gle2]. It was revealed that niobium changed neither an ordering temperature nor an<br />

equilibrium degree of atomic order. Precipitations of NbFe 2 phase were observed, their<br />

quantity increased with Nb content.<br />

Thermal stability of a nanocrystalline alloy (Fe 3Si) 0.95Nb 0.05 was studied by [1993Gao].<br />

The alloy prepared using high energy ball milling consisted of disordered bcc solid solution<br />

<strong>and</strong> had grain size of 7-9 nm. During annealing at 450˚C the alloy containing Nb was<br />

considerably more stable against grain growth than the binary Fe3Si alloy. It was somewhat<br />

DOI: 10.1007/978-3-540-70890-2_7 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


more stable against ordering. Niobium segregation away from the D0 3 (α 1) ordered domains<br />

was observed.<br />

A structural study [2005Pen] ofFe 80–xNb xSi 20 (0 ≤ x ≤ 20) ribbons prepared by melt<br />

spinning has revealed that these alloys were composed of amorphous, cubic bcc (Fe) <strong>and</strong><br />

hexagonal NbFe 2–xSi x (λ) phases. The ordered α 2 (D0 3) <strong>and</strong> α 1 (B2 CsCl type) also were<br />

formed in the alloys with low Nb content <strong>and</strong> disappeared in the alloys with higher<br />

(10-12 at.%) Nb content. During annealing at 850˚C the λ phase decomposes into two<br />

hexagonal phases with similar structures. Nb atoms hindered growth of grains in the alloys.<br />

The grain size in as cast <strong>and</strong> annealed alloys at x = 0.5 was large, about 1 μm. However,<br />

the addition of 3 at.% Nb caused a decrease in grain size, which abruptly diminished to about<br />

100 nm <strong>and</strong> reached 37 nm for Fe 68Nb 12Si 20. There was no evidence that Nb atoms enter the<br />

cubic bcc (Fe) lattice, as it was supposed earlier [2001Tur].<br />

Similar results were obtained by [2005Bar, 2005Tur, 2006Tur1, 2006Tur2] in structural<br />

studies of melt-spun Fe-Nb-Si alloys. The grain size of 18 nm was obtained for Fe 60Nb 20Si 20<br />

[2006Tur2].<br />

Crystallization of mechanically alloyed 55Fe-21Nb-24Si (at.%) was studied by [2001Rix].<br />

As-milled material was found to be amorphous. A crystallization peak was determined at<br />

750˚C. An isothermal heat treatment at 900˚C resulted in the formation of a D8 a phase with a<br />

small amount of the hexagonal λ phase (NbFe 2). The Mössbauer spectroscopy did not reveal<br />

magnetic ordering down to 77 K.<br />

. Table 1<br />

Investigations of the Fe-Nb-Si <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method / Experimental Technique<br />

[1960Gol] Arc melting, XRD, melting point<br />

determination, magnetic properties,<br />

oxidation resistance<br />

Fe–Nb–Si 7<br />

Temperature / Composition / <strong>Phase</strong><br />

Range Studied<br />

1000˚C, 250 alloys, 15 binary <strong>and</strong> six (or<br />

nine) ternary phases<br />

[1963Bar] Arc melting, optical microscopy (OM), XRD 1100˚C, Nb(Fe1–xSix) 2 (x = 0, 0.165, 0.330)<br />

(λ)<br />

[1963Spi] Arc melting, OM, XRD 1100˚C, NbFeSi (E)<br />

[1965Gla] XRD 1100˚C, Nb4FeSi (66.7 at.% Nb<br />

isoconcentrate)<br />

[1967Den] Arc melting, OM, XRD 800, 1000, 1300˚C, Laves phase<br />

[1967Mar] Arc melting, XRD 800˚C, ~ NbFeSi2 [1969Jei] Arc melting, XRD, OM 1200˚C, NbFeSi (E), Nb4Fe4Si7 (V)<br />

[1969Yar] Arc melting, XRD NbFeSi<br />

[1972Sin] Arc melting, OM, XRD 1100˚C, 30 alloys, λ, μ<br />

[1975Ste] OM, Electron microprobe analysis (EMPA),<br />

electron microdiffraction (EMD)<br />

1200˚C, NbFeSi2 L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_7<br />

ß Springer 2009<br />

5


6 7<br />

Fe–Nb–Si<br />

. Table 1 (continued)<br />

Reference Method / Experimental Technique<br />

[1978Hao] Induction melting; DTA, scanning electron<br />

microscopy (SEM), oxidation studies at<br />

1150˚C, specific gravity measurement<br />

[1979Ste] Chemical vapor transport reaction, XRD,<br />

EMPA<br />

Temperature / Composition / <strong>Phase</strong><br />

Range Studied<br />

3 alloys, 73Fe-15.5Nb-11.5Si, 80Fe-10Nb-<br />

10Si, 85Fe-8.5Nb-6.5Si (mass%), eutectic<br />

composition<br />

1100˚C, Nb ~2Fe ~1Si ~2<br />

[1980Ste] EMPA, XRD 1200˚C, Nb 32.7±1Fe 26±1Si 41.3±1<br />

(αNb 4Fe 3Si 5, βNb 4Fe 3Si 5)<br />

[1982Mal] Chemical vapor transport reaction, XRD<br />

(single crystal), EMPA<br />

[1983Mal] Chemical vapor transport reaction, XRD<br />

(single crystal)<br />

[1985Gle1] Induction melting, XRD, SEM,<br />

photoelectron spectroscopy, mechanical,<br />

magnetic, electrical properties<br />

[1985Gle2] Transmission electron microscopy (TEM),<br />

XRD, high temperature XRD, mechanical<br />

properties<br />

[1985Tro] Arc melting, XRD, microhardness<br />

measurements, OM<br />

[1986Bla] Arc melting, XRD, OM, microhardness<br />

measurements<br />

1200˚C, 40Nb-20Fe-40Si (at.%),<br />

isothermal section for the temperature<br />

range 1000-1200˚C, 30-50 at.% Si,<br />

βNb 4Fe 3Si 5<br />

Nb 4Fe ~3Si ~5<br />

Fe-11Si-1(2; 3)Nb (at.%)<br />

Fe-11(12)Si-(0 to 12)Nb (at.%), 500-800˚C<br />

900-1200˚C, Nb 0.8Si 0.2Fe 2<br />

(66.6Fe-26.7Nb-6.7Si (at.%))<br />

800-1200˚C, NbFe 2-Nb 0.2Si 0.8Fe 2<br />

[1989Kum] Calculation 950, 1050, 1150, 1250˚C, isothermal<br />

sections of the Fe corner<br />

[1989Sud] Calorimetry 1614˚C, FeSi-Nb (0 ≤ xNb ≤ 0.4), enthalpy<br />

of dissolution <strong>and</strong> mixing<br />

[1993Gao] Mechanical alloying, XRD, Mössbauer<br />

spectroscopy, TEM, energy dispersive<br />

X-ray spectrometry (EDS)<br />

[1994Gao] Mechanical alloying, Mössbauer<br />

spectroscopy, XRD, TEM, EDX<br />

[2001Rix] Mechanical alloying <strong>and</strong> inductive<br />

melting; XRD, Mössbauer spectroscopy,<br />

DTA<br />

[2001Ito] XRD, SEM, EDX, electrical resistivity,<br />

thermoelectric power, thermal<br />

conductivity<br />

450˚C, nanocrystalline powder<br />

(Fe 3Si) 0.95Nb 0.05<br />

450˚C, (Fe 3Si) 0.95Nb 0.05<br />

up to 1050˚C, Fe 16Nb 6Si 7 (D8 a)<br />

from room temperature to 900˚C,<br />

Fe 1–xNb xSi 2 (0 ≤ x ≤ 0.04)<br />

[2005Bar] Melt spinning, NMR, magnetic properties Rapidly quenched ribbons,<br />

Fe 100–x–ySi xNb y (9.5 ≤ x ≤ 20, 0.5 ≤ y ≤ 12)<br />

DOI: 10.1007/978-3-540-70890-2_7 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method / Experimental Technique<br />

Temperature / Composition / <strong>Phase</strong><br />

Range Studied<br />

[2005Pen] Melt spinning, high-resolution XRD as cast <strong>and</strong> annealed at 850˚C,<br />

Fe 80–xSi 20Nb x (0 ≤ x ≤ 12)<br />

[2005Tur] Melt spinning, high-resolution XRD, SEM,<br />

NMR, magnetic properties<br />

[2006Tur1] Melt spinning, magnetic properties (2-<br />

1123 K), Mössbauer spectroscopy, XRD<br />

as cast <strong>and</strong> annealed at 850˚C,<br />

Fe 80–xSi 20Nb x (x = 0.5, 1.5, 2.0, 3.0, 10)<br />

ribbons<br />

Fe 77.9Nb 10Si 12.1, Fe 70Nb 10Si 20<br />

[2006Tur2] Melt spinning, XRD, magnetic properties 2-413 K, Fe 80–xSi 20Nb x (x = 12, 20)<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong> /<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol /<br />

Space<br />

Group /<br />

Prototype<br />

Fe–Nb–Si 7<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

α, (αFe,δFe) cI2<br />

(δFe) Im3m a = 293.15 pure Fe at 1390˚C [Mas2, V-C2]<br />

1538 - 1190 W Fe-Nb system, dissolves up to 3.2 at.% Nb<br />

[1993Bej]<br />

Fe-Si system, dissolves up to 19.5 at.% Si<br />

[1982Kub]<br />

(αFe) a = 286.65 pure Fe at 25˚C [Mas2]<br />

< 912 [1993Bej], dissolves 0.73 at.% Nb<br />

< 960 δα (Fe-Si) solid solutions [1982Kub]<br />

γ, (γFe) cF4 a = 364.67 pure Fe at 915˚C [Mas2, V-C2]<br />

1394 - 912 Fm3m<br />

Cu<br />

dissolves 1 at.% Nb [1993Bej],<br />

3.19 at.% Si [1982Kub]<br />

(Nb) cI2 a = 330.04 [Mas2]<br />

< 2469 Im3m<br />

W<br />

dissolves 7 at.% Fe [1993Bej], 3.5 at.% Si<br />

[Mas2]<br />

a = 330.4 ~1.9 at.% Fe, 1000˚C [1960Gol]<br />

a = 329.1 ~3.4 at.% Fe, 1200˚C [1960Gol]<br />

(Si) cF8 a = 543.06 [Mas2]<br />

< 1414 Fd3m<br />

C (diamond)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_7<br />

ß Springer 2009<br />

7


8 7<br />

Fe–Nb–Si<br />

. Table 2 (continued)<br />

<strong>Phase</strong> /<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol /<br />

Space<br />

Group /<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

λ,<br />

hP12 [1960Gol, 1963Bar, 1967Den, 1972Sin,<br />

Nb1±y(Fe1–xSix) 2 P63/mmc 1985Tro, 1986Bla]<br />

MgZn2 0 ≤ x ≤ 0.375, ~ 0.79 ≤ 1±y ≲; 1.06<br />

1100˚C [1972Sin]<br />

1300˚C [1967Den]<br />

(25 at.% Si);<br />

at 1000˚C 0 to ~34 at.% Si [1960Gol]<br />

a = 483.7 [1993Bej, V-C2]<br />

c = 788.4 32 to 37 at.% Nb [1993Bej]<br />

NbFe2 a = 481.1 to 483.2 from 20 to 40 at.% Nb, annealed at 1000˚C<br />

< 1630 c = 785.7 to 787.1<br />

a = 483.5 to 483.9<br />

[1960Gol]<br />

c = 788.5 to 786.8 Nb(Fe1–xSix) 2,0≤ x ≤ 0.33, homogenized at<br />

a = 484.14 to 483.6 1100˚C [1963Bar]<br />

c = 789.33 to 785.9 at ~33 at.% Nb, 0 to 25 at.% Si (annealed at<br />

1300˚C) [1967Den]<br />

a = 482.1 70Fe-30Nb (at.%), annealed at 1100˚C<br />

c = 786.4 [1972Sin]<br />

a = 482.2 65Fe-30Nb-5Si (at.%) (annealed at 1100˚C<br />

c = 786.1 [1972Sin]<br />

a = 482.2 55Fe-30Nb-15Si (at.%) (annealed at<br />

c = 785.7 1100˚C) [1972Sin]<br />

a = 481.0 55Fe-25Nb-20Si (at.%) (1100˚C, three-<br />

c = 780.0 phase alloy) [1972Sin]<br />

a = 481.4 Nb0.8Si0.2Fe2 (annealed at 900-1200˚C)<br />

c = 785.5 [1985Tro]<br />

μ, Nb19Fe21 hR39 a = 492.6 [1993Bej, V-C2]<br />

< 1520 R3m c = 268.0 48 to 52 at.% Nb, < 1400˚C, ~50 to 54 at.%<br />

W6Fe7 Nb at 1520 to 1500˚C [1993Bej]<br />

dissolves up to 15 at.% Si at 1000˚C<br />

[1960Gol], 10 at.% Si at 1100˚C [1972Sin]<br />

Nb3Fe2 metastable [1993Bej]<br />

1490 - 1460 cF96 [Mas2]<br />

Fd3m<br />

Ti2Ni a = 1126.1 [1960Gol]<br />

DOI: 10.1007/978-3-540-70890-2_7 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong> /<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol /<br />

Space<br />

Group /<br />

Prototype<br />

Fe–Nb–Si 7<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

α2, Fe-Si cP2 ordered B2 modification of Fe with 10 to 22<br />

≲ 1280 Pm3m<br />

at.% Si [1982Kub, Mas2]<br />

CsCl a = 281 [V-C2]<br />

α1,Fe3Si cF16 ordered D03 modification of Fe with 11 to<br />

≲ 1235 Fm3m<br />

30 at.% Si [1982Kub, Mas2]<br />

BiF3 a = 565.0 [V-C2]<br />

β, Fe2Si hP6 ~33.0 to ~34.3 at.% Si [1982Kub]<br />

1212 - 1040 P3m1 a = 405.2 ± 0.2 [V-C2]<br />

Fe2Si c = 508.55 ± 0.03<br />

η, Fe5Si3 hP16 37.5 at.% Si [1982Kub]<br />

1060 - 825 P63/mcm a = 675.9 ± 0.5 [V-C2]<br />

Mn5Si3 c = 472.0 ± 0.5<br />

ε, FeSi cP8 49.6 to 50.8 at.% Si [1982Kub]<br />

< 1410 P213 FeSi<br />

a = 451.7 ± 0.5 [V-C2]<br />

ζl, αFeSi2(r) oC48 66.7 at.% Si [1982Kub]<br />

< 982 Cmca a = 986.3 ± 0.7 [V-C2]<br />

αFeSi2 b = 779.1 ± 0.6<br />

c = 783.3 ± 0.6<br />

ζh, βFeSi2(h) tP3 69.5 to 73.5 at.% Si [1982Kub]<br />

1220 - 937 P4/mmm a = 269.01 [V-C2]<br />

βFeSi2 c = 513.4<br />

Nb3Si tP32 a = 1022.4 ± 0.3 [Mas2, V-C2]<br />

1980 - 1770 P42/n Ti3P<br />

c = 518.9 ± 0.1<br />

βNb5Si3 tI32 a = 1002.6 37.5 to 40.5 at.% Si [Mas2, V-C2]<br />

2520 - 1650 I4/mcm<br />

W5Si3<br />

c = 507.17<br />

αNb5Si3 tI32 a = 657.1 37.5 to 38.5 at.% Si [Mas2, V-C2]<br />

< 1940 I4/mcm<br />

Cr5B3<br />

c = 1188.9<br />

NbSi2 hP9 a = 481.9 ± 0.2 [Mas2, V-C2]<br />

< 1940 P6422 CrSi2<br />

c = 659.2 ± 0.2<br />

*V,Nb4Fe4Si7 tI60 a = 1265.2 ± 0.2 [1969Jei]<br />

I4/mmm<br />

Zr4Co4Ge7<br />

c = 498.1 ± 0.1<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_7<br />

ß Springer 2009<br />

9


10 7<br />

Fe–Nb–Si<br />

. Table 2 (continued)<br />

<strong>Phase</strong> /<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol /<br />

Space<br />

Group /<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

* E, NbFeSi oP12 a = 623.1 ± 0.2 [1969Jei]<br />

Pnma b = 367.7 ± 0.2<br />

TiNiSi c = 719.0 ± 0.4<br />

or a = 711 [1963Spi]<br />

Co2Si b = 529<br />

c = 1125<br />

a = 624<br />

b = 722<br />

c = 369<br />

[1969Yar]<br />

* τ1, NbFeSi2 tI56 a = 1258 ~NbFeSi2 [1967Mar]<br />

I4/mmm,<br />

I4m2, I42m,<br />

I4mm or I422<br />

TiNiSi2 or<br />

c = 497<br />

Co3Nb4Si7 [V-C2]<br />

orthorhombic a = 868.9 ± 0.5 [1975Ste]<br />

Pmmm,<br />

Pmm2 or<br />

P222<br />

b = 973.3 ± 0.5<br />

c = 757.6 ± 0.5<br />

or<br />

oP48<br />

Pbam<br />

TiMnSi2 [V-C2]<br />

* τ2, Nb2FeSi2 tP198<br />

P42/mcm Nb2FeSi2 [1979Ste, V-C2]<br />

a = 2372 ± 3<br />

c = 495.5 ± 0.7<br />

for Nb76Fe42Si80 [1979Ste]<br />

a = 2376 ± 1<br />

c = 495.9 ± 0.1<br />

for Nb78Fe40Si80 [1979Ste]<br />

a = 2378 ± 3<br />

c = 496.0 ± 0.7<br />

for Nb80Fe38Si80 [1979Ste]<br />

* τ3, βNb4Fe3Si5 oP72 a = 1282.1 ± 0.6 [1980Ste, 1982Mal, 1983Mal] (1200˚C)<br />

> 1130 ± 10 Pmn21 b = 491.2 ± 0.1 exact formula Nb24Fe19Si29 [1983Mal]<br />

Nb4Fe3Si5 c = 1552.1 ± 0.2<br />

* τ3´, αNb4Fe3Si5 hP12 a = 486.8 ± 0.1 annealed at 1100˚C [1980Ste]<br />

< 1130 ± 10 P63/mmc MgZn2<br />

c = 775.8 ± 0.1<br />

DOI: 10.1007/978-3-540-70890-2_7 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong> /<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol /<br />

Space<br />

Group /<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

* τ4,Nb4FeSi tP12 a = 619.3 ± 0.2 annealed at 1100˚C [1965Gla, V-C2]<br />

P4/mmc<br />

Nb4CoSi c = 505.6 ± 0.1<br />

*Nb6Fe16Si7 cF116 a = 1133.5 ± 0.1 [1992Rix, 2001Rix], in mechanically alloyed<br />

Fm3m<br />

Th6Mn23 or<br />

Mg6Cu16Si7<br />

alloy annealed at 900˚C; presumably<br />

metastable<br />

. Table 3<br />

Enthalpies of Dissolution <strong>and</strong> Mixing of the FeSi-Nb <strong>Alloy</strong>s at 1164˚C [1989Sud]<br />

Fe–Nb–Si 7<br />

x Nb, at. fraction –ΔH d [kJ·mol –1 ] –ΔH mix [kJ·mol –1 ] –ΔH Nb [kJ·mol –1 ] –ΔH FeSi [kJ·mol –1 ]<br />

0 0 0 125 ± 15 0<br />

0.1 8.2 ± 0.1 11.1 ± 0.1 80 ± 10 3.3 ±0.5<br />

0.2 10.9 ±0.1 16.5 ± 0.2 43 ±10 10.5 ± 0.8<br />

0.3 10.4 ± 0.2 18.7 ± 0.3 23 ± 3 17.2 ± 1.0<br />

0.4 10.2 ± 0.2 18.5 ± 0.3 15 ± 2 21.6 ± 1.5<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_7<br />

ß Springer 2009<br />

11


12 7<br />

Fe–Nb–Si<br />

. Fig. 1<br />

Fe-Nb-Si. Isothermal section at ~1150˚C<br />

DOI: 10.1007/978-3-540-70890-2_7 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-Nb-Si. Partial calculated isothermal section at 950˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–Si 7<br />

DOI: 10.1007/978-3-540-70890-2_7<br />

ß Springer 2009<br />

13


14 7<br />

Fe–Nb–Si<br />

. Fig. 3<br />

Fe-Nb-Si. Partial calculated isothermal section at 1050˚C<br />

DOI: 10.1007/978-3-540-70890-2_7 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-Nb-Si. Partial calculated isothermal section at 1150˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–Si 7<br />

DOI: 10.1007/978-3-540-70890-2_7<br />

ß Springer 2009<br />

15


16 7<br />

Fe–Nb–Si<br />

. Fig. 5<br />

Fe-Nb-Si. Partial calculated isothermal section at 1250˚C<br />

DOI: 10.1007/978-3-540-70890-2_7 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–Nb–Si 7<br />

[1956Gol] Goldschmidt, H.J., “The Metallurgy of Niobium”, J. Inst. Met., 85, 547-558 (1956) (<strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Review, 2)<br />

[1960Gol] Goldschmidt, H.J., “The Constitution of the Fe-Nb-Si System”, J. Iron Steel Inst., 169-180 (1960) (Crys.<br />

Structure, Experimental, Magn. Prop., <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Phys. Prop., 51)<br />

[1961Eng] English, J.J., “Binary <strong>and</strong> <strong>Ternary</strong> <strong>Phase</strong> <strong>Diagrams</strong> of Columbium, Molybdenum, Tantalum <strong>and</strong> Tungsten”,<br />

Defense Metals Information Center, Batelle Memorial Institute, Columbus, Ohio, 152, 101-102 (1961)<br />

(<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 1)<br />

[1963Bar] Bardos, A.M., Bardos, D.I., Beck, P.A., “The Effective Atomic Radius of Si in <strong>Ternary</strong> Laves <strong>Phase</strong><br />

<strong>Alloy</strong>s”, Trans. Metall. Soc. AIME, 227, 991-993 (1963) (Crys. Structure, Experimental, 12)<br />

[1963Spi] Spiegel, F.X., Bardos, D., Beck, P.A., “<strong>Ternary</strong> G <strong>and</strong> E Silicides <strong>and</strong> Germanides of Transition<br />

Elements”, Trans. Metall. Soc. AIME, 227, 575-579 (1963) (Crys. Structure, Experimental, 13)<br />

[1965Gla] Gladyshevsky, E.I., Kuzma, Yu.B., “The Nb 4FeSi, Nb 4CoSi, <strong>and</strong> Nb 4NiSi Compounds <strong>and</strong> Their Crystal<br />

Structures”, J. Struct. Chem., 6, 60-63 (1965), translated from Zh. Strukt. Khim., 6, 70-74 (1965) (Crys.<br />

Structure, Experimental, 5)<br />

[1967Den] Denham, A.W., “Extent <strong>and</strong> Lattice Parameters of the Laves <strong>Phase</strong> Field in the Fe-Nb-Si System”, J. Iron<br />

Steel Inst., 205, 435-436 (1967) (Crys. Structure, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 5)<br />

[1967Mar] Markiv, V.Ya., Gladyshevsky, E.I., Skolozdra, R.V., Kripyakevich, P.I., “<strong>Ternary</strong> Compounds of the<br />

RX´X´´2 Type in the Ti-V(Fe, Co, Ni)-Si <strong>and</strong> Similar <strong>Systems</strong>” (in Ukrainian), Dopov. Akad. Nauk<br />

Ukrain. RSR (A), (3), 266-269 (1967) (Crys. Structure, Experimental, 12)<br />

[1969Yar] Yarmolyuk, Y.P., Markiv, V.Y., Gladyshevsky, E.I., “Compounds with the TiNiSi Structure in the<br />

<strong>Systems</strong> of Two Transition Metals <strong>and</strong> Either Si or Ge” (in Ukrainian), Vestn. L’vov. Univ. Khim., 11, 14-<br />

17 (1969) (Crys. Structure, Experimental, 5)<br />

[1969Jei] Jeitschko, W., Jordan, A,G., Beck, P.A., “V <strong>and</strong> E <strong>Phase</strong>s in <strong>Ternary</strong> <strong>Systems</strong> with Transition Metals <strong>and</strong><br />

Si or Ge”, Trans. Met. Soc. AIME, 245, 335-339 (1969) (Crys. Structure, Experimental, 27)<br />

[1972Sin] Singh, B.N., Gupta, K.P., “Laves <strong>and</strong> μ <strong>Phase</strong>s in the Nb-Fe-Si <strong>and</strong> Nb-Co-Si <strong>Systems</strong>”, Metall. Trans., 3,<br />

1427-1431 (1972) (Crys. Structure, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 17)<br />

[1975Ste] Steinmetz, J., Albrecht, J.-M., Zanne, M., Roques, B., “A New <strong>Ternary</strong> Silicide of Nb <strong>and</strong> Fe, NbFeSi 2”<br />

(in French), Compt. Rend. Acad. Sci. Paris, 281(C), 831-833 (1975) (Experimental, Crys. Structure, 6)<br />

[1978Hao] Haour, G., Mollard, F., Lux, B., Wright, G., “New Eutectics Based on Fe, Co or Ni”, Z. Metallkd., 69, 26-<br />

32 (1978) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Phys. Prop., 24)<br />

[1979Ste] Steinmetz, P.J., Roques, B., Courtois, A., Protas, J., “Crystal Structure of Nb 78Fe 40Si 80” (in French), Acta<br />

Crystallogr., Sect. B: Struct. Crystallogr. Crys. Chem., 35, 2509-2514 (1979) (Crys. Structure, Experimental,<br />

9)<br />

[1980Ste] Steinmetz, J., Steinmetz, P., “Structure of NbFe 2–xSi x <strong>Alloy</strong>s” (in French), J. Less-Common Met., 69, 379-<br />

382 (1980) (Crys. Structure, Experimental, 6)<br />

[1982Kub] Kubaschewski, O., “Iron - Silicon” in “Iron Binary <strong>Phase</strong> <strong>Diagrams</strong>”, Springer Verlag, Berlin, 136-139<br />

(1982) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, #, 23)<br />

[1982Mal] Malaman, B., Steinmetz, J., Venturini, G., Roques, B., “Crystal Structure of the <strong>Phase</strong> Nb 4Fe ~3Si ~5-β<br />

<strong>and</strong> a Diagram of the Nb-Fe-Si System” (in French), J. Less-Common Met., 87, 31-43 (1982) (Crys.<br />

Structure, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 11)<br />

[1983Mal] Malaman, B., Steinmetz, J., Venturini, G., Roques, B., “β-Nb 4Fe 3Si 5 with New Orthorhombic Structure<br />

Type; Its Relationships to Other <strong>Ternary</strong> Silicides of Niobium-Iron” in “VII International Conference on<br />

Solid Compounds of Transition Elements”, Proc. CNRS, 11A8 (1983) (Crys. Structure, Experimental,<br />

<strong>Phase</strong> Relations, 4)<br />

[1984Rag] Raghavan, V., Ghosh, G., “The Fe-Nb-Si System”, Trans. Ind. Inst. Met., 37, 421-425 (1984) (Experimental,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 18)<br />

[1985Gle1] Glezer, A.M., Maleeva, I.V., Zakharov, A.I., “Atomic Ordering <strong>and</strong> Mechanical Properties of <strong>Alloy</strong>ed<br />

High-Silicon Iron” (in Russian), Izv. Acad. Nauk SSSR, Ser. Fiz., 49, 1633-1644 (1985) (Crys. Structure,<br />

Experimental, Mechan. Prop., <strong>Phase</strong> Relations, 12)<br />

[1985Gle2] Glezer, A.M., Maleeva, I.V., Zakharov, A.I., “Influence of <strong>Alloy</strong> Elements on the Plasticity of High-<br />

Silicon Iron”, Met. Sci. Heat Treat., 27, 908-912 (1985), translated from Metallov. Term. Obrab. Met., 27,<br />

27-30 (1985) (Crys. Structure, Experimental, Morphology, Thermodyn., 7)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_7<br />

ß Springer 2009<br />

17


18 7<br />

Fe–Nb–Si<br />

[1985Tro] Trojko, R., Blazina, Z., “Metal-Metalloid Exchange in Some Friauf-Laves <strong>Phase</strong>s Containing Two<br />

Transition Metals”, J. Less-Common Met., 106, 293-300 (1985) (Crys. Structure, Experimental, 13)<br />

[1986Bla] Blazina, Z., Trojko, R., “Structural Investigations of the Nb 1–xSi xT 2 <strong>and</strong> Nb 1–xAl xT 2 (T = Cr, Mn, Fe, Co,<br />

Ni) <strong>Systems</strong>”, J. Less-Common Met., 119, 297-305 (1986) (Crys. Structure, Experimental, 6)<br />

[1987Rag] Raghavan, V., “The Fe-Nb-Si (Iron-Niobium-Silicon) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Ind. Inst. Techn. Delhi, 1, 55-59 (1987) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Review, 20)<br />

[1989Kum] Kumar, K.C.H., Raghavan, V., “BCC – FCC Equilibrium in <strong>Ternary</strong> Iron <strong>Alloy</strong>s. – II”, J. <strong>Alloy</strong> <strong>Phase</strong><br />

Diagr., 5, 77-96 (1989) (Calculation, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., #, 24)<br />

[1989Sud] Sudavtsova, V.S., Zelenina, L.N., Sharkina, N.O., “Reaction in the System FeSi-Nb(Zr)”, Inorg. Mater.<br />

(Engl. Trans.), 1330-1331 (1989), translated from Izv. Akad. Nauk SSSR, Neorg. Mater., 25, 1569-1570<br />

(1989) (Experimental, Thermodyn., 2)<br />

[1992Rix] Rixecker, G., Schaaf, P., Gonser, U., “Crystallization Behaviour of Amorphous Fe 73.5Cu 1Nb 3Si 13.5B 9”,<br />

J. Phys.: Condens. Matter, 4, 10295-10310 (1992) (Crys. Structure, Experimental, Morphology, <strong>Phase</strong><br />

Relations, 43)<br />

[1993Bej] Bejarano, J.M.Z., Gama, S., Ribeiro, C.A., Effenberg, G., “The Iron-Niobium <strong>Phase</strong> Diagram”,<br />

Z. Metallkd., 84, 160-164 (1993) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, #, 6)<br />

[1993Gao] Gao, Z., Fultz, B., “The Thermal Stability of Nanocrystalline Fe-Si-Nb Prepared by Mechanical<br />

<strong>Alloy</strong>ing”, Nanostruct. Mater., 2, 231-240 (1993) (Electronic Structure, Experimental, Kinetics, Magn.<br />

Prop., Morphology, Nano, 35)<br />

[1994Gao] Gao, Z.Q., Fultz, B., “Inter-Dependence of Grain Growth, Nb Segregation, <strong>and</strong> Chemical Ordering in<br />

Fe-Si-Nb Nanocrystals”, Nanostruct. Mater., 4, 939-947 (1994) (Experimental, Kinetics, Magn. Prop.,<br />

19)<br />

[2001Ito] Ito, M., Nagai, H., Katsuyama, S., Majima, K., “Effects of Ti, Nb <strong>and</strong> Zr Doping on Thermoelectric<br />

Performance of β-FeSi 2”, J. <strong>Alloy</strong>s Compd., 315, 251-258 (2001) (Crys. Structure, Experimental, <strong>Phase</strong><br />

Relations, 18)<br />

[2001Rix] Rixecker, G., Haberkorn, R., “Fe 16Nb 6Si 7 <strong>and</strong> Fe 16Ta 6Si 7:NewD8 a <strong>Phase</strong>s Synthesized by the Crystallization<br />

of Mechanically <strong>Alloy</strong>ed Amorphous Powders”, J. <strong>Alloy</strong>s Compd., 316, 203-208 (2001) (Crys.<br />

Structure, Experimental, <strong>Phase</strong> Relations, 18)<br />

[2001Tur] Turtelli, R.S., Schonhart, M., Sassik, H., Grossinger, R., Kolbeck, C., Duong, V.H., Ferrara, E.,<br />

“Enhancement of the Coercive Force with Addition of Nb in α-FeSi as-Quenched Ribbons”, J. Magn.<br />

Magn. Mater., 226(2), 1498-1500 (2001) (Experimental, Magn. Prop., 5)<br />

[2005Bar] Barbatti, C.F., Turtelli, R.S., Schoenhart, M., Sassik, H., Sinnecker, J.P., Sinnecker, E.H.C.P., Sarthour, R.<br />

S., Guimaraes, A.P., Groessinger, R., “NMR, Magnetic <strong>and</strong> Structural Study of Fe-Si-X (X = Nb, Ta)<br />

<strong>Alloy</strong>s”, J. Magn. Magn. Mater., 290-291, 612-614 (2005) (Crys. Structure, Experimental, Magn. Prop.,<br />

<strong>Phase</strong> Relations, 8)<br />

[2005Pen] Penton-Madrigal, A., Turtelli, R.S., Estevez-Rams, E., Grossinger, R., “Structural Evolution with Nb<br />

Content in Melt-Spun Fe 80–xSi 20Nb x Ribbons”, J. <strong>Alloy</strong>s Compd., 395, 63-67 (2005) (Crys. Structure,<br />

Experimental, 12)<br />

[2005Tur] Turtelli, R.S., Penton-Madrigal, A., Barbatti, C.F., Groessinger, R., Sassik, H., Estevez-Rams, E.,<br />

Sarthour, R.S., Sinnecker, E.H.C.P., Guimaraes, A.P., “Effect of the Addition of Cr, Ta <strong>and</strong> Nb on<br />

Structural <strong>and</strong> Magnetic Properties of Fe-Si <strong>Alloy</strong>s”, J. Magn. Magn. Mater., 294, e151-e154 (2005)<br />

(Crys. Structure, Experimental, Magn. Prop., <strong>Phase</strong> Relations, 6)<br />

[2006Tur1] Turtelli, R.S., Sinnecker, J.P., Grossinger, R., Wiesinger, G., de Morais, E., Penton-Madrigal, A., Estevez-<br />

Rams, E., “Magnetic Transitions in Melt-Spun Nanocrystalline Fe-Si-Nb <strong>Alloy</strong>s”, Phys. B: Condens.<br />

Mater., 384, 303-305 (2006) (Experimental, Magn. Prop., <strong>Phase</strong> Relations, 7)<br />

[2006Tur2] Turtelli, R.S., Sinnecker, J.P., Penton-Madrigal, A., Groessinger, R., Skorvanek, I., Krenicky, T., Estevez-<br />

Rams, E., “An Unusual Temperature Dependence of the Coercive Field in the Melt-Spun Fe 80–xSi 20Nb x<br />

(x = 12, 20)”, J. Magn. Magn. Mater., 304, e690-e692 (2006) (Experimental, Magn. Prop., <strong>Phase</strong><br />

Relations, 4)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_7 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Niobium – Zirconium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Jean-Claude Tedenac, Pierre Perrot<br />

Introduction<br />

The Fe-Nb-Zr system is a base for nuclear materials. Due to their corrosion resistance some of<br />

zirconium alloys are used as cladding <strong>and</strong> structural materials. One other field of nuclear<br />

applications concerns their use in active zone of nuclear reactors [2002Gra, 2002Ram,<br />

2002Tof]. Two problems were evidenced in this ternary system. The first one is related to<br />

the existence of intermetallic compounds in the phase diagram, greatly influencing the<br />

mechanical properties, of the alloys. The situation was clarified recently in [2002Ram,<br />

2002Tof], where the phase relationship have been redetermined. The second problem concerns<br />

the oxygen acting as an impurity but taking part to phase equilibria [2004Bar].<br />

Investigations of the system related to phase relations, structures <strong>and</strong> thermodynamic are<br />

presented in Table 1. Crystal structures of phases are summarized in Table 2.<br />

Reviews of early works on phase equilibria in the Fe-Nb-Zr system have been presented by<br />

[1973Sve, 1992Rag] <strong>and</strong> some isothermal sections were presented, but contradictory information<br />

on phase relationships in this system exists [1968Gru, 1973Sve, 1979Ale, 1989Ale,<br />

1989Kor1, 1997Per, 2002Gra]. Finally, the last review of Fe-Nb-Zr presented by [2003Rag] is<br />

mainly based on the work of [2002Gra], but it does not reproduce the stability domain of the<br />

ternary compound τ2.<br />

Binary <strong>Systems</strong><br />

The Nb-Zr binary system is accepted from the thermodynamic assessment of [1991Fer]. The<br />

miscibility gap of the solid solution (βZr,Nb) is at 977˚C <strong>and</strong> 59.2 mass% Nb; the minimum of<br />

the liquidus is at 1742˚C <strong>and</strong> 22 mass% Nb. The Fe-Nb binary system is accepted from the<br />

thermodynamic assessment carried out by [2000Tof]. The μ phase presents an incongruent<br />

melting at 1520˚C, which is 70˚C lower than that given in [Mas2]. The eutectic invariant<br />

reaction L Ð μ + (Nb) is at 1500˚C, which is 100˚C higher than given in [Mas2]. The Fe-Zr<br />

binary system is accepted from experimental study of [2002Ste]. In this study it was pointed<br />

out that the phase of Zr 6Fe 23 shown by [Mas2] is oxygen stabilized <strong>and</strong> is not an equilibrium<br />

phase. According to [2002Ste] the Zr 2Fe phase is stable in quite narrow temperature range of<br />

780-951˚C, while according to [Mas2] it is stable below 974˚C. Beside cubic ZrFe 2 (C15<br />

structure, stable below 1673˚C, λ 2) exists a hexagonal ZrFe 2 (C36 structure, stable between<br />

1240 <strong>and</strong> 1345˚C, λ 3).<br />

Solid <strong>Phase</strong>s<br />

Fe–Nb–Zr 8<br />

Since the first published experimental work in this system, three Laves phases <strong>and</strong> one μ phase<br />

have been evidenced. The existence of ternary intermetallic compounds is more or less<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_8<br />

ß Springer 2009<br />

1


2 8<br />

Fe–Nb–Zr<br />

controversial. For example the ternary compound Zr 54Nb 9Fe 37 cited by [1989Ale, 1989Kor1,<br />

1989Kor2] was not shown in the recent experimental work [2002Gra, 2003Ram, 2007Ram2]<br />

<strong>and</strong> its crystal structure is unknown. On the other h<strong>and</strong>, its composition lies very near by that<br />

of the τ 1 compound. It is the reason why this new compound was not introduced in Table 2.<br />

Depending on the niobium content, the intermetallic phase Zr 1–xNb xFe 2 presents three<br />

different Laves-type structures (see Table 2) [1968Kan, 1969Kan, 1972Fuj]. The crystal structure<br />

changes from C15 (MgCu2 up to x = 0.3) to C14 (MgZn2 from x = 0.5). In the middle<br />

composition range (0.35 < x < 0.5) this phase adopts a superstructure C36 (MgNi 2 type) with<br />

six atom layers leading to a c axis value approximately equal to 2c (C14) [1969Kan]. The crystal<br />

parameters of the C15 <strong>and</strong> C14 solid solutions from [1968Kan] are shown in Fig. 1.<br />

The phase transformation from C15 to C14 in the solid solutions was studied as a function<br />

of temperature of heat treatment <strong>and</strong> the Nb content by X-ray <strong>and</strong> magnetization experiments<br />

[1972Fuj]. It shows that the Nb content where the phase transformation appears depends on<br />

the temperature of heat treatment.<br />

[2002Gra] in an experimental investigation on the zirconium rich corner found two new<br />

intermetallic phases in this system: τ 1,aTi 2Ni type phase (labeled λ 1 in the original work)<br />

ranging from 2.4 to 13 at.% Nb <strong>and</strong> 31 to 33 at.% Zr, <strong>and</strong> τ 2,aC14 Laves phase (labeled λ 2<br />

in the original work) with a homogeneity range of 32-53 at.% Fe, 12-31 at.% Nb <strong>and</strong><br />

35-37 at.% Zr. As this work does not concern the niobium rich part, he did not report on<br />

the μ phase which was evidenced in the former researches.<br />

Quasibinary <strong>Systems</strong><br />

[1972Pet] presents a quasibinary diagram of the ZrFe 2-NbFe 2 section showing, towards<br />

1200˚C, a solubility of 30 mol% NbFe 2 in λ 2 (ZrFe 2, C15), a solubility of 50 mol% ZrFe 2 in<br />

λ 1 (NbFe 2, C14), <strong>and</strong> between 30 <strong>and</strong> 50 mol% NbFe 2, a two-phase domain. Now, it is<br />

recognized that this two-phase domain is actually a solid solution of the C36 structure.<br />

It is not clear if the transitions C15-C36 <strong>and</strong> C36-C14 are of the first or second order. From<br />

the shape of the solidus <strong>and</strong> liquidus lines proposed by [1972Pet], it is probable that the<br />

liquidus of the ZrFe2-NbFe2 system presents a minimum towards 1600˚C <strong>and</strong> 40 mol% NbFe2.<br />

Invariant Equilibria<br />

A partial reaction scheme in the Fe-ZrFe 2-NbFe 2 region is presented in Fig. 2 [1989Kor1]. The<br />

τ 1 phase is formed by a peritectic reaction P at the temperature of 950˚C. Two solid state<br />

transformations appear at 864˚C for the eutectoid reaction of formation of the mixture<br />

{ZrFe2+NbFe2+(γFe)} <strong>and</strong> at 928˚C for the last reaction {ZrFe2+NbFe2+(αFe)}.<br />

Liquidus Surface<br />

The liquidus projection has been investigated in the whole composition range by [1989Ale]<br />

<strong>and</strong> in the iron-rich corner by [1989Kor1] <strong>and</strong> mainly reproduced by [1992Rag]. Figure 3<br />

represents the liquidus projection <strong>and</strong> the primary crystallization field, mainly from [1989Ale,<br />

1992Rag], <strong>and</strong> slightly modified to take into account the phase equilibria in the accepted<br />

DOI: 10.1007/978-3-540-70890-2_8 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


inary systems. The primary crystallization field labeled τ by [1989Kor1] has been labeled τ 1 in<br />

Fig. 3 because we have identified above the ternary compound τ with the Laves phase τ 1.It<br />

must be pointed out that the ternary compound τ 2 does not seems to have a primary<br />

crystallization domain. Actually, it is probable that the domain labelled NbFe 2 (C14) must<br />

be split in two: one domain “NbFe 2” <strong>and</strong> one domain “τ 2”, both phases NbFe 2 <strong>and</strong> τ 2 having<br />

the same C14 structure.<br />

Isothermal Sections<br />

The sub-ternary system Fe-ZrFe 2-NbFe 2 was first investigated by [1989Kor1] at the temperatures<br />

1337˚C <strong>and</strong> 1315˚C. The samples were prepared by melting in arc furnace, remelted four<br />

times, annealed at 900˚C. The alloys were treated at the temperatures of the sections <strong>and</strong> then<br />

quenched. [1989Ale] <strong>and</strong> [1989Kor2] studied seven isothermal sections at the temperatures<br />

500, 650, 700, 800, 900, 945 <strong>and</strong> 1200˚C. This study was taken into account by [1992Rag] in its<br />

evaluation. But new experimental determinations, [2002Gra], are in disagreement because<br />

[1989Kor2] does not take into account the τ 1 <strong>and</strong> τ 2 phases whose existence <strong>and</strong> crystal<br />

structure are well established [2003Ram, 2007Ram2] <strong>and</strong> according to those results a tentative<br />

isothermal section at the temperature of 800˚C is given by [2003Rag]. It is presented in Fig. 4<br />

<strong>and</strong> differs from the section presented by [2003Rag] mainly by the shape of the τ 2 domain,<br />

which presents, in [2003Rag], an extension which has never been reported by [2002Gra,<br />

2002Tof]. Due to the lack of more experimental informations the solubilities in the (Nb)<br />

solid solution <strong>and</strong> the triangulation for the compositions are presented only as an indication.<br />

[2007Ram2] made some complementary X-ray determinations <strong>and</strong> presented, also as an<br />

indication, phase equilibria at 900˚C which are very similar to the diagram given in Fig. 4.<br />

In [2004Bar] the zirconium rich part of the ternary system has been studied at the<br />

temperature of 580˚C. The authors precise this part of the isothermal section <strong>and</strong> the solubility<br />

of Nb in (αZr). They used for that study specially elaborated alloys with 600-1200 ppm of<br />

oxygen. The phase repartition in the Zr rich corner is presented in Fig. 5. The influence of Fe<br />

<strong>and</strong> Nb ((Fe+Nb) < 3 mass %) on the αZr/βZr transition <strong>and</strong> the reversibility of the<br />

precipitation/dissolution of the secondary phase has been investigated by [2008Tof].<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–Nb–Zr 8<br />

The main experimental works are reported in Table 3. Several investigations have been made<br />

on magnetic properties of intermetallic phases. [1994Cro] studied magnetic order resulting<br />

from 10 at.% substitution of Zr for Nb in the weak itinerant antiferromagnet NbFe 2. The Curie<br />

temperature for Zr1–xNbxFe2 as a function of the niobium content has been studied by<br />

[1968Kan, 1969Kan]. It was shown that the magnetic moment is strongly dependent on the<br />

crystal structure, decreasing dramatically during the transition from C15 to C14.<br />

In [1978Zak] the decomposition of the (βZr,Nb) solid solution in Nb-Zr alloys with added<br />

Fe was studied by electron microscopy <strong>and</strong> X-ray diffraction on single crystals.<br />

The Mössbauer effect, X-ray diffraction, <strong>and</strong> electron microscopy were used to study<br />

structural-phase transformations in an alloy rolled at room temperature of the Zr-0.5Nb-<br />

0.31Fe composition after annealing in the range 300-700˚C [1985Kir]. The main effect<br />

observed is the strengthening of Zr by precipitation of (Zr,Nb)2Fe (C16) <strong>and</strong> (Zr,Nb)Fe2<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_8<br />

ß Springer 2009<br />

3


4 8<br />

Fe–Nb–Zr<br />

(C15) compounds. The segregation of Fe <strong>and</strong> Nb near the Zr surface with precipitation of the<br />

C15 <strong>and</strong> C16 phases was also observed by [1988Igr, 1999Ram] in Zr rich alloys. Samples with<br />

the following compositions: Zr 62Nb 14Fe 24, Zr 65Nb 10Fe 25 <strong>and</strong> Zr 52Nb 10Fe 38 were analyzed by<br />

[2002Ram]. All of them showed the precipitation of τ 1, a ternary cubic Ti 2Ni type phase <strong>and</strong><br />

traces of C16 (tetragonal Zr 2Fe) phase. [2007Ram1] prepared Zr-Nb-Fe alloys with Nb<br />

contents between 5 <strong>and</strong> 50 at.% <strong>and</strong> Fe contents between 10 <strong>and</strong> 60 at.%. After a heat<br />

treatment at 900˚C for 4 month, analysis of the phases showed the presence of C15 <strong>and</strong> C16<br />

phases. The kinetics of the phase precipitation during annealing of (αZr) alloyed with Fe <strong>and</strong><br />

Nb was carried out by [1985Kir, 1988Igr]. The presence of Fe as impurities in a Zr+2.5 at.%<br />

Nb induces the precipitation of the C16-Zr 2Fe phase [1990Woo]. The partition coefficient of<br />

Fe between (αZr) <strong>and</strong> (βZr) has been evaluated at {Fe} β / {Fe} α = 1.5 to 2, which agrees with the<br />

β stabilizer characteristics of Fe. The presence of Fe in a (βZr,Nb) alloy lowers the solvus line<br />

(α+β)/β [1993Per].<br />

Miscellaneous<br />

Amorphous state <strong>and</strong> glassy materials were evidenced by [1987Tre, 2004Yao]. The ternary Fe-<br />

Nb-Zr takes part in glass forming quaternary systems. The composition Fe 91–x Nb 4Zr 5B x was<br />

studied as glassy material by [2004Yao] as a function of the boron content as well as the<br />

magnetic properties. In [1993Per], an analytical transmission electron microscopy study of<br />

two-phase (α-β) structures in a Zr-2.5 mass% Nb pressure tube alloy was used to follow the<br />

distribution of Nb <strong>and</strong> Fe as a function of alloy heat treatment <strong>and</strong> tube processing. The<br />

presence of Fe (~0.1 mass%) modifies the (α-β) phase equilibria as Fe is a beta-stabilizing<br />

element, [1993Per]. Significant segregation of Fe to βZr <strong>and</strong> Nb structures was measured.<br />

The effects of different Nb <strong>and</strong> Fe addition ratios on the microstructure, corrosion <strong>and</strong><br />

oxide characteristics of Zr based alloys were investigated by [1995Per, 2005Kim]. The Nb/Fe<br />

ratio was controlled to with the same amount of Nb + Fe in each alloy. The microstructural<br />

analysis <strong>and</strong> precipitate characterization were performed to obtain the correlation between the<br />

corrosion <strong>and</strong> the microstructures.<br />

. Table 1<br />

Investigations of the Co-Fe-Si <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method / Experimental Technique<br />

[1968Gru] Thermal analysis, metallography,<br />

hardness<br />

[1972Pet] XRD ZrFe 2-NbFe 2 join<br />

[1989Ale] Thermal analysis, XRD,<br />

metallography<br />

[1989Kor1] Thermal analysis, XRD,<br />

metallography<br />

[1989Kor2] Thermal analysis, XRD,<br />

metallography<br />

Temperature / Composition / <strong>Phase</strong> Range<br />

Studied<br />

700-1000˚C, > 84 mass% Zr, Fe/Nb = 1/3, 1/1<br />

<strong>and</strong> 3/1<br />

850-1600˚C, Zr-Nb-NbFe2-ZrFe2, isothermal<br />

sections, reaction scheme<br />

850-1600˚C, Fe-ZrFe 2-NbFe 2, isothermal<br />

section, reaction scheme<br />

500-800˚C, the whole diagram, isothermal<br />

section<br />

DOI: 10.1007/978-3-540-70890-2_8 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method / Experimental Technique<br />

Temperature / Composition / <strong>Phase</strong> Range<br />

Studied<br />

[1997Per] SEM, EDX, XRD 600-800˚C, < 20 at.% Nb, < 0.1 at.% Fe,<br />

equilibrium (α+β)/β<br />

[2002Gra] XRD, SEM, metallography, EMPA 800-900˚C, > 40 at.% Zr, < 40 at.% Nb, < 40 at.%<br />

Fe<br />

[2002Tof] XRD, TEM, EDX, analysis of<br />

secondary phase particles<br />

700-1100˚C, < 2 mass% Nb, < 0.75 mass% Fe<br />

[2003Ram] XRD, SEM, EPMA, Mössbauer 800˚C, 35 at.% Fe, < 15 at.% Nb<br />

[2007Ram2] XRD, SEM, metallography 900˚C, phase equilibrium in the whole diagram<br />

[2008Tof] DTA, TEM, calorimetry 750-1050˚C, < 2 mass% Nb, < 1 mass% Fe, αZr/<br />

βZr transition<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Nb–Zr 8<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

(δFe) cI2 a = 293.15 [Mas2]<br />

1538 - 1394 Im3m<br />

W<br />

Dissolves up to 3.2 at.% Nb at 1373˚C <strong>and</strong> 4.5<br />

at.% Zr at 1357˚C<br />

(γFe) cF4 a = 364.67 at 915˚C [Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

Dissolves up to 0.9 at.% Nb at 1210˚C <strong>and</strong> 0.7<br />

at.% Zr at 1337˚C<br />

(αFe) cI2 a = 286.65 at 25˚C [Mas2]<br />

< 912 Im3m<br />

W<br />

Dissolves up to 0.7 at.% Nb at 961˚C<br />

(ωZr) hP3 a = 503.6 at 25˚C, HP > 1 atm [Mas2]<br />

P6/mmm<br />

ωTi<br />

c = 310.9<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_8<br />

ß Springer 2009<br />

5


6 8<br />

Fe–Nb–Zr<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

β, (βZr,Nb) cI2<br />

Im3m<br />

(βZr) W a = 360.90 pure βZr [Mas2, V-C2]<br />

1855 - 863 Dissolves up to 6 at.% Fe at 928˚C<br />

Zr0.5Nb0.5 a = 344.5<br />

(Nb) a = 330.04<br />

< 2469 pure Nb at 25˚C [Mas2]<br />

Dissolves up to 7.6 at.% Fe at 1500˚C<br />

(αZr) hP2 a = 323.16 at 25˚C [Mas2]<br />

< 863 P63/mmc Mg<br />

c = 514.75 Dissolves up to 0.03 at.% Fe at 730˚C <strong>and</strong> 0.6<br />

at.% Nb at 620˚C<br />

μ, Nb6Fe7 hR39 a = 492.8 ± 4 [2000Tof]<br />

< 1520 R3m<br />

W6Fe7 c = 2683 ± 2 47 to 49 at.% Nb<br />

Zr3Fe oC16 a = 332 74.8 to 75.4 at.% Zr<br />

< 851 Cmcm b = 1100 [2002Ste]<br />

BRe3 c = 882 Dissolves up to 1.7 at.% Nb [2002Gra]<br />

Zr2Fe tI12 a = 638 66.7 to 67.2 at.% Zr [2002Ste]<br />

951 - 780<br />

(Zr1–xNbx)Fe2 I4/mcm<br />

Al2Cu c = 560 C16 structure. Dissolves up to 0.5 at.% Nb<br />

[2003Ram]<br />

hP12 0.5 < x


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

Zr6Fe23 cF116 a =1169 Sometimes labelled ZrFe3 [1997Oka].<br />

1482 - 1175 Fm3m<br />

Th6Mn23 Metastable, stabilized by oxygen [2002Ste]<br />

*τ1, (Zr1–xNbx) 2Fe1–y cF96 0.035 < x < 0.25 [2003Ram]<br />

Fd3m 0


8 8<br />

Fe–Nb–Zr<br />

. Table 3 (continued)<br />

Reference<br />

Method / Experimental<br />

Technique<br />

[1990Woo] Microstructural analysis, neutron<br />

<strong>and</strong> electron diffraction,<br />

Mössbauer<br />

[1993Per] SEM, energy dispersive X-Ray<br />

analysis (EDX)<br />

[1994Cro] Magnetic moments, spontaneous<br />

magnetization<br />

[1995Per] SEM, EDX, XRD, neutron<br />

irradiation<br />

Temperature / Composition / <strong>Phase</strong> Range<br />

Studied<br />

Zr-2.5 at.% Nb + Fe impurities, Fe partition<br />

between (αZr) <strong>and</strong> (βZr)<br />

500-800˚C, 2.5 mass% Nb, 0.1 mass% Fe,<br />

C14 Nb 1–xZr xFe 2 (x < 0.5), magnetic diagram<br />

Zr-2.5 Nb-0.1 Fe (in mass%), Fe <strong>and</strong> Nb<br />

distribution between α <strong>and</strong> β<br />

[1999Ram] SEM, XRD, Mössbauer, EMPA 800˚C, 0.9 to 2.4 mass% Nb, 0.6 to 10.0 mass% Fe<br />

[2002Kim] Thermoelectric power 540-940˚C, < 0.8 at.% Nb<br />

[2002Ram] XRD, Mössbauer, optical Zr62Nb14Fe24, Zr65Nb10Fe25, Zr52Nb10Fe38,<br />

metallography, SEM, EPMA 1200 h at 800˚C<br />

[2003Ram] XRD, Mössbauer, optical<br />

metallography, SEM, EPMA<br />

Zr64.5Nb0.5Fe35, Zr61Nb4Fe35, Zr55Nb10Fe35, [2004Bar] Microstructures by TEM, corrosion<br />

in autoclaves<br />

[2004Yao] XRD, DTA, DSC, TEM magnetic<br />

properties by VSM.<br />

Zr50Nb15Fe35<br />

Nb < 1.2 mass%, Fe < 0.1 mass%<br />

Fe91–x Nb4Zr5Bx with 5 < x < 30 prepared by arc<br />

melting solidification<br />

[2005Kim] EDS, TEM, XRD Nb/Fe = 0.6 to 7.0. Corrosion by H2O at 360˚C<br />

under 18.9 MPa<br />

[2006Fil] Mössbauer spectroscopy Dependence of Mössbauer absorption line area<br />

from effective thickness of sample<br />

[2007Ram1] Mössbauer, XRD, DTA, DSC, TEM,<br />

magnetic properties<br />

Zr-Nb-Fe alloys with Nb contents between 5 <strong>and</strong><br />

50 at.% <strong>and</strong> Fe contents between 10 <strong>and</strong> 60 at.%<br />

DOI: 10.1007/978-3-540-70890-2_8 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Nb–Zr 8<br />

. Fig. 1<br />

Fe-Nb-Zr. Crystal parameters of the C15 <strong>and</strong> C14 solid solutions in the ZrFe 2-NbFe 2 system<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_8<br />

ß Springer 2009<br />

9


10 8<br />

Fe–Nb–Zr<br />

. Fig. 2<br />

Fe-Nb-Zr. Reaction scheme<br />

DOI: 10.1007/978-3-540-70890-2_8 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-Nb-Zr. Liquidus surface projection<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–Zr 8<br />

DOI: 10.1007/978-3-540-70890-2_8<br />

ß Springer 2009<br />

11


12 8<br />

Fe–Nb–Zr<br />

. Fig. 4<br />

Fe-Nb-Zr. Isothermal section at 800˚C<br />

DOI: 10.1007/978-3-540-70890-2_8 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-Nb-Zr. The Zr-rich part of the diagram at 580˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nb–Zr 8<br />

DOI: 10.1007/978-3-540-70890-2_8<br />

ß Springer 2009<br />

13


14 8<br />

Fe–Nb–Zr<br />

References<br />

[1968Gru] Gruzdeva, N.M., Zagorskaya, T.N., Raevsky, I.I., “The Zr corner of the Zr-Fe-Nb <strong>Phase</strong> Diagram”, Fiz.<br />

Khim. Splavov Tsirkoniya, 117–121 (1968) (<strong>Phase</strong> Diagram, Experimental, 5)<br />

[1968Kan] Kanematsu, K., “Magnetism <strong>and</strong> Crystal Structures of Zirconium Compounds with Laves Structure”,<br />

J. Appl. Phys., 39, 465–466 (1968) (Calculation, Crys. Structure, Experimental, Magn. Prop., 2)<br />

[1969Kan] Kanematsu, K., “Structural <strong>and</strong> Magnetic Properties of Pseudobinary System (Zr 1–xNb x)Fe 2”, J. Phys.<br />

Soc. Jpn., 27, 849–856 (1969) (Crys. Structure, Experimental, Magn. Prop., 17)<br />

[1972Fuj] Fujita, Y., “The Effect of Heat Treatment on <strong>Crystallographic</strong> <strong>and</strong> Magnetic Properties of<br />

Zr 0.80MO 0.20Fe 2 <strong>and</strong> Zr 0.60Nb 0.40Fe 2”, J. Phys. Soc. Jpn., 33, 1720 (1972) (Crys. Structure, Experimental,<br />

Magn. Prop., 2)<br />

[1972Pet] Petkov, V.V., Cherkashin, E.E., “Interaction of Laves <strong>Phase</strong>s in the Quasibinary Sections ZrFe 2-(NbFe 2,<br />

TaFe 2)” (in Ukrainian), Dop. Akad. Nauk Ukr. RSR, (A) (3), 276–279 (1972) (Crys. Structure, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Experimental, 11)<br />

[1973Sve] Svechnikov, V.N., Kocherzhinsky, Yu.A., Markiv, V.Ya., Pet’kov, V.V., “Laves <strong>Phase</strong>s in Transition Metal<br />

<strong>Systems</strong> of the IV-VII Groups of Periodic <strong>Systems</strong>” (in Russian), Akad. Nauk Ukr. SSR, Metallofizika,<br />

46, 35–45 (1973) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 74)<br />

[1978Zak] Zakharova, M.I., Kirov, S.A., Khundzhua, A.G., “Formation of Metastable <strong>and</strong> Equilibrium <strong>Phase</strong>s in<br />

the Decomposition of the β Solid Solution in Zr <strong>Alloy</strong>s”, Phys. Status Solidi A, 49A(2), 803–10 (1978)<br />

(Crys. Structure, <strong>Phase</strong> Relations, Kinetics, Experimental, 11)<br />

[1979Ale] Alekseenko, G.K., “Influence of U <strong>and</strong> Fe on the Distribution of the Metastable <strong>Phase</strong>s in the Zr-Nb<br />

System” (in Russian), in “<strong>Alloy</strong>s for Atomic Energy”, Ivanov, O.S., Alekseeva, Z.M. (Eds.), Nauka,<br />

Moscow, 144–148 (1979) (Experimental, Mechan. Prop., Morphology, <strong>Phase</strong> Relations, 5).<br />

[1983Bus] Buschow, K.H.J., van Engen, P.G., Jongebreur, R., “Magneto-Optical Properties of Metallic<br />

Ferromagnetic Materials”, J. Magn. Magn. Mater., 38, 1–22 (1983) (Magn. Prop., Optical Prop.,<br />

Experimental, 23)<br />

[1985Kir] Kirichenko, V.G., Snurnikova, A.I., Chekin, V.V., “Structural <strong>and</strong> <strong>Phase</strong> Transformations during<br />

Thermomechanical Treatment of α-Zr <strong>Alloy</strong>s with Nb <strong>and</strong> Fe”, Phys. Met. Metallogr., 59(5), 100–103<br />

(1985), translated from Fiz. Met. Metallov., 59(5), 943–946 (1985) (Electronic Structure, Experimental,<br />

<strong>Phase</strong> Relations, Kinetics, 9)<br />

[1987Tre] Tregubov, I.A., Evseeva, L.N., Maslenkov, S.B., “Production <strong>and</strong> Examination of Zirconium <strong>Alloy</strong>s in<br />

the Amorphous State”, Phys. Chem. Mater. Treatment, 21(1), 85–87 (1987), translated from Fiz. Khim.<br />

Obrab. Mater., USSR, 21(1), 124–127 (1987) (Experimental, <strong>Phase</strong> Relations, 9)<br />

[1988Igr] Igrushin, V.V., Kirichenko, V.G., Petel’guzov, I.A., Chekin, V.V., “Kinetics of a <strong>Phase</strong> Transformation of<br />

Iron Intermetallics during Annealing of α-Zr <strong>Alloy</strong>ed with Nb <strong>and</strong> Fe”, Phys. Met. Metallogr., 65(1),<br />

126–129 (1988), translated from Fiz. Met. Metallov., 65(1), 137–140 (1988) (Experimental, Electronic<br />

Structure, Kinetics, 6)<br />

[1989Ale] Alekseeva, Z.M., Korotkova, N.V., “Isothermal Sections of State Diagram of Zr-Nb-Fe in the<br />

Temperature Range 1600–850˚C”, Russ. Metall., (1), 199–205 (1989), translated from Izv. Akad. Nauk<br />

SSSR, Met., (1), 199–205 (1989) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 17)<br />

[1989Kor1] Korotkova, N.V., “The Fe-ZrFe 2-NbFe 2 <strong>Phase</strong> Diagram”, Russ. Metall., (6), 185–188 (1989),<br />

translated from Izv. Akad. Nauk SSSR, Met., (6), 194–197 (1989) (Experimental, <strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, 3)<br />

[1989Kor2] Korotkova, N.V., Alekseeva, Z.M., “Topology of the Zr-Nb-Fe <strong>Phase</strong> Diagram in the Range 500-800˚C”,<br />

Russ. Metall., (3), 198–204 (1989), translated from Izv. Akad. Nauk SSSR, Met., (3), 207–214 (1989)<br />

(Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 19)<br />

[1990Woo] Woo, O.T., Carpenter, G.J.C., Sawicki, J.A., MacEwen, S.R., “Zr-Fe Intermetallic Precipitates <strong>and</strong> Fe<br />

Partitioning in Zr-2.5 at.% Nb”, J. Nucl. Mater, 172, 71–76 (1990) (Electronic Structure, Experimental,<br />

<strong>Phase</strong> Relations, 13)<br />

[1991Fer] Fern<strong>and</strong>ez-Guillermet, A., “Thermodynamic Analysis of the Stable <strong>Phase</strong>s in the Zr-Nb System <strong>and</strong><br />

Calculation of the <strong>Phase</strong> Diagram”, Z. Metallkd., 82(6), 478–487 (1991) (<strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Thermodyn., Assessment, 38)<br />

[1992Rag] Raghavan, V., “The Fe-Nb-Zr (Iron-Niobium-Zirconium) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Indian Institute of Metals, Calcutta, 6B, 1031–1041 (1992) (Crys. Structure, <strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Review, 9)<br />

DOI: 10.1007/978-3-540-70890-2_8 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Nb–Zr 8<br />

[1993Per] Perovic, A., Perovic, V., Weatherly, G.C., Purdy, G.R., Fleck, R.G., “A Study of the Distribution of Nb<br />

<strong>and</strong> Fe in Two-<strong>Phase</strong> Zr-2.5 wt.% Nb <strong>Alloy</strong>s”, J. Nucl. Mater, 199, 102–111 (1993), (Experimental,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 21)<br />

[1994Cro] Crook, M.R., Cywinski, R., “Spin Fluctuations <strong>and</strong> Magnetic Order in Nb 1–xZr xFe 2”, Hyperfine<br />

Interact., 85, 203–208 1994 (Crys. Structure, Electronic Structure, Experimental, Magn. Prop., 8)<br />

[1995Per] Perovic, V., Perovic, A., Weatherly, G.C., Purdy, G.R., “The Distribution of Nb <strong>and</strong> Fe in a Zr-2.5 wt%<br />

Nb <strong>Alloy</strong>, before <strong>and</strong> after Irradiation”, J. Nuclr. Mater, 224, 93–102 (1995) (Experimental, Kinetics,<br />

<strong>Phase</strong> Relations, 19)<br />

[1997Oka] Okamoto, H., “Fe-Zr (Iron-Zirconium)”, J. <strong>Phase</strong> Equilib., 18(3), 316 (1997) (<strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Review, 5)<br />

[1997Per] Perovic, A., Weatherly, G.C., “The Promonotectoid Region of the Nb-Zr System”, J. <strong>Phase</strong> Equilib., 18<br />

(3), 245–248 (1997) (Experimental, <strong>Phase</strong> Relations, Review, 10)<br />

[1999Ram] Ramos, C., Saragovi, C., Granovsky, M., Arias, D., “Mössbauer Spectroscopy of the Zr-Rich Region in<br />

Zr-Nb-Fe <strong>Alloy</strong>s with Low Nb Content”, Hyperfine Interact., 122, 201–207 (1999) (Electronic Structure,<br />

Experimental, <strong>Phase</strong> Relations, 9)<br />

[2000Tof] Toffolon, C., Servant, C., “Thermodynamic Assessment of the Fe-Nb System”, Calphad, 24(2), 97–112<br />

(2000) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 40)<br />

[2002Gra] Granovsky, M.S., Canay, M., Lena, E., Arias, D., “Experimental Investigation of the Zr Corner of the<br />

<strong>Ternary</strong> Zr-Nb-Fe <strong>Phase</strong> Diagram”, J. Nucl. Mater., 302, 1–8 (2002) (Crys. Structure, Experimental,<br />

Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 25)<br />

[2002Kim] Kim, S.J., Hong, H.S., Oh, Y.M., “Study of the Thermoelectric Power Evolution of Zr-based <strong>Alloy</strong>s<br />

with Nb Additions”, J. Nucl. Mater, 306, 194–201 (2002) (Electronic Structure, Experimental, Morphology,<br />

Thermodyn., 21)<br />

[2002Ram] Ramos, C., Saragovi, C., Granovsky, M., Arias, D., “Mössbauer Spectroscopy Studies of some<br />

Intermetallics in the Zr-Nb-Fe System”, Hyperfine Interact., 139, 363–368, (2002) (Electronic Structure,<br />

Experimental, <strong>Phase</strong> Relations, 11)<br />

[2002Ste] Stein, F., Sauthoff, G., Palm, M., “Experimental Determination of Intermetallic <strong>Phase</strong>s, <strong>Phase</strong><br />

Equilibria, <strong>and</strong> Invariant Reaction Temperatures in the Fe-Zr System”, J. <strong>Phase</strong> Equilib., 23(6), 480–494<br />

(2002) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Crys. Structure, Experimental, #, 88)<br />

[2002Tof] Toffolon-Masclet, C., Brachet, J.-Ch., Jago, G., “Studies of Second <strong>Phase</strong> Particles in Different<br />

Zirconium <strong>Alloy</strong>s Using Extractive Carbon Replica <strong>and</strong> an Electrolytic Anodic Dissolution Procedure”,<br />

J. Nucl. Mater., 305, 224–231 (2002) (Crys. Structure, Experimental, Morphology, <strong>Phase</strong> Relations, 19)<br />

[2003Rag] Raghavan, V., “Fe-Nb-Zr (Iron-Niobium-Zirconium)”, J. <strong>Phase</strong> Equilib., 24(4), 354–355 (2003) (Assessment,<br />

Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 6)<br />

[2003Ram] Ramos, C., Saragov, C., Granovsky, M., Arias, D., “Effects of Nb Content on the Zr 2Fe Intermetallic<br />

Stability”, J. Nucl. Mater., 312, 266–269 (2003) (Crys. Structure, Experimental, Morphology, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, 10)<br />

[2004Bar] Barberis, P., Charquet, D., Rebeyrolle, V., “<strong>Ternary</strong> Zr-Nb-Fe(O) System: <strong>Phase</strong> Diagram at 853 K <strong>and</strong><br />

Corrosion Behaviour in the Domain Nb < 0.8%”, J. Nucl. Mater., 326, 163–174 (2004) (Crys. Structure,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, Interface Phenomena, Morphology, 30)<br />

[2004Yao] Yao, B., Zhang, Y., Si, L., Tan, H., Li, Y., “Boron Content Dependence of Crystallization, Glass Forming<br />

Ability <strong>and</strong> Magnetic Properties in Amorphous Fe-Zr-B-Nb <strong>Alloy</strong>s”, J. <strong>Alloy</strong>s Compd., 370, 1–7 (2004)<br />

(Crys. Structure, Kinetics, Magn. Prop., Morphology, <strong>Phase</strong> Relations, 35)<br />

[2005Kim] Kim, H.G., Park, J.Y., Jeong, Y.H., “Ex-reactor Corrosion <strong>and</strong> Oxide Characteristics of Zr-Nb-Fe <strong>Alloy</strong>s<br />

with the Nb/Fe Ratio”, J. Nucl. Mater., 345, 1–10 (2005) (Crys. Structure, Kinetics, Morphology,<br />

Experimental, 21)<br />

[2006Fil] Filippov, V.P., Petrov, V.I., Lauer, D.E., Shikanova, YuA., “Calculation of Absolute Concentrations <strong>and</strong><br />

Probability of Resonant Absorption for Iron-bearing Precipitates in Zirconium <strong>Alloy</strong>s”, Hyperfine<br />

Interact., 168, 965–971 (2006) (Electronic Structure, Experimental, <strong>Phase</strong> Relations, 7)<br />

[2007Ram1] Ramos, C.P., Granovsky, M.S., Saragovi, C., “Mössbauer Spectroscopy Characterization of Zr-Nb-Fe<br />

<strong>Phase</strong>s”, Physica B: Condens. Matter., 389B, 67–72 (2007) (Electronic Structure, Experimental, <strong>Phase</strong><br />

Relations, 9)<br />

[2007Ram2] Ramos, C., Saragovi, C., Granovsky, M.S, “Some New Experimental Results on the Zr-Nb-Fe<br />

System”, J. Nucl. Mater. 366, 198–205 (2007) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Experimental, 32)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_8<br />

ß Springer 2009<br />

15


16 8<br />

Fe–Nb–Zr<br />

[2008Tof] Toffolon-Masclet, C., Guilbert, T., Brachet, J.C., “Study of Secondary Intermetallic <strong>Phase</strong><br />

Precipitation/Dissolution in Zr <strong>Alloy</strong>s by High Temperature - High Sensitivity Calorimetry”, J.<br />

Nucl. Mater., 372, 367–378 (2008) (<strong>Phase</strong> Relations, Transport Phenomena, Thermodyn., Experimental,<br />

25)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_8 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Neodymium – Silicon<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Peter Rogl<br />

Introduction<br />

Various research groups have contributed to the phase relations in the ternary system. <strong>Phase</strong><br />

equilibria along the section Fe - NdSi 2–x <strong>and</strong> for the section at 33.3 at.% Nd have been<br />

investigated by [1969May, 1970Bod, 1972May, 1973Bau, 1973May, 1973Pin, 1974Nar,<br />

1975Fel, 1978Kot, 1978Ros, 1983Noa, 1983Uma, 1990Mal, 1998Wel] with emphasis in many<br />

cases on the physical properties of solution phases <strong>and</strong> compounds <strong>and</strong> revealed five different<br />

structure types: AlB 2 [1969May, 1972May, 1973May, 1974Nar], ThSi 2, TiNiSi [1973May] or<br />

PbFCl [1970Bod, 1998Wel], <strong>and</strong> NdFeSi 2 [1990Mal]. Further ternary compounds were discovered:<br />

with ThCr2Si2 structure [1972May, 1973Bau, 1973Fel, 1973Pin, 1975Fel, 1978Ros,<br />

1983Noa, 1983Uma, 1987Lec]; Nd 6Fe 13Si [1990All, 1994Yan, 1996Lei, 1998Gro, 2002Taj,<br />

2002Isn], NdFe 10Si 2 [1991Bus, 2003Sor] <strong>and</strong> NdFeSi 3 [1996Sal]. Two independent investigations<br />

have supplied information on the phase equilibria within a partial isothermal section at<br />

500˚C [1995Zhu] <strong>and</strong> a full isothermal section at 600˚C [1996Sal]. Unfortunately information<br />

gathered is not without controversies on the phase regions <strong>and</strong> stabilities as a function of<br />

temperature <strong>and</strong> therefore only a tentative version of the phase equilibria can be provided<br />

throughout this assessment. New studies are encouraged to solve the puzzling situation.<br />

An early assessment of the formation of compounds in the Fe-Nd-Si system is due to<br />

[1984Rog]. Table 1 includes all experimental data on phase equilibria, crystal structure <strong>and</strong><br />

thermodynamics.<br />

Binary <strong>Systems</strong><br />

The Fe-Si phase diagram adopted for this assessment is based on [1982Kub] complimented by<br />

recent experimental data of [2005Mec] for the liquidus <strong>and</strong> solidus curves in the Fe rich part.<br />

A thermodynamic assessment is due to [1998Mie]. The Fe-Nd system is taken from a<br />

thermodynamic calculation by [1993Hen]. The Nd-Si system as presented by [2000Oka]<br />

needs to be revised in many aspects (i) with respect to the existence of two modifications<br />

for the Nd 5Si 4 compound [2006Rog], (ii) with respect to the correct position of the phase<br />

labelled as “Nd 3Si 4” at NdSi 1.4 [1992Sch, 2001Bou, 2006Rog], <strong>and</strong> (iii) with respect to the<br />

exact location of the phases with AlB 2 type, GdSi 2–x type <strong>and</strong> ThSi 2 type (see Table 1). It is<br />

unclear if Nd 5Si 3 with the Mn 5Si 3 structure type is part of the Nd-Si binary [2001Bou,<br />

2006Rog] or is impurity stabilized.<br />

Solid <strong>Phase</strong>s<br />

Fe–Nd–Si 9<br />

Although at least nine ternary compounds have so far been reported in literature, ternary phase<br />

equilibria after [1996Sal] show only four ternary compounds NdFeSi ~3 (τ 1), NdFe 2Si 2 (τ 2),<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_9<br />

ß Springer 2009<br />

1


2 9<br />

Fe–Nd–Si<br />

NdFe 1+xSi 1–x (τ 3) <strong>and</strong> Nd 6Fe 13Si (τ 4), which except for τ 3 were reported to exist at fixed<br />

compositions without significant homogeneity regions. The crystal structures of these phases<br />

(except τ 1) have all been elucidated (see Table 2).<br />

Particularly the section at constant 33.3 at.% Nd {Nd(Fe 1–xSi x) 2} shows the formation of a<br />

series of compounds: Nd(Fe 0.125Si 0.875) 2 (τ 6), Nd(Fe 0.20Si 0.80) 2 (τ 9), <strong>and</strong> Nd(Fe 0.33Si 0.66) 2 (τ 5).<br />

According to early data by Mayer <strong>and</strong> Tassa [1969May] Nd(Fe0.125Si0.875)2 (τ6) crystallized<br />

with the ThSi2 structure type <strong>and</strong> Nd(Fe0.20Si0.80)2 (τ9) was single phase AlB2 type. The ThSi2<br />

type structure was reported to be stable for compositions x < 0.4 at 700 - 800˚C [1969May,<br />

1973May]. For a statistical distribution of Fe <strong>and</strong> Si atoms in the 2d sites of P6/mmm of Nd<br />

(Fe 0.20Si 0.80) 2 the calculated <strong>and</strong> observed X-ray powder intensity data were said to be in good<br />

agreement. Nd(Fe 0.33Si 0.66) 2 (τ 5) was said to transform above 950˚C: the d values of the new<br />

phase were reported as 2.61(90), 2.53(100), 2.06(70) <strong>and</strong> 1.62(50), with relative intensities in<br />

brackets [1972May]. It is interesting to note that both structure types ThSi 2 <strong>and</strong> AlB 2 are<br />

found with binary defect Nd-silicides NdSi2–y.<br />

Some controversies exist along the concentration line Fe - NdSi2 which contains two<br />

phases: NdFeSi 2 (τ 8) <strong>and</strong> NdFe 1+xSi 1–x (τ 3). NdFeSi was claimed to be single-phase with an<br />

orthorhombic “TiNiSi type” of structure [1973May]. The existence of a compound NdFeSi<br />

was confirmed by [1970Bod, 1995Zhu, 1998Wel], but at variance with [1973May] a tetragonal<br />

PbFCl type of structure (CeFeSi type) was obtained from arc-melted alloys heat treated at<br />

800˚C for 3 months (low-temperature phase?). Due to the high temperature of preparation<br />

<strong>and</strong> homogenization the “TiNiSi type” phase as reported by Mayer <strong>and</strong> Felner [1973May] is<br />

likely to represent a high-temperature modification. At variance to [1996Sal], the findings of<br />

[1995Zhu] revealed a significant homogeneity region NdFe1+xSi1–x extending at 500˚C from<br />

28 to 36 at.% Si.<br />

NdFeSi 2 (τ 8) with TbFeSi 2 structure type was prepared at 1000˚C (1273 K) <strong>and</strong> quenched.<br />

The material was consecutively investigated at temperatures below 300 K (27˚C) without any<br />

signs of decomposition [1990Mal]. Presently it is unclear if NdFeSi 2 is stable at high temperatures<br />

only.<br />

Many contributions are concerned with the physical <strong>and</strong> predominantly the magnetic<br />

properties of NdFe2Si2 (τ2) (see section Notes on Materials Properties <strong>and</strong> Applications).<br />

Although the compound ties to most neighboring phases (see phase relations in Fig. 1),<br />

heating of NdFe 2Si 2 above 700˚C was reported to result in a decomposition into a mixture of<br />

Nd 5Si 4 <strong>and</strong> Fe 3Si [1972May].<br />

The crystal structure of Nd 6Fe 13Si (τ 4) (space group I4/mcm) was derived from single<br />

crystal X-ray data <strong>and</strong> was found to be an ordered version of the Nd 6Fe 11Ga 3 type [1990All].<br />

At subsolidus temperatures solubility of Si in Nd 2Fe 17 was found to extend at least to<br />

NdFe 12.91Si 4.09 from a neutron diffraction experiment on samples Nd 2Fe 17–xSi x (x up to 4)<br />

reducing anisotropically the unit cell volume: silicon atoms avoid the 6c site but prefer the 18h<br />

site (the site with the highest Nd-coordination number) [1993Lon, 1995Yel, 1996Yel,<br />

1996Gir]. Samples at x = 5 annealed at 1000˚C for one month showed in the X-ray spectrum<br />

besides majority of Nd 2Fe 17–xSi x phase also NdFe 2Si 2, Fe-Si <strong>and</strong> small amounts of a bct Nd(Fe,<br />

Si) 11 phase [1997Hua].<br />

The crystal structures of the ternary compounds are all summarized in Table 2.<br />

DOI: 10.1007/978-3-540-70890-2_9 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Isothermal Sections<br />

A partial isothermal section at 500˚C for the region < 40 at.% Nd <strong>and</strong> < 40 at.% Si [1995Zhu]<br />

<strong>and</strong> a full isothermal section at 600˚C [1996Sal] have been derived. Although the two<br />

investigations were only apart in temperature by 100˚C, there are severe differences in (i)<br />

the extent of the homogeneity region of the NdFeSi phase (point compound in [1996Sal], but<br />

NdFe1+xSi1–x with –0.8 < x < 0.16 reported by [1995Zhu]); (ii) the phase equilibria NdFeSi +<br />

Nd6Fe13Si + Nd5Si3 [1996Sal] in contrast to NdFe1+xSi1–x + Nd2(Fe1–xSix)17 + Nd by<br />

[1995Zhu], <strong>and</strong> (iii) maximal solubility of Si in Nd 2Fe 17 given at about 4 at.% Si by<br />

[1996Sal] but 12 at.% Si by [1995Zhu]. Figure 1 shows the isothermal section at 600˚C,<br />

which was slightly modified to comply with the accepted binary systems. Furthermore,<br />

equilibria as given by [1996Sal] were used for the Fe-Nd rich side but a homogeneity region<br />

was inferred from [1995Zhu] for the NdFeSi phase <strong>and</strong> a higher solubility of 12 at.% Si was<br />

adopted for the Nd 2Fe 17 phase. It needs to be noted, however, that at 600˚C only few of the<br />

compounds discovered were reported <strong>and</strong> neither phases such as τ9 (AlB2 type) <strong>and</strong> τ6 (ThSi2<br />

type) nor solid solutions of Fe in these phases have been observed [1996Sal], although both<br />

structure types exist in the binary Nd-Si system. Furthermore phases τ 5, τ 7, τ 8 were not<br />

observed [1996Sal, 1995Zhu]. This may be either due to slow reaction kinetics <strong>and</strong> diffusion<br />

at low temperature or on the fact that these phases are all high temperature phases which are<br />

only stable at temperatures above 600˚C.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–Nd–Si 9<br />

In view of the various magnetic <strong>and</strong> electric properties of binary Nd-silicides basic interest in<br />

Nd-Fe-silicides essentially covered Si rich compounds τ 2, τ 6, τ 9, τ 8 among which the most<br />

studied phase is τ 2 (NdFe 2Si 2, tetragonal with the ordered ThCr 2Si 2 type of structure: I4/mmm,<br />

a = 399.2, c = 1007.0 pm, p x = 6.46 kg·dm –3 [1978Ros]; X-ray powder diffraction). After the<br />

discovery of the permanent magnet Nd 2Fe 14B with high magnetic anisotropy <strong>and</strong> high<br />

magnetic energy product due to the interaction of magnetic Nd <strong>and</strong> Fe sublattices, scientific<br />

interest in permanent magnet materials was concerned with Fe-Nd rich phases stabilized by<br />

silicon: Nd6Fe13Si (τ4), NdFe10Si2 (τ7) <strong>and</strong> the solid solution Nd2Fe17–xSix.<br />

τ 2-NdFe 2Si 2: In a neutron powder diffraction study of NdFe 2Si 2 by Pinto <strong>and</strong> Shaked<br />

[1973Pin] five superlattice reflections were observed at 4.2 K. These lines were found to be<br />

consistent with a doubling of the c-axis according to a new unit cell a’ = 398.0 <strong>and</strong> c’ = 1990 pm<br />

with the magnetic space group P 2c4/nm’m’. The Nd sublattice with Nd atoms in the “2a sites”<br />

{3.01(3) μ B per Nd atom} orders antiferromagnetically. A collinear magnetic structure with<br />

tetragonal symmetry of the Fe sublattice could be excluded. The Néel temperature at T N = 15.6<br />

K was determined from the intensity-temperature curve of the strongest superlattice reflections.<br />

The magnetic structure consists of ferromagnetic sheets perpendicular to the c-axis<br />

(magnetic axis along c) <strong>and</strong> with a stacking sequence ++ –. The neutron powder diffraction<br />

pattern at room temperature (I4/mmm, a = 398.3, c = 1003 pm) was refined to R = 0.083 <strong>and</strong><br />

yielded a small statistical distribution of Fe/Si atoms according to: Nd in 2a sites, 0.902 Fe +<br />

0.098 Si in 4d, <strong>and</strong> 0.098 Fe + 0.902 Si in the 4e sites with z Si= 0.372. The structure type at<br />

room temperature was confirmed (a = 3.995 ± 0.05, c = 1007 ± 5 pm) by [1973Bau, 1975Fel],<br />

who also reported magnetic susceptibility data with a weak ferromagnetic ordering at<br />

713 ±⊊5 K; the rare earth sublattice orders antiferromagnetically at TN = 11 K, <strong>and</strong> from<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_9<br />

ß Springer 2009<br />

3


4 9<br />

Fe–Nd–Si<br />

magnetization measurements a spin-flop transition is observed for a field of 11 kOe below the<br />

Néel temperature. Mössbauer effect <strong>and</strong> magnetization measurements reveal most of the iron<br />

to be diamagnetic (94 %). More recent magnetization <strong>and</strong> Mössbauer data by [1983Noa,<br />

1983Uma]( 57 Fe, 297 K, 4.2 K) prove the absence of a magnetic moment at the Fe site <strong>and</strong> the<br />

spectra at 4.2 Kwere interpreted by the presence of an internal magnetic field at the Fe nucleus,<br />

due to the antiferromagnetic ordering of the R atom (conduction electron polarization caused<br />

by Nd ion). Thus two magnetic sites were concluded for the Fe atoms without <strong>and</strong> with an<br />

internal field of 22 ± 1 kG [1983Uma]. The thermal expansion coefficients of NdFe 2Si 2 have<br />

been determined by Mayer <strong>and</strong> Felner [1972May] by means of high temperature diffractometry<br />

(see also NdFe 0.4Si 1.6): α a = 5.5 · 10 –6 deg –1 ; α c = 11.1 · 10 –6 deg –1 ; a = 7.4 · 10 –6 deg –1 . The<br />

volume expansion coefficient was γ = 22.6 · 10 –6 deg –1 . The electrical resistivity of NdFe 2Si 2<br />

was 9.7 mΩ·cm at 300 K [1973Fel]. For a calculation of the electronic state of the Fe atoms in<br />

NdFe 2Si 2, see Koterlin <strong>and</strong> Lutsiv [1978Kot]. Magnetic data on NdFe 2Si 2 were discussed by<br />

[1987Lec] as part of a summary on isotypic rare earth <strong>and</strong> actinide compounds. Crystal<br />

growth <strong>and</strong> analysis of basic thermodynamic properties of NdFe2Si2 was reported by<br />

[2003Svo, 2003Vej].<br />

Nd(Fe0.20Si0.80)2 (τ9):<br />

Mayer <strong>and</strong> Felner [1972May] determined the thermal expansion coefficient of NdFe 0.4Si 1.6 by<br />

means of high-temperature X-ray diffraction. Samples were held in Ta crucibles <strong>and</strong> the<br />

temperature was accurate within ± 10˚C: αa = 10.5 · 10 –6 deg –1 , αc = 15.00 · 10 –6 deg –1 <strong>and</strong><br />

a = 12.0 · 10 –6 deg –1 ; the volume expansion coefficient was γ = 35.0 · 10 –6 deg –1 . NdFe 0.4Si 1.6<br />

was said to exhibit a complex magnetic spin structure [1974Nar].<br />

NdFeSi2 (τ8):<br />

A detailed study of the magnetic structure of NdFeSi2 revealed a sine-modulated antiferromagnetic<br />

structure (Nd-moments = 2.52μB at 4.2 K) q = (0,0.591,0) below TN = 6.5 K<br />

[1990Mal]. 57 Fe Mössbauer data prove the absence of a magnetic moment at the Fe site but<br />

indicated a progressive squaring of the sine modulation of the Nd-moments with a pure<br />

square wave at 3 K suggesting orbital polarization of conduction electrons [1990Mal].<br />

Nd6Fe13Si (τ4):<br />

Nd6Fe13Si was found to be an antiferromagnet below TN = 725 K (452˚C) [1990All]<br />

whereas [1998Gro] reported T N = 421 K (148˚C). Magnetization <strong>and</strong> Mössbauer measurements<br />

on Nd 6Fe 13Si show antiferromagnetism with a net moment of 0 - 1μ B/formula unit<br />

but on hydrogenation to Nd 6Fe 13SiH 14.6 there is ferromagnetic behavior with a moment of<br />

23 - 27 μ B/formula unit at room temperature [1996Lei]. The hydrogenation properties show a<br />

marked reduction of the maximum hydrogen uptake related directly to the Si substitution rate<br />

[1999Art].<br />

[2002Taj] investigated magnetoelastic interactions in Nd6Fe13Si by magnetostriction <strong>and</strong><br />

thermal expansion measurements (77 - 300 K). A reversal in sign of magnetostriction versus<br />

DOI: 10.1007/978-3-540-70890-2_9 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


temperature occurred at 115 K, accompanied by a spin re-orientation of iron ions from basal<br />

plane to c axis at higher temperatures. At the spin re-orientation temperature (T sr) of 115 K,<br />

magnetostriction remains around zero due to the compensation of the negative magnetostriction<br />

of the low-temperature phase by positive magnetostriction of the high temperature spin<br />

phase. The magnetostriction compensation effect appears as a peak in the thermal expansion<br />

coefficient curve.<br />

A reinvestigation of the magnetic structure Nd6Fe13Si by means of powder neutron<br />

diffraction <strong>and</strong> Mössbauer spectral studies between 2 - 295 K [2002Isn] confirmed earlier<br />

findings: a collinear antiferromagnetic structure with the wave vector q = (0, 0, 1) below the<br />

T N = 421 K. A spin reorientation is observed at T < 100 K in both the neutron diffraction<br />

patterns <strong>and</strong> the Mössbauer spectra. Above <strong>and</strong> below 100 K, the magnetic moments of the<br />

four iron <strong>and</strong> the two neodymium crystallographic sites are ferromagnetically coupled within<br />

one block along the c axis <strong>and</strong> the resulting magnetic moment of this block is antiferromagnetically<br />

coupled with that of the adjacent block along the c axis through a layer of silicon<br />

atoms. Above <strong>and</strong> below 100 K, the magnetic moments are found to be parallel or very close to<br />

the c axis <strong>and</strong> within or close to the (a, b) basal plane of the tetragonal unit cell, respectively.<br />

NdFe10Si2 (τ7):<br />

The substitutional effect on magnetic properties has been studied by X-ray powder diffraction<br />

<strong>and</strong> Mössbauer spectroscopy on Nd 2Fe 15Si 2, NdFe 10Si 2 [2003Sor]. A review on crystal structure,<br />

formation <strong>and</strong> magnetic properties of the hard magnetic phase NdFe 10Si 2 (T C = 574˚C) is<br />

presented in [1991Bus].<br />

Solution Nd2Fe17–xSix:<br />

Fe–Nd–Si 9<br />

Substitution of Si for Fe in Nd 2Fe 17–xSi x was investigated by [1993Lon, 1995Yel, 1995Zha,<br />

1996Yel] by magnetization [1993Lon, 1997She, 1997Hua] <strong>and</strong> Mössbauer spectroscopy<br />

[1993Lon], by neutron diffraction [1995Yel, 1996Yel] <strong>and</strong> high temperature X-ray diffraction<br />

[1995Zha]. Fe/Si substitution was observed to raise the Curie temperature from TC = 325 K<br />

(52˚C) for x =0toT C = 492 K (219˚C) for x =3[1993Lon, 1996Gir, 1997She]; reaching a<br />

maximum at x =4[1995Yel]. The easy direction of magnetization was found to change from<br />

basal at low Si content (x < 3) to axial at high Si content [1996Yel, 1995Zha] consistent with<br />

Mössbauer spectra, magnetization <strong>and</strong> hyperfine field parallel to the c axis [1993Lon]. The<br />

iron moment decreases on Si substitution [1997She]. Due to the various substitution effects<br />

an Invar type of anomalies were reported for the temperature dependence of a, c parameters<br />

below T C [1995Zha]. The observed spontaneous magnetostriction is due to isotropic exchange<br />

contribution - no spin reorientation was observed for x


6 9<br />

Fe–Nd–Si<br />

. Table 1<br />

Investigations of the Fe-Nd-Si <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1969May] HF melting under Ar from RE-ingots <strong>and</strong><br />

Fe,Si powders on MgO or Al 2O 3 crucibles.<br />

Annealing in quartz at 700 to 800˚C for 24<br />

to 96 h. Microstructure analysis, XPD<br />

[1970Bod] Ar-arc melting from 50 g RE-ingots <strong>and</strong> Fe,<br />

Si powders. Annealing in quartz at 800˚C<br />

for 3 months. Single crystals isolated from<br />

center of alloy; X-ray single crystal study<br />

[1972May] HF melting under He from RE-ingots <strong>and</strong><br />

Fe,Si powders on MgO or Al 2O 3 crucibles.<br />

Annealing in quartz at 700˚C for 48 h.<br />

In situ high temperature XPD 20 to 1200˚C<br />

in Ta-sample holder.<br />

[1973Bau] HF melting under Ar from RE-ingots <strong>and</strong><br />

Fe,Si powders on MgO or Al 2O 3 crucibles.<br />

Annealing in HF at 1600˚C (reaction<br />

temperature) for 20 min. XPD, 57 Fe<br />

Mössbauer analysis (4.2 <strong>and</strong> 300 K),<br />

magnetic susceptibility (1.5 to 300 K)<br />

[1973Fel] HF melting under Ar from RE-ingots <strong>and</strong><br />

Fe,Si powders on MgO or Al 2O 3 crucibles.<br />

Annealing in HF at 1600˚C (reaction<br />

temperature) for 30-60 min. XPD, electrical<br />

resistivity (100 to 280 K)<br />

[1973May] HF melting under Ar from ingots on Al 2O 3<br />

crucibles. Annealing in HF at 1600˚C<br />

(reaction temperature) for 30 min. XPD<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

Synthesis of Nd(Fe 0.2Si 0.8) 2 with AlB 2 type.<br />

Determination of the crystal structure of<br />

NdFeSi (PbFCl type); R F = 0.135.<br />

Synthesis of Nd(Fe 0.2Si 0.8) 2 with AlB 2 type.<br />

Synthesis of NdFe 2Si 2 with ThCr 2Si 2 type.<br />

Determination of thermal expansion<br />

coefficients.<br />

Synthesis of Nd(Fe 0.125Si 0.875) 2 with ThSi 2<br />

type.<br />

Synthesis of Nd(Fe 0.2Si 0.8) 2 with AlB 2 type.<br />

Synthesis of NdFeS with TiNiSi type.<br />

Synthesis of NdFe2Si2 with ThCr2Si2 type.<br />

Electrical resistivity (100 to 280 K)<br />

Synthesis of NdFe 2Si 2 with ThCr 2Si 2 type.<br />

Electrical resistivity (100 to 280 K)<br />

[1973Pin] See [1973May]; XPD, NPD at 4.2, 300, 650 K Synthesis of NdFe 2Si 2 with ThCr 2Si 2 type.<br />

Determination of crystal <strong>and</strong> magnetic<br />

structure by neutron diffraction.<br />

[1974Nar] HF melting under Ar from ingots in Al 2O 3<br />

crucibles. Annealing in Vycor tubes at<br />

850˚C for 1 week. Microstructure analysis,<br />

XPD. Magnetic susceptibility <strong>and</strong><br />

magnetization measurements (4.2 to<br />

630 K)<br />

[1975Fel] See [1973May]; magnetic susceptibility<br />

<strong>and</strong> magnetization measurements (1.5 to<br />

300 K)<br />

Synthesis of Nd(Fe 0.2Si 0.8) 2 with AlB 2 type.<br />

Elucidation of magnetic structure.<br />

Synthesis of NdFe 2Si 2 with ThCr 2Si 2 type.<br />

Determination of magnetic behavior.<br />

DOI: 10.1007/978-3-540-70890-2_9 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1978Ros] HF melting under Ar from ingots.<br />

Annealing in Vycor tubes at 500˚C for<br />

1 week. Microstructure analysis, XPD.<br />

[1990All] Single crystals of Nd 6Fe 13Si were isolated<br />

from an alloy 90Nd10Fe + 2 mass% Si<br />

melted under vacuum <strong>and</strong> slowly cooled<br />

from 700 to 500˚C (3˚C/h).<br />

[1990Mal] Sintering of pellets from powders of Fe,Si<br />

<strong>and</strong> filings of Nd at 1000˚C in silica tubes<br />

with repeated crushing.<br />

X-ray (RT) <strong>and</strong> neutron (1.5 to 40 K)<br />

powder diffraction ; 57 Fe Mössbauer<br />

analysis (1.6 <strong>and</strong> 295 K)<br />

[1993Lon] HF melting (or arc casting) under Ar from<br />

ingots. X-ray <strong>and</strong> neutron powder<br />

diffraction; 57 Fe Mössbauer spectrometry<br />

at 295K. Susceptibility <strong>and</strong> magnetization<br />

(1.8 to 300 K)<br />

[1995Zhu] 88 alloys prepared by HF melting under Ar<br />

from ingots in alumina crucibles.<br />

Annealing for alloys < 20 at.% Nd: 800˚C<br />

30 d - cooled to 500˚C at 10 K/h. Other<br />

alloys were annealed at 650˚C for 40 d,<br />

cooled at 10 K/h to 500˚C kept for 7 d<br />

prior to quenching in ice water. XPD<br />

[1996Sal] Ar-arc melting of ingots annealed in<br />

quartz at 600˚C for 3 weeks. XPD<br />

[1995Yel]<br />

[1996Yel]<br />

[1996Gir]<br />

Ar-arc or HF melting of ingots annealed in<br />

vacuum at 980˚C for 1 to 3 weeks<br />

[1995Yel, 1996Yel] or at 1070˚C under Ar<br />

for several days [1996Gir]. X-ray <strong>and</strong><br />

neutron powder diffraction<br />

[1998Wel] HF melting of ingots under Ar, annealed in<br />

quartz at 1000˚C for 10 d. Crystals for<br />

X-ray analyses isolated from ingot.<br />

[2003Sor] Ar arc-melting of ingots, annealed in<br />

quartz at 950 to 1050˚C for 10 d. XPD, 57 Fe<br />

Mössbauer spectrometry at 295 K.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Nd–Si 9<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

Synthesis of NdFe 2Si 2 with ThCr 2Si 2 type.<br />

Synthesis of Nd 6Fe 13Si. Determination of<br />

crystal structure from X-ray single crystal<br />

data.<br />

Synthesis of NdFeSi 2. Determination of<br />

crystal <strong>and</strong> magnetic structure from X-ray<br />

<strong>and</strong> neutron powder data.<br />

Samples Nd 2Fe 17–xSi x (x up to 4).<br />

Determination of crystal <strong>and</strong> magnetic<br />

structure from X-ray <strong>and</strong> neutron powder<br />

data.<br />

Constitution of a partial isothermal<br />

section at 500˚C for the region < 40 at.%<br />

Nd <strong>and</strong> < 40 at.% Si.<br />

Determination of isothermal section at<br />

600˚C.<br />

Samples Nd 2Fe 17–xSi x (x up to 4.2). X-ray<br />

<strong>and</strong> neutron powder diffraction to<br />

determine detailed atom site distribution<br />

as a function of x.<br />

X-ray single crystal structure<br />

determination of NdFeSi.<br />

Preparation of Nd 2Fe 15Si 2, NdFe 10Si 2<br />

DOI: 10.1007/978-3-540-70890-2_9<br />

ß Springer 2009<br />

7


8 9<br />

Fe–Nd–Si<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(βNd) cI2 a = 413 [Mas2]<br />

1021 - 863 Im3m<br />

W<br />

(αNd) hP4 a = 365.82 [Mas2]<br />

< 863 P63/mmc αLa<br />

c = 1179.66<br />

(δFe) cI2 a = 293.15 pure Fe at 1390˚C [V-C2, Mas2]<br />

1538 - 1394 Im3m<br />

W<br />

(γFe) cF4 a = 364.67 pure Fe at 915˚C [Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

(αFe) cI2 a = 286.65 pure Fe at 25˚C [Mas2]<br />

< 912 Im3m<br />

W<br />

(αSi) cF8 a = 543.06 at 25˚C [Mas2]<br />

< 1414 Fd3m<br />

C (diamond)<br />

Nd5Si3 tI32 a = 776.8 at 25˚C [V-C2]<br />

< 1477 I4/mcm<br />

Cr5B3 c = 1369<br />

a = 778.7<br />

c = 1373<br />

at 280˚C [V-C2]<br />

Nd5Si3 hP16 a = 867.1 ± 2 [2006Rog]<br />

? P63/mmc Mn5Si3 c = 657.7 ± 2<br />

a = 778.7<br />

c = 1373<br />

may be impurity stabilized<br />

Nd5Si4 tP36 a = 787.30 ± 0.01 [2006Rog]<br />

< 1567 P41212 Zr5Si4 c = 1483.89 ± 0.01<br />

Nd5Si4 oP36 a = 786.7 [V-C2]<br />

Pnma b = 1474<br />

Sm5Ge4 c = 790.7<br />

a = 786.70 ± 0.03<br />

b = 1508.35 ± 0.05<br />

c = 789.20 ± 0.03<br />

[2006Rog]<br />

DOI: 10.1007/978-3-540-70890-2_9 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–Nd–Si 9<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

NdSi oP8 a = 818.74 ± 0.09 [2001Bou]<br />

< 1677 Pnma b = 392.35 ± 0.04<br />

FeB c = 588.40 ± 0.06<br />

Nd2Si3–x (NdSi1.33) oC20 Listed as “Nd3Si4”[2000Oka] < 1397 Cmcm<br />

Ho3Si4 a = 435.89 ± 0.01 at NdSi1.40 [2001Bou]<br />

or better V2B3 b = 2457.74 ± 0.04 [1992Sch] attributed V2B3 type<br />

c = 391.61 ± 0.01<br />

a = 436.2 x = 0.5 at 293 K [1992Sch]<br />

b = 2458.4<br />

c = 391.6<br />

Ferromagnetic TC =80K<br />

a = 434.75<br />

b = 2456.42<br />

c = 391.11<br />

x = 0.5 at 20 K [1992Sch]<br />

NdSi2–x hP3 x close to 0.4 [V-C2]<br />

(h1) P6/mmm a = 395.03 ± 0.03 x close to 0.34 [2001Bou]<br />

< 1507 AlB2 c = 425.73 ± 0.04<br />

a = 394.8 [1990Pie]<br />

c = 426.9 TN1 = 3.5 K, antiferromagnetic<br />

Tm = 1.5 K, metamagnetism<br />

NdSi2–x oI12 a = 417.6 NdSi1.8 [V-C2]<br />

(h2) Imma b = 414.5<br />

< 527 ? GdSi2–x c = 1359.9<br />

a = 413.5 NdSi1.73 b = 410.1<br />

c = 1374<br />

TC = 10 K, ferromagnetic [1990Pie]<br />

NdSi2–x(h3) tI12 a = 414.2 ± 0.6 x close to 0.2 [V-C2]<br />

< 1757 I41/amd c = 1365 ± 2 [1990Pie]:<br />

ThSi2 TN1 = 10 K, antiferromagnetic<br />

TN2 = 6 K, collinear antiferromagnet<br />

α1,Fe3Si cF16 D03, 11.0 to 30.0 at.% Si [1982Kub]<br />

≤ 1235 Fm3m<br />

BiF3<br />

a = 565 [V-C2]<br />

α2, Fe-Si cP2 B2, 10.0 to 22.0 at.% Si [1982Kub]<br />

≤ 1280 Pm3m<br />

CsCl<br />

a = 281 [V-C2]<br />

Fe2Si hP6 ~33.0 to ~34.3 at.% Si [1982Kub]<br />

1212 - 1040 P3m1 a = 405.2 ± 0.2<br />

Fe2Si c = 508.55 ± 0.03 [V-C2]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_9<br />

ß Springer 2009<br />

9


10 9<br />

Fe–Nd–Si<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

Fe5Si3 hP16 37.5 at.% Si [1982Kub]<br />

1060 - 825 P63/mmc a = 675.9 ± 0.5 [V-C2]<br />

Mn5Si3 c = 472.0 ± 0.5<br />

FeSi cP8 49.6 to 50.8 at.% Si [1982Kub]<br />

< 1410 P213 FeSi<br />

a = 451.7 ± 0.5 [V-C2]<br />

FeSi2(h) tP3 69.5 to 73.5 at.% Si [1982Kub]<br />

1220 - 937 P4/mmm a = 269.01 [V-C2]<br />

FeSi2 c = 513.4<br />

FeSi2(r) oC48 66.7 at.% Si [1982Kub]<br />

< 982 Cmca a = 986.3 ± 0.7 [V-C2]<br />

FeSi2 b = 779.1 ± 0.6<br />

c = 783.3 ± 0.6<br />

Nd2Fe17(r) hR57 a = 857 to 859 [V-C2]<br />

< 1208 R3m<br />

Th2Zn17 c = 1244 to 1248<br />

Nd2(Fe1–xSix) 17<br />

a = 859.0<br />

c = 1247.6<br />

a = 852.1<br />

c = 1249.7<br />

a = 856.1<br />

c = 1247.5<br />

0


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–Nd–Si 9<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

NdFe5 hP6 a = 494.6 [1986Sta]<br />

metastable? P6/mmm<br />

CaCu5 c = 417.0 from splat-cooled alloy<br />

* τ1, NdFeSi3 - [1996Sal]<br />

* τ2, NdFe2Si2 tI10 a = 398.1 ± 0.1 at 25˚C [1972May]<br />

< 700 I4/mmm<br />

ThCr2Si2 c = 1002 ± 0.2 at 400˚C [1972May]<br />

a = 399.2 ρexp = 6.46 Mg·m –3 [1978Ros]<br />

c = 1011 a supercell was found at 4.2 K<br />

a = 398.0, c = 1990 pm = 2c0 [1973Pin]<br />

TN = 15.6 K<br />

a = 400.7 at 1150˚C [1972May]<br />

c = 1026 linear dependency 25 to 1150˚C<br />

* τ3, NdFeSi (h) oP12 a = 689 [1973May]<br />

Pnma b = 532<br />

TiNiSi or Co2Si c = 1118<br />

* τ3, NdFe1+xSi1–x (r) tI12 –0.8 < x < 0.16 at 500˚C [1995Zhu]<br />

P4/nmm a = 405.7 x = 0, quenched from 800˚C;<br />

PbClF c = 689.3 ρexp= 6.54 Mg·m –3 [1970Bod]<br />

(CeFeSi type) [V-C2] lists Cu2Sb type<br />

a = 392.1<br />

c = 694.2<br />

[1995Zhu] noxgiven a = 405.7 ± 0,3 x = 0, SC data from alloy at 1000˚C<br />

c = 691.9 ± 0,5 [1998Wel]; R = 0.076<br />

* τ4,Nd6Fe13Si tI80 a = 803.4 [1990All]<br />

I4/mcm c = 2278 RF = 0.07<br />

Nd6Fe13Si derivative of Nd6Fe11Ga3 type<br />

* τ5, Nd(Fe0.33Si0.67) 2<br />

< 950<br />

- - [1972May]<br />

* τ6, Nd(Fe0.125,Si0.875)2 tI12 a = 411.5 [1973May]<br />

I41/amd ThSi2 c = 1390<br />

*τ7, NdFe10Si2 cF296 - [1991Bus, 2003Sor]<br />

Fm3m<br />

ThMn12 no lattice parameters given<br />

* τ8, NdFeSi2 oC16 a = 408.2 ± 0,3 [1990Mal]<br />

Cmcm b = 1698 ± 3 TbFeSi2 type<br />

variant of<br />

CeNiSi2 c = 400.4 ± 0,3 TN = 6.5 K sine modulated AF<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_9<br />

ß Springer 2009<br />

11


12 9<br />

Fe–Nd–Si<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

* τ9, Nd(Fe0.2Si0.8) 2 tP3 a = 403.1 quenched from 700 to 800˚C<br />

< 950 P6/mmm<br />

AlB2 c = 419.2 [1969May]<br />

a = 404.6<br />

c = 421.7<br />

at 25˚C [1972May]<br />

a = 405.9<br />

c = 423.7<br />

at 500˚C [1972May]<br />

a = 406.5<br />

c = 425.3<br />

at 600˚C [1972May]<br />

a = 407.2<br />

c = 426.1<br />

at 820˚C [1972May]<br />

DOI: 10.1007/978-3-540-70890-2_9 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Nd–Si 9<br />

. Fig. 1<br />

Fe-Nd-Si. Isothermal section at 600˚C. Location of ternary compounds, τ 5 to τ 9, not detected by<br />

[1996Sal], are shown as filled circles<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_9<br />

ß Springer 2009<br />

13


14 9<br />

Fe–Nd–Si<br />

References<br />

[1969May] Mayer, I., Tassa, M., “Rare-Earth-Iron (Cobalt, Nickel)-Silicon Compounds”, J. Less-Common Met.,<br />

19, 173–177 (1969) (Crys. Structure, Experimental, 9)<br />

[1970Bod] Bodak, O.I., Gladyshevsky, E.I., Kripyakevich, P.I., “Crystal Structure of Ce-Fe Silicide <strong>and</strong> Similar<br />

Compounds.”, Zh. Strukt. Kim., 11, 305–310 (1970) (Experimental, Crys. Structure, 20)<br />

[1972May] Mayer, I., Felner, I., “High-Temperature X-Ray Study of Rare-Earth Silicides”, J. Less-Common Met.,<br />

29, 25–31 (1972) (Crys. Structure, Experimental, 4)<br />

[1973Bau] Bauminger, E.R., Felner, I., Froindlich, D., Grill, A., Lebenbaum, D., Mayer, I., Nowik, I., Ofer, S.,<br />

Schieber, M., “Magnetic Properties of RFe 2Si 2 <strong>and</strong> RFe 2Ge 2 Compounds” in “Proc. Intl. Conf. Magnetism”,<br />

Moscow, 5, 56–59 (1973) (Experimental, Crys. Structure, Magn. Prop., 5)<br />

[1973Fel] Felner, I., Mayer, I., “The Electrical Resistivity of RFe 2Si 2 Type Rare-Earth Silicides”, Mater. Res. Bull.,<br />

8, 1317–1319 (1973) (Crys. Structure, Electr. Prop., Experimental, 5)<br />

[1973May] Mayer, I., Felner, I., “Structure Types of <strong>Ternary</strong> Rare Earth - Transition Metal Silicides of the LnM xSi 2–x<br />

Type”, J. Solid State Chem., 7, 292–296 (1973) (Crys. Structure, Experimental, 12)<br />

[1973Pin] Pinto, H., Shaked, H., “Neutron-Diffraction Study of NdFe 2Si 2”, Phys. Rev. B (Solid State), 7(7),<br />

3261–3266 (1973) (Crys. Structure, Experimental, 21)<br />

[1974Nar] Narasimhan, K.S.V.L., Steinfink, H., “Magnetic Investigations on AlB 2 Type Structures”, J. Solid State<br />

Chem., 10, 137–141 (1974) (Crys. Structure, Experimental, Magn. Prop., 10)<br />

[1975Fel] Felner, I., Mayer, I., Grill, A., Schieber, M., “Magnetic Ordering in Rare-Earth Fe Silicides <strong>and</strong><br />

Germanides of the RFe 2X 2 Type”, Solid State Commun., 16, 1005–1009 (1975) (Crys. Structure, Experimental,<br />

Magn. Prop., 17)<br />

[1978Kot] Koterlin, M.D., Lutsiv, R.V. “Electron State of Iron Atoms in the Neodymium Iron Silicide (NdFe 2Si 2)<br />

Compound” (in Russian), Fiz. Elektronika, 17, 18–21 (1978) cited from Ref. Zh., Fiz., E, Abstr. No. 2E58<br />

(1979) (Experimental, Phys. Properties, 4)<br />

[1978Ros] Rossi, D., Marazza, R., Ferro, R., “Lattice Parameters of Some ThCr 2Si 2 Type <strong>Phase</strong>s in <strong>Ternary</strong> <strong>Alloy</strong>s of<br />

Rare Earths with Cobalt (or Iron) <strong>and</strong> Silicon (or Germanium)”, J. Less-Common Met., 58(2), 203–207<br />

(1978) (Crys. Structure, Experimental, 10)<br />

[1982Kub] Kubaschewski, O., “Iron-Silicon” in “Iron - Binary <strong>Phase</strong> <strong>Diagrams</strong>”, Springer Verlag, Berlin, 136–139<br />

(1982) (<strong>Phase</strong> Diagram, Review, #, *, 23)<br />

[1983Noa] Noakes, D.R., Umarji, A.M., Shenoy, G.K., “Mössbauer Studies of REFe2Si2 (RE = Gd-Lu) Compounds”,<br />

J. Magn. Magn. Mater., 39, 309–316 (1983) (Experimental, Crys. Structure, Magn. Prop., 22)<br />

[1983Uma] Umarji, A.M., Noakes, D.R., Vccaro, P.J., Shenoy, G.K., Aldred, A.T., “Magnetic Properties of REFe 2Si 2<br />

Compounds”, J. Magn. Magn. Mater., 36(1–2), 61–65 (1983) (Experimental, Crys. Structure, Magn.<br />

Prop., 19)<br />

[1984Rog] Rogl, P., “<strong>Phase</strong> Equilibria in <strong>Ternary</strong> <strong>and</strong> Higher Order <strong>Systems</strong> with Rare Earth Elements <strong>and</strong> Silicon”<br />

in “H<strong>and</strong>b. Phys. Chem. Rare Earths”, North-Holl<strong>and</strong> Publ. Co, Amsterdam, vol. 7, 1–264 (1984)<br />

(Review, Crys. Structure, Phys. Properties, 10)<br />

[1986Sta] Stadelmaier, H.H., Schneider, G., Ellner, M., “A CaCu 5-type Iron-Neodymium <strong>Phase</strong> Stabilized by<br />

Rapid Solidification”, J. Less-Common Met., 115, L11–L14 (1986) (Crys. Structure, Experimental, 5)<br />

[1987Lec] Leciejewicz, J., Szytula, A., “The Systematics of Magnetic Structure Observed in MT 2X 2 Compounds”,<br />

Acta Phys. Pol., A72(1), 65–68 (1987) (Assessment, Electronic Structure, Magn. Prop., 8)<br />

[1990All] Allem<strong>and</strong>, J., Letant, A., Moreau, J.M., Nozieres, J.P., Perrier de la Bathie, R., “A New <strong>Phase</strong> in Nd 2Fe 14B<br />

Magnets. Crystal Structure <strong>and</strong> Magnetic Properties of Nd 6Fe 13Si”, J. <strong>Alloy</strong>s Compd., 166, 73–79 (1990)<br />

(Experimental, Crys. Structure, Magn. Prop., 9)<br />

[1990Mal] Malaman, B., Venturini, G., Le Caer, G., Potonnier, L., Fruchart, D., Tomala, K., Sanchez, J.P.,<br />

“Magnetic Structures of PrFeSi 2 <strong>and</strong> NdFeSi 2 from Neutron <strong>and</strong> Mössbauer Studies”, Phys. Rev. B, 41(7),<br />

4700–4712 (1990) (Experimental, Crys. Structure, Magn. Prop., 33)<br />

[1990Pie] Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A., Senateur, J.P., “Magnetic Properties<br />

of Rare Earth Silicide Single Crystals RSi 2–x (R = Pr, Nd, Gd)”, J. Mag. Magn. Mater, 89(1-2), 86–96<br />

(1990) (Experimental, Crys. Structure, Magn. Prop., 10)<br />

[1991Bus] Buschow, K.H.J., “New Developments in Hard Magnetic Materials”, Rep. Prog. Physics, 54, 1123–1213<br />

(1991) (Review, Magn. Prop., 223)<br />

DOI: 10.1007/978-3-540-70890-2_9 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Nd–Si 9<br />

[1991Lan] L<strong>and</strong>graf, F.J.G., Missell, F.P., Rechenberg, H.R., Schneider, G., Villas-Boas, V., Moreau, J.M., Paccard,<br />

L., Nozieres, J.P., “Magnetic <strong>and</strong> Structural Characterization of Nd 5Fe 17”, J. Appl. Phys., 70(10),<br />

6125–6127 (1991) (Crys. Structure, Magn. Prop., Experimental, 16)<br />

[1992Sch] Schobinger-Papamantellos, P., DeMooij, D.B., Buschow, K.H.J., Fischer, P., “Magnetic Ordering in<br />

Silicon Defect Nd-Si Compounds Studied by Neutron Diffraction <strong>and</strong> Magnetic Measurements”,<br />

J. <strong>Alloy</strong>s Compd., 178, 151–159 (1992) (Crys. Structure, Experimental, Magn. Prop., 13)<br />

[1993Hen] Hennemann, K., Lukas, H.L., Schaller, H.J., “Constitution <strong>and</strong> Thermodynamics of Fe-Nd <strong>Alloy</strong>s”, Z.<br />

Metallkd., 84, 668–674 (1993) (Experimental, Calculation, Thermodyn., <strong>Phase</strong> Diagram, 34)<br />

[1993Lon] Long, G.J., Marasinghe, G.K., Mishra, S., Pringle, O.A., Gr<strong>and</strong>jean, F., Buschow, K.H.J., Middleton, D.P.,<br />

Yelon, W.B., Pourarian, F., Isnard, O., “A Neutron Diffraction <strong>and</strong> Mössbauer Study of the Nd 2Fe (17–x)Si (x)<br />

Solid Solution”, Solid State Commun., 88(10), 761–764 (1993) (Crys. Structure, Experimental, 10)<br />

[1994Yan] Yan, Q.W., Zhang, P.L., Sun, X.D., Hu, B.P., Wang, Y.Z., Rao, X.L., Liu, G.C., Gou, C., Chen, D.F.,<br />

Cheng, Y.F., “The Magnetic Structure of Nd 6Fe 13Si”, J. Phys., Condens. Matter, 6(16), 3101–3107, (1994)<br />

(Experimental, Crys. Structure, Magn. Prop., 10)<br />

[1995Yel] Yelon, W.B, “Neutron Investigations of Novel Magnetic <strong>Phase</strong>s”, IEEE Trans. Magn., 31(6), 3689–3694<br />

(1995) (Crys. Structure, Experimental, 33)<br />

[1995Zha] Zhang, X.D., Shumsky, M.G., James, W.J., “Anomalous Thermal Expansion in Substituted Nd 2Fe 17–xSi x<br />

<strong>and</strong> Nd 2Fe 17–xAl x Compounds”, IEEE Trans. Magn., 31(6), 3662–3664 (1995) (Crys. Structure, Experimental,<br />

10)<br />

[1995Zhu] Zhuang, Y., Pan, C., Li, J., “<strong>Phase</strong> Equilibria in the Fe-Rich <strong>Alloy</strong>s of the <strong>Ternary</strong> System Nd-Fe-Si at<br />

500˚C”, J. <strong>Alloy</strong>s Compd., 217, 161–163 (1995) (Experimental, <strong>Phase</strong> Relations, 10)<br />

[1996Gir] Girt, Er., Altounian, Z., Ming Mao, Swainson, I.P., Donaberger, R.L., “Neutron Diffraction Study of Fe<br />

Substitutions in Nd 2Fe 17–δX δ (X = Al, Si, Ga, Mo, W)”, J. Magn. Magn. Mater., 163, L251–L256 (1996)<br />

(Crys. Structure, Experimental, Magn. Prop., 15)<br />

[1996Lei] Leithe-Jasper, A., Skomski, R., Qi, Q., Coey, J.M.D., Weitzer, F., Rogl, P., “Hydrogen in RE 6Fe 13XH y<br />

Intermetallic Compounds (RE = Pr, Nd; X = Ag, Au, Si, Ge, Sn, Pb)”, J. Phys.: Condens. Matter, 8(19),<br />

3453–3469 (1996) (Crys. Structure, Experimental, 35)<br />

[1996Sal] Salamakha, P.S., Stepen-Damm, J., Bodak, O., “Isothermal Section of the Nd-Fe-Si System at 870 K”, J.<br />

<strong>Alloy</strong>s Compd., 242, L1–L2 (1996) (Crys. Structure, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 12)<br />

[1996Yel] Yelon, W.B., Hu, Z., Chen, M., Luo, H., Ezekwenna, P.C., Marasinghe, G.K., James, W.J., Buschow, K.H.J.,<br />

Middleton, D.P., Pourarian, F., “Neutron Diffraction <strong>and</strong> Magnetic Studies of Nd 2Fe 17–xT x (T = Si, Mn)<br />

<strong>Alloy</strong>s”, IEEE Trans. Magn., 32(5), 4431–4433 (1996) (Crys. Structure, Experimental, 10)<br />

[1997Hua] Huang, M.Q., Wallace, W.E., “Structure <strong>and</strong> Magnetic Properties of RFe 13-xSi x (R = Pr, Nd or Gd,<br />

x = 2.5 - 5)”, J. Magn. Magn. Mater., 173, L225–L229 (1997) (Crys. Structure, Experimental, 10)<br />

[1997She] Shen, B.-G., Liang, B., Cheng, Z.-H., Gong, H.-Y., Zhan, W.-S., Tang, H., de Boer, F.R., Buschow, K.H.J.,<br />

“Magnetic Properties of R 2Fe 14M 3 Compounds with M = Ga <strong>and</strong> Si; R = Y, Nd, Sm, Gd, Tb, Dy, Ho, Er<br />

<strong>and</strong> Tm)”, Solid State Commun., 103, 71–75 (1997) (Crys. Structure, Experimental, 10)<br />

[1998Gir] Girt, E., Altounian, Z., “Origin of Fe Substitution in Nd 2Fe 17–δX δ”, Phys. Rev. B, Cond. Matter, 57(10),<br />

5711–5714 (1998) (Calculation, Crys. Structure, Experimental, Thermodyn., 20)<br />

[1998Gro] Groot de, C.H., Buschow, K.H.J., Boer de, R.F., “Magnetic Properties of R 6Fe 13–xM 1+x Compounds <strong>and</strong><br />

Their Hydrides”, Phys. Rev. B, Condens. Matter, 57(18), 11472–11482 (1998) (Crys. Structure, Experimental,<br />

Magn. Prop., 34)<br />

[1998Mie] Miettinen, J., “Reassessed Thermodynamic Solution <strong>Phase</strong> Data for <strong>Ternary</strong> Fe-Si-C System”, Calphad,<br />

22(2), 231–256 (1998) (Calculation, Assessment, Thermodyn., 36)<br />

[1998Wel] Welter, R., Ijjaali, I., Venturini, G., Malaman, B., “X-Ray Single Crystal Refinement on Some CeFeSi<br />

type RTX Compounds (R = RE Elements; T = Mn, Fe, Co, Ru; X = Si, Ge). Evolution of the Chemical<br />

Bonds”, J. <strong>Alloy</strong>s Compd., 265, 196–200 (1998) (Crys. Structure, Experimental, 16)<br />

[1999Art] Artigas, M., Fruchart, D., Gasdeblay, C., Isnard, O., Miraglia, S., “Structural, Magnetic <strong>and</strong><br />

Hydrogenation Properties of R 2Fe 17–xSi x Compounds (R = Rare Earth Element). II. Effects of Hydrogen<br />

Insertion on the Magnetic Properties (R = Ce, Nd; 0 < x < 0.5”, J. <strong>Alloy</strong>s Compd., 291, 282–288 (1999)<br />

(Crys. Structure, Experimental, Magn. Prop. 19)<br />

[2000Gir] Girt, E., Altounian, Z., “Model for Predicting Atomic Substitutions in Intermetallic Compounds”, J.<br />

Appl. Phys., 87(9), 4747–4749 (2000) (Calculation, Crys. Structure, 19)<br />

[2000Oka] Okamoto, H., Desk H<strong>and</strong>book Binary <strong>Phase</strong> <strong>Diagrams</strong>, ASM International, Materials Park, Ohio, 611<br />

(2000) (Review, <strong>Phase</strong> Diagram, 1).<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_9<br />

ß Springer 2009<br />

15


16 9<br />

Fe–Nd–Si<br />

[2001Bou] Boulet, P., Weitzer, F., Hiebl, K., NoNl, H., “Structural Chemistry, Magnetism <strong>and</strong> Electrical Properties<br />

of Binary Nd Silicides”, J. <strong>Alloy</strong>s Compd., 315(1-2), 75–81 (2001) (Experimental, Crys. Structure, Magn.<br />

Prop., 15)<br />

[2002Isn] Isnard, O., Ling, G.J., Hautot, D., Buschow, K.H.J., Gr<strong>and</strong>jean, F., “A Neutron Diffraction <strong>and</strong><br />

Mössbauer Spectral Study of the Magnetic Spin Reorientation in Nd 6Fe 13Si”, J. Phys.: Condens. Matter,<br />

14(47), 12391–12409 (2002) (Crys. Structure, Experimental, Magn. Prop., 33)<br />

[2002Taj] Tajabor, N., Alinejad, M.R., Pourarian, F., “Anomalies of Magnetostriction <strong>and</strong> Thermal Expansion<br />

in Nd 6Fe 13Si Solid Solution”, Physica B, 321(1-4), 60–62 (2002) (Experimental, Magn. Prop., Phys.<br />

Prop., 7)<br />

[2003Sor] Sorescu, M., Valeanu, M., Diam<strong>and</strong>escu, L., “Effect of Substitution on the Hyperfine Magnetic Field in<br />

Nd-based Intermetallics”, Intermetallics, 11(8), 749–754 (2003) (Crys. Structure, Experimental, Magn.<br />

Prop., Morphology, 8)<br />

[2003Svo] Svoboda, P., Vejpravova, J., Honda, F., Santava, E., Schneeweiss, O., Komatsubara, T., “The Analisis of<br />

the Specific Heat of RFe 2Si 2 Compounds”, Physica B, 328(1-2), 139–141 (2003) (Crys. Structure,<br />

Experimental, Thermodyn., 6)<br />

[2003Vej] Vejpravova, J., Svoboda, P., Sechovsky, V., Janecem, M., Komatsubara, T., “Crystal Growth <strong>and</strong> Basic<br />

Thermodynamic Properties of NdFe 2Si 2”, Physica B, 328(3-4), 173–178 (2003) (Experimental, Magn.<br />

Prop., <strong>Phase</strong> Relations, Thermodyn., 8)<br />

[2005Mec] Meco, H., Napolitano, R.E., “Liquidus <strong>and</strong> Solidus Boundaries in the vinicity of Order-Disorder<br />

Transitions in the Fe-Si System”, Scr. Mater., 52, 221–226 (2005) (Experimental, Calculation, <strong>Phase</strong><br />

Relations, Thermodyn., 30)<br />

[2006Rog] Roger, J., Babizhetskyy, V., Jardin, R., Halet, J.-F., GuJrin, R., “Solid State <strong>Phase</strong> Equilibria in the<br />

<strong>Ternary</strong> Nd-Si-B System at 1270 K”, J. <strong>Alloy</strong>s Compd., 415(1-2), 73–84 (2006) (Experimental, Crys.<br />

Structure, 41)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_9 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Nickel – Phosphorus<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Kostyantyn Korniyenko<br />

Introduction<br />

<strong>Phase</strong> relations in the Fe-Ni-P system are of great interest, in particular, for the basic study of<br />

meteoritic minerals, for applications in electronics etc. However, the amount of information<br />

available about the constitution of this system is insufficient at the present time. The available<br />

experimental data regarding phase equilibria were published quite long ago [1931Vog,<br />

1966Buc, 1970Doa, 1975Nor, 1980Rom, 1984Nar2]. The reaction scheme <strong>and</strong> liquidus surface<br />

projection of the Fe-Fe 2P-Ni 5P 2-Ni partial system as well as series of partial isothermal <strong>and</strong><br />

vertical sections have been reported. However, data on the liquid-solid equilibria <strong>and</strong> the<br />

liquidus surface projection presented in [1931Vog] are in contradiction with later versions of<br />

the boundary binary Fe-Ni system <strong>and</strong> therefore, reinvestigation of this aspect of the phase<br />

diagram using physico-chemical analysis techniques is necessary. Moreover, expansion of the<br />

known concentration range involving the binary Fe-P <strong>and</strong> Ni-P phases with higher P contents<br />

is an important issue.<br />

Publications relating to experimental studies of phase relations, crystal structures <strong>and</strong><br />

thermodynamics as well as the techniques applied are listed in Table 1. Information on<br />

thermodynamic properties, in the first instance concerning the activity of phosphorus in<br />

liquid iron with nickel additions, was obtained experimentally by [1969Sch, 1979Yam,<br />

1983Yam, 1984Ban]. Reviews of literature data relating to the phase equilibria of the<br />

Fe-Ni-P system are presented in [1949Jae, 1988Rag], crystal structures - in [1988Rag],<br />

thermodynamics - in [1979Yam, 1984Ban]. A thermodynamic description of the Fe-Ni-P<br />

system was derived by [1990Gus].<br />

Binary <strong>Systems</strong><br />

The Fe-P <strong>and</strong> Fe-Ni binary boundary systems are accepted from [2002Per] <strong>and</strong> [2008Kuz],<br />

respectively. The Ni-P boundary system is accepted from [Mas2].<br />

Solid <strong>Phase</strong>s<br />

Fe–Ni–P 10<br />

1<br />

<strong>Crystallographic</strong> data relating to the known unary <strong>and</strong> binary Fe-Ni-P phases <strong>and</strong> their<br />

concentration as well as temperature ranges of stability are presented in Table 2. The (γFe)<br />

<strong>and</strong> (Ni) phases form a continuous series of solid solutions in the binary Fe-Ni system, with<br />

little solubility of phosphorus in the Fe-Ni alloys [1965Kan2]. The P solubility in the (Fe,Ni)<br />

alloys increases with the Ni content of the alloy, which agrees with the quite high solubility of P<br />

in pure Ni.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


2 10<br />

Fe–Ni–P<br />

Two continuous series of solid solutions are reported to form between isostructural binary<br />

phases existing over the whole composition range <strong>and</strong> wide temperature ranges; namely the<br />

M 3P phase (Ni 3P type structure) <strong>and</strong> the M 2P phase (Fe 2P type) [1988Rag]. High solubilities<br />

of nickel in the FeP-based phase [1986Fje] as well as of iron in the NiP 3-based phase [2000Jei]<br />

exist. The crystal structures of the M 3P solid solutions, having the mineralogical names<br />

schreibersite <strong>and</strong> rhabdite, which have been extracted from Canyon Diablo, Morasko as well<br />

as Orange River meteorites, are reported in [2003Mor1, 2003Mor2, 2003Mor3], respectively.<br />

No ternary phase has been found in the system.<br />

Quasibinary <strong>Systems</strong><br />

It was concluded by [1931Vog] that the Fe 2P-Ni 5P 2 section is a quasibinary, probably of the<br />

simple eutectic type with eutectic temperature of about 990˚C. Position of the eutectic point e6<br />

is presented in Table 3. Solubilities of third component in the Fe2P- <strong>and</strong> Ni5P2-based phases<br />

were not established.<br />

Invariant Equilibria<br />

Temperatures, types of reactions <strong>and</strong> compositions of the phases taking part in the invariant<br />

equilibria (that are available) for the partial Fe-Fe2P-Ni5P2-Ni system are listed in Table 3. A<br />

partial reaction scheme (Fig. 1) is compiled on the basis of data from [1931Vog] <strong>and</strong><br />

[1970Doa] concerning the constitution of the liquidus surface, the character of the invariant<br />

equilibria in the partial Fe-Fe 2P-Ni 5P 2-Ni system <strong>and</strong> the constitution of the accepted boundary<br />

binary systems. It is essentially the same as that proposed in the assessment of [1988Rag].<br />

The compositions of the phases taking part in the transition reaction L + αδ Ð γ +M 3P <strong>and</strong><br />

the corresponding invariant temperature are taken from [1970Doa]. The remaining invariant<br />

equilibria are based on [1931Vog]. A maximum point (max), Table 3, corresponds to the<br />

change in character of the univariant process involving the liquid, M3P <strong>and</strong> Ni5P2 phases.<br />

Its composition is ~18.7Fe56.3Ni25P (at.%).<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

The liquidus surface projection of the partial Fe-Fe 2P-Ni 5P 2-Ni system was constructed by<br />

[1931Vog] on the basis of experimental data obtained by using thermal analysis <strong>and</strong> metallographic<br />

techniques. The proposed diagram was reproduced in the review of [1949Jae]. But<br />

later, because of revision of the Fe-Ni boundary system, the necessity for a reinvestigation of<br />

the liquidus surface projection has arisen. Figure 2 presents the liquidus surface projection of<br />

the partial Fe-Fe 2P-Ni 5P 2-Ni system based mainly on the critical review of [1988Rag]. The<br />

positions of the invariant points E, e 6 <strong>and</strong> max given by [1931Vog] are preserved but the U<br />

point is placed in accordance with [1970Doa]. Univariant curves are drawn as dashed lines but<br />

their accurate location needs to be determined. The author of [1990Gus] proposed a calculated<br />

liquidus surface projection of the Fe-Fe 2P-Ni 5P 2-Ni partial system. This must be considered<br />

as speculative as no attempt was made to fit the experimental data of [1931Vog].<br />

DOI: 10.1007/978-3-540-70890-2_10 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


The positions of the apexes of the invariant three-phase plane α-γ-M 3P existing on the<br />

solidus surface of the ternary system at 1000 ± 5˚C are listed in Table 3, taken from the work of<br />

[1970Doa]. Below 995˚C, the three-phase fields are L + γ +M 3P <strong>and</strong> L + γ + αδ; above 1005˚C,<br />

the three-phase fields are L + αδ + γ <strong>and</strong> L + αδ +M 3P.<br />

Isothermal Sections<br />

Fe–Ni–P 10<br />

3<br />

A series of isothermal sections of the ternary Fe-Ni-P system were proposed on the basis of<br />

experimental data [1966Buc, 1970Doa, 1975Nor, 1980Rom, 1984Nar2] <strong>and</strong> calculated results<br />

[1990Gus].<br />

Isothermal sections at the temperature of 1100˚C in the range of phosphorus content of up<br />

to about 20 at.% P were proposed independently by [1966Buc] <strong>and</strong> [1970Doa], but the latter<br />

work is preferable because the materials used in the investigation were of higher purity <strong>and</strong> the<br />

annealing times were longer than in the former work. This section is shown in Fig. 3 on the<br />

basis of [1970Doa], with amendments according to the constitution of the accepted binary<br />

systems. So, the L/(L + αδ) boundary from the side of the Fe-P binary is shifted in the direction<br />

of nickel corner. The isothermal section at 1100˚C for the same composition range calculated<br />

by [1990Gus] shows good agreement with the experimental data of [1966Buc, 1970Doa],<br />

except for the liquid phase composition (apex of the L-αδ-γ triangle corresponding to the<br />

composition of liquid is proposed to be at about Fe 75.6Ni 10.8P 13.6 (in at.%)).<br />

Partial isothermal sections at 1060 <strong>and</strong> 1010˚C constructed by [1970Doa] are shown in<br />

Figs. 4 <strong>and</strong> 5, respectively; with amendments according to the accepted Fe-P binary system<br />

(the L + αδ field in Fig. 4 is now narrower). One can see that above the Fe-P eutectic<br />

temperature, 1048˚C, the L + αδ field is separated from the L + γ field by a three-phase region<br />

(L + αδ + γ). Below 1048˚C, the αδ +M 3P field forms while the L + αδ field is still stable.<br />

[1970Doa] noted that these two-phase regions must be separated by a three-phase field (L + αδ<br />

+M 3P) but, their specimens didn’t contain these phases <strong>and</strong> therefore the (L + αδ +M 3P) field<br />

is estimated in Fig. 5.<br />

A partial isothermal section for 1000˚C was reported by [1966Buc] <strong>and</strong> later by [1970Doa].<br />

Actually, the temperature of 1000 ± 5˚C is that of the invariant L + αδ Ð γ +M3P whose phase<br />

compositions are given in Table 3. The partial isothermal section at this temperature calculated<br />

by [1990Gus] shows good agreement with experimental data of [1966Buc] <strong>and</strong> [1970Doa],<br />

except for the liquid phase composition (given as about Fe 74.1Ni 10.7P 15.2 in at.%).<br />

In comparison with the section at 1000˚C, the partial isothermal section at 995˚C<br />

[1970Doa] shows two three-phase fields separated by a newly formed γ +M 3P region. No<br />

alloys with composition lying inside this three-phase field (L + γ +M 3P) were studied, <strong>and</strong> so<br />

the boundaries which enclose this region were defined by tie lines obtained within the L + M 3P<br />

<strong>and</strong> L + γ fields. An isothermal section for 975˚C in the range of phosphorus content of up to<br />

25 at.% <strong>and</strong> nickel content of up to about 15 at.% was constructed by [1975Nor] during a<br />

study of the ternary dissolution kinetics in the Fe-Ni-P system using diffusion couples. The<br />

section contains the three-phase field (M 3P+αδ + γ). The partial isothermal section for 970˚C<br />

proposed by [1966Buc] was presented as corresponding to the temperature of the four-phase<br />

invariant equilibrium L + αδ Ð γ +M 3P, but this was later corrected by [1970Doa]. Therefore,<br />

the section at 950˚C constructed by [1966Buc] should also be corrected.<br />

A partial isothermal section for 875˚C was reported by [1966Buc, 1970Doa] (the results of<br />

the latter work are presented in Fig. 6). An isothermal section for this temperature was also<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


4 10<br />

Fe–Ni–P<br />

calculated by [1990Gus]; quite good agreement with the experimental data of [1966Buc] <strong>and</strong><br />

[1970Doa] is observed. All the reported isothermal sections in the Fe rich corner<br />

corresponding to this <strong>and</strong> lower temperatures are analogous with regard to the phase regions<br />

(three-phase field (M 3P+αδ + γ) <strong>and</strong> the adjacent fields corresponding to the (αδ + γ +M 3P)<br />

phases as well as two-phase regions αδ +M 3P, M 3P+γ <strong>and</strong> αδ + γ). This type of section<br />

contains the partial isothermal sections at 750, 650, 550, 450, 350˚C constructed by [1966Buc],<br />

partial isothermal sections at 750, 650, 550˚C [1970Doa], at 600 <strong>and</strong> 400˚C [1988Rag], partial<br />

isothermal sections at 700, 600, 500, 400 <strong>and</strong> 300˚C [1980Rom] as well as calculated<br />

partial isothermal sections at 750 <strong>and</strong> 650˚C [1990Gus]. Also, on the basis of the investigation<br />

of the growth of intergranular ferrite in Fe-Ni-P alloys, [1984Nar2] presented partial isothermal<br />

sections at phosphorus contents of up to about 2 at.% at 800, 720 <strong>and</strong> 700˚C.<br />

Temperature – Composition Sections<br />

A series of schematic temperature-composition sections were proposed by [1931Vog] witha<br />

view to illustrate the conditions of crystallization in the ternary system. These sections, like the<br />

liquidus surface projection, need further verification using modern methods of physicochemical<br />

analysis.<br />

Thermodynamics<br />

The effect of nickel on the activity coefficient of phosphorus in liquid iron alloys at different<br />

temperatures was studied by [1969Sch, 1979Yam, 1983Yam, 1984Ban]. It was reported by<br />

[1969Sch], that the addition of nickel up to 32 at.% to liquid Fe-P alloys at 1550˚C does not<br />

influence the activity of phosphorus, <strong>and</strong> therefore the interaction parameter ε P (Ni) = ∂ ln aNi /<br />

∂ ln x P) ~ 0. [1979Yam, 1983Yam] used a mass spectrometer equipped with a newly developed<br />

ion current measuring system combined with a Knudsen cell. For measurements carried out at<br />

1600˚C, a value of 0.7 ± 0.7 was obtained for the interaction parameter εP (Ni) . Later, the vapor<br />

pressure of phosphorus in liquid Fe-Ni-P alloys containing up to 28.3 mass% Ni was measured<br />

by [1984Ban] using the transportation method at 1400˚C. By applying the interstitial solution<br />

model of Chipman to the results, the effect of nickel on the activity coefficient of phosphorus<br />

in liquid iron was determined by assuming the nickel dissolves substitutionally. A value of<br />

ε P (Ni) = – 1.48 ± 0.88 at 1400˚C was reported.<br />

A thermodynamic description of the Fe-Ni-P system was derived by [1990Gus], <strong>and</strong> a<br />

partial liquidus surface projection <strong>and</strong> partial isothermal sections at 1100, 1000, 875, 750 <strong>and</strong><br />

650˚C were calculated. According to [1998Mie], the value of the ternary parameter LFeNiP in<br />

the γ phase did not give good agreement between calculated <strong>and</strong> published experimental<br />

results, <strong>and</strong> hence, the value of this parameter needs to be re-optimized. A non-metal<br />

interaction model for the segregation of trace metals during solidification of the Fe-Ni-P<br />

alloys was proposed by [1990Jon]. A method for parameterizing solid metal - liquid metal<br />

partition coefficients for siderophile (iron-loving) elements as a function of the metallic liquid<br />

composition based on the theory of [1990Jon] was proposed in [2003Cha]. The interaction<br />

parameter in liquid iron at 1600˚C was evaluated by [1993Din] asε P (Ni) = 1.81. By consideration<br />

of the effect of various concentrations (up to 0.9 mass%) of added phosphorus on grain<br />

growth in Fe-50 mass% Ni for sintering temperatures ranging from 950 to 1250˚C [2002Chu],<br />

DOI: 10.1007/978-3-540-70890-2_10 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


three different grain growth mechanisms having different ratios of activation energy to grain<br />

growth exponent were identified. The ratios of activation energy to grain growth exponent for<br />

these three domains were 50, 202 <strong>and</strong> 72 kJ·mol –1 , respectively. It was reported by [2006Gao]<br />

that during the heating of an electrodeposited amorphous Fe 8Ni 69P 23 (at.%) alloy, six exothermic<br />

reactions take place continuously. Their temperatures are 248, 303, 322, 350, 376 <strong>and</strong><br />

442˚C; the activation energies of the exothermic reactions were proposed. The amorphous<br />

Fe22Ni60P18 alloy crystallizes when heating beyond 250˚C.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–Ni–P 10<br />

5<br />

The Fe-Ni-P <strong>and</strong> related alloys (complicated nickel-containing steels <strong>and</strong> ferronickel alloys)<br />

are of great interest for practical applications in modern technology. In addition to studies of<br />

Fe-Ni-P alloys as the basic component of meteoritic minerals, it was recently established by<br />

[2000Jei] that the NiP3-based phase with the addition of iron (Fe0.5Ni0.5P3) has the skutterudite<br />

type structure that exhibits useful electric <strong>and</strong> magnetic behavior. Information about<br />

phase relations in the Fe-Ni-P system is important also for clarification of the effect of the nonmetallic<br />

element phosphorus on the properties of the well-known industrial alloy, invar<br />

(Fe 64Ni 36 in mass% or Fe 65.1Ni 34.9 in at.%), which possesses a low thermal expansion coefficient<br />

<strong>and</strong> is used as the shadow mask in cathode ray tubes for color TV <strong>and</strong> as the structural<br />

material for liquid nitrogen gas tanks used in industry [1987Ina].<br />

The experimental techniques applied <strong>and</strong> types of properties investigated are listed in<br />

Table 4.<br />

The variation of hardness during tempering was studied by [1966Buc] for different alloys<br />

containing up to 40 mass% Ni <strong>and</strong> 0.4 mass% P. It was noted that a considerable increase in<br />

hardness was experienced when phosphides precipitated from the austenite (γFe), but the<br />

hardness was seen to decrease considerably when the phosphides precipitated from the α/α 2<br />

phase. After heat treating a Fe-25Ni-0.4P (mass%) alloy (Fe 75.3Ni 24.0P 0.7) for extensive periods<br />

at 350˚C, a hardness peak developed, which has been tentatively ascribed to the order<br />

hardening reaction giving Fe 3Ni. It was reported by [1987Ina], that additions of P influence<br />

the thermal expansion coefficient of the invar alloy (Fe-36Ni (mass%)) in the following<br />

way: the thermal expansion coefficient α = (1/V)(∂V/∂T)P of the as-rolled specimen decreased<br />

slightly with an increase in phosphorus content up to 0.05 mass% P, which generates dislocations<br />

<strong>and</strong> vacancies. Above 0.05 mass% P, however, α increases monotonically. Both 0.2 %<br />

yield strength (σ 0.2) <strong>and</strong> tensile strength (σ B) increase rapidly with P additions of up to 0.05<br />

mass% P in the as-rolled specimens, whereas for the sample annealed at 780˚C, both σ 0.2 <strong>and</strong><br />

σ B decrease with P contents up to 0.05 mass%. When the quantity of P added to the annealed<br />

specimen exceeds 0.05 mass%, however, both σ 0.2 <strong>and</strong> σ B increase monotonically. Experiments<br />

with high purity Fe-based alloys containing 0.21 or 0.22 mass% P <strong>and</strong> up to 0.95 mass% Ni<br />

have been performed by [1988Sai] in order to clarify the mechanism of reduction of the<br />

intergranular fracture (IGF) of Fe-P alloys owing to the presence of nickel. Among the factors<br />

affecting IGF <strong>and</strong> the ductile-to-brittle transition temperature (DBTT), the degree of phosphorus<br />

segregation <strong>and</strong> the grain size are independent of the bulk nickel concentration. Two<br />

other factors are the plasticity of the matrix <strong>and</strong> the interaction between nickel <strong>and</strong> phosphorus.<br />

It was shown that the solution-softening effect of Ni is the mechanism reducing the<br />

susceptibility of the Fe-P alloys to IGF. [1997Gao] reported that the thermostability of<br />

electrodeposited amorphous Fe-Ni-P alloys increased with increasing Fe content. According<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


6 10<br />

Fe–Ni–P<br />

to the data of [2001Wan], the microhardness of ternary Fe-Ni-P electroless alloy deposits<br />

increased when the heat treatment temperature was 400˚C or below, <strong>and</strong> was shown to be<br />

related to the precipitation of Ni 3P- <strong>and</strong> Fe 3P-based phases within the Fe-Ni solid solution<br />

matrix.<br />

Investigations of the magnetic properties of (Fe 1–xNi x) 2P solid solutions were carried out<br />

by [1969Fru, 1969Rog], revealing evidence that the substitution of nickel by iron produces a<br />

similar sharp increase in Curie temperature, which reaches a maximum of 342 K at x ≈ 0.08,<br />

decreasing rapidly with larger x up to 100 K at x = 0.5. The saturation magnetization was not<br />

measured. Later, magnetoelastic properties <strong>and</strong> the electronic structure of (Fe 1–xNi x) 2P solid<br />

solutions were studied by [2004Zac]. The values of local magnetic moments as derived from<br />

neutron diffraction refinements <strong>and</strong> the total saturation magnetization were found to be in<br />

fair agreement with total energy coherent potential approximation (KKR-CPA) calculations. It<br />

was suggested that strong electron polarization at the Fermi level (P ~ 90 %) as established<br />

theoretically for the (Fe1-xNix)2P compounds having the smallest nickel content, may be<br />

responsible for the marked magnetoelastic phase transition, as observed, for example, in<br />

(Fe 0.975Ni 0.025) 2P.<br />

Miscellaneous<br />

<strong>Ternary</strong> diffusion coefficients in the (αFe) <strong>and</strong> (γFe) phases at 1200, 1100, 1000 <strong>and</strong> 900˚C<br />

were determined by [1973Hey]. Cooling rates for twelve group IVA iron meteorites have<br />

been determined by [1979Mor] using a new ternary Fe-Ni-P system model that simulates the<br />

growth of the Widmanstaetten structure. It was proposed that the group IVA irons were<br />

accommodated at various depths in an asteroid-sized body. The diffusion of nickel in<br />

amorphous <strong>and</strong> crystalline Fe 65.5Ni 17P 17.5 <strong>and</strong> Fe 48.5Ni 34P 17.5 (units were not specified) alloys<br />

has been studied by [1983Gru] using the radioisotope absorption-kinetic method. The<br />

structural state is found to have an appreciable effect on diffusion in the amorphous alloy.<br />

Annealing at temperatures above the crystallization point of the amorphous alloy, results in<br />

the Ni diffusion slowing down. On the basis of the results obtained, it was supposed that the<br />

diffusibility of metalloid atoms is much slower <strong>and</strong> that of metal atoms is more rapid in<br />

amorphous alloys than in ordinary alloys. The diffusivity of Ni in Fe-Ni-P martensite was<br />

determined by [1981Rom] in the temperature range 700 to 300˚C using EMPA <strong>and</strong> STEM<br />

techniques. The lattice <strong>and</strong> grain boundary tracer diffusion coefficients in the Fe 98.87Ni 1.03P 0.1<br />

(at.%) alloy were measured by [1983Mat] in the temperature range from 659 to 882˚C. It was<br />

concluded that the effect of nickel on the lattice <strong>and</strong> grain boundary tracer diffusion coefficients,<br />

as compared to binary Fe-P alloys, is small. The equilibrium “intergranular segregation<br />

extent (ISE)” of phosphorus in Fe-Ni-P alloys was calculated in [1983Shi] using a model<br />

analogous to Ono’s discrete lattice approach based on a simple regular solution model<br />

assuming only nearest neighbor interactions. The ISE of phosphorus was defined as the<br />

monolayer thickness of a P-enriched bulk region adjacent to the grain boundary, where a<br />

normalized concentration of P is greater than one-tenth of that of the grain boundary. The<br />

nucleation of intergranular ferrite from austenite in Fe-Ni-P alloys containing 5 to 10 mass%<br />

Ni <strong>and</strong> up to 1 mass% P was studied by [1984Nar1] with a view to underst<strong>and</strong> the development<br />

of the Widmanstaetten structure in iron meteorites. A series of alloy compositions were<br />

chosen to simulate the constitution of iron meteorites. In the investigated alloys, intergranular<br />

ferrite precipitates were found to have a rod-like morphology, intergranular ferrite <strong>and</strong> the<br />

DOI: 10.1007/978-3-540-70890-2_10 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


parent austenite have an orientation relationship close to that given by Kurdjumov-Sachs <strong>and</strong><br />

phosphides act as nucleation sites for intergranular ferrite precipitation. At the same time,<br />

ferrite doesn’t precipitate in the absence of P. The authors of this work also used analytical<br />

electron microscopy (AEM) techniques to study the growth of intergranular ferrite in their<br />

specimens; the results were presented in [1984Nar2]. It was shown that the growth kinetics are<br />

dictated by the bulk diffusion of nickel in austenite; full equilibrium takes place during<br />

intergranular ferrite growth with full partitioning of Ni <strong>and</strong> P between austenite <strong>and</strong> ferrite,<br />

<strong>and</strong> chemical equilibrium occurs at the (αFe)/(γFe) interface in both phases. A numerical<br />

model to simulate ferrite growth was developed based on equilibrium growth considerations.<br />

The Ni concentrations <strong>and</strong> precipitate sizes predicted by the model agree well with those<br />

measured by AEM techniques in the experimental alloys. The computer model has been<br />

extended to predict the thermal histories of iron meteorites <strong>and</strong> their parent asteroidal bodies.<br />

In [1986Dea], the AEM technique was used to measure the interdiffusion coefficients in the<br />

Fe-Ni-P system (0.2 mass% P, up to 30 mass% Ni) between 925 <strong>and</strong> 610˚C in austenite <strong>and</strong><br />

between 850 <strong>and</strong> 550˚C in ferrite. The results obtained were compared with the data obtained<br />

using binary Fe-Ni specimens. The possibilities of using atom probe tomography characterization<br />

of solute segregation to dislocations <strong>and</strong> interfaces were reported in [2006Mil]. A<br />

neutron irradiated Fe 98.375Ni 1.6P 0.025 (at.%) alloy <strong>and</strong> a neutron irradiated beltline weld<br />

from the Midl<strong>and</strong> reactor were the subject of the investigation. It was concluded that this<br />

technique is best applied to materials with high dislocation densities due to the relatively<br />

limited volume of analysis. The level of solute segregation at the interfaces of nanometer scale<br />

precipitates may also be estimated using this technique.<br />

. Table 1<br />

Investigations of the Fe-Ni-P <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method / Experimental Technique<br />

[1931Vog] Melting in Pythagor’s crucibles, thermal<br />

analysis, optical microscopy, chemical<br />

analysis<br />

Temperature / Composition / <strong>Phase</strong><br />

Range Studied<br />

< 1500˚C, the Fe-Fe2P-Ni5P2-Ni region<br />

[1948Now] XRD (X-ray diffraction) The Fe3P-Ni3P <strong>and</strong> Fe2P-Ni2P sections<br />

[1965Kan1] Electrolytical isolation, XRD, chemical<br />

analysis<br />

2.5 mass% P in the alloys<br />

[1965Kan2] XRD, chemical analysis 1000, 900, 800˚C, 1 at.% Ni or 10 to 14<br />

mass% Ni<br />

[1966Buc] Sintering in hydrogen, XRD, Electron<br />

Microprobe Analysis (EMPA)<br />

≤ 1100˚C, ≤ 40 mass% Ni, ≤ 10 mass% P<br />

[1968Doe] XRD Fe2NiP [1969Fru] XRD (Seeman-Bohlin camera), Mössbauer<br />

spectroscopy<br />

The Fe2P-Ni2P section<br />

[1969Rog] XRD (Seeman-Bohlin camera), Mössbauer<br />

spectroscopy<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–P 10<br />

The Fe 2P-Ni 2P section<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


8 10<br />

Fe–Ni–P<br />

. Table 1 (continued)<br />

Reference Method / Experimental Technique<br />

Temperature / Composition / <strong>Phase</strong><br />

Range Studied<br />

[1969Sch] Equilibrium P (vapor) – molten Fe with Ni<br />

additions<br />

1550˚C<br />

[1970Doa] EMPA, XRD, quantitative metallography 1100-550˚C, ≤ 16.5 mass% P, induction<br />

melting, heat treatment, quenching,<br />

[1970Doe] XRD Fe2NiP [1970Spr] Heat treatment, XRD 25 at.% P<br />

[1973Mae] XRD on powder, Mössbauer<br />

spectroscopy<br />

900˚C, the Fe2P-Ni2P section<br />

[1975Nor] Optical microscopy, EMPA, diffusion<br />

couples technique<br />

975-750˚C, the Fe3P-Ni3P section<br />

[1977Got] XRD The Fe3P-Ni3P section<br />

[1979Yam] Melting, Knudsen cell-mass spectrometry εP Ni in liquid phase, 1600˚C,<br />

≤ 10 mass% Ni<br />

[1980Rom] Induction melting, annealing, EMPA, STEM 700-300˚C, < 60 mass% Ni<br />

[1981Maa] XRD, Mössbauer spectroscopy FeNiP<br />

[1982Sas] XRD, EMPA, sealed-tube method 700˚C, phosphorus vapor at 0.1 MPa<br />

[1983Yam] Melting, Knudsen cell-mass spectrometry 1600˚C<br />

[1984Ban] Transportation method<br />

Ni<br />

εP in liquid phase, 1400˚C, ≤ 28.3<br />

mass% Ni<br />

[1984Nar2] Analytical electron microscopy (AEM),<br />

isothermal <strong>and</strong> nonisothermal heat<br />

treatments<br />

≤ 9.72 mass% Ni, ≤ 0.75 mass% P<br />

[1986Fje] XRD on powder, neutron diffraction 50 at.% P, 0 to 15 at.% Ni<br />

[1986Reu] Physico-chemical analysis techniques < 400˚C, < 58 mass% Ni<br />

[2000Jei] XRD on single crystal, energy-dispersive Xray<br />

analysis (EDX)<br />

FexNi1–xP3 (x = 0, 0.455, 0.555)<br />

[2000Wan] Electroless plating 38 at.% Fe<br />

[2001Wan] Electroless plating, X-ray diffraction 700-200˚C<br />

[2003Mor1] EMPA (Cameca SX 100), XRD (single crystals Fe1.7Ni1.3P (a Schreibersite extracted<br />

technique)<br />

from Canyon Diablo meteorite)<br />

[2003Mor2] EMPA (Cameca SX 100), XRD (single crystals Fe1.7Ni1.3P (a Schreibersite extracted<br />

technique)<br />

from Morasko meteorite)<br />

[2003Mor3] EMPA (Cameca SX 100), XRD (single crystals Fe1.7Ni1.3P (a Schreibersite extracted<br />

technique)<br />

from Orange River meteorite)<br />

DOI: 10.1007/978-3-540-70890-2_10 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method / Experimental Technique<br />

[2004Zac] Heat treatment, XRD, Rietveld profile<br />

refinement<br />

[2005Gei] TEM, TEM-EDX, X-ray diffraction,<br />

electron backscatter diffraction (EBSD)<br />

Temperature / Composition / <strong>Phase</strong><br />

Range Studied<br />

420-80 K, (Fe 1–xNi x) 2P(x = 0.015, 0.02,<br />

0.025, 0.25)<br />

The Fe 3P-Ni 3P section<br />

[2006Gao] DTA, DSC, X-ray diffraction ≲ 25 at.% P<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–Ni–P 10<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

9<br />

αδ, (αFe, δFe) cI2 dissolves 4.55 at.% P at 1048˚C, <strong>and</strong> 4 at.%<br />

Im3m<br />

P at 1000˚C [2002Per], dissolves 4.5 at.% P<br />

W<br />

at 1 at.% Ni, 1000˚C [1965Kan2]<br />

(δFe) (h) a = 293.15 pure Fe, at 1360˚C [V-C2]<br />

1538 - 1394 dissolves 3.8 at.% Ni at 1517˚C [2008Kuz]<br />

(αFe) (r) (ferrite) a = 286.64 pure Fe, at 20˚C [V-C2]<br />

< 912 dissolves 4.6 at.% Ni at 495˚C [2008Kuz]<br />

γ, (γFe,Ni), cF4<br />

(γFe) (austenite) Fm3m a = 364.68 pure Fe, 912˚C [Mas2]<br />

1394 – 912 Cu dissolves 0.56 at.% P at 1150˚C [2002Per]<br />

dissolves 1 mass% P at 10 to 14 mass% Ni,<br />

1000˚C [1965Kan2]<br />

dissolves 0.3 mass% P at 10 to 14 mass%<br />

Ni, 800˚C [1965Kan2]<br />

(Ni) a = 352.40 pure Ni, 25˚C [V-C2]<br />

< 1455 dissolves 0.32 at.% P at 870˚C [Mas2]<br />

FeNi3 cP4<br />

Pm3m<br />

AuCu3 a = 355.50 ordered γ(Fe,Ni) [1988Rag]<br />

α2, martensite tI4 - metastable, from quenched austenite<br />

I4/mmm<br />

α2, martensite<br />

[Mas2]<br />

γ´, FeNi3 cP4 a = 355.25 63 to 85 at.% Ni<br />

< 517 Pm3m<br />

AuCu3 [1991Swa, 2008Kuz]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


10 10<br />

Fe–Ni–P<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

FeP oP8 a = 519.3 [2002Per]<br />

≲ 1370 Pna21 b = 579.3<br />

MnP c = 309.9<br />

Fe1–xNixP a = 519 to 510.5 x = 0 to 0.3, room temperature, slowly<br />

b = 579.5 to 569.7 cooled samples [1986Fje]<br />

c = 309.5 to 325.3<br />

a = 510.5 to 517<br />

b = 569.7 to 578.2<br />

c = 325.2 to 327<br />

x = 0.3, T = 25 to 800˚C [1986Fje]<br />

FeP2 oP6 a = 497.29 66 to 67 at.% P [2002Per]<br />

Pnnm b = 565.68<br />

FeS2 (marcasite)<br />

c = 272.30<br />

FeP4 mP30 a = 461.9 80 at.% P [2002Per]<br />

P21/c b = 1367.0<br />

FeP4 c = 700.2<br />

β = 101.48˚<br />

βNi5P2 (h)<br />

1170 - 1000<br />

- - 28.6 at.% P [Mas2]<br />

αNi5P2 (r) hP168 a = 1322.0 ± 0.2 28.6 at.% P. Annealed at 700˚C<br />

< 1025 P3<br />

αNi5P2 c = 2463.2 ± 0.2 [1988Rag]<br />

βNi12P5 (h)<br />

1125 - 1000<br />

- - 29.4 at.% P [Mas2]<br />

αNi12P5 (r) tI34 a = 864.6 29.4 at.% P [1988Rag]<br />

< 1025 I4/m<br />

αNi12P5 c = 507.0<br />

M3P, (Fe1–xNix)3P tI32 0 ≤ x ≤ 1[1931Vog, 1948Now]<br />

I4 a = 910.8 x =0[2002Per]<br />

Ni 3P c = 445.5<br />

Fe 3P a = 904.0 x = 0.33 [1968Doe, 1970Doe]<br />

< 1166 c = 446.2<br />

Ni 3P a = 895.4 x =1[1988Rag]<br />

< 970 c = 438.6<br />

DOI: 10.1007/978-3-540-70890-2_10 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

M2P, (Fe1–xNix) 2P hP9 0 ≤ x ≤ 1<br />

Fe2P P62m a = 586.6 ± 0.2 x =0[1969Fru, 1969Rog]<br />

< 1370 Fe2P c = 345.3 ± 0.3<br />

a = 584.07<br />

c = 344.4<br />

x = 0.25, T =10K[2004Zac]<br />

a = 584.46<br />

c = 345.75<br />

x = 0.25, T = 17˚C [2004Zac]<br />

Ni2P a = 586.4 ± 0.4 x =1[1969Fru, 1969Rog]<br />

< 1100 c = 338.6 ± 0.4<br />

Ni5P4 hP36 a = 678.9 44.4 at.% P [Mas2, V-C2]<br />

P63mc Ni5P4 c = 1098.6 single crystal data, annealed at 800˚C<br />

Ni1.22P - - 45 at.% P [Mas2, 1988Rag]<br />

NiP oP16 a = 605.0 50 at.% P [Mas2, V-C2]<br />

≲ 850 Pcba c = 488.1 single crystal data, annealed at 850˚C<br />

NiP c=689.0<br />

NiP2 mC12 a = 636.6 66.7 at.% P [Mas2, V-C2]<br />

C2/c c = 561.5 single crystal data, annealed at 900˚C <strong>and</strong><br />

NiP2 c=607.2<br />

β = 126.22˚<br />

slowly cooled<br />

NiP3 cI32 a = 780.8 75 at.% P [Mas2]<br />

Im3 single crystal data [2000Jei]<br />

FexNi1–xP3 CoAs3 a = 775.2 ± 0.2 x = 0.495 [2000Jei]<br />

. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe–Ni–P 10<br />

Fe<br />

Composition (at.%)<br />

Ni P<br />

L+αδ Ð γ +M3P 1000 ± 5˚C U L 69.4 10.0 20.6<br />

αδ 88.2 7.0 4.8<br />

γ 88.2 9.3 2.5<br />

M3P 66.9 6.7 26.4<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


12 10<br />

Fe–Ni–P<br />

. Table 3 (continued)<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

Ni P<br />

L Ð M2P+Ni5P2 ~ 990 e6 L ~ 22.7 ~ 47.0 ~ 30.3<br />

L+M3P+Ni5P2 ~ 980 max L ~ 18.7 ~ 56.3 ~ 25.0<br />

L Ð M2P+Ni5P2 +M3P ~ 970 E L ~ 23.5 ~ 49.0 ~ 27.5<br />

. Table 4<br />

Investigations of the Fe-Ni-P Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1966Buc] Vickers hardness tests Hardness<br />

[1969Fru] Thermomagnetic balance technique Magnetic moments, Curie<br />

temperatures, magnetic-transition<br />

temperatures<br />

[1969Rog] Thermomagnetic balance technique Magnetic moments, Curie<br />

temperatures, magnetic-transition<br />

temperatures<br />

[1977Got] Thermomagnetic balance, sample vibrating<br />

magnetometer techniques<br />

Magnetic transition point, saturation<br />

magnetic moment<br />

[1983Mat] Residual activity method Curie temperature<br />

[1986Fje] Differential scanning calorimetry (Mettler TA<br />

3000 system), conventional Faraday balance<br />

Magnetic susceptibility<br />

[1987Ina] Normal method (for thermal expansion),<br />

tensile tests<br />

[1988Sai] Charpy-type impact tests, tensile tests, optical<br />

microscopy, TEM<br />

57<br />

[1990Res] Fe Mössbauer spectroscopy, magnetic<br />

measurements<br />

[1997Gao] Differential scanning calorimetry, positron<br />

annihilation, electronic integrating instrument<br />

techniques<br />

Tensile stress, yield strength, thermal<br />

expansion coefficient<br />

Toughness, yield stress, grain size,<br />

dislocation configuration<br />

Hyperfine field distributions,<br />

magnetic phase diagram<br />

Magnetic properties, structure<br />

defects, thermostability<br />

[2000Wan] Corrosion resistance tests Corrosion resistance<br />

[2001Wan] Mechanical tests Microhardness<br />

[2004Zac] Neutron diffraction, magnetic susceptibility χac susceptibility, ferromagnetic-<br />

measurements at high pressure (up to 1.5<br />

GPa)<br />

paramagnetic phase transition<br />

[2006Gao] Improved four-ball wear tester Wear resistance<br />

DOI: 10.1007/978-3-540-70890-2_10 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-Ni-P. Partial Reaction scheme<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–P 10<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


14 10<br />

Fe–Ni–P<br />

. Fig. 2<br />

Fe-Ni-P. Partial liquidus surface projection<br />

DOI: 10.1007/978-3-540-70890-2_10 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-Ni-P. Partial isothermal section at 1100˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–P 10<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


16 10<br />

Fe–Ni–P<br />

. Fig. 4<br />

Fe-Ni-P. Partial isothermal section at 1060˚C<br />

DOI: 10.1007/978-3-540-70890-2_10 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-Ni-P. Partial isothermal section at 1010˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–P 10<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


18 10<br />

Fe–Ni–P<br />

. Fig. 6<br />

Fe-Ni-P. Partial isothermal section at 875˚C<br />

DOI: 10.1007/978-3-540-70890-2_10 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–Ni–P 10<br />

19<br />

[1931Vog] Vogel, R., Baur, H., “About the Iron-Nickel-Phosphorus <strong>Ternary</strong> System” (in German), Arch.<br />

Eisenhuettenwes., 5(5), 269–278 (1931/1932) (Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental,<br />

10)<br />

[1948Now] Nowotny, H., Henglein, E., “Study of <strong>Ternary</strong> <strong>Alloy</strong>s with Phosphorus” (in German), Monatsh. Chem.,<br />

79, 385–393 (1948) (Crys. Structure, Experimental, Review, 18)<br />

[1949Jae] Jaenecke, E., “Ni-Fe-P” (in German) in “Kurzgefasstes H<strong>and</strong>buch aller Legierungen”, Winter Verlag,<br />

Heidelberg, 648–649 (1949) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 1)<br />

[1965Kan1] Kaneko, H., Nishizawa, T., Tamaki, K., “Phosphide-<strong>Phase</strong>s in <strong>Ternary</strong> <strong>Alloy</strong>s of Iron, Phosphorous <strong>and</strong><br />

Other Elements” (in Japanese), Nippon Kinzoku Gakkai-shi, 29(2), 159–165 (1965) (Morphology, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Experimental, Review, 24)<br />

[1965Kan2] Kaneko, H., Nishizawa, T., Tamaki, K., Tanifuji, A., “Solubility of Phosphorus in α- <strong>and</strong> γ-Iron”<br />

(in Japanese), Nippon Kinzoku Gakkai-shi, 29(2), 166–170 (1965) (<strong>Phase</strong> Relations, Experimental,<br />

Review, 20)<br />

[1966Buc] Buchwald, V.F., “The Fe-Ni-P System <strong>and</strong> the Structure of Iron Meteorites”, Acta Polytech. Sc<strong>and</strong>., (51),<br />

1–46 (1966) (Crys. Structure, Morphology, <strong>Phase</strong> Diagram, Experimental, Mechan. Prop., 34)<br />

[1968Doe] Doenitz, F.D., “Crystal Structure of the Meteorite Mineral Rhabdite” (in German), Naturwissenschaften,<br />

55(8), 387–387 (1968) (Crys. Structure, Experimental, 4)<br />

[1969Fru] Fruchart, R., Roger, A., Senateur, J.P., “<strong>Crystallographic</strong> <strong>and</strong> Magnetic Properties of Solid Solutions of<br />

the Phosphides M 2P, M = Cr, Mn, Fe, Co, <strong>and</strong> Ni”, J. Appl. Phys., 40(3), 1250–1257 (1969) (Crys.<br />

Structure, Experimental, Magn. Prop., 45)<br />

[1969Rog] Roger, A., Senateur, J.-P., Fruchart, R., “<strong>Crystallographic</strong> <strong>and</strong> Magnetic Properties of Solid Solutions<br />

Among the Phosphides Ni 2P-Co 2P-Fe 2P-Mn 2P <strong>and</strong> Cr 2P” (in French), Ann. Chim. (Paris), 4(2),<br />

79–91 (1969) (Crys. Structure, Experimental, <strong>Phase</strong> Relations, Magn. Prop., 44)<br />

[1969Sch] Schenck, H., Steinmetz, E., Gitizad, H., “Activity of Phosphorus in the Molten Iron <strong>and</strong> its Control by<br />

Nickel, Manganese <strong>and</strong> Chromium” (in German), Arch. Eisenhuettenwes., 40(8), 597–602 (1969)<br />

(Thermodyn., Experimental, 24)<br />

[1970Doa] Doan, A.S., Jr., Goldstein, J.I., “The <strong>Ternary</strong> <strong>Phase</strong> Diagram Fe-Ni-P”, Metall. Trans., 1(6), 1759–1767<br />

(1970) (Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, #, 19)<br />

[1970Doe] Doenitz, F.-D., “The Crystal Structure of Meteoritic Rhabdite (Fe, Ni) 3P” (in German), Z. Kristallogr.,<br />

131(3), 222–236 (1970) (Crys. Structure, Experimental, 17)<br />

[1970Spr] Spriggs, P.H., “An Investigation of the Variation of Lattice Parameters with Composition along the Tieline<br />

Ni 3P-Fe 3P”, Phil. Mag., 21, 897–901 (1970) (Crys. Structure, Experimental, 8)<br />

[1973Hey] Heyward, T.R., Goldstein, J.I., “<strong>Ternary</strong> Diffusion in the α <strong>and</strong> γ <strong>Phase</strong>s of the Fe-Ni-P System”, Metall.<br />

Trans., 4(10), 2335–2342 (1973) (Morphology, Experimental, Interface Phenomena, Kinetics, 17)<br />

[1973Mae] Maeda, Y., Takashima, Y., “Mössbauer Studies of FeNiP <strong>and</strong> Related Compounds”, J. Inorg. Nucl.<br />

Chem., 35(6), 1963–1969 (1973) (Crys. Structure, Experimental, Electronic Structure, 12)<br />

[1975Nor] Norkiewicz, A.S., Goldstein, J.I., “<strong>Ternary</strong> Dissolution Kinetics in the Fe-Ni-P System”, Metall. Trans.<br />

A, 6A, 891–900 (1975) (Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, Interface Phenomena,<br />

Kinetics, 17)<br />

[1977Got] Goto, M., Tange, H., Tokunaga, T., Fujii, H., Okamoto, T., “Magnetic Properties of the (Fe 1–xM x) 3P<br />

Compounds”, Jpn. J. Appl. Phys., 16(12), 2175–2179 (1977) (Crys. Structure, Experimental, Magn.<br />

Prop., 16)<br />

[1979Mor] Moren, A.E., Goldstein, J.I., “Cooling Rates of Group IVA Iron Meteorites Determined from a <strong>Ternary</strong><br />

Fe-Ni-P Model”, Earth Planet. Sci. Letters, 43(2), 182–196 (1979) (Morphology, Calculation, Theory)<br />

cited from abstract<br />

[1979Yam] Yamada, K., Kato, E., “Mass Spectrometric Determination of Activities of Phosphorus in Liquid Fe-P-<br />

Si, Al, Ti, V, Cr, Co, Ni, Nb <strong>and</strong> Mo <strong>Alloy</strong>s” (in Japanese), Tetsu to Hagane (J. Iron Steel Inst. Jap.), 65<br />

(2), 273–280 (1979) (Thermodyn., Calculation, Experimental, Review, 40)<br />

[1980Rom] Romig, A.D., Jr., Goldstein, J.I., “Determination of the Fe-Ni <strong>and</strong> Fe-Ni-P <strong>Phase</strong> <strong>Diagrams</strong> at Low<br />

Temperatures (700 to 1300˚C)”, Metall. Trans. A., 11A, 1151–1159 (1980) (Crys. Structure, Morphology,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, 20)<br />

[1981Maa] Maaref, S., Madar, R., “Crystal Chemistry of M 12P 7 <strong>Phase</strong>s in Relation with the M 2P Phosphides”, J.<br />

Solid State Chem., 40, 131–135 (1981) (Crys. Structure, Experimental, 11)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


20 10<br />

Fe–Ni–P<br />

[1981Rom] Romig, A.D., Jr., Goldstein, J.I., “Low Temperature <strong>Phase</strong> Equilibria in the Fe-Ni <strong>and</strong> Fe-Ni-P <strong>Systems</strong>:<br />

Application to the Thermal History of Metallic <strong>Phase</strong>s in Meteorites”, Geochim. Cosmochim. Acta, 45<br />

(7), 1187–1197 (1981) (Morphology, Experimental, Interface Phenomena, Kinetics, 22)<br />

[1982Sas] Sasaki, Y., Iida, Y., Yokoo, A., Ueda, S., “High-temperature Phosphidation of Iron-Nickel <strong>Alloy</strong>s by<br />

Phosphorus Vapor” (in German), Z. Anorg. Allg. Chem., 487, 232–240 (1982) (Crys. Structure,<br />

Morphology, Experimental, Interface Phenomena, Kinetics, 11)<br />

[1983Gru] Gruzin, P.L., Urytu, S.G., “Diffusion of Nickel in the Amorphous <strong>Alloy</strong> Iron-Nickel-Phosphorus” (in<br />

Russian), Ukr. Fiz. Zhurnal, (2), 255–258 (1983) (Morphology, Experimental, Interface Phenomena,<br />

Kinetics, 3)<br />

[1983Mat] Matsuyama, T., Hosokawa, H., Suto, H., “Tracer Diffusion of P in Iron <strong>and</strong> Iron <strong>Alloy</strong>s”, Trans. Jpn.<br />

Inst. Met., 24(8), 589–594 (1983) (Morphology, Experimental, Interface Phenomena, Kinetics, Magn.<br />

Prop., 14)<br />

[1983Shi] Shinoda, T., “Theoretical Estimates of Phosphorus Concentration Profiles Across Grain Boundaries in<br />

Fe-P <strong>and</strong> Fe-Ni-P <strong>Systems</strong>”, Acta Metall., 31(12), 2051–2062 (1983) (Morphology, Calculation, Theory,<br />

Interface Phenomena, 15)<br />

[1983Yam] Yamada, K., Kato, E., “Effect of Dilute Concentrations of Si, Al, Ti, V, Cr, Co, Ni, Nb <strong>and</strong> Mo on the<br />

Activity Coefficient of P in Liquid Iron”, Trans. Iron Steel Inst. Jpn., 23(1), 51–55 (1983) (Thermodyn.,<br />

Calculation, Experimental, 16)<br />

[1984Ban] Ban-Ya, S., Maruyama, N., Kawase, Y., “Effects of Ti, V, Cr, Mn, Co, Ni, Cu, Nb, Mo <strong>and</strong> W on the<br />

Activity of Phosphorus in Liquid Iron” (in Japanese), Tetsu to Hagane, 70(1), 65–72 (1984) (Thermodyn.,<br />

Calculation, Experimenta1, Review, 21)<br />

[1984Nar1] Narayan, S., Goldstein, J.I., “Nucleation of Intergranular Ferrite in Fe-Ni-P <strong>Alloy</strong>s”, Metall. Trans. A.,<br />

15A, 861–865 (1984) (Morphology, Experimental, 16)<br />

[1984Nar2] Narayan, S., Goldstein, J.I., “Growth of Intergranular Ferrite in Fe-Ni-P <strong>Alloy</strong>s”, Metall. Trans. A., 15A,<br />

867–874 (1984) (Morphology, <strong>Phase</strong> Relations, Experimental, Interface Phenomena, Kinetics, 16)<br />

[1986Dea] Dean, D.C., Goldstein, J.I., “Determination of the Interdiffusion Coefficients in the Fe-Ni <strong>and</strong> Fe-Ni-P<br />

<strong>Systems</strong> below 900˚C”, Metall. Trans. A, 17A(7), 1131–1138 (1986) (Morphology, Experimental,<br />

Interface Phenomena, Kinetics, 22)<br />

[1986Fje] Fjellvag, H., Kjekshus, A., “Solid Solution <strong>Phase</strong>s with MnP Type Structure: T 1–tNi tP (T = Ti-Co)”,<br />

Acta Chem. Sc<strong>and</strong>., Ser. A, A40, 8–16 (1986) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, Magn.<br />

Prop., 43)<br />

[1986Reu] Reuter, K.B., “Determination of the Iron-Nickel <strong>and</strong> Iron-Nickel-Phosphorus (Sat.) <strong>Phase</strong> <strong>Diagrams</strong><br />

below 400˚C”, Ph. D. Thesis, Lehigh Univ., 1–309 (1986) (<strong>Phase</strong> Diagram, Experimental) as quoted by<br />

[1988Rag]<br />

[1987Ina] Inaba, M., Teshima, K., “Effects of Phosphorus <strong>and</strong> Sulfur on Thermal Expansion <strong>and</strong> Mechanical<br />

Properties of Fe-36Ni”, J. Mater. Sci. Letters, 6, 727–728 (1987) (Morphology, Experimental, Mechan.<br />

Prop., Phys. Prop., 9)<br />

[1988Rag] Raghavan, V., “The Fe-Ni-P System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s”, Indian Inst. Met.,<br />

Calcutta, 3, 121–137 (1988) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, Review,<br />

#, 16)<br />

[1988Sai] Saito, N., Abiko, K., Kimura, H., “Reduction of Intergranular Fracture in Fe-P <strong>Alloy</strong>s by the Addition<br />

of Nickel”, Mater. Sci. Eng. A., 102, 169–174 (1988) (Morphology, Experimental, Interface Phenomena,<br />

Mechan. Prop., 10)<br />

[1990Gus] Gustafson, P., “Study of the Thermodynamic Properties of the C-Cu-Fe-P, Fe-Mo-P <strong>and</strong> Fe-Ni-P<br />

System”, Inst. Met. Res. (IM-2549), 1–50 (1990) (<strong>Phase</strong> Diagram, Thermodyn., Calculation, 52)<br />

[1990Jon] Jones, J.H., Malvin, D.J., “A Nonmetal Interaction Model for the Segregation of Trace Metals During<br />

Solidification of Fe-Ni-S, Fe-Ni-P, Fe-Ni-S-P <strong>Alloy</strong>s”, Metall. Trans. B, 21B, 697–706 (1990) (Theory,<br />

Thermodyn., 12)<br />

[1990Res] Ressler, L., Rosenberg, M., “Magnetic Moments <strong>and</strong> Magnetic Transitions in the Low Iron<br />

Concentration Range of the Amorphous Fe xNi 80–xP 20 <strong>Alloy</strong>s”, J. Magn. Magn. Mater., 83(1-3),<br />

343–344 (1990) (Morphology, Experimental, Magn. Prop., 9) cited from abstract<br />

[1991Swa] Swartzendruber, L.J., Itkin, V.P., Alcock, C.B., “The Fe-Ni (Iron-Nickel) System”, J. <strong>Phase</strong> Equilib., 12,<br />

288–312 (1991) (Crys. Structure, <strong>Phase</strong> Diagram, Thermodyn., Assessment, *, 255)<br />

[1993Din] Ding, X., Wang, W., Han, Q., “Thermodynamic Calculation of Fe-P-j System Melt”, Acta Metall. Sin.<br />

(China), 29(12), B527–B532 (1993) (Thermodyn., <strong>Phase</strong> Relations, Calculation, Theory, 7)<br />

DOI: 10.1007/978-3-540-70890-2_10 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–P 10<br />

21<br />

[1997Gao] Gao, C.H., Zhou, B.Y., “Effects of the Composition of Electrodeposited Fe-Ni-P <strong>Alloy</strong> on the<br />

Thermostability <strong>and</strong> Magnetic Properties”, J. Mater. Sci. Technol., 13(2), 137–140 (1997) (Morphology,<br />

Experimental, Phys. Prop.) cited from abstract<br />

[1998Mie] Miettinen, J., “Approximate Thermodynamic Solution <strong>Phase</strong> Data for Steels”, Calphad, 22(2), 275–300<br />

(1998) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, Calculation, 98)<br />

[2000Jei] Jeitschko, W., Foecker, A.J., Paschke, D., Dewalsky, M.V., Evers, Ch.B.H., Kuennen, B., Lang, A.,<br />

Kotzyba, G., Rodewald, U.Ch., Moeller, M.H., “Crystal Structure <strong>and</strong> Properties of some Filled <strong>and</strong><br />

Unfilled Skutterudites: GdFe 4P 12, SmFe 4P 12, NdFe 4As 12, Eu 0.54Co 4Sb 12, Fe 0.5Ni 0.5P 3, CoP 3, <strong>and</strong> NiP 3”,<br />

Z. Anorg. Allg. Chem., 626, 1112–1120 (2000) (Crys. Structure, Morphology, Experimental, 65)<br />

[2000Wan] Wang, L., Zhao, L., Huang, G., Yuan, X., Zhang, B., Zhang, J., “Composition, Structure <strong>and</strong> Corrosion<br />

Characteristics of Ni-Fe-P <strong>and</strong> Ni-Fe-P-B <strong>Alloy</strong> Deposits Prepared by Electroless Plating”, Surf. Coat.<br />

Technol., 126 (2-3), 272–278 (2000) (Crys. Structure, Morphology, Experimental, Phys. Prop.) cited<br />

from abstract<br />

[2001Wan] Wang, L., Zhao, L., Huang, G., Yuan, X., Zhang, B., Zhang, J., “The Structure <strong>and</strong> Microhardness of<br />

Ni-Fe-P <strong>and</strong> Ni-Fe-P-B <strong>Alloy</strong> Deposits Prepared by Electroless Plating”, Plating & Surface Finishing,<br />

88(6), 92–95 (2001) (Crys. Structure, Morphology, Experimental, Mechan. Prop.) cited from abstract<br />

[2002Chu] Chuang, M.-S., Lin, S.-T., “Effect of Phosphorous Addition on the Grain Growth of Fe-50 wt.% Ni<br />

<strong>Alloy</strong>s”, Scr. Mater., 47(5), 321–326 (2002) (Morphology, Thermodyn., Experimental, Interface Phenomena,<br />

Kinetics, 12)<br />

[2002Per] Perrot, P., Batista, S., Xing, X., “Fe-P (Iron-Phosphorus)”, MSIT Binary Evaluation Program, in MSIT<br />

Workplace, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document<br />

ID: 20.16107.1.20, (2002) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn.,<br />

Assessment, Phys. Prop., #, 23)<br />

[2003Cha] Chabot, N.L., Jones, J.H., “The Parameterization of Solid Metal-Liquid Metal Partitioning of<br />

Siderophile Elements”, Meteor. Planet. Sci., 38(10), 1425–1436 (2003) (Thermodyn., Experimental,<br />

Interface Phenomena, 46)<br />

[2003Mor1] Moretzki, O., Doering, Th., Geist, V., Morgenroth, W., Wendschuh, M., “Crystal Structure of Iron<br />

Nickel Phosphide, Fe 1.7Ni 1.3P, a Schreibersite Extracted from Canyon Diablo Meteorite”, Z. Kristallogr.<br />

NCS, 218(4), 391–392 (2003) (Crys. Structure, Experimental, 5)<br />

[2003Mor2] Moretzki, O., Doering, Th., Geist, V., Morgenroth, W., Wendschuh, M., “Crystal Structure of Iron<br />

Nickel Phosphide, Fe 1.65Ni 1.35P, a Rhabdite Extracted from Morasko Meteorite”, Z. Kristallogr. NCS, 218<br />

(4), 393–394 (2003) (Crys. Structure, Experimental, 5)<br />

[2003Mor3] Moretzki, O., Doering, Th., Geist, V., Morgenroth, W., Wendschuh, M., “Crystal Structure of Iron<br />

Nickel Phosphide, Fe 1.8Ni 1.2P, a Schreibersite Extracted from Orange River Meteorite”, Z. Kristallogr.<br />

NCS, 218(4), 395–396 (2003) (Crys. Structure, Experimental, 5)<br />

[2004Zac] Zach, R., Tobola, J., Sredniawa, B., Kaprzyk, S., Casado, C., Bacmanm, M., Fruchart, D., “Magnetoelastic<br />

Properties <strong>and</strong> Electronic Structure Analysis of the (Fe1–xNix)2P System”, J. <strong>Alloy</strong>s Compd., 383,<br />

322–327 (2004) (Crys. Structure, Calculation, Experimental, Electronic Structure, Magn. Prop., 17)<br />

[2005Gei] Geist, V., Wagner, G., Nolze, G., Moretzki, O., “Investigations of the Meteoritic Mineral (Fe,Ni) 3P”,<br />

Cryst. Res. Technol., 40(1-2), 52–64 (2005) (Crys. Structure, Morphology, Experimental, Review,<br />

Electronic Structure, 41)<br />

[2006Gao] Gao, C.H., “Stability of Electrodeposited Amorphous Ni-Fe-P <strong>Alloy</strong>s”, Trans. Nonferrous Met. Soc. of<br />

China, 16(6), 1325–1330 (2006) (Morphology, <strong>Phase</strong> Relations, Thermodyn., Experimental, Mechan.<br />

Prop.) cited from abstract<br />

[2006Mil] Miller, M.K., “Atom Probe Tomography Characterization of Solute Segregation to Dislocations <strong>and</strong><br />

Interfaces”, J. Mater. Sci., 41, 7808–7813 (2006) (Morphology, Experimental, 21)<br />

[2008Kuz] Kuznetsov, V., “Fe-Ni (Iron-Nickel)”, MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg,<br />

G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published (2008) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, #, 41)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_10<br />

ß Springer 2009


Iron – Nickel – Sulphur<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Olga Fabrichnaya, Vasyl Tomashyk, Artem Kozlov<br />

Introduction<br />

Fe–Ni–S 11<br />

1<br />

<strong>Phase</strong> relations in the Fe-Ni-S ternary system are very important for geology as well as for<br />

metallurgy because phases found in this system are constituents of many ores [1991Tay]. The<br />

mineral phases (pyrrhotite, pyrite, pentl<strong>and</strong>ite) in this system are both geologically widespread<br />

<strong>and</strong> economically important [1974Vau, 2004Dis]. This system is very complicated <strong>and</strong>,<br />

therefore, complex reactions occur in sulfide ores as they cool [1971Gra]. According to<br />

geophysical data, the core of the Earth consists of Fe-Ni alloy containing a light element<br />

(most probably sulphur). Therefore properties of Fe-Ni-S solid <strong>and</strong> liquid alloys are important<br />

for geophysical interpretations of seismic data [1997Nas]. The Fe-Ni-S alloys are the constituents<br />

of condrites <strong>and</strong> other meteorites [1998Ma]. The distribution of elements between solid<br />

<strong>and</strong> liquid metal helps to explain conditions of the formation of meteorites <strong>and</strong> terrestrial<br />

planet <strong>and</strong> therefore to explain some features of evolution of the solar system [1990Jon,<br />

2003Cha].<br />

The considerable literature on this ternary system has been reviewed in the publications of<br />

[1943Haw, 1949Jae, 1963Kul1, 1964Kul, 1969Kul, 1970Sug, 1981Fit, 1982Hsi, 1988Rag,<br />

1989Bar, 1989Bat, 2004Rag, 2004Wal2, 2006Rag].<br />

Many phases in the Fe-Ni-S system were found in nature as minerals. The ternary phases<br />

(Fe xNi 1–x)S 2, in which the Fe/Ni ratio is ≈1 (bravoite), FeNi 2S 4 (violarite) <strong>and</strong> (Fe 9–xNi x) 9S 8<br />

(pentl<strong>and</strong>ite) are formed in the Fe-Ni-S ternary system [1964Kul]. However, later it was found<br />

that violarite is an end-member of the solid solution FeNi 2S 4-Ni 3S 4 with the spinel structure<br />

[1971Cra]. It was proved by [1963Cla] that bravoite is stable at temperatures below 137˚C, at<br />

higher temperatures it decomposes to pyrite <strong>and</strong> vaesite. Many experimental investigations<br />

were performed to study crystal structure <strong>and</strong> compositions of minerals from natural deposits<br />

[1955Eli, 1963Kul2, 1971Gra, 1972Har, 1972Nic, 1973Hal, 1973Raj].<br />

According to the data of [1955Van] <strong>and</strong> [1957Van] FeNi4S5 is formed in the Fe-Ni-S<br />

ternary system but Fe 2Ni 3S 4 which was obtained by [1930Vog, 1938Ura] was not found. None<br />

of these compounds was confirmed in the later studies. The phase (Fe 0.66Ni 0.34) 2S, was<br />

detected to form at very reducing conditions by [1961Stu].<br />

A liquidus surface of this system was constructed by [1930Vog, 1938Ura, 1955Van,<br />

1964Kul, 1983Van]. It was found that Fe 1–xS <strong>and</strong> Ni 1–xS form a continuos series of solid<br />

solutions at temperatures above 300˚C [1961Nis, 1974Vau, 1976Kas, 1981Oht, 1983Van].<br />

Isothermal sections of the Fe-Ni-S ternary system were constructed at 1100, 1000, 900, 800,<br />

700, 600, 500, 460, 400, 300, 250 <strong>and</strong> < 135˚C [1947Lun, 1956Kul, 1960Cla, 1963Cla,<br />

1963Kul1, 1964Kul, 1967Nal, 1968Cra, 1970She, 1971Gra, 1973Cra, 1973Mis2, 1984Bee,<br />

1978Len, 1998Kar, 1998Ma, 2000Uen, 2001Sin1, 2006Sin]. Some temperature - composition<br />

sections were constructed by [1930Vog, 1938Ura, 1955Van, 1956Kul, 1957Van, 1964Kul,<br />

1966Nal, 1970She, 1971Cra, 1976Chi].<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


2 11<br />

Fe–Ni–S<br />

The mutual solubility of FeS 2 <strong>and</strong> NiS 2 was investigated by [1962Kle]. The reaction<br />

Ni 3S 2+2Fe Ð 2FeS+3Ni takes place at 1200˚C [1976Gul]. FeS <strong>and</strong> Ni 3S 2 form the pentl<strong>and</strong>ite<br />

solid solution (τ 1) <strong>and</strong> Ni dissolves in Fe. According to the data of [1979Sha] iron interacts<br />

with Ni 3S 2 on heating forming Fe 1–xS <strong>and</strong> (Fe 1–xNi x) 3+yS 2 solid solutions <strong>and</strong> Fe-Ni solid<br />

solution at 600˚C. [1976Chi] studied reaction of Fe <strong>and</strong> Ni 3S 2 at 1100˚C <strong>and</strong> observed<br />

formation of Fe1–xS <strong>and</strong> Fe-Ni solid solution.<br />

The solubility <strong>and</strong> diffusion of S in the Fe-Ni alloys was studied by [1982Net, 1983Net1,<br />

1983Net2] by radiotrace method. In several works [1981Mar, 1984Mar1, 1984Mar2] the role<br />

of sulfur in the dissolution <strong>and</strong> passivation of Fe-Ni alloy was investigated using radiotrace,<br />

electrochemical method <strong>and</strong> X-ray photoelectron spectroscopy.<br />

Thermodynamic properties of the solid <strong>and</strong> liquid alloys in the Fe-Ni-S ternary system<br />

were investigated by [1955Cor, 1960Alc, 1968Chm, 1969Ban, 1969Vai, 1970Khe, 1970Vay,<br />

1972Bye, 1972Vay, 1973Buz, 1973Ven, 1974Khe, 1974Sig, 1981Fit, 1984Khe, 1989Bar,<br />

1998Kon, 1999Kon, 2003Kos].<br />

Thermodynamic modelling in the Fe-Ni-S system was performed by [1983Chu1,<br />

1983Chu2, 1987Hsi1, 1987Hsi2, 1987Hsi3] using associate model for liquid <strong>and</strong> by<br />

[1999Kon, 2004Wal2, 2006Wal2] using modified quasichemical model for liquid. [1991Tay]<br />

presented a thermodynamic description for the Fe-Ni-S system with the liquid phase described<br />

by a two-sublattice model. Calculated isothermal section at 400˚C was presented by [1991Tay].<br />

Magnetic properties of the phases in the Fe-Ni-S ternary system were investigated by<br />

[1930Vog, 1961Nis, 1970Kno, 1974Vau, 1976Kas, 1976Kno, 1977Nis, 1981Oht].<br />

Table 1 lists the numerous experimental works on phase equilibria, crystal structure <strong>and</strong><br />

thermodynamics of the Fe-Ni-S system.<br />

Binary <strong>Systems</strong><br />

The phase diagrams of the Fe-S <strong>and</strong> Fe-Ni systems are accepted from the MSIT evaluations of<br />

[2008Fer] <strong>and</strong> [2008Kuz], respectively. At temperatures below 315˚C several superstructures of<br />

the NiAs type was reported [2008Fer]. The Ni-S system is accepted from the thermodynamic<br />

assessment of [2004Wal1] <strong>and</strong> [2006Wal1]. The phase diagram presented in [2006Wal1] isin<br />

agreement with [Mas2] except for the low temperature part, where the Ni 9S 8 phase was<br />

considered by [2004Wal1, 2006Wal1] based on data of [1987Fle] <strong>and</strong> [1994Sto]. The separation<br />

of the β phase to β 1 <strong>and</strong> β 2 was not taken into account in [2004Wal1], but in the later work<br />

of [2006Wal1, 2006Wal2] two different β phases are considered.<br />

Solid <strong>Phase</strong>s<br />

The crystallographic data for solid phases are listed in Table 2.<br />

The ternary system Fe-Ni-S is dominated by ternary solid solutions. At high sulfur<br />

content, two solid solutions are formed based on pyrite (βFeS 2) <strong>and</strong> vaesite (ηNiS 2) with a<br />

limited mutual solubility. These solid solutions have the same structure, but they never join in<br />

one continuous solution. [1962Kle] found a quite large mutual solubility of ηNi 2S <strong>and</strong> βFe 2S.<br />

However later it was indicated by [1963Cla] that these values are too high being influenced by<br />

the metastable conditions. Also in this section, a low temperature Fe0.5Ni0.5S2 (bravoite) phase<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

3<br />

exists which was found to decompose into a mixture of NiS 2 <strong>and</strong> FeS 2 at a temperature of<br />

137˚C according to [1963Cla, 1977Nis].<br />

The monosulfides γFe 1–xS (pyrrhotite) <strong>and</strong> δNi 1–xS (millerite) form a continuous solid<br />

solution (mineral pyrrhotite) [1961Nis, 1981Oht, 1983Van]. However, continuous solid solution<br />

Fe 1–xNi xS 1+y exists at the temperatures above 300˚C <strong>and</strong> at a lower temperature a<br />

miscibility gap appears [1973Mis2, 1973Cra]. Below 283˚C Ni-rich monosulfide decomposes<br />

to form FexNi3–xS4 (polydymite) <strong>and</strong> the low temperature millerite phases [1973Cra]. The<br />

c-axis lattice parameter of the Fe1–xNixS solid solution decreases as x increases [1976Kas]. This<br />

variation is divided into two regions, one where the c-axis lattice parameter decreases steeply<br />

with increasing x (0 ≤ x ≤ 0.50) <strong>and</strong> the other where the lattice decreases gently with a further<br />

increase in x (0.50 ≤ x ≤ 1.0). No lattice modification was found in the Fe 1–xS-Ni 1–xS system<br />

[1981Oht]. [1976Fra] studied pyrrhotite by TEM <strong>and</strong> found that ordering of metal vacancies<br />

distinguished various superstructures of monosulfide.<br />

In the binary Ni-S system separation of the high temperature modification of haezlewoodite<br />

(β) into β1 <strong>and</strong> β2 was confirmed by experimental data [2006Wal1]. Based on these data in<br />

the binary system, the existence of two phases β1 <strong>and</strong> β2 in the ternary system was assumed by<br />

[2006Wal2]. However, in the ternary system, there are no experimental data about the<br />

separation of the high temperature heazlewoodite into two phases. Therefore, in many<br />

works only one β phase is shown in the diagrams. A considerable solubility of iron in the β<br />

phase is supported by the experimental data [2006Wal2]. Therefore solubility of Fe in both β<br />

phases was assumed by [2006Wal2].<br />

The violarite solid solution extends toward Ni rich compositions with decrease of temperature<br />

<strong>and</strong> becomes a continuous solid solution FexNi3–xS4 at 356˚C [1971Cra]. At a temperature<br />

of 461 ± 3˚C FeNi2S4 decomposes to form Fe1–xNixS2, NixFe1–xS2 <strong>and</strong> pyrrhotite<br />

containing Fe <strong>and</strong> Ni in the atomic ratio 1 : 2.4.<br />

The Ni 3S 2 phase dissolves 1.0-1.5 mass% Fe according to [1976Chi, 1976Gul].<br />

The solubility of S in the Fe-Ni alloys at 950-1250˚C <strong>and</strong> at p(H 2S)/p(H 2) ratios from<br />

4·10 –4 to 8·10 –4 corresponds to the Siverts’ law [1983Net1, 1983Net2, 1989Bar]. The solubility<br />

of S as a function of temperature <strong>and</strong> p(H 2S)/p(H 2) ratio was presented in [1983Net1,<br />

1983Net2] <strong>and</strong> [1989Bar]. The maximal solubility of S in (αFe), (γFe) <strong>and</strong> (δFe) is 0.033,<br />

0.09 <strong>and</strong> 0.24 at.%, respectively [2008Fer], while solubility of S in solid Ni is negligible [Mas2].<br />

A τ1 (Fe9–xNixS8+y) ternary compound (pentl<strong>and</strong>ite) with a wide homogeneity range<br />

[1947Lun] starts to appear below 610˚C [1964Kul]. Pentl<strong>and</strong>ite is stable below 610˚C, where<br />

it decomposes to (Fe xNi 1–x) 1–yS, containing less than 1.0 mass% Ni, <strong>and</strong> (Fe xNi 1–x) 3±xS 2 solid<br />

solution containing several mass% Fe [1964Kul].<br />

According to calculations of [2004Wal2, 2006Wal2] maximal temperature of stability of<br />

the τ 1 phase is ~640˚C.<br />

Some other ternary compounds are found in nature as minerals. Probably they are<br />

metastable at room temperatures being formed in the conditions of the Earth interior.<br />

Many of them decompose with the temperature increase. FeNi2S4 corresponds to the mineral<br />

violarite. [1971Cra] noted that FeNi 2S 4 has a maximum thermal stability at 461 ± 3˚C <strong>and</strong> a<br />

composition of Fe 0.92Ni 2.08S 4. It was pointed out by [1971Cra] that violarite is an end-member<br />

of the solid solution extended towards Ni 3S 4 <strong>and</strong> forming continuous solution of FeNi 2S 4-<br />

Ni 3S 4 at 356˚C. A FeNi 4S 5 phase was found by [1955Van, 1957Van], however this phase was<br />

not confirmed in any later study. [1961Stu] indicated the existence of the (Fe 0.66Ni 0.34) 2S<br />

compound at very reducing conditions. However, such conditions were not studied later <strong>and</strong><br />

the formation of this compound was never mentioned. The crystal structure of the mineral<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


4 11<br />

Fe–Ni–S<br />

FeNi 29S 27 is described in [1987Fle]. The structure of this orthorhombic phase contains<br />

elements of godlevskite Ni 7S 6, millerite NiS <strong>and</strong> pentl<strong>and</strong>ite Fe 9–xNi xS 8+y. However, this<br />

compound was not confirmed in further experiments.<br />

Invariant Equilibria<br />

A reaction scheme from [1982Hsi] taking into account data from [2004Kos] <strong>and</strong> corrected<br />

according to the accepted binary systems is presented in Fig. 1. The available data for the<br />

invariant reactions from [1982Hsi] <strong>and</strong> [2004Kos] are presented in Table 3. It should be<br />

mentioned that the reaction scheme <strong>and</strong> the data for the invariant reactions in [1982Hsi] are<br />

provisional <strong>and</strong> in case there are new experimental measurements we recommend to use these<br />

new data. In the work of [1982Hsi] the high-temperature heazlewoodite is considered as one<br />

single phase β. A three-phase monovariant reaction of the peritectic type between the β phase,<br />

pyrrhotite <strong>and</strong> liquid was studied by directional crystallization of melt in combination with<br />

DTA by [2004Kos]. It was found that this monovariant curve has a temperature maximum at<br />

875˚C, what is slightly higher than assumed by [1982Hsi]. The data for this maximum are<br />

taken from [2004Kos]. It should be mentioned that DTA measurements of [1999Sin] for the<br />

U 2 reaction are not taken into account since they disagree with most of experimental data <strong>and</strong><br />

calculations of [2004Wal2]; the difference in temperature for the reaction U2 reported by<br />

[1982Hsi] <strong>and</strong> [1999Sin] is more than 200˚C. In this work we accepted temperature of<br />

reaction U 2 from [2004Wal2] equal to 800˚C.<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

Liquidus surface was experimentally studied by [1930Vog, 1938Ura, 1955Van, 1978Len,<br />

1999Sin]. A wide region of liquid immiscibility extends across the S rich portion of the<br />

Fe-Ni-S ternary system at high temperatures [1964Kul, 1983Van].<br />

The liquidus surface was calculated by [1987Hsi2] based on experimental data on liquidus<br />

[1978Len] <strong>and</strong> measurements of partial pressure of sulphur over the liquid phase <strong>and</strong><br />

pyrrhotite [1987Con, 1987Hsi2, 1987Hsi3]. The liquidus surface from the work of<br />

[1987Hsi2] is presented in Fig. 2.<br />

Isothermal Sections<br />

Isothermal sections were experimentally studied in several works [1963Kul1, 1973Cra,<br />

1987Con, 1987Hsi4, 2000Uen, 2001Sin1].<br />

The phase relations in the S rich part of the Fe-Ni-S ternary system in the 700-750˚C<br />

temperature range were given by [1964Kul]. The isothermal sections at 500 <strong>and</strong> 460˚C between<br />

0 <strong>and</strong> 50 at.% S were determined by the analysis of equilibrated ternary alloys <strong>and</strong> diffusion<br />

couples in [1984Bee]. At 500˚C the iron stabilized high-temperature modification βNi 3S 2 was<br />

found. A low temperature isothermal section (< 135˚C) was studied [1971Gra].<br />

The phase relations involving the appearance of FeNi 2S 4 <strong>and</strong> development of the FeNi 2S 4-<br />

Ni 3S 4 solid solution at 500, 450, 400 <strong>and</strong> 300˚C were determined by [1971Cra]. Binary sulfides<br />

except Fe 1–xS are not in equilibrium with the iron phase in the Fe-Ni-S system at 950˚C<br />

[1963Kan].<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


The calculated isothermal sections based on the Calphad-type assessments using quasichemical<br />

model [2004Wal2, 2006Wal2] reproduce experimental data at 600-1350˚C within<br />

uncertainty limits. The assessments based on the associate model [1987Hsi1, 1987Hsi2,<br />

1987Hsi4] also reproduce experimental isothermal sections at 700-1350˚C, but calculations<br />

[2004Wal2] seems to be in better agreement with experimental data. The isothermal section at<br />

400˚C was calculated by [1991Tay]. However, none of the available assessment works present<br />

isothermal sections at all the temperatures studied experimentally. Therefore, in the present<br />

study isothermal sections are presented based on the available calculations <strong>and</strong> experiments.<br />

Figures 3a to 3c present isothermal sections at 1350, 1300 <strong>and</strong> 1200˚C calculated in<br />

[2004Wal2], respectively. Figures 4a to 4c present isothermal sections calculated by<br />

[1987Hsi2] at 1100, 1050 <strong>and</strong> 1000˚C. Figures 5a to 5c present isothermal sections at 900,<br />

700˚C calculated by [2004Wal2] <strong>and</strong> at 600˚C [2006Wal2], respectively. As it was mentioned<br />

above, in [2006Wal2] two haezlewoodite phases β 1 <strong>and</strong> β 2 were considered. Because only<br />

one isothermal section was calculated based on the new thermodynamic description, the other<br />

isothermal sections are presented according to [2004Wal2]. Isothermal sections at 550, 500<br />

<strong>and</strong> 400˚C were constructed by [1963Kul1] based on experimental results. They are in a good<br />

agreement with later studies [1968Cra, 1970She] except for a wider homogeneity range of the<br />

pentl<strong>and</strong>ite solid solution indicated by [1968Cra, 1970She]. Figures 6a <strong>and</strong> 6b present<br />

isothermal sections at 500 <strong>and</strong> 400˚C from [1970She] <strong>and</strong> [1968Cra], respectively. The lowtemperature<br />

phase relations at 200-300˚C were studied by [1973Cra] <strong>and</strong> [1973Mis2]. Miscibility<br />

gaps were found to appear in the monosulfide solid solutions: one below 263˚C <strong>and</strong><br />

another at 225˚C [1973Cra]. Partial isothermal sections at 300 <strong>and</strong> 200˚C are presented in<br />

Figs. 7a <strong>and</strong> 7b from [1973Cra] <strong>and</strong> at the temperatures below 135˚C from [1971Gra]<br />

(Fig. 7c). <strong>Phase</strong> relations involving superstructures of NiAs [1992Gro] are not very well<br />

defined for the Fe-S system, therefore phase relations involving solid solution at 40 mass% S<br />

<strong>and</strong> Ni up to 7 mass% Ni being superstructure of NiAs are shown tentatively in Figs. 7a <strong>and</strong> 7b.<br />

At the temperatures below 135˚C the bravoite phase Fe 0.5Ni 0.5S 2 was found stable.<br />

It should be mentioned that isothermal sections at 400, 300, 200˚C <strong>and</strong> at the temperatures<br />

below 135˚C were slightly corrected to be consistent with accepted binary system Ni-S.<br />

According to [1994Sto] <strong>and</strong> [2004Wal1] Ni 9S 8 phase was accepted to be stable, while phase<br />

γ’Ni7S6 accepted in earlier studies (see evaluation of [Mas2]) was not considered as stable one.<br />

Therefore γ’Ni7S6 was changed to Ni9S8 phase at low temperature sections.<br />

Temperature – Composition Sections<br />

Fe–Ni–S 11<br />

5<br />

The phase diagram of the FeS 2-NiS 2 system was experimentally studied [1963Cla, 1998Kar].<br />

Thirteen temperature - composition sections were constructed by [1930Vog, 1938Ura,<br />

1955Van, 1957Van]. Eleven of these sections cross the ternary system from the S corner to the<br />

Fe-Ni binary <strong>and</strong> two others (FeS-Ni6S5, FeS-Ni3S2) travers the system from FeS to the Ni-NiS<br />

subsystem [1955Van, 1957Van]. A section along the FeNi 2S 4-Ni 3S 4 join was determined by<br />

[1971Cra].<br />

[2004Wal2] calculated isopleths in the Fe-Ni-S system at the constant Fe/Ni ratios of<br />

0.6722 <strong>and</strong> 1.0, vertical sections FeS-Ni 3S 2, FeS 2-NiS 2 <strong>and</strong> at a fixed concentration of sulfur<br />

equal to 0.471. The section FeS-Ni 3S 2 was recalculated by [2006Wal2] taking into account<br />

separation of β phase into β 1 <strong>and</strong> β 2. The calculated vertical sections from [2004Wal,<br />

2006Wal2] are presented in Figs. 8a to 8c.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


6 11<br />

Fe–Ni–S<br />

Vertical sections for Fe/Ni ratio equal to 0.6722 <strong>and</strong> 1 are not shown in present evaluation,<br />

because [2004Wal2] took into account only fcc <strong>and</strong> bcc phases in the Fe-Ni system. Therefore<br />

calculations of [2004Wal2] at temperatures below 600˚C are not consistent with accepted<br />

binary Fe-Ni system. At higher temperatures fine details of phase diagram are not possible to<br />

distinguish, because the diagrams are overloaded by experimental points.<br />

Potential <strong>Diagrams</strong><br />

[1987Hsi1, 1987Hsi2, 1987Hsi4] calculated potential diagrams presenting log p(S 2) vs x(Fe)/<br />

(x(Fe)+x(Ni)) ratio at temperatures 700-1100˚C. The calculations of [1987Hsi1] at 700, 800,<br />

900 <strong>and</strong> 1100˚C from [1987Hsi1] are presented in Figs. 9a to 9d.<br />

Thermodynamics<br />

The activity of S in the liquid phase (matte) was measured by [1972Bye, 1987Con] using<br />

method of equilibration with H 2 <strong>and</strong> H 2S gas mixtures. However, the data of [1972Bye] <strong>and</strong><br />

[1987Con] do not agree very well with each other. The data of [1972Bye] give higher activity<br />

values <strong>and</strong> they are quite scattered. In the work of [1987Con] the results obtained by<br />

equilibration technique were confirmed by vapor pressure measurements using Knudsen<br />

mass-spectrometer. The activities of Fe in the matte were reported in [1962Vay, 1969Vai,<br />

1972Vay], who used the emf method. Though the discrepancy between [1962Vay] <strong>and</strong><br />

[1969Vai] was not explained by the authors, the data of [1969Vai] are in agreement with<br />

[1987Con]. The calculated S activities predicted by the model of [1999Kon] are consistent<br />

with the data of [1987Con]. The agreement between the predicted Fe activities [1999Kon] <strong>and</strong><br />

those reported in [1969Vai] is very good. The calculated Fe <strong>and</strong> S activity in the liquid phase in<br />

the works of [1987Hsi2, 2004Wal2] are in good agreement with experimental results of<br />

[1969Vai] <strong>and</strong> [1987Con]. The results of calculation [2004Wal2] for the Fe <strong>and</strong> S activity in<br />

the liquid phase are presented in Figs. 10 <strong>and</strong> 11 <strong>and</strong> Figs. 12a to 12c.<br />

The activity of sulfur in the pyrrhotite solid solutions at different Fe/Ni ratios <strong>and</strong> S<br />

contents were measured by [1987Hsi4] using gas equilibration technique at 700-900˚C. The<br />

calculated results from [1987Hsi3, 2004Wal2] are in a good agreement with experimental data.<br />

The calculated S activity in the pyrrhotite solid solutions from [2004Wal2] are presented in<br />

Figs. 13a to 13e.<br />

The Gibbs energy (integral <strong>and</strong> partial) in the FeS-Ni 3S 2 system at 1150˚C were calculated<br />

in [1983Chu1], activity of both components at 1200˚C were calculated in [1983Chu1,<br />

1983Chu2] <strong>and</strong> at 1300˚C in [1987Hsi1]. Calculations of [1987Hsi1] for activity in the<br />

FeS-Ni3S2 join are presented in Fig. 14. Activities of Fe in the Ni3S2-Fe <strong>and</strong> FeS-Ni joins at<br />

1300˚C were calculated by [1969Vai, 1987Con, 1987Hsi1].<br />

Isoactivities of Ni <strong>and</strong> Fe in the Fe-Ni-S system at 1300˚C were presented in the works of<br />

[1970Vay, 1972Vay, 1974Khe] based on experimental results obtained by emf measurements.<br />

[1987Hsi1] calculated isoactivity lines for (αFe), (αNi) <strong>and</strong> log 10p(S 2) 1/2 in liquid <strong>and</strong> liquid+γ<br />

regions at 1200-1400˚C.<br />

The sulfur activity in dilute Fe-Ni liquid solutions were measured by equilibration with H 2<br />

<strong>and</strong> H2S gas mixtures at 1600˚C [1955Cor] <strong>and</strong> at 1540˚C [1960Alc]. The activity coefficient of<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


sulfur in dilute liquid Fe-Ni alloys at 1540˚C were evaluated in terms of Wagner model <strong>and</strong><br />

compared with experimental data of [1960Alc] in the work of [1981Fit]. Addition of Ni to Fe<br />

has a little influence on the dissolution energy of S in Fe-Ni alloys [1989Bar]. The excess Gibbs<br />

energy of S mixing in liquid Fe-Ni alloys at 1540˚C should be negative at the Ni rich end of the<br />

Fe-Ni system, reaching a maximum about –2.1 kJ·(g-at) –1 , but positive at the Fe rich end of<br />

this system [1960Alc]. Ni decreases slightly the activity coefficient of S in liquid Fe [1968Chm,<br />

1969Ban], while Fe increases activity coefficient of S in liquid Ni [1973Ven]. The first<br />

order interaction parameter up to 20 mass% Ni is equal e Ni S = – 0.003 <strong>and</strong> between 20 <strong>and</strong><br />

32 mass% Ni its values are e Ni S = – 0.006 [1968Chm](e Ni S = 0.0 <strong>and</strong> e S Ni = – 0.0037 [1974Sig];<br />

e Ni S = – 0.00006 at 1550˚C <strong>and</strong> up to 50 at.% Ni [1969Ban], e Ni S = – 0.005 [1973Buz]). The<br />

value of e Ni S obtained from the theoretical model is –0.49 [1981Fit]. The first order interaction<br />

parameters up to 35 at.% Fe at 1575˚C are equal e Fe S = + 0.005 [1968Chm]. The second order<br />

interaction coefficient r Ni S is equal zero [1974Sig].<br />

The thermodynamic modelling was performed by [1983Chu1, 1987Hsi1, 1987Hsi2,<br />

1987Hsi3] using associated solution model for the liquid phase, statistical model for monosulfide<br />

solid solution <strong>and</strong> subregular model for other solutions. The liquidus projection,<br />

isothermal sections in the range 1350-700˚C, sulfur activity over liquid <strong>and</strong> monosulfide<br />

were calculated <strong>and</strong> compared with respective experimental data. Stability diagrams (potential<br />

diagrams) presenting partial pressure of sulfur versus composition were calculated at<br />

1100-700˚C. Two other assessments of thermodynamic parameters [2004Wal2, 2006Wal2]<br />

were published recently. Quasichemical model for short-range ordering was applied for<br />

ternary liquid <strong>and</strong> sublattice model was applied for description of solid solutions: monosulfide,<br />

pentl<strong>and</strong>ite, pyrite, vaesite <strong>and</strong> high-temperature haezlewoodite. Based on those<br />

thermodynamic descriptions isothermal sections in the range 1350-600˚C, vertical sections,<br />

sulfur activity over liquid <strong>and</strong> monosulfide phase were calculated. As was mentioned before, in<br />

the description of [2006Wal2] two phases of haezlewoodite were considered, while the<br />

parameters for other phases were the same as in [2004Wal2].<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–Ni–S 11<br />

7<br />

The solubility curve of FeS2 in NiS2 was applied in geological thermometry by [1963Cla]. An<br />

increase in S or FeS activity by addition of FeS may be effective in lowering the Ni content of<br />

the separating Fe-Ni alloys [1972Bye].<br />

The magnetic order Ð disorder transition occurs in regions of the monosulfide solid<br />

solution (pyrrhotite) where it breaks on cooling [1974Vau]. Beyond this transition in the<br />

monosulfide compositions may exhibits weak temperature independent Pauli paramagnetism<br />

<strong>and</strong> metallic conductivity. [1976Kas] indicated that the magnetization of Fe xNi 1–xS ceramics<br />

reduces with increasing Ni content up to 50 at.%, increases between 50 <strong>and</strong> 60 at.% Ni <strong>and</strong><br />

decreases again between 60 <strong>and</strong> 100 at.% Ni. The TC reduces with increasing Ni content up to<br />

50 at.% but was not measured for higher Ni contents at room temperature to 300˚C. The<br />

electrical resistivity reduces uniformly with decreasing Fe content of this ceramics. [1997Dre]<br />

noted that monosulfide within the range of composition (Fe 1–xNi x) 0.96S at x = 0-0.6<br />

are capable of forming magnetic structures like Fe 0.96S. Ni atoms create defects in the<br />

magnetic structure. The temperature of the magnetic - paramagnetic transition decreases<br />

with decreasing Fe:Ni ratio <strong>and</strong> the changes in the initial monosulfide are directed towards<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


8 11<br />

Fe–Ni–S<br />

moving Ni from the magnetic monosulfide into the nonmagnetic pentl<strong>and</strong>ite. Magnetic<br />

measurement <strong>and</strong> DTA have been performed at 4.2-300 K for Ni 1–xFe xSby[1976Bar]. Metal<br />

- non-metal transition temperature decreased for 1% Fe <strong>and</strong> then increased for 2-3% Fe.<br />

Magnetic susceptibility was measured for Ni 0.99Fe 0.01S.<br />

According to the data of [1961Nis] the magnetic region in the Fe-Ni-S ternary system lies<br />

within the composition region enclosed by the line Fe-FeS-Fe9–xNixS8-Ni3S2-Ni. Specimens<br />

outside of this area were non-magnetic. The intensity of magnetization of the specimens<br />

decreases when the composition changes towards the line FeS-Fe 9–xNi xS 8-Ni 3S 2. The specimens<br />

whose S content is higher than this line were paramagnetic.<br />

The metal-semiconductor transition in the Fe 1–xS-Ni 1–xS system is accompanied by the<br />

drastic changes of electrical <strong>and</strong> magnetic properties, this being similar to that of pure NiS<br />

[1981Oht]. Transition temperature (T t) increases with increase in Fe content, but in the<br />

forward direction it shows a significant increase as high as 50˚C, when specimens were aged<br />

at a temperature below Tt. The reverse transformation is not affected by thermal history at all.<br />

This could be explained by the relaxation process in which the strain energy stored in the low<br />

temperature phase is relieved by aging [1981Oht].<br />

Ni-doped FeS 2 is n type semiconductor [2006Leh]. Resistivity range from 2 to 17 Ω·cm,<br />

carrier concentration is similar for undoped <strong>and</strong> Ni doped FrS 2 ranging from 10 15 to<br />

10 16.6 cm –3 <strong>and</strong> Hall mobility is ranging from 60 to 270 cm 2 ·V –1 ·s –1 .<br />

[1977Nis] noted that the Ni atom in the Fe 0.5Ni 0.5S 2 solid solution has a magnetic moment<br />

of about 1 μ B at low temperatures.<br />

Pentl<strong>and</strong>ite (τ1) Fe9–xNixS8 remains Pauli-paramagnetic down to 4.2 K with no resultant<br />

magnetic moments of the Me atoms [1970Kno, 1976Kno]. Fe1.22Ni1.81S3.97 is also Pauliparamagnetic<br />

with 0.13 μ B per FeNi 2S 4 molecule [1977Tow]. Thermal expansion of pentl<strong>and</strong>ite<br />

Fe 4.5Ni 4.5S 8 was studied in the temperature range between 25 <strong>and</strong> 608˚C by XRD in<br />

[1964Mor].<br />

The compressional wave velocity in molten Fe containing 5 mass% Ni <strong>and</strong> 10 mass% S<br />

increases with increasing temperature [1997Nas]. 10 mass% S enhances also sound attenuation<br />

by one or two orders of magnitude compared with liquid Fe. Such behavior at outer core<br />

pressures <strong>and</strong> temperatures would constrain the velocity gradient in the outer core <strong>and</strong> would<br />

enable the discrimination of potential light alloying elements.<br />

The temperature dependence of surface tension for the Fe-Ni melts containing the surface<br />

active element S was measured at 1600˚C by [1993Lee]. It was found to be positive <strong>and</strong> isosurface<br />

tension diagram for Fe-Ni-S melts at 1600˚C were presented by [1993Lee]. Sulfur<br />

decreases slightly the thermal expansion coefficient (α) of the as-rolled Fe-Ni alloy containing<br />

36 mass% Ni, whereas annealed specimens with addition of S below 0.05 mass% exhibit a<br />

value of α lower than that for zero addition [1987Ina]. S addition above 0.05 mass% make<br />

rolling of the sheet impracticable. Yield strength <strong>and</strong> tensile strength of such alloys rapidly<br />

increase for addition below 0.03 mass% S, which indicates that the work hardening, due to<br />

addition of S, is significant.<br />

Experimental studies of material properties are presented in Table 4.<br />

Miscellaneous<br />

Fe-Ni-S alloys are believed to be a possible component of the cores of planetary bodies such as<br />

Earth, Mars <strong>and</strong> Io [1997Nas].<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

9<br />

The S diffusion coefficients in bulk Fe-Ni alloys, containing 25, 50 <strong>and</strong> 75 at.% Ni, have<br />

been determined in the 950 to 1200˚C temperature range by [1982Net]. The values of the<br />

activation energy have been experimentally found between 142 <strong>and</strong> 209 kJ·mol –1 .<br />

Fe xNi 1–xS solid solutions could be prepared by the metal oxide - carbon disulfide reaction<br />

sintering method [1976Kas].<br />

Pentl<strong>and</strong>ite (τ 1) is one of the main ores minerals <strong>and</strong> the biggest part of world Ni<br />

production is obtained from this mineral [1955Eli, 1974Vau]. It is likely that much hypogene<br />

violarite (FeNi2S4) is formed by exsolution from initially deposited monosulfide solid solution<br />

[1971Cra]. FeNi 2S 4 is also an important mineral quite common in natural Fe-Ni sulfide<br />

assemblages containing pentl<strong>and</strong>ite [1977Tow].<br />

FeS 2 crystals doped with Ni were synthesized using a chemical vapor transport with FeBr 3<br />

as a transport agent [2006Leh]. Ni concentration was ~200-1500 ppm.<br />

Physicochemical behavior of Ni, Fe <strong>and</strong> Pt group elements impurities at an early stage of<br />

crystallization of Fe-Ni melts with a small surplus of S relative to the total of metals indicates<br />

that under certain conditions Pt group element-bearing phases can form: (Pt, Fe, Ir)-alloy (at<br />

initial Fe >> Ni), RuS2 (at initial Ni > Fe), (Pt, Ni)S - in a specimen of pure Ni initial<br />

composition [2001Sin2].<br />

As S is added to the Fe-Ni alloys, segregation coefficients (k) of trace constituents<br />

change dramatically [1990Jon]. If the composition of the metallic liquid is known, k may be<br />

predicted - even if the temperature, exact Fe/Ni ratio <strong>and</strong> information about the activity<br />

coefficient in the solid phase are unknown.<br />

Mössbauer study of iron sulfides doped with 3d-transition metals were performed by<br />

[2000Kim, 2005Nam] at temperatures ranging from liquid nitrogen to 600 K.<br />

Kinetic of exsolution of pentl<strong>and</strong>ite (τ1) from monosulfide solid solution was studied by<br />

[2004Ets] by anneal/quench <strong>and</strong> in-situ cooling experiments. The extent of exsolution was<br />

monitored using powder neutron diffraction data. Mechanism of pentl<strong>and</strong>ite formation was<br />

discussed by [2001Kos] based on results obtained by combination of directional crystallization<br />

with thermal analysis. According to the obtained results it form due to solid state reactions on<br />

cooling. Solidification behavior of Fe-41 Ni (mass%) alloys at 520-665˚C with flowing H 2/<br />

H 2S/N 2 gas mixtures was investigated by [1989Orc1, 1989Orc2]. Reaction kinetics were<br />

irregular at 520˚C <strong>and</strong> parabolic at higher temperatures consistent with ratio of self-diffusion<br />

coefficient DFe/DNi=0.4. [1989Bat] calculated partition coefficient for nickel <strong>and</strong> sulfur in<br />

solid/liquid interaction based on parameters from binary systems. The poor agreement<br />

between calculations <strong>and</strong> experiments could be due to significant second-order S-S <strong>and</strong><br />

Ni-S effect at higher sulfur concentrations. The electromagnetic levitation of sulfur in liquid<br />

iron, nickel <strong>and</strong> iron-nickel alloys was studied by [1986Jac]. By applying principle of local<br />

equilibrium at metal drop/gas interface, the activities of sulfur in liquid alloys were evaluated.<br />

Influence of sulfur to dissolution/passivation of Ni-25%Fe alloy was investigated by<br />

[1981Mar, 1984Mar1, 1984Mar2] using electrochemical <strong>and</strong> radiotrace technique.<br />

First-principle calculations of electronic structure <strong>and</strong> stability of pentl<strong>and</strong>ite solid solution<br />

were performed by [2002Cha]. Lattice parameters, bulk modulus <strong>and</strong> heat of formations<br />

were predicted.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


10 11<br />

Fe–Ni–S<br />

. Table 1<br />

Investigations of the Fe-Ni-S <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

[1930Vog] DTA, metallography Up to 1500˚C / Fe-FeS-Ni3S2-Ni [1938Ura] DTA, metallography Up to 1300˚C / Fe-Ni-S<br />

[1947Lun] <strong>Phase</strong> equilibria, XRD 200, 400, 680˚C / Fe-Ni-S<br />

[1955Cor] Equilibration with gas mixtures 1600˚C / sulfur partial pressure over<br />

Fe-Ni liquid<br />

[1955Eli] XRD Room temperature / Fe9–xNixS8 [1956Kul] XRD 500˚C / Fe-Ni-S, 500-1000˚C / Fe/<br />

Ni = 1 (Fe+Ni)/S from 7.5/8 to 9/8<br />

[1955Van] DTA, metallography Up to 1300˚C / Fe-FeS-Ni6S5-Ni [1957Van] DTA, metallography, microhardness<br />

measurement<br />

Up to 1400˚C / Fe-FeS-NiS-Ni<br />

[1960Alc] Equilibration with H2/H2S gas mixture 1540˚C / (Fe-Ni) + S, S activity<br />

[1960Cla] XRD 500-800˚C up to 40 mass% S, up to<br />

40 mass% Ni<br />

[1961Kno] XRD, neutron diffraction, pyknometry Pentl<strong>and</strong>ite solid solutions<br />

[1961Nis] XRD, magnetization intensity<br />

measurements, thermomagnetic analysis<br />

Up to 1100˚C / Fe1–xS-Ni1–xS [1961Stu] XRD, EPMA, chemical analysis,<br />

metallography<br />

Room temperature / (Fe xNi 1–x) 2S<br />

[1962Vay] EMF measurements 1300˚C / up to 50 at.% S<br />

[1963Cla] Hydrothermal experiments, optical<br />

microscopy, XRD<br />

100-1000˚C / FeS 2-NiS 2, 50-100<br />

at.% S<br />

[1963Kan] XRD, chemical analysis 950˚C / Fe1–xS-Ni1–xS [1963Kul1] XRD 400-1100˚C / Fe-Ni-S isothermal<br />

sections<br />

[1963Kul2] DTA, high-temperature XRD 500-800˚C / pentl<strong>and</strong>ite<br />

[1966Nal]<br />

[1967Nal]<br />

XRD 250-600˚C / 35-40 mass% S<br />

[1968Jos] Metallography, chemical analysis 1000˚C / (Fe + 10 mass% Ni) + S<br />

[1968Chm] Equilibrating with H2/H2S gas mixtures,<br />

chemical analysis<br />

Fe-Ni-S up to 32 mol% Ni<br />

[1968Cra] XRD, electron microprobe, optical<br />

microscopy<br />

[1969Ban] Equilibrating with H 2/H 2S gas mixtures,<br />

chemical analysis<br />

400˚C / Fe-Ni-S<br />

1550˚C / Ni-Fe-S<br />

[1969Vai] EMF measurement 1300˚C / Fe-Ni-S<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

[1970Khe] EMF measurement 1300˚C / Fe-Ni-S at 40 at.% S<br />

[1970Kno] Mössbauer spectroscopy 4.2 K / Fe9–xNixS8 [1970She] XRD, optical microscopy 400-600˚C, 20-60 mass% S<br />

[1970Vay] EMF measurement 1300˚C / Ni-Fe-S<br />

[1971Cra] XRD, metallography 300-500˚C / FeS-FeS2-NiS2-NiS [1971Gra] EPMA < 135-500˚C / Fe-FeS2-NiS2-Ni [1972Bye] Gravimetry 1250˚C / (Fe-Ni-S) + H2S/H2 [1972Har] Electron microprobe Compositions of pentladites<br />

[1972Nic] Optical microscopy, electron microprobe Smithite (Fe,Ni) 3.3S4 associated with<br />

pentl<strong>and</strong>ite <strong>and</strong> pyrrotite<br />

[1972Tay] XRD, EPMA Room temperature / Fe9–xNixS11<br />

[1973Buz] XRD, EPMA 1600˚C / Fe-Ni-S<br />

[1973Cra] XRD, electron microprobe, optical<br />

microscopy<br />

200-300˚C/ 25-60 mass% S<br />

[1973Hal] XRD Pentl<strong>and</strong>ite (Ni,Fe) 9S 8<br />

[1973Mis1] XRD, electron microprobe, optical<br />

microscopy<br />

230-600˚C / up to 55 at.% S<br />

[1973Mis2] XRD Fe1–xS-Ni1–xS, pentl<strong>and</strong>ite, Fe-Ni<br />

alloy (taenite)<br />

[1973Raj] XRD Pentl<strong>and</strong>ite solid solutions<br />

[1973Ven] Chemical analysis, vapor pressure<br />

measurements<br />

1575˚C / Fe-Ni-S up to 35 at.% Fe<br />

[1974Khe] EMF measuring 1300˚C / Fe-Ni-S<br />

[1974Mis] Electron microprobe, single crystal XRD Composition <strong>and</strong> stability of<br />

(Fe,Ni)3S4 violarites<br />

[1974Vau] XRD, EPMA, Mössbauer spectroscopy 600˚C / Fe1–xS-Ni1–xS [1976Chi] DTA, metallography, dilatometry, X-ray<br />

spectrometry analysis<br />

138-1100˚C / Fe-Ni3S2 [1976Fra] TEM, EPMA 600˚C / (Fe,Ni) 1–xS up to 37 mass%<br />

Ni<br />

[1976Gul] DTA, X-ray spectrum analysis,<br />

microhardness measurements<br />

Up to 1200˚C / Cu2S+Fe [1976Kas] XRD, TGA, magnetic properties <strong>and</strong><br />

electrical resistivity measurements<br />

[1976Kno] XRD, neutron powder diffraction,<br />

Mössbauer spectroscopy, magnetic<br />

susceptibility measurements<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

20˚C / Fe 1–xS-Ni 1–xS<br />

Up to 600˚C / Fe 9–xNi xS 8<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


12 11<br />

Fe–Ni–S<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

[1977Nis] Mössbauer spectroscopy 10-295 K / Fe 0.5Ni 0.5S 2<br />

[1977Tow] XRD, Mössbauer spectroscopy, magnetic<br />

susceptibility <strong>and</strong> thermoelectric power<br />

measurements<br />

[1978Len] Equilibrium study, microprobe <strong>and</strong> chemical<br />

analysis<br />

5-300 K / FeNi 2S 4<br />

1200-1400˚C / up to 25 mass% S,<br />

liquidus surface<br />

[1979Sha] SEM, metallography 600-813˚C / Fe-Ni 3S 2<br />

[1980Vol] XRD Synthesis 600-1000˚C / pressures 4<br />

GPa, Fe1–xS-Ni1–xS [1981Fit] Wagner model Sulfur activity in dilute Fe-Ni liquid<br />

solution at 1540˚C<br />

[1981Oht] XRD, DSC, magnetic susceptibility <strong>and</strong><br />

electric resistivity measurements,<br />

Mössbauer spectroscopy<br />

110-373 K / Fe1–xS-Ni1–xS<br />

[1982Net,<br />

1983Net1,<br />

1983Net2]<br />

[1983Chu1]<br />

[1983Chu2]<br />

Radioisotope analysis 950-1200˚C / (Fe-Ni) + H2S/H2<br />

Calphad 1200˚C / FeS-Ni3S2, thermodynamic<br />

properties, liquidus 1200-1350˚C<br />

[1983Van] Dew point method 1000-1250˚C / Fe-Ni-S<br />

[1984Bee] XRD, EPMA, metallography 400-600˚C / Fe-Ni-S<br />

[1984Khe] Dew point method 800-1250˚C / Fe-Ni-S<br />

[1981Mar] Radiotracer<br />

[1984Mar1]<br />

[1984Mar2]<br />

35 S technique, electrochemical Ni-25Fe, dissolution/passivation<br />

measurements, X-ray photoelectron<br />

spectroscopy<br />

[1984Sel] Electron microprobe Fe-7.2Ni-1.15S (mass%) distribution<br />

of Ni during solidification<br />

[1987Con] Equilibration with H2/H2S gas mixtures,<br />

vapor pressure measurement with Knudsen<br />

effusion mass-spectrometry<br />

[1987Hsi1] Calphad, phase equilibration with H2/H2S gas mixtures<br />

1200-1400˚C / Fe/Ni = 0.25, 1, 4<br />

Activity of Fe <strong>and</strong> Ni over liquid<br />

Fe-Ni-S<br />

900-1400˚C / Fe-Ni-S, isoactivity<br />

diagrams, isothermal sections,<br />

stability diagrams<br />

[1987Hsi2] Calphad 900-1350˚C / Fe-Ni-S<br />

[1987Hsi3] Statistical thermodynamic model Monosulfide solid solution<br />

[1987Hsi4] Equilibration with H2/H2S gas mixtures, 700-900˚C / sulfur activity over<br />

thermodynamic calculations<br />

monosulfide solid solution<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1989Bar] Equilibration with H2/H2S gas mixture,<br />

radiotracer 35 S method<br />

[1989Orc1] XRD, microprobe analysis, electron<br />

microscopy<br />

Fe–Ni–S 11<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

900-1250˚C / solubility <strong>and</strong><br />

diffusion of S in Fe-Ni alloys<br />

520-665˚C / Fe-41mass%Ni at<br />

P S2 = 2·10 –5 -6·10 –1 Pa<br />

[1989Orc2] XRD, microprobe analysis 520-665˚C / Fe-41mass%Ni at<br />

PS2 = 2·10 –5 -6·10 –1 Pa<br />

[1990Jon] Thermodynamic modelling solid/liquid<br />

interaction<br />

Fe-Ni-S<br />

[1991Kes] XRD Room temperature / Ni3S4, FeNi2S4<br />

[1995Ma] Electron microscopy, microprobe analysis 400, 500˚C / Fe-30Ni-10S (mass%)<br />

[1997Dre] Differential Scanning Calorimetry (DSC) 20-305˚C / (Fe1–xNix) 0.96S<br />

[1998Ma] Electron microscopy, microprobe analysis 300-900˚C Fe-rich compositions<br />

with 2.5-30 mass% Ni, 10 mass% S<br />

[1998Kar] EPMA 900˚C / up to 70 at.% S<br />

[1998Sin] XRD, DTA 950-1200˚C / Fe0.96S-Ni0.96S<br />

liquidus, solidus<br />

[1999Kon] Calphad 1350-1250˚C / S up to 26 at.%<br />

[1999Nko] XRD Room temperature / Fe9–xNixS8 <strong>and</strong><br />

Fe1–xS [1999Sin] XRD, optical, electron microscopy, DTA 470-1200˚C / 35-51 at.% S<br />

[2000Kim] XRD, Mössbauer spectroscopy 77-600 K / Ni0.025Fe0.975S [2000Uen] XRD, optical microscopy 400, 500˚C / Fe-Ni-S<br />

[2001Far] XRD, sulfur K-edge spectra Room temperature /<br />

Ni0.923S-Fe0.923S [2001Kos] Directional solidification from melt, XRD, TA, 26.65 at.% Fe, 26.65 at.% Ni <strong>and</strong><br />

optical microscopy, microprobe analysis 46.7 at.% S<br />

[2001Sin1] XRD, optical, electron microscopy,<br />

microprobe analysis<br />

600˚C / 22-55 at.% S<br />

[2003Kos] S fugacity by equilibration technique 600˚C / Fe-FeS-NiS-Ni<br />

[2004Kos] Directional crystallization from melt, DTA 840-875˚C / 40-55 at.% S<br />

[2004Wal2] Calphad 600-1400˚C / Fe-Ni-S<br />

[2005Nam] XRD, Mössbauer spectroscopy 77-600 K / Ni0.025Fe0.975S [2006Leh] XRD, EPMA synchrotron XRD, mass<br />

spectrometry<br />

Room temperature / FeS2 +Ni<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


14 11<br />

Fe–Ni–S<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[2006Sin] S fugacity by equilibration technique, XRD,<br />

microprobe analysis, optical microscopy,<br />

SEM<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

900˚C / Fe-FeS-NiS-Ni<br />

[2006Wal2] Calphad 600˚C / Fe-Ni-S, 300-1200˚C<br />

FeS-Ni 3S 2<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(δFe) cI2 a = 293.15 pure Fe [Mas2]<br />

1538 - 1394 Im3m<br />

W<br />

dissolves 3.8 at.% Ni at 1517˚C<br />

γ, (γFe,Ni) cF4<br />

(γFe) Fm3m a = 364.67 pure Fe at 915˚C [V-C2, Mas2]<br />

1394 - 912 Cu<br />

(Ni) a = 352.40 pure Ni at 25˚C [Mas2]<br />

< 1455 below critical temperature:<br />

γ1 - paramagnetic, Fe enriched<br />

γ2 – ferromagnetic, Ni enriched<br />

(αFe) cI2 a = 286.65 pure Fe at 25˚C [Mas2]<br />

< 912 Im3m<br />

W<br />

dissolves 4.6 at.% Ni at 495˚C<br />

(εFe) hP2 a = 246.8 at 25˚C, 13GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

γ’FeNi3 cP4 a = 355.23 63 to 85 at.% Ni [1991Swa]<br />

< 517 Pm3m<br />

AuCu3 γ’’FeNi tP4 a = 357.9 [V-C2]<br />

metastable P4/mmm metastable ordering temperature 320˚C at<br />

AuCu<br />

51.2 at.% Ni [1984Ros]<br />

Fe3Ni cP4 a = 357.5 ± 0.1 metastable [V-C2, Mas2]<br />

? Fm3m<br />

Cu<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–Ni–S 11<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

15<br />

(βS) mP64 a = 1102 [Mas2]<br />

115.22 - 95.5 P21/c b = 1096<br />

βS c = 1090<br />

β = 96.7˚<br />

(αS) oF128 a = 1046.4 pure S at 25˚C [Mas2]<br />

< 95.5 Fddd b = 1286.60<br />

αS c = 2448.60<br />

Pyrr,<br />

hP4 Mineral pyrrhotite,<br />

Fe1–xNixS1±y P63/mmc 0 ≤ x ≤ 1, 0 ≤ y ≤ 0.1<br />

< 1182 NiAs<br />

a = 343.43 ± 0.7<br />

c = 558.20 ± 0.11<br />

x = 0.5 [V-C2]<br />

a = 344.0 ± 0.2 for composition (Fe0.75Ni0.25)0.923S<br />

c = 567.6 ± 0.3 [2001Far]<br />

a = 343.71 ± 0.08 for composition (Fe0.5Ni0.5) 0.923S<br />

c = 559.2 ± 0.1 [2001Far]<br />

a = 342.5 ± 0.2 for composition (Fe0.25Ni0.75) 0.923S<br />

c = 539.6 ± 0.3 [2001Far]<br />

γFe1–xS a = 344.36 ± 0.05 pyrrhotite, 50 to 55 at.% S [V-C2, Mas2]<br />

1188 - 315 c = 587.59 ± 0.05<br />

a = 345.3 ± 0.1<br />

c = 576.5 ± 0.2<br />

for composition Fe0.923S [2001Far]<br />

δNi1–xS a = 343.98 ± 0.03 millerite, 49.8 to 52.5 at.% S [V-C2, Mas2]<br />

< 1001 c = 534.82 ± 0.05<br />

a = 343.16 ± 0.07 for composition Ni0.923S [2001Far]<br />

c = 532.5 ± 0.1<br />

βFe1–xS hP24 a = 596.3 ± 0.1 troilite, at 21˚C [V-C2, Mas2],<br />

315 - 138 P62c c = 1175.4 ± 0.1 0 ≤ x ≤ 0.07<br />

Superstructure a = 586.1<br />

of NiAs-type c = 1157.7 ± 0.1<br />

a = 599.8 ± 1.1<br />

c = 1171 ± 1<br />

at 21˚C <strong>and</strong> 3.33 GPa [V-C2, Mas2]<br />

at 120˚C [V-C2, Mas2]<br />

β(Fe1–xNixS) a = 596.5 ± 0.2<br />

c = 1171 ± 5<br />

x = 0.025 [2005Nam]<br />

αFe1–xS P31c a = 596.6± 0.1 [2008Fer] 0≤ x ≤ 0.07<br />

< 138 Subgroup of<br />

P62c<br />

-<br />

c = 1176 ± 0.1<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


16 11<br />

Fe–Ni–S<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

FeS oP8 high-pressure phase<br />

(II) Pnma a = 582.5 ± 0.2 at 190˚C [V-C2]<br />

? MnP b = 346.8 ± 0.1<br />

c = 693.5 ± 0.6<br />

a = 571.6 ± 0.9<br />

b = 334.7 ± 0.3<br />

c = 669.4 ± 0.9<br />

at 21˚C <strong>and</strong> 4.15 GPa [V-C2]<br />

a = 565 ± 1<br />

b = 331.6 ± 0.3<br />

c = 663.1 ± 0.8<br />

at 21˚C <strong>and</strong> 6.35 GPa [V-C2]<br />

FeS tP4 a = 376.8 Mackinawite [V-C2]<br />

? P4/nmm<br />

PbO<br />

c = 503.9<br />

Py, Fe1–xNixS2 cP12<br />

Pa3<br />

FeS2 Mineral pyrite, 0 ≤ x ≤ 0.15<br />

a = 541.79 ± 0.11 x =0[V-C2, Mas2]<br />

βFeS2 a = 534.8 ± 0.2 at 1.57 GPa [V-C2]<br />

< 743 a = 529.3 ± 0.2 at 2.87 GPa [V-C2]<br />

a = 525.5 ± 0.2 at 3.85 GPa [V-C2]<br />

V, FexNi1–xS2 cP12<br />

Pa3<br />

FeS2 Mineral vaesite, 0 ≤ x ≤ 0.22<br />

a = 566.8 x = 0.1 [V-C2]<br />

a = 568.65 ± 0.03 x =0[V-C2, Mas2]<br />

ηNiS2<br />

< 1022 a = 561.96 ± 0.06 at 3.2 GPa [V-C2]<br />

a = 557.45 ± 0.04 at 5.4 GPa [V-C2]<br />

a = 558.52 ± 0.04 at 4.9 GPa [V-C2]<br />

αFeS2 oP6 a = 444.1 Marcasite [V-C2, Mas2]<br />

≲ 444.5 Pnnm b = 542.5<br />

FeS2 (marcasite) c = 338.7<br />

a = 446.4<br />

b = 544<br />

c = 339<br />

at 327˚C [V-C2]<br />

Fe2S3 tP80 a = 1053 [V-C2]<br />

? P43212 -<br />

c = 1001<br />

Fe3S4 hR21 a = 347 ± 2 Smythite [V-C2]<br />

? R3m c = 3450 ± 2<br />

Fe3S4 a = 347 ± 0.1<br />

c = 3440.0 ± 0.1 for composition Fe9–xNixS11 [1972Tay]<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

Fe3S4 cF56 a = 987.6 ± 0.2 Greigite [V-C2], probably metastable<br />

? Fd3m<br />

MgAl2O4 Fe1–xS hP* a = 596.5 ± 0.3 [2008Fer] 0≤ x ≤ 0.125<br />

< 315 Superstructure<br />

of<br />

NiAs type<br />

c = 1171.6 ± 0.8<br />

o** a = 1193.0 ± 0.4 [2008Fer] x = 0.1<br />

Superstructure<br />

of<br />

b = 688.8 ± 0.3<br />

NiAs type c = 2865.8 ± 0.35<br />

m** a = 1192.0 ± 0.2 [2008Fer] x = 0.125<br />

Superstructure<br />

of NiAs-type<br />

b = 585.8 ± 0.4<br />

c = 2285.2 ± 0.8<br />

β = 90.37 ± 0.6˚<br />

Fe–Ni–S 11<br />

β, Ni3S2 hR15 a = 573.1 ± 0.5 [V-C2] low-temperature heazlewoodite<br />

< 533 R32<br />

Ni3S2 c = 711.9 ± 0.7<br />

β1(Ni1–xFex)3S2 cF10 high temperature Heazlewoodite<br />

β1,Ni3S2 F43m<br />

a = 522.8 ± 0.9<br />

0 x ≤ 0.35 (36.7 to 42 at.% S)<br />

800 - 533 36.7 to 42 at.% S [V-C2, Mas2]<br />

β2(Ni1–xFex) 4S3 cP* - high temperature Heazlewoodite<br />

0 ≤ x ≤ 0.26 (42 to 44 at.% S) [Mas2]<br />

β2,Ni4S3 806 - 524<br />

42 to 44 at.% S [Mas2]<br />

γNi7S6 oC56 a = 327.4 ± 0.1 Godlevskite [V-C2, Mas2]<br />

573 - 400 Cmcm b = 1135.9 ± 0.4<br />

Ni7S6<br />

c=1615.7 ± 0.7<br />

γ’Ni7S6 m** a = 3238.8 ± 2.4 [V-C2, Mas2]<br />

< 400 b=2273.0 ± 2.0<br />

c=652.5 ± 0.7<br />

probably metastable<br />

Ni9S8 o* a = 932.5 ± 0.1 [1994Sto]<br />

< 436 C222 b = 1123.9 ± 0.1<br />

- c = 941.00 ± 0.1<br />

εNiS hP4 a = 344.56 ± 0.08 50 to 50.5 at.% S,<br />

< 379 P63mc NiS<br />

c = 540.5 ± 0.1 low temperature phase [V-C2]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


18 11<br />

Fe–Ni–S<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

FexNi3–xS4 cF56 0 ≤ x ≤ 1<br />

Fd3m a = 946.4 ± 0.2 violorite, x =1[1991Kes]<br />

MgAl2O4 a = 946.5 x =1[V-C2]<br />

a = 945 for composition Fe1.22Ni1.81S3.97 [1977Tow]<br />

ζNi3S4 cF56 a = 948.9 Polydymite, [V-C2, Mas2]<br />

< 356 Fd3m<br />

Co3S4 Ni6S5 oC48 a = 325.4 [V-C2]<br />

Cmcm b = 1133.8<br />

Ni6Se5 c=1643.0<br />

Ni17S18 hP105 a = 1029.0 ± 0.2 [V-C2]<br />

P3121 Ni17S18 c = 1599.3 ± 0.3<br />

*τ1,Fe9–xNixS8+y cF68 Mineral pentl<strong>and</strong>ite<br />

< 610 Fm3m 3.8 < x < 5.5 [2003Kos]<br />

Co9S8<br />

0


. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

Ni S<br />

L1 +L2 Ð Pyrr + V 1005 U1 L1 5.95 36.21 57.84<br />

L2 0.04 0.29 99.67<br />

Pyrr 9.75 37.10 53.15<br />

V 1.26 33.47 65.27<br />

L1 + Pyrr Ð β 875 pmax L1 21.3 34.5 44.2<br />

Pyrr 34.9 13.9 51.1<br />

β 22.5 32.5 45.0<br />

L1 + Pyrr Ð β + γ 800 U2 L1 - - -<br />

L2 + Pyrr Ð Py + V 729 U3 L2 - - -<br />

Pyrr - - -<br />

Py 30.82 2.51 66.67<br />

V 9.46 23.83 66.67<br />

. Table 4<br />

Investigations of the Fe-Ni-S Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1961Nis] Magnetic measurements,<br />

thermomagnetic analysis<br />

Fe–Ni–S 11<br />

Magnetization, Curie temperature<br />

[1964Mor] XRD Thermal expansion for pentl<strong>and</strong>ite<br />

[1974Vau] Mössbauer spectroscopy Magnetic properties<br />

[1976Bar] Magnetic measurement, DTA Metal - non-metal transition temperature,<br />

magnetic susceptibility at 4.2 to 300 K for<br />

Ni1–xFexSatx = 0.01-0.06<br />

[1976Chi] Microhardness measurements Microhardness in Fe-Ni3S2 system<br />

[1976Kno] Faraday method Magnetic susceptibility<br />

[1980Vol] XRD, resistivity measurements Electrical conductivity of monosulfide solid<br />

solution at high pressure <strong>and</strong> temperature<br />

[1987Ina] Stress-strain diagram method Thermal expansion, yield strength, tensile<br />

strength<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

19<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


20 11<br />

Fe–Ni–S<br />

. Table 4 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1993Lee] Oscillating droplet method combined<br />

with electromagnetic levitation<br />

technique<br />

Surface tension<br />

[1997Nas] Ultrasonic interferometry Sound velocity <strong>and</strong> attenuation<br />

[2006Leh] Electrical measurements Resistivity, carrier concentration, Hall mobility<br />

(Electric properties)<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-Ni-S. Reaction scheme<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

21<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


22 11<br />

Fe–Ni–S<br />

. Fig. 2<br />

Fe-Ni-S. Liquidus surface projection<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3a<br />

Fe-Ni-S. Calculated isothermal section at 1350˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

23<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


24 11<br />

Fe–Ni–S<br />

. Fig. 3b<br />

Fe-Ni-S. Calculated isothermal section at 1300˚C<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3c<br />

Fe-Ni-S. Calculated isothermal section at 1200˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

25<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


26 11<br />

Fe–Ni–S<br />

. Fig. 4a<br />

Fe-Ni-S. Calculated isothermal section at 1100˚C<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4b<br />

Fe-Ni-S. Calculated isothermal section at 1050˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

27<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


28 11<br />

Fe–Ni–S<br />

. Fig. 4c<br />

Fe-Ni-S. Calculated isothermal section at 1000˚C<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5a<br />

Fe-Ni-S. Calculated isothermal section at 900˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

29<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


30 11<br />

Fe–Ni–S<br />

. Fig. 5b<br />

Fe-Ni-S. Calculated isothermal section at 700˚C<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5c<br />

Fe-Ni-S. Calculated isothermal section at 600˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

31<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


32 11<br />

Fe–Ni–S<br />

. Fig. 6a<br />

Fe-Ni-S. Experimental isothermal section at 500˚C<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 6b<br />

Fe-Ni-S. Experimental isothermal section at 400˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

33<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


34 11<br />

Fe–Ni–S<br />

. Fig. 7a<br />

Fe-Ni-S. Experimental isothermal section at 300˚C<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 7b<br />

Fe-Ni-S. Experimental isothermal section at 200˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

35<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


36 11<br />

Fe–Ni–S<br />

. Fig. 7c<br />

Fe-Ni-S. Experimental isothermal section at < 135˚C<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

. Fig. 8a<br />

Fe-Ni-S. Calculated temperature-composition section for the FeS-Ni 3S 2 join<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

37<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


38 11<br />

Fe–Ni–S<br />

. Fig. 8b<br />

Fe-Ni-S. Calculated temperature-composition section for the FeS 2-NiS 2 join<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

39<br />

. Fig. 8c<br />

Fe-Ni-S. Calculated temperature-composition section for a constant S concentration of x S = 0.471<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


40 11<br />

Fe–Ni–S<br />

. Fig. 9a<br />

Fe-Ni-S. Calculated potential diagram at 700˚C<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 9b<br />

Fe-Ni-S. Calculated potential diagram at 800˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

41<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


42 11<br />

Fe–Ni–S<br />

. Fig. 9c<br />

Fe-Ni-S. Calculated potential diagram at 900˚C<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 9d<br />

Fe-Ni-S. Calculated potential diagram at 1100˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–S 11<br />

43<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


44 11<br />

Fe–Ni–S<br />

. Fig. 10<br />

Fe-Ni-S. Calculated Fe activity in the liquid phase (expressed as equilibrium partial pressure of Fe<br />

in the gas phase) at 1300˚C, values are x Ni<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

. Fig. 11<br />

Fe-Ni-S. Calculated Fe activity in the liquid phase for the Ni 3S 2-FeS <strong>and</strong> FeS-Ni joins<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

45<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


46 11<br />

Fe–Ni–S<br />

. Fig. 12a<br />

Fe-Ni-S. Calculated S activity in the liquid phase (expressed as equilibrium partial pressure of S 2<br />

in the gas phase) at Fe/Ni ratio of 0.25<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

47<br />

. Fig. 12b<br />

Fe-Ni-S. Calculated S activity in the liquid phase (expressed as equilibrium partial pressure of S 2<br />

in the gas phase) at Fe/Ni ratio of 1.0<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


48 11<br />

Fe–Ni–S<br />

. Fig. 12c<br />

Fe-Ni-S. Calculated S activity in the liquid phase (expressed as equilibrium partial pressure of S 2<br />

in gas phase) at Fe/Ni ratio of 4.0<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

49<br />

. Fig. 13a<br />

Fe-Ni-S. Calculated S activity in the monosulfide phase (expressed as equilibrium partial<br />

pressure of S 2 in the gas phase) at various Fe/Ni ratios <strong>and</strong> temperatures around 700˚C; values<br />

indicate Fe/Ni ratio<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


50 11<br />

Fe–Ni–S<br />

. Fig. 13b<br />

Fe-Ni-S. Calculated S activity in the monosulfide phase (expressed as equilibrium partial<br />

pressure of S 2 in the gas phase) at various Fe/Ni ratios <strong>and</strong> temperatures around 750˚C; values<br />

indicate Fe/Ni ratio<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

51<br />

. Fig. 13c<br />

Fe-Ni-S. Calculated S activity in the monosulfide phase (expressed as equilibrium partial<br />

pressure of S 2 in the gas phase) at various Fe/Ni ratios <strong>and</strong> temperatures around 800˚C; values<br />

indicate Fe/Ni ratio<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


52 11<br />

Fe–Ni–S<br />

. Fig. 13d<br />

Fe-Ni-S. Calculated S activity in the monosulfide phase (expressed as equilibrium partial<br />

pressure of S 2 in the gas phase) at various Fe/Ni ratios <strong>and</strong> temperatures aroud 850˚C; values<br />

indicate Fe/Ni ratio<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

53<br />

. Fig. 13e<br />

Fe-Ni-S. Calculated S activity in the monosulfide phase (expressed as equilibrium partial<br />

pressure of S 2 in the gas phase) at various Fe/Ni ratios <strong>and</strong> temperatures around 900˚C; values<br />

indicate Fe/Ni ratio<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


54 11<br />

Fe–Ni–S<br />

. Fig. 14<br />

Fe-Ni-S. Calculated activity of FeS <strong>and</strong> Ni 3S 2 along the FeS-Ni 3S 2 join<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–Ni–S 11<br />

55<br />

[1930Vog] Vogel, R., Tonn, W., “About the <strong>Ternary</strong> System Iron-Nickel-Sulfur” (in German), Arch. Eisenhuettenwes.,<br />

3(12), 769–780 (1930) (Experimental, <strong>Phase</strong> Relations, Magn. Prop., 5)<br />

[1938Ura] Urazov, G.G., Filin, N.A., “Investigation of <strong>Alloy</strong>s of the Fe-Ni-S System” (in Russian), Metallurg, 2,<br />

3–19 (1938) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 21)<br />

[1943Haw] Hawley, J.E., Colgrove, G.L., Zurbrugg, H.F., “The Fe-Ni-S System. An Introduction with New Data on<br />

the Crystallization of Pyrrhotite <strong>and</strong> Pentl<strong>and</strong>ite”, Econ. Geol., 38(5), 335–388 (1943) (Crys. Structure,<br />

Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 73)<br />

[1947Lun] Lundqvist, D., “X-Ray Studies in the <strong>Ternary</strong> System Fe-Ni-S”, Arkiv Kemi, Mineral. Geol., 24A(22)<br />

1–12 (1947) as quoted in [1973Mis2]<br />

[1949Jae] Jaenecke, E., “S-Fe-Ni” (in German) in “Kurzgefasstes H<strong>and</strong>buch aller Legierungen”, Winter Verlag,<br />

Heidelberg, 721–722 (1949) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 1)<br />

[1955Cor] Cordier, J.A., Chipman, J., “Activity of Sulphur in Liquid Fe-Ni <strong>Alloy</strong>s”, Trans. Amer. Inst. Min. Met.<br />

Eng., Inst. Metals Div., 203(8), 905–907 (1955) (Experimental, <strong>Phase</strong> Relations, 7)<br />

[1955Eli] Eliseev, E.N., “Chemical Composition <strong>and</strong> Crystal Structure of Pentl<strong>and</strong>ite” (in Russian), Zap. Vses.<br />

Mineral. Obshchest., 84, 53–62 (1955) (Experimental, Crystal Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

21)<br />

[1955Van] Vanyukov, V.A., Vanyukov, A.V., Tarashchuk, N.T., “The Fe-Ni-S Constitution Diagram” (in Russian),<br />

Tsvet. Met., (4), 23–27 (1955) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 3)<br />

[1956Kul] Kullerud, G., “Subsolidus <strong>Phase</strong> Relations in the Fe-Ni-S System”, Carnegie Inst. Washington, Yearbook,<br />

55, 175–180 (1956) (Experimental, <strong>Phase</strong> Relations, 1)<br />

[1957Van] Vanyukov, V.A., Vanyukov, A.V., Tarashchuk, N.T., “<strong>Phase</strong> Diagram of the System Fe-Ni-S” (in<br />

Russian), Sb. Nauch. Tr. Moskovskii Inst. Tsvet. Metallov i Zolota, (26), 108–119 (1957) (Experimental,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 9)<br />

[1960Alc] Alcock, C.B., Cheng, L.L., “A Thermodynamic Study of Dilute Solutions of Sulphur in Liquid Iron,<br />

Cobalt <strong>and</strong> Nickel <strong>and</strong> Binary <strong>Alloy</strong>s between these Metals”, J. Iron Steel Inst., 195(2), 169–173 (1960)<br />

(Experimental, Thermodyn., 18)<br />

[1960Cla] Clark, S.P., Kullerud, G., “The System Fe-Ni-S”, Carnegie Inst. Washington, Yearbook, 59, 141–144<br />

(1960) (Experimental, <strong>Phase</strong> Relations, 1)<br />

[1961Kno] Knop, O., Ibrahim, M.A., “Chalcogenides of the Transition Elements. II. Existence of the π <strong>Phase</strong> in the<br />

M 9S 8 Section of the System Fe-Co-Ni-S”, Canad. J. Chem., 39, 297–317 (1961) (Experimental, <strong>Phase</strong><br />

Relations, 44)<br />

[1961Nis] Nishimara, K., Kondo, Y., “Studies on the Ni Matte. I. The Ni-Fe-S System”, Mem. Fac. Eng. Kyoto<br />

Univ., 22, 242–263 (1961) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 25)<br />

[1961Stu] Stumpfl, E.F., “Some New Platinoid-Rich Minerals, Identified with the Electron Microanalyser”,<br />

Mineral. Mag., 32(254), 833–847 (1961) (Experimental, Morphology, <strong>Phase</strong> Relations, 19)<br />

[1962Kle] Klemm, D.D., “Investigations on Solid Solution Formation in the <strong>Ternary</strong> FeS 2-CoS 2-NiS 2 <strong>and</strong> its<br />

Relation to the Constitution of Natural “Bravoite”” (in German), Neues Jahrb. Mineral. Monatsh., 3–4<br />

(3-4), 76–91 (1962) (Experimental, <strong>Phase</strong> Relations, 61)<br />

[1962Vay] Vaysbrud, S.E., Verner, B.F., Heyfetz, V.L., “Activity of the Iron in the Fe-Ni-S Melts” (in Russian), Izv.<br />

Vyss. Uchebn. Zaved., Chern. Metall., (1), 59–67 (1962) (Kinetics, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Experimental, 5)<br />

[1963Cla] Clark, L.A., Kullerud, G., “The Sulfur-Rich Portion of the Fe-Ni-S System”, Econ. Geol., 58, 853–885<br />

(1963) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 38)<br />

[1963Kan] Kaneko, H., Nishizawa, T., Tamaki, K., “Study on <strong>Phase</strong> <strong>Diagrams</strong> of Sulphides in Steels” (in Japanese),<br />

Nippon Kinzoku Gakkai Shi, 27(7), 312–319 (1963) (Experimental, <strong>Phase</strong> Relations, 23)<br />

[1963Kul1] Kullerud, G., “The Fe-Ni-S System”, Carnegie Inst. Washington, Yearbook, 175–189 (1963) (Experimental,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 1)<br />

[1963Kul2] Kullerud, G., “Thermal Stability of Pentl<strong>and</strong>ite”, Canad. Mineral., 7, 353–366 (1963) (Experimental,<br />

<strong>Phase</strong> Relations, 12)<br />

[1964Kul] Kullerud, G., “Review <strong>and</strong> Evaluation of Recent Research on Geologically Significant Sulfide-Type<br />

<strong>Systems</strong>”, Fortschritte Mineral., 41(2), 221–270 (1964) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 109)<br />

[1964Mor] Morimoto, N., Kullerud, G., “Pentl<strong>and</strong>ite: Thermal Expansion”, Carnegie Inst. Washington, Yearbook,<br />

63, 204–205 (1964) (Crys. Structure, Experimental, 0)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


56 11<br />

Fe–Ni–S<br />

[1966Nal] Naldrett, A.J., Kullerud, G., “Limits of the Fe 1–xS-Ni 1–xS Solid Solution between 600 <strong>and</strong> 250˚C”,<br />

Carnegie Inst. Washington, Yearbook, 65, 320–326 (1966) (Experimental, <strong>Phase</strong> Relations, 1)<br />

[1967Nal] Naldrett, A.J., Craig, J.R., Kullerud, G., “The Central Portion of the Fe-Ni-S System <strong>and</strong> its Bearing on<br />

Pentl<strong>and</strong>ite Exsolution in Iron-Nickel-Sulphide Ores”, Econ. Geol., 62, 826–847 (1967) (Experimental,<br />

Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 36)<br />

[1968Chm] Chmelar, I., Buzek, Z., Hlineny, J., “Determination of the Sulfur Activity in the Fe-X-S <strong>Systems</strong> Using a<br />

Laboratory Electroslag Furnace” (in Czech), Sborn. Ved. Praci Vysoke Skoly Banske Ostrave, 14(3),<br />

175–181 (1965) (Experimental, Thermodyn., 8)<br />

[1968Cra] Craig, J.R., Naldrett, A.J., Kullerud, G., “The Fe-Ni-Sulphide System. 400˚C Isothermal Diagram”,<br />

Carnegie Inst. Washington, Yearbook, 66, 440–441 (1968) (Experimental, <strong>Phase</strong> Relations, 1)<br />

[1968Jos] Josey, G.A., Floridis, T.P., “Solubility of S in Fe <strong>Alloy</strong>s at 1000˚C”, Trans. Met. Soc. AIME, 242, 161–162<br />

(1968) (Experimental, <strong>Phase</strong> Relations, 7)<br />

[1969Ban] Ban-ya, S., Chipman, J., “Sulfur in Liquid Iron <strong>Alloy</strong>s: II – Effects of <strong>Alloy</strong>ing Elements”, Trans. Met.<br />

Soc. AIME, 245(1), 133–143 (1969) (Experimental, Thermodyn., 18)<br />

[1969Kul] Kullerud, G., Yund, R.A., Moh, G.H., “<strong>Phase</strong> Relations in the Cu-Fe-S, Cu-Ni-S, <strong>and</strong> Fe-Ni-S <strong>Systems</strong>”,<br />

Magmat. Ore Deposits, Symp., 4, 323–343 (1969) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 48)<br />

[1969Vai] Vaisbrud, S.E., Remen, T.F., Sheinin, A.B., “Thermodynamic Activity of Iron in System Iron-Nickel-<br />

Sulphur at 1300˚C”, Russ. J. Phys. Chem. (Engl. Transl.), 43(12), 1780–1781 (1969) (Experimental, <strong>Phase</strong><br />

Relations, 4)<br />

[1970Khe] Khejfec, V.L., Vajsburd, S.E., Remen, T.F., “About Experimental Identification of the Metal Activity in<br />

the Multicomponent Melts” (in Russian), Tr. Proekt. Nauch.-Issled. Inst. “Gipronikel”, 46, 39–46 (1970)<br />

(Experimental, Kinetics, Thermodyn., 14)<br />

[1970Kno] Knop, O., Huang, C.-H., Woodhams, F.W.D., “Chalcogenides of the Transition Elements. VII. A<br />

Mössbauer Study of Pentl<strong>and</strong>ite”, Amer. Mineral., 55(7-8), 1115–1130 (1970) (Experimental, Crys.<br />

Structure, Magn. Prop., 37)<br />

[1970She] Shewman, R.W., Clark, L.A., “Pentl<strong>and</strong>ite <strong>Phase</strong> Relations in the Fe-Ni-S System <strong>and</strong> Notes on<br />

Monosulfide Solid Solution”, Canad. J. Earth Sci., 7, 67–85 (1970) (Experimental, <strong>Phase</strong> Relations,<br />

Physical Properties, Thermodyn., 28)<br />

[1970Sug] Sugaki, A., “Recent Studies on the <strong>Phase</strong> Equilibria of Sulphide Minerals” (in Japanese), Kozan<br />

Chishitsu, 20(101), 237–257 (1970) (Review, <strong>Phase</strong> Relations, 59)<br />

[1970Vay] Vaysbrud, S.E., Remen, T.F., Novikova, N.N., “Thermodynamic Properties of Liquid Slags <strong>and</strong> Mattes<br />

<strong>and</strong> Component Distribution between Them” (in Russian), Tr. Proekth. Nauchno-Issled. Inst. “Gipronikel”,<br />

46, 5–31 (1970) (Experimental, Thermodyn., 41)<br />

[1971Cra] Craig, J.R., “Violarite Stability Relations”, Am. Mineral, 56, 1303–1311 (1971) (Experimental, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Thermodyn, 13)<br />

[1971Gra] Graterol, M., Naldrett, A.J., “Mineralogy of the Marbridge No.3 <strong>and</strong> No.4 Nickel-Iron Sulfide<br />

Deposits”, Econ. Geol., 66, 886–900 (1971) (Experimental, Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, 16)<br />

[1972Bye] Byerley, J.J., Takebe, N., “Thermodynamics of the Fe-Ni-S System at 1250˚C”, Metall. Trans., 3(2),<br />

559–564 (1972) (Experimental, Thermodyn., 23)<br />

[1972Har] Harris, D.C., Nickel, E.H., “Pentl<strong>and</strong>ite Compositions <strong>and</strong> Associations in some Mineral Deposits”,<br />

Canad. Mineral., 11, 861–878 (1972) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 29)<br />

[1972Nic] Nickel, E.H., “Nickeliferous Smythite from Some Canadian Occurrences”, Canad. Mineral., 11,<br />

514–519 (1972) (Experimental, Morphology, 11)<br />

[1972Tay] Taylor, L.A., Williams, K.L., “Smythite, (Fe,Ni) 9S 11 - a Redefinition.”, Am. Mineral, 57(11-12),<br />

1571–1577 (1972) (Experimental, <strong>Phase</strong> Relations, Crys. Structure, 13)<br />

[1972Vay] Vaysbrud, S.E., Burylev, B.P., Zedina, I.N., Remen, T.F., “Thermodynamic Properties of Sulfide Melts<br />

<strong>and</strong> their Quantitative Description” (in Russian), Zhurn. Fiz. Khim., 46(6), 1528–1531 (1972) (Experimental,<br />

Thermodyn., 9)<br />

[1973Buz] Buzek, Z., “Effect of <strong>Alloy</strong>ing Elements on the Solubility <strong>and</strong> Activity of Oxygen <strong>and</strong> Sulphur in Liquid<br />

Iron at 1600˚C” in “Metall. Chem. – Appl. Ferrous Metall.”, Int. Symp., Sheffield, July 1971, Iron <strong>and</strong> Steel<br />

Inst., London, 173–177 (1973) (Experimental, Review, Crys. Structure, 8)<br />

[1973Cra] Craig, J.R., “Pyrite-Pentl<strong>and</strong>ite Assemblages <strong>and</strong> Other Low Temperature Relations in the Fe-Ni-S<br />

System”, Amer. J. Sci., 273A, 496–551 (1973) (Experimental, Morphology, <strong>Phase</strong> Relations, 26)<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

57<br />

[1973Hal] Hall, S.R., Stewart, J.M., “The Crystal Structure of Argentian Pentl<strong>and</strong>ite (Fe,Ni) 8AgS 8 Compared with<br />

the Refined Structure of Pentl<strong>and</strong>ite (Fe,Ni) 9S 8”, Canad. Mineral., 12, 169–177 (1973) (Crystal Structure,<br />

Experimental, 20)<br />

[1973Mis1] Misra, K.C., Fleet, M.E., “Unit Cell Parameters of Monosulfide, Pentl<strong>and</strong>ite <strong>and</strong> Taenite Solid<br />

Solutions Within the Fe-Ni-S System”, Mater. Res. Bull., 8, 669–678 (1973) (Experimental, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, 22)<br />

[1973Mis2] Misra, K.C., Fleet, M.E., “The Chemical Compositions of Synthetic <strong>and</strong> Natural Pentl<strong>and</strong>ite<br />

Assemblages”, Econ. Geol., 68, 518–539 (1973) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 89)<br />

[1973Raj] Rajamani, V., Prewitt, C.T., “Crystal Chemistry of Natural Pentl<strong>and</strong>ites”, Canad. Mineral., 12, 178–187<br />

(1973) (Crys. Structure, Phys. Prop., Experimental, 26)<br />

[1973Ven] Venal, W.V., Geiger, G.H., “The Thermodynamic Behavior of Sulfur in Molten Nickel <strong>and</strong> Nickel-Base<br />

<strong>Alloy</strong>s”, Metall. Trans., 4(11), 2567–2573 (1973) (Experimental, Thermodyn., 24)<br />

[1974Khe] Kheifets, V.L., Vaysbrud, S.E., “About some Properties of Sulfide Melts of Iron Group Metals” (in<br />

Russian) in “Elektrokhim. Rasplavy”, Nauka, Moscow, 118–122 (1974) (Review, Thermodyn., 21)<br />

[1974Mis] Misra, K.C., Fleet, M.E., “Chemical Composition <strong>and</strong> Stability of Violarite”, Econ. Geol., 69, 391–403<br />

(1974) (Crys. Structure, Experimental, Interface Phenomena, Morphology, <strong>Phase</strong> Relations, 33)<br />

[1974Sig] Sigworth, G.K., Elliott, J.F., “The Thermodynamics of Liquid Dilute Iron <strong>Alloy</strong>s”, Met. Sci., 8, 298–310<br />

(1974) (Review, Thermodyn., 249)<br />

[1974Vau] Vaughan, D.J., Craig, J.R., “The Crystal Chemistry <strong>and</strong> Magnetic Properties of Iron in the<br />

Monosulphide Solid Solution of the Fe-Ni-S System”, Am. Mineral, 59(9-10), 926–933 (1974) (Experimental,<br />

Magn. Prop., 20)<br />

[1976Bar] Barthelemy, E., Chavant, C., Collin, G., Gorochov, O., “Metal-Non Metal Transition of Ni 1–xS <strong>and</strong> NiS<br />

Substituted by Se, As <strong>and</strong> Fe: Transport Properties <strong>and</strong> Structural Aspect”, J. Physique, Colloq., 37, 17–22<br />

(1976) (Crys. Structure, Experimental, Phys. Prop., 21)<br />

[1976Chi] Chizhikov, D.M., Gulyanitskaya, Z.F., Blagoveshchenskaya, N.V., Blokhina, L.I., “The Ni 3S 2-Fe System”,<br />

Russ. J. Inorg. Chem., 21(7), 1052–1054 (1976), translated from Zh. Neorg. Khim., 21(7), 1913–1916<br />

(1976) (Experimental, <strong>Phase</strong> Relations, 4)<br />

[1976Fra] Francis, C.A., Craig, J.R., “Pyrrhotite: The nA (or 2A, 3C) Superstructure Reviewed”, Am. Mineral, 61,<br />

21–25 (1976) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Phys. Prop., 18)<br />

[1976Gul] Gulyanitskaya, Z.F., Blokhina, I.I., Blagoveshchenskaya, N.V., “<strong>Phase</strong> Composition <strong>and</strong> Transformations<br />

in Some Sulphide <strong>Systems</strong>” (in Russian), in “Tsvetn. Metall.”, Nauka, Moscow, 291–298 (1976)<br />

(Experimental, <strong>Phase</strong> Relations, 26)<br />

[1976Kas] Kasahara, Y., Nitta, T., Hayakawa, S., “Electrical <strong>and</strong> Magnetic Properties of Fe-Ni Sulphide Ceramics”,<br />

J. Am. Ceram. Soc., 59, 204–206 (1976) (Experimental, Crys. Structure, Electr. Prop., Magn. Prop., 7)<br />

[1976Kno] Knop, O., Huang, C.-H., Reid, K.I.G., Carlow, J.S., Woodhams, F.W.D., “Chalcogenides of the<br />

Transition Elements. X. X-Ray, Neutron, Mössbauer <strong>and</strong> Magnetic Studies of Pentl<strong>and</strong>ite <strong>and</strong> the π<br />

<strong>Phase</strong>s π (Fe, Co, Ni, S), Co8MS8 <strong>and</strong> Fe4Ni4MS8 (M = Ru, Rh, Pd)”, J. Solid State Chem., 16(1-2),<br />

97–116 (1976) (Experimental, Crys. Structure, <strong>Phase</strong> Relations, 38)<br />

[1977Nis] Nishihara, Y., Ogawa, S., Adachi, K., Tohda, M., “Mössbauer Study of Fe 0.5Ni 0.5S 2. Hyperfine Field<br />

at 57 Fe in Fe 0.5Ni 0.5S 2”, J. Phys. Soc. Jpn., 42(4), 1180 (1977) (Experimental, Crys. Structure, Magn.<br />

Prop., 13)<br />

[1977Tow] Townsend, M.G., Gosselin, J.R., Horwood, J.L., Ripley, L.G., Tremblay, R.J., “Violarite, a Metallic<br />

Natural Spinel”, Phys. Status Solidi, 40A, K25–K29 (1977) (Experimental, Crys. Structure, Magn.<br />

Prop., 8)<br />

[1978Len] Lenz, J.G., Conard, B.R., Sridhar, R., Warner, J.S., “The Liquidus Surface <strong>and</strong> Tie-Lines in the Iron-<br />

Nickel-Sulfur System Between 1473 <strong>and</strong> 1673 K”, Metall. Trans. B, 9(3), 459–462 (1978) (Experimental,<br />

<strong>Phase</strong> Relations, 14)<br />

[1979Sha] Shatynski, S.R., Hirth, J.P., Rapp, R.A., “Solid-State Displacement Reactions between Selected<br />

Metals <strong>and</strong> Sulfides”, Metall. Trans. A, 10A(5), 591–598 (1979) (Experimental, <strong>Phase</strong> Relations,<br />

Morphology, 16)<br />

[1980Vol] Vollstadt, H., Seipold, U., Kraft, A., “Structural <strong>and</strong> Electrical Relations of Monosulphide Solid<br />

Solution in the Fe-Ni-S System at High Pressures <strong>and</strong> Temperatures”, Phys. Earth Planet. Interiors, 22<br />

(3-4), 267–271 (1980) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 4)<br />

[1981Fit] Fitzner, K., Chang, Y.A., “The Activity Coefficient of Sulfur in Dilute Binary Liquid Metal <strong>Alloy</strong>s”,<br />

Chem. Metal. - Tribute Carl Wagner, Proc. Symp., 119–135 (1981) (Review, Thermodyn., 45)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


58 11<br />

Fe–Ni–S<br />

[1981Mar] Marcus, P., Bouruet, A., Oudar, J., “Dissolution <strong>and</strong> Passivation of Nickel-Iron <strong>Alloy</strong>s - Influence of<br />

Sulfur”, Mem. Sci. Rev. Metall., 78(9), 509–512 (1981) (Experimental, Thermodyn., 11)<br />

[1981Oht] Ohtani, T., Kosuge, K., Kachi, S., “Metal-Semiconductor Transition with Anomalous Thermal<br />

Hysteresis Observed in Hexagonal (Ni 1–xFe) 1–yS, (0 ≤ x ≤ 0.30, 0 ≤ y ≤ 0.035)”, Bull. Chem. Soc. Jap.,<br />

54(2), 568–575 (1981) (Experimental, Electr. Prop., Kinetics, Magn. Prop., 35)<br />

[1982Hsi] Hsieh, K.-C., Chang, Y.A., Zhong, T., “The Fe-Ni-S System Above 700˚C”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>,<br />

3(2), 165–172 (1982) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 17)<br />

[1982Net] Netter, P., Barbouth, N., Oudar, J., “Sulfur Diffusion in 25%, 50% <strong>and</strong> 75% Iron-Nickel <strong>Alloy</strong>s” (in<br />

French), Compt. Rend. Acad. Sci. Paris, Ser. 2, 295(10), 867–869 (1982) (Experimental, Interface<br />

Phenomena, 15)<br />

[1983Chu1] Chuang, Y.Y., Chang, Y.A., “A Thermodynamic Analysis of <strong>Ternary</strong> Cu-Ni-S <strong>and</strong> Fe-Ni-S” in “Adv.<br />

Sulfide Smel.”, Proc. Int. Sulf. Smel. Symp. Extr. Proc. Met. Soc. AIME, 1, 73–79 (1983) (Experimental,<br />

Thermodyn., 14)<br />

[1983Chu2] Chuang, Y.Y., Chang, Y.A., “Thermodynamic Behavior of Metal-Sulfur Melts” in “Molten Salt Chem.<br />

Technol.”, Proc. Int. Symp. Electrochem. Soc. Jpn., 1, 201–208 (1983) (Experimental, <strong>Phase</strong> Relations,<br />

Thermodyn., 12)<br />

[1983Net1] Netter, P., Barbouth, N., “Investigation of Sulfur Solubility in Iron-Nickel <strong>Alloy</strong>s” (in French), Mem.<br />

Etud. Sci. Rev. Metall., 80(12), 701–703 (1983) (Experimental, <strong>Phase</strong> Relations, 10)<br />

[1983Net2] Netter, P., Barbouth, N., Oudar, J., “Thermodynamic Study of Iron-Nickel-Sulphur Solid Solutions”,<br />

Scr. Metall., 17(9), 1083–1085 (1983) (Experimental, Thermodyn., 7)<br />

[1983Van] Vanyukov, A.V., Khamin, A.G., Aleks<strong>and</strong>rov, M.E., Syromyatnikova, A.S., Asabin, A.N., “<strong>Phase</strong><br />

Equilibrium in the Nickel-Iron-Sulphur System” (in Russian), Nauchn. Trudy Moskov. Inst. Stali i<br />

Splavov, 146(146), 50–54 (1983) (Experimental, Thermodyn., 6)<br />

[1984Bee] Beek, J.A., Kok, P.M.T., Loo, F.J.J., “Solid-State Displacement Reactions in the Iron-Nickel-Sulfur <strong>and</strong><br />

Copper-Nickel-Sulfur <strong>Systems</strong> Between 400 <strong>and</strong> 500˚C”, Oxid. Met., 22(3–4), 147–160 (1984) (Experimental,<br />

<strong>Phase</strong> Relations, 16)<br />

[1984Khe] Khestanov, T.Kh., Kamyanov, V.K., Bystrov, V.P., “Equilibrium Vapour Pressure of Sulphur Over<br />

Sulphides of the Iron-Nickel-Sulphur System Near NiS” (in Russian), Izv. Vyss. Uchebn. Zaved., Tsvetn.<br />

Metall., (2), 54–59 (1984) (Experimental, Thermodyn., 5)<br />

[1984Mar1] Marcus, P., Teissier, A., Oudar, J., “The Influence of Sulfur on the Dissolution <strong>and</strong> the Passivation of a<br />

Nickel-Iron <strong>Alloy</strong>-1. Electrochemical <strong>and</strong> Radiotracer Measurements”, Corros. Sci., 24(4), 259–268<br />

(1984) (Experimental, Thermodyn., 11)<br />

[1984Mar2] Marcus, P., Olefjord, I., Oudar, J., “The Influence of Sulfur on the Dissolution <strong>and</strong> the Passivation of a<br />

Nickel-Iron <strong>Alloy</strong>-II. Surface-Analysis by ESCA”, Corros. Sci., 24(4), 269–278 (1984) (Experimental,<br />

Thermodyn., 12)<br />

[1984Ros] Rossiter, P.L., Jago, R.A., “Towards a True Fe-Ni <strong>Phase</strong> Diagram”, Mater. Res. Soc. Symp. Proc., 21,<br />

407–411 (1984) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 26)<br />

[1984Sel] Sellamuthu, R., Goldstein, J.I., “Measurement <strong>and</strong> Analysis of Distribution Coefficients in Fe-Ni <strong>Alloy</strong>s<br />

Containing S <strong>and</strong>/or P: Part I. KNi <strong>and</strong> KP”, Metall. Trans. A, 15(9), 1677–1685 (1984) (Experimental,<br />

Morphology, Phys. Prop., Thermodyn., 11)<br />

[1986Jac] Jacob, K.T., Hajra, J.P., “Electromagnetic Levitation Study of Sulfur in Liquid Iron, Nickel <strong>and</strong> Iron-<br />

Nickel <strong>Alloy</strong>s”, Trans. Ind. Inst. Met., 39(1), 62–69 (1986) (Experimental, <strong>Phase</strong> Relations, 35)<br />

[1987Con] Conard, B.R., Meyer, G.A., Timberg, L., Warner, J.S., Hynek, P., “Thermodynamic Activities of<br />

Components in Homogeneous Ni-Fe-S Mattes at 1473-1673K”, Canad. Metall. Quart., 26, 299–309<br />

(1987) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 32)<br />

[1987Fle] Fleet, M., “Structure of Godlevskite, Ni 9S 8”, Acta Crystallogr., C43, 2255–2257 (1987) (Crys. Structure,<br />

Experimental, 12)<br />

[1987Hsi1] Hsieh, K.-C., Kao, M.Y., Chung, A.Y. “Thermochemical Description of the <strong>Ternary</strong> Iron-Nickel-Sulfur<br />

System”, Can. Metall. Quart., 26(4) 311–327 (1987) (Thermodyn., <strong>Phase</strong> Diagram, Theory, 33)<br />

[1987Hsi2] Hsieh, K.-C., Vlach, K.C., Chang, Y.A., “The Fe-Ni-S System. I. A Thermodynamic Analysis of the<br />

<strong>Phase</strong> Equilibria <strong>and</strong> Calculation of the <strong>Phase</strong> Diagram from 1173 to 1623 K”, High Temp. Sci., 23,<br />

17–38 (1987) (Calculation, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 27)<br />

[1987Hsi3] Hsieh, K.-G., Schmid, R., Chang, Y.A., “The Fe-Ni-S System. II. A Thermodynamic Model for the<br />

<strong>Ternary</strong> Monosulfide <strong>Phase</strong> with the Nickel Arsenide Structure”, High Temp. Sci., 23, 39–52 (1987)<br />

(Thermodyn., Calculation, 8)<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

59<br />

[1987Hsi4] Hsieh, K.-Ch., Kao, M.-Y., Chang, Y.A., “A Thermogravimetric Investigation of the Fe-Ni-S System<br />

from 700 to 900˚C”, Oxid. Met., 27(3–4), 123–141 (1987) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, 13)<br />

[1987Ina] Inaba, M., Teshima, K., “Effects of Phosphorus <strong>and</strong> Sulphur on Thermal Expansion <strong>and</strong> Mechanical<br />

Properties of Fe-36Ni”, J. Mater. Sci. Lett., 6(6), 727–728 (1987) (Experimental, Mechan. Prop., 9)<br />

[1988Rag] Raghavan, V., “The Fe-Ni-S (Iron-Nickel-Sulphur) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s”,<br />

Indian Inst. Met., Calcutta, 2, 196 (1988) (Review, <strong>Phase</strong> Relations, 8)<br />

[1989Bar] Barbouth, N., Oudar, J., “Solubility <strong>and</strong> Diffusion of Sulfur in Pure Metals <strong>and</strong> <strong>Alloy</strong>s” (in French),<br />

Mem. Sci. Rev. Metall., 86(12), 777–788 (1989) (Review, Thermodyn., <strong>Phase</strong> Relations, 60)<br />

[1989Bat] Battle, T.P., Pehlke, R.D., “Equilibrium Partition Coefficients in Iron-Based <strong>Alloy</strong>s”, Metall. Trans. B,<br />

20B, 149–160 (1989) (Experimental, Thermodyn., 61)<br />

[1989Orc1] Orchard, J.P., Young, D.J., “Morphological Evolution During Sulfidation of an Iron-Nickel<br />

<strong>Alloy</strong>”, Oxid. Met., 31(1-2), 105–121 (1989) (Experimental, Interface Phenomena, Morphology, Thermodyn.,<br />

17)<br />

[1989Orc2] Orchard, J.P., Young, D.J., “Sulfidation Behavior of an Iron-Nickel <strong>Alloy</strong>”, J. Electrochem. Soc., 136(2),<br />

545–550 (1989) (Experimental, Mechan. Prop., <strong>Phase</strong> Relations, Thermodyn., 32)<br />

[1990Jon] Jones, J.H., Malvin, D.J., “A Nonmetal Interaction Model for the Segregation of Trace Metals during<br />

Solidification of Fe-Ni-S, Fe-Ni-P, Fe-Ni-S-P <strong>Alloy</strong>s”, Metall. Trans. B, 21B, 697–706 (1990) (Theory,<br />

Interface Phenomena, 12)<br />

[1991Kes] Kesler, Y.A., Smirnov, S.G., Pokholok, K.V., Viting, B.N., “Peculiarities of the Electronic Structure of<br />

Co, Ni-Thiospinel”, Inorg. Mater. (Engl. Transl.), 27, 977–980 (1991), translated from Izv. Akad. Nauk<br />

SSSR. Neorg. Mater., 27(6), 1162–1165 (1991) (Experimental, Crys. Structure, 18)<br />

[1991Swa] Swartzendruber, L.J., Itkin, V.P., Alcock, C.B., “Fe-Ni (Iron-Nickel)” in “<strong>Phase</strong> <strong>Diagrams</strong> of Binary<br />

Nickel <strong>Alloy</strong>s”, Nash, P. (Ed.), ASM International, Materials Park, OH, 110–132 (1991) (<strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Review, 254)<br />

[1991Tay] Taylor, J.R., Dinsdale, A.T., “Application of the Calculation of <strong>Phase</strong> Equilibria to the Pyrometallurgical<br />

Extraction from Sulphide Ores” in “User Aspects of <strong>Phase</strong> <strong>Diagrams</strong>”, Proc. Conf., Petten, Netherl<strong>and</strong>s<br />

June 1990, Hayes, F.H. (Ed.), The Inst. Metals, UK, 209–224 (1991) (Calculation, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, 62)<br />

[1993Lee] Lee, H.-K., Frohberg, M.G., Hajra, J.P., “Surface-Tension Measurements of Liquid Iron-Nickel-Sulfur<br />

<strong>Ternary</strong>-System Using the Electromagnetic Oscillating Droplet Technique”, ISIJ Int., 33(8), 833–838<br />

(1993) (Experimental, Interface Phenomena, 37)<br />

[1994Sto] Stolen, S., Fjellvag, H., Gronvold, F., Seim, H., Westrum, E.F., “<strong>Phase</strong> Stability <strong>and</strong> Structural<br />

Properties of Ni 7±δS 6 <strong>and</strong> Ni 9S 8 Heat Capacity <strong>and</strong> Thermodynamic Properties of Ni 7S 6 at Temperatures<br />

from 5 K to 970 K <strong>and</strong> Ni 9S 8 from 5 K to 673 K”, J. Chem. Thermod., 26, 987–1000 (1994)<br />

(Experimental, Thermodyn., 32)<br />

[1995Ma] Ma, L., Williams, D.B., Goldstein, J.I., “<strong>Phase</strong>-Decomposition in the Iron-Rich Iron-Nickel-Sulfur<br />

System from 900 to 300˚C. - Application to Meteoritic Metal”, Meteoritics, 30(5), 538–539 (1995)<br />

(Experimental, <strong>Phase</strong> Relations, 4)<br />

[1997Dre] Drebushchak, V.A., Fedorova, Z.N., Sinyakova, E.F., “Decay of (Fe 1–xNi x) 0.96S - DSC Investigation”, J.<br />

Therm. Anal., 48(4), 727–734 (1997) (Experimental, Kinetics, <strong>Phase</strong> Relations, Magn. Prop., 12)<br />

[1997Nas] Nasch, P.M., Manghnani, M.H., Secco, R.A., “Anomalous Behavior of Sound Velocity <strong>and</strong> Attenuation<br />

in Liquid Fe-Ni-S”, Science, 277(5323), 219–221 (1997) (Experimental, Thermodyn., 32)<br />

[1998Kar] Karup-Moller, S., Makovicky, E., “The <strong>Phase</strong> System Fe-Ni-S at 900˚C”, Neues Jahrb. Mineral.,<br />

Monatsh., 8, 373–384 (1998) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 12)<br />

[1998Kon] Kongoli, F., Dessureault, Y., Pelton, A.D., “Thermodynamic Modelling of Liquid Fe-Ni-Cu-Co-S<br />

Mattes”, Metall. Mater. Trans. B, 29B, 591–601 (1998) (Assessment, Calculation, <strong>Phase</strong> Relations,<br />

Thermodyn., 107)<br />

[1998Ma] Ma, L., Williams, D.B., Goldstein, J.I., “Determination of the Fe-rich Portion of the Fe-Ni-S <strong>Phase</strong><br />

Diagram”, J. <strong>Phase</strong> Equilib., 19(4), 299–309 (1998) (Experimental, <strong>Phase</strong> Relations, 28)<br />

[1998Sin] Sinyakova, E.F., Kosyakov, V.I., Shestakov, V.A., “Fe 0.96S-Ni 0.96S Join of the Fe-Ni-S System”, Inorg.<br />

Mater. (Engl. Trans.), 34(5), 432–433 (1998) (Experimental, <strong>Phase</strong> Relations, 9)<br />

[1999Kon] Kongoli, F., Pelton, A.D., “Model Prediction of Thermodynamic Properties of Co-Fe-Ni-S Mattes”,<br />

Metall. Mater. Trans. B, 30B, 443–450 (1999) (Calculation, <strong>Phase</strong> Relations, Thermodyn., 51)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


60 11<br />

Fe–Ni–S<br />

[1999Nko] Nkoma, J.S., Ekosse, G., “X-Ray Diffraction Study of Chalcopyrite CuFeS 2, Pentl<strong>and</strong>ite (Fe, Ni) 9S 8 <strong>and</strong><br />

Pyrrhotite Fe 1–xS Obtained from Cu-Ni Ore Bodies”, J. Phys.: Condens. Matter, 11, 121–128 (1999)<br />

(Experimental Crys. Structure, 10)<br />

[1999Sin] Sinyakova, E.F., Kosyakov, V.I., Shestakov, V.A., “Investigation of the Surface of the Liquidus of the<br />

Fe-Ni-S System at X S < 0.51”, Metall. Mater. Trans. B, 30B, 715–722 (1999) (Experimental, <strong>Phase</strong><br />

Relations, 20)<br />

[2000Kim] Kim, E.C., “<strong>Crystallographic</strong> <strong>and</strong> Magnetic Properties of Iron Sulfides Doped with 3d Transition<br />

Metals”, J. Mater. Sci. Letter., 19, 693–694 (2000) (Crys. Structure, Magn. Prop., Experimental, 8)<br />

[2000Uen] Ueno, T., Ito, S.-I., Nakatsuka, S., Nakano, K., Harada, T., Yamazuaki, T., “<strong>Phase</strong> Equilibria in the<br />

System Fe-Ni-S at 500 <strong>and</strong> 400˚C”, J. Mineral. Petrol. Sci., 95, 145–161 (2000) (<strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Experimental, 28)<br />

[2001Far] Farrell, S.P., Fleet, M.E., “Sulfur K XANES Study of Local Electronic Structure in <strong>Ternary</strong> Monosulfide<br />

Solid Solution {(Fe, Co, Ni) 0.923S}”, Phys. Chem. Miner., 28, 17–27 (2001) (Experimental, Crys.<br />

Structure, Electronic Structure, 56)<br />

[2001Kos] Kosyakov, V.I., Sinyakova, E.F., Nenashev, B.G., “A Mechanism of Pentl<strong>and</strong>ite Formation in the Fe-Ni-<br />

S System” (in Russian), Dokl. Akad. Nauk, Geokhimiya, 381(9), 1113–1115 (2001) (Experimental, <strong>Phase</strong><br />

Relations, 11)<br />

[2001Sin1] Sinyakova, E.F., Kosyakov, V.I., “600˚C Section of the Fe-FeS-NiS-Ni <strong>Phase</strong> Diagram”, Inorg. Mater.<br />

(Engl. Trans.), 37(11), 1130–1137 (2001), translated from Neorg. Mater., 37(11), 1327–1335 (2001)<br />

(Experimental, Morphology, <strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, 32)<br />

[2001Sin2] Sinyakova, E.F., Kosyakov, V.I., Kolonin, G.R., “Behavior of Platinum Group Metals on Crystallization<br />

of Melts of the Fe-Ni-S System (Fe xNi 0.49–xS 0.51 Section)” (in Russian), Geol. Geofiz., 42(9), 1354–1370<br />

(2001) (Experimental, Morphology, <strong>Phase</strong> Relations, 35)<br />

[2002Cha] Chauke, H.R., Nguyen-Manh, D., Ngoepe, P.E., Pettifor, D.G., Fries, S.G., “Electronic Structure <strong>and</strong><br />

Stability of the Pentl<strong>and</strong>ites Co 9S 8 <strong>and</strong> (Fe,Ni) 9S 8”, Phys. Rev. B, 66(15), 155105 (2002) (Crys. Structure,<br />

Experimental, 14)<br />

[2003Cha] Chabot, N.L., Jones, J.H., “The Parameterization of Solid Metal-Liquid Metal Partitioning of<br />

Siderophile Elements”, Meteor. Planet. Sci., 38(10), 1425–1436 (2003) (Experimental, Thermodyn., 46)<br />

[2003Kos] Kosyakov, V.I., Sinyakova, E.F., Shestakov, V.A., “Dependence of Sulfur Fugacity on the Composition<br />

of <strong>Phase</strong> Associations in the Fe-FeS-NiS-Ni System at 873 K”, Geochem. Int., 41(7), 660–669 (2003)<br />

(Experimental, <strong>Phase</strong> Relations, 33)<br />

[2004Dis] Distler, V.V., Yudovskaya, M.A., Mitrofanov, G.L., Prokof´ev, V.Y., Lishnevskii, E.N., “Geology,<br />

Composition, <strong>and</strong> Genesis of the Sukhoi Log Noble Metals Deposit, Russia”, Ore Geol. Rev., 24, 7–44<br />

(2004) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 61)<br />

[2004Ets] Etschmann, B., Pring, A., Putnis, A., Grguric, B., Studer, A., “A Kinetic Study of the Exsolution of<br />

Pentl<strong>and</strong>ite (Ni,Fe) 9S 8 from the Monosulfide Solid Solution (Fe,Ni)S”, Am. Mineral., 89, 39–50 (2004)<br />

(Crys. Structure, Experimental, Kinetics, 42)<br />

[2004Kos] Kosyakov, V.I., Sinyakova, V.F., “Investigation of Monovariant Peritectic Reaction in the Fe-Ni-S<br />

<strong>Ternary</strong> System Using Oriented Crystallization Method” (in Russian), Zh. Neorg. Khim., 49(7),<br />

1170–1175 (2004) (Experimental, Thermodyn., 16)<br />

[2004Rag] Raghavan, V., “Fe-Ni-S (Iron-Nickel-Sulfur)”, J. <strong>Phase</strong> Equilib. Diffus., 25(4), 373–381 (2004) (<strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Review, 30)<br />

[2004Wal1] Waldner, P., Pelton, A.D., “Thermodynamic Modelling of the Ni-S System”, Z. Metallkd., 95(8)<br />

672–681 (2004) (Assessment, <strong>Phase</strong> Diagram, Thermodyn., 49)<br />

[2004Wal2] Waldner, P., Pelton, A.D., “Critical Thermodynamic Assessment <strong>and</strong> Modeling of the Fe-Ni-S System”,<br />

Metall. Mater. Trans. B, 35b(5), 897–907 (2004) (Assessment, <strong>Phase</strong> Diagram, Thermodyn., 35)<br />

[2005Nam] Nam, H.D., Kim, E.C., Han, J.S., “Mössbauer Study of Iron Sulfides Doped with 3d-Transition Metals”,<br />

Solid State Commun., 135(5), 327–329 (2005) (Experimental, Crys. Structure, Electronic Structure,<br />

<strong>Phase</strong> Relations, 8)<br />

[2006Leh] Lehner, S.W., Savage, K.S., Ayers, J.C., “Vapor Growth <strong>and</strong> Characterization of Pyrite (FeS 2) Doped<br />

with Co, Ni, <strong>and</strong> As: Variations in Semiconducting Properties”, J. Cryst. Growth, 286(2), 306–317 (2006)<br />

(Experimental, Electr. Prop., Semicond.,38)<br />

[2006Rag] Raghavan, V., “Fe-Ni-S (Iron-Nickel-Sulfur)”, J. <strong>Phase</strong> Equilib. Diffus., 27(3), 293–295 (2006) (Review,<br />

Calculation, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 4)<br />

DOI: 10.1007/978-3-540-70890-2_11 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–S 11<br />

61<br />

[2006Sin] Sinyakova, E.F., Kosyakov, V.I., “<strong>Phase</strong> Relationships <strong>and</strong> Sulfur Fugacity in the System Fe-FeS-NiS-Ni<br />

at 900˚C” (in Russian), Russ. Geol. Geophys., 47(7), 835–846 (2006) (Experimental, Morphology, <strong>Phase</strong><br />

Relations, 34)<br />

[2006Wal1] Waldner, P., “Thermodynamic Analysis of High-Temperature Heazlewoodite”, Z. Metallkd., 97(1)<br />

17–21 (2006) (Calculation, Thermodyn., <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 33)<br />

[2006Wal2] Waldner, P., Sitte, W., “Thermodynamic Modeling of High-Temperature Fe-Ni-Heazlewoodite”, Advanced<br />

Eng. Mater., 8(11), 1161–1164 (2006) (Calculation, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Thermodyn., 21)<br />

[2008Fer] Ferro, R., Bochvar, N., Sheftel, E., Ding, J.-J., “Fe-S (Iron-Sulfur)”, MSIT Binary Evaluation Program, in<br />

MSIT Workplace, Effenberg, G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart;<br />

to be published (2008) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, 28)<br />

[2008Kuz] Kuznetsov, V., “Fe-Ni (Iron-Nickel)”, MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg,<br />

G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published (2008) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, 41)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_11<br />

ß Springer 2009


Iron – Nickel – Antimony<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Marina Bulanova, Yulia Fartushna<br />

Introduction<br />

The Fe-Ni-Sb system is of practical importance for different fields of application. Thus,<br />

Sb-induced embrittlement of alloy steels results from antimony segregation at the grain<br />

boundaries of (αFe,Ni,Sb), which, in turn, strongly depend on the Ni content. Last two<br />

decades much attention is focused on skutterudite thermoelectric materials, where Fe-Ni-Sb<br />

is one of the boundary system. So, underst<strong>and</strong>ing of phase equilibria in this system gives<br />

possibilities to control the properties of Fe-Ni-Sb-based materials.<br />

First information on the system appeared in 1943, when [1943Age1, 1943Age2] reported a<br />

continuous solid solution between FeSb <strong>and</strong> NiSb. [1970Bje] found the ternary compound<br />

Fe 0.5Ni 0.5Sb 3 (τ) <strong>and</strong> a limited mutual solid solubility of FeSb 2 <strong>and</strong> NiSb 2. Later [2003Zha]<br />

reported on a new semi-Heusler phase FeNiSb, which seems to be metastable.<br />

<strong>Phase</strong> relations in the Fe-Ni-Sb system were studied by [1973Pan, 1997Ric1, 1997Ric2,<br />

2003Voi] <strong>and</strong> resulted in a partial liquidus surface [1997Ric1], isothermal sections at 1150<br />

[2003Voi] <strong>and</strong> 600˚C [1997Ric1], a number of vertical sections [1973Pan, 1997Ric1,<br />

1997Ric2], reaction scheme [1997Ric1]. Note, that the work of [1997Ric1] is the key-paper<br />

on phase relations in the system, giving the comprehensive information concerning the phase<br />

equilibria at more than 50 at.% Sb. Experimental data are given also for the samples with 35,<br />

42 <strong>and</strong> 46 at.% Sb, however phase equilibria in the concentration range < 50 at.% Sb are not<br />

established in details. Thermodynamics of alloys is given by [1997Ric2, 2003Voi].<br />

Solubility of Sb in (αFe,Ni) <strong>and</strong> the nature of precipitates was studied by [1974Nag,<br />

1976Nag]. The grain boundary segregation <strong>and</strong> cosegregation in (αFe,Ni,Sb) is given by<br />

[1986Gas].<br />

[1977Gal, 1980Gel] reported the structure <strong>and</strong> magnetic properties of the (Fe,Ni)Sb (ε)<br />

phase. Magnetic properties of metal-enriched monoantimonide (Fe 1–yNi y) 1+xSb are given by<br />

[1984Har]. [1973Kje] <strong>and</strong> [1974Kje] studied the Mössbauer effect in the ternary compound τ<br />

<strong>and</strong> in the FeSb 2-based phase Fe xNi 1–xSb 2, respectively.<br />

[1992Rag, 2004Rag1, 2004Rag2] reviewed the Fe-Ni-Sb system.<br />

The structure <strong>and</strong> properties of skutterudites were studied by [2003Mor, 2005Cha,<br />

2005Mi].<br />

The experimental researches of phase relations <strong>and</strong> related questions in the ternary Fe-Ni-<br />

Sb system are summarized in Table 1.<br />

Binary <strong>Systems</strong><br />

Fe–Ni–Sb 12<br />

1<br />

The Fe-Ni <strong>and</strong> Fe-Sb binary systems are accepted from [2008Kuz] <strong>and</strong> [1995Pei], respectively.<br />

The Ni-Sb phase diagram is taken basically from [Mas2]. The composition <strong>and</strong> temperatures<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


2 12<br />

Fe–Ni–Sb<br />

of invariant points of liquid in the Sb rich part are accepted from [1989Fes] to accord with<br />

experimental results of [1997Ric1] on the ternary system.<br />

Solid <strong>Phase</strong>s<br />

The Fe-Ni-Sb solid phases are reported in Table 2. The ternary compound Fe0.5Ni0.5Sb3 (τ),<br />

first found by [1970Bje], forms by a P type peritectic reaction at 642˚C [1997Ric1] <strong>and</strong><br />

crystallizes in a cubic CoAs 3 type structure. It has a narrow homogeneity range due to the<br />

mutual substitution of Fe <strong>and</strong> Ni, so that the formula can be written as Fe 0.5-0.46Ni 0.5-0.54Sb 3.<br />

Despite b<strong>and</strong> calculations predicted unstable ferromagnetic state <strong>and</strong> crystal structure,<br />

[2003Zha] prepared a new semi-Heusler phase FeNiSb by melt-spinning technique <strong>and</strong><br />

studied its electronic structure, magnetic <strong>and</strong> transport properties. The phase is ferromagnetic<br />

<strong>and</strong> melts at 991˚C without any phase transformation at lower temperatures. However,<br />

according to the preparation method, the phase might be metastable.<br />

[1943Age1, 1943Age2] reported a continuous solid solubility of FeSb <strong>and</strong> NiSb at 600˚C<br />

(ε phase). The metal-rich part of the solid solution is of interstitial type, the Sb rich part has a<br />

defect structure. Figure 1a shows the lattice parameters of the phase as measured by<br />

[1997Ric1] for the isoconcentrate 46 at.% Sb. The data are in reasonable agreement with<br />

data [1977Gal], Table 2. Essential narrowing of the homogeneity region of the phase in Sb<br />

content in a middle part (see isothermal section at 600˚C, Fig. 6) allowed [1997Ric1] to make<br />

an assumption of the possible arising of the miscibility gap at lower temperatures.<br />

Isostructural FeSb2 <strong>and</strong> NiSb2 do not form a continuous solid solution. According to<br />

[1970Bje], at 600˚C the solubility of Ni in FeSb 2 is about 16.7 at.%, the phase is written by the<br />

formula (Fe xNi 1–x)Sb 2 (0.5 < x < 1). This value is confirmed by [1997Ric1]. According to the<br />

last paper, the solubility of Fe in NiSb 2 is no more than 2 at.%. The concentration dependence<br />

of the lattice parameters of Fe xNi 1–xSb 2 is shown in Fig. 1b. [1997Ric1] has shown that the<br />

solubility of Fe in Ni 5Sb 2 at 600˚C is about 5 at.%.<br />

Quasibinary <strong>Systems</strong><br />

According to [1997Ric1, 1997Ric2], the Fe-Ni-Sb system is triangulated by the (Fe,Ni)Sb<br />

phase into two subsystems: Fe-FeSb-NiSb-Ni <strong>and</strong> FeSb-Sb-NiSb. Thus, the section FeSb-NiSb<br />

is quasibinary. However, the quasibinarity does not occur along the equiatomic isoconcentrate<br />

50 at.% Sb, but along the section passing via distectic points Fe 0.573Sb 0.427-Ni 0.511Sb 0.489.<br />

By the methods of thermal analysis, metallography <strong>and</strong> hardness measurements [1973Pan]<br />

constructed the section Fe-NiSb, which was claimed to be quasibinary. This, meanwhile, is not<br />

so, as (1) it does not go via the distectic point of NiSb; (2) if it was, extremes at the solidus<br />

surfaces (γFe,Ni)+ε <strong>and</strong> (δFe,Ni)+ε should take place, that is questionable.<br />

Invariant Equilibria<br />

Four invariant equilibria were established [1997Ric1] at above 600˚C in the Sb rich subsystem.<br />

These are a P type equilibrium at 642˚C, two U type equilibria at 625 <strong>and</strong> 620˚C <strong>and</strong> a E type<br />

equilibrium at 616˚C. The compositions of the phases taking part in these equilibria were<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


determined. All the equilibrium points of liquid are located at more than 90 at.% Sb. Invariant<br />

equilibria, coordinates of invariant points, compositions of the coexisting solid phases are<br />

shown in Table 3. Based on the experimental data of [1997Ric1, 1997Ric2] <strong>and</strong> on the<br />

boundary binaries it is possible to propose the character of invariant equilibria with participation<br />

of the liquid for the Sb-poor subsystem, as well. Here two U type equilibria should<br />

occur: L + Ni 5Sb 2 ⊊Ð⊊ ε + γ <strong>and</strong> L + γ Ð ε + δα. The temperature decreases slowly from<br />

1072˚C in the eutectic l Ð⊊ Ni5Sb2+ε to 998˚C in the eutectic l Ð ε +(δFe). So, the<br />

temperature of the above four phase equilibria appears in this temperature interval, <strong>and</strong> the<br />

temperature 1000˚C declared by [1997Ric1] <strong>and</strong> [1973Pan] as the temperature of an invariant<br />

equilibrium (according to [1973Pan], of the invariant three-phase equilibrium l Ð εαffl + γ),<br />

might be the temperature of the monovariant equilibrium l ⊊Ð⊊ εαffl+ γ, which decreases very<br />

slowly. These equilibria are also shown in Table 3. The resulted reaction scheme is given in<br />

Fig. 2. Experimental results [1997Ric1] are given in solid, resulting of our assessment are given<br />

in dotted lines. The scheme is limited from below by the temperature 600˚C.<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

Based on the boundary binary systems, [1991But] predicted full liquid miscibility in the<br />

system. This was confirmed later. By the DTA method [1997Ric1] constructed the liquidus<br />

isotherms via 20˚C at 40 to 90 at.% Sb, as shown in Fig. 3a. These are limited by the<br />

temperature 1140˚C. Coordinates of the invariant points of liquid, determined in this work,<br />

allowed [2004Rag1] to plot a liquidus projection in the Sb corner (>90 at.% Sb), Fig. 3b. Data<br />

[1997Ric1, 1997Ric2, 2003Voi] <strong>and</strong> the boundary binary systems allowed us to assess the<br />

liquidus projection for the Sb poor subsystem. It is shown in Fig. 4 together with few<br />

isotherms in the Sb rich field. According to the observations of [1973Pan], the monovariant<br />

curve l Ð⊊ εαffl + γ is located at about 30 at.% Sb. Isotherms of [1997Ric1, 2003Voi] are shown<br />

by solid curves, those assessed by us are given as dashed ones.<br />

The solidus surface of the Fe-Ni-Sb system was not specially studied. However, compositions<br />

of the phases taking part in invariant equilibria in the Sb rich subsystem [1997Ric1],<br />

Table 3, allowed us to plot a partial solidus surface, shown in Fig. 5.<br />

According to [1974Nag], 1 at.% Ni in the alloy Fe-4Sb decreases solubility at 600˚C of Sb in<br />

(αFe) from 2.5 to 1.6 at.% resulting in precipitation of the ε phase. [1976Nag] reported that<br />

after ageing at 550˚C for 120 h a precipitation takes place over the entire volume, in contrast to<br />

the Ni-free alloy. According to [1997Ric1], at 600˚C (αFe,Ni) <strong>and</strong> (γFe,Ni) dissolve, respectively,<br />

1 <strong>and</strong> 2 at.% Sb.<br />

Isothermal Sections<br />

Fe–Ni–Sb 12<br />

3<br />

Two isothermal sections are reported in the Fe-Ni-Sb system. From X-ray diffraction <strong>and</strong><br />

EPMA results [1997Ric1] constructed the isothermal section at 600˚C. To achieve equilibrium<br />

state the samples for EPMA examination were annealed at this temperature for 6 months.<br />

The section shown in the paper [1997Ric1] covers the composition interval 40 to 100 at.% Sb<br />

(Sb rich subsystem). However, the EPMA results given involve the whole concentration<br />

interval. This allowed us to plot the whole isothermal section at 600˚C. Three-phase regions<br />

δα + γ + ε <strong>and</strong> γ +Ni 5Sb 3 +Ni 3Sb are added by us. A similar plot was done by [2004Rag1].<br />

However, it is somewhat inconsistent with the accepted here Fe-Ni binary system. The section<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


4 12<br />

Fe–Ni–Sb<br />

is shown in Fig. 6 due to experimental data [1997Ric1] (in solid) <strong>and</strong> our assessment (in<br />

dashed).<br />

By quenching from the solid-liquid state, <strong>and</strong> using the methods of metallography <strong>and</strong><br />

EPMA, [2003Voi] constructed the isothermal section at 1150˚C. This involves equilibria of<br />

liquid with δα <strong>and</strong> with (γFe,Ni). In [2003Voi], however, the two modifications of the solid<br />

solution are not specified. [2004Rag2] includes this correction, as shown in Fig. 7. Solid curves<br />

correspond to the original work [2003Voi], dashed ones - to [2004Rag2].<br />

Temperature – Composition Sections<br />

[1997Ric1] constructed the isopleths below liquidus along the isoconcentrates 66.7, 70, 75 <strong>and</strong><br />

85 at.% Sb, <strong>and</strong> [1997Ric2] reported the vertical section along FeNi-Sb at 40-90 at.% Sb. The<br />

sections at 70 <strong>and</strong> 85 at.% Sb <strong>and</strong> FeNi-Sb are shown in Figs. 8a to 8c.<br />

Thermodynamics<br />

By isothermal isopiestic method [2003Voi] measured activities of Sb at 1150˚C, the isoactivity<br />

curves were constructed, showing negative deviation from the ideal behavior <strong>and</strong> a negative<br />

gradient against the Fe content, thus, specifying stronger chemical affinity for Ni-Sb than for<br />

Fe-Sb. By the Gibbs-Duhem integration method isoactivity lines for Fe <strong>and</strong> Ni were estimated.<br />

By the same method [1997Ric2] determined partial molar enthalpies <strong>and</strong> activities of Sb in<br />

the ε phase at Fe:Ni = 1:1 <strong>and</strong> 45.5-51.5 at.% Sb for 900˚C.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

[1977Gal, 1980Gel] studied magnetic properties of the monoantimonide phase along the<br />

sections FeSb-NiSb, Fe 1.2Sb-Ni 1.2Sb, Fe 1.2Sb-NiSb. Ferromagnetism was absent in the alloys<br />

along the first section, <strong>and</strong> had the highest level along the second one. It is accounted for by<br />

location of the metal atoms in the bipyramidal interstitials of the crystal lattice [1977Gal].<br />

[1980Gel] has shown that magnetic moments of the Fe-atoms at the d-sites are ferromagnetically<br />

ordered. Substitution of Fe- by Ni-atoms at the a-sites results in collinear antiferromagnetism.<br />

By using X-ray diffraction <strong>and</strong> Mössbauer spectra of (Fe 1–yNi y) 1+xSb<br />

(0.02≤y≤0.42, 0.08≤x≤0.16), [1984Har] has shown that the Neel temperature decreases linearly<br />

when y increases. This results, as well, in two magnetic hyperfine fields, which are about 40 <strong>and</strong><br />

80% lower than in the Fe 1–xSb. The value of the fields does not depend on Ni content.<br />

Magnetization vs temperature of a new semi-Heusler phase FeNiSb [2003Zha] is interpreted<br />

in the spin-wave theory, electrical resistivity follows a T 5 behavior.<br />

[1986Gas] gives diffusion parameters of Fe, Ni <strong>and</strong> Sb in (αFe,Ni,Sb).<br />

Miscellaneous<br />

[1973Kje] has shown the predominant covalent nature of the chemical bonding in the ternary<br />

compound τ. According to [1974Kje], an increase of the Ni content in Fe xNi 1–xSb 2 results in an<br />

increase of the Ni-Sb interatomic distances.<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Nanostructured ternary unfilled skutterudite Fe 0.5Ni 0.5Sb 3 was synthesized at 240˚C for 48<br />

h by a solvothermal method [2005Mi] with particles size about 50 nm <strong>and</strong> metallic electrical<br />

properties. Neutron diffraction <strong>and</strong> transmission electron microscopy were used by [2005Cha,<br />

2003Mor], respectively, to study partially filled skutterudite structure in the Ce-Fe-Ni-Sb<br />

system.<br />

. Table 1<br />

Investigations of the Fe-Ni-Sb <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method / Experimental Technique<br />

[1943Age1] Homogenization at 600˚C for three days,<br />

slow cooling; optical microscopy,<br />

electrical conductivity measurements,<br />

powder XRD<br />

[1943Age2] Homogenization at 600˚C for three days,<br />

slow cooling; optical microscopy,<br />

electrical conductivity measurements,<br />

powder XRD<br />

[1970Bje] Preparation from FeSb 2 <strong>and</strong> NiSb 2 by<br />

annealing, crashing <strong>and</strong> reanealling at<br />

600˚C for several times to reach<br />

homogeneity; powder XRD with KCl<br />

internal st<strong>and</strong>ard<br />

[1973Pan] DTA, optical microscopy, hardness <strong>and</strong><br />

magnetic susceptibility measurements<br />

[1974Nag] Homogenization treatment 975˚C / 94 h<br />

+ 850˚C / 6 h; powder XRD<br />

[1976Nag] Homogenization treatment 975˚C / 94 h;<br />

optical microscopy, SEM, TEM<br />

[1977Gal] Heat treatment 600˚C/ 30 h; XRD;<br />

temperature-field dependencies,<br />

magnetic intensity, susceptibility<br />

measurements; Mössbauer spectra<br />

[1997Ric1] Synthesis in quartz ampoules at 1200˚C,<br />

homogenization at 900˚C / 3 weeks, or at<br />

600˚C / 6 weeks; DTA, metallography,<br />

XRD, EPMA<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Sb 12<br />

Temperature / Composition / <strong>Phase</strong><br />

Range Studied<br />

600˚C / FeSb-NiSb continuous solid<br />

solution<br />

600˚C / FeSb-NiSb continuous solid<br />

solution<br />

600˚C / FeSb 2-NiSb 2 section; ternary<br />

compound FeNiSb6 (τ)<br />

Vertical section Fe-NiSb<br />

975, 650, 600˚C / Fe-1Ni-4Sb / solubility of<br />

Sb in (αFe,Ni), lattice parameters<br />

Fe-1Ni-8.3Sb / solubility of Sb in (αFe,Ni)<br />

600˚C / (Fe,Ni)Sb phase along the<br />

sections Fe 1.2Sb-Ni 1.2Sb, FeSb-NiSb,<br />

Fe1.2Sb-NiSb, lattice parameters<br />

900˚C / ε phase (Fe yNi 1–y) 1±xSb / lattice<br />

parameters; 600˚C / isothermal section<br />

for Sb-subsystem / lattice parameters of<br />

ε phase <strong>and</strong> of (Fe,Ni)Sb 2; liquidus<br />

isotherms for Sb-subsystem, vertical<br />

sections at 66.7, 70, 75, 85 at.% Sb;<br />

reaction scheme<br />

5<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


6 12<br />

Fe–Ni–Sb<br />

. Table 1 (continued)<br />

Reference Method / Experimental Technique<br />

[1997Ric2] Synthesis in quartz ampoules at 1100˚C,<br />

homogenization at 500˚C / 3 weeks; DTA,<br />

XRD; isopiestic method<br />

[2003Voi] Synthesis in quartz ampoules at 1200˚C,<br />

quenching from 1150˚C; metallography,<br />

EPMA; isopiestic method<br />

[2003Zha] Melt-spinning; XRD; DTA; magnetization<br />

<strong>and</strong> electrical resistivity measurements<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Temperature / Composition / <strong>Phase</strong><br />

Range Studied<br />

Vertical section FeNi-Sb at 42-90 at.% Sb;<br />

antimony vapor pressure in<br />

(Fe 0.5Ni 0.5) 1±xSb at 45.4-51.5 at.% Sb at<br />

747-1037˚C; partial molar properties of Sb<br />

at 1150˚C<br />

1150˚C / isothermal section; isoactivity<br />

curves of Sb; calculated isoactivity curves<br />

of Fe, Ni<br />

FeNiSb semi-Heusler phase, electrical <strong>and</strong><br />

magnetic properties, lattice parameters<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

δα, (δFe,αFe) cI2<br />

Im3m<br />

(δFe)<br />

1538 - 1394<br />

W a = 293.15 [Mas2]<br />

(αFe) a = 286.65 at 25˚C [Mas2]<br />

< 912 a = 287.36 [V-C2], Fe0.96Sb0.04 a = 290.0 [V-C2], Fe0.95Sb0.05<br />

(αFe,Ni,Sb) a = 287.81 [1974Nag], in alloy<br />

Fe-1Ni-4Sb, 600˚C<br />

a = 288.03 [1974Nag], in alloy<br />

Fe-1Ni-4Sb, 650˚C<br />

a = 289.24 [1974Nag], in alloy<br />

Fe-1Ni-4Sb, 975˚C<br />

γ, (γFe,Ni) cF4<br />

Fm3m<br />

(γFe)<br />

< 1394 - 912<br />

Cu a = 364.67 at 915˚C [V-C2, Mas2]<br />

(Ni)<br />

< 1455<br />

a = 352.40 at 25˚C [Mas2]<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Ni–Sb 12<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(Sb) hR6 a = 450.67 [Mas2]<br />

< 630.755 R3m<br />

αAs<br />

α = 57.11˚<br />

γ’, FeNi3 cP4 a = 355.23 63 to 85 at.% Ni [1991Swa]<br />

< 517 Pm3m<br />

AuCu3 γ’’, FeNi tP4 a = 357.9 [V-C2], metastable.<br />

P4/mmm<br />

AuCu<br />

Metastable ordering temperature 320˚C at<br />

51.2 at.% Ni [1984Ros]<br />

(FexNi1–x)Sb2 oP6 0.5 ≤ x ≤ 1<br />

Pnnm a = 564.17 ± 0.09 x = 0.5 [V-C2]<br />

FeS2 b=644.02 ± 0.09<br />

c=338.55 ± 0.05<br />

FeSb2<br />

a = 583.28 ± 0.05 [V-C2]<br />

< 738 b=653.76 ± 0.05<br />

c=319.73 ± 0.03<br />

FeSb4 cP1<br />

Pm3m<br />

αPo<br />

- [Mas2], metastable<br />

Ni15Sb<br />

< 460<br />

- - [Mas2], ordering<br />

Ni3Sb oP8 a = 532.07 ± 0.08 [V-C2]<br />

< 715 Pmmm b = 428.08 ± 0.03<br />

βTiCu3 c=451.47 ± 0.04<br />

Ni5Sb2 mC28 a = 1294.58 [V-C2]<br />

1161 - 530 C2 b=542.71<br />

Ni5Sb2 c=1145.68<br />

β = 151.71˚<br />

Ni7Sb3<br />

< 600<br />

t** - [Mas2]<br />

NiSb2 oP6 a = 518.23 ± 0.05 [V-C2]<br />

< 621 Pnnm b = 631.68 ± 0.07<br />

FeS2 c=384.03 ± 0.05<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


8 12<br />

Fe–Ni–Sb<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

ε, (FexNi1–x)Sb hP4 a = 393.8 [1977Gal] 1) , x = 0.3<br />

P63/mmc c = 514.5 dpycn. = 8.531 g·cm –3<br />

NiAs a = 394.7 [1977Gal], x = 0.2<br />

c=514.2 dpycn. = 8.535 g·cm –3<br />

a = 393.8 [1977Gal], x = 0.1<br />

c=514.1 dpycn. = 8.544 g·cm –3<br />

(FexNi1–x) 1.2Sb a = 401.3 [1977Gal], x = 0.7<br />

c=520.1 dpycn. = 8.347 g·cm –3<br />

a = 397.3 [1977Gal], x = 0.5<br />

c=513.2 dpycn. = 8.441 g·cm –3<br />

a = 403.6 [1977Gal], x = 0.3<br />

c=518.4 dpycn. = 9.498 g·cm –3<br />

a = 395.9 [1977Gal], x = 0.2<br />

c=511.4 dpycn. = 8.537 g·cm –3<br />

a = 395.0 [1977Gal], x = 0.15<br />

c=514.2 dpycn. = 8.595 g·cm –3<br />

a = 396.9 [1977Gal], x = 0.1<br />

c=515.5 dpycn. = 8.637 g·cm –3<br />

Fe1.2xNi1–xSb a = 397.1 [1977Gal], x = 0.4<br />

c=513.5 dpycn. = 8.486 g·cm –3<br />

a = 402.9 [1977Gal], x = 0.6<br />

c=511.9 dpycn. = 8.411 g·cm –3<br />

FeSb a = 412.4 [V-C2], Fe0.56Sb0.44, 520˚C<br />

< 1019 c=517.3<br />

a = 515.3 [1974Nag], in alloy Fe-1Ni-4Sb, 650˚C;<br />

c=403.2 ε phase contains about 13 at.% Ni<br />

NiSb a = 393.25 [V-C2]<br />

< 1147 c=513.51<br />

*τ, Fe0.5Ni0.5Sb3 cI32 Fe0.5-0.46Cu0.5-0.54Sb3 Im3 a = 909.02 ± 0.05 [1970Bje]<br />

CoAs3 dpycn. = 7.411 g·cm –3 at 25˚C<br />

a = 909.04 ± 0.05 FeNiSb6 [V-C2]<br />

FeNiSb C1b a = 572 ± 2 [2003Zha] semi-Heusler phase, metastable<br />

1) Parameters a <strong>and</strong> c are replaced.<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Composition (at.%)<br />

Fe Ni Sb<br />

Reference<br />

L+ε + FeSb2 Ð τ 642 P L 3.5 2.5 94 [1997Ric1]<br />

ε 1.5 46 52.5<br />

FeSb2 16.7 16.7 66.7<br />

τ 12 13 75<br />

L+ε Ð NiSb2 + τ 625<br />

1)<br />

U3 L 0.5 4.5 95 [1997Ric1]<br />

ε 1 46 53<br />

NiSb2 0 33.3 66.7<br />

τ 11.5 13.5 75<br />

L + FeSb2Ðτ + (Sb) 620<br />

2)<br />

U4 L 1 3 96 [1997Ric1]<br />

FeSb2 22.8 10.5 66.7<br />

τ 12.5 12.5 75<br />

(Sb) 0 0 100<br />

L Ð NiSb2 + τ + (Sb) 615 E L 0 3 97 [1997Ric1]<br />

NiSb2 0 33.3 66.7<br />

τ 11.5 13.5 75<br />

(Sb) 0 0 100<br />

L+Ni5Sb2 Ð ε + γ 998


10 12<br />

Fe–Ni–Sb<br />

. Fig. 1a<br />

Fe-Ni-Sb. Lattice parameters of the monoantimonide (Fe xNi 1–x) 54Sb 46 as a function of Ni<br />

concentration<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Sb 12<br />

11<br />

. Fig. 1b<br />

Fe-Ni-Sb. Lattice parameters of the diantimonide (Fe,Ni)Sb 2 as a function of Ni concentration<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


12 12<br />

. Fig. 2<br />

Fe-Ni-Sb. Reaction scheme<br />

Fe–Ni–Sb<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3a<br />

Fe-Ni-Sb. The liquidus isotherms in the Sb rich subsystem<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Sb 12<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


14 12<br />

Fe–Ni–Sb<br />

. Fig. 3b<br />

Fe-Ni-Sb. A fragment of the liquidus surface projection above 90 at.% Sb<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-Ni-Sb. Assessed liquidus surface projection<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Sb 12<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


16 12<br />

Fe–Ni–Sb<br />

. Fig. 5<br />

Fe-Ni-Sb. Partial solidus surface projection<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 6<br />

Fe-Ni-Sb. Isothermal section at 600˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Sb 12<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


18 12<br />

Fe–Ni–Sb<br />

. Fig. 7<br />

Fe-Ni-Sb. Isothermal section at 1150˚C<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 8a<br />

Fe-Ni-Sb. Vertical section at 70 at.% Sb<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Sb 12<br />

19<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


20 12<br />

Fe–Ni–Sb<br />

. Fig. 8b<br />

Fe-Ni-Sb. Vertical section at 85 at.% Sb<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 8c<br />

Fe-Ni-Sb. Partial vertical sections along the FeNi – Sb join<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Sb 12<br />

21<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


22 12<br />

Fe–Ni–Sb<br />

References<br />

[1943Age1] Ageev, N.V., Makarov, E.S., “Continuous Transition Between the Daltonide <strong>and</strong> the Berthollide <strong>Phase</strong>s<br />

in the System Iron-Nickel-Antimony”, Compt. Rend. Sci. Acad. URSS, 38, 20–21 (1943), translated from<br />

Izv. Akad Nauk SSSR (Khim.), 161 (1943) (Experimental, <strong>Phase</strong> Relations, 6)<br />

[1943Age2] Ageev, N.V., Makarov, E.S., Zhur. Obshchey Khimii, 13, 242 (1943)<br />

[1970Bje] Bjerkelund, E., Kjekshus, A., “Compounds with the Marcasite Type Crystal Structure”, Acta Chem.<br />

Sc<strong>and</strong>., 24, 3317–3325 (1970) (Crys. Structure, Experimental, 35)<br />

[1973Kje] Kjekshus, A., Nicholson, D.G., Rakke, T., “Compounds with the Skutterudite Type Crystal Structure”,<br />

Acta Chem. Sc<strong>and</strong>., 27, 1315–1320 (1973) (Crys. Structure, Experimental, 19)<br />

[1973Pan] Panteleimonov, L.A., Babanskaya, I.A., “The Interaction Compound NiSb with Iron <strong>and</strong> Cobalt”, Vestn.<br />

Moskov. Univ., (Khim.), 14, 373 (<strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, Experimental, 1973)<br />

[1974Kje] Kjekshus, A., Rakke, T., “Compounds with the Marcasite Type Crystal Structure. X. 57 Fe Mössbauer<br />

Studies of Some <strong>Ternary</strong> Pnictides”, Acta Chem. Sc<strong>and</strong>., Ser. A, 28A(9), 1001–1010 (1974) (Crys.<br />

Structure, Experimental, 34)<br />

[1974Nag] Nageswararao, M., McMahon, C.J., Herman, H., “The Solubility <strong>and</strong> Solution Behaviour of Sb <strong>and</strong> Sn<br />

in α-Fe <strong>and</strong> the Effects of Ni <strong>and</strong> Cr Additions”, Metall. Trans., 5, 1061–1068 (1974) (Experimental,<br />

<strong>Phase</strong> Relations, 38)<br />

[1976Nag] Nageswararao, M., Herman, H., McMahon, C.J., “On the Decomposition of Supersaturated Fe-Sb, Fe-<br />

Sn, Fe-Sb-Ni Solid Solutions”, Met. Sci., 10(7), 249–252 (1976) (Experimental, <strong>Phase</strong> Relations, 9)<br />

[1977Gal] Galperina, T.N., Zelenin, L.P., Fedorova, T.A., Sidorenko, F.A., Geld, P.V., “The Magnetic Properties of<br />

the Mutual Solid Solutions of the Mono-Antimonides”, Phys. Met. Metallogr., 43, 183–185 (1977),<br />

translated from Fiz. Metal. Metalloved., 43(3) 661–663 (1977) (Experimental, Magn. Prop., 7)<br />

[1980Gel] Geld, P.V., Galperina, T.N., Babanova, E.N., Sidorenko, F.A., “Magnetic <strong>and</strong> Atomic Structure of the<br />

Monoantimonide <strong>Phase</strong>s Fe 1+xSb <strong>and</strong> (Fe 1–yNi y) 1.2Sb”, Sov. Phys.-Dokl. (Engl. Transl.), 253, 545–546<br />

(1980), translated from Dokl. Akad. Nauk SSSR, 253, 85–87 (1980) (Experimental, Crys. Structure,<br />

Magn. Prop., 3)<br />

[1984Har] Harch<strong>and</strong>, K.S., Kumar, R., Vishwamittar, Kumar, D., Ch<strong>and</strong>ra, K., “Influence of Nickel Substitution in<br />

an Fe-Sb Triangular Antiferromagnetic System”, Phys. Rev. B., 30(3) 1527–1533 (1984) (<strong>Phase</strong> Relations,<br />

Experimental, 15)<br />

[1984Ros] Rossiter, P.L., Jago, R.A., “Towards a True Fe-Ni <strong>Phase</strong> Diagram”, Mater. Res. Soc. Symp. Proc.,<br />

21, 407–411 (1984) (<strong>Phase</strong> Diagram, Review, 26)<br />

[1986Gas] Gas, P., Poize, S., Bernardini, J., “Influence of Cosegregation on Grain Boundary Diffusion:<br />

Experimental Study in Ultra High Purity Fe-Ni-Sb Solid Solutions”, Acta Metall., 34(3), 395–403 (1986)<br />

(<strong>Phase</strong> Relations, Experimental, 17)<br />

[1989Fes] Feschotte, P., Lorin, D., “Binary <strong>Systems</strong> Fe-Sb, Co-Sb <strong>and</strong> Ni-Sb” (in French), J. Less-Common Met.,<br />

155, 255–269 (1989) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, 12)<br />

[1991But] Butt, M.T.Z., Bodsworth, C., “Liquid Immisicibility in <strong>Ternary</strong> Metallic <strong>Systems</strong>”, Mater. Sci. Technol.,<br />

7(9), 795–802 (1991) (Experimental, <strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, Review, 39)<br />

[1991Swa] Swartzendruber, L.J., Itkin, V.P., Alcock, C.B., “The Fe-Ni (Iron-Nickel) System”, J. <strong>Phase</strong> Equilib., 12(3),<br />

288–312 (1991) (Assessment, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 89)<br />

[1992Rag] Raghavan, V., “The Fe-Ni-Sb (Iron-Nickel-Antimony) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Indian Inst. Met., Calcutta, 6B, 1061–1062 (1992) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Review, 8)<br />

[1995Pei] Pei, B., Bjorkman, B., Sundman, B., Jansson, B., “A Thermodynamic Assessment of the Iron-Antimony<br />

System“, Calphad, 19(1), 1–15 (1995) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 37)<br />

[1997Ric1] Richter, K.W., Ipser, H., “An Experimental Investigation of the Fe-Ni-Sb <strong>Ternary</strong> <strong>Phase</strong> Diagram”,<br />

J. <strong>Phase</strong> Equilib., 18(3), 235–224 (1997) (Experimental, <strong>Phase</strong> Relations, Review, #, 15)<br />

[1997Ric2] Richter, K.W., Ipser, H., “The Section (Fe 0.5Ni 0.5) xSb 1–x: <strong>Phase</strong> Relationships <strong>and</strong> Thermodynamic<br />

Properties”, Z. Metallkd., 88(11), 873–879 (1997) (Experimental, <strong>Phase</strong> Relations, Thermodyn., #, 19)<br />

[2003Mor] Morimura, T., Hasaka, M., “Partially Filled Skutterudite Structure in Ce fFe 8–xNi xSb 24“, Scr. Mater., 48,<br />

495–500 (2003) (Crys. Structure, Experimental, 11)<br />

[2003Voi] Voisin, L., Hino, M., Itagaki, K., “<strong>Phase</strong> Relations <strong>and</strong> Activities in the Fe-Ni-As <strong>and</strong> Fe-Ni-Sb <strong>Systems</strong><br />

at 1423 K”, Mater. Trans., 44(12), 2654–2658 (2003) (<strong>Phase</strong> Relations, Thermodyn., Experimental, 13)<br />

DOI: 10.1007/978-3-540-70890-2_12 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Sb 12<br />

23<br />

[2003Zha] Zhang, M., Liu, Zh., Hu, H., Cui, Y., Liu, G., Chen, J., Wu, G., Sui, Y., Qian, Zh., Li, Zh., Tao, H., Zhao,<br />

B., Wen, H., “A New Semi-Heusler Ferromagnet NiFeSb: Electronic Structure, Magnetism <strong>and</strong><br />

Transport Properties”, Solid State Commun., 128(2-3), 107–111 (2003) (Calculation, Crys. Structure,<br />

Electr. Prop., Electronic Structure, Experimental, Magn. Prop., 26)<br />

[2004Rag1] Raghavan, V., “Fe-Ni-Sb (Iron-Nickel-Antimony)”, J. <strong>Phase</strong> Equilib. Diffus., 25(1), 89–91 (2004) (<strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Review, 5)<br />

[2004Rag2] Raghavan, V., “Fe-Ni-Sb (Iron-Nickel-Antimony)”, J. <strong>Phase</strong> Equilib. Diffus., 25(6), 553 (2004) (<strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Review, 6)<br />

[2005Cha] Chapon, L.C., Girard, L., Haidoux, A., Smith, R.I., Ravot, D., “Structural Changes Induced by Ce<br />

Filling in Partially Filled Skutterudites”, J. Phys.: Condens. Matter, 17, 3525–3535 (2005) (Crys. Structure,<br />

Experimental, <strong>Phase</strong> Relations, Phys. Prop., 21)<br />

[2005Mi] Mi, J.L., Zhao, X.B., Zhu, T.J., Tu, J.P., Cao, G.S., “Solvothermal Synthesis of Nanostructured <strong>Ternary</strong><br />

Skutterudite Fe 0.5Ni 0.5Sb 3”, J. <strong>Alloy</strong>s Compd., 399(1-2), 260–263 (2005) (Electr. Prop., Experimental,<br />

Morphology, 15)<br />

[2008Kuz] Kuznetsov, V., “Fe-Ni (Iron-Nickel)”, MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg,<br />

G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published (2008) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, #, 41)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_12<br />

ß Springer 2009


Iron – Nickel – Silicon<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Elena Semenova<br />

Introduction<br />

Fe–Ni–Si 13<br />

1<br />

Fe-Ni-Si alloys belong to the group of soft magnetic materials having high permeability<br />

(permalloy effect). This <strong>and</strong> other special characteristics have led to these alloys being widely<br />

used in industry. As the properties of the alloys were found to depend on chemical composition,<br />

heat treatment <strong>and</strong> the method of preparation, their investigation has been accompanied,<br />

in many cases, by the study of their phase relationships.<br />

The constitution of the Fe-Ni-Si system was critically evaluated by [1988Ray]. The<br />

assessment covers all known investigations of phase relationships up to 1980 [1938Alt,<br />

1943Gre, 1955Tak, 1960Tak, 1960Iwa, 1961Wit, 1962Gla, 1965Mir, 1965Bor, 1965Bur,<br />

1968Dmi, 1968Mir, 1968Sid1, 1968Sid2, 1969Mir, 1970Gom, 1972Fro, 1977Nic, 1979Ind,<br />

1980Cha]. The isothermal section at 600˚C, hypothetical liquidus projection <strong>and</strong> scheme of<br />

possible reaction sequence were proposed by [1988Ray] as part of the review. A thermodynamic<br />

assessment of the system was undertaken by [1980Cha] who based their calculations on<br />

experimental studies which were later also considered by [1988Ray] in the critical evaluation.<br />

The reviews by [1994Rag, 2003Rag] added new information on the phase diagram of the<br />

system, including [1994Koz] <strong>and</strong> the experimental study of [1998Ike] <strong>and</strong> thermodynamic<br />

assessment of [1999Mie], which was based mainly on the data of [1998Ike].<br />

[1943Gre] studied the constitution of ternary alloys in the Fe-Ni-Si system in the region<br />

50-100 at.% Fe. In addition to the phases based on the modifications of iron <strong>and</strong> on the FeSi<br />

binary compound, two ternary phases were found at 600˚C in the two-phase alloys where the<br />

second phase was α. They were indexed as cubic <strong>and</strong> tetragonal phases <strong>and</strong> regarded by<br />

[1943Gre] as only tentative. Seeking for an explanation for the striking magnetic properties<br />

observed for Fe-Ni-Si alloys, [1955Tak, 1960Tak] investigated the ternary phase diagram in the<br />

region of Fe rich alloys, <strong>and</strong> a phase of the composition Fe 11Ni 5Si 4 was found. [1960Iwa]<br />

determined the crystal structure of the Fe11Ni5Si4 ternary phase. The data presented by<br />

[1955Tak, 1960Tak, 1960Iwa] are consistent with one of the ternary phases found by<br />

[1943Gre]. The probable course of monovariant lines on the liquidus surface projection for<br />

Fe-Ni based alloys containing up to 40 at.% Si <strong>and</strong> a number of vertical sections were proposed<br />

by [1960Tak]. [1965Bor] observed a ternary phase which was determined to be isostructural<br />

with Au 4Al, in an alloy of the composition 50Fe-30Ni-20Si (at.%) after annealing at 800˚C, the<br />

composition being similar to that indicated by [1943Gre, 1955Tak, 1960Tak]. An isothermal<br />

section at 600˚C was proposed, <strong>and</strong> it was stated that the phase equilibria did not differ from<br />

those at 900˚C. The existence of a ternary phase with a tetragonal crystal structure, observed by<br />

[1943Gre], was not confirmed by [1965Bor]. The mutual solubility of mono- <strong>and</strong> disilicides in<br />

the Fe-Ni-Si ternary system was studied by [1961Wit, 1962Gla, 1965Bor, 1968Dmi, 1968Mir,<br />

1968Sid1, 1968Sid2, 1969Mir]. [1965Bur] determined the change in the position of the γ/γ+α<br />

<strong>and</strong> γ+α/α phase boundaries in the Fe-Ni-Si system with varying temperature. Two vertical<br />

sections of the ternary phase diagram were constructed at 4 <strong>and</strong> 5 mass% Si. The investigation<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


2 13<br />

Fe–Ni–Si<br />

by [1994Koz] of the Fe-Ni-Si ternary system in the Fe-rich region was carried out using<br />

experimental <strong>and</strong> theoretical methods. Two isothermal sections at 650˚C were proposed, based<br />

on microstructural analysis <strong>and</strong> calculation, respectively. Isothermal sections for 800, 1000,<br />

1100 <strong>and</strong> 1200˚C <strong>and</strong> vertical sections at 5, 10 <strong>and</strong> 15 at.% Ni were constructed, <strong>and</strong> the threephase<br />

equilibria involving the ternary phase, τ 1, at 800˚C <strong>and</strong> equilibria involving the liquid at<br />

1100 <strong>and</strong> 1200˚C were determined by [1998Ike].<br />

Some information relating to the phase relations in the Fe-Ni-Si system were not considered<br />

in the reviews of [1988Ray, 1994Rag, 2003Rag]. [1990Li, 1991Zha] determined the Fe<br />

solubility in Ni 3Si, <strong>and</strong> [1975Ver] the Ni in Fe 3Si. Precipitation during the decomposition of<br />

martensite in Fe-Ni based alloys containing 1-5 mass% Si on ageing at 300-500˚C, the shape<br />

<strong>and</strong> crystal structure of the precipitates <strong>and</strong> the effect of annealing on atomic structure were<br />

studied by [1975Yas, 1982Yed, 1983Zay, 1980Rod]. The precipitates observed in a Fe-18Ni-5Si<br />

alloy after ageing at 350 <strong>and</strong> 400˚C were identified by [1975Yas] as the (Fe,Ni) 3Si phase, <strong>and</strong><br />

those observed at 500˚C as the (Fe,Ni)5Si2 phase. [1998Lan] reported on the synthesis of a new<br />

ternary compound with the composition FeNiSi. Its crystal structure was determined as<br />

orthorhombic with the Co 2Si structure type.<br />

The component elements of this system are constituents of more complex nanocrystalline<br />

alloys that are expected to exhibit excellent magnetic properties. The influence of Ni on the<br />

formation of a nanocrystalline phase in Fe 735–xNi xCu 1Nb 3Si 13.5B 9 alloys was studied by<br />

[2001Duh]. The Fe 3NiSi 1.5 ternary phase, with a tetragonal crystal structure, was observed<br />

at 500-550˚C. Taking into account the fact that the magnetic permeability of Fe-Ni based alloys<br />

decreases with increase in the degree of order in the γ phase present, <strong>and</strong> in view of the<br />

importance of high magnetic permeability in these alloys, [2004Him] studied the influence of<br />

Si on the phase equilibria between the γ <strong>and</strong> γ’ phases in FeNi 3-Ni 3Si alloys. As a continuation<br />

of the studies of [1998Ike, 2002Him, 2004Him] into the stability of the phases based on the α<br />

<strong>and</strong> γ modifications of Fe, which can be affected by magnetic ordering, <strong>and</strong> considering alloys<br />

based on the Ni 3Si phase as having a potential application as high strength materials,<br />

[2005Him] investigated the phase relationships in the Ni rich portion of the Fe-Ni-Si system.<br />

Isothermal sections for 700, 800 <strong>and</strong> 900˚C were constructed <strong>and</strong> the α+γ+γ’ ternary equilibrium<br />

was determined. The metastable relationships were also shown.<br />

Experimental techniques <strong>and</strong> information on the composition <strong>and</strong> temperature intervals<br />

studied are shown in Table 1.<br />

Binary <strong>Systems</strong><br />

The Fe-Si <strong>and</strong> Ni-Si binary systems are accepted from [Mas2]. The Fe-Ni system is taken from<br />

the recent MSIT assessment by [2008Kuz].<br />

Solid <strong>Phase</strong>s<br />

The details of crystallography <strong>and</strong> ranges of stability of the phases in the Fe-Ni-Si system are<br />

listed in Table 2. The ternary phase, τ 1, having a composition close to Fe 11Ni 5Si 4, a cubic<br />

crystal structure <strong>and</strong> being formed by a solid state reaction, was observed by [1943Gre,<br />

1955Tak, 1960Tak, 1960Iwa, 1994Koz, 1998Ike]. [1965Bor] found the ternary phase of the<br />

composition Fe5Ni3Si2 <strong>and</strong> indexed it also as cubic. Taking into account the same crystal<br />

DOI: 10.1007/978-3-540-70890-2_13 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Si 13<br />

3<br />

structure, lattice parameter <strong>and</strong> close compositions that these two phases have, it is clear that<br />

they are the same phase. According to the observations of [1955Tak], τ 1 phase forms from the<br />

phase based on (αFe). [1960Tak] was more precise, suggesting that τ 1 phase forms by<br />

the peritectoid reaction, α + γ Ð τ 1, at about of 920˚C. [1965Bor] confirmed the formation<br />

of the ternary phase via a solid state reaction. Based on the findings of [1965Bor, 1955Tak,<br />

1960Tak, 1998Ike], the τ 1 phase lies on the 20 at.% Si composition line from 24 to 30 at.% Ni.<br />

A second ternary phase, τ2, with the composition Fe3NiSi1.5, was found by [2001Duh] on<br />

the decomposition of multicomponent nanocrystalline Fe735–xNixCu1Nb3Si13.5B9 alloys after<br />

annealing at 550-500˚C. This new phase appeared to be in equilibrium with the α 2 phase<br />

(Fe 3Si). The Fe 3NiSi 1.5 ternary phase is included in Table 2 although its existence as a stable<br />

phase should be confirmed through further investigations of the Fe-Ni-Si system.<br />

The interpretation by [1982Yed] that the precipitates appearing in Fe-Ni based alloys after<br />

ageing are a ternary phase of the composition (Fe,Ni) 22Si 7 with a cubic crystal structure, but<br />

without consideration of the reflection intensity, is questionable. These precipitates, as<br />

observed by [1975Yas], were identified as the phase known at that time as Ni5Si2. According<br />

to [Mas2], it is the Ni31Si12 phase.<br />

The solubility of Fe in the Ni 2Si phase with the Co 2Si crystal structure type, was found by<br />

[1938Alt, 1972Fro] to be about 33.3 at.%. It would therefore seem reasonable that the new<br />

phase with the Co 2Si crystal structure type observed by [1998Lan] in an equiatomic singlephase<br />

alloy can be interpreted as the limit of the homogeneity region of the Ni 2Si phase. The<br />

lattice parameters, shown in [1998Lan] <strong>and</strong> [1938Alt] for the equiatomic composition,<br />

confirm the suggestion that it falls into the homogeneity range of the Ni 2Si phase. The Fe 2Si<br />

phase dissolves about 3.3 at.% Ni at 1100˚C maintaining its cubic crystal structure, but at a<br />

composition of 20 at.% Ni this structure distorts trigonally [1938Alt, 1972Fro]. At the same<br />

time, Fe 2Si-30 mol% Ni 2Si alloys remained single-phase [1972Fro]. In order to accurately<br />

ascertain the limits of the two-phase region along the section Fe 2Si-Ni 2Si, additional investigations<br />

should be undertaken.<br />

The high silicides of the Fe-Ni-Si system, FeSi 2 <strong>and</strong> αNiSi 2, dissolve about 1.7 at.% Ni<br />

at 800˚C [1961Wit] <strong>and</strong> about 12 at.% Fe at 850˚C [1965Mir, 1968Mir, 1969Mir, 1968Sid2],<br />

respectively. The latter group of authors showed that the αNiSi 2 phase in the Ni-Si binary<br />

system had a true composition of Ni1.04Si1.93, <strong>and</strong> its homogeneity range in the ternary system<br />

has a complex shape having a width of less than 0.5% in the binary system, widening with<br />

respect to Si content with increasing Fe. The high Fe solubility in αNiSi 2 reported by [2002Fet]<br />

of about 30 at.% is an erroneous conclusion from their experimental results, which showed<br />

that an alloy with 9 at.% Fe was single-phase αNiSi 2, while an alloy with 13 at.% contained two<br />

phases at 750˚C. Actually, this study supported the value given above (about 12 at.%) for the<br />

homogeneity range of the αNiSi 2 phase.<br />

According to [1961Wit, 1965Bor], the mutual solubility of the equiatomic phases at<br />

600-800˚C is approximately 25 at.% Ni in FeSi <strong>and</strong> 5 at.% Fe in NiSi. [1968Dmi, 1968Sid1]<br />

confirmed that about 5 at.% Fe dissolves in NiSi <strong>and</strong> [1968Sid1] showed that about 20 at.% Ni<br />

could be dissolved in FeSi at 900˚C. The values of the mutual solubility of monosilicides given<br />

by [1962Gla] are substantially lower than those stated by [1965Bor, 1961Wit]. The solubility of<br />

Fe in Ni 31Si 12 at 800˚C, reported by [1979Ind] as being about 29 at.%, is not in conflict with<br />

the value of about 7.9 at.% at 900˚C given later by [2005Him], as the latter value was obtained<br />

from the analysis of a two-phase (ν+γ) sample <strong>and</strong> is related to an intermediate composition<br />

of the homogeneity range.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


4 13<br />

Fe–Ni–Si<br />

The homogeneity range of the Ni 3Si phase at 900˚C as determined by [1990Li, 1991Zha]is<br />

consistent with that shown by [2005Him] for 800˚C. Approximately 6.7 at.% Fe dissolves in<br />

Ni 3Si at 900˚C <strong>and</strong> 6.4 at.% Fe at 800˚C, Fe substituting for Ni <strong>and</strong> Si.<br />

The solubility of nickel in the α 1 phase at 1000˚C was given by [1975Ver] tobeupto15<br />

at.% along the 25 at.% Si concentration line, the lattice parameter of the phase increasing. The<br />

solubility was estimated by [1977Nic] as being 20-25 at.% at 25 at.% Si at room temperature.<br />

Further experimental studies by [1998Ike] showed that it was 17 at.% at 18 at.% Si when α1<br />

was in equilibrium with the γ <strong>and</strong> τ 1 phases at 800˚C.<br />

The Si solubility in the γ solid solution decreases with temperature decreasing from 900 to<br />

700˚C <strong>and</strong> with Fe content increasing up to 34 at.% in Ni rich alloys. For the Fe rich alloys, it<br />

increases with temperature in the interval 800-1100˚C <strong>and</strong> increasing Ni content up to about<br />

27 at.% [2005Him].<br />

Quasibinary <strong>Systems</strong><br />

According to [1968Sid1], the FeSi-NiSi section is quasibinary at about 900˚C with a significant<br />

region of immiscibility, about 20-45 at.% Ni.<br />

The critical temperatures of the γ+γ’/γ’ <strong>and</strong> γ/γ+γ’ transitions for the FeNi 3-Ni 3Si alloys in<br />

the range of 0-20 at.% Si are plotted in Fig. 1 after [2004Him]. The transformation temperature<br />

of FeNi 3 increases on substitution of Si for Ni. The section can be considered as<br />

quasibinary in the range of temperature <strong>and</strong> compositions studied.<br />

Invariant Equilibria<br />

The τ 1 phase forms by the peritectoid reaction, α + γ Ð τ 1, at about 920˚C [1960Tak]. The<br />

compositions of the phases taking part in the equilibrium at this temperature are shown in<br />

Table 3 according to the [1960Tak] data.<br />

Liquidus Surface<br />

A few experimental <strong>and</strong> calculated determinations of the liquidus surface of the Fe-Ni-Si<br />

system have been undertaken. A hypothetical projection of the Fe-Ni-Si liquidus surface of the<br />

whole composition range was given by [1988Ray]. It was based partly on the experimental data<br />

of [1960Tak] <strong>and</strong> partly deduced from available information on the Fe-Ni-Si phase diagram in<br />

the solid state. The applicability of this approach to the Fe-Ni-Si system is questionable for a<br />

number of reasons. Firstly, solidus equilibria considered by [1988Ray] were shown by<br />

[1965Bor] as only tentative <strong>and</strong> they included low temperature modifications of the FeSi 2<br />

<strong>and</strong> NiSi 2 phases which do not exist at subsolidus temperatures. An increase in temperature<br />

leads not only to a change in the crystal structure of these phases, but in the case of FeSi 2,toa<br />

change in the composition <strong>and</strong> homogeneity range (<strong>and</strong> stability) in the binary system<br />

[Mas2]. Hence, the equilibria including the high-temperature modifications are different<br />

from those existing at low temperature. Moreover, the low temperature studies of<br />

[1968Mir, 1968Sid2] not discussed by [1988Ray], present phase relationships between the<br />

mono- <strong>and</strong> disilicides different from those in [1988Ray]. For the above reasons, the liquidus<br />

DOI: 10.1007/978-3-540-70890-2_13 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


projection suggested by [1988Ray] is not reproduced here. Figure 2 presents monovariant<br />

curves separating the fields of primary crystallization of the α <strong>and</strong> γ, α <strong>and</strong> ε phases shown by<br />

[1960Tak] with corrections to the field of primary crystallization of the Fe 2Si phase to be<br />

consistent with the accepted Fe-Si binary system [Mas2].<br />

A calculated projection of the primary crystallization surfaces of the α <strong>and</strong> γ phases made<br />

by [1998Mie] occurred in a reasonable correlation with the experimental data of [1960Tak].<br />

Isothermal Sections<br />

Fe–Ni–Si 13<br />

5<br />

The temperature at which the portions for the Fe rich <strong>and</strong> Ni rich part of the Fe-Ni-Si ternary<br />

system were studied by [1998Ike, 1999Mie, 2004Him, 2005Him] <strong>and</strong> earlier by [1961Wit,<br />

1979Ind] was 800˚C. Taking this into account, together with the suggestion by [1965Bor] that<br />

the phase equilibria in the ternary system at 900˚C were little different from those at 600˚C,<br />

these data, along with those of [1965Bor, 1968Dmi, 1968Mir, 1968Sid1, 1968Sid2, 1969Mir]<br />

on the solubility of Fe <strong>and</strong> Ni along the FeNi-NiSi <strong>and</strong> FeSi2-αNiSi2 sections (shown for<br />

850˚C) are used in the construction of an isothermal section for 800˚C, which is presented in<br />

Fig. 3. Dashed lines are used for hypothetical phase boundaries where no data on phase<br />

relations exist. The Fe solubility in the Ni 2Si phase, up to the equiatomic composition in<br />

the ternary system was taken from [1972Fro]. The data relate to 1100˚C, <strong>and</strong> hence the phase<br />

relationships are only approximate at this temperature. The fragment of the section at 650˚C<br />

given by [1994Koz] showing the three-phase equilibrium α+γ+τ 1 does not contradict, in<br />

principle, the Fe rich region at 600˚C given by [1965Bor], although the phase compositions<br />

at the vertices of the α+γ+τ1 triangle are different.<br />

The results of the metallographic study of the solubility of Fe in the αNiSi 2 phase carried<br />

out by [1968Sid2] leads to an underst<strong>and</strong>ing of the phase diagram in relation to the ζ β <strong>and</strong><br />

αNiSi 2 phases. There is a three-phase equilibrium FeSi 2+αNiSi 2+Si, for which the composition<br />

of the αNiSi 2 phase was determined to be between 11.6 <strong>and</strong> 13.5 at.% Fe along the FeSi 2-NiSi 2<br />

section. From the observation by [1968Mir, 1968Sid2] of the presence of the NiSi phase along<br />

with the αNiSi 2 <strong>and</strong> ζ β phases in an alloy with 13.5 at.% Fe lying on the FeSi 2-Ni 1.04Si 1.93<br />

section, it follows that the equilibrium FeSi2+αNiSi2+NiSi, rather than FeSi2+αNiSi2+FeSi as<br />

given in [1988Ray], is present in the ternary system.<br />

The position of the Ni 3Si+γ+ν three-phase triangle in Fig. 3 is given in accordance with the<br />

data of [2005Him]. It differs from that shown for 800˚C by [1979Ind, 1988Ray]. In other<br />

respects, the section is close to that proposed in [1988Ray] for 600˚C.<br />

[1980Cha] assessing the available experimental data, calculated partial isothermal sections<br />

for the Fe-Ni-Si system in the range up to 30 at.% Si at 427, 527 <strong>and</strong> 627˚C. <strong>Ternary</strong><br />

interactions were not incorporated into the calculations. However, the ternary phase τ 1, did<br />

not appear in the results of the calculations. This was due to the fact that [1980Cha] used only<br />

data for the binary systems for an extrapolation into the ternary system.<br />

By using the new experimental data of [1998Ike] <strong>and</strong> thermodynamic data on silicon<br />

activity in liquid Fe-Ni-Si alloys presented by [1964Bow], [1999Mie] reassessed the thermodynamic<br />

description for the solution phases, improving the ternary interaction parameters for<br />

the liquid, α <strong>and</strong> γ phases that had been optimized in an earlier study, [1998Mie]. A series of<br />

isothermal sections for the Fe corner of the ternary diagram, at 1200, 1100, 1000 <strong>and</strong> 800˚C, as<br />

well as vertical sections at 4 <strong>and</strong> 5 mass% Si were calculated, which agree reasonably well<br />

with the data of [1998Ike] <strong>and</strong> [1965Bur], respectively, observing that the thermodynamic<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


6 13<br />

Fe–Ni–Si<br />

parameters obtained were valid only for the Fe-rich corner. These parameters did not<br />

represent a complete assessment of the system owing to the lack of experimental phase<br />

diagram data involving the silicides <strong>and</strong> liquid.<br />

Temperature – Composition Sections<br />

The vertical sections of the Fe-Ni-Si phase diagram through the 71Fe-29Ni binary alloy <strong>and</strong><br />

the 59.9Fe-10.1Ni-Si ternary alloy, <strong>and</strong> an isopleth at 10 at.% Ni given by [1998Ike] are shown<br />

in Figs. 4 <strong>and</strong> 5. The first section shows boundaries of the two- <strong>and</strong> three-phase regions<br />

including the τ 1 ternary phase, as well as two-stage atomic ordering taking place in the (αFe)<br />

based phase. The second one depicts the change in the γ+(αFe) based phase fields with respect<br />

to temperature.<br />

Thermodynamics<br />

Thermodynamic data on silicon activity in liquid Fe-Ni-Si alloys has been presented by<br />

[1964Bow].<br />

Thermodynamic assessments of the Fe-Ni-Si system were performed by [1980Cha] <strong>and</strong><br />

[1999Mie], see discussion above in the section Isothermal Sections.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Ageing Fe-Ni-Si alloys with 25-32 at.% Ni <strong>and</strong> 2.5-4.2 at.% Si at 400 <strong>and</strong> 500˚C after<br />

quenching from 1100˚C leads to an increase in the hardness of matrix, which increases with<br />

annealing time [2001Him, 2002Him]. This was due to the precipitation of γ’ particles at both<br />

temperatures. Ageing at 500˚C leads to the precipitation of ferrite <strong>and</strong> Ni 31Si 12 as well. The<br />

emergence of γ’ phase precipitates also contributed to a reduction in the martensitic transformation<br />

temperature of the alloy. A partial shape memory effect has been observed in a<br />

Fe-25.5Ni-4Si (at.%) alloy, the effect increasing with a decrease in the deformation temperature<br />

from –30˚C to –196˚C, when it reached 38% [2002Him]. The alloy with the composition<br />

40 at.% Fe-10 at.% Ni has the highest value of hardness at about 1170 kg·mm –2 (11474 MPa)<br />

[1965Bor]. This value decreases to 670 kg·mm –2 (6570 MPa) on reducing the iron content to<br />

10 at.% Fe. The maximum increase in hardness (ΔHv=30) for a Fe-18Ni-1.5Si (mass%) alloy<br />

was observed after heating at 400˚C [1983Zay]. Increasing the silicon content to 3% resulted in<br />

a shift in the hardness maximum occurring at a temperature between 475-500˚C. The study of<br />

the maraging kinetics of Fe-18Ni-(1.5-3)Si (mass%) alloys revealed a continuous additional<br />

increase in the hardness as well as the specific resistivity with time in the temperature range of<br />

400-450˚C, <strong>and</strong> a rapid growth in hardness <strong>and</strong> specific resistivity, even after short heating<br />

[1983Zay]; the higher the temperature, the greater the growth. The increase in hardness after<br />

heating at 450 <strong>and</strong> 500˚C for 1 min is 60 <strong>and</strong> 120 Hv (588.4 <strong>and</strong> 1177 MPa) respectively.<br />

<strong>Alloy</strong>s with 3 <strong>and</strong> 5 mass% Si in Fe-(73-75)Ni-Si (mass%) alloys were shown by [1933Dah]<br />

to demonstrate a behavior of hardness, electrical resistivity <strong>and</strong> magnetic characteristics<br />

different from that of Fe-Ni binary alloys <strong>and</strong> of ternary alloys with lower Si contents.<br />

DOI: 10.1007/978-3-540-70890-2_13 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Magnetic susceptibility is at a minimum in FeSi 2-Ni 1.04Si 1.93 alloys with an Fe content of<br />

about 13 at.% [1969Mir]. The change in the microhardness of FeSi 2-Ni 1.04Si 1.93 alloys experienced<br />

on increasing the Fe concentration correlates with the change in lattice parameter <strong>and</strong><br />

falls to a minimum at about 7 at.% Fe. A minimum in the specific electrical resistivity of these<br />

alloys occurs at an Fe content of 5-7 at.%. On increasing the Fe content in a solid solution<br />

based on Ni 1.04Si 1.93, the coefficient of thermal expansion decreases [1968Sid2]. The specific<br />

resistivity of NiSi increases with the addition of FeSi, while thermoelectromotive force falls<br />

[1968Dmi].<br />

Powders with an average grain size of 8-19 nm were synthesized by high-energy ball milling<br />

[2005Hos]. The grain size produced in a 85Fe-5Ni-10Si (at.%) alloy was found to decrease on<br />

increasing the milling time to 70 h. At the same time, the magnetic characteristics of the alloy<br />

(coercivity <strong>and</strong> saturation magnetization) reached a minimum <strong>and</strong> maximum, respectively.<br />

The 87Fe-10Si-5Ni (at.%) alloy was the optimal composition showing a fine particle structure<br />

<strong>and</strong> good soft magnetic properties in the Fe based metastable solid solution [2005Hos].<br />

[1965Bur] observed an improvement in the ductility of Fe-(3-6)Si on increasing the Ni<br />

content up to 5.5-7.5 mass%.<br />

The values of the magnetization of a Ni-doped (1 at.%) ζ β single crystal were positive <strong>and</strong><br />

quite small for the temperature range 5-300 K [2004Aru].<br />

[1980Sri] studied properties of electrodeposited magnetic films. Fe-(1-15%)Si-(2-80%)Ni<br />

(Ni : Si ≥ 2) alloys were electroplated, <strong>and</strong> the deposits, containing 15% Si <strong>and</strong> 40% Ni, were<br />

found to possess a tensile strength of 50 kg f·mm –2 , an elongation of 10% <strong>and</strong> their corrosion<br />

rate was less than 0.1 mm /year in 95% H 2SO 4, 35% HCl, 70% HNO 3 or 30% NaOH.<br />

A strong relationship between the chemical <strong>and</strong> magnetic ordering of γ <strong>and</strong> γ’ phases in the<br />

Ni3Fe-Ni3Si subsystem was found by [2004Him]. The Curie temperature for the ordered γ’<br />

phase was estimated to be 680˚C by extrapolating the T C value from the Ni 3Fe-Ni 3Si system.<br />

The paramagnetic γ/γ’ transition temperature for the Ni 3Fe phase was evaluated to be about<br />

330˚C [2004Him].<br />

With the view to the potential use of Fe-Ni-Si ternary alloys in optoelectronic devices,<br />

[2002Fet] undertook ion implantation of two metals (Fe, Ni) into a silicon substrate <strong>and</strong><br />

examined the phases formed. In parallel, the phase relationships in bulk alloys were studied.<br />

The phase compositions of alloys annealed at 750˚C was shown to depend on Fe (Ni)<br />

concentration.<br />

Miscellaneous<br />

Fe–Ni–Si 13<br />

7<br />

[1955Tak] attributed the striking Perminvar characteristics of Fe-(8-12)Ni-(14-18)Si (mass%)<br />

alloys to the precipitation of dispersed τ 1 ternary phases in the αFe matrix on cooling from<br />

about 900˚C.<br />

The small grain size <strong>and</strong> good ductility at 100˚C of Fe-Ni-Si alloys with 5 mass% Si <strong>and</strong><br />

≥5.5 mass% Ni was achieved by [1965Bur] through hot rolling in the α+γ region. For the<br />

Fe-6.5Si composition, 2 or 4 mass% Ni was not found to be effective in improving the ductility<br />

of hot forged <strong>and</strong> hot rolled specimens [1976Nar, 1978Nar]. The maximum permeability of<br />

these alloys was found to decrease with increasing nickel addition <strong>and</strong> annealing temperature.<br />

By studying the effect of tensile fracture on the microstructure of a Fe-18Ni-55Si (mass%)<br />

alloy aged at 350-400˚C, [1975Yas] demonstrated the difficulty for cross slip, which results in<br />

stress concentration occurring at grain boundaries leading to embrittlement, while on ageing<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


8 13<br />

Fe–Ni–Si<br />

at the higher temperature of 450-500˚C, it was the precipitation of the Ni 31Si 12 based phase<br />

that brought about the embrittlement.<br />

Si substitutes for Ni in the Ni 3Fe superstructure because of its preferred interaction with Fe<br />

atoms, Si not affecting the value of the long-range order parameter [1970Gom]. Using<br />

electronic structure calculations, [1995Slu] concluded that Fe dissolving in Ni 3Si would<br />

preferentially substitute for Ni when magnetic effects were ignored, but when they were<br />

considered in the calculations, Fe was predicted to have no site preference.<br />

Magnetic ordering increases the stability of the γ’ phase (ordered) rather than γ phase<br />

(disordered), while chemical ordering stabilizes the ferromagnetic phase rather than paramagnetic<br />

[2004Him].<br />

γ’ phase precipitates were observed to form in γ alloys during ageing at 700˚C, in<br />

compositions with more than 60 at.% Fe. The Ni 3Si phase field extended to the Fe 3Si phase<br />

(as well as to FeNi 3 phase), forming a metastable (Fe,Ni) 3Si phase [2005Him].<br />

The activation energy of the maraging process in a Fe-16.3Ni-5.7Si (mass%) alloy,<br />

calculated from data on the variation of the resistivity with temperature, is 130 kJ·mol –1 at<br />

about 400˚C <strong>and</strong> around 150-170 kJ·mol –1 at about 600˚C [1983Zay]. The activation energy of<br />

the annealing process in a Fe-33.4Ni-4.9Si (mass%) alloy at temperatures below 500˚C,<br />

calculated from studies of the variation of the hyperfine magnetic field with temperature,<br />

was found by [1980Rod] to be about 96 kJ·mol –1 .<br />

According to [1968Sid1], the change in the lattice constant across the homogeneity region<br />

of FeSi based alloys with Ni substituting for Fe was not linear, while [1961Wit] reported on a<br />

smooth change in the lattice parameter in alloys of up to 25 at.% Ni.<br />

The equilibrium partition ratios of solutes in a 3.06 Fe-Ni-5.09Si (mass%) alloy quenched<br />

from the solid-liquid region were 0.51 for silicon <strong>and</strong> 1.18 for iron, indicating a preference for<br />

Fe to partition to the solid <strong>and</strong> Si to the liquid [1990Kag].<br />

The calculated structural parameters of the ζ β phase were shown by [2002Tan] to depend<br />

on the sites replaced by Ni. Data obtained for the undoped ζ β phase <strong>and</strong> a (Fe 0.875Ni 0.125)Si 2<br />

alloy for two types of Ni positions are presented in Table 2.<br />

. Table 1<br />

Investigations of the Fe-Ni-Si <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<br />

<strong>Phase</strong> Range Studied<br />

[1943Gre] X-ray, chemical analysis (50-100)Fe-50Ni-50Si (at.%), 600˚C<br />

[1955Tak] Microscopic observation, magnetic,<br />

dilatometry, electric resistivity, intensity of<br />

magnetization<br />

Fe-(14-18) Ni-(8-12) Si (mass%)<br />

[1960Iwa] XRD, pycnometer method Fe-28.8Ni-11.0Si (mass%)<br />

[1960Tak] Microscopic observation, magnetic <strong>and</strong><br />

dilatometry<br />

Fe-(5-60)Ni-(3-20)Si (mass%)<br />

[1961Wit] X-ray 800 to 1100˚C, FeSi-NiSi, FeSi 2-NiSi 2<br />

[1962Gla] Melting in corundum crucibles, X-ray, optical<br />

microscopy analyses<br />

FeSi-NiSi<br />

DOI: 10.1007/978-3-540-70890-2_13 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1965Bor] Melting in a resistance furnace, X-ray,<br />

microstructure <strong>and</strong> microhardness analyses<br />

[1965Bur] Vacuum melting, optical microscopy, tensile<br />

test<br />

[1965Mir] Induction melting, microstructure <strong>and</strong> X-ray<br />

analyses<br />

[1968Dmi] X-ray, microstructure, specific electrical<br />

resistivity, emf<br />

[1968Mir] Induction melting, optical microscopy, X-ray<br />

analyses<br />

[1968Sid1] Induction melting, X-ray, microstructure<br />

analyses<br />

[1968Sid2] Induction melting, microstructure <strong>and</strong> X-ray<br />

analyses<br />

[1969Mir] Induction melting, microstructure <strong>and</strong> X-ray<br />

analyses<br />

Temperature/Composition/<br />

<strong>Phase</strong> Range Studied<br />

Fe-Ni-Si 600-900˚C<br />

Fe-(4.5-7.5)Ni-(5)Si (mass%) 700-<br />

1250˚C<br />

FeSi 2.3-NiSi 2<br />

FeSi-NiSi<br />

NiSi2-FeSi2 FeSi2 -Ni1.04Si1.93<br />

Fe 1.04Si 1.93-Ni 1.04Si 1.93 (0-40 mass%<br />

FeSi 2) at 850˚C<br />

FeSi-NiSi, 900˚C<br />

FeSi 2-Ni 1.04Si 1.93, FeSi 2-NiSi 2<br />

Fe1.04Si1.93-Ni1.04Si1.93 (up to 40 mol%<br />

FeSi)<br />

FeSi 2-Ni 1.04Si 1.93 FeSi 2-NiSi 2,<br />

Fe1.04Si1.93-Ni1.04Si1.93<br />

[1970Gom] Neutron diffraction (FeNi3) 1–xSix, 0.02 ≤ x ≤ 0.05<br />

[1972Fro] Induction melting, microstructure <strong>and</strong> X-ray<br />

analyses<br />

Fe2Si-Ni2Si, 1100˚C<br />

[1975Ver] Induction melting, optical microscopy, X-ray,<br />

homogenization at 1000˚C with slow cooling<br />

to room temperature<br />

(Fe 1–xNi x) 3Si, 0 ≤ x ≤ 1<br />

[1975Yas] TEM, SEM, tensile test Fe-18Ni-5Si (mass%)<br />

[1977Nic] X-ray diffraction Fe1–xNixSi, 0.8 ≤ x ≤ 1<br />

[1980Cha] Calculation Fe-Ni-(0-30)Si (at.%), 427, 527, 627˚C<br />

[1982Yed] Electron microscopy Fe-18Ni-3Si (mass%)<br />

[1983Zay] Induction melting, X-ray, nuclear γ resonance,<br />

calorimetry<br />

Fe-18Ni-(1.5-3)Si (mass%) 1000˚C<br />

[1990Li] Induction melting, EPMA 900˚C, Fe-Ni-(23.5-26)Si (at.%)<br />

[1991Zha] Induction melting, EPMA 900˚C, Fe-Ni-(23,5-26)Si (at.%)<br />

[1994Koz] Induction arc melting, TEM, calculation 650˚C up to 30 at.% Ni <strong>and</strong> to 20 Si<br />

(at.%)<br />

[1998Ike] Induction melting, modified solid diffusion<br />

couples, optical microscopy, EDS, TEM<br />

Fe-(0-39.5)Ni-(0-24.6)Si (at.%)<br />

[1998Lan] Induction melting in a copper boat, neutron<br />

diffraction<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

FeNiSi<br />

Fe–Ni–Si 13<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


10 13<br />

Fe–Ni–Si<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1998Mie]<br />

[1999Mie]<br />

Temperature/Composition/<br />

<strong>Phase</strong> Range Studied<br />

Calculation, substitutional solution model Fe-(0-25)Ni-(0-10)Si (mass%) 1200,<br />

1100, 1000, 800˚C<br />

[1999Sun] EPMA of solid <strong>and</strong> quenched liquid after<br />

isothermal annealing<br />

[2001Duh] TEM, ED, X-ray, electrical resistivity, Mössbauer<br />

spectrometry<br />

[2001Him] Induction melting, hot rolling, annealing,<br />

quenching, aging, DSC, optical microscopy,<br />

TEM, hardness testing<br />

[2002Fet] Induction melting, TEM, Mössbauer<br />

spectroscopy, XRD, RBSC<br />

[2002Him] Induction melting, optical microscopy, DSC,<br />

TEM, ED, electrical resistivity<br />

3.06Fe-Ni-5.09 Si (mass%)<br />

Fe 73.5–x-Ni xCu 1Nb 3Si 13.5B 9, x = 10, 20,<br />

30, 40 (at.%)<br />

Fe-2.5Ni-7.5Si (mass%) 400 to 700˚C<br />

Ni 1–xFe xSi 2, 0.28 ≤ x ≤ 0.97 1000˚C<br />

Fe-(24-30)Ni-(5-8)Si (mass%)<br />

[2002Tan] First principle pseudopotential calculations Lattice parameter (Fe 0.875Ni 0.125)Si 2<br />

[2004Him] Induction melting, optical microscopy, TEM,<br />

EPMA, XRD, DSC, electrical resistivity, vibrating<br />

magnetometry<br />

[2005Him] Induction melting, optical microscopy, EDX,<br />

EPMA, TEM, electrical resistivity<br />

Ni3Fe-Ni3Si, 500 to 900˚C<br />

Ni-(0-63.3)Fe-(7-22)Si (at.%), 500 to<br />

1300˚C<br />

[2005Hos] Mechanical alloying, XRD, SEM, VSM Fe-(3-10)Mi-(10-25)Si (at.%)<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

γ, Fe 1–x–yNi xSi y cF4 at x =0,0≤ y ≤ 0.038 [Mas2]<br />

< 1517 Fm3m at y=0, 0 ≤ x ≤ 1<br />

Cu at x + y =1,0≤ y ≤ 0.158 [Mas2]<br />

at 0 ≤ y ≤ 0.121 [2005Him]<br />

at 0 ≤ x ≤ 15<br />

maximum of Si solubility is at 1100˚C [1998Ike]<br />

(γFe) a = 364.67 at 915˚C [Mas2, V-C2]<br />

1394 - 912<br />

(Ni) a = 352.4 at 25˚C [Mas2, V-C2]<br />

< 1455<br />

DOI: 10.1007/978-3-540-70890-2_13 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Ni–Si 13<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

11<br />

α, Fe1–x–yNixSiy cI2 at x =0,0≤ y ≤ 0.195<br />

Im3m at y =0,0≤ x ≤ 0.038 (δFe)<br />

W at y =0,0≤ x ≤ 0.046 (αFe)<br />

(δFe)<br />

1538 - 1394<br />

a = 293.15 at x =0,y = 0 <strong>and</strong> 1394˚C [Mas2, V-C2]<br />

(αFe)<br />

< 912<br />

a = 286.65 at x =0,y = 0 <strong>and</strong> 25˚C [Mas2, V-C2]<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

(Si) cF2 a = 543.06 at 25˚C [V-C2, Mas2]<br />

< 1414 Fd3m<br />

C (diamond)<br />

γ’, FeNi3 cP4 63 to 83 at.% Ni at 347˚C [2008Kuz]<br />

< 517 Pm3m a = 355.23 paramagnetic γ/γ’ transition temperature is<br />

AuCu3 about 330˚C [2004Him]<br />

a = 354.3 20Fe-75Ni-5Si (at.%)<br />

a = 351.4 3Fe-75Ni-22Si (at.%) at RT [2004Him]<br />

γ’’FeNi tP4 a = 357.9 [V-C2]<br />

metastable P4/mmm Metastable ordering temperature 320˚C at 51.2<br />

AuCu<br />

at.% Ni [2008Kuz]<br />

β, Fe2Si hP6 ~33.0 to ~34.3 at.% Si [1982Kub]<br />

1212 - 1040 P3m1 a = 405.2 ± 0.2 [V-C2]<br />

Fe2Si c = 508.55 ± 0.03 dissolves 3.3 at.% Ni at 1100˚C without changing<br />

the crystal structure [1972Fro]<br />

α1,Fe3Si cF16 ordered D03 modification of Fe with 11 to 30<br />

≲ 1235 Fm3m<br />

at.% Si [1982Kub, Mas2]<br />

BiF3 a = 565 [V-C2]<br />

dissolves about 20-25 at.% Ni at 800-1200˚C<br />

[1977Nic, 1998Ike]<br />

α2,Fe4Si cP2 ordered B2 modification of Fe with 10 to 22 at.%<br />

≲ 1280 Pm3m<br />

Si [1982Kub, Mas2]<br />

CsCl a = 281.0 [V-C2]<br />

dissolves 10-15 at.% Ni at 800˚C [1998Ike]<br />

η, Fe5Si3 hP16 37.5 at.% Si [1982Kub]<br />

1060 - 825 P63/mcm a = 675.9 ± 0.5 [V-C2]<br />

Mn5Si3 c = 472.0 ± 0.5<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


12 13<br />

Fe–Ni–Si<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

ε, FeSi cP8 49.6 to 50.8 at.% Si [1982Kub]<br />

< 1410 P213 a = 451.7 ± 0.5 [V-C2]<br />

FeSi dissolves 25 at.% Ni at 800˚C [1961Wit] <strong>and</strong><br />

24 at.% Ni at 600˚C [1965Bor]<br />

ζβ, FeSi2(r) oC48 a = 986.3 ± 0.7 at 66.7 at.% Si [V-C2, Mas2]<br />

< 982 Cmca b = 779.1 ± 0.6 dissolves 1.7 at.% Ni at 800˚C [1961Wit]<br />

FeSi2 c = 783.3 ± 0.6<br />

a = 987.1<br />

b = 777.7<br />

c = 783.7<br />

calculated by [2002Tan]<br />

a = 997.5<br />

b = 779.8<br />

c = 787.4<br />

Fe0.875Ni0.125Si2 (FeIsite) a = 999.3<br />

b = 779.0<br />

c = 786.4<br />

Fe0.875Ni0.125Si2 (FeIIsite) [2002Tan]<br />

ζα, FeSi2(h) tP3 69.5 to 73.5 at.% Si [1982Kub]<br />

1220 - 937 P4/mmm a = 269.01 [V-C2]<br />

FeSi2 c = 513.4<br />

Ni4Si cP4 a = 350.6 at 23.5 at.% Si [2005Him]<br />

< 1035 Pm3m dissolves about 8 at.% Fe at 427˚C [V-C2]<br />

AuCu3 dissolves 6.7 at.% Fe at 900˚C, Fe substitutes for<br />

both Ni <strong>and</strong> Si atoms [1990Li, 1991Zha]<br />

dissolves 6.4 at.% Fe at 21.1 at.% Si <strong>and</strong> 800˚C<br />

[2005Him]<br />

β2,Ni3Si (h1) < 1115 - 990<br />

mC16 ~24.5-25.5 at.% Si [Mas2]<br />

β3,Ni3Si (h2) < 1170 - 1115<br />

mC16 ~24.5-25.5 at.% Si [Mas2]<br />

ν, Ni31Si12 hP43 a = 666.7 ± 0.2 [V-C2], hP14 in [Mas2] at 27.9 at.% Si<br />

< 1242 P321 c = 1228 ± 0.2 [Mas2]<br />

Ni31Si12 γ = 120˚ dissolves >7.9 at.% Fe at 800˚C [2005Him]<br />

δ, Ni2Si oP12 a = 502.2 ± 0.1 at 33.3 at.% Si [V-C2, Mas2] dissolves 33.3 at.% Fe<br />

< 1255 Pnma b = 374.1 ± 0.1 at 1100˚C [1972Fro]<br />

Co2Si c = 708.8 ± 0.1<br />

θ, Ni2Si hP6 a = 383.6 ± 0.1 [V-C2]<br />

1306 - 825 P6322 Ni2Si<br />

c = 494.8 ± 0.1 33.4 to 41 at.% Si [Mas2]<br />

DOI: 10.1007/978-3-540-70890-2_13 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

σ, Ni3Si2 oC80 a = 1222.9 [V-C2]<br />

< 830 Cmc2 b = 1080.5 oP80 in [Mas2]<br />

Ni3Si2 c = 692.4 39.0 to 41 at.% Si [Mas2]<br />

σ’, Ni3Si2 845 - 800<br />

39.2 to 41 at.% Si [Mas2]<br />

NiSi oP8 a = 562.8 ± 0.2 [V-C2]<br />

< 992 Pnma b = 519.0 ± 0.1 dissolves about 5 at.% Fe [1961Wit, 1968Dmi,<br />

1968Sid2]<br />

MnP c = 333.0 ± 0.1<br />

αNiSi2 cF12 a = 540.74 ± 0.05 Ni1.04Si1.93 [1968Mir, 1968Sid2]<br />

< 981 Fm3m<br />

CaF2<br />

dissolves 10 at.% Fe at 800˚C [1961Wit] <strong>and</strong><br />

about 12 at.% Fe at 850˚C [1968Mir]<br />

βNiSi2 993 - 981<br />

- - [Mas2]<br />

* τ1,Fe11Ni5Si4 c* at 20 at.% Si, 24 to 30 at.% Ni<br />

< 920 a = 613.1 [1943Gre]<br />

a = 613.5 ± 0.4 [1965Bor]<br />

a = 614.8 [1960Iwa]<br />

54.8Fe-25.2Ni-20Si at.% [1955Tak, 1960Tak,<br />

1994Koz, 1998Ike]<br />

* τ2,Fe3NiSi1.5 t* a = 832.5 [2001Duh]<br />

~500 c = 903 the existence needs a confirmation<br />

. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe–Ni–Si 13<br />

Fe<br />

Composition (at.%)<br />

Ni Si<br />

α + γ Ð τ1 920 p α 57.8 20.6 21.5<br />

γ 43.0 43.7 13.3<br />

τ1 54.8 25.2 20.0<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


14 13<br />

Fe–Ni–Si<br />

. Fig. 1<br />

Fe-Ni-Si. Partial FeNi 3-Ni 3Si section<br />

DOI: 10.1007/978-3-540-70890-2_13 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-Ni-Si. Partial liquidus surface projection in the Fe rich region<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Si 13<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


16 13<br />

Fe–Ni–Si<br />

. Fig. 3<br />

Fe-Ni-Si. Isothermal section at 800˚C<br />

DOI: 10.1007/978-3-540-70890-2_13 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-Ni-Si. Isopleth through the alloys 59.9Fe10.1Ni30Si - 71Fe-29Ni (at.%)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Si 13<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


18 13<br />

Fe–Ni–Si<br />

. Fig. 5<br />

Fe-Ni-Si. Isopleth through the 10 at.% Ni isoconcentrate<br />

DOI: 10.1007/978-3-540-70890-2_13 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–Ni–Si 13<br />

19<br />

[1933Dah] Dahl, O., Pfaffenberger, J., “Contribution to the Knowledge on Iron-Nickel <strong>Alloy</strong>s” (in German),<br />

Z. Metallkd., 25, 241–244 (1933) (Experimental, Mech. Prop., Magn. Prop., 4)<br />

[1938Alt] Altgauzen, O.N., Metallurg, (3), 3–14 (1938) as quoted by [1988Ray]<br />

[1943Gre] Greiner, E.S., Jette, E.R., Trans. Amer. Inst. Min. Met. Eng., 152, 48–63 (1943) (Crys. Structure,<br />

Experimental, <strong>Phase</strong> Diagram, *, 13)<br />

[1955Tak] Takeda, S., Iwama, Y., Muramoto, T., “Fundamental Research of Constant Permeability <strong>Alloy</strong>s. I. On<br />

the Cause of Perminvar Characteristics of the Senperm <strong>Alloy</strong>s of the Fe-Ni-Si system” (in Japanese),<br />

Nippon Kinzoku Gakkai-Si, 19, 123–136 (1955) (<strong>Phase</strong> Diagram, Experimental, Phys. Prop., *, 4)<br />

[1960Iwa] Iwama, Y., Takeda, S., “Fundamental Research on Constant Permeability <strong>Alloy</strong>s. III. Crystal Structure”,<br />

Nippon Kinzoku Gakkai-Si, 24, 538–540 (1960) (Crys. Structure, Experimental, 4)<br />

[1960Tak] Takeda, S., Iwama, Y., Sakakura, A., “Fundamental Research on Constant Permeability <strong>Alloy</strong>s. II.<br />

Equilibrium”, Nippon Kinzoku Gakkai-Si, 24, 534–538 (1960) (Morphology, <strong>Phase</strong> Diagram, Experimental,<br />

*, 7)<br />

[1961Wit] Wittmann, A., Burger, K.O., Nowotny, H., “Mono- <strong>and</strong> Disilicide <strong>Systems</strong> of the Fe Group”, Monatsh.<br />

Chem., 92(5), 961–966 (1961) (Crys. Structure, <strong>Phase</strong> Diagram, Experimental, 14)<br />

[1962Gla] Gladyshevskiy E.I., “Crystal Structure of Compounds <strong>and</strong> <strong>Phase</strong> Equilibria in <strong>Ternary</strong> System of Two<br />

Transition Metals <strong>and</strong> Silicon” (in Russian), Poroshk. Metall., 410, 46–49 (1962) (Crys. Structure, <strong>Phase</strong><br />

Relations, Experimental, 17)<br />

[1964Bow] Bowles, P.J., Ramstad, H.F., Richardson, F.D., “Activities of Silicon in Metals <strong>and</strong> <strong>Alloy</strong>s”, J. Iron Steel<br />

Inst., 202, 113–121 (1964) as quoted by [1999Mie]<br />

[1965Bor] Borusevich, L.K., Gladyshevsky, E.I., Kuzma Yu.B., Rozum, S.M., “The Fe-Ni-Si System” (in<br />

Ukrainian), Visn. Lviv. Derzh. Univ., Ser. Khim., (8), 83–87 (1965) (Crys. Structure, <strong>Phase</strong> Diagram,<br />

Experimental, *, 13)<br />

[1965Mir] Miroshnikov, L.A., Sidorenko, E.A., “The Quasibinary Section α-lebeauite-NiSi 2” (in Russian), Trudy<br />

Uralsk. Politekhn. Inst., (144), 78–81 (1965) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 3)<br />

[1965Bur] Burr, D.J., Butt, R.J., Wakeman, D.W., “Effect of Ni Additions on the Structure <strong>and</strong> Ductility of Fe-Si<br />

<strong>Alloy</strong>s”, J. Iron Steel Inst., 203, 500–501 (1965) (Crys. Structure, <strong>Phase</strong> Relations, Calculation, Experimental,<br />

Mechan. Prop., 6)<br />

[1968Mir] Miroshnikov, L.A., Sidorenko, F.A., Gel’d, P.V., “To Solubility of FeSi 2 <strong>and</strong> CoSi 2 in Disilicide of Nickel”<br />

(in Russian), Tr. Ural’sk. Politekhn. Inst., (167), 65–68 (1968) (<strong>Phase</strong> Diagram, Experimental, 5)<br />

[1968Sid1] Sidorenko, A.F., Dmitriev, E.A., Apasova, E.A., “Crystal Lattice Constants in Some Quasibinary <strong>Alloy</strong>s<br />

Based on FeSi” (in Russian), Tr. Ural’sk. Politekhn. Inst., (167), 124–127 (1968) (Crys. Structure, <strong>Phase</strong><br />

Relations, Experimental, 3)<br />

[1968Dmi] Dmitriev, E.A., “Solid Solutions of FeSi in NiSi” (in Russian), Tr. Ural’sk. Politekhn. Inst., (167),<br />

127–128 (1968) (Phys. Prop, 2)<br />

[1968Sid2] Sidorenko, F.A., Miroshnikov, L.A., Geld, P.V., “Range of Homogeneity <strong>and</strong> Structural Characteristics<br />

of Solid Solutions of the Higher Silicides of Nickel <strong>and</strong> Iron” (in Russian), Poroshk. Metall., (4), 53–59<br />

(1968) (Crys. Srtucture, <strong>Phase</strong> Relations, Experimental, Phys. Prop., 6)<br />

[1969Mir] Miroshnikov, L.A., Sidorenko, F.A., Geld, P.V., “Electronic Structure <strong>and</strong> <strong>Phase</strong> <strong>Diagrams</strong> of Quasibinary<br />

<strong>Systems</strong> Based on the Higher Silicides of Nickel <strong>and</strong> Cobalt” in “Teor. Eksp. Metody Issled. Diagramm<br />

Sostoyaniya Metal. Sist.” (in Russian), Dokl. Soveshch., Ageev, N.V., Ivanov, O.S., Grigorovich, V.K.,<br />

(Eds.), Nauka, Moscow, 25–28 (1969) (Crys. Structure, <strong>Phase</strong> Relations, Theory, Experimental, Magn.<br />

Prop., 6)<br />

[1970Gom] Goman’kov, V.I., Puzey, I.M., Mal’tsev, E.I., “Effect of <strong>Alloy</strong>ing Elements on the Superstructure of<br />

Ni 3Fe” (in Russian), Dokl. Akad. Nauk SSSR, 194(2), 309–311 (1970) (Crys. Structure, Experimental, 6)<br />

[1972Fro] Frolov, A.A., Sidorenko, F.A., Krentsis, R.P., Geld, P.V., “Structural Characteristics of Fe 2Si-Ni Silicide<br />

Solid Solutions” (in Russian), Zh. Neorg. Khim., 17, 2574–2575 (1972) (Crys. Structure, <strong>Phase</strong> Relations,<br />

Experimental, 5)<br />

[1975Yas] Yasunaka, T., Araki, T., “Effect of Microstructure on the Tensile Fracture in Fe-18Ni-5Si <strong>Alloy</strong>”, Trans.<br />

Nat. Res. Inst. Met., 17(5), 277–284 (1975) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, Mechan.<br />

Prop., 17)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


20 13<br />

Fe–Ni–Si<br />

[1975Ver] Vereshchagin, Yu.A., “Procedure for Synthesis, Homogeneity Regions <strong>and</strong> Lattice Spacings of Fe” (in<br />

Russian), Fiz. Metody Issled. Tverdogo Tela, (1), 40 (1975) (Crys. Structure, <strong>Phase</strong> Relations, Experimental,<br />

9)<br />

[1976Nar] Narita, K., Enokizono, M., “Effects of Ni, Al <strong>and</strong> Mn Addition on the Mechanical <strong>and</strong> Magnetic<br />

Properties of 6.5% Si-Fe Sheets”, IEEE Trans. Magn., 12(6), 873–873 (1976) (Mechan. Prop., Magn.<br />

Prop., 0)<br />

[1977Nic] Niculescu, V., Budnick, J.I., “Limits of Solubility, Magnetic Properties <strong>and</strong> Electron Concentration in<br />

Fe 3–xT xSi System”, Solid State Commun., 24(9), 631–634 (1977) (Crys. Structure, Experimental, Magn.<br />

Prop., 17)<br />

[1978Nar] Narita, K., Enokizono, M., “Effect of Nickel <strong>and</strong> Manganese Addition on Ductility <strong>and</strong> Magnetic<br />

Properties of 6.5 % Silicon-Iron <strong>Alloy</strong>”, IEEE Trans. Magn., 14(4), 258–262 (1978) (Morphology,<br />

Experimental, Magn. Prop., Mech. Prop., 5)<br />

[1979Ind] Inden, G., “Zwischenbericht 4”, 1979, Düsseldorf, Max-Planck-Institut für Eisenforschung as quoted by<br />

[1988 Ray]<br />

[1980Sri] Srivastava, S.C., “Electrodeposition of <strong>Ternary</strong> <strong>Alloy</strong>s: Developments in 1972 - 1978”, Surf. Technol.,<br />

10, 237–257 (1980) (Review, Electrochemistry, Magn. Prop., 121)<br />

[1980Rod] Rodionov, Y.L., Isf<strong>and</strong>iyarov, G.G., Zambrzhitskiy, V.N., “Influence of Annealing on the Redistribution<br />

of Atoms in the Austenite of Fe-Ni-Mo <strong>and</strong> Fe-Ni-Si”, Phys. Met. Metallogr., 49(2), 94–100 (1980)<br />

(Experimental, Kinetics, 8)<br />

[1980Cha] Chart, T., Putl<strong>and</strong>, F., Dinsdale, A., “Calculated <strong>Phase</strong> Equilibria for the Cr-Fe-Ni-Si System - I <strong>Ternary</strong><br />

Equilibria”, Calphad, 4(1), 27–46 (1980) (<strong>Phase</strong> Diagram, Calculation, 75)<br />

[1982Kub] Kubaschewski, O., “Iron - Silicon” in “Iron Binary <strong>Phase</strong> <strong>Diagrams</strong>”, Springer Verlag, Berlin, 136–139<br />

(1982) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, #, 23)<br />

[1982Yed] Yedneral, A.F., Rusanenko, V.V., Smirnova, A.V., “On the Structure of the Intermetallic <strong>Phase</strong><br />

Precipitated During Maraging of the <strong>Alloy</strong> Fe -18% Ni - 3% Si”, Phys. Met. Metall., 53(3), 111–117<br />

(1982), (Crys. Structure, Experimental, 7)<br />

[1983Zay] Zaytseva, R.D., Zakharova, N.A., Perkas, M.D., Rusanenko, V.V., Shaposhnikov, N.G., “Investigation of<br />

the Maraging of Fe-Ni-Si <strong>Alloy</strong>s <strong>and</strong> the Influence of Cobalt on the Process”, Phys. Met. Metall., 55(1),<br />

117–123 (1983), (Crys. Structure, Experimental, Kinetics, Phys. Prop., 11)<br />

[1988Ray] Raynor, G.V., Rivlin, V.G., “Fe-Ni-Si” in “<strong>Phase</strong> Equilibria in Iron <strong>Ternary</strong> <strong>Alloy</strong>s”, Inst. Metals, London,<br />

416–432 (1988) (Crys. Structure, <strong>Phase</strong> Diagram, Assessment, 20)<br />

[1990Kag] Kagawa, A., Hirata, M., Sakamoto, Y., J. Mater. Sci., 25, 5063–5069 (1990) as quoted by [1999Sun]<br />

[1990Li] Li, Y., Zhang, T., Zheng, Z., Zhu, Y., “Solution Behaviour of Various <strong>Alloy</strong>ing Elements in Ni3Si” (in<br />

Chinese), Acta Metall. Sin., 26(3), A172–A176 (1990) (<strong>Phase</strong> Diagram, Experimental, 9)<br />

[1991Zha] Zhang, T., Li, Y., Zheng, Z., Zhu, Y., “<strong>Alloy</strong>ing Behavior of Ni 3Si <strong>and</strong> the 900˚C Isotherms of Several<br />

Ni-Si-X <strong>Systems</strong> at Ni-Rich Corner” in “High-Temp. Ordered Intermetallic <strong>Alloy</strong>s IV”, Mater. Res. Soc.<br />

Symp. Proc., 213, 137–142 (1991) (<strong>Phase</strong> Diagram, Experimental, 7)<br />

[1994Rag] Raghavan, V., “Fe-Ni-Si (Iron-Nickel-Silicon)”, J. <strong>Phase</strong> Equilib., 15(6), 629–630 (1994) (<strong>Phase</strong> Diagram,<br />

Review, 4)<br />

[1994Koz] Kozakai, T., Miyazaki, T., “Experimental <strong>and</strong> Theoretical Investigations on <strong>Phase</strong> <strong>Diagrams</strong> of Fe<br />

Base <strong>Ternary</strong> Ordering <strong>Alloy</strong>s”, ISIJ Int., 34(5), 373–383 (1994) (<strong>Phase</strong> Diagram, Calculation, Magn.<br />

Prop., 18)<br />

[1995Slu] Sluiter, M., Kawazone, Y., “Site Preference of <strong>Ternary</strong> Additions in Ni 3Si” in “High-Temperature<br />

Ordered Intermetallic <strong>Alloy</strong>s VI”, Mater. Res. Soc.. Symp. Proc., 364(Pt.2), 1064–1069 (1995) (Experimental,<br />

Calculation, Theory, 13)<br />

[1998Ike] Ikeda, O., Himuro, Y., Ohnuma, I., Kainuma, R., Ishida, K., “<strong>Phase</strong> Equilibria in the Fe-Rich Portion of<br />

the Fe-Ni-Si System”, J. <strong>Alloy</strong>s Compd., 268, 130–136 (1998) (<strong>Phase</strong> Relations, Experimental, *, 13)<br />

[1998Lan] L<strong>and</strong>rum, G.A., Hoffmann, R., Evers, J., Boysen, H., “The TiNiSi Family of Compounds: Structure <strong>and</strong><br />

Bonding”, Inorg. Chem., 37(22), 5754–5763 (1998) (Crys. Structure, Experimental, 34)<br />

[1998Mie] Miettinen, J., “Approximate Thermodynamic Solution <strong>Phase</strong> Data for Steels”, Calphad, 22(2), 275–300<br />

(1998) (<strong>Phase</strong> Relations, Assessment, Calculation, 83)<br />

[1999Sun] Sung, P.K., Poirier, D.R., “Liquid-Solid Partition Rations in Nickel-Base <strong>Alloy</strong>s”, Metall. Mater. Trans. A,<br />

30A, 2173–2181 (1999) (Crys. Structure, Experimental, 41)<br />

[1999Mie] Miettinen, J., “Thermodynamic Description of Solution <strong>Phase</strong>s of <strong>Systems</strong> Fe-Cr-Si <strong>and</strong> Fe-Ni-Si with<br />

Low Silicon Contents <strong>and</strong> with Application to Stainless Steels”, Calphad, 23(2), 249–262 (1999) (<strong>Phase</strong><br />

Relations, Thermodyn., Calculation, 28)<br />

DOI: 10.1007/978-3-540-70890-2_13 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Si 13<br />

21<br />

[2001Duh] Duhaj, P., Svec, P., Sitek, J., Janickovic, D., “Thermodynamic, Kinetic <strong>and</strong> Structural Aspects of the<br />

Formation of Nanocrystalline <strong>Phase</strong>s in Fe 73.5–xNi xCu 1Nb 3Si 13.5B 9 <strong>Alloy</strong>s”, Mater. Sci. Eng. A, 304–306,<br />

178–186 (2001) (Crys. Structure, Experimental, 15)<br />

[2001Him] Himuro, Y., Ikeda, O., Kainuma, R., Ishida, K., “Effect of Ausaging on the Morphology of Martensite in<br />

an Fe-25%Ni-7.5%Si <strong>Alloy</strong>”, J. Phys. IV, France, 11(PR8), 205–210 (2001) (<strong>Phase</strong> Relations, Morphology,<br />

Experimental, Mechan. Prop., 14)<br />

[2002Tan] Tani, J.-I., Kido, H., “First Princple Calculation of the Geometrical <strong>and</strong> Electronic Structure of<br />

Impurity-Doped β-FeSi 2 Semiconductors”, J. Solid State Chem., 163, 248–252 (2002) (Crys. Structure,<br />

Calculation, Phys. Prop., 23)<br />

[2002Him] Himuro, Y., Kainuma, R., Ishida, K., “Martensitic Transformation <strong>and</strong> Shape Memory Effect in<br />

Ausaged Fe-Ni-Si <strong>Alloy</strong>s”, ISIJ Int., 42(5), 184–190 (2002) (<strong>Phase</strong> Relations, Experimental, 21)<br />

[2002Fet] Fetzer, C., Dezsi, I., Vantomme, A., Wu, M.F., Jin, S., Bender, H., “<strong>Ternary</strong> Co xFe (1–x)Si 2 <strong>and</strong><br />

Ni xFe (1–x)Si 2 Formed by Ion Implantation in Silicon”, J. Appl. Phys., 92(7), 3688–3693 (2002) (Crys.<br />

Structure, <strong>Phase</strong> Relations, Experimental, Electronic Structure, 27)<br />

[2003Rag] Raghavan, V., “(Iron-Nickel-Silicon)”, J. <strong>Phase</strong> Equilib., 24(3), 269–271 (2003) (Crys. Structure, <strong>Phase</strong><br />

Diagram, Assessment, 14)<br />

[2004Aru] Arushanov, E., Nenkov, K., Eckert, D., Vinzelberg, H., Roessler, U.K., Behr, G., Mueller, K.-H.,<br />

Schumann, J., “Magnetic <strong>and</strong> Electrical Properties of Cr- <strong>and</strong> Ni-doped β-FeSi 2 Single Crystals”, J. Appl.<br />

Phys., 96(4), 2115–2121 (2004) (<strong>Phase</strong> Relations, Experimental, Electr. Prop., Magn. Prop., 31)<br />

[2004Him] Himuro, Y., Tanaka, Y., Kamiya, N., Ohnuma, I., Kainuma, R., Ishida, K., “Stability of Ordered L12<br />

<strong>Phase</strong> in Ni 3Fe-Ni 3X (X: Si <strong>and</strong> Al) Pseudobinary <strong>Alloy</strong>s”, Intermetallics, 12(6), 635–643 (2004) (Crys.<br />

Structure, Morphology, <strong>Phase</strong> Diagram, Experimental, Electr. Prop., Magn. Prop., *, 19)<br />

[2005Him] Himuro, Y., Tanaka, Y., Ohnuma, I., Kainuma, R., Ishida, K., “<strong>Phase</strong> Equilibrua <strong>and</strong> γ’-L1 2 <strong>Phase</strong><br />

Stability in the Ni-rich Portion of Ni-Fe-Si <strong>and</strong> Ni-Fe-Al <strong>Systems</strong>”, Intermetallics, 13, 620–630 (2005)<br />

(Crys. Structure, <strong>Phase</strong> Diagram, Experimental, 19)<br />

[2005Hos] Hosseini Madaah, H.R., Bahrami, A., “Preparation of Nanocrystalline Fe-Si-Ni Soft Magnetic Powders<br />

by Mechanical <strong>Alloy</strong>ing”, Mat. Sci. Eng. B, 123, 74–79 (2005) (Morphology, Experimental, Magn.<br />

Prop., 17)<br />

[2008Kuz] Kuznetsov, V., “Fe-Ni (Iron-Nickel)”, MSIT Binary Evaluation Program in MSIT Workplace, G. (Ed.),<br />

MSI, Materials Sciens International Servises GmbH, Stuttgart, to be published (2008) (Crys. Structure,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, Phys. Prop., #, 41)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_13<br />

ß Springer 2009


Iron – Nickel – Titanium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Gautam Ghosh<br />

Introduction<br />

Fe–Ni–Ti 14<br />

1<br />

A fairly large number of experimental studies have been carried out to establish the ternary<br />

phase equilibria [1938Vog, 1941Vog, 1963Spe, 1967Dud, 1981Loo, 1999Abr, 2006Ria]. The<br />

first comprehensive study of phase equilibria was carried out by [1938Vog]. They used<br />

metallography, thermal analysis <strong>and</strong> X-ray diffraction techniques. [1963Spe] reported partial<br />

isothermal sections, representing phase equilibria of Fe corner, at 700 <strong>and</strong> 1100˚C. [1967Dud]<br />

established a quasibinary section, TiFe-TiNi, using twenty-one ternary alloys prepared using<br />

elements of purity greater than 99.94%. They used metallography, thermal analysis, X-ray<br />

diffraction techniques to determine the phase equilibria. [1981Loo] employed diffusion<br />

couples technique to determine the isothermal section at 900˚C. They prepared alloys using<br />

elements of following purity: 99.95% Fe, 99.99% Ni <strong>and</strong> 99.97% Ti. Three types of diffusion<br />

couples, element/element, element/alloy, alloy/alloy, <strong>and</strong> fifteen in total, were prepared by<br />

solid state resistance welding. The couples were then sealed in evacuated silica tubes <strong>and</strong><br />

annealed at 900˚C for up to 900 h. Except [1981Loo], other experimental studies were<br />

restricted to alloys containing less than 50 at.% Ti. The results of these phase equilibrium<br />

studies were reviewed earlier [1949Jae, 1985Gup, 1991Gup].<br />

More recently, [1994Ali1] reported the phase equilibria of alloys containing more than 50<br />

at.% Ti. They used Armco Fe, N-00 grade electrolytic Ni, <strong>and</strong> iodide Ti to prepare alloys by arc<br />

melting in an inert atmosphere. They prepared a number of ternary alloys in the Ni <strong>and</strong> Fe<br />

atomic ratios of 1:3, 1:1, <strong>and</strong> 3:1. The phase equilibria were determined using thermal analysis,<br />

metallography <strong>and</strong> X-ray diffraction. [1994Ali2] carried out rapid solidification of ternary<br />

alloys containing up to 33.85 at.% Fe <strong>and</strong> 26.8 at.% Ni. The alloys were subsequently annealed<br />

at 900˚C for 25 h, <strong>and</strong> the microstructures were compared. [1994Jia] measured the partitioning<br />

of Fe <strong>and</strong> Ti between (Ni) <strong>and</strong> TiNi 3 (or the tie lines) at 1000, 1100 <strong>and</strong> 1200˚C. They<br />

prepared diffusion couples between 5Fe-Ni (mass%) <strong>and</strong> 21Ti-1Fe-Ni (mass%) alloys. The<br />

couples were annealed for up to 300 h followed by quenching into iced brine. The compositions<br />

of the phases were measured by electron probe microanalysis.<br />

[1999Abr] determined the isothermal section at 1000˚C using both bulk alloys <strong>and</strong><br />

diffusion couples. They prepared bulk alloys using iodide grade Ti, electrolytic grade Ni <strong>and</strong><br />

carbonyl grade Fe in an arc furnace. The bulk alloys were equilibrated at 1200˚C for 150 h.<br />

They also prepared a large number of couples using Fe-Ni, Fe-Ti <strong>and</strong> Ni-Ti alloys that were<br />

welded at 1200˚C <strong>and</strong> at a pressure of 19.6 MPa. The couples were subsequently annealed at<br />

1200˚C. The diffusion paths <strong>and</strong> phase compositions were established by means of electron<br />

probe microanalysis. Besides graphical representation, [1999Abr] tabulated the tie line <strong>and</strong> tie<br />

triangle compositions. Based on diffusion couple results, [1999Abr] identified six two-phase<br />

regions (TiNi-TiFe 2, TiNi-TiNi 3, TiNi 3-TiFe 2, γ(Fe,Ni)-TiNi 3, γ(Fe,Ni)-TiFe 2) <strong>and</strong> three<br />

three-phase regions (γ(Fe,Ni)-TiFe 2-TiNi 3,TiFe 2-TiNi-TiNi 3,(βTi)-TiFe-Ti 2Ni).<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


2 14<br />

Fe–Ni–Ti<br />

[2006Ria] studied phase relations in six ternary alloys, with composition along Ti 2Ni-<br />

Ti 2Fe, using SEM-EDS <strong>and</strong> DTA methods. The alloys were prepared by arc melting using 99.99<br />

mass% Fe, 99.99 mass% Ni <strong>and</strong> 99.98 mass% Ti. They were homogenized at 900˚C for 15 days.<br />

The authors reported phase compositions <strong>and</strong> a tentative isopleth.<br />

[1999Efi, 2000Efi] studied microstructures of TiFe/Ni diffusion couples annealed at<br />

1200˚C for up to 1.5 h. Based on the dynamics of interfacial microstructure, they derived<br />

the interdiffusion coefficients.<br />

Besides phase equilibria studies at high temperatures, the effect of Fe on the low temperature<br />

martensitic transformations of TiNi has also been studied extensively [1982Hwa1,<br />

1982Hwa2, 1982Nis, 1983Sav, 1984Ano, 1984Pus, 1985Goo, 1985Sav, 1986Edm, 1987Chu,<br />

1987Kha, 1987Sas, 1989Ano1, 1989Ano2, 1990Rao, 1991Pro, 1992Ruz, 1992Shi, 1993Mat,<br />

1995Air, 1995Gue, 1997Har, 1998Tam, 1999Zha, 2000Chu, 2000Lap, 2000Vor, 2000Xu,<br />

2001Mur, 2002Ish, 2005Cho, 2005Wan, 2006Fan, 2007Pro].<br />

[2001Gup] reviewed some of the results of recent phase equilibria studies. Additional<br />

reviews have also been published by [2006Cac] <strong>and</strong> [2006Gho].<br />

A summary of experimental studies on phase relations is given in Table 1.<br />

Binary <strong>Systems</strong><br />

The Fe-Ti, Fe-Ni <strong>and</strong> Ni-Ti binary phase diagrams are accepted from [1991Mur], [2008Kuz]<br />

<strong>and</strong> [2008Ted], respectively.<br />

Solid <strong>Phase</strong>s<br />

The solubility of Fe in (βTi) can be increased from 24 to 29.5 at.% by rapid solidification<br />

[1994Ali2] where the cooling rate was estimated to be 10 6 ˚C·s –1 . Rapid solidification also<br />

suppresses the eutectoid reaction (βTi) Ð (αTi) + TiFe. In the ternary alloys, up to 25.95 at.%<br />

Fe <strong>and</strong> 8.23 at.% Ni can be dissolved in (βTi) by rapid solidification.<br />

[1968Abr] reported the lattice parameter of two sets of austenitic alloys: Fe-27Ni (at.%)<br />

containing up to 10 at.% Ti <strong>and</strong> Fe-30Ni (at.%) containing up to 6 at.% Ti. Powders of these<br />

alloys were solution treated at 1024˚C <strong>and</strong> quenched to room temperature. Variation of lattice<br />

parameter gives the solubility limit of Ti in austenite at 1024˚C. For example, it is about 5.4<br />

at.% Ti in Fe-27Ni (at.%) alloy.<br />

Fcc to bcc martensitic transformation in Fe rich alloys has been investigated extensively<br />

[1963Yeo, 1969Abr, 1972Kok, 1974Whi, 1977Hal, 1978Uva, 1984Kab, 1984Tad]. With the<br />

addition of Ti in Fe-Ni alloys, the crystal symmetry of martensite changes from bcc to bct due<br />

to clustering <strong>and</strong>/or precipitation of metastable coherent precipitates (L12-Ni3Ti) [1969Abr,<br />

1974Whi, 1977Hal]. The c/a ratio of bct martensite increases linearly with Ti content in the<br />

alloy; however, the degree of tetragonality depends on the Ni content in the alloy.<br />

TiFe <strong>and</strong> TiNi form a continuous solution in the solid state [1967Dud, 1981Loo], <strong>and</strong> the<br />

lattice parameter decreases linearly from TiNi to TiFe [1967Dud]. Using a linear muffin-tin<br />

orbital method, [2002Boz] calculated the formation energies associated with dilute additions<br />

of Ni in B2-TiFe. In the dilute limit of Ni, the formation energy of (Fe,Ni) 0.5Ti 0.5 is predicted<br />

to be more negative than Fe0.5(Ti,Ni)0.5 implying that Ni atoms prefer to occupy the Fe<br />

sublattice in TiFe.<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


At 900˚C, TiFe 2 dissolves up to 28 at.% Ni, TiNi 3 dissolves up to 14 at.% Fe, <strong>and</strong> Ti 2Ni<br />

dissolves up to 26 at.% Fe [1981Loo]. The solubility of Fe in TiNi 3 increases to 15.4 ±⊊0.8<br />

at.% Fe at 1200˚C [1999Efi]. In TiNi 3 <strong>and</strong> NiTi 2, Fe resides primarily on the Ni sublattice. In<br />

TiFe 2, Ni resides primarily on the Fe sublattice.<br />

Binary B2-TiNi undergoes martensitic transformation at low temperature to a monoclinic<br />

structure, commonly known as B19’ martensite [1992Shi, 1995Gue]. However, at slightly Ni<br />

rich composition, the presence of dislocations, or the presence of metastable Ti3Ni4 precipitates<br />

are known to promote another displacive transformation to a rhombohedral structure<br />

preceding B19’ transformation, commonly known as the R phase [1987Sas, 1995Air, 1997Har,<br />

1998Tam, 2001Mur, 2002Ish, 2005Ste, 2006Cho, 2006Fan, 2006Yam]. Depending on the<br />

composition <strong>and</strong> thermal history of binary TiNi, <strong>and</strong> with the addition of Fe, the transformation<br />

temperatures B2 → R → B19’ may be well separated. The presence of the R-phase is very<br />

useful for shape memory applications which rely on small thermal hysteresis.<br />

[1994Jia] reported the partitioning ratio of Fe, defined by x Fe(TiNi 3)/x Fe(Ni), where x Fe is<br />

the mole fraction of Fe, between (Ni) <strong>and</strong> TiNi3. The partitioning ratios at 1000, 1100 <strong>and</strong><br />

1200˚C were 0.41, 0.44 <strong>and</strong> 0.61, respectively.<br />

There is no ternary phase in this system. The details of the crystal structures <strong>and</strong> lattice<br />

parameters of the solid phases are listed in Table 2.<br />

Quasibinary <strong>Systems</strong><br />

Even though there are no true quasibinary sections, two sections have been reported as quasibinary.<br />

[1938Vog] reported the TiFe2-TiNi3 section with the eutectic reaction L Ð TiFe2 +<br />

TiNi 3 at 1320˚C. [1967Dud] established the section TiFe-TiNi, which is shown in Fig. 1. The<br />

continuous solid solubility between TiFe <strong>and</strong> TiNi was confirmed by lattice parameter <strong>and</strong><br />

hardness measurements. [1967Dud] established only the solidus boundary. However, in the<br />

TiFe-end both liquid+TiFe 2 <strong>and</strong> liquid+TiFe 2+Ti(Fe,Ni) phase regions should appear due to<br />

formation of TiFe. The liquidus line expected by [1967Dud] appears to be inconsistent with<br />

the investigated solidus. Also, in agreement with the comments by [1991Gup] it is here<br />

reported with a minimum so that B2-Ti(Fe,Ni) melts congruently around 1270˚C.<br />

Invariant Equilibria<br />

Figure 2 shows the reaction scheme involving five invariant (U 1,U 2,E 1,U 3,U 4) <strong>and</strong> a<br />

maximum (e 1) reactions. Among these, e 1,U 1 <strong>and</strong> E 1 were reported by [1938Vog] while U 3<br />

<strong>and</strong> U 4 were reported by [1994Ali1]. The invariant reaction U 2 has not been experimentally<br />

verified, but it was speculated by [1991Gup]. The composition of the phases participating in<br />

e1, U1, E1 <strong>and</strong> U3 are listed in Table 3. These compositions were read from the superimposed<br />

liquidus <strong>and</strong> projection diagrams provided by [1938Vog], [1994Ali1] <strong>and</strong> [2001Gup].<br />

Liquidus Surface<br />

Fe–Ni–Ti 14<br />

3<br />

The liquidus surface <strong>and</strong> projection diagram for the composition range Fe-TiFe 2-TiNi 3-Ni was<br />

presented by [1938Vog]. The superimposed liquidus surface <strong>and</strong> projection diagram for the Ti<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


4 14<br />

Fe–Ni–Ti<br />

corner was reported by [1994Ali1], <strong>and</strong> slightly modified by [2001Gup]. Using these results<br />

<strong>and</strong> the accepted binary phase diagrams, the liquidus surface shown in Fig. 3 was constructed.<br />

Isothermal Sections<br />

[1963Spe] reported partial isothermal sections of the Fe corner at 700 <strong>and</strong> 1100˚C; however,<br />

did not provide details of the experimental techniques <strong>and</strong> procedures. Figure 4 shows a<br />

partial isothermal section of the Fe rich corner at 1100˚C [1963Spe]. Figure 5 <strong>and</strong> 6 show<br />

isothermal sections at 1000 [1999Abr] <strong>and</strong> 900˚C [1981Loo], respectively. The results of<br />

[1981Loo] <strong>and</strong> [1999Abr] agree very well; however, a major discrepancy is that [1999Abr]<br />

observed very little solubility of Fe in Ti 2Ni while [1981Loo] reported that about 78 % Ni sites<br />

in Ti 2Ni can be substituted by Fe i.e., the solid solubility is about 26 at.% Fe. In another<br />

investigation, [1994Ali2] reported that only about 1.5 at.% Fe dissolves in Ti2Ni where rapidly<br />

solidified Fe-Ni-Ti alloys were annealed at 900˚C for only 25 h compared to up to 900 h by<br />

[1981Loo]. It is not clear if a short annealing treatment used by [1994Ali2] is responsible for<br />

the much lower solubility of Fe in Ti 2Ni compared to [1981Loo]. The continuous solubility of<br />

TiFe <strong>and</strong> TiNi observed by [1981Loo] <strong>and</strong> [1999Abr] confirms the earlier results of<br />

[1967Dud]. In Figs. 5 <strong>and</strong> 6, the widths of TiNi <strong>and</strong> TiNi 3 fields have been adjusted to make<br />

them consistent with the accepted Ni-Ti phase diagram. The solubility of Fe in TiNi 3 at 900˚C<br />

is about 15 at.% [1981Loo] which is much higher than reported by [1938Vog]. Figure 7 shows<br />

a partial isothermal section of the Fe corner at 700˚C [1963Spe].<br />

Temperature – Composition Sections<br />

Several temperature-composition sections have been reported. Figures 8, 9 <strong>and</strong> 10 show<br />

polythermal sections at 8, 12 <strong>and</strong> 14.4 mass% Ti [1938Vog], respectively, <strong>and</strong> Fig. 11 shows<br />

an isopleth at 66.67 at.% Ti [2006Ria]. While the later authors identified a two-phase field,<br />

Ti2(Fe,Ni)+Ti(Fe,Ni), in the isopleth based on the microstructural observations, this is most<br />

likely to have caused by non-stoichiometric alloy composition. To be consistent with the<br />

isothermal section at 900C in Fig. 6, the above mentioned two-phase field is considered as a<br />

single-phase field Ti 2(Fe,Ni) in Fig. 11. Figures 12 <strong>and</strong> 13 show temperature-composition<br />

sections at constant Fe:Ni mass ratios of 90:10 <strong>and</strong> 40:60, respectively [1938Vog]. The<br />

existence of two invariant reactions at 1200˚C (U 1) <strong>and</strong> at 1120˚C (E 1) is reflected in Figs. 8<br />

to 10. The partial isopleths of the Ti corner <strong>and</strong> at constant Fe:Ni atomic ratios of 1:3, 1:1 <strong>and</strong><br />

3:1 are shown in Figs. 14, 15 <strong>and</strong> 16, respectively [1994Ali1]. On the basis of these three<br />

isopleths, [1994Ali1] gave a superimposed partial liquidus surface <strong>and</strong> projection diagram for<br />

the Ti corner. Due to the existence of (βTi)+Ti(Fe,Ni) phase field in Fig. 14, the original<br />

projection diagram was slightly modified by [2001Gup].<br />

Thermodynamics<br />

[1975Ost] reported the enthalpy of dissolution of Ti in Fe-Ni melts. [1991Lue] measured the<br />

enthalpy of mixing of liquid Tix(Fe0.89Ni0.11)1–x, 0.295 ≤ x ≤ 0.041, at 1600˚C using a highvacuum<br />

high-temperature calorimeter. They also modeled the molar heat of mixing of the<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


entire Fe-Ni-Ti system using various extrapolation methods. Subsequently, these experimental<br />

data were used to validate “thermodynamic adapted” power series for the extrapolation of<br />

thermodynamic quantities [1995Tom]. [1999Thi] also carried out calorimetric measurement<br />

of heat of mixing of liquid alloys in three composition ranges: (i) (Fe 84Ti 16) 1–xNi x, 0.02 < x <<br />

0.35 at 1621˚C, (ii) (TiFe 2) 1–xNi x, 0.02 < x < 0.4 at 1643˚C, <strong>and</strong> (iii) (TiNi) 1–xFe x, 0.02 < x <<br />

0.8 at 1645˚C. [1999Thi] used an associate model to describe the heat of mixing of ternary<br />

alloys. Two associates, TiNi3 <strong>and</strong> TiFe, were assumed to be present in the liquid. In the entire<br />

composition range, the model calculations agree very well with the experimental data implying<br />

that binary interactions are sufficient to describe the excess heat of mixing. Their model<br />

calculations also agree very well with the experimental data of [1991Lue]. The functional<br />

representation of experimental heat of mixing along four composition sections is provided in<br />

Table 4. Figure 17 shows the isoenthalpy (mixing) contours at 1643˚C [1999Thi]. [1991Lue]<br />

also reported isoenthalpy (mixing) contours by an extrapolation method, but their results<br />

differ significantly from [1999Thi].<br />

[1990Kum] calculated phase boundaries involving bcc, fcc ((αFe), (γFe)) <strong>and</strong> Ti2Ni by<br />

CALPHAD method. They did not consider any ternary interaction parameter, <strong>and</strong> partial<br />

isothermal sections were calculated at 850, 950, 1050 <strong>and</strong> 1150˚C. Later, [1998Mie] also<br />

applied CALPHAD method to calculate phase equilibria involving liquid, (αFe) <strong>and</strong> (γFe)<br />

phases. He introduced asymmetric ternary interaction parameters for the liquid phase <strong>and</strong> a<br />

symmetric ternary interaction parameter for the bcc phase, but no ternary interaction<br />

parameter for the fcc phase. The calculated isothermal sections of Fe corner at 1100 <strong>and</strong><br />

1200˚C were found to be in good agreement with the experimental data.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–Ni–Ti 14<br />

5<br />

A summary of experimental investigation of properties is given in Table 5.<br />

Ti 0.5(Fe 1–xNi x) 0.5 alloys are known to exhibit shape memory effect [1999Zha, 2000Jia,<br />

2000Xu, 2005Wan, 2006Cho, 2007Pro]. [2000Xu] obtained a maximum shape recovery strain<br />

of 5.6% after deforming Ti 50Fe 2Ni 48 alloy at –70˚C. The damping behavior [2006Fan],<br />

resistivity [1987Chu, 2005Cho] <strong>and</strong> magnetic susceptibility [2005Cho, 2005Yam] ofB2-TiNi<br />

(Fe) alloys have also been reported. The hot deformation behavior <strong>and</strong> anomalous ductility of<br />

Ti 50Fe 2Ni 48 has been studied by Nishida et al. [2003Nis].<br />

The single crystal elastic constants (c’ <strong>and</strong> c 44) ofB2-TiNi(Fe) alloys have been studied by<br />

ultrasonic resonance method [1987Kha, 1999Zha]. It has been shown that both c’ <strong>and</strong> c 44<br />

decrease sharply near the martensitic transformation temperature.<br />

Hydriding behavior of TiFe(Ni) phase has been investigated [1999Lee, 2003Miy, 2004Jan,<br />

2005Jan]. [1999Lee] studied hydriding behavior of TiFe 1–xNi x for x = 0.1, 0.15 <strong>and</strong> 0.2. They<br />

found that partial substitution of Fe by Ni in TiFe does not change the hydriding behavior,<br />

except that these alloys can be hydrided without the activation treatment. Nanocrystalline<br />

TiFe 0.25Ni 0.75 alloy has 1.5 times the discharge capacity of TiFe [2004Jan, 2005Jan].<br />

C14-Ti(Fe 1–xNi x) 2 is antiferromagnetic, <strong>and</strong> the Néel temperature of C14-Ti(Fe 1–xNi x) 2<br />

decreases with increasing Ni content [2005Yam].<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


6 14<br />

Fe–Ni–Ti<br />

Miscellaneous<br />

Discontinuous precipitation in ternary metastable alloys has been studied several times<br />

[1963Spe, 1973Zem, 1979Fou, 1979Zem, 1981Zem, 1995Zem]. [1963Spe] investigated an<br />

Fe-5.8Ti-29.7Ni (mass%) alloy in the temperature range of 400 to 975˚C, <strong>and</strong> [1979Fou]<br />

investigated an Fe-6.5Ti-28.5Ni (mass%) alloy in the temperature range of 400 to 900˚C.<br />

[1979Zem] used Fe-(2 to 5)Ti-(25 to 26)Ni (mass%) alloys heat treated at 790˚C. According to<br />

[1963Spe], ternary alloys may exhibit two types discontinuous precipitations<br />

g ! g1 þ TiNi3<br />

g1 ! g2 þðFe; NiÞ2Ti; where γ 1 <strong>and</strong> γ 2 are austenitic solid solutions with different solute contents. Both<br />

[1979Fou] <strong>and</strong> [1979Zem] observed only the first discontinuous reaction where TiNi 3 is a<br />

metastable phase because the alloys lie in the γ+TiFe 2 phase field. The second discontinuous<br />

reaction is very sluggish [1963Spe].<br />

[1988Sag, 1992Sag] studied the effect of severe plastic deformation of austenitic 2.6Ti-Fe-<br />

36Ni alloy containing equilibrium TiNi 3 (η, D0 24) <strong>and</strong> metastable TiNi 3 (γ’, L1 2) precipitates<br />

which were obtained by adjusting the aging treatments. Upon severe plastic deformation both<br />

types of precipitates dissolve in the matrix due to strong interaction with dislocations<br />

[2002Kuz].<br />

[1995Ali] carried out rapid solidification of 29 alloys in the composition range Ti-TiFe-<br />

TiNi. They reported the phases present after rapid solidification <strong>and</strong> also after aging at 900˚C<br />

for 25 h.<br />

The hot deformation of austenitic alloys <strong>and</strong> the resulting properties were studied by<br />

[1989Gor, 1991Pro]. The martensitic transformation (γ→α) start temperature (M s) of<br />

Fe-22.5Ni (mass%) [1963Yeo], Fe-27Ni (mass%) [1969Abr] <strong>and</strong> Fe-29.5Ni (mass%)<br />

[1969Abr] alloys decreases with the addition of Ti.<br />

The effect of Fe on the martensitic transformations (B2 → R → B19’) in TiNi has been<br />

studied extensively [1982Hwa1, 1982Hwa2, 1982Nis, 1983Sav, 1984Ano, 1984Pus, 1985Goo,<br />

1985Sav, 1986Edm, 1987Chu, 1987Kha, 1987Sas, 1989Ano1, 1989Ano2, 1990Rao, 1991Pro,<br />

1992Ruz, 1992Shi, 1993Mat, 1995Air, 1995Gue, 1997Har, 1998Tam, 1999Zha, 2000Chu,<br />

2000Lap, 2000Vor, 2000Xu, 2001Mur, 2002Ish, 2005Cho, 2005Wan, 2006Fan, 2007Pro].<br />

Addition of Fe decreases both pre-martensitic <strong>and</strong> martensitic transformation temperatures,<br />

<strong>and</strong> stabilizes the R phase (rhombohedral).<br />

[1999Efi] reported the interdiffusion coefficient of ternary solid solutions (γ) at 1200˚C<br />

with nickel contents of 87 to 99 at.%.<br />

[1985Val] found that the average magnetic moment of γ’FeNi 3 decreases when Fe is<br />

replaced by Ti.<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1<br />

Investigations of the Fe-Ni-Ti <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference<br />

Fe–Ni–Ti 14<br />

Method/Experimental<br />

Technique Temperature/Composition/<strong>Phase</strong> Range Studied<br />

[1938Vog] LOM, DTA Fe-Ni-Ni3Ti-Fe3Ti, vertical sections<br />

[1941Vog] LOM 900-1220˚C, Ni-17Fe-14Ti (mass%)<br />

[1963Spe] LOM, TEM, XRD Partial isothermal sections at 700 <strong>and</strong> 1100˚C,<br />

Fe-30Ni-6Ti (mass%)<br />

[1967Dud] DTA, XRD, hardness TiNi-TiFe<br />

[1968Abr] XRD Fe-(27-30) at.% Ni-(1-10) at.% Ti<br />

[1975Ost] Calorimetry 1600˚C, liquid<br />

[1981Loo] LOM, XRD, EPMA Isothermal section at 900˚C<br />

[1991Lue] Calorimetry 1600C, liquid<br />

[1994Ali1,<br />

1994Ali2]<br />

DTA, XRD, metallography Ti-TiFe-TiNi; vertical sections<br />

7<br />

[1994Jia] EPMA 1000 to 1200˚C, partitioning ratio between (Ni) <strong>and</strong><br />

Ni3Ti [1995Ali] XRD 900C; Ti-TiFe-TiNi<br />

[1999Abr] EPMA Isothermal section at 1000˚C<br />

[1999Efi] EPMA, hardness 1200C, interdiffusion<br />

[1999Thi] Calorimetry 1624-1645˚C, liquid<br />

[2000Efi] EPMA, hardness 1100-1250˚C, interdiffusion<br />

[2006Ria] SEM-EDS, DTA Ti2Ni-Ti2Fe L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


8 14<br />

Fe–Ni–Ti<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range<br />

[˚C]<br />

Pearson<br />

Symbol/<br />

Group<br />

Space/<br />

Prototype<br />

Lattice Parameters<br />

[pm] Comments/References<br />

(δFe)(h2) cI2 a = 293.15 pure Fe at 1390˚C [Mas2]<br />

1538 - 1394 Im3m<br />

W<br />

γ, (γFe,Ni) cF4 a = 358.37 Fe71.74Ni27.07Ti1.19, at 20˚C [1968Abr]<br />

Fm3m a = 359.13 Fe68.27Ni26.96Ti4.77, at 20˚C [1968Abr]<br />

Cu a = 358.90 Fe68.32Ni30.38Ti1.3, at 20˚C [1968Abr]<br />

a = 359.39 Fe64.39Ni29.65Ti5.96, at 20˚C [1968Abr]<br />

a = 359.0 Fe31Ni63Ti6, at 20˚C [1981Loo]<br />

a = 365.2 Fe31Ni63Ti6, at 900˚C [1981Loo]<br />

(γFe)(h1) 1394 - 912<br />

a = 364.67 pure Fe [Mas2]<br />

(Ni)<br />

< 1455<br />

a = 352.32 pure Ni at 20˚C [V-C2]<br />

(αFe)(r) cI2 a = 286.65 pure Fe at 20˚C [V-C2]<br />

< 912 Im3m<br />

W<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [V-C2]<br />

P63/mmc Mg<br />

c = 396.0<br />

(βTi)(h) cI2 a = 330.65 [Mas2]<br />

1670 - 882 Im3m<br />

W<br />

(αTi)(r) hP2 a = 295.06 pure Ti at 25˚C [Mas2]<br />

≤ 882 P63/mmc Mg<br />

c = 468.25<br />

γ’FeNi3 cP4 a = 355.23 63 to 85 at.% Ni [2008Kuz]<br />

≤ 517 Pm3m<br />

AuCu3 TiFe2 hP12 a = 478.7 24.0 to 36.0 at.% Ti [V-C2]<br />

≤ 1427 P63/mmc c = 781.5<br />

MgZn2 dissolves up to 28 at.% Ni [1981Loo]<br />

Ti(Fe,Ni) cP2 a = 300.0 Fe10.2Ni39.8Ti50, at 20˚C [1967Dud]<br />

Pm3m a = 298.91 Fe25.3Ni24.7Ti50, at 20˚C [1967Dud]<br />

CsCl a = 298.18 Fe35.3Ni14.7Ti50, at 20˚C [1967Dud]<br />

TiFe<br />

≤ 1317<br />

a = 297.6 49.8 to 51.8 at.% Ti [V-C2]<br />

TiNi<br />

≤ 1311<br />

a = 299.8 to 301.0 49.5 to 57 at.% Ni [2008Ted]<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range<br />

[˚C]<br />

Pearson<br />

Symbol/<br />

Group<br />

Space/<br />

Prototype<br />

Lattice Parameters<br />

[pm] Comments/References<br />

Ti2Ni cF96 a = 1127.8 to 1132.4 33 to 34 at.% Ni [2008Ted]<br />

≤ 984 Fd3m<br />

Ti2Ni dissolves up to 26 at.% Fe [1981Loo]<br />

TiNi<br />

(martensite)<br />

hP18 a = 735.8 Ni50.23Ti49.77, at 20˚C [1997Har].<br />

P3<br />

-<br />

c = 528.55 X-ray diffraction. Known as R phase.<br />

TiNi<br />

(martensite)<br />

mP4 a = 289.8 Ni49.2Ti50.8, at 20˚C [1992Shi].<br />

P21/m b = 410.8 Single crystal X-ray diffraction. Known as<br />

B19’ martensite.<br />

TiNi c = 464.6<br />

β = 97.78˚<br />

TiNi3 hP16 a = 510.28 75 to 80.1 at.% Ni at 1300˚C [2008Ted]<br />

≤ 1380 P63/mmc<br />

TiNi3 c = 827.19<br />

a = 510.3 ± 0.5<br />

c = 832.0 ± 0.8 dissolves up to 14 at.% Fe [1981Loo]<br />

a = 517.0 Fe4Ni72Ti24, at 20˚C [1981Loo]<br />

c = 846.8 Fe4Ni72Ti24, at 900˚C [1981Loo]<br />

. Table 3<br />

Invariant Equilibria<br />

Reactions T [˚C] Type <strong>Phase</strong><br />

Fe–Ni–Ti 14<br />

Fe<br />

Composition (at.%)<br />

Ni Ti<br />

9<br />

L Ð TiFe2 + TiNi3 1320 e1 L 31.80 39.10 29.10<br />

TiFe2 52.46 16.61 30.93<br />

TiNi3 0.50 73.26 26.24<br />

L+(αFe) Ð (γFe) + TiFe2 1200 U1 L 66.46 17.55 15.99<br />

(αFe) 79.40 11.33 9.26<br />

(γFe) 76.94 13.90 9.16<br />

TiFe2 59.71 8.21 32.01<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


10 14<br />

Fe–Ni–Ti<br />

. Table 3 (continued)<br />

Reactions T [˚C] Type <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

Ni Ti<br />

L Ð (γFe) + TiFe2 + TiNi3 1113 E1 L 36.35 40.61 23.04<br />

(γFe) 55.29 35.68 9.03<br />

TiFe2 52.46 16.61 30.93<br />

TiNi3 0.50 73.26 26.24<br />

L + Ti(Fe,Ni) Ð (βTi) + Ti2Ni 960 U3 L 0.91 24.03 75.06<br />

Ti(Fe,Ni) 18.02 28.57 53.41<br />

(βTi) 0.95 4.04 95.01<br />

Ti2Ni 1.11 32.64 66.25<br />

. Table 4<br />

Heat of Mixing (ΔH mix) of Fe-Ni-Ti Liquid <strong>Alloy</strong>s. The Data Below are Due to Functional Representation<br />

of Experimental Data [1999Thi]<br />

Composition Section Temperature [˚C] ΔHmix, [kJ·(g-at.) –1 ]<br />

(Fe84Ti16)1–yNiy<br />

1621<br />

y = 0.0 –9.291<br />

y = 0.05 –9.843<br />

y = 0.10 –10.433<br />

y = 0.15 –10.787<br />

y = 0.20 –11.024<br />

y = 0.25 –11.083<br />

y = 0.30 –11.024<br />

y = 0.35 –10.945<br />

1645<br />

y = 0.0 –36.972<br />

y = 0.05 –34.507<br />

y = 0.10 –32.141<br />

y = 0.15 –30.169<br />

y = 0.20 –28.197<br />

y = 0.25 –26.127<br />

y = 0.30 –24.648<br />

y = 0.35 –23.070<br />

(NiTi) 1–yFe y<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 4 (continued)<br />

Composition Section Temperature [˚C] ΔHmix, [kJ·(g-at.) –1 ]<br />

(Fe 2Ti) 1–yNi y<br />

(Fe 89Ni 11) 1–yTi y<br />

1643<br />

y = 0.0 –17.362<br />

y = 0.05 –17.872<br />

y = 0.10 –18.191<br />

y = 0.15 –18.511<br />

y = 0.20 –18.511<br />

y = 0.25 –18.415<br />

y = 0.30 –18.670<br />

y = 0.35 –17.681<br />

1600<br />

y = 0.0 –1.892<br />

y = 0.05 –5.081<br />

y = 0.10 –8.108<br />

y = 0.15 –10.811<br />

y = 0.20 –13.514<br />

y = 0.25 –15.892<br />

y = 0.30 –17.946<br />

y = 0.35 –20.004<br />

. Table 5<br />

Investigations of the Fe-Ni-Ti Materials Properties<br />

Reference<br />

Method/Experimental<br />

Technique Type of Property<br />

[1987Chu] Internal friction <strong>and</strong><br />

resistivity<br />

Internal friction <strong>and</strong> electrical resistance of B2-TiNi(Fe)<br />

[1987Kha] Ultrasonic resonance Elastic properties of B2-TiNi(Fe)<br />

[1987Sas] Refraction <strong>and</strong><br />

absorption<br />

Optical properties of B2-TiNi(Fe)<br />

Fe–Ni–Ti 14<br />

[1989Gor] Mechanical tests Hardness, yield <strong>and</strong> tensile strengths, ductility <strong>and</strong><br />

fracture toughness of austenitic steels<br />

[1991Pro] Mechanical tests Flow stress of B2-TiNi(Fe)<br />

[1999Zha] Ultrasonic resonance Single crystal elastic constants of B2-TiNi(Fe)<br />

[2000Jia] Mechanical tests Flow stress, shape memory behavior of B2-TiNi(Fe)<br />

[2003Miy] Electrochemical tests Charge/discharge capacity of TiFe1–xNix L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


12 14<br />

Fe–Ni–Ti<br />

. Table 5 (continued)<br />

Reference<br />

Method/Experimental<br />

Technique Type of Property<br />

[2000Xu] Mechanical tests Shape memory behavior of B2-TiNi(Fe)<br />

[2003Nis] Mechanical tests Stress-strain behavior of B2-TiNi(Fe)<br />

[2004Jan,<br />

2005Jan]<br />

Electrochemical tests Charge/discharge capacity of TiFe0.25Ni0.75 [2005Cho] Resistivity, susceptibility Electrical resistivity, magnetic susceptibility, specific heat<br />

of B2-TiNi(Fe)<br />

[2005Wan] Dilatometry Two-way shape memory behavior of B2-TiNi(Fe)<br />

[2005Yam] Magnetometry Magnetization, Néel temperature of C14-Ti(Fe1–xNix) 2<br />

[2006Cho] Physical property<br />

measurement systems<br />

[2006Fan] Dynamic mechanical<br />

alalyzer<br />

Specific heat, Debye temperature of B2-TiNi(Fe)<br />

Damping behavior of B2-TiNi(Fe)<br />

[2007Pro] Mechanical tests Shape memory behavior of B2-TiNi(Fe)<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-Ni-Ti. The TiNi-FeTi quasibinary section<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Ti 14<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


14 14<br />

. Fig. 2<br />

Fe-Ni-Ti. Reaction scheme<br />

Fe–Ni–Ti<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-Ni-Ti. Liquidus surface projection<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Ti 14<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


16 14<br />

Fe–Ni–Ti<br />

. Fig. 4<br />

Fe-Ni-Ti. Partial isothermal section at 1100˚C<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-Ni-Ti. Isothermal section at 1000˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Ti 14<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


18 14<br />

Fe–Ni–Ti<br />

. Fig. 6<br />

Fe-Ni-Ti. Isothermal section at 900˚C<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 7<br />

Fe-Ni-Ti. Isothermal section at 700˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Ti 14<br />

19<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


20 14<br />

Fe–Ni–Ti<br />

. Fig. 8<br />

Fe-Ni-Ti. A polythermal section at a constant Ti content of 8 mass%<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 9<br />

Fe-Ni-Ti. A polythermal section at a constant Ti content of 12 mass%<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Ti 14<br />

21<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


22 14<br />

Fe–Ni–Ti<br />

. Fig. 10<br />

Fe-Ni-Ti. A polythermal section at a constant Ti content of 14.4 mass%<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 11<br />

Fe-Ni-Ti. A polythermal section at a constant Ti content of 66.67 at.%<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Ti 14<br />

23<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


24 14<br />

Fe–Ni–Ti<br />

. Fig. 12<br />

Fe-Ni-Ti. A polythermal section at a constant mass ratio of Fe:Ni=90:10<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 13<br />

Fe-Ni-Ti. A polythermal section at a constant mass ratio of Fe:Ni=60:40<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Ti 14<br />

25<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


26 14<br />

Fe–Ni–Ti<br />

. Fig. 14<br />

Fe-Ni-Ti. Partial polythermal section along the line of constant Fe:Ni atomic ratio of 1:3<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Ti 14<br />

. Fig. 15<br />

Fe-Ni-Ti. Partial polythermal section along the line of constant Fe:Ni atomic ratio 1:1<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

27<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


28 14<br />

Fe–Ni–Ti<br />

. Fig. 16<br />

Fe-Ni-Ti. Partial polythermal section along the line of constant Fe:Ni atomic ratio of 3:1<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 17<br />

Fe-Ni-Ti. Enthalpy of mixing (in kJ·(mol-atom) –1 ) of liquid alloys at 1643˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Ti 14<br />

29<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


30 14<br />

Fe–Ni–Ti<br />

References<br />

[1938Vog] Vogel, R., Wallbaum, H.J., “The System Fe-Ni 3Ti-Fe 2Ti” (in German), Arch. Eisenhuettenwes., 12,<br />

299–304 (1938) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, #, *, 16)<br />

[1941Vog] Vogel, R., “About Observation of Enforced Precipitation in the Solid Solution” (in German),<br />

Z. Metallkd., 33, 376–377 (1941) (Experimental, <strong>Phase</strong> Relations, 1)<br />

[1949Jae] Jaenecke, E., “Ni-Fe-Ti” (in German) in “Kurzgefasstes H<strong>and</strong>buch aller Legierungen”, Winter Verlag,<br />

Heidelberg, 653–654 (1949) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 1)<br />

[1963Spe] Speich, G. R., “Cellular Precipitation in an Austenitic Fe-30Ni-6Ti <strong>Alloy</strong>”, Trans. Met. Soc. AIME, 227,<br />

754–762 (1963) (Crys. Structure, Experimental, <strong>Phase</strong> Relations, #, *, 31)<br />

[1963Yeo] Yeo, R.G.B., “The Effects of Some <strong>Alloy</strong>ing Elements on the Transformation of Fe-22.5%Ni <strong>Alloy</strong>s”,<br />

Trans. Met. Soc. AIME, 227, 884–890 (1963) (Experimental, <strong>Phase</strong> Relations, 13)<br />

[1967Dud] Dudkina, L.P., Kornilov, I.I., “An Investigation of the Equilibrium Diagram of the TiNi-TiFe System”,<br />

Russ. Metall., (4), 98–101 (1967), translated from Izv. Akad. Nauk SSSR, Met., (4), 184–187 (1967)<br />

(Experimental, <strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, #, *, 13)<br />

[1968Abr] Abraham, J.K., “Lattice Parameters as a Function of Ti in Austenitic Fe-Ni-Ti <strong>Alloy</strong>s”, Trans. Met. Soc.<br />

AIME, 242, 2365–2369 (1968) (Crys. Structure, Experimental, 10)<br />

[1969Abr] Abraham, J.K., Pascover, J.S., “The Transformation <strong>and</strong> Structure of Fe-Ni-Ti <strong>Alloy</strong>s”, Trans. Met. Soc.<br />

AIME, 245, 759–768 (1969) (Crys. Structure, Experiment, 13)<br />

[1972Kok] Kokorin, V.V., Gorbach, V.G., Samsonov, Yu.I., “Martensitic Transformations in Aged <strong>Alloy</strong>s of<br />

Fe-Ni-Ti” (in Russian), Metallofizika, (42), 87–96 (1972) (Crys. Structure, Experimental, 20)<br />

[1973Zem] Zemtsova, N.D., Malyshev, K.A., “Continuous Decomposition of a γ-Solid Solution in Iron-Nickel-<br />

Titanium <strong>Alloy</strong>s”, Phys. Met. Metallogr. (Engl. Transl.), 35(5), 108–114 (1973) (Crys. Structure,<br />

Experimental, <strong>Phase</strong> Relations, 13)<br />

[1974Whi] Whiteman, J.A., Sarma, D.S., “Structure of Martensites in Fe-Ni-Ti <strong>Alloy</strong>s”, Metall. Mater. Trans. A, 5<br />

(1), 163–166 (1974) (Crys. Structure, Experimental, 8)<br />

[1975Ost] Ostrovskii, O.I., Dyubanov, V.G., Stomakhin, A.Ya., Grigoryan, V.A., “Enthalpy of Dissolution of<br />

Titanium in Iron-Nickel Melts”, Izv. Vyss. Uchebn. Zaved., Chern. Metall., (7), 67–70 (1975) (Experimental,<br />

Thermodyn., 7)<br />

[1977Hal] Hall, M.M., Winchell, P.G., “Tetragonality of Fe-Ni-Ti Martensite”, Acta Metall., 25(7), 735–750 (1977)<br />

(Crys. Structure, Experimental, 27)<br />

[1978Uva] Uvarov, A.I., “Martensite Transformation, Induced by Stressing, <strong>and</strong> the Mechanical Properties in<br />

Iron-Nickel Based Aged <strong>Alloy</strong>s” (in Russian), Metallofizika, (74), 109–111 (1978) (Crys. Structure,<br />

Experimental, 7)<br />

[1979Fou] Fournelle, R.A., “Discontinuous Coarsening of Lamellar Cellular Precipitates in an Austenitic Fe-<br />

30Ni-6Ti <strong>Alloy</strong>”, Acta Metall., 27, 1135–1145 (1979) (Experimental, 18)<br />

[1979Zem] Zemtsova, N.D., Mabyshev, K.A., Starchenko, Ye.I., “Cellular Decomposition in Undeformed Metastable<br />

Fe-Ni-Ti <strong>Alloy</strong>s”, Phys. Met. Metallogr., 48(2), 128–135 (1979) (Experimental, Thermodyn., 11)<br />

[1981Loo] van Loo, F.J.J., Vroljik, J.W.G.A., Bastin, G.F., “<strong>Phase</strong> Relations <strong>and</strong> Diffusion Paths in the Ti-Ni-Fe<br />

System at 900˚C”, J. Less-Common Met., 77, 121–130 (1981) (Experimental, <strong>Phase</strong> Relations, #, *, 11)<br />

[1981Zem] Zemtsov, N.D., Starchenko, Ye.I., “Structure Mechanism of the Decomposition of Precipitation<br />

Hardened Austenitic Iron-Nickel-Titanium <strong>Alloy</strong>s”, Phys. Met. Metallogr. (Engl. Transl.), 52(4),<br />

137–145 (1981) (Crys. Structure, Experimental, 9)<br />

[1982Hwa1] Hwang, C.M., Meichle, M., Salmon, M.B., Wayman, C.M., “Transformation Behavior of Ti 50Ni 47Fe 3<br />

<strong>Alloy</strong>: I. Incommensurate <strong>and</strong> Commensurate <strong>Phase</strong>s”, J. Phys., 43(12), C4-231–C4-236 (1982) (Crys.<br />

Structure, Experimental, 22)<br />

[1982Hwa2] Hwang, C.M., Salmon, M.B., Wayman, C.M., “Transformation Behavior of Ti 50Ni 47Fe 3 <strong>Alloy</strong>:<br />

I. Martensitic Transformation”, J. Phys., 43(12), C4-237–C4-242 (1982) (Crys. Structure, Experimental,<br />

5)<br />

[1982Nis] Nishida, M., Honma, T., “<strong>Phase</strong> Transformations in Ti 50Ni 50-xFe x <strong>Alloy</strong>s”, J. Phys., 43(12), C4-225–C4-<br />

230 (1982) (Crys. Structure, Experimental, 6)<br />

[1983Sav] Savvinov, A.S., Sivokha, V.P., Khachin, V.N., “Martensitic Transformations in B2-Type Titanium<br />

Compounds” (in Russian), Metallofizika, 5(6), 30–36 (1983) (Crys. Structure, Electr. Prop., Experimental,<br />

<strong>Phase</strong> Relations, 7)<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Ti 14<br />

31<br />

[1984Ano] Anokhin, S.V., Lotkov, A.I., “Change in Electronic Structure <strong>and</strong> Crystal Structure in Ti(Ni, Fe) <strong>Alloy</strong>s<br />

Just before the Martensitic Transformation”, Sov. Phys.- Dokl.(Engl. Transl.), 34(8), 734–735 (1984)<br />

(Crys. Structure, Experimental, 8)<br />

[1984Kab] Kabanova, I.G., Zemtsova, N.D., Sagaradze, V.V., “Parameters of Shear Strain During γ-α <strong>and</strong> α-γ<br />

Martensitic Transformations in an Aged Austenitic Fe-Ni-Ti <strong>Alloy</strong>”, Phys. Met. Metallogr. (Engl.<br />

Transl.), 58(2), 120–130 (1984), translated from Fiz. Metal. Metalloved., 58(2), 344–454, 1984 (Crys.<br />

Structure, Experimental, 18)<br />

[1984Pus] Pushin, V.G., Khachin, V.N., Savvinov, A.S., Kondratev, V.V., “Structural <strong>Phase</strong> Transformations <strong>and</strong><br />

Properties of the <strong>Alloy</strong>s NiTi <strong>and</strong> NiTiFe”, Sov. Phys.- Dokl. (Engl. Transl.), 29(8), 681–683 (1984),<br />

translated from Dokl. Akad. Nauk SSSR, 277, 1388–1391 (1984) (Crys. Structure, Experimental,<br />

Kinetics, 11)<br />

[1984Tad] Tadaki, T., Asayama, K., Shimizu, K., “Some Observations of Ausageing Effects on the Martensitic<br />

Transformation in an Fe-Ni-Ti <strong>Alloy</strong>”, Trans. Jpn. Inst. Met., 25(2), 80–88 (1984) (Crys. Structure,<br />

Experimental, 19)<br />

[1985Goo] Goo, E., Sinclair, R., “The B2 toR Transformation in Ti 50Ni 47Fe 3 <strong>and</strong> Ti 49.5Ni 50.5”, Acta Met., 33(9),<br />

1717–1723 (1985) (Crys. Structure, Experimental, 29)<br />

[1985Gup] Gupta, K.P., Rajendraprasad, S.B., Jena, A.K., Sharma, R.C., “The Iron-Nickel-Titanium System”, J.<br />

<strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 1, 59–68 (1985) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, #, *, 21)<br />

[1985Sav] Savvinov, A.S., Sivokha, V.P., Khachin, V.N., “Martensitic Transformations in B2-Type Titanium<br />

Compounds”, Phys. Metals, 5(6), 1107–1118 (1985), translated from Metallofizika, 5(6), 30–36 (1983)<br />

(Crys. Structure, Electr. Prop., Experimental, <strong>Phase</strong> Relations, 7)<br />

[1985Val] Valiyev, E.Z., Men’shikov, A.Z., Panakhov, T.M., “The Structural State of <strong>Alloy</strong>s Ni 3(Fe 1–xTi x) <strong>and</strong><br />

Ni 3(Fe 1–xNb x) During Atomic Ordering”, Phys. Met. Metallogr., 59(1), 123–129 (1985) (Crys. Structure,<br />

Experimental, 14)<br />

[1986Edm] Edmonds, K.R., Hwang, C.M., “<strong>Phase</strong> Transformations in <strong>Ternary</strong> TiNiX <strong>Alloy</strong>s”, Scr. Metall., 20(5),<br />

733–737 (1986) (Experimental, <strong>Phase</strong> Relations, 7)<br />

[1987Chu] Chui, N.-Y., Huang, Y.-T., “A Study of Internal Friction, Electric Resistance <strong>and</strong> Shape Change in a<br />

Ti-Ni-Fe <strong>Alloy</strong> During <strong>Phase</strong> Transformation”, Scr. Metall., 21, 447–452 (1987) (Crys. Structure,<br />

Experimental, 8)<br />

[1987Kha] Khachin, V.N., Muslov, S.A., Pushin, V.G., Chumlyakov, Yu.I., “Anomalies in the Elastic Properties of<br />

TiNi-TiFe Single Crystals”, Sov. Phys. – Dokl., 32(7), 606–608 (1987) (Crys. Structure, Experimental,<br />

Phys. Prop., 7)<br />

[1987Sas] Saskovskaya, I.I., Pushin, V.G., “Optical Properties <strong>and</strong> Structure of TiNi <strong>and</strong> TiNiFe <strong>Alloy</strong>s During<br />

the B2-R Temperature <strong>and</strong> Concentrational Transformation”, Phys. Met. Metallogr. (Engl. Transl.), 64<br />

(5), 56–64 (1987), translated from Fiz. Met. Metalloved. 64(5), 896–904 (1987) (Crys. Structure,<br />

Experimental, Optical Prop., 12)<br />

[1988Sag] Sagaradze, V.V., Makozov, S.V., “Dissolution of Spherical <strong>and</strong> Platelike Intermetallics in Fe-Ni-Ti<br />

Austenitic <strong>Alloy</strong>s During Cold Plastic Deformation”, Phys. Met. Metallogr., 66(2), 111–120 (1988)<br />

(Crys. Structure, Experimental, 19)<br />

[1989Gor] Gorbach, V.G., Jelenkowski, J., Filipiuk, J., “Microstructure <strong>and</strong> Mechanical Properties of Duplex<br />

Martensitic-Austenitic Fe-Ni-Ti Steels”, Mat. Sci.Technol., 5(1), 36–39 (1989) (Experimental, Mechan.<br />

Prop., 20)<br />

[1989Ano1] Anokhin, S.V., Grishkov, V.N., Lotkov, A.I., “Martensitic Transformations in Ti(Ni,Fe) <strong>Alloy</strong>s”, Sov.<br />

Phys. J., 32(12), 961–964, (1989) (Crys. Structure, Experimental, 8)<br />

[1989Ano2] Anokhin, S.V., Lotkov, A.I., “Change in Electronic Structure <strong>and</strong> Crystal Structure in Ti(Ni,Fe) <strong>Alloy</strong>s<br />

Just before the Martensitic Transformation”, Sov. Phys. – Dokl., 34(8), 734–735 (1989) (Crys. Structure,<br />

Experimental, 8)<br />

[1990Kum] Kumar, K.C.H., Raghavan, V., “BCC-FCC Equilibrium in <strong>Ternary</strong> Iron <strong>Alloy</strong>s-IV”, J. <strong>Alloy</strong> <strong>Phase</strong><br />

<strong>Diagrams</strong>, 6(1), 31–49 (1990) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 49)<br />

[1990Rao] Rao, J., He, Y., Ma, R., “Study of <strong>Phase</strong> Transition in Ti 50Ni 47.5Fe 2.5 <strong>Alloy</strong>”, Metall.Trans., 21A,<br />

1322–1324 (1990) (Crys. Structure, Experimental, 6)<br />

[1991Gup] Gupta, K.P., “The Fe-Ni-Ti (Iron-Nickel-Titanium) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Nickel<br />

<strong>Alloy</strong>s”, Indian Institute of Metals, Calcutta, India, 321–343 (1991) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Review, #, *, 12)<br />

[1991Lue] Lueck, R., Wang, H., Predel, B., “Thermodynamic Investigation of Liquid Iron-Nickel-Titanium<br />

<strong>Alloy</strong>s” (in German), Z. Metallkd., 82, 805–809 (1991) (Experimental, Thermodyn., 17)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


32 14<br />

Fe–Ni–Ti<br />

[1991Mur] Murray, J.L., “Fe-Ti (Iron-Titanium)” in “<strong>Phase</strong> <strong>Diagrams</strong> of Binary Iron <strong>Alloy</strong>s”, ASM International,<br />

Metals Park, Ohio, 414–425 (1991) (<strong>Phase</strong> Diagram, Review, #, *, 112)<br />

[1991Pro] Prokoshkin, S.D., Kaputkina, L.M., Bondareva, S.A., Tikhomirova, O.Yu., Fatkullina, L.P., Oleynikova,<br />

S.V., “Structure of Hot-Deformed Austenite <strong>and</strong> Properties of a Ti-Ni-Fe <strong>Alloy</strong> after HTMT”, Phys.<br />

Met. Metallogr. (Engl. Transl.), 71(3), 143–148 (1991) (Experimental, Mechan. Prop., 4)<br />

[1992Ruz] Ruzhang, M., “Mössbauer Studies of Ti-Ni-Fe Shape-Memory <strong>Alloy</strong>”, Philos. Mag. A, 65(1), 123–130<br />

(1992) (Experimental, 10)<br />

[1992Sag] Sagaradze, V.V., Morozov, S.V., “Mechanical <strong>Alloy</strong>ing of Fe-Ni-Ti Austenite During Low-Temperature<br />

Deformation”, Mater. Sci. Forum, 88–90, 147–154 (1992) (Crys. Structure, Experimental, <strong>Phase</strong> Relations,<br />

3)<br />

[1992Shi] Shimizu, K., Tadaki, T., “Recent Studies on the Precise Crystal-Structural Analyses of Martensitic<br />

Transformation”, Mater. Trans., JIM, 33(3), 165–177 (1992) (Crys. Structure, 101)<br />

[1993Mat] Matveeva, N.M., Klopotov, A.A., Kormin, N.M., Sazanov, Y.A., “Lattice Parameters <strong>and</strong> the Sequence<br />

of Transformations in <strong>Ternary</strong> TiNi-TiMe <strong>Alloy</strong>s”, Russ. Metall. (Engl. Transl.), (3), 216–220 (1993),<br />

translated from Izv. RAN, (3), 233–237 (1993) (Experimental, <strong>Phase</strong> Relations, Crys. Structure, 10)<br />

[1994Ali1] Alisova, S.P., Budberg, P.B., Barmina, T.I., Lutskaya, N.V., “Ti-TiFe-TiNi System”, Russ. Metall. (Engl.<br />

Transl.), (1), 117–121 (1994), translated from Izv. RAN, (1), 158–163 (1994) (Experimental, <strong>Phase</strong><br />

Relations, 9)<br />

[1994Ali2] Alisova, S.P., Kovneristyi, Yu.K., Lutskaya, N.V., Budberg, P.B., “Structure of the Rapidly Solidified Ti-<br />

TiFe-TiNi <strong>Alloy</strong>s”, Russ. Metall. (Engl. Transl.), 146–149 (1994), translated from Izv. RAN Met., (1),<br />

158–161, 1994 (Experimental, <strong>Phase</strong> Relations, 5)<br />

[1994Jia] Jia, C.C., Ishida, K., Nishizawa, T., “Partitioning of <strong>Alloy</strong>ing Elements Between γ(A1) <strong>and</strong> θ(D0 24)<br />

<strong>Phase</strong>s in The Ni-Ti Base <strong>Systems</strong>” in “Experimental Methods <strong>Phase</strong> Diagram Determination”, Morral, J.<br />

E., Schiffman, R.S., Merchant, S.M., (Eds.), The Minerals, Metals <strong>and</strong> Materials Society, Warrendale,<br />

PA, 31–38 (1994) (Experimental, <strong>Phase</strong> Diagram, 8)<br />

[1995Air] Airoldi, G., Carcano, G., Riva, G., Vanelli, M., “X-Ray Powder Diffraction Study of the R-<strong>Phase</strong> in a<br />

Ti 50Ni 48Fe 2 <strong>Alloy</strong> by a New Calibration Method”, J. Phys., Colloq., 5(C2), 281–286 (1995) (Crys.<br />

Structure, Experimental, 24)<br />

[1995Ali] Alisova, S.P., Kovneristyi, Yu.K., Lutskaya, N.V., Budberg, P.B., “Structure of the Rapidly Solidified Ti-<br />

TiFe-TiNi <strong>Alloy</strong>s”, Russ. Metall. (Engl. Transl.), (1), 146–149 (1995), translated from Izv. Ross. Akad.<br />

Nauk Met., (1), 158–161, 1995 (Experimental, <strong>Phase</strong> Diagram, 5)<br />

[1995Gue] Guerin, G., “Martensitic Transformation <strong>and</strong> Thermomechanical Properties”, Key Eng. Mater.,<br />

101–102, 339–392 (1995) (Crys. Structure, Phys. Prop., Review, 73)<br />

[1995Tom] Tomiska, J., Wang, H., “On the Algebraic Evaluation of the <strong>Ternary</strong> Molar Heat of Mixing H E from<br />

Calorimetric Investigations”, Ber. Bunsen-Ges. Phys. Chem., 99(4), 633–640 (1995) (Thermodyn., 27)<br />

[1995Zem] Zemtsova, N.D., “Discontinuous Precipitation as a Factor Increasing the Plasticity of Aging Fe-Ni-Ti<br />

<strong>Alloy</strong>s”, Phys. Met. Metallogr., 79(3), 336–341 (1995) (Experimental, Kinetics, 10)<br />

[1997Har] Hara, T., Ohba, T., Okunishi, E., Otsuka, K., “Structural Study of R-<strong>Phase</strong> in Ti-50.23Ni (at.%) <strong>and</strong><br />

Ti-47.75Ni-1.50Fe (at.%) <strong>Alloy</strong>s”, Mater. Trans., JIM, 38(1), 11–17 (1997) (Crys. Structure, Experimental,<br />

18)<br />

[1998Mie] Miettinen, J., “Approximate Thermodynamic Solution <strong>Phase</strong> Data for Steels”, Calphad, 22(2), 275–300<br />

(1998) (<strong>Phase</strong> Relations, Thermodyn., 83)<br />

[1998Tam] Tamiya, T., Shindo, D., Murakami, Y., B<strong>and</strong>o, Y., Otsuka, K., “In-situ Observations of R-<strong>Phase</strong><br />

Transformation in a Ti 50Ni 48Fe 2 <strong>Alloy</strong> by Electron Microscopy”, Mater. Trans., 39(7), 714–723 (1998)<br />

(Crys. Structure, Experimental, 20)<br />

[1999Abr] Abramycheva, N.L., V’yunitskii, I.V, Kalmykov, K.B., Dunaev, S.F., “Isothermal Cross Section of the<br />

<strong>Phase</strong> Diagram of the Fe-Ni-Ti System at 1273 K. - I”, Vestn. Mosk. Univ., Ser.2: Khim, 40(2), 139–143<br />

(1999) (Experimental, <strong>Phase</strong> Relations, #, *, 4)<br />

[1999Efi] Efimenko, L.P., Petrova, L.P., Sviridov, S.I., “Interactions in TiFe-Ni System at 1200˚C”, Russ. Metall.<br />

(Engl. Transl.), (4), 160–165 (1999) (Experimental, 15)<br />

[1999Lee] Lee, S.M., Perng, T.P., “Correlation of Substitutional Solid Solution with Hydrogenation Properties of<br />

TiFe 1–xM x (M = Ni, Co, Al) <strong>Alloy</strong>s”, J. <strong>Alloy</strong>s Compd., 291, 254–261 (1999) (Crys. Structure, Experimental,<br />

18)<br />

[1999Thi] Thiedemann, U., Rösner-Kuhn, M., Drewes, K., Kuppermann, G., Frohberg, M.G., “Temperature<br />

Dependence of the Mixing Enthalpy of Liquid Ti-Ni <strong>and</strong> Fe-Ti-Ni <strong>Alloy</strong>s”, J. Non-Cryst. Solids,<br />

250–252, 329–335 (1999) (Experimental, Thermodyn., 17)<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Ti 14<br />

33<br />

[1999Zha] Zhang, J., Ren, X., Otsuka, K., Tanaka, K., Chumlyakov, Yu.I., Asai, M., “Elastic Constants of Ti-48<br />

at.%Ni-2 at.%Fe Single Crystal Prior to B2 → R Transformation”, Mater. Trans., JIM, 40(5), 385–388<br />

(1999) (Crys. Structure, Phys. Prop., Experimental, 21)<br />

[2000Chu] Chu, J.P., Lai, Y.W., Lin, T.N., Wang, S.F., “Deposition <strong>and</strong> Characterization of TiNi-Base Thin Films<br />

by Sputtering”, Mater. Sci. Eng. A, A277, 11–17 (2000) (Crys. Structure, Experimental, Phys. Prop., 20)<br />

[2000Efi] Efimenko, L.P., Petrova, L.P., Sviridov, S.I., “Interaction of Eutectic Melt Ti 2Ni-Ti <strong>and</strong> Iron Substrate at<br />

1100-1250˚C”, Russ. Metall. (Metally), 3, 42–46 (2000), translated from Izv. Ros. Akad. Nauk, Met., (3),<br />

41–44 (2000) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Transport Phenomena, 12)<br />

[2000Jia] Jiang, C., Xu, H., “Effect of Pre-Deformation on Hysteresis in TiNiFe Shape Memory <strong>Alloy</strong>s”, Mater.<br />

Sci. Forum, 327–328, 111–114 (2000) (Experimental, 3)<br />

[2000Lap] Lapshin, V.P., Grishkov, V.N., Lotkov, A.I., “On Certain Anharmonic Characteristics of B2 <strong>Phase</strong> Ti<br />

(Ni,Fe) <strong>Alloy</strong>s Under Hydrostatic Pressure”, Russ. Phys. J., 43(12), 999–1002 (2000) (Crys. Structure,<br />

Experimental, 21)<br />

[2000Vor] Voronin, V.I., Naish, V.E., Novoselova, T.V., Sagaradze, I.V., “Structures of Monoclinic <strong>Phase</strong>s in<br />

Titanium Nickelide: II. Transformation Cascade B2-R-T”, Phys. Met. Metallogr., 89(1), 19–26 (2000)<br />

(Crys. Structure, Experimental, 15)<br />

[2000Xu] Xu, H., Jiang, C., Gong, S., Feng, G., “Martensitic Transformation of the Ti 50Ni 48Fe 2 <strong>Alloy</strong> Deformed<br />

at Different Temperatures”, Mater. Sci. Eng. A, A281, 234–238 (2000) (Experimental, 11)<br />

[2001Gup] Gupta, K.P., “The Fe-Ni-Ti System Update (Iron - Nickel - Titanium)”, J. <strong>Phase</strong> Equilib., 22(2),<br />

171–175 (2001) (<strong>Phase</strong> Diagram, Review, #, *, 5)<br />

[2001Mur] Murakami, Y., Shindo, D., “Changes in Microstructure Near the R-<strong>Phase</strong> Transformation in<br />

Ti 50Ni 48Fe 2 Studied by in-situ Electron Microscopy”, Philos. Mag. Lett., 81(9), 631–638 (2001) (Experimental,<br />

Morphology, <strong>Phase</strong> Relations, 25)<br />

[2002Boz] Bozzolo, G.H., Noebe, R.D., Amador, C., “Site Occupancy of <strong>Ternary</strong> Additions to B2 <strong>Alloy</strong>s”,<br />

Intermetallics, 10, 149–159 (2002) (Crys. Structure, Review, 27)<br />

[2002Ish] Ishida, S., Asano, S., “R-<strong>Phase</strong> <strong>and</strong> Electronic Structures of TiNi <strong>and</strong> TiNi 8/9Fe 1/9”, Mater. Trans., 43(5),<br />

780–784 (2002) (Crys. Structure, Experimental, 8)<br />

[2002Kuz] Kuznetsov, A.R., Sagaradze, V.V., “On the Possible Mechanism of Low-temperature Strain-induced<br />

Dissolution of Intermetallic <strong>Phase</strong>s in FCC Fe-Ni-Ti <strong>Alloy</strong>s”, Phys Met Metallogr., 93(5), 404–407<br />

(2002), translated from Fiz Met. Metalloved., 93(5), 13–16 (2002) (Experimental, 22)<br />

[2003Miy] Miyamura, H., Takada, M., Hirose, K., Kikuchi, S., “Metal Hydride Electrodes Using Titanium-Iron-<br />

Based <strong>Alloy</strong>s”, J. <strong>Alloy</strong>s Compd., 356–357, 755–758 (2003) (Electrochemistry, Experimental, <strong>Phase</strong><br />

Diagram, 6)<br />

[2003Nis] Nishida, M., Tanaka, K., Li, S., Kohshima, M., Miura, S., Asai, M., “Microstructure Modifications by<br />

Tensile Deformation in Ti-Ni-Fe <strong>Alloy</strong>”, J. Phys. IV, France, 112(2), 803–806 (2003) (Experimental,<br />

Mechan. Prop., 4)<br />

[2004Jan] Jankowska, E., Jurczyk, M., “Electrochemical Properties of Sealed Ni-MH Batteries Using<br />

Nanocrystalline TiFe type Anodes”, J. <strong>Alloy</strong>s Compd., 372, L9–L12 (2004) (Crys. Structure, Electrochemistry,<br />

Experimental, 15)<br />

[2005Cho] Choi, M.-S., Fukuda, T., Kakeshita, T., “Anomalies in Resistivity, Magnetic Susceptibility <strong>and</strong> Specific<br />

Heat in Iron-Doped Ti-Ni Shape Memory <strong>Alloy</strong>s”, Scr. Mater., 53(7), 869–873 (2005) (Crys. Structure,<br />

Electr. Prop., Electronic Structure, Experimental, <strong>Phase</strong> Relations, Thermodyn., 17)<br />

[2005Jan] Jankowska, E., Makowiecka, M., Jurczyk, M., “Nickel-Metal Hydride Battery Using Nanocrystalline<br />

TiFe-Type Hydrogen Storage <strong>Alloy</strong>s”, J. <strong>Alloy</strong>s Compd., 404–406, 691–693 (2005) (Crys. Structure,<br />

Electrochemistry, Experimental, 11)<br />

[2005Ste] Sitepu, H., Wright, J.P., Hansen, T., Chateigner, D., Brokmeier, H.-G., Ritter, C., Ohba, T., “Combined<br />

Synchrotron <strong>and</strong> Neutron Structural Refinement of R-<strong>Phase</strong> in Ti 50.75Ni 47.75Fe 1.50 Shape Memory<br />

<strong>Alloy</strong>”, Mater. Sci. Forum (Textures of Materials - ICOTOM 14), 495–497, 255–260 (2005) (Crys.<br />

Structure, Experimental, 9)<br />

[2005Wan] Wang, J.J., Omori, T., Sutou, Y., Kainuma, R., Ishida, K., “Two-Way Shape Memory Effect Induced by<br />

Cold-Rolling in Ti-Ni <strong>and</strong> Ti-Ni-Fe <strong>Alloy</strong>s”, Scr. Mater., 52(4), 311–316 (2005) (Experimental,<br />

Kinetics, <strong>Phase</strong> Relations, Thermodyn., 21)<br />

[2005Yam] Yamada, Y., Nakamura, K., Kitagawa, K., Obara, G., Nakamura, T., “Magnetic Properties of C14 Laves<br />

<strong>Phase</strong> Ti(Fe 1–xT x) 2 with T = Mn, Co <strong>and</strong> Ni (x < 0.6)”, J. Magn. Magn. Mater., 285(1-2), 28–38 (2005)<br />

(Crys. Structure, Experimental, Magn. Prop., Optical Prop., <strong>Phase</strong> Relations, 10)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_14<br />

ß Springer 2009


34 14<br />

Fe–Ni–Ti<br />

[2006Cac] Cacciamani, G., De Keyzer, J., Ferro, R., Klotz, U.E., Lacaze, J., Wollants, P., “Critical Evaluation of the<br />

Fe-Ni, Fe-Ti <strong>and</strong> Fe-Ni-Ti <strong>Alloy</strong> <strong>Systems</strong>”, Intermetallics, 14, 1312–1325 (2006) (<strong>Phase</strong> Relations,<br />

Review, #, *, 161)<br />

[2006Cho] Choi, M.S., Ogawa, J., Fukuda, T., Kakeshita, T., “Stability of the B2-Type Structure of Ti-Ni-Fe <strong>and</strong> Ti-<br />

Ni-Co Shape Memory <strong>Alloy</strong>s”, Mat. Sci. Forum, 512, 233–238 (2006) (Crys. Structure, Experimental,<br />

Morphology, <strong>Phase</strong> Relations, 17)<br />

[2006Fan] Fan, G., Zhou, Y., Otsuka, K., Ren, X., “Ultrahigh Damping in R-<strong>Phase</strong> State of Ti-Ni-Fe <strong>Alloy</strong>”, Appl.<br />

Phys. Lett., 89, 161902–1–3 (2006) (Experimental, Mechan. Prop., 15)<br />

[2006Gho] Ghosh, G., “Iron-Nickel-Titanium”, L<strong>and</strong>olt- Börnstein: Numerical Data <strong>and</strong> Functional Relationship in<br />

Science <strong>and</strong> Technology, New Series, Effenberg, G., Illyenko S., (Eds.), Springer-Verlag, Berlin/Heidelberg,<br />

Group IV, 11, Subvolume A, Part 4, 299–316 (2005), MSIT <strong>Ternary</strong> Evaluation Program, in MSIT<br />

Workplace, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document<br />

ID: 10.10608.1.20, (1992) (Crys. Structure, <strong>Phase</strong> Diagram, Assessment, #, *, 44)<br />

[2006Ria] Riani, P., Cacciamani, G., Thebaut, Y., Lacaze, J., “<strong>Phase</strong> Equilibria <strong>and</strong> <strong>Phase</strong> Transformations in the<br />

Ti-Rich Corner of the Fe-Ni-Ti System”, Intermetallics, 14, 1226–1230 (2006) (Experimental, Morphology,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 13)<br />

[2006Yam] Yamamoto, T., Fukuda, T., Kakeshita, T., “Electronic Structure of B2-type Ti-Ni-Fe <strong>Alloy</strong>s Exhibiting<br />

Second-order-like Structural Transformation”, Mater. Trans., 47, 594–598 (2006) (Experimental, Crys.<br />

Structure, 21)<br />

[2007Pro] Prokoshkin, S.D., Belousov, M.N., Abramov, V.Ya., Korotitskii, A.V., Makushev, S.Yu., Khmelevskaya,<br />

I.Yu., Dobatkin, S.V., Stolyarov, V.V., Prokof‘ev, E.A., Zharikov, A.I., Valiev, R.Z., “Creation of<br />

Submicrocrystalline Structure <strong>and</strong> Improvement of Functional Properties of Shape Memory <strong>Alloy</strong>s of<br />

the Ti-Ni-Fe System with the Help of ECAP”, Met. Sci. Heat Treat., 49(1-2), 51–56 (2007) (Crys.<br />

Structure, Experimental, Morphology, 11)<br />

[2008Kuz] Kuznetsov, V., “Fe-Ni (Iron-Nickel)”, MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg,<br />

G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published, (2008)<br />

(Crys. Structure, <strong>Phase</strong> Diagram, Assessment, 41)<br />

[2008Ted] Tedenac, J.C., Velikanova, T., Turchanin, M., “Ni-Ti (Nickel-Titanium)”, MSIT Binary Evaluation<br />

Program, in MSIT Workplace, Effenberg, G. (Ed.), Materials Science International Services, GmbH,<br />

Stuttgart; to be published (2008) (Crys. Structure, <strong>Phase</strong> Diagram, Assessment, 37)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_14 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Nickel – Vanadium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Andy Watson, Lesley Cornish<br />

Introduction<br />

The Fe-Ni-V system is of interest, not only because both Ni <strong>and</strong> V are components in steels,<br />

but also because Fe <strong>and</strong> V are important components of Ni-based superalloys for aerospace<br />

applications. The VNi 3 phase, which has an ordered tetragonal structure, acts as a strengthening<br />

phase in Ni-based superalloys [1963Zeg, 1977Bra1, 1977Bra2]. However, a major concern<br />

with these materials is the precipitation of the σ phase in alloys during service <strong>and</strong> much<br />

effort has gone into trying to predict its formation. [1977Bra1, 1977Bra2] attempted to predict<br />

σ phase formation by calculation of density of states <strong>and</strong> enthalpies of formation using a tight<br />

binding Hamiltonian matrix, but more recently it has been the subject of study by Calphad<br />

techniques [2001Wat]. The other major interest for this system comes from its magnetic<br />

properties, <strong>and</strong> Fe-Ni-V Permalloys have superior mechanical properties compared to conventional<br />

Permalloys. This can give an advantage where abrasion resistance is important, for<br />

example, [1984Tis], but these materials have a reduced saturation magnetization. Nevertheless,<br />

there is interest in using these materials as films for magnetic <strong>and</strong> electronic devices<br />

[1990Miy]. Considering the level of industrial interest, it is surprising that there has been<br />

relatively little study of the phase equilibria <strong>and</strong> thermodynamics of the system. The binary<br />

systems associated with Fe-Ni-V are well known but there have only been a few studies of<br />

the ternary system. The earliest record of the phase equilibria <strong>and</strong> magnetic properties of the<br />

system were recorded by [1934Kue], <strong>and</strong> subsequently, the system has been review by [1949Jae,<br />

1983Ray, 1988Ray, 1994Rag1].<br />

Details of experimental studies of the system are summarized in Table 1.<br />

Binary <strong>Systems</strong><br />

Fe–Ni–V 15<br />

1<br />

The three binary systems, Fe-Ni, Fe-V <strong>and</strong> Ni-V are well known <strong>and</strong> appear in [Mas2]. There<br />

have been a number of attempts at producing thermodynamic descriptions of the systems. The<br />

earliest thermodynamic description of the Fe-Ni system was produced by [1986Din] <strong>and</strong> has<br />

been used on many occasions for the study of ternary <strong>and</strong> higher order systems. More recently,<br />

the liquid phase has been remodeled [1993Lee] in order to improve the level of agreement with<br />

experimental data in the thermodynamic assessment of the Fe-Cr-Ni system. The ordering of<br />

the fcc phase to FeNi 3 was modeled by [2000Ans]. The Fe-V system was assessed by<br />

[1991Hua1] but [2006Oka] has reported recent work by [2005Ust] who studied the extent<br />

of the σ phase in the binary Fe-V system using XRD <strong>and</strong> electron microscopy. They suggest<br />

that the σ phase decomposes below about 650˚C accompanied by phase separation of the bcc<br />

phase. However, in the phase diagram shown by [2006Oka], there would seem to be a narrow<br />

strip of single phase α between the σ phase <strong>and</strong> the region of phase separation. As pointed out<br />

by [2006Oka], this would seem to be unlikely, the σ phase most probably decomposing<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_15<br />

ß Springer 2009


2 15<br />

Fe–Ni–V<br />

eutectoidally to give Fe rich <strong>and</strong> V rich bcc phases, much like in the Cr-Fe system. As this<br />

remains uncertain, the feature has been ignored in the present work. The Ni-V system was<br />

assessed by [1992Luo] <strong>and</strong> more recently by [2001Wat], who used a variety of different models<br />

to describe the σ phase. The binary phase diagrams for Fe-V <strong>and</strong> Ni-V are taken from [Mas2],<br />

the latter being based on [1982Smi], but a recent review of the Fe-Ni system [2008Kuz], as<br />

conducted as part of the MSI binary phase evaluation program, is taken as the source for the<br />

third binary phase diagram.<br />

Solid <strong>Phase</strong>s<br />

No ternary phases have been found in this system. The main feature is the extension of the σ<br />

phase from the Ni-V to the Fe-V binary system. The σ phase field is quite wide (~28 at.% at<br />

900˚C) in the Ni-V binary system <strong>and</strong> is stable below its peritectic formation temperature of<br />

1280˚C. In the Fe-V system, the congruent transformation temperature of the σ phase field is<br />

given in [Mas2] as 1252˚C, <strong>and</strong> at it is reasonable to assume that a single phase field extends<br />

right across the phase diagram at temperatures below this. Both the Fe-Ni <strong>and</strong> Fe-V systems<br />

exhibit large solution phase fields that extend across the binary phase diagrams (γ <strong>and</strong> α,<br />

respectively) <strong>and</strong> these extend well into the ternary system with dissolution of the third<br />

element. Both the ordered γ’ (FeNi3) <strong>and</strong> the θ (VNi3) phases dissolve the third element.<br />

However, it is not known to what level. Both of these phases are different ordered variants of<br />

fcc (L1 2 <strong>and</strong> D0 22, respectively) so complete mutual solubility is not likely.<br />

[1963Zeg] studied the solubility of Fe in the binary V 3Ni compound. <strong>Alloy</strong>s were prepared<br />

by arc-melting spectroscopically pure V with commercially pure Fe <strong>and</strong> Ni (99.9+) <strong>and</strong><br />

annealing the cast materials at 800˚C in evacuated quartz ampoules for 3-6 weeks. Optical<br />

microscopy <strong>and</strong> powder XRD (Cu kα radiation) were used to study the alloys. They found that<br />

it was possible to dissolve Fe into the V 3Ni binary compound up to a composition of<br />

V3(Fe0.7Ni0.3). <strong>Crystallographic</strong> details of the phases of the system are given in Table 2.<br />

Invariant Equilibria<br />

No invariant equilibria have been detected in this system, but considering the binary invariant<br />

reactions, it is highly likely that a transition type reaction will be present. The information in<br />

Table 3 was taken from the review of [1988Ray].<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

No determination of the liquidus surface has been carried out as yet, but the likely form it<br />

would take was postulated by [1988Ray] based on the liquidus features of the adjoining binary<br />

systems, Fig. 1. Only three binary invariants are present in the system (Fe-V: peritectic<br />

L+(δFe)Ð(γFe), Ni-V: peritectic L+(V) Ð σ, eutectic LÐσ+(Ni)) <strong>and</strong> by considering their<br />

respective temperatures, they would most likely extend into the ternary system to meet at a<br />

transition reaction. Thermodynamic calculations conducted by combining the assessed thermodynamic<br />

descriptions of the binary phases [1986Din, 1991Hua2, 2001Wat] from the<br />

literature would confirm this hypothesis, although the nature of the invariant was found in<br />

this case to be eutectic. This was due to the presence of a minimum in the L+(δFe) Ð (γFe)<br />

DOI: 10.1007/978-3-540-70890-2_15 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


monovariant extending from the Fe-Ni binary edge, however there is no experimental justification<br />

for this feature <strong>and</strong> hence it can be ignored at this time.<br />

Isothermal Sections<br />

Fe–Ni–V 15<br />

3<br />

Sections at three temperatures have been determined experimentally. [1957Dar] vacuum arcmelted<br />

electrolytic grade materials to produce alloys that were then sealed in He+8% H2 filled<br />

quartz ampoules for ‘long time’ annealing at 1200˚C. Following heat treatment, the ampoules<br />

were broken under water in order to quench the alloys. XRD <strong>and</strong> microscopic examination<br />

were used to determine the extent of the σ phase in the ternary system at 1200˚C using the<br />

disappearing phase technique. They found that the σ phase extended deep into the ternary<br />

system extending from the Ni-V binary edge, but it stopped short of the Fe-V edge. At that<br />

time, there was some uncertainty as to the temperature range of the σ phase in the Fe-V<br />

system, <strong>and</strong> the results of [1957Dar] seemed to suggest that the σ phase would not be stable in<br />

the Fe-V binary system at this temperature. Figure 2 shows the isothermal section of the<br />

system at 1200˚C based on the work of [1957Dar]. In the figure, the σ phase field has been<br />

extended to meet the Fe-V binary edge <strong>and</strong> be consistent with the σ phase in that binary<br />

system. The changes to the phase boundaries are sketched in dashed lines. The extent of the<br />

two-phase regions was not established by [1957Dar], but their locations were estimated, <strong>and</strong><br />

hence the σ poor phase boundaries are shown dashed. The isothermal section at 1100˚C<br />

was determined by [1981Zha] using ternary diffusion couples. They were prepared by first<br />

making a series of binary couples from ground <strong>and</strong> polished metal blocks, which were then<br />

heated at high temperature in sealed quartz tubes. A block of the third component metal was<br />

subsequently welded to the binary couple under flowing argon before heating the assembly at<br />

1100˚C in a sealed quartz tube for 2 weeks. The materials used were electrolytic Fe, carbonyl Ni<br />

<strong>and</strong> V (purity, 99.7% by weight). After quenching, the samples were studied by EMPA <strong>and</strong><br />

hardness measurement in order to determine the phase boundaries of the isothermal section at<br />

1100˚C. The isothermal section is given in Fig. 3, showing the σ phase extending from the Ni-V<br />

to the Fe-V binary edge. Small corrections have been made to ensure consistency with the<br />

accepted binary phase diagrams.<br />

In their work on the creation of a thermodynamic database for steels, [1998Mie] calculated<br />

an isothermal section for 1100˚C, using only thermodynamic descriptions for the binary Fe-Ni<br />

[1987Gab, 1993Lee] <strong>and</strong> Fe-V [1991Hua2] systems <strong>and</strong> estimated data for the Ni-V system<br />

based on [1994Rag2]. Despite using no ternary parameters <strong>and</strong> performing no formal<br />

optimization, the calculated γ <strong>and</strong> α phase boundaries were in reasonable agreement with<br />

the experimental data from [1981Zha] for Fe rich compositions.<br />

[1988Ray] reports on work conducted by [1960Arm] who used microstructural analyses to<br />

derive an isothermal section for the system at 1000˚C. The pure components were melted in<br />

alumina or zirconia crucibles <strong>and</strong> chill cast. The alloys were then homogenized at 1300˚C<br />

before annealing under vacuum at 1000˚C for 2 or 3 d. Following quenching, microscopic<br />

examination allowed the phase boundaries in the section to be determined to an accuracy<br />

of ±2 or 3 mass% of any component. Figure 4 shows the isothermal section at 1000˚C, taken<br />

from [1988Ray], based on the work of [1960Arm]. Alterations have been made where<br />

necessary to ensure consistency with the binary phase diagrams. The compositions of the<br />

phases in equilibrium are given in Table 4. These are compared with values for the same<br />

equilibrium for a temperature of 1200˚C estimated by [1988Ray] based on the work<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_15<br />

ß Springer 2009


4 15<br />

Fe–Ni–V<br />

of [1957Dar]. As can be seen from the figures <strong>and</strong> the compositions given in the table, the<br />

size of this three-phase equilibrium increases with decreasing temperature. The only other<br />

phase found in these sections is the θ phase, which is just stable at 1000˚C. The other<br />

intermetallic phases in the Ni-V system (Ni 2V <strong>and</strong> NiV 3) are not stable at these temperatures.<br />

Neutron diffraction studies of the long range order parameter in the γ’ <strong>and</strong> θ phases has been<br />

undertaken by [1970Gom1, 1970Gom2, 1972Gom, 1992Gom] <strong>and</strong> has suggested that the two<br />

phases exist in equilibrium with each other in the ternary system (see Temperature-Composition<br />

Sections section). However, as pointed out by [1988Ray], it would be expected that the<br />

long range order parameter of the alloys would become constant with varying V content<br />

within the two-phase region, which is contrary to their findings [1972Gom] (Fig. 5). A more<br />

plausible analysis of these results is given by [1988Ray] who suggests that the two intermetallic<br />

phases are in equilibrium with the disordered γ phase at some point along the Ni 3V-FeNi 3 join.<br />

[1988Ray] produced a room temperature section showing hypothetical phase relationships<br />

based on this premise, Fig. 6.<br />

Temperature – Composition Sections<br />

No formal investigation of a vertical section across the phase diagram has been made, however<br />

of particular interest is how the ordered γ’ phase in the Fe-Ni system <strong>and</strong> the θ phase in the<br />

Ni-V system extend into the three component system. A number of studies have been made of<br />

the phase relationships along the VNi3 - FeNi3 join <strong>and</strong> how the ordering of the phases change<br />

with composition. [1970Sar, 1974Sar] used mechanical property studies (Young’s modulus,<br />

UTS, hardness), resistivity measurement <strong>and</strong> saturation magnetization measurement to investigate<br />

the influence of adding V to FeNi 3. Electrolytic Ni, carbonyl Fe <strong>and</strong> alumothermal V<br />

were melted under vacuum in alundum crucibles. <strong>Alloy</strong>s were either slowly cooled at 2˚C·h –1<br />

following annealing at 850˚C for 4h, or after quenching from 1100˚C. Mechanical property<br />

measurement was carried out during isothermal heat treatments at 440, 500, 550, 610, 670 <strong>and</strong><br />

800˚C. Results suggested that the two ordered phases were in fact in equilibrium with the<br />

disordered fcc phase in the plane of this section. This is contrary to work conducted by<br />

[1970Gom1, 1970Gom2, 1972Gom, 1992Gom]. They looked at the influence of substitution<br />

of the third component on the long range order of VNi 3 <strong>and</strong> FeNi 3 using neutron diffraction.<br />

They observed a dramatic decrease in the long range order parameter of FeNi 3 at around 10<br />

at.% V. Correspondingly, the long range order parameter of the VNi 3 structure was found to<br />

increase at about 15 at.% V (Fig. 5). This decrease in the long range order parameter for FeNi 3<br />

was explained by the formation of nuclei of the ordered VNi 3 phase. It would seem that there is<br />

a two-phase region of FeNi 2 <strong>and</strong> VNi 3. However, the interpretation of their results is a little<br />

confusing. As pointed out in [1988Ray], it would be expected that the presence of a two-phase<br />

field comprising these two phases would result in constant long range order parameter for<br />

each of the phases rather than them disappearing completely. This section would clearly<br />

benefit from further investigation.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

The most widely studied properties of alloys of this ternary system are the magnetic properties.<br />

[1984Gan1, 1984Gan2, 1984Gan3] used both a st<strong>and</strong>ard 4 probe dc method <strong>and</strong> vibrating<br />

DOI: 10.1007/978-3-540-70890-2_15 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


sample magnetometer to study ferromagnetism in Ni-rich alloys. <strong>Alloy</strong>s were prepared by<br />

firstly induction melting the component elements <strong>and</strong> then homogenizing the cast material at<br />

1100˚C for 48 h before annealing at 900˚C prior to a water quench. Magnetization was studied<br />

between 77 <strong>and</strong> 300 K <strong>and</strong> it was found that the average number of Bohr magnetons per atom<br />

showed a non-linear variation with V concentration. The magnetization falls with temperature<br />

much faster than with conventional ferromagnets. There is also a sign reversal in the Hall<br />

coefficient for the ternary alloy. [1985Laa] studied the magnetic form factors at room<br />

temperature of alloys of composition (Ni0.6Fe0.4)1–xVx, where x = 0.095-0.159 using polarized<br />

neutron diffraction. It was found that the addition of V as an impurity affected the magnetic<br />

structure of the matrix as a whole <strong>and</strong> the average magnetic moment decreased. The spatial<br />

distribution, however, remained unaltered. [1986Maj] studied the linear magnetostriction of<br />

Ni-rich alloys from 10-300 K. Induction melted alloys were homogenized at 1150˚C for 48 h<br />

followed by an annealing treatment at 900˚C <strong>and</strong> water quench to retain the high-temperature<br />

disordered phase. The linear magnetostriction was found to be very small (~4·10 –6 ) <strong>and</strong> the<br />

minimum Curie temperature of 147 K was found for an alloy of composition 84Ni-5Fe-11V.<br />

AMössbauer study at 4.2 K of an alloy of composition (Ni0.594Fe0.406)0.841V0.159 was conducted<br />

by [1987Sta], <strong>and</strong> they found a non-zero magnetic moment for Ni. This suggests that the<br />

electronic structure of this ternary alloy is more complex than the binary Ni-V alloys.<br />

[1990Miy] studied the magnetoresistivity of an Fe-82Ni thin film with V additions. The<br />

films were produced by electron-bean evaporation on to crystallized glass in the presence of<br />

a magnetic field. The saturation magnetization <strong>and</strong> electrical resistivity of films with a<br />

thickness of 10μm were measured using the Neugebauer method <strong>and</strong> a 4-probe technique in<br />

a magnetic field of 3980 H, respectively. The addition of V increases the electrical resistivity<br />

only slightly, whereas the anisotropic resistivity decreases.<br />

The effective permeability μ e <strong>and</strong> its stress-sensitivity in high frequency fields (H =<br />

0.4 A·m –1 , f = 1-100 kHz) in Fe-Ni-V alloys were investigated by [1984Tak]. Sheets of Fe-<br />

Ni-V alloy were cold rolled to a thickness of 0.025 mm <strong>and</strong> annealed at 873-1473 K in pure<br />

hydrogen. They were subjected to low temperature heat treatment. The dc magnetic properties,<br />

saturation magnetostriction, Curie point <strong>and</strong> electrical resistivity were also measured. It<br />

was found that the optimum annealing temperature to achieve maximum μ e is shifted to lower<br />

temperatures with increasing frequency. [1991Yao] studied the mechanical properties of<br />

γ’ alloys <strong>and</strong> concluded that they were ductile at room <strong>and</strong> high temperature. Elongation<br />

was ~30% at 800˚C.<br />

A brief listing of the experimental studies associated with materials properties is given in<br />

Table 5.<br />

Miscellaneous<br />

Fe–Ni–V 15<br />

5<br />

The γ phase in the Fe-Ni-V system undergoes a martensitic transformation <strong>and</strong> has been the<br />

subject of particular study. [1981Geo] melted an alloy of Ni-24Fe with 4.5, 5.0, 5.5 <strong>and</strong> 6.0<br />

mass% V additions. The alloys were homogenized between 1110 <strong>and</strong> 1150˚C for 10-21 h. The<br />

alloys were then heat treated at 1150˚C for 1h before quenching <strong>and</strong> tempering for 2-30 min in<br />

liquid Sn before slow cooling for dilatometry. At a cooling rate of 10˚C/min, the M s temperature<br />

falls from –20˚C at a V content of 4.5 mass% to –45˚C at 6.0 mass% V. The ageing<br />

of martensite has been studied by [1977Edn, 1978Zai1, 1978Zai2, 1981Zay, 1984Bel]. Hardness<br />

<strong>and</strong> electrical resistance measurements, XRD, nuclear gamma-resonance measurements,<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_15<br />

ß Springer 2009


6 15<br />

Fe–Ni–V<br />

<strong>and</strong> electron microscopy were used by [1977Edn] to investigate the effect of combined<br />

Ni (0-18 mass%) <strong>and</strong> V (0-10 mass%) additions in Fe-Ni-V alloys. It was found that alloying<br />

Fe-V alloys with Ni promoted the formation of martensite after quenching <strong>and</strong> strengthening<br />

of the material after heating to 250-550˚C. It was supposed that the strengthening was<br />

associated with the formation during ageing of disperse precipitates of VNi 3. Subsequent<br />

work by [1981Zay] indicated that the precipitation of VNi3 is preceded by clustering of<br />

V atoms or possibly microscopic ordering. This was indicated by an increase in the specific<br />

electrical resistance of the material. The early stages of precipitation of VNi 3 was studied<br />

by [1984Bel] using the positron annihilation method. It is the precipitation of VNi 3 that<br />

was deemed to be responsible for an anomalous increase in the lattice parameter of martensite<br />

on ageing as the matrix progressively becomes denuded of Ni <strong>and</strong> V [1978Zai2]. The<br />

same authors looked at a combined low-temperature <strong>and</strong> high-temperature ageing of martensite<br />

<strong>and</strong> discovered an increase in the degree of hardening over the single heat treatment<br />

[1978Zai1].<br />

[1981Wad] studied nitrogen solubility in Fe-Ni-V alloys with up to 15 mass% V at<br />

temperatures between 1775 <strong>and</strong> 2040˚C by the Sievert’s method. The solubility followed<br />

Sievert’s law for all compositions studied.<br />

. Table 1<br />

Investigations of the Fe-Ni-V <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<br />

<strong>Phase</strong> Range Studied<br />

[1957Dar] XRD, microstructural examination Homogeneity range of σ phase at<br />

1200˚C<br />

[1960Arm] Microstructural examination Isothermal section at 1000˚C<br />

[1963Zeg] XRD, microstructural examination Dissolution of Fe in V3Ni [1970Sar] Young’s modulus measurement,<br />

XRD, potentiometric method<br />

Compositions along FeNi3-VNi3<br />

[1970Gom1, 1970Gom2,<br />

1972Gom, 1992Gom]<br />

Neutron diffraction Ordering <strong>and</strong> phase relationships<br />

in the FeNi3-VNi3 section.<br />

[1981Zha] Diffusion couples/EPMA Isothermal section at 1100˚C<br />

DOI: 10.1007/978-3-540-70890-2_15 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong><br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Ni–V 15<br />

Lattice Parameters<br />

[pm] Comments/References<br />

7<br />

γ, (γFe,Ni) cF4<br />

Fm3m<br />

(Ni)<br />

< 1455<br />

Cu a = 352.4 [V-C2, Mas2]<br />

(γFe)<br />

1394 - 912<br />

a = 364.67 at 915˚C [V-C2, Mas2]<br />

α, (δαFe,V) cI2<br />

Im3m<br />

(δFe) W a = 293.15 1394˚C [Mas2]<br />

1538 - 1394 dissolves up to 3.8 at.% Ni at 1517˚C<br />

[2008Kuz]<br />

(αFe) a = 286.65 at 25˚C [Mas2]<br />

< 912 dissolves 4.6 at.% Ni at 495˚C [2008Kuz]<br />

(V) a = 302.40 at 25˚C [Mas2]. Dissolves up to 24 at.% Ni at<br />

< 1910<br />

1280˚C.<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

γ’, FeNi3 cP4 a = 355.23 63 to 85 at.% Ni [2008Kuz]<br />

< 517 Pm3m<br />

AuCu3 γ’’, FeNi tP4 a = 357.9 ± 0.1 [V-C2]<br />

metastable P4/mmm c = 357.9 ± 0.1 metastable ordering temperature<br />

AuCu 320˚C at 51.2 at.% Ni [2008Kuz]<br />

σ tP30<br />

P42/mnm σVNi σCrFe a = 895.4 at 57.5 at.% V [1982Smi]<br />

< 1280 c = 463.5<br />

a = 899.6 at 63.2 at.% V [1982Smi]<br />

c = 465.3 contains 73.5 at.% V at 900˚C <strong>and</strong> 55 at.% V<br />

at 890˚C [Mas2]<br />

σVFe a = 896.5 at V0.5Fe0.5 [V-C2]<br />

< 1252 c = 463.3 29.6-60.1 at.% V [Mas2].<br />

θ, VNi3 tI8 a = 354.3 at 23.44 at.% V<br />

< 1045 I4/mmm<br />

Ti3Al c = 720.2<br />

a = 354.2<br />

c=721.3<br />

at 24.75 at.% V<br />

a = 354.1<br />

c=721.8<br />

at 25.60 at.% V [Mas2, 1982Smi]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_15<br />

ß Springer 2009


8 15<br />

Fe–Ni–V<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice Parameters<br />

[pm] Comments/References<br />

VNi2 oI6 a = 255 to 256 at 33.3 at.% V [1982Smi]<br />

< 922 Immm b = 771 to 764<br />

MoPt2 c=354 to 355<br />

V3Ni cP8<br />

< 900 Pm3n<br />

V3(FexNi1–x) Cr3Si a = 471.15 ± 0.0007 x=0[1963Zeg]<br />

a = 469.10 ± 0.0001 x=0.3 [1963Zeg]<br />

a = 469.45 ± 0.0001 x=0.5 [1963Zeg]<br />

a = 469.83 ± 0.0001 x=0.7 [1963Zeg]<br />

VNi8 tI18 a = ~749 [1982Smi]<br />

< 405 - b=~749<br />

NbNi8 c=353<br />

. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

Ni V<br />

L+α Ð γ + σ ? U - - - -<br />

. Table 4<br />

Three-<strong>Phase</strong> Equilibria<br />

T [˚C] <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

Ni V<br />

1200 α 45.4 22.6 32<br />

γ 48 20.4 31.6<br />

σ 44 19.5 36.5<br />

1000 α 40 32 28<br />

γ 57 15 28<br />

σ 48 13 39<br />

DOI: 10.1007/978-3-540-70890-2_15 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 5<br />

Investigations of the Fe-Ni-V Materials Properties<br />

Reference<br />

Method / Experimental<br />

Technique Type of Property<br />

[1981Geo] Neutron diffraction,<br />

dilatometry<br />

Martensitic transformation kinetics<br />

[1984Gan1] 4-probe dc method Hall coefficient<br />

[1984Gan2] Vibrating sample<br />

magnetometry<br />

Ferromagnetism in Ni rich Ni-Fe-V alloys<br />

[1985Laa] Polarized neutron<br />

diffraction<br />

Fe–Ni–V 15<br />

Magnetic form factor in (Fe 0.4Ni 0.6) 1–xV x at RT,<br />

x = 0.095-0.159<br />

[1986Maj] Wheatstone bridge Magnetostriction <strong>and</strong> TC of Fe-Ni-V alloys<br />

[1987Sta] Mössbauer studies Magnetic moment of Ni in ternary Fe-Ni-V alloys<br />

[1990Miy] 4-probe technique Electrical resistivity <strong>and</strong> saturation magnetization of<br />

82Ni-Fe+V thin film<br />

[1991Yao] Tensile <strong>and</strong> fracture test Mechanical properties of alloys with γ’ structure<br />

[1992Gom] Differential magnetic<br />

susceptibility<br />

Variation of Tc from FeNi3 to VNi3 L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_15<br />

ß Springer 2009


10 15<br />

Fe–Ni–V<br />

. Fig. 1<br />

Fe-Ni-V. Liquidus surface projection<br />

DOI: 10.1007/978-3-540-70890-2_15 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-Ni-V. Isothermal section at 1200˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–V 15<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_15<br />

ß Springer 2009


12 15<br />

Fe–Ni–V<br />

. Fig. 3<br />

Fe-Ni-V. Isothermal section at 1100˚C<br />

DOI: 10.1007/978-3-540-70890-2_15 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-Ni-V. Isothermal section at 1000˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–V 15<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_15<br />

ß Springer 2009


14 15<br />

Fe–Ni–V<br />

. Fig. 5<br />

Fe-Ni-V. Long-range-order parameter S plotted against V content for alloys of the series<br />

Ni 3Fe 1–xV x<br />

DOI: 10.1007/978-3-540-70890-2_15 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 6<br />

Fe-Ni-V. Hypothetical phase relationships at room temperature<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–V 15<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_15<br />

ß Springer 2009


16 15<br />

Fe–Ni–V<br />

References<br />

[1934Kue] Kuehlewein, H., Stoermer, R., “The Characteristics of Ferromagnetic <strong>Alloy</strong>s of the <strong>Ternary</strong> Iron-<br />

Nickel-Vanadium System” (in German), Z. Anorg. Chem., 218, 65–88 (1934) (Crys. Structure, Kinetics,<br />

<strong>Phase</strong> Diagram, Thermodyn., 28)<br />

[1949Jae] Jaenecke, E., “Fe-Ni-V” (in German) in “Kurzgefasstes H<strong>and</strong>buch aller Legierungen”, Winter Verlag,<br />

Heidelberg, 634–635 (1949) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 1)<br />

[1957Dar] Darby, J.B., Beck, P.A., “σ <strong>Phase</strong> in Certain <strong>Ternary</strong> <strong>Systems</strong> with Vanadium”, Trans. AIME, 209, 69–72<br />

(1957) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, #, 8)<br />

[1960Arm] Armitage, C. H., “The Fe-Ni-V system”, Thesis, Univ. Wisconsin, U.S.A., 21, 579–580 (1960) as quoted<br />

in [1988Ray]<br />

[1963Zeg] Zegler, S.T., Downey, J.W., “<strong>Ternary</strong> Cr 3O-Type <strong>Phase</strong>s with Vanadium”, Trans. Met. Soc. AIME, 227<br />

(6), 1407–1411 (1963) (Crys. Structure, Experimental, 16)<br />

[1970Gom1] Goman’kov, V.I., Puzey, I.M., Mal’tsev, E.I., “Effect of <strong>Alloy</strong>ing Elements on the Superstructure of<br />

Ni 3Fe” (in Russian), Dokl. Akad. Nauk SSSR, 194(2), 309–311 (1970) (Crys. Structure, Experimental,<br />

Magn. Prop., 6)<br />

[1970Gom2] Gomankov, V.I., Puzey, I.M., Maltsev, Ye.I., “Effect of Vanadium, Copper <strong>and</strong> Germanium on the<br />

Ni 3Fe Superstructure”, Phys. Met. Metallogr. (Engl. Transl.), 30, 237–240 (1970), translated from Fiz.<br />

Met. Metalloved., 30(1), 220–222, (1970) (Crys. Structure, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, 12)<br />

[1970Sar] Sarkisyan, R.S., Selissky, Ya.P., Sorokin, M.N., “Study of the <strong>Ternary</strong> Solid Solutions Ni 3(Fe, V)”, Phys.<br />

Met. Metallogr.(Engl. Transl.), 30(1), 47–53 (1970), translated from Fiz. Met. Metalloved., 30(1), 47–53<br />

(1970) (Crys. Structure, Experimental, Kinetics, 17)<br />

[1972Gom] Gomankov, V.I., Puzey, I.M., Kozis, Ye.V., Maltsev, Ye.I., Sigaev, V.N., “Atomic Ordering in the <strong>Ternary</strong><br />

System Ni-Fe-V”, Phys. Met. Metallogr. (Engl. Transl.), 33(3), 191–194 (1972), translated from Fiz. Met.<br />

Metalloved., 33(3), 648–651 (1972) (Crys. Structure, Electronic Structure, Experimental, 6)<br />

[1974Sar] Sarkisyan, R.S., Selisskiy, Ya.P., “Investigation of <strong>Ternary</strong> <strong>Alloy</strong>s Based on Ni 3Fe with Vanadium”, Phys.<br />

Met. Metallogr. (Engl. Transl.), 37(4), 137–141 (1974), translated from Fiz. Met. Metalloved., 37(4),<br />

832–836 (1974) (Crys. Structure, Experimental, Kinetics, 18)<br />

[1977Bra1] Brauwers, M., “Occurrence of the σ <strong>Phase</strong> Computed from a Cluster Model”, J. Phys. F: Met. Phys.,<br />

7(6), 921–927 (1977) (Calculation, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Theory, 17)<br />

[1977Bra2] Brauwers, M., Brouers, F., “On the Occurrence of the σ <strong>Phase</strong> in Transition-Metal <strong>Alloy</strong>s”, Philos.<br />

Mag., 35, 1105–1109 (1977) (Calculation, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Theory, 7)<br />

[1977Edn] Edneral, A.F., Zaitseva, R.D., Perkas, M.D., Rodionov, Yu.L., Sersenbin, O.S., “Ageing of Martensite in<br />

Fe-Ni-V <strong>Alloy</strong>s” (in Russian), Fiz. Met. Metalloved., 44(6), 1245–1253 (1977) (Morphology, Mechan.<br />

Prop., Experimental, 13)<br />

[1978Zai1] Zaitseva, R.D., Perkas, M.D., Rodionov, Yu.L., Sarsenbin, O.S., “Influence of Preliminary Low-<br />

Temperature Ageing of Martensite of Fe-Ni-V <strong>Alloy</strong>s on the Variation of Properties during High-<br />

Temperature Ageing” (in Russian), Fiz. Met. Metalloved., 45(1), 78–83 (1978) (Morphology, Mechan.<br />

Prop., Experimental, 18)<br />

[1978Zai2] Zaitseva, R.D., Perkas, M.D., “’Anomalous’ Variation in the Lattice Parameter of Martensite during<br />

the Ageing of Fe-Ni-V <strong>and</strong> Fe-Ni-Co-V <strong>Alloy</strong>s” (in Russian), Fiz. Met. Metalloved., 45(1), 103–109<br />

(1978) (Crys. Structure, Morphology, Mechan. Prop., Experimental, 9)<br />

[1981Wad] Wada,H., Pehlke, R.D., “Nitrogen Solubility in Liquid Fe-V <strong>and</strong> Fe-Cr-Ni-V <strong>Alloy</strong>s”, Metall. Trans. B,<br />

12(B), 333–339 (1981) (Experimental, Thermodyn., 10)<br />

[1981Geo] Georgiyeva, I.Ya., Matyushenko, L.A., Udovenko, V.A., “Investigation of the Martensitic Transformation<br />

Kinetics <strong>and</strong> Structural Peculiarities of <strong>Ternary</strong> Iron-Nickel-Based <strong>Alloy</strong>s”, Phys. Met. Metallogr.<br />

(Engl. Transl.), 52(3), 111–115 (1981), translated from Fiz. Met. Metalloved., 52(3), 580–584 (1981)<br />

(Crys. Structure, Experimental, Kinetics, <strong>Phase</strong> Relations, 2)<br />

[1981Zay] Zaytseva, R.D., Perkas, M.D., “Investigation of the Maraging Kinetics of Fe-Ni-V <strong>and</strong> Fe-Ni-Co-V<br />

<strong>Alloy</strong>s”, Russ. Metall., (2), 106–109 (1981) (Morphology, Kinetics, Mechan. Prop., Experimental, 5)<br />

[1981Zha] Zhanpeng, J., “A Study of the Range of Stability of σ <strong>Phase</strong> in some <strong>Ternary</strong> <strong>Systems</strong>”, Sc<strong>and</strong>. J. Metall.,<br />

10, 279–287 (1981) (Electronic Structure, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, #, 14)<br />

[1982Smi] Smith, J.F., Carlson, O.N., Nash, P.G., “The Ni-V (Nickel-Vanadium) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong><br />

<strong>Diagrams</strong>, 3(3), 342–348 (1982) (Crys. Structure, <strong>Phase</strong> Diagram, Review, Thermodyn., 35)<br />

DOI: 10.1007/978-3-540-70890-2_15 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–V 15<br />

17<br />

[1983Ray] Raynor, G.V., Rivlin, V.G., “<strong>Phase</strong> Equilibria in Iron <strong>Ternary</strong> <strong>Alloy</strong>s. XI. Critical Evaluation of<br />

Constitution of Chromium-Iron-Vanadium <strong>and</strong> Iron-Nickel-Vanadium <strong>Systems</strong>”, Int. Met. Rev.,<br />

28(5), 251–270 (1983) (Crys. Structure, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 44)<br />

[1984Bel] Belen’kii, A.Ya., Valuev, N.P., Zhikharev, A.N., Zaitseva, R.D., Klimov, A.B., Latyshev, V.K., Moish, Yu.<br />

V., Perkas, M.D., “Investigation of Ageing of Martensite in Fe-Ni-V <strong>and</strong> Fe-Ni-V-Mo <strong>Alloy</strong>s by the<br />

Positron Annihilation Method” (in Russian), Fiz. Met. Metalloved., 57(6), 1128–32 (1984) (Mechan.<br />

Prop., Experimental, 10)<br />

[1984Gan1] Gangopadhyay, A.K., Ray, R.K., Majumdar, A.K., “Sign Reversal of the Extraordinary Hall-Coefficient<br />

in Ni-Fe-Cr <strong>and</strong> Ni-Fe-V <strong>Alloy</strong>s”, Phys. Rev. B, 30(4), 1801–1810 (1984) (Experimental, Magn. Prop.,<br />

Thermodyn., 48)<br />

[1984Gan2] Gangopadhyay, A.K., Ray, R.K., Majumdar, A.K., “Weak Itinerant-Electron Ferromagnetism in<br />

Ni-Rich Ni-Fe-Cr <strong>and</strong> Ni-Fe-V <strong>Alloy</strong>s”, Phys. Rev. B, 30(11), 6693–6706 (1984) (Electrical Properties,<br />

Experimental, Kinetics, Magn. Prop., Thermodyn., 52)<br />

[1984Gan3] Gangopadhyay, A.K., Majumder, A.K., Ray, R.K., “The Sign Change of the Extra-Ordinary Hall<br />

Constant R s in Ni-Fe-V <strong>and</strong> Ni-Fe-Cr <strong>Alloy</strong>s”, Indian J. Cryogenics, 9(4), 294–301, (1984) (Experimental,<br />

Magn. Prop., Thermodyn., 12)<br />

[1984Tis] Tischer, Z., “Abrasion Resistant <strong>Alloy</strong> on the Basis of Ni-Fe-V for Magnetic Head Cores” (in Czech),<br />

Slaboproudy Obzor, 45(11), 548–50 (1984) (Mechan. Prop., Experimental, 3)<br />

[1984Tak] Takeyama, T., Sato, Y., “Influence of Heat Treatment <strong>and</strong> Composition on Effective Permeability <strong>and</strong><br />

its Stress-Sensitivity in thin Sheets of Ni-Fe-V <strong>Alloy</strong>s”, J. Jpn. Inst. Met., 48(7), 754–60 (1984) (Magn.<br />

Prop., Mechan. Prop., Experimental, 16)<br />

[1985Laa] van Laar, B., Maniawski, F., Kaprzyk, S., “Neutron Magnetic Form Factors of <strong>Ternary</strong> Ni-Fe-V <strong>Alloy</strong>s”,<br />

J. Phys. F: Met. Phys., 15(3), 675–680 (1985) (Experimental, Magn. Prop., 17)<br />

[1986Din] Dinsdale, A.T., Chart, T.G., MTDS, National Physical Laboratory, Teddington, UK, unpublished work<br />

(1986) as quoted in [2001Ser]<br />

[1986Maj] Majumdar, A.K., Greenough, R.D., “Linear Magnetostriction in Polycrystalline Ni-Fe-Cr <strong>and</strong> Ni-Fe-V<br />

<strong>Alloy</strong>s”, J. Magn. Magn. Mater., 59(1–2), 57–61 (1986) (Experimental, Magn. Prop., <strong>Phase</strong> Relations,<br />

Thermodyn., 10)<br />

[1987Gab] Gabriel, A., Gustafson, P., Ansara, I., “A Thermodynamic Evaluation of the C-Fe-Ni System”, Calphad,<br />

11(3), 203–218 (1987) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 41)<br />

[1987Sta] Stadnik, Z.M., Griesbach, P., Dehe, G., Gutlich, P., Maniawski, F., “Nickel Contribution to the<br />

Magnetism of the Ni-Fe-V <strong>Alloy</strong>”, J. Magn. Magn. Mater., 70(1–3), 436–438 (1987) (Electronic<br />

Structure, Experimental, 10)<br />

[1988Ray] Raynor, G.V., Rivlin, V.G., “Fe-Ni-V” in “<strong>Phase</strong> Equilibria in Iron <strong>Ternary</strong> <strong>Alloy</strong>s”, Inst. Metals, London,<br />

433–440 (1988) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 10)<br />

[1990Miy] Miyazaki, T., Ajima, T., Sato, F., “Magnetoresistance of 82Ni-Fe Based <strong>Alloy</strong> Films”, J. Magn. Magn.<br />

Mater., 83(1–3), 111–112 (1990) (Electrical Properties, Experimental, 13)<br />

[1991Hua1] Huang, W., “A Thermodynamic Evaluation of the Fe-V-C System”, Z. Metallkd., 82(5), 391–401 (1991)<br />

(<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 54)<br />

[1991Hua2] Huang, W., “Thermodynamic Properties of the Fe-Mn-V-C System”, Metall. Trans. A., 22A(9),<br />

1911–1920 (1991) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 25)<br />

[1991Yao] Yao, X., Chen, N., “Microstructures <strong>and</strong> Mechanical Properties of (Fe,Co,Ni) 3V <strong>Alloy</strong>s”, Mater.<br />

Mechan. Eng., 15(2), 27–31 (1991) (Crys. Structure, Mechan. Prop., Experimental, 10)<br />

[1992Gom] Gomankov, V.I., Gezalyan, A.D., Tretyakov, B.N., Sumin, V.V., “Structural <strong>and</strong> Magnetic State of<br />

Ni 3Fe-Ni 3V<strong>Alloy</strong>s” (in Russian), Russ. Metall. (Engl. Transl.), (2), 195–199 (1992), translated from Izv.<br />

Ross. Akad. Nauk, Met., (2), 195–199 (1992) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Magn.<br />

Prop., 13)<br />

[1992Luo] Luoma, R., Report TTK-V-B76, Helsinki University of Technology, Laboratory of Materials Processing<br />

<strong>and</strong> Powder Metallurgy, (1992) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 65)<br />

[1993Lee] Lee, B.-J., “Revision of Thermodynamic Descriptions of the Fe-Cr <strong>and</strong> Fe-Ni Liquid <strong>Phase</strong>s”, Calphad,<br />

17(3), 251–268, (1993) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 95)<br />

[1994Rag1] Raghavan, V., “Fe-Ni-V (Iron-Nickel-Vanadium)”, J. <strong>Phase</strong> Equilib., 15(6), 630 (1994) (<strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Review, 3)<br />

[1994Rag2] Raghavan, V., Antia, D.P., “The Chromium Equivalents of Selected Elements in Austenitic Stainless<br />

Steels”, Metall. Mater. Trans. A., 25A(12), 2675–2681, (1994) (<strong>Phase</strong> Relations, Thermodyn., Calculation,<br />

32)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_15<br />

ß Springer 2009


18 15<br />

Fe–Ni–V<br />

[1998Mie] Miettinen, J., “Approximate Thermodynamic Solution <strong>Phase</strong> Data for Steels”, Calphad, 22(2), 275–300<br />

(1998) (Assessment, Calculation, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 98)<br />

[2000Ans] Ansara, I., Private Communication, as quoted in [2001Ser]<br />

[2001Ser] Servant, C., Sundman, B., Lyon, O., “Thermodynamic Assessment of the Cu-Fe-Ni System”, Calphad,<br />

25(1), 79–95, (2001) (<strong>Phase</strong> Diagram, Thermodyn., Assessment, 44)<br />

[2001Wat] Watson, A., Hayes, F.H., “Some Aspects of Modelling the σ <strong>Phase</strong> in the Ni-V System”, J. <strong>Alloy</strong>s<br />

Compd, 320(2), 199–206 (2001) (<strong>Phase</strong> Diagram, Thermodyn., Assessment, 46)<br />

[2005Ust] Ustinovshikov, Y., Pushkarev, B., Sapegina, I., “<strong>Phase</strong> Transformations in <strong>Alloy</strong>s of the Fe-V System”,<br />

J. <strong>Alloy</strong>s Compd., 398, 133–138 (2005) (Crys. Structure, <strong>Phase</strong> Diagram, Experimental, 9)<br />

[2006Oka] Okamoto, H., “Fe-V (Iron-Vanadium)”, J. <strong>Phase</strong> Equilib. Diff., 27(5), 542 (2006) (Review, <strong>Phase</strong><br />

Diagram, 3)<br />

[2008Kuz] Kuznetsov, V., “Fe-Ni (Iron-Nickel)”, MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg,<br />

G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published (2008) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, 41)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_15 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Nickel – Tungsten<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Elena Semenova<br />

Introduction<br />

Fe–Ni–W 16<br />

1<br />

The Fe-Ni-W system is of great interest in a number of technological fields, such as the<br />

sintering of hard <strong>and</strong> refractory W-based alloys. The phase diagram of the Fe-Ni-W system has<br />

been studied experimentally since 1932. The first work of [1932Win] focused on compositions<br />

in the region of up to 45 mass% W; eight vertical sections together with the projection of the<br />

liquidus surface were constructed <strong>and</strong> later reproduced by [1961Eng, 1949Jae]. The investigation<br />

was accompanied by the measurement of some magnetic properties.<br />

Critical assessments of the phase diagram are presented in [1971Win, 1981Ray,<br />

1988Ray, 1994Rag]. The Ni-rich region of the Fe-Ni-W system was studied in detail between<br />

1350-800˚C by [1969Aga], for alloys lying on sections with Fe:Ni ratios from 20:80 to 70:30,<br />

<strong>and</strong> also isotherms of solubility were constructed. The tungsten solubility in the γ phase was<br />

presented as isotherms is in agreement with [1932Win].<br />

Based mainly on [1932Win] <strong>and</strong> taking into account the findings of [1969Aga] as well as<br />

information on the binary systems known at that time, [1971Win] proposed isothermal<br />

sections of the Fe-Ni-W phase diagram for temperatures between 800 <strong>and</strong> 1560˚C. The version<br />

of the liquidus surface projection proposed by [1932Win], as well as the phase diagram at<br />

1400˚C from [1971Win] was supported in the subsequent work of [1986Fer], which<br />

incorporated some suggestions of [1981Hen] regarding the existence of a saddle point on<br />

the surface of the γ primary crystallization field.<br />

There are, however, a number of discrepancies between the different versions of the phase<br />

diagram of this system for the solid state. Equilibrium is hard to attain in this system <strong>and</strong><br />

consequently, different phase relations were derived by different researchers depending on<br />

the annealing time used in their experiments. [1982Ban] studied the phase equilibria in the<br />

Fe-rich region of the Fe-Ni-W system as a part of the more complex Co-Fe-Ni-W system.<br />

The latter is of practical interest in relation to the production of martensite-ageing alloys. The<br />

existence of a three-phase (αFe)+γ+μ domain at 1300, 1200 <strong>and</strong> 800˚C was suggested. But this<br />

is in contradiction with most of the other studies of the ternary phase diagram <strong>and</strong> also with<br />

the accepted Fe-W binary system [Mas2], where the μ phase decomposes below 1190˚C. The<br />

Fe 2W phase was not found by [1982Ban] in the alloys investigated as part of their work.<br />

Moreover, [1972Var] did not see the Laves phase in Fe 2W-Ni 2W alloys at 950˚C, but equilibria<br />

between the μ <strong>and</strong> (αFe) phases were observed up to 16.7 at.% Ni in ternary alloys. [1986Zak1,<br />

1986Zak2, 1991Nik, 1992Nik] studied the phase relationships in the ternary Fe-Ni-W alloys in<br />

the W rich corner as a part of their study of the Co-Fe-Ni-W system. Isothermal sections for<br />

1400, 1200, 1050, 950, 800 <strong>and</strong> 527˚C, as well as vertical sections along 10 <strong>and</strong> 20 (Fe+Ni)<br />

(mass%) were constructed. [1979Edm], looking for a cause of embrittlement of Fe-Ni-W<br />

alloys, found that furnace cooling resulted in the precipitation of the (Fe,Ni)W phase at the<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


2 16<br />

Fe–Ni–W<br />

matrix-tungsten interface in (3-5)Fe-(5-7)Ni-W (mass%) alloys. This phase was considered to<br />

be responsible for embrittlement of the alloys. The distribution of the alloy components<br />

between the phase constituents on sintering W rich alloys <strong>and</strong> their redistribution after<br />

subsequent heat treatment was the subject of investigation by [1965Dzy, 1977Mar, 1980Min,<br />

1982Buk, 1995Dje]. Diffusion of Ni <strong>and</strong> Fe in W <strong>and</strong> of W in Ni <strong>and</strong> Fe was shown to<br />

accompany the sintering process. The W solubility was found to be higher in Ni than in Fe <strong>and</strong><br />

to decrease on addition of the latter to an alloy. [1983Du] compared the composition of the γ<br />

<strong>and</strong> (W) phases in the as sintered state <strong>and</strong> after heat treatment. [1981Ahn] calculated the<br />

solidus <strong>and</strong> liquidus curves in the Fe-Ni-W system separating at 1540˚C the (W)/(L+(W)) <strong>and</strong><br />

(L+(W))/L regions, respectively. [1986Fer] studied the phase equilibria in the Fe-Ni-W<br />

system. Their own experimental data presented as a series of tie-lines at temperatures of<br />

1000, 1100, 1200, 1300 <strong>and</strong> 1400˚C, as well as data on liquidus surface [1932Win] were used by<br />

[1986Fer] to evaluate the phase diagram <strong>and</strong> draw isothermal sections for these respective<br />

temperatures. The liquidus projection <strong>and</strong> a number of isopleths were also constructed from<br />

the data of [1932Win, 1969Aga, 1982Ban]. [1968Ega, 1969Yeg, 1970Gom, 1972Ive,] studied<br />

the effect of the W substitution for Fe in the FeNi 3 phase <strong>and</strong> on the degree of the long range<br />

ordering. [1982Rom] examined the conditions of heat treatment, cooling <strong>and</strong> ageing at which<br />

the W phase precipitated from the γ solid solution. The size of W particles was estimated.<br />

[1986Woo] examined the mechanical properties of a composite formed by a low-tungsten (25<br />

mass% W) alloy in a W rich (95 mass% W) matrix.<br />

A number of studies [2000Ryu, 2001Fan, 2001He, 2004Zha1, 2004Zha2, 2006Zha] were<br />

carried out on Fe-Ni-W alloys produced by mechanical alloying. Their thermal stability,<br />

microstructure <strong>and</strong> phase evolution on heating, grain growth, effect of milling time on<br />

crystallization <strong>and</strong> mechanical properties were investigated. With a view to using tungsten<br />

heavy alloys in nuclear fusion facilities, [1990Kra] investigated the radiation induced embrittlement<br />

of a 1.6Fe-3.4Ni-W (mass%) alloy. With the aim of controlling the formation of the<br />

Ni 4W phase, which is detrimental to the mechanical properties of the material, [2003Ron]<br />

examined the ageing mechanism under strain conditions at 800˚C of two Fe-Ni-36W (mass%)<br />

alloys, with compositions Fe:Ni = 1:9 <strong>and</strong> 3:7. Fine precipitates of Ni 4W distributed in the γ<br />

phase were found in the Ni rich sample.<br />

[2005Mar] produced dense <strong>and</strong> fine grains in tungsten heavy alloys by reaction synthesis<br />

combined with a dynamic consolidation process, <strong>and</strong> the results obtained were compared with<br />

those observed in conventional material preparation.<br />

[2006Par] applied a ‘master sintering curve’ to analyze both densification <strong>and</strong> grain growth<br />

data obtained by experiment for three Fe-Ni-W compositions. Activation energies of grain<br />

growth were calculated.<br />

Investigations of the system related to phase relations, structures <strong>and</strong> thermodynamic are<br />

presented in Table 1.<br />

Binary <strong>Systems</strong><br />

The Fe-Ni boundary binary system is accepted from the critical assessment of [2008Kuz]. The<br />

Fe-W system is taken from [Mas2] <strong>and</strong> Ni-W is from [1991Oka]. It is worth mentioning that<br />

[Mas2] questioned the stability of the Fe 2W phase <strong>and</strong> showed it tentatively as metastable.<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Solid <strong>Phase</strong>s<br />

Fe–Ni–W 16<br />

3<br />

The crystallographic data of the solid phases along with their stability ranges are shown in<br />

Table 2. No ternary phases are known in the system. The μ (Fe 7W 6) phase was found to be<br />

stable by [1932Win, 1972Var, 1981Hen, 1982Ban, 1986Fer, 1991Nik, 1992Nik]. The nickel<br />

solubility of the μ phase was accepted from [1981Hen] (about 10 at.%) as their investigations<br />

involved annealing alloys for prolonged periods of time in order to reach equilibrium at<br />

1000˚C (about 8 months). Data from [1972Var] on the phase relationships in Fe2Ni-Ni2W<br />

alloys at 950˚C indirectly supported this value. In the experimental work of [1932Win,<br />

1981Hen, 1982Ban, 1972Var] (the last work was carried out specifically to find out if the<br />

Fe 2W phase exists in the Fe-W binary or Fe-Ni-W ternary systems), the Fe 2W phase was not<br />

found. It was, however, observed by [1986Fer, 1987Kar]. In both of these last two cases, the<br />

equilibrium state was evidently not attained in their alloys; by [1986Fer] owing to the nature of<br />

the method used (diffusion couple technique) <strong>and</strong> by [1987Kar] because of insufficient heat<br />

treatment of the compacted powders (an hour at 1150˚C). [2005Mar] showed the presence of<br />

the phase in a 3Fe-7Ni-W (mass%) alloy that had been consolidated at 1000˚C using a shock<br />

wave treatment, confirming the metastable character of this phase. Here, according to<br />

[1972Var, 1981Hen, 1982Ban], the Fe 2W phase is considered to be metastable. [1981Hen]<br />

found substantial mutual solubility of the FeW <strong>and</strong> NiW equiatomic binary phases (which<br />

were assumed to be isomorphic) taking place at 1000˚C <strong>and</strong> suggested complete mutual<br />

solubility of them at this temperature <strong>and</strong> below. The formation of a continuous series of<br />

solid solutions of (Fe,Ni)W at 950˚C <strong>and</strong> down to 575˚C was reported by [1991Nik, 1992Nik].<br />

[1986Zak1, 1986Zak2] did not observe the FeW phase after annealing at 1200˚C (see Table 1)<br />

in alloys with 80 <strong>and</strong> 90 mass% W, but they assumed its appearance after more prolonged<br />

annealing. The intermetallic precipitates seen in 5Fe-5Ni-90W (mass%) alloys sintered at<br />

1450˚C were classified as the (Fe,Ni)W phase [1979Edm]. Because of a slowing down of the<br />

diffusion processes in the solid state, the peritectoid reactions by which the FeW, NiW, NiW 2<br />

<strong>and</strong> Ni 4W phases are formed remain incomplete following the heat treatment applied in most<br />

of the studies.<br />

Fe-Ni-W powders with 50 <strong>and</strong> 75 at.% W milled for 40 <strong>and</strong> 15 h, respectively, <strong>and</strong> then<br />

heated to 850˚C, contained as the products of crystallization the NiW <strong>and</strong> Ni4W phases in<br />

addition to the W <strong>and</strong> γ phases that had crystallized in the sample already at 570˚C [2001He].<br />

The crystallization of the amorphous phase <strong>and</strong> the precipitation of the (Fe,Ni)W phase were<br />

observed by [2006Zha] after prolonged milling of the 6.1Fe-13.2Ni-80.7W (at.%) powders<br />

(about 60 h) <strong>and</strong> subsequent annealing. The solubility of W in the γ phase changes slightly<br />

on decreasing the temperature in the 1350-800˚C range for the Fe-Ni-W alloys lying on the<br />

20Fe-80Ni section <strong>and</strong> is of about 33 mass% [1969Aga]. For the 50Fe:50Ni alloy, the value<br />

of the W solubility at 1350˚C almost coincides with that given by [1932Win] at 1400˚C, at<br />

about 20 mass%. It decreases with increasing iron content in the alloys. The γ phase in the<br />

1.5Fe-3.8Ni-W (mass%) alloy has the composition 21.4Fe-55.3Ni-W (mass%) [1986Woo].<br />

The amount of W found by [1977Mar] in the last portion of the crystallized liquid of a<br />

2.4Fe-Ni-93W (at.%) alloy was almost the same.<br />

[1982Buk] reported the total amounts of Fe <strong>and</strong> Ni dissolved in the α phase to be about<br />

0.4-1.3 mass%, depending on the heat treatment conditions. [1990Kra] pointed out that the<br />

microstructure of a 1.6Fe-3.4Ni-W (mass%) sample exposed to neutron irradiation contained<br />

two phases, γ+(W). Very small solubility of Fe <strong>and</strong> Ni in W was also reported by [1977Mar,<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


4 16<br />

Fe–Ni–W<br />

1980Min, 1982Rom, 1986Woo, 2001Fan]. [1977Mar] reported 0.28 at.% Ni <strong>and</strong> 0.13 at.% Fe<br />

in W. Mechanical alloying of a W heavy alloy (2.1Fe-4.9Ni-93W (mass%)) followed by<br />

annealing at 1280˚C gives nearly pure W particles embedded in a 63.7W-17.4Ni-19.9Fe<br />

(mass%) matrix [2004Zha2]. The ball milled mixture (for 60 h) has a melting point 220˚C<br />

lower than that of the unmilled powdered. According to [1983Du], the composition of the<br />

phases in the 3Fe-7Ni-W (mass%) alloy changes insignificantly after heat treatment. The<br />

γ phase had the composition 24Fe-51Ni-W <strong>and</strong> 26Fe-54Ni-W (mass%), <strong>and</strong> W grains containing<br />

less than 0.1 mass% Fe <strong>and</strong> less than 0.14 mass% Ni were observed after sintering at<br />

1250˚C. A mixture of the same composition manufactured by [2005Mar] using a shock<br />

consolidation process had a matrix of approximately the same make-up of about 22Fe-<br />

53Ni-23W, despite on applying heat, the NiW phase being observed in the specimens<br />

produced at 1000˚C. On ageing a 6.4Fe-Ni-36W (mass%) alloy at 800˚C, a fine dispersed<br />

Ni 4W phase precipitates from the γ matrix [2003Ron]. Less than 0.5 mass% Fe dissolves in<br />

NiW2 at 950˚C [1991Nik].<br />

The substitution of W for Fe in the FeNi3 phase leads to a increase in the ordering<br />

temperature, which reaches a maximum at about 555˚C for an alloy with 2 at.% W<br />

[1968Ega]. The long-range ordered crystal structure exists up to 3 at.% W [1968Ega,<br />

1970Gom]. According to [1968Ega, 1969Yeg], the temperature maximum was the result of<br />

the formation of a three component ordered structure. [1972Ive] considered that the long<br />

range order started to decrease at a W concentration of 2.05 at.% <strong>and</strong> the ordered structure<br />

disappeared in alloys containing about 5 at.% W.<br />

Invariant Equilibria<br />

Details of the invariant equilibria involving the liquid phase are given in Table 3, taken from<br />

[1932Win]. Amendments have been made to some of the phase compositions. The phase<br />

labeled as Fe 3W 2 is actually recognized as μ (Fe 7W 6). The available information on the<br />

invariant reactions proceeding in the solid state is extremely conflicting due to the difficulties<br />

in obtaining the intermediate phases experimentally, most of which are formed in the solid via<br />

peritectoid reactions. [1991Nik] assumed that the μ Ð α+γ+(Fe,Ni)W eutectoid decomposition<br />

took place in the system at about 1130˚C, while [1992Nik] came to the conclusion that it<br />

should be a peritectoid reaction, μ+α Ð γ+(Fe,Ni)W, taking place in the temperature range<br />

1200-1050˚C. Attempts to derive a sequence of reactions for the solid state, taking into account<br />

either of these reactions <strong>and</strong> the formation of the (Fe,Ni)W solid solution, were not successful.<br />

Therefore, Fig. 1 gives a partial reaction scheme that reflects only the liquid-solid equilibria in<br />

the system.<br />

Liquidus, Solidus Surfaces<br />

Figure 2 shows the projection of liquidus surface based on that constructed by [1932Win],<br />

with some modifications relating to the locations of the invariant points in the binary system<br />

given by [2008Kuz] <strong>and</strong> the saddle point <strong>and</strong> homogeneity range of the μ phase given by<br />

[1981Hen]. Figure 3 gives the solidus surface projection of the system. The solidus temperature<br />

along the boundary of the γ phase decreases in the ternary system <strong>and</strong> reaches a minimum<br />

at about 49 at.% Ni [1932Win].<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Isothermal Sections<br />

A series of the isothermal sections at 1560, 1500, 1465, 1455 <strong>and</strong> 1400˚C were constructed by<br />

[1971Win] on the basis of experimental data from [1932Win]. The section for 1400˚C agrees<br />

with that based on experimental data from [1981Hen] <strong>and</strong> that computed by [1986Fer]. The<br />

isothermal section at 1400˚C is shown in Fig. 4. On lowering the temperature, the μ phase is<br />

assumed to decompose to give (W)+FeW below 1190˚C. Fragments of the isothermal sections<br />

near the W corner at 1050 <strong>and</strong> 950˚C proposed by [1992Nik] are shown in Figs. 5 <strong>and</strong> 6,<br />

respectively. The isothermal section of the whole system at 800˚C according to incomplete<br />

data given by [1981Hen] is presented in Fig. 7. The composition of the (Fe,Ni)W apex of the<br />

(Fe,Ni)W + (W) + NiW 2 triangle shown in the partial isothermal section at 950˚C (Fig. 6) is<br />

richer in Fe than that given for 800˚C shown in Fig. 7. On decreasing the temperature down to<br />

575˚C, the phase diagram has a similar appearance to that at 950˚C [1992Nik], since among<br />

the phases taking part in the (W)+NiW 2+(Fe,Ni)W equilibrium at 950˚C, the (W) <strong>and</strong> NiW 2<br />

phases do not have any noticeable homogeneity range. The only difference among the sections<br />

at 950, 800 <strong>and</strong> 575˚C lies in the location of the (Fe,Ni)W apex of the (W)+NiW2 +(Fe,Ni)W<br />

triangle. The latter is displaced towards the FeW phase as the temperature decreases. The<br />

version presented by [1982Ban] for the Fe-rich region at 800˚C can not be used in conjunction<br />

with the data of [1981Hen] because of the appearance of the μ phase that contradicts the latter<br />

work. In the isothermal section at 800˚C calculated by [1986Fer], the invariant equilibrium<br />

(W)+NiW+γ is present while equilibria with NiW 2 phase is omitted. This is in contradiction<br />

with the accepted Ni-W binary phase diagram [Mas2] where the NiW 2 phase is shown to<br />

exist at 800˚C, <strong>and</strong> therefore, must take part in equilibria within the ternary system. This<br />

section, as well as all of the others computed by [1986Fer] for the temperatures lower than<br />

1100˚C, are not consistent with the Fe-W binary system either, because both of them show<br />

equilibria including the μ phase, which does not exist at these temperatures, together with a<br />

metastable λ phase.<br />

Temperature – Composition Sections<br />

The first experimental study of the ternary system, by [1932Win], presented 8 vertical sections<br />

located mainly in the Fe rich corner. None of them can be considered as accurate because of<br />

differences in the constitution of the binary systems <strong>and</strong> in the homogeneity range of the μ<br />

phase. The vertical sections presented by [1986Zak1, 1986Zak2, 1991Nik, 1992Nik] concern<br />

the W rich corner, at 80 <strong>and</strong> 90 mass% W. They were deduced from XRD measurements made<br />

on a great number of annealed alloys <strong>and</strong> can be taken as tentative. The section at 90 mass% W<br />

showing an increase in the formation of the (Fe,Ni)W phase <strong>and</strong> a decrease in the NiW 2 phase<br />

with increasing Fe content is presented in Fig. 8. The assessed isopleth at 14.3 at.% W is shown<br />

in Fig. 9.<br />

Thermodynamics<br />

Fe–Ni–W 16<br />

5<br />

[2004Zha1] calculated a positive excess Gibbs energy of mixing, Δ mixG xs , for both the<br />

amorphous phase <strong>and</strong> the crystalline solid solution in the Fe-Ni-W system at 300 K. For the<br />

amorphous Fe6.1Ni17.3W76.6 (at.%) phase, ΔmixG xs is 1.77 kJ·mol –1 .<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


6 16<br />

Fe–Ni–W<br />

The apparent activation energy for grain growth in the solid state was estimated by<br />

[2006Par] to be about 241 kJ·mol –1 , lower than both that for W diffusion in the solid matrix<br />

(268 to 306 kJ·mol –1 ) <strong>and</strong> for densification (367 kJ·mol –1 ). The activation energy of grain<br />

growth during liquid phase sintering is 106 kJ·mol –1 <strong>and</strong> is comparable with that of densification<br />

(101 to 136 kJ·mol –1 ).<br />

[1986Fer] presented an optimization of the thermodynamic description of the liquid, γ<br />

<strong>and</strong> μ phases <strong>and</strong> used it to calculate the phase diagram. The solidus curve separating (W) <strong>and</strong><br />

(W)+L regions calculated by [1981Ahn] at 1540˚C was close to that calculated from the data of<br />

[1971Win], while the liquidus curve separating the L <strong>and</strong> L+(W) regions passed at a higher W<br />

concentration than was shown by experiment.<br />

The activation energy of the atomic redistribution process determined from data on<br />

Young’s modulus <strong>and</strong> resistivity for FeNi 3-Ni 3W alloys containing up to 2 at.% W in the<br />

temperature range 350-400˚C, is close to that for the FeNi 3 binary alloy <strong>and</strong> is of about 170<br />

kJ·mol –1 . For the alloys containing 2-2.5 at.% W, it falls sharply down to 100 kJ·mol –1<br />

[1968Ega, 1969Yeg].<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Since tungsten heavy alloys are manufactured conventionally by sintering powder compacts,<br />

characteristics such as density <strong>and</strong> hardness are important <strong>and</strong> are usually reported. The<br />

density of a 1.5Fe-3.5Ni-95W (mass%) alloy, measuring 18.0 g·cm –3 was compared with that<br />

of the matrix at 9.2 g·cm –3 in [1986Woo]. The hardness of the matrix was 1.255 GPa (128 HV),<br />

<strong>and</strong> was much lower than that of the alloy, which measured 4.609 GPa (470 H V). The strength<br />

of the matrix was found to be less than half that of the specimen. A 3Fe-7Ni-W (mass%) alloy<br />

consolidated at 400˚C by shock synthesis had a density of 18.0 g·cm –3 ; that of the tungsten<br />

particles themselves being of about 29.4 g·cm –3 . The hardness remained consistent throughout<br />

the specimen [2005Mar]. [1977Mar] found the following characteristics for the 2.4Fe-Ni-93W<br />

composition: density of 17.4 g·cm –3 , hardness of 3.432 GPa (350 H V), tensile strength of 9<br />

MPa, elongation of 20%. The highest value of microhardness of the γ phase was reported by<br />

[1969Aga] in the alloy 10W-54Fe-36Ni (mass%), after sintering at 1350˚C. The (W) phase<br />

quenched from 800˚C has a hardness of 5.1 GPa [1991Nik]. The hardness of Fe-(5-20)Ni-<br />

(5-50)W (mass%) alloys increases with the W content; an observation explained by the<br />

increase in the amount of μ phase present [1982Ban] <strong>and</strong> the occurrence of a martensitic<br />

transformation. A maximum hardness, of about 5.384 GPa (540 H V), was found in (W)+γ+μ<br />

ternary alloys at 1200˚C. The variation in hardness with ageing time at 800˚C of a 36W-6.4Fe-<br />

57.6Ni <strong>and</strong> a 36W-19.2Fe-44.8Ni (mass%) alloy was compared by [2003Ron]. The hardness of<br />

the second alloy decreased monotonically while that of the first one after decreasing to the<br />

same level, increased, so the hardness gap between these two alloys was enlarged as ageing time<br />

increased. Fine Ni 4W precipitates strengthened <strong>and</strong> hardened the first alloy. A 1.4Fe-5.6Ni-<br />

93W (mass%) specimen sintered at 1300˚C after mechanical alloying exhibited fine tungsten<br />

particles of about 3 μm, a density higher than 99% of its theoretical value <strong>and</strong> a high yield<br />

strength of about 1100 MPa, while its impact energy <strong>and</strong> elongation characteristics were low<br />

[2000Ryu]. A large W/W contiguity <strong>and</strong> a low matrix volume fraction were considered as<br />

reasons for poor ductility <strong>and</strong> impact properties. This alloy, being liquid phase sintered in<br />

addition to being sintered in the solid state, possessed fine tungsten particles of about 6-15 μm<br />

in size; finer than those obtained through a conventional liquid phase sintering process.<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–W 16<br />

7<br />

An alloy of composition 2.1Fe-4.9Ni-93W sintered at 1150˚C for 0.5 h, contains W particles of<br />

an average size of 2 μm distributed homogeneously in the γ phase [2004Zha2]. Sintering at<br />

1280˚C, results in an increase in particle size to 6-8 μm. The density of material sintered at<br />

1150˚C was above 95% of its theoretical value. A theory of liquid phase sintering is presented<br />

in [2007Lee] for Fe-Ni-W alloys.<br />

A number of investigations have been carried out on an alloy of composition 3Fe-7Ni-90W<br />

(mass%). Fe additions to the Ni-90W (mass%) alloys increase the ductility <strong>and</strong> elongation of<br />

the alloy, which may reach 20% [1965Dzy, 1977Mar]. [2002Ekb] found that the microhardness<br />

of the tungsten particles increases from 3.815 GPa (389 H V) for undeformed specimens to<br />

4.992 GPa (509 H V) after 57% deformation at 25˚C. The highest value of microhardness<br />

observed was 5.296 GPa (540±28 H V) following 49% deformation at 800˚C. On increasing<br />

temperature, this value decreases to a value close to that of an undeformed specimen at<br />

1100˚C. The dislocation density of the W particle measured for this composite was observed to<br />

be higher at higher deformation stress. The electrical resistance <strong>and</strong> hardness increases with<br />

the amount of deformation of the composite [2000Min]. Impact energy tests show that the<br />

toughness of heavy alloys is sensitive to the rate of cooling from the sintering temperature; the<br />

concentration of Ni <strong>and</strong> Fe in the alloys being a critical factor in the heat treatment process<br />

[1979Edm]. The ultimate tensile strength of a specimen that had been subjected to heat<br />

treatment under vacuum at 1500˚C was shown by [1983Du] to increase, depending on the<br />

applied stress. The ductility of the heat treated specimen increased by about 25 times as<br />

compared to the as-sintered material, the elongation under tension reaching 26.1-27.2%<br />

depending on the applied strain. The maximum crack free reduction by cold rolling was<br />

72% [2000Min]. [1981Hen] showed that the tensile <strong>and</strong> bending strength of this alloy did not<br />

depend significantly on the exposure time at 900˚C, but it rather did on the furnace atmosphere.<br />

On heating a mechanically alloyed specimen, the solubility of W in the γ phase was<br />

found to decrease on increasing the temperature up to about 1480˚C. The size of W particles<br />

increased slowly on heating up to about 600˚C, <strong>and</strong> on heating up to 1200˚C, crystalline<br />

growth was enhanced [2001Fan].<br />

The Young’s modulus of the (Fe,W)Ni 3 ordered phase changes with composition, passing<br />

through a minimum at 2.2 at.% W [1968Ega, 1969Yeg], which was explained by a decrease in<br />

the ferromagnetic interaction <strong>and</strong> an increase in the metallic bond in the ordered alloys on<br />

substitution of Fe by W atoms. [1969Yeg] found a difference in the Curie point between<br />

annealed <strong>and</strong> rapidly cooled specimens, which increases linearly from a composition of FeNi 3<br />

up to Fe-75Ni-3W (at.%). The Curie temperature of Fe 2W-Ni 2W alloys decreases on increasing<br />

the Ni content up to 10 at.%, after which the temperature passes through a maximum at<br />

about 47 at.% Ni [1972Var].<br />

The recovery <strong>and</strong> recrystallization of cold worked tungsten specimens depends on the<br />

penetration of the Fe-Ni-W liquid, the penetration rate being dependent on microstructure<br />

<strong>and</strong> internal stress [2003Ant]. The complete penetration of the Fe-Ni-W melt in deformed<br />

tungsten was observed after 84 s while for specimens recrystallized before penetration, the rate<br />

was moderate.<br />

The experimental techniques used in the investigation of materials properties of Fe-Ni-W<br />

alloys are listed in Table 4.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


8 16<br />

Fe–Ni–W<br />

Miscellaneous<br />

The addition of 3 at.% W destroys the long range ordering in FeNi 3 owing to the allocation of<br />

Ni atoms to the second coordination sphere [1970Gom].<br />

The fracture surface of an irradiated bend specimen of composition 1.6Fe-3.4Ni-W<br />

(mass%) showed cleavage fracture in the tungsten grains <strong>and</strong> simple fracture in the Ni based<br />

matrix [1990Kra]. The specimen revealed a strong increase in the ductile-brittle transition<br />

temperature on increasing the neutron flux.<br />

A small decrease in the lattice parameter of the γ phase was observed towards 47 at.% Ni at<br />

950˚C from a = 359.9 to 359.3 pm, by [1972Var].<br />

The W solubility in the γ solution decreases on increasing the Fe content. The most<br />

significant change in the W solubility of the γ phase with temperature was observed for the<br />

alloys lying on the section 50Fe:50Ni [1969Aga]. The solubility of W in the binder phase<br />

decreases as temperature increases for mechanically alloyed specimens, unlike for those<br />

obtained by traditional sintering [2001Fan].<br />

[1965Dzy] studying the distribution of the alloy components in the phases obtained by<br />

liquid sintering showed that introducing Fe in a 10Ni-W (mass%) alloy suppressed the process<br />

of intensive grain boundary diffusion by reducing the Ni solubility in W grains as well as the W<br />

solubility in the Ni based matrix. The solubility of Fe in Wexceeds that of Ni; the amount of Fe<br />

in the center of W grain being much greater than that of Ni for alloys with the same<br />

proportion of elements in the matrix. The low melting binder phase of Fe-Ni-W sintered<br />

alloys occupies 21-23% of the surface area.<br />

Depending on cooling conditions, the lattice parameter of the binder phase of a 3Fe-7Ni-<br />

90W (mass%) alloy determined at RT increases from a = 359.25 pm (annealing at 1200˚C)<br />

through a = 359.43 pm (slow cooling) to a = 360.20 pm (quenching); the decrease in the W<br />

content in the binder phase being observed as 2-2.5 mass% on slow cooling <strong>and</strong> 5 mass% or<br />

more on annealing [1980Min]. The nickel based solid solution can contain from one to several<br />

hundred W phase particles. No texture was observed in a 3Fe-7Ni-W (mass%) composite<br />

quenched from the liquid phase sintering temperature [2000Min].<br />

The study of [1983Du] supported the inference of [1979Edm] that the cracking took place<br />

at the W grain-matrix interface. Hydrogen stored in voids <strong>and</strong> dissolved in the metals during<br />

the sintering process causes the interfacial embrittlement. Heat treatment under vacuum was<br />

shown by [1983Du] to lead to the removal of the embrittlement <strong>and</strong> to an improvement in the<br />

tensile properties of the specimens. The different microstructures of two alloys containing the<br />

same amount of W but different ratios of Ni:Fe (9:1 <strong>and</strong> 7:3) results, according to [2003Ron],<br />

in different mechanism of hardening.<br />

The phase evolution with respect to milling time was determined by [2004Zha2]: the<br />

supersaturated solid solution forms first followed by a partially amorphous phase <strong>and</strong> then a<br />

mixture of amorphous <strong>and</strong> nanocrystalline phases. It is an example of mechanically induced<br />

amorphization, the system not having a large negative heat of mixing. During annealing of a<br />

mechanically alloyed specimen, the following stages were observed: stress relaxation, recovery<br />

<strong>and</strong> grain growth of nanocrystalline phases, phase precipitation <strong>and</strong> amorphous phase crystallization<br />

[2001Fan].<br />

[1995Dje] assumed a statistical distribution of 3 at.% W in the Fe rich alloys of the ternary<br />

system.<br />

The distortion on sintering taking place in alloy compacts with W contents of 83, 88 <strong>and</strong><br />

93 (mass%) with Fe:Ni ratio of 3:7, is linked to the underlying microstructure, <strong>and</strong> for the<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


compositions discussed, the transition from distorting to undistorting compacts occurred at<br />

compositions between Fe-Ni-88W <strong>and</strong> Fe-Ni-93W. Heating rates of up to 15˚C/min did not<br />

have a significant effect on densification or distortion [2004Bol].<br />

The study by [2001He] of mechanically alloyed (7 to 19.5)Fe-(5.5 to 18)Ni-75W (at.%)<br />

material showed that the precipitation of W particles, followed by crystallization of the γ phase<br />

<strong>and</strong> formation of the NiW <strong>and</strong> Ni 4W phases in a glassy matrix, took place under heating.<br />

[1984Mud] identified the phase forming at the W-matrix interfaces in Fe-Ni-W<br />

(Fe:Ni=1:1) commercial alloy as (Fe,Ni)6W6C, which seemed to be stabilized by impurities.<br />

According to the model of liquid phase sintering used by [2007Lee] to simulate coarsening<br />

kinetics, the average particle volume increases linearly with time <strong>and</strong> the size of the particles is<br />

consistent with that obtained experimentally.<br />

It should be emphasized that the information available for the Fe-Ni-W phase diagram<br />

that has been considered here concerns only some aspects of the equilibria <strong>and</strong> thus can not be<br />

taken as final. The key problem is that it is quite difficult in practice to obtain homogeneous<br />

specimens owing to the great difference both in the melting points of the components <strong>and</strong> in<br />

their densities. Another challenge is to attain equilibrium in the system, as most reactions<br />

occurring in the solid state are at relatively low temperatures. Similar reservations should be<br />

made concerning the Ni-W binary system used in the calculations. The lack of reliable versions<br />

of the Fe-W <strong>and</strong> Ni-W phase diagrams limits the possibility of deriving an accurate version of<br />

the Fe-Ni-W phase diagram.<br />

. Table 1<br />

Investigations of the Fe-Ni-W <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

[1932Win] Melting, thermal <strong>and</strong> microscopic analysis Fe-Ni(0-45)W (mass%)<br />

[1965Dzy] Sintering at 1450˚C, EPMA, optical<br />

microscopy<br />

[1968Ega] Induction melting, Young’s modulus,<br />

electrical resistivity<br />

[1969Aga] Sintering / melting, microstructure, X-ray<br />

analysis, microhardness test<br />

3Fe-7Ni-W, 5Fe-5Ni-W, 7Fe-3Ni-W<br />

(mass%)<br />

Fe-75Ni-(0-5.1)W (at.%) 400-560˚C<br />

Fe-Ni-(0-40)W (mass%) at Fe:Ni =<br />

20:80, 30:70, 50:50, 60:40, 70:30,<br />

1350-800˚C<br />

[1969Yeg] Young’s modulus, saturation magnetization Fe-75Ni-(0.5-5.1)W<br />

[1970Gom] Neutron diffraction (Ni3Fe) 1–xWx, x = 0.01-0.05<br />

[1972Ive] X-ray of alloys after heating at 850, 530, 250˚C<br />

down to RT<br />

(19.9-24.6)Fe-Ni-(0.5-5.05)W (at.%)<br />

[1972Var] Sintering then quenching; X-ray analysis,<br />

optical microscopy, EPMA, magnetic<br />

properties<br />

Fe–Ni–W 16<br />

Fe 2W-Ni 2W, at 950˚C<br />

[1977Mar] Sintering at 1470˚C, EPMA 2.4Fe-Ni-93W (at.%)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


10 16<br />

Fe–Ni–W<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1979Edm] Sintering, optical microscopy, XRD, TEM,<br />

EPMA, SEM, AES<br />

[1980Min] Sintering, X-ray, microstructure, EPMA,<br />

electron microscopy<br />

[1981Ahn] Thermodynamic calculation incorporating the<br />

ternary regular solution model<br />

[1981Hen] Metallography, X-ray, DTA, tensile strength,<br />

bending strength tests<br />

[1982Ban] Arc melting, optical microscopy, XRD,<br />

microhardness, hardness, dilatometry,<br />

thermal analysis<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

3Fe-7Ni-W, 5Fe-5Ni-W (mass%)<br />

10(Fe+Ni)-W (mass%), Fe:Ni = 3:7<br />

Fe-Ni-W, 1540˚C<br />

1400˚C, 1000˚C, 850˚C Fe-Ni-(0-75)W<br />

(mass%)<br />

Fe-(5-20)Ni-(5-50)W (mass%) at 1300,<br />

1200, 800˚C<br />

[1982Buk] EPMA (MS-46 “Cameca”) (3-7)Fe-(7-3)Ni-W (mass%),<br />

1550-800˚C<br />

[1982Rom] The two-stage plastic-coal replica extraction<br />

method, electronic microscopy, XRD, EPMA<br />

Fe-Ni-90W (mass%) Fe:Ni = 3:7 ageing<br />

at 1000-800˚C<br />

[1983Du] EPA, SEM 3Fe-7Ni-W (mass%) sintered <strong>and</strong> heat<br />

treated in vacuum at 1500˚C<br />

[1984Mud] Sintering, TEM, EDX, scanning Auger<br />

spectrometry<br />

4.5Fe-4.5Ni-W (mass%)<br />

[1986Fer] Diffusion couples, optical microscopy,<br />

microprobe analysis, calculation<br />

[1986Woo] Optical microscopy, XRD, EMPA, chemical<br />

analysis<br />

[1986Zak1] Sintering, X-ray, optical microscopy, EPMA,<br />

Pirani <strong>and</strong> Alterthum methods,<br />

microhardness test<br />

[1986Zak2] Sintering, X-ray, optical microscopy, EMPA,<br />

Pirani <strong>and</strong> Alterthum methods,<br />

microhardness test<br />

xFe-(100–x)Ni-(0.1-50)W (mass%) 0.2<br />

≲ x ≲ 98.8, 1000-1400˚C<br />

1.5Fe-3.5Ni-95W, 21.4Fe-55.3Ni-<br />

23.4W at 1100˚C<br />

Fe-(0-10)Ni-W (mass%), stepped<br />

annealing: 1400˚C for 24 h, 1200 for<br />

26 h<br />

20(Fe+Ni)-W (mass%), stepped<br />

annealing: 1400˚C for 24 h, 1200˚C<br />

for 26 h<br />

[1987Kar] Induction melting, XRD, EPMA, metallography Fe-(0-30)Ni-(17-44)W (mass%)<br />

[1990Kra] Sintering, neutron irradiation, SEM, optical<br />

metallography, three point bending test<br />

1.6Fe-3.4Ni-W (mass%) 250˚C<br />

[1991Nik] Sintering, XRD, optical microscopy, EMPA,<br />

Pirani <strong>and</strong> Alterthum methods,<br />

microhardness test<br />

10 <strong>and</strong> 20 (Fe+Ni)-W (mass%) at 800<br />

(720 h), 575˚C (1680 h)<br />

[1992Nik] Sintering, XRD, optical microscopy 10 <strong>and</strong> 20 (Fe+Ni)-W (mass%) at<br />

1050˚C (720 h), 950˚C (1000 h)<br />

[1995Dje] Sintering, EPMA, Mössbauer spectroscopy,<br />

TEM, calculation<br />

Fe-16.3Ni-3W, 450˚C<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[2001Fan] Mechanical alloying, XRD, optical microscopy,<br />

EDX, DTA<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

3Fe-7Ni-90W (mass%)<br />

[2001He] Mechanical alloying XRD, DSC, SEM, TEM (7.9-12.8)Fe-Ni-50W <strong>and</strong> (7-19.5)Fe-<br />

Ni-75W (at.%), 570-850˚C<br />

[2003Ron] Sintering, cold rolling, XRD, TEM, hardness<br />

test<br />

Fe-Ni-36W (mass%) Fe:Ni = 9:1; 7:3 at<br />

800˚C<br />

[2004Zha1] Mechanical alloying, XRD, TEM 6.1Fe-17.3Ni-76.6W (at.%)<br />

[2004Zha2] Mechanical alloying, XRD, TEM, DSC, EDX,<br />

SEM, inert gas fusion infrared analysis<br />

[2005Mar] Shock wave synthesis <strong>and</strong> consolidation, SEM,<br />

XRD, BSE, EPMA<br />

[2006Par] Solid state <strong>and</strong> liquid phase sintering, SEM,<br />

measuring of grain size<br />

[2006Zha] Mechanical alloying, XRD, TEM, DSC, EDX,<br />

SEM, an inert gas fusion infrared analysis<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Ni–W 16<br />

2.1Fe-4.9Ni-93W (mass%) sintering at<br />

1150 <strong>and</strong> 1280˚C<br />

10(Fe+Ni)-W (mass%) 300, 400, 800<br />

<strong>and</strong> 1000˚C<br />

5.1Fe-11.9Ni-W, 3.6Fe-8.4Ni-W, 2.1Fe-<br />

4.9Ni-W (mass%), 1200 to 1500˚C<br />

6.1Fe-13.2Ni-80.7W (at.%) from 200 to<br />

1400˚C<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

γ, Fe1–x–yNixWy cF4 at x =0,0≤ y ≤ 0.146<br />

Fm3m at y =0,0≤ x ≤ 1<br />

Cu at y + x =1,y≤ 17.5 at 1495˚C [Mas2]<br />

a = 358 15Fe-3.5Ni-95W (mass%) [1986Woo]<br />

a = 359 at x = 4.6, y =93[1977Mar]<br />

(γFe)<br />

1394 - 912<br />

a = 364.67 at 915˚C [Mas2, V-C2]<br />

(Ni)<br />

< 1455<br />

a = 352.40 at 25˚C [Mas2]<br />

αδ, Fe1–x–yNixWy cI2 at y =0,0≤ x ≤ 0.046 (αFe)<br />

< 1548 Im3m<br />

W<br />

at y =0,0≤ x ≤ 0.038 (δFe)<br />

(δFe)<br />

1538 - 1394<br />

a = 293.15 [Mas2]<br />

(αFe)<br />

< 912<br />

a = 286.65 at 25˚C [Mas2]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


12 16<br />

Fe–Ni–W<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

(εFe) hP2 P63/<br />

mmc<br />

Mg<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

a = 246.8<br />

c = 396.0<br />

at 25˚C, 13 GPa [2008Kuz]<br />

(W) cI2 a =316.52 at 25˚C [Mas2]<br />

< 3422 Im3m dissolves 2.6 at.% Fe <strong>and</strong> about<br />

W 0.3 at.% Ni [Mas2, 1991Oka]<br />

a = 316 in a two-phase alloy of 3Fe-10Ni-90W (mass%)<br />

[1982Rom]<br />

γ’, FeNi3 cP4 a = 355.23 63-83 at.% Ni at 347˚C [2008Kuz]<br />

< 517 Pm3m a = 355.9 ± 0.1 24.6Fe-Ni-0.5W<br />

AuCu3 a = 356.9 ± 0.1 19.9Fe-Ni-5.05W (at.%) [1972Ive]<br />

γ’’, FeNi tP4<br />

P4/mmm<br />

AuCu<br />

a = 357.9 Metastable ordering temperature about 320˚C at<br />

51.2 at.% Ni [2008Kuz]<br />

λ, Fe2W hP12 - metastable phase at 33.3 at.% W [Mas2]<br />

≲ 1060 P63/mmc MgZn2 μ, Fe7W6 hR39 from 40.5 to about 42.1 at.% W [Mas2]<br />

1637 - 1190 R3m a = 475.7 Fe-3.3Ni-33.3W (at.%)<br />

Fe7W6 c = 258.2<br />

δ, (Fex Ni 1–x)W oP*<br />

P212121 0 ≤ x ≤ 1 at 950˚C [1992Nik]<br />

FeW MoNi from 48.5 to about 50.7 at.% W [Mas2]<br />

≲ 1215 dissolves about 8.5 mass% Ni at 1050˚C [1992Nik]<br />

NiW at about 50 at.% W [1991Oka]<br />

< 1068 a = 776<br />

b = 1248<br />

c = 710<br />

[V-C2]<br />

Ni4W tI10 at 19.4 at.% W [1991Oka]<br />

< 1002 I4/m a = 573.0 ± 0.1 [V-C2]<br />

MoNi4 c = 355.3 ± 0.1<br />

NiW2 tI96 at 66.7 at.% W [1991Oka] dissolves ≤0.5 mass% Fe<br />

< 1027<br />

-<br />

at 950, 800 <strong>and</strong> 575˚C [1991Nik, 1992Nik]<br />

a = 1040<br />

c = 1090<br />

[V-C2]<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

Ni W<br />

L+αδ Ð γ + μ 1465 U1 L 70.7 18.1 11.2<br />

αδ 75.1 12.8 12.09<br />

γ 74.5 16.2 9.3<br />

μ ~48 ~10 ~42<br />

L+μ Ð γ + (W) 1455 U2 L 54.7 33.6 11.7<br />

μ ~48 ~10 ~42<br />

γ 64.1 26.2 9.7<br />

(W) ~0.5 - ~99.5<br />

. Table 4<br />

Investigations of the Fe-Ni-W Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1965Dzy] EPMA Grain growth<br />

[1968Ega] Young’s modulus, electrical resistivity Fe-75Ni-(0-5.1)W (at.%) alloys<br />

[1969Yeg] Young’s modulus, saturation<br />

magnetization<br />

Fe-75Ni-(0.5-5.1)W (at.%) alloys<br />

[1969Aga] Microhardness of γ phase measured using<br />

a PMT-3 instrument<br />

[1972Var] Curie temperature measured on alloys<br />

water quenched from 950˚C<br />

[1977Mar] Mechanical properties of the alloy<br />

sintered at 1470˚C<br />

Fe–Ni–W 16<br />

10 <strong>and</strong> 20 mass% W with Ni:Fe = 40:60;<br />

30:70, after sintering at 1350˚C<br />

Change in Curie temperature of Fe 2W-<br />

Ni 2W alloy as a function of Ni content<br />

Ductility, hardness, fracture toughness<br />

Fe 2.4Ni 4.6W 93 alloy<br />

13<br />

[1979Edm] Un-notched Charpy test, AES The variations in toughness of the 3(5)Fe-<br />

7(5)Ni-W (mass%) alloys<br />

[1981Hen] Bend test Tensile <strong>and</strong> bending strength at 900˚C<br />

[1982Ban] Hardness Change in the alloy hardness with respect<br />

to W content at 1200˚C<br />

[1983Du] EPMA, SEM, microhardness tensile test Variation of ultimate tensile <strong>and</strong> yield<br />

strength with strain rate of 3Fe-7Ni-W<br />

(mass%) alloy<br />

[1986Woo] Sintering, optical microscopy, XRD, EMPA,<br />

uniaxial compression test<br />

Density, hardness, stress/strain curves<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


14 16<br />

Fe–Ni–W<br />

. Table 4 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1990Kra] Neutron irradiation test at 250-300˚C in<br />

the reactors FRJ2 <strong>and</strong> HFR fluxes of up to<br />

56·10 24 neutrons μ –2 . SEM, metallography<br />

analysis<br />

[1991Nik] Microhardness of (W) phase of the<br />

Fe-Ni-W alloys quenched from 800˚C<br />

[2000Ryu] Density, yield strength, elongation impact<br />

energy, size of W particles, matrix volume<br />

fraction, W/W contiguity. Tensile test<br />

[2000Min] Tensile test, microhardness, electrical<br />

resistance, SEM, microstructure, X-ray<br />

[2001Fan] Mechanical alloying of the 3Fe-7Ni-90W<br />

(mass%) mixture, XRD, optical<br />

microscopy, EDX, DTA<br />

[2002Ekb] Deformation by elongation in a tensile<br />

testing machine <strong>and</strong> by isostatic<br />

extrusion, XRD, microhardness, HVEM,<br />

stereographic photography<br />

[2003Ron] Hardness (Rockwell A) measured at<br />

different ageing times at 800˚C<br />

[2003Ant] Melt penetration test, SEM, TEM, hardness<br />

measurement<br />

[2004Bol] Dilatometry, density, solid volume<br />

fraction <strong>and</strong> contiguity measured with<br />

image analysis software<br />

[2004Zha2] Mechanical alloying, XRD, TEM, DSC, EDX,<br />

SEM, Archimedes water immersion<br />

method<br />

[2005Mar] SEM, EDS, X-ray, quantitative image<br />

analysis, microhardness, density, grain<br />

size<br />

Ductile-brittle transition temperature of<br />

1.63Fe-3.52Ni-W (mass%) alloy<br />

Variation of microhardness of (W) phase<br />

of the alloys along the 90 mass% W<br />

section<br />

of 1.4Fe-5.6Ni-93W (mass%) alloy<br />

mechanically alloyed, sintered at 1300˚C<br />

<strong>and</strong> subsequently liquid phase sintered at<br />

1470˚C <strong>and</strong> water quenched<br />

Effect of deformation by rolling on<br />

hardness <strong>and</strong> electrical resistance of the<br />

3Fe-7Ni-90W (mass%) composite slowly<br />

<strong>and</strong> rapidly cooled<br />

W particle size<br />

Variation of W in γ phase with<br />

temperature<br />

Dislocation density, microhardness<br />

The variation of hardness of the Fe-Ni-<br />

36W (mass%) alloys where Fe:Ni = 1:9<br />

<strong>and</strong> 3:7<br />

Penetration rate, W solid exposed to<br />

24Fe-43Ni-33W (mass%) melt<br />

Distortion, grain size, grain growth rate<br />

of (Fe,Ni)1–xWx, x = 83, 88, 93 mass%;<br />

Fe:Ni = 3:7<br />

Density, W grain size in 2.1Fe-4.9Ni-93W<br />

(mass%) composition after sintering at<br />

1150 <strong>and</strong> 1280˚C<br />

Grain size, density, consolidation of<br />

compacts by shock synthesis<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-Ni-W. Reaction scheme<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–W 16<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


16 16<br />

Fe–Ni–W<br />

. Fig. 2<br />

Fe-Ni-W. Liquidus surface projection<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-Ni-W. Solidus surface projection<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–W 16<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


18 16<br />

Fe–Ni–W<br />

. Fig. 4<br />

Fe-Ni-W. Isothermal section at 1400˚C<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-Ni-W. Fragment of the isothermal section at 1050˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–W 16<br />

19<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


20 16<br />

Fe–Ni–W<br />

. Fig. 6<br />

Fe-Ni-W. Fragment of the isothermal section at 950˚C<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 7<br />

Fe-Ni-W. Isothermal section at 800˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–W 16<br />

21<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


22 16<br />

Fe–Ni–W<br />

. Fig. 8<br />

Fe-Ni-W. Isopleth at 90 mass% W, plotted in at.%<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 9<br />

Fe-Ni-W. Isopleth at 14.3 at.% W<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–W 16<br />

23<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


24 16<br />

Fe–Ni–W<br />

References<br />

[1932Win] Winkler, K., Vogel, R., “The <strong>Ternary</strong> System of the Iron-Nickel-Tungsten” (in German), Arch.<br />

Eisenhuettenwes., 6, 165–172 (1932) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Magn. Prop., 6)<br />

[1949Jae] Jaenecke, E., “Fe-Ni-W” (in German) in “Kurzgefasstes H<strong>and</strong>buch aller Legierungen”, Winter Verlag,<br />

Heidelberg, 635–636 (1949) (Review, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 2)<br />

[1961Eng] English, J.J., “Binary <strong>and</strong> <strong>Ternary</strong> <strong>Phase</strong> <strong>Diagrams</strong> of Columbium, Molybdenum, Tantalum <strong>and</strong> Tungsten”,<br />

Defense Metals Information Center, Batelle Memorial Institute, Columbus 1, Ohio, 152, 204–206 (1961)<br />

(<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 1)<br />

[1965Dzy] Dzykovich, I.Ya., Makarova, R.V., Teodorovich, O.K., Frantsevich, I.N., “Distribution of Elements<br />

During the Formation of Sintered <strong>Alloy</strong>s of the System W-Ni-Fe”, Sov. Powder Metall. Met. Ceram., 8,<br />

655–660 (1965), translated from Poroshk. Metall., (8), 62–69, (1965) (Experimental, <strong>Phase</strong> Relations,<br />

Mechan. Prop., 3)<br />

[1968Ega] Eganyan, I.L., Selissky, Y.P., “Investigation of the Effects of Atomic Ordering in <strong>Ternary</strong> Solid Solutions<br />

on the Basis of Ni 3Fe <strong>Alloy</strong>ed by VI Group Elements - Chromium, Molybdenum, Tungsten” (in<br />

Russian), Izv. Akad. Nauk Ukr. SSR, Metallofizika, (20), 100–104 (1968) (Crys. Structure, Experimental,<br />

<strong>Phase</strong> Relations, Mechan. Prop., Thermodyn., 3)<br />

[1969Aga] Agababova, V.M., Chaporova, I.N., “Boundary of the Monophasic γ-Solid Solution Region in the<br />

<strong>Ternary</strong> System W-Ni-Fe”, Sov. Powder Metall. Met. Ceram., (7), 571–576 (1969), translated from<br />

Poroshk. Metallurg., (7), 65–72, (1969) (Experimental, <strong>Phase</strong> Relations, Mechan. Prop., 2)<br />

[1969Yeg] Yeganyan, I.L., Selisskiy, Ya.P., “A Study of the Effects of Atomic Ordering in <strong>Ternary</strong> Solid So1utions of<br />

Cr, Mo, <strong>and</strong> W in Ni 3Fe.”, Phys. Met. Metallogr., 27(2), 18–25 (1969), translated from Fizika Metallov i<br />

Metalloved., 27(2), 210–218 (1969) (Experimental, Thermodyn., 8)<br />

[1970Gom] Goman’kov, V.I., Puzey, I.M., Mal’tsev, E.I., “Effect of <strong>Alloy</strong>ing Elements on the Superstructure of<br />

Ni 3Fe” (in Russian), Dokl. Akad. Nauk SSSR, 194(2), 309–311 (1970) (Crys. Structure, Experimental, 6)<br />

[1971Win] Winslow, F.R., “The Iron-Nickel-Tungsten <strong>Phase</strong> Diagram”, U.S. At. Energy Comm. Pubn, Y-1758 (1971)<br />

(<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review) as quoted in [1988Ray]<br />

[1972Ive] Iveronova, V.I., Katsnelson, A.A., Silonov, V.M., “On Atomic Ordering in the System Nickel-Iron-<br />

Tungsten”, Phys. Met. Metallogr., (3), 77–81 (1972), translated from Fiz. Met. Metalloved., (3), 535–539<br />

(1972) (Crys. Structure, Experimental, 5)<br />

[1972Var] Varli, K.V., Dyakonova, N.P., Korneva, O.S., Umansky, Ya.S., “Investigation of Some <strong>Alloy</strong>s of the<br />

System Fe-Ni-W” (in Russian), Izv. Vyssh. Ucheb. Zaved., Chern. Met., (1), 120–123 (1972) (Experimental,<br />

<strong>Phase</strong> Relations, Crys. Structure, Morphology, Mechan. Prop., Magn. Prop., 5)<br />

[1977Mar] Margaria, T., Allibert, C., Driole, J., “Structural Characterisation of W-Base Sintered <strong>Alloy</strong>s: W-Ni -Fe,<br />

W-Ni-Co <strong>and</strong> W-Ni-Cr” (in French), J. Less-Common Met., 53, 85–95 (1977) (Crys. Structure, Experimental,<br />

Mechan. Prop., Morphology, <strong>Phase</strong> Relations, 6)<br />

[1979Edm] Edmonds, D.V., Jones, P.N., “Interfacial Embrittlement in Liquid-<strong>Phase</strong> Sintered Tungsten Heavy<br />

<strong>Alloy</strong>s”, Metall. Trans. A, 10A, 289–295 (1979) (Crys. Structure, Experimental, Mechan. Prop., Morphology,<br />

<strong>Phase</strong> Relations, 12)<br />

[1980Min] Minakova, R.V., Storchak, N.A., Verkhovodov, P.A., Bazhenova, L.G., Poltoratskaya, V.L., “Some<br />

Structural Characteristics of the Binder <strong>Phase</strong> of W-Ni-Fe <strong>Alloy</strong>s”, Sov. Powder Metall. Met. Ceram.,<br />

(12), 842–846 (1980), translated from Poroshk. Metall., (12), 45–50 (1980) (Experimental, Crys.<br />

Structure, Morphology, <strong>Phase</strong> Relations, 16)<br />

[1981Ahn] Ahn, S.T., “Thermodynamic Calculation of W-Ni-Fe <strong>Ternary</strong> <strong>Phase</strong> Diagram at 1540˚C”, J. Korean Inst.<br />

Met., 19(11), 947–951 (1981) (Calculation, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 12)<br />

[1981Hen] Henig, E.T., Hofman, H., Petzow, G., “The Constitution of W-Fe-Ni alloys <strong>and</strong> its Influence on<br />

its Mechanical Properties” (in German) in “Plansee Seminar”, Ortner, H.M., (Ed.), Reutte, Austria,<br />

Metallwerk Plansee, 335–359 (1981) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Mechan.<br />

Prop., 63)<br />

[1981Ray] Raynor, G.V., Rivlin, V.G., “Critical Evaluation of Constitutions of Certain <strong>Ternary</strong> <strong>Alloy</strong>s Containing<br />

Iron, Tungsten <strong>and</strong> a Third Metal”, Int. Met. Rev., 26, 213–249 (1981) (Crys. Structure, <strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Review, 43)<br />

[1982Ban] Bannykh, O.A., Kurbatkina, O., Prokofiev, D.J., “<strong>Phase</strong> Diagram for Fe-Ni-W System”, Izv. Akad. Nauk<br />

SSSR, Met., (6), 197–203 (1982) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Mechan. Prop., 5)<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–W 16<br />

25<br />

[1982Buk] Bukatov, V.G., Romashov, V.M., Gostev, Yu.V., “Effect of Heat Treatment on the Distribution of<br />

Elements in the <strong>Phase</strong> Components of W-Ni-Fe <strong>Alloy</strong>s” (in Russian), Poroshk. Metall., (10), 38–41<br />

(1982) (Experimental, Crys. Structure, <strong>Phase</strong> Relations, 6)<br />

[1982Rom] Romashov, V.M., Kurganov, G.V., Vlasov, E.E., “Precipitated Particles in the Binder <strong>Phase</strong> of W-Ni-Fe<br />

<strong>Alloy</strong>s”, Sov. Powder Metall. Met. Ceram., (12), 952–953 (1982), translated from Poroshk. Metall., (12),<br />

55–56 (1982) (Experimental, Crys. Structure, Morphology, <strong>Phase</strong> Relations, 5)<br />

[1983Du] Du, J., “Strain <strong>and</strong> Fracture of Liquid <strong>Phase</strong> Sintered <strong>Alloy</strong> 90W-7Ni-3Fe”, Acta Metall. Sin. (China), 19<br />

(4), A354-A358 (1983) (Experimental, <strong>Phase</strong> Relations, Morphology, Mechan. Prop., 11)<br />

[1984Mud] Muddle, B.C., “Interphase Boundary Precipitation in Liquid <strong>Phase</strong> Sintered W-Ni-Fe <strong>and</strong> W-Ni-Cu<br />

<strong>Alloy</strong>s”, Metall. Trans. A, 15A, 1089–1098 (1984) (Crys. Structure, Morphology, Experimental, 34)<br />

[1986Fer] Fern<strong>and</strong>ez-Guillermet, A., Ostlund, L., “Experimental <strong>and</strong> Theoretical Study of the <strong>Phase</strong> Equilibria in<br />

the Fe-Ni-W System”, Metall. Trans. A, 17A, 1809–1823 (1986) (Experimental, Calculation, Thermodyn.,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 32)<br />

[1986Woo] Woodward, R.L., McDonald, I.G., Gunner, A., “Comparative Structure <strong>and</strong> Physical Properties of<br />

W-Ni-Fe <strong>Alloy</strong>s Containing 95 <strong>and</strong> 25 wt.% Tungsten”, J. Mater. Sci. Lett., 5(4), 413–414 (1986)<br />

(Experimental, <strong>Phase</strong> Relations, Morphology, Crys. Structure, Mechan. Prop., 3)<br />

[1986Zak1] Zakharov, A.M., Parshikov, V.G., Vodop’yanova, L.S., Novozhonova, V.A., “<strong>Phase</strong> Equilibria in <strong>Alloy</strong>s<br />

of the W-Fe-Co-Ni System. I. <strong>Alloy</strong>s Containing 10% (Fe+Co+Ni) at 1400-1200˚C”, Sov. Powder Metall.<br />

Met. Ceram., (4), 313–316 (1986), translated from Poroshk. Metall., (4), 60–64 (1986) (Experimental,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 7)<br />

[1986Zak2] Zakharov, A.M., Parshikov, V.G., Vodopyanova, L.S., Godovannaya, E.B., “<strong>Phase</strong> Equilibria In<br />

Tungsten-Iron-Cobalt-Nickel <strong>Alloy</strong>s Containing 20% Iron + Cobalt + Nickel at 1400-1200˚C” (in<br />

Russian), Izv. Vyss. Uchebn. Zaved., Tsvetn. Metall., (5), 75–79 (1986) (Assessment, Crys. Structure,<br />

<strong>Phase</strong> Diagram, Mechan. Prop., Experimental, 9)<br />

[1987Kar] Kardonskii, V.M., “Effect of Ni on the Structure <strong>and</strong> <strong>Phase</strong> Composition of Fe-W <strong>Alloy</strong>s” (in Russian),<br />

Fiz. Met. Metalloved., 63(1), 133–136 (1987) (Experimental, Crys. Structure, <strong>Phase</strong> Relations, Morphology,<br />

4)<br />

[1988Ray] Raynor, G.V., Rivlin, V.G., “Fe-Ni-W” in “<strong>Phase</strong> Equilibria in Iron <strong>Ternary</strong> <strong>Alloy</strong>s”, Inst. Metals, London,<br />

4, 441–452 (1988) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 7)<br />

[1990Kra] Krautwasser, P., Derz, H., Kny, E., “Influence of Fast Neutron Fluence on the Ductile-Brittle Transition<br />

Temperature of Tungsten, W-10Re, <strong>and</strong> W-3.4Ni-1.6Fe”, High Temp.-High Pressures, 22(1), 25–32<br />

(1990) (Experimental, Morphology, Mechan. Prop., 8)<br />

[1991Nik] Nikol’skii, A.V., Zakharov, A.M., Parshikov, V.G., Vodop’yanova, L.S., “<strong>Phase</strong> Equilibria in the<br />

Tungsten-rich Field of the W-Fe-Ni System in the 800-575˚C”, Sov. Powder Metall. Met. Ceram., (8),<br />

675–680 (1991), translated from Poroshk. Metall., (8), 61–67 (1991) (Crys. Structure, Experimental,<br />

<strong>Phase</strong> Diagram, Phys. Prop., <strong>Phase</strong> Relations, 11)<br />

[1991Oka] Okamoto, H., “Ni-W (Nickel-Tungsten)”, J. <strong>Phase</strong> Equilib., 12(6), (1991) (<strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Review, 3)<br />

[1992Nik] Nikosky, A.V., Zakharov, A.M., “The W-Fe-Ni <strong>Systems</strong> at 1050-950˚C <strong>and</strong> 10-20% (Fe + Ni)”, Russ.<br />

Metall., (5), 213–217 (1992) translated from Izv. Akad. Nauk, Met., (5), 220–223 (1992) (Crys. Structure,<br />

Experimental, <strong>Phase</strong> Diagram, Phys. Prop., 15)<br />

[1994Rag] Raghavan, V., “Fe-Ni-W (Iron-Nickel-Tungsten)”, J. <strong>Phase</strong> Equilib., 15(6), 631–632 (1994) (<strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Review, 11)<br />

[1995Dje] Djega-Mariadassou, C., Bessais, L., Servant, C., “Nanocrystalline Precipitates Formed by Aging of BCC<br />

Disordered Fe-Ni-Mo <strong>Alloy</strong>s”, Phys. Rev. B: Condens. Matter, 51(14), 8830–8840 (1995) (Crys. Structure,<br />

Experimental, Phys. Prop., 16)<br />

[2000Min] Minakova, R.V., Pachek, A.P., Kryachko, L.A., Kresanova, A.P., Zatovskii, V.G., “Texture Formation in<br />

the Cold Rolling of Pseudo-<strong>Alloy</strong>s”, Powder Metall., Met. Ceram., 39, 78–84 (2000) (Crys. Structure,<br />

<strong>Phase</strong> Relations, Electr. Prop., Experimental, Mechan. Prop., 5)<br />

[2000Ryu] Ryu, H.J., Hohg, S.H., “Effects of Sintering Conditions on Mechanical Properties of Mechanically<br />

<strong>Alloy</strong>ed Tungsten Heavy <strong>Alloy</strong>s”, Key Eng. Mater., 183–187, 1291–1296 (2000) (Experimental, Morphology,<br />

Kinetics, Mechan. Prop., 15)<br />

[2001Fan] Fan, J., Huang, B., Qu, X., Zou, Zh., “Thermal Stability, Grain Growth <strong>and</strong> Structure Changes of<br />

Mechanically <strong>Alloy</strong>ed W-Ni-Fe Composite During Annealing”, Inter. J. Ref. Met. Hard Mater., 19(2),<br />

73–77 (2001) (Experimental, <strong>Phase</strong> Relations, Morphology, 17)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_16<br />

ß Springer 2009


26 16<br />

Fe–Ni–W<br />

[2001He] He, Z., Courtney, T.H., “Crystallization <strong>and</strong> Thermal Stability of Mechanically <strong>Alloy</strong>ed W-Ni-Fe<br />

Noncrystalline Materials”, Mater. Sci. Eng. A, 315(1-2), 166–173 (2001) (Experimental, Phys. Prop.,<br />

Thermodyn., 18)<br />

[2002Ekb] Ekbom, L., Antonsson, T., “Tungsten Heavy <strong>Alloy</strong>: Deformation Texture <strong>and</strong> Recrystallization of<br />

Tungsten Particles”, Inter. J. Refract. Met. Hard Mater., 20, 375–379 (2002) (Experimental, Morphology,<br />

Mechan. Prop., 16)<br />

[2003Ant] Antonsson, T., Ekbom, L., Eliasson, A., Fredriksson, H., “Liquid Ni-Fe Penetration <strong>and</strong> Recrystallisation<br />

in Tungsten”, Int. J. Refract. Met. Hard Mater., 21, 159–170 (2003) (Experimental, Kinetics,<br />

Transport Phenomena, 30)<br />

[2003Ron] Ronghua, L., Jihua, H., Sheng, Y., Jun, Zh., “Strain Aging Precipitation Behavior of β <strong>Phase</strong> in W-Ni-Fe<br />

<strong>Ternary</strong> System”, J. Mater. Sci. Lett., 22(5), 397–398 (2003) (Experimental, <strong>Phase</strong> Relations, Mechan.<br />

Prop., Morphology, 7)<br />

[2004Bol] Bollina, R., German, R.M., “Heating Rate Effects on Microstructural Properties of Liquid <strong>Phase</strong><br />

Sintered Tungsten Heavy <strong>Alloy</strong>s”, Int. J. Refract. Met. Hard Mater., 22, 117–127 (2004) (Experimental,<br />

Morphology, 31)<br />

[2004Zha1] Zhang, Zh-W., Zhou, J.-E., Xi, Sh-Q., Ran, G., Li, P.-L., Zhang, W.-X., “Formation of Crystalline <strong>and</strong><br />

Amorphous Solid Solutions of W-Ni-Fe Powder During Mechanical <strong>Alloy</strong>ing”, J. <strong>Alloy</strong>s Compd., 370,<br />

186–191 (2004) (Experimental, Morphology, <strong>Phase</strong> Relations, Calculation, Thermodyn., Kinetics, 35)<br />

[2004Zha2] Zhang, Z.-W., Zhou, J.-E., Xi, S.-Q., Ran, G., Li, P.-L., “<strong>Phase</strong> Transformation <strong>and</strong> Thermal Stability of<br />

Mechanically <strong>Alloy</strong>ed W-Ni-Fe Composite Materials”, Mater. Sci. Eng. A, 379A, 148–153 (2004) (Crys.<br />

Structure, Experimental, Kinetics, Morphology, 21)<br />

[2005Mar] Marquis, F.D.S., Mahajan, A., Mamalis, A.G., “Shock Synthesis <strong>and</strong> Densification of Tungsten Based<br />

Heavy <strong>Alloy</strong>s”, J. Mat. Proc. Tech., 161, 113–120 (2005) (Crys. Structure, Experimental, Mechan. Prop.,<br />

Morphology, <strong>Phase</strong> Relations, Phys. Prop., 14)<br />

[2006Par] Park, S.J., Martin, J.M., Guo, J.F., Jonson, J.L., German, R.M., “Grain Growth Behaviour of Tungsten<br />

Heavy <strong>Alloy</strong>s Based on the Master Sintering Curve Concept”, Metall. Mater. Trans. A, 37A, 3337–3346<br />

(2006) (Experimental, Calculation, Thermodyn., 63)<br />

[2006Zha] Zhang, Z.W., Chen, G.L., Chen, G., Zhou, J.E., “Amorphization <strong>and</strong> Thermal Stability of Mechanical<br />

<strong>Alloy</strong>ed W-Ni-Fe”, Mater. Sci. Eng. A, 417A, 34–39 (2006) (Experimental, Phys. Prop., 28)<br />

[2007Lee] Lee, S.-B., Rickman, J.M., Rollett, A.D., “Three-Dimensional Simulation of Isotropic Coarsening in<br />

Liquid <strong>Phase</strong> Sintering I: A Model”, Acta Mater., 55(2), 615–626 (2007) (Crys. Structure, Experimental,<br />

Kinetics, Mechan. Prop., Thermodyn., 36)<br />

[2008Kuz] Kuznetsov, V., “Fe-Ni (Iron-Nickel)”, MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg,<br />

G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published (2008) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, #, 41)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_16 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Nickel – Zinc<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Nataliya Bochvar, Lazar Rokhlin<br />

Introduction<br />

The Fe-Ni-Zn phase diagram is of a great importance for galvanizing steels containing Si. The<br />

various alloying elements are added into the molten Zn bath in hot galvanizing. The technology<br />

of the hot bath galvanizing is widely used for h<strong>and</strong>ling most steels. But galvanizing the Si<br />

containing steels remains a technical problem. In general, galvanizing Si in steel gives rise to a<br />

thin, dull grey coating with poor adhesion to the steel substrate. The use of Ni as additive in Zn<br />

bath may decrease the detrimental effects of the silicon. However, the Ni addition to a<br />

galvanizing bath frequently introduces a new type of defect, the entrapment of so-called<br />

“floating dross” particles in the coating. A galvanizing bath is always saturated with Fe, as Fe<br />

constantly dissolves from the galvanized steel articles, <strong>and</strong> bath essentially becomes a Fe-Ni-Zn<br />

ternary system. Simultaneously, the intermetallic compounds forming in the bath, commonly<br />

referred to as dross particles. Therefore, the study of the Fe-Ni-Zn phase diagram represents a<br />

practical interest.<br />

The Fe-Ni-Zn phase diagram was investigated in a number of works <strong>and</strong> summarized in<br />

[1987Bha, 2003Rag, 2007Rag] reviews.<br />

A ternary phase of the assumed formula Fe 6Ni 5Zn 89 was reported by [1957Ray].<br />

However, the ternary phase was shown by the later works [1989Per, 1992Reu, 1994Per,<br />

1999Reu] to be an extensive solid solution of the cubic structure closely related to that of<br />

Fe 11Zn 40.<br />

The nature of phases <strong>and</strong> phase relations were studied experimentally in the Zn rich part of<br />

the Fe-Ni-Zn system at various temperatures at 700˚C [1940Glu], 370˚C [1957Ray], 450˚C<br />

[1993Che, 1989Per, 1992Reu, 1994Per, 1999Reu, 2000Tan] <strong>and</strong> 560˚C [2005Pen]. Using the<br />

Calphad method, [2001Tan] calculated the phase boundaries in the Zn rich corner of the<br />

system at 450, 465 <strong>and</strong> 480˚C, as [1994Per] calculated those at 450 <strong>and</strong> 480˚C. The experimental<br />

studies are summarized in Table 1.<br />

The phase equilibria close to the Zn corner which depict the liquid phase boundary<br />

in equilibrium with solid phases are of importance for galvanizing process. They allow<br />

determining the constitution of floating dross particles at the galvanizing temperatures.<br />

However, there is difference in the description of the equilibria close to the Zn corner<br />

[1994Per, 1995Per, 1995Tan, 1996Tan] which will be debated below in the section “Isothermal<br />

Sections”.<br />

Binary <strong>Systems</strong><br />

Fe–Ni–Zn 17<br />

1<br />

The Fe-Zn, Fe-Ni <strong>and</strong> Ni-Zn binary phase diagrams are accepted from [2008Per], [2008Kuz]<br />

<strong>and</strong> [2008Leb], respectively.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_17<br />

ß Springer 2009


2 17<br />

Fe–Ni–Zn<br />

Solid <strong>Phase</strong>s<br />

A ternary phase of the approximate “formula” of Fe 6Ni 5Zn 89 has been reported by [1957Ray]<br />

to exist in the Zn rich corner of the Fe-Ni-Zn phase diagram. Using microprobe analysis,<br />

[1994Lid] gave an approximate composition as FeNiZn 18 <strong>and</strong> its formula as (Fe,Ni)Zn 6.5.<br />

However, no evidence showing conclusively structurally different τ from the Γ2 phase does<br />

exist. On the other h<strong>and</strong>, [1989Per, 1992Reu, 1994Per, 1999Reu] established the existence of a<br />

continuous series of solid solution between Γ 2 phase <strong>and</strong> Zn 89Fe 6Ni 5 -dross composition at<br />

450˚C. This conclusion was made after examination of the isolated ternary phase annealed<br />

under vacuum at 450˚C by X-ray diffraction method. Its pattern was the same as that of the Γ 2<br />

compound <strong>and</strong> could be indexed into the same fcc crystal lattice system [1989Per]. Comparing<br />

X-ray diffraction results with Mössbauer data, [1999Reu] supposed that Ni atoms occupied Zn<br />

position in the Fe 6Ni 5Zn 89 phase. Also, [1994Lid] proposed that the crystal structure of (Fe,<br />

Ni)Zn6.5 single crystal examined by X-ray analysis is closely related to the Γ2 phase with<br />

the small difference in site occupation. Both structures may be considered as superstructures<br />

of γ-brass. Although [2001Tan, 2005Pen] called it a true ternary phase, all their results show<br />

only that this is an extended solid solution based on the Γ 2 phase. Structural investigations of<br />

[2005Pen] did not confirm difference of crystal structures of Γ 2 <strong>and</strong> (Fe,Ni)Zn 6.5. The fact that<br />

at 560˚C [2005Pen] observed it only in the ternary system, while it does not exist in the binary<br />

is no evidence for being a true ternary phase. An appearance of a binary phase in the ternary<br />

region at a temperature where the binary phase does not exist itself is quite common case in<br />

ternary systems.<br />

In the present evaluation the “(Fe,Ni)Zn6.5 phase” is accepted to be a part of an extended<br />

solid solution based on the Γ 2 phase.<br />

The solubility of Ni in the δ 1 <strong>and</strong> ζ phases of the Fe-Zn system amounts up to 2 <strong>and</strong> 1 at.%,<br />

respectively, <strong>and</strong> the Fe solubility in the δ phase of the Ni-Zn system is less than 0.5 at.% at<br />

450˚C [1989Per]. The solid phases of the Fe-Ni-Zn system are listed in Table 2.<br />

The phases Fe 3Zn 10 <strong>and</strong> γ of the Ni-Zn system form a continuous solid solution (Γ 1).<br />

Invariant Equilibria<br />

Based on the metallographic examination of the annealed at 370˚C Zn rich alloys with 0.5Fe-<br />

1.5Ni <strong>and</strong> 0.75Fe-1.25Ni (mass%), [1957Ray] proposed the ternary compound Fe 6Ni 5Zn 89 (in<br />

fact Γ 2) to be formed by a peritectic reaction from the liquid <strong>and</strong> ζ phases. However, such a<br />

peritectic reaction is not possible because according to [2005Pen] Γ 2 is stable at the temperature<br />

of 560˚C that is higher than that of the ζ phase formation. Taking into account the phase<br />

equilibria at 560˚C <strong>and</strong> a schematic liquidus surface (Fig. 1), an invariant four-phase reaction<br />

of the Γ2 formation L + δ1 + Γ1 Ð Γ2 (560


Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

[1957Ray] presented a schematic surface of the primary crystallization fields in the Zn rich<br />

corner up to 3 mass% Fe <strong>and</strong> 3 mass% Ni with the wide surface of Γ 2 <strong>and</strong> five narrow surfaces<br />

of (Zn), ζ, δ 1, δ, γ. The schematic surface of the primary crystallization was presented without<br />

possible directions of the monovariant lines (Fig. 1 is redrawn in at.% <strong>and</strong> adjusted to the<br />

accepted binary systems).<br />

Isothermal Sections<br />

Fe–Ni–Zn 17<br />

3<br />

There are two discrepancies in the description of the liquid phase boundaries <strong>and</strong> phases in<br />

equilibrium with liquid in the Zn rich alloys at the ordinary temperature of the galvanizing<br />

process 450˚C. [1995Per] believed for the liquid in equilibrium with ζ a constant solubility of<br />

Fe (0.039 mass%) which was independent from the Ni content in the liquid. On the other<br />

h<strong>and</strong>, [1995Tan, 1996Tan] based on the [1993Che] results <strong>and</strong> own experiments indicated the<br />

Fe solubility to decrease from 0.029 mass% at 0% Ni to 0.021 mass% at 0.061 mass% Ni for the<br />

equilibrium of the liquid <strong>and</strong> ζ phases. A further increase in Ni to 0.10 mass% lowered the Fe<br />

solubility limit to 0.016 mass%. These results are confirmed by [2000Tan] <strong>and</strong> are accepted in<br />

the [2003Rag] review <strong>and</strong> in this assessment.<br />

The other difference concerns the equilibrium of δ 1 with liquid at 450˚C. Interpreting the<br />

[1993Che]’s results, [1995Tan, 1996Tan] proposed an equilibrium of the δ 1 phase with the<br />

molten Zn, whereas [1993Che] gave the equilibria only between L <strong>and</strong> ζ;L,ζ <strong>and</strong> Γ2; L <strong>and</strong> Γ2.<br />

On the other h<strong>and</strong>, [1995Per] indicated that no experimental evidence existed for the<br />

equilibrium of the δ 1 phase with the liquid in the Zn rich corner. Only one layer (ζ) ortwo<br />

layers (ζ + Γ 2) were found between the δ 1 phase <strong>and</strong> the Zn rich liquid in the galvanizing bath.<br />

The ζ - Γ 2 equilibrium prohibited any tie line between δ <strong>and</strong> the liquid phase. These data<br />

agreed with the phase equilibria at 370˚C [1957Ray]. New results of [2001Tan] also are in line<br />

with those of [1994Per].<br />

The isothermal sections at 450˚C shown in Figs. 2 <strong>and</strong> 3 after [2003Rag] who redrawn<br />

them from [1989Per, 1994Per] (Fig. 2) <strong>and</strong> from [2001Tan] (Fig. 3). Here they are slightly<br />

modified to correspond with the accepted binary systems. The difference between the two<br />

sections is that in Fig. 2 a continuous solid solution Γ 2 exists, whereas in Fig. 3 the solution is<br />

broken <strong>and</strong> Γ 2 appears ones again (Γ 2’) in the ternary region. [2003Rag] proposes that this<br />

result could be interpreted as a miscibility gap existing at 450˚C rather than the existence of a<br />

true ternary compound. The continuous solid solution is apparently metastable (Fig. 2) <strong>and</strong><br />

breaks up into two phases of different compositions (Fig. 3) with the much-longer annealing<br />

times (15 days) used by [2001Tan], as compared with 30 min used by [1989Per, 1995Per].<br />

However, [2001Tan] believes that in the Zn rich corner the ternary phase with a not fixed<br />

stoichiometry exists indeed <strong>and</strong> has an appreciable homogeneity range. The limits of its<br />

homogeneity range at 450˚C change from 2.1 to 8.7 at.% Ni <strong>and</strong> from 14.1 to 4.1 at.% Fe,<br />

respectively. The phases being in equilibrium with molten Zn are identical in [1989Per] <strong>and</strong><br />

[2001Tan]: ζ, Γ 2 (or T) <strong>and</strong> δ.<br />

Figure 4 shows a partial isothermal section at 560˚C based on [2005Pen] <strong>and</strong> adjusted to<br />

the accepted binary diagrams. The Γ 2 phase has a homogeneity range from 3.2 to 9.1 at.% Ni<br />

<strong>and</strong> from 10.8 to 4.1 at.% Fe, respectively.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_17<br />

ß Springer 2009


4 17<br />

Fe–Ni–Zn<br />

The Fe solubility in the liquid Zn phase is much higher at 560˚C then at 450˚C, <strong>and</strong><br />

decreases substantially with increasing Ni content in the liquid. In contrast, the reduction of<br />

the Fe solubility in the liquid Zn with Ni addition is relatively insignificant at 450˚C.<br />

[2000Tan] constructed experimentally the liquid-phase boundaries of the Fe solubility<br />

at 450, 465 <strong>and</strong> 480˚C <strong>and</strong> [1993Che] constructed those at 450˚C. [1993Che] found that for<br />

Ni 0.06 mass% in the bath a second phase Γ 2, containing ~3 mass% Ni, started to appear.<br />

For Ni ≈ (0.06 to 0.09) mass% in the bath the ζ <strong>and</strong> Γ 2 phases could co-exist.<br />

[2001Tan] presented a thermodynamic assessment of the Zn rich corner of the Fe-Ni-Zn<br />

phase diagram, deriving the ternary interaction parameters <strong>and</strong> calculated isothermal sections<br />

at 450, 465 <strong>and</strong> 480˚C. They are presented in Fig. 5. The experimental results of [1993Che,<br />

2000Tan] agreed with the calculation very good. The tie triangles (broken lines in Fig. 5) were<br />

added by [2003Rag] approximately <strong>and</strong> did not take into account the possible presence of the<br />

δ phase in equilibrium with liquid above 450˚C.<br />

Thermodynamics<br />

A thermodynamic description of dross formation in the Ni-Zn bath with galvanizing steel was<br />

made by [1994Per]. The Gibbs energies of the alloy Fe 0.06Ni 0.89Zn 0.05 was Δ fG = –6638 J·mol –1<br />

at 450˚ <strong>and</strong> ΔfG= –6329 J·mol –1 at 480˚C. The change of the Gibbs energies with the<br />

temperature could be calculated by the equation: ΔfG = –1036 – 8.5407 T J·mol –1 .<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Using the Mössbauer effect, [1991Doo] studied the microscopic magnetic properties of cubic<br />

microwave ferrite (Zn 0.41Ni 0.59)Fe 2O 4.<br />

Miscellaneous<br />

[1997Ana] investigated the stability of the Fe-Ni-Zn coatings during heat treatments up to<br />

400˚C, using microscopic studies. They established the electrocatalytic activity of Fe-Ni-Zn codeposits<br />

to depend on electrodeposition <strong>and</strong> surface topography parameters.<br />

Studying the X-ray magnetic circular dichroism, the Fe-ion distribution in crystal lattice of<br />

the spinel ferrite Fe2.01Ni0.48Zn0.51 was established [2002Pat].<br />

[2005Hwa] synthesized the ferrite with the chemical formula of Fe2Ni0.5Zn0.5O4 <strong>and</strong><br />

investigated the homogeneity range of the precursor <strong>and</strong> reproducibility of the as-synthesized<br />

product by elementary analysis <strong>and</strong> other analyses. The reaction mechanism was also studied<br />

using thermal <strong>and</strong> escaping gas analyses.<br />

DOI: 10.1007/978-3-540-70890-2_17 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1<br />

Investigations of the Fe-Ni-Zn <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1940Glu] Diffusion experiment, Fe-Ni alloys<br />

dissolved in liquid Zn bath.<br />

X-ray <strong>and</strong> chemical analyses,<br />

microstructure examination, hardness<br />

measurement<br />

[1957Ray] Annealing of cast alloys at 370˚C for 85<br />

days followed by quenching or cooling<br />

slowly.<br />

Metallographic examination, X-ray<br />

diffraction, chemical analysis<br />

[1989Per] Diffusion couples obtained with Fe-Ni<br />

alloys at galvanizing in (Zn+0.1 at.% Ni)<br />

bath at 450˚C.<br />

Electron microprobe analysis, X-ray<br />

diffraction<br />

[1992Reu] Diffusion layers after Fe galvanized in Ni-<br />

Zn bath at 450˚C for 8 min.<br />

SEM, determination of the fractal<br />

dimension<br />

[1993Che] Ni was dissolved in Zn molten in low<br />

carbon steel bath at 450˚C for 270 h. Dross<br />

was periodically removed from coating of<br />

bath <strong>and</strong> then remelted in a graphite<br />

crucible in electrical furnace at 450˚C for<br />

5 h <strong>and</strong> quenched in water.<br />

Microstructure examination, XRD <strong>and</strong> EDS<br />

analyses<br />

[1994Lid] The mixture from Fe <strong>and</strong> Zn was heated in<br />

stainless steel ampoules, sealed under Ar,<br />

heated to 1300 K in 2 h <strong>and</strong> cooled to<br />

room temperature at a rate of 30 K/h.<br />

X-ray <strong>and</strong> electron microprobe analyses<br />

[1994Per] Fe was galvanized in a (Zn-0.1 mass% Ni)<br />

bath at 450 <strong>and</strong> 480˚C for 30 min.<br />

Electron microprobe analysis,<br />

thermodynamic calculation<br />

[1999Reu] δ 1(FeZn 10) phase was obtained by<br />

mechanical alloying <strong>and</strong> phase Zn 89Fe 6Ni 5<br />

was obtained in galvanizing bath. XRD<br />

method, Mössbauer spectra<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Zn 17<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

Composition of Fe-Ni alloys changing<br />

across 10 mass%. <strong>Phase</strong> composition of<br />

diffusion layers.<br />

Zn rich alloys with Fe <strong>and</strong> Ni up to 3 mass%.<br />

Isothermal section at 370˚C <strong>and</strong> surface of<br />

primary separation.<br />

Zn rich alloys (Zn>80 at.%). Crystal<br />

structure <strong>and</strong> lattice parameter of the Γ 2<br />

phase, isothermal section at 450˚C<br />

Ni content in Ni-Zn bath from 0 to 0.13<br />

mass%. Determination of phases in<br />

equilibrium with liquid in diffusion layers<br />

in dependence from Ni content<br />

Ni content from 0.024 to 0.102 mass% <strong>and</strong><br />

Fe content from 0.024 to 0.016 mass%.<br />

Structure <strong>and</strong> composition of dross<br />

phases. Isothermal section of the Zncorner<br />

at 450˚C<br />

Crystal structure <strong>and</strong> lattice parameter of<br />

Zn6.5(FeNi) single crystal<br />

Zn rich corner. Determination of phases in<br />

equilibrium with liquid. Calculation of<br />

liquidus at 450 <strong>and</strong> 480˚C<br />

Crystal structures of δ 1(FeZn 10) <strong>and</strong><br />

Fe 6Ni 5Zn 89<br />

5<br />

DOI: 10.1007/978-3-540-70890-2_17<br />

ß Springer 2009


6 17<br />

Fe–Ni–Zn<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[2000Tan] Zn bath with the submerged samples was<br />

heated at 600˚C for 3 h, then at 450, 465<br />

<strong>and</strong> 480˚C for 40h <strong>and</strong> quenched in water.<br />

Microstructure examination, atomic<br />

absorption spectrophotometry<br />

[2001Tan] The powder of pure Fe, Ni, Zn were sealed<br />

in an evacuated quartz tube, heated to<br />

above its estimated liquidus temperature,<br />

kept for 2 days <strong>and</strong> quenched in water.<br />

Optical <strong>and</strong> scanning electron<br />

microscopes <strong>and</strong> SEM-EDS analysis.<br />

Thermodynamic calculation<br />

[2005Pen] The powders of pure Fe, Ni, Zn were<br />

sealed in an evacuated quartz tube,<br />

heated to above its estimated liquidus<br />

temperature, kept for 2 days <strong>and</strong><br />

quenched in water. Then the annealing at<br />

560˚C for 21 days <strong>and</strong> quenching in water.<br />

SEM, EDS, X-ray diffraction<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

Liquid phase boundaries in the Zn rich<br />

region at 450, 465 <strong>and</strong> 480˚C<br />

Zn rich alloys from 2 to 16 at.% Fe <strong>and</strong><br />

from 2 to 11 at.% Ni. Calculation of the<br />

isothermal sections at 450 <strong>and</strong> 480˚C <strong>and</strong><br />

liquidus at 450˚C<br />

Zn rich alloys from 2 to 16 at.% Fe <strong>and</strong><br />

from 2 to 11 at.% Ni. Isothermal section at<br />

560˚C<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

γ, (γFe,Ni) cF4 continuous solid solution in Fe-Ni.<br />

Fm3m<br />

(Ni) Cu a = 352.4 pure Ni at 25˚C [V-C2, Mas2]<br />

< 1455 Dissolves up to 39.4 at.% Zn at 1040˚C in Ni-Zn<br />

[2008Leb].<br />

(γFe) a = 364.67 pure Fe at 915˚C [V-C2, Mas2]<br />

1394 - 912 Dissolves up to 6 at.% Zn in Fe-Zn [2008Per]<br />

DOI: 10.1007/978-3-540-70890-2_17 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Ni–Zn 17<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

7<br />

α, (αδFe) cI2<br />

Im3m<br />

(δFe) W a = 293.15 pure Fe at 1390˚C [V-C2, Mas2].<br />

1538 - 1394 Dissolves up to 42 at.% Zn at 782˚C in Fe-Zn,<br />

[2008Per]<br />

Dissolves up to 3.8 at.% Ni at 1517˚C in Fe-Ni<br />

[2008Kuz].<br />

(αFe) a = 286.65 pure Fe at 25˚C [Mas2]. Dissolves 4.6 at.% Ni at<br />

< 912<br />

495˚C [2008Kuz]<br />

(Zn) hP2 a = 266.50 pure Zn at 25˚C [Mas2]<br />

< 419.58 P63/mmc Mg<br />

c = 494.70<br />

γ’, FeNi cP4 63 to 85 at.% Ni [2008Kuz]<br />

< 517 Pm3m<br />

AuCu3 a = 355.23<br />

Γ1 cI52<br />

Im3m<br />

continuous solid solution.<br />

Fe3Zn10<br />

< 782<br />

Cu5Zn8 a = 899 ~75.5 to 79 at.% Zn [2008Per]<br />

γ, Ni-Zn<br />

< 881<br />

a = 893.57 70 to 77 at.% Zn [2008Leb]<br />

Γ2,Fe1–xNixZny cF408 at 450˚C [1994Per]:<br />

F43m at y ≈ 0.93 0.023 < x ≈ 0.045<br />

Fe11Zn40 at x ≈ 0.103 y ≈ 0.87<br />

at 560˚C [2005Pen]:<br />

at x ≈ 0.09 y ≈ 0.87<br />

at x ≈ 0.036 y ≈ 0.906<br />

at x ≈ 0.03 y ≈ 0.863<br />

a = 1808.38 [1994Lid]<br />

a = 1800 [1989Per]<br />

a = 1801.7 [1999Reu]<br />

Fe11Zn40 a = 1796.3 at x = 0 ~0.658 < y < 0.81 [2008Per]<br />

< 550 a = 1798.6<br />

δ1, FeZn10 hP550 86 to 92.5 at.% Zn, [2008Per]<br />

< 672 P63mc a = 1283<br />

FeZn10 c = 5770<br />

ζ, FeZn13 mC28 a = 1342.4 ~93 to 94 at.% Zn, [2008Per]<br />

< 530 C2/m b = 760.8<br />

CoZn13 c = 506.1<br />

β = 127.3˚<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_17<br />

ß Springer 2009


8 17<br />

Fe–Ni–Zn<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

β, NiZn cP2 47.3 to 58.3 at.% Zn<br />

1040 - 675 Pm3m<br />

CsCl<br />

a = 290.83 [2008Leb]<br />

β1, NiZn tP4 a = 389.5 45.3 to 58.3 at.% Zn<br />

< 818 P4/mmm<br />

AuCu<br />

c = 321.4 [2008Leb]<br />

δ, Ni-Zn mC28 a = 1337.6 89 to 90 at.% Zn<br />

< 490 C2/m b = 751.1 [2008Leb]<br />

CoZn13 c = 762.7<br />

DOI: 10.1007/978-3-540-70890-2_17 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Zn 17<br />

. Fig. 1<br />

Fe-Ni-Zn. Schematic partial surface of the primary phase separation in the Zn corner<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_17<br />

ß Springer 2009


10 17<br />

Fe–Ni–Zn<br />

. Fig. 2<br />

Fe-Ni-Zn. Partial isothermal section at 450˚C<br />

DOI: 10.1007/978-3-540-70890-2_17 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-Ni-Zn. Partial isothermal section at 450˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Zn 17<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_17<br />

ß Springer 2009


12 17<br />

Fe–Ni–Zn<br />

. Fig. 4<br />

Fe-Ni-Zn. Partial isothermal section at 560˚C<br />

DOI: 10.1007/978-3-540-70890-2_17 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-Ni-Zn. Calculated liquid phase boundaries at 450, 465, 480˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Zn 17<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_17<br />

ß Springer 2009


14 17<br />

Fe–Ni–Zn<br />

References<br />

[1940Glu] Gluskin, D.Ya., “<strong>Phase</strong>s, Formed by Interaction of Refractory Metals with Light-Melts Metals”, Zh. Tekh.<br />

Fiz., 10(18), 1486–1501 (1940) (Crys. Structure, Experimental, 15)<br />

[1957Ray] Raynor, G.V., Noden, J.D., “A Note on the Zn-Rich <strong>Alloy</strong>s of the System Zn-Fe-Ni”, J. Inst. Met., 86,<br />

269–271 (1957) (Experimental, Crys. Structure, 5)<br />

[1987Bha] Bhan, S., Jain, K.C., Singh, M., “The Iron-Nickel-Zinc System”, J. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 3(1), 31–37<br />

(1987) (Review, <strong>Phase</strong> Diagram, Crys. Structure, 39)<br />

[1989Per] Perrot, P., In-Wha, C., Reumont, G., Dauphin, J.-Y., “<strong>Phase</strong> Equilibria in the Zinc Rich Corner of the<br />

Iron-Nickel- Zinc <strong>Ternary</strong> System”(in French), Compt. Rend. Acad. Sci. Paris, Ser. II, 308, 1413–1417<br />

(1989) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Crys. Structure, 7)<br />

[1991Doo] Dooling, T.A., Cook, D.C., “Magnetic-Field Distributions in Zinc-Nickel Ferrite”, J. Appl. Phys., 69(8),<br />

5352–5354 (1991) (Experimental, Magn. Prop., 4)<br />

[1992Reu] Reumont, G., Perrot, P., Foct, J., “Fractal Evaluation of Liquidus in the Fe-Zn-Ni System at 450˚C”,<br />

J. Mater. Sci. Lett., 11, 1611–1613 (1992) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

9)<br />

[1993Che] Chen, Z.W., See, J.B., “Dross <strong>Phase</strong>s Formed in Galvanizing Baths Containing (0-0,1) wt% Nickel<br />

at 450˚C”, ISIJ Int., 33(2), 307–312 (1993) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Crys.<br />

Structure, 10)<br />

[1994Lid] Lidin, S., Jacob, M., Larsson A.-K., “(Fe, Ni)Zn 6.5, a Superstructure of γ-Brass”, Acta Crys., Sect. C: Cryst.<br />

Struct. Commun., 50C(3), 340–342 (1994) (Crys. Structure, Experimental, 7)<br />

[1994Per] Perrot, P., Reumont, G., “Thermodynamic Description of Dross Formation When Galvanizing Silicon<br />

Steels in Zinc-Nickel Baths”, J. <strong>Phase</strong> Equilib., 15(5), 479–482 (1994) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Morphology, Thermodyn., 15)<br />

[1995Per] Perrot, P., Reumont, G., “Authors Reply to- An Alternative Description of Dross Formation When<br />

Galvanizing Silicon Steels in Zinc-Nickel Baths”, J. <strong>Phase</strong> Equilib., 16(3), 207 (1995) (Abstract, <strong>Phase</strong><br />

Relations, 6)<br />

[1995Tan] Tang, N.-Y., “An Alternative Description of Dross Formation When Galvanizing Silicon Steels in Zinc-<br />

Nickel Baths”, J. <strong>Phase</strong> Equilib., 16(2), 110–112 (1995) (Review, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 14)<br />

[1996Tan] Tang, N.-Y., “Accurate Description of Liquid Boundary -A Reply to the Reply by Professors Perrot <strong>and</strong><br />

Reumont”, J. <strong>Phase</strong> Equilib., 17(2), 89–91 (1996) (Review, <strong>Phase</strong> Relations, 20)<br />

[1997Ana] Ananth, M.V., Parthasaradhy, N.V., “Hydrogen Evolution Characteristics of Electrodeposited Ni-Zn-Fe<br />

Coatings in Alkaline Solutions”, Int. J. Hydrogen Energy, 22(8), 747–751 (1997) (Experimental, Morphology,<br />

Thermodyn., 25)<br />

[1999Reu] Reumont, G., de Figueiredo, R.S., Fost, J., “Structural Comparison between the γ 2-FeZn 4 Compound<br />

Obtained by Mechanical <strong>Alloy</strong>ing <strong>and</strong> the γ 2-Fe 6Ni 5Zn 89 Galvanizing Dross”, J. Mater. Sci. Lett., 18,<br />

1879–1882 (1999) (Crys. Structure, Experimental, <strong>Phase</strong> Relations, 15)<br />

[2000Tan] Tang, N-Y., “Determination of Liquid-<strong>Phase</strong> Boundaries in Zn-Fe-Mx <strong>Systems</strong>”, J. <strong>Phase</strong> Equilib., 21(1),<br />

70–77 (2000) (Experimental, <strong>Phase</strong> Relations, 29)<br />

[2001Tan] Tang, N.Y., Su, X., Toguri, J.M., “Experimental Study <strong>and</strong> Thermodynamic Assessment of the Zn-Fe-Ni<br />

System”, Calphad, 25(2), 267–277 (2001) (Assessment, Experimental, <strong>Phase</strong> Relations, Thermodyn., 16)<br />

[2002Pat] Pattrick, R.A.D., van der Laan, G., Henderson, C.M.D., Kuiper, P., Dudzik, E., Vaughan, D.J., “Cation<br />

Site Occupancy in Spinel Ferrites Studied ba X-Ray Magnetic Circular Dichroism: Developing a<br />

Method for Mineralogists”, Eur. J. Mineral, 14(6), 1095–1102 (2002) (Crys. Structure, Experimental, 34)<br />

[2003Rag] Raghavan, V., “Fe-Ni-Zn (Iron-Nickel-Zinc)”, J. <strong>Phase</strong> Equilib., 24(6), 558–560 (2003) (Review, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, 15)<br />

[2005Hwa] Hwang, C.-C., Tsai, J.-S., Huang, T.-H., “Combustion Synthesis of Ni-Zn Ferrite by Using Glycine <strong>and</strong><br />

Metal Nitrates-Investigations of Precursor Homogeneity, Product Reproducibility, <strong>and</strong> Reaction<br />

Mechanism”, Mater. Chem. Phys., 93, 330–336 (2005) (Experimental, 28)<br />

[2005Pen] Peng, F., Yin, F., Su, X., Zhi, L., Zhao, M., “560˚C Isothermal Section of Zn-Fe-Ni System at the Zn-rich<br />

Corner”, J. <strong>Alloy</strong>s Compd., 402(1-2), 124–129 (2005) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, 11)<br />

[2007Rag] Raghavan, V., “Fe-Ni-Zn (Iron-Nickel-Zinc)”, J. <strong>Phase</strong> Equilib. Diffus., 28(4), 394–394 (2007) (Review,<br />

<strong>Phase</strong> Diagram, 5)<br />

DOI: 10.1007/978-3-540-70890-2_17 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Zn 17<br />

15<br />

[2008Kuz] Kuznetsov, V., “Fe-Ni (Iron-Nickel)”, MSIT Binary Evaluation Program, in MSIT Workplace,<br />

Effenberg, G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published<br />

(2008) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Realtions, Assessment, #, 41)<br />

[2008Leb] Lebrun, N., “Ni-Zn (Nickel-Zinc)”, MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg, G.<br />

(Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published (2008) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Realtions, Assessment, 9)<br />

[2008Per] Perrot, P., “Fe-Zn (Iron-Zinc)”, MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg, G.<br />

(Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published (2008) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Realtions, Assessment, 5)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_17<br />

ß Springer 2009


Iron – Nickel – Zirconium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Viktor Kuznetsov<br />

Introduction<br />

The system itself had not attracted much attention, <strong>and</strong> proper phase equilibria are known<br />

rather poorly. [1968Tar1, 1973Tar] studied phase equilibria in the Zr corner; unfortunately,<br />

these results seem to suffer from oxygen contamination. The review [1992Rag] contains<br />

virtually only three hypothetical sections <strong>and</strong> data for the solubility of Fe <strong>and</strong> Ni in Zr.<br />

Recently [1999Vju] has constructed a partial isothermal section at 1000˚C for the Fe-ZrFe 2-<br />

Zr 2Ni 7-Ni region, combining diffusion couple technique <strong>and</strong> study of equilibrated alloys by<br />

EPMA, XRD <strong>and</strong> scanning electron microscopy.<br />

On the other h<strong>and</strong>, the amorphous alloys of the system, which are formed moderately<br />

easily, are considered promising as high-permeability <strong>and</strong> resistive alloys [1990Sid]. So there<br />

exist a number of studies of their properties [1983Shi, 1983Ino, 1984Shi, 1984Kri, 1987Puz,<br />

1987Sta, 1988Vio1, 1988Vio2, 1993Noh, 1994Zat, 1999Dik, 2005Ham].<br />

Thermodynamic data exist only for the enthalpies of formation of the liquid phase. Those<br />

were measured by [1989Sid, 1993Wan, 1999Thi] along three composition sections. Calculations<br />

of the enthalpy of formation, based on the extrapolation of descriptions of bounding<br />

binaries, were performed by [1990Sid, 1995Tom, 1996Tom] with generally good results.<br />

[1993Wan] tested systematically a number of extrapolation models which all also gave nearly<br />

equally good results. [1985Col] suggested a simple electronic model for the enthalpies of<br />

formation of liquid alloys of transition metals.<br />

The studies of phase equilibria, crystal structures <strong>and</strong> thermodynamic properties are<br />

summarized in Table 1.<br />

Binary <strong>Systems</strong><br />

The Fe-Ni system is accepted from the MSIT evaluation [2008Kuz]. The accepted version of<br />

the Fe-Zr edge, taken from the recent experimental revision of the system [2002Ste], is<br />

presented in Fig. 1. The phase diagram of the Ni-Zr binary is given in Fig. 2. It is based on<br />

[2007Oka], but the temperature of the eutectic L Ð ZrNi + Zr 2Ni was changed to 1022˚C,<br />

measured by [2007Wan].<br />

Solid <strong>Phase</strong>s<br />

Fe–Ni–Zr 18<br />

1<br />

No ternary compounds were reported. The absence of a mutual solubility of Zr2Fe <strong>and</strong> Zr2Ni,<br />

claimed by [1968Tar1, 1973Tar], is most probably due to the contamination of their samples<br />

by O <strong>and</strong>/or N, which leads to the appearance of a phase with the Fe 3W 3C(cF112) structure<br />

instead of the binary Zr 2Fe phase [1972Hav, 1992Rag]. Under oxygen free conditions at 850˚C,<br />

where both Zr 2Fe <strong>and</strong> Zr 2Ni are stable, those do form a continuous solid solution [1972Hav].<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_18<br />

ß Springer 2009


2 18<br />

Fe–Ni–Zr<br />

The solid solubility of Ni in ZrFe 2 at 800 <strong>and</strong> 1200˚C is about 80 mol% “ZrNi 2”[1958Ell].<br />

The smaller value, presented by [1999Vju] in their figure 1a, seems to be inferred by analogy<br />

with the investigated simultaneously Hf-Fe-Ni system, as no experimental data for that region<br />

are provided. Some physical properties of Zr(Fe 1–xNi x) 2 were studied by [1977Mur] (lattice<br />

spaces, Curie temperatures, Mössbauer data) <strong>and</strong> [1982Osi] (Curie temperature), both for 0 ≤<br />

x ≲ 0.4. Contrary to the statement of [1992Rag], neither [1977Mur] nor [1982Osi] measured<br />

the solubility limit; both found their samples to retain the Laves phase structure for the whole<br />

concentration range studied.<br />

The solubility of Ni <strong>and</strong> Fe in Zr at 700 <strong>and</strong> 600˚C is below 0.1 at.% [1973Tar].<br />

The metastable icosahedral quasicrystalline phase was found as a primary precipitation<br />

phase from the supercooled liquid, obtained by heating of an amorphous phase of the<br />

Zr 70Fe 20Ni 10 composition above the glass transition temperature [2000Sai]. At the heating<br />

rate of 0.67 K·s –1 a clear crystallization temperature of 400˚C was observed. It decomposes at<br />

further heating at about 627˚C, giving a mixture of Zr2Fe <strong>and</strong> Zr2Ni.<br />

<strong>Crystallographic</strong> data for the stable phases are presented in Table 2.<br />

Invariant Equilibria<br />

All the invariant equilibria suggested by [1973Tar] include the “Fe 2Zr” phase, which nearly<br />

definitely is oxygen-stabilized [1972Hav, 1992Rag]. Therefore they cannot be accepted here.<br />

Isothermal Sections<br />

A partial isothermal section (solubility of Fe <strong>and</strong> Ni in the (βZr) phase) at 1100˚C is given in<br />

Fig. 3, based on the results of [1968Tar1]. The authors claim that partial sections obtained for<br />

1200, 1100 <strong>and</strong> 1000˚C proved to be identical.<br />

Figure 4 presents a partial isothermal section at 1000˚C, based on the results of [1999Vju]<br />

with slight modifications necessary to bring it into agreement with the accepted versions of the<br />

binary systems. In particular, the uncertain equilibria with the Fe 3Zr phase, which is not stable<br />

at this temperature, were removed. The solubility of Ni in the ZrFe 2(h 1) Laves phase is<br />

accepted from [1958Ell].<br />

Figure 5 presents a partial isothermal section (solubility of Fe <strong>and</strong> Ni in the (βZr) phase)<br />

at 900˚C. It is based on the results of [1973Tar] with the following modifications. Though<br />

EPMA of all their two-phase samples gave only Zr 2(Fe,Ni) as the second phase, which<br />

indeed is in agreement with [1972Hav], they arbitrarily inserted a three-phase field (βZr)+<br />

Zr 2(Ni,Fe)+Zr 2(Fe,Ni). This field, as well as the corresponding kink on the solubility line, were<br />

removed here.<br />

A partial section at 820˚C, presented by [1973Tar], can not be accepted, as it contradicts to<br />

the accepted versions of both Fe-Zr <strong>and</strong> Ni-Zr binary systems.<br />

Temperature – Composition Sections<br />

The vertical sections presented in [1968Tar1] <strong>and</strong> [1973Tar] include equilibria with the<br />

“Fe 2Zr” phase (different from the Laves phase), which in agreement with [1992Rag] are<br />

considered to be oxygen stabilized. Therefore these sections are not accepted here.<br />

DOI: 10.1007/978-3-540-70890-2_18 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Thermodynamics<br />

The measured values of the enthalpies of formation of liquid are summarized in Table 3. For<br />

[1989Sid] the approximating equation is given (the table provided in the original work is<br />

indeed calculated from that). For [1993Wan] data from their table 2 are reproduced, <strong>and</strong> data<br />

of [1999Thi] are presented in Fig. 6, as no tabular data are provided in the original work. There<br />

are several attempts to generalize these fragmentary data <strong>and</strong> obtain a description for the<br />

whole concentration range using both the polynomial description [1995Tom, 1996Tom] <strong>and</strong><br />

the regular associate model [1999Thi], but those seem to be too model-dependent.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

[1968Tar2] studied the influence of small (up to ~2 mass%) additions of Fe <strong>and</strong> Ni on<br />

mechanical <strong>and</strong> corrosion (in superheated water, CO2 <strong>and</strong> air) properties of Zr. Corrosivity<br />

in water <strong>and</strong> CO2 remained essentially the same, whereas the influence on the oxidation<br />

behavior as well as on the strength at room temperature <strong>and</strong> at 400˚C was favorable.<br />

[1983Ino] <strong>and</strong> [1992Zhi] studied mechanical properties of partially crystallized amorphous<br />

alloys.<br />

[1993Pec] investigated stability of precipitates of Zr 2(Fe,Ni) in the commercial alloy<br />

Zircaloy-2 under irradiation.<br />

[2005Ham] found nonlinear I-V characteristics of a nanocrystalline mixture of Zr 2Ni <strong>and</strong><br />

Zr2Fe obtained by annealing of an initially amorphous alloy Fe0.27Ni0.11Zr0.62 at 973K.<br />

Miscellaneous<br />

Fe–Ni–Zr 18<br />

3<br />

The concentration dependence of the lattice spaces of the Zr 2(Fe,Ni) phase is presented in<br />

Fig. 7 [1972Hav, 1992Rag].<br />

As was noted in the Introduction, amorphous alloys of the system attracted rather much<br />

attention, <strong>and</strong> a number of their physical properties was measured. [1983Shi, 1984Shi]<br />

measured resistivity in a wide interval of temperatures <strong>and</strong> pressures. Various magnetic<br />

properties were studied by [1984Kri, 1987Puz, 1987Sta, 1994Zat]. [1988Vio1, 1988Vio2]<br />

studied the relaxation of magnetic properties after irradiation. [1993Noh] investigated relaxation<br />

of the structure during cyclic heat treatment within a stability range of amorphous<br />

alloys (“enthalpy relaxation”). [1999Dik] searched for a correlation between the local structure<br />

of amorphous alloys as determined from Mössbauer data <strong>and</strong> the products of their crystallization.<br />

[2001Abr] studied alloys of Zr with stainless steel. They determined phase composition<br />

<strong>and</strong> stability of alloys during annealing.<br />

[2004Bio] measured structural <strong>and</strong> magnetic properties of Ni 81Fe 19/Zr multilayers.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_18<br />

ß Springer 2009


4 18<br />

Fe–Ni–Zr<br />

. Table 1<br />

Investigations of the Fe-Ni-Zr <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method / Experimental Technique<br />

Temperature / Composition /<br />

<strong>Phase</strong> Range Studied<br />

[1958Ell] XRD Section ZrFe 2-“ZrNi 2”, 800 <strong>and</strong><br />

1200˚C<br />

[1968Tar1] Metallography, hardness <strong>and</strong> microhardness<br />

measurement<br />

[1973Tar] Metallography, XRD, DTA, EPMA, hardness <strong>and</strong><br />

microhardness measurement<br />

[1977Mur] XRD, Curie temperature <strong>and</strong> magnetization<br />

measurements, Mössbauer study<br />

0.25 to 25 mass% (Fe + Ni), 1200<br />

to 700˚C<br />

Zr-Zr 2Ni-ZrFe 2, 900 to 600˚C<br />

Zr(Fe1–xNix)2, 0≤ x ≲ 0.4<br />

[1982Osi] XRD, Curie temperature measurement Zr(Fe1–xNix) 2,0≤ x ≲ 0.44<br />

[1989Sid] High-temperature isoperibolic calorimetry Ni1–x(Fe0.67Zr0.33) x,0≤ x ≲ 0.15,<br />

1600˚C, liquid<br />

[1993Wan] High-temperature calorimetry (Fe0.86Ni0.14)-Zr (0 to 0.14 Zr),<br />

1600˚C, liquid<br />

[1999Thi] Levitation alloying calorimetry (NiZr)-Fe, 0 to 0.35Fe, 1619˚C,<br />

liquid<br />

[2000Sai] DSC, TEM, electron microdiffraction, XRD Fe20Ni10Zr70 (initially amorphous),<br />

327˚C to 727˚C<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(δFe) cI2 a = 293.15 pure Fe at 1390˚C [V-C2, Mas2]<br />

1538 - 1394 Im3m<br />

W<br />

(αFe) cI2 a = 286.65 pure Fe at 25˚C [Mas2]<br />

< 912 Im3m<br />

W<br />

DOI: 10.1007/978-3-540-70890-2_18 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Ni–Zr 18<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

5<br />

γ, (γFe,Ni) cF4<br />

(γFe) Fm3m a = 364.67 pure Fe at 915˚C [V-C2, Mas2]<br />

< 1517 Cu<br />

(Ni)<br />

< 1455<br />

a = 352.40 pure Ni at 25˚C [Mas2]<br />

(βZr) cI2 a = 360.90 pure Zr at T > 863˚C [Mas2, V-C2]<br />

1855 - 863 Im3m<br />

W<br />

(αZr) hP2 a = 323.16 pure Zr at 25˚C [Mas2]<br />

< 863 P63/mmc Mg<br />

c = 514.75<br />

λ1,Zr cF24 0 < x < 0.8 [1958Ell]<br />

(Fe1–xNix) 2 Fd3m C15 structure<br />

MgCu2 a = 705.4 x = 0.1 [1977Mur]<br />

a = 704.2 x = 0.2 [1977Mur]<br />

a = 702.3 x = 0.3 [1977Mur]<br />

a = 700.9 x = 0.4 [1977Mur]<br />

ZrFe2(h1) at x =0<br />

< 1673 a = 702 to 709 ~27.5 to 34.4 at.% Zr [2002Ste]<br />

λ2, ZrFe2(h2) hP24<br />

a = 701.67 ± 0.06 x = 0; 27.6 at.% Zr [2002Ste]<br />

a = 705.24 ± 0.05 x = 0; 30.8 at.% Zr [2002Ste]<br />

a = 708.75 ± 0.05 x = 0; 34.6 at.% Zr [2002Ste]<br />

26.5 to ~27 at.% Zr [2002Ste]<br />

1345 - ~1240 P63/mmc C36 structure<br />

MgNi2 a = 495.34 ± 0.07 in the alloy Zr25Fe75 (at.%) annealed at 1290˚C for<br />

c = 1614.3 ± 0.3 7.5 h, together with (αFe) <strong>and</strong> Zr6Fe23 phases<br />

[2002Ste]<br />

a = 498.8<br />

c = 1632<br />

at 1100˚C [V-C2]<br />

Zr3Fe oC16 74.8 to 75.4 at.% Zr<br />

< 851 Cmcm a = 332 [2002Ste]<br />

Re3B b = 1100 in the alloy Zr60Fe40 (at.%) annealed at 700˚C for<br />

c = 882 1000 h, together with the λ1 phase <strong>and</strong> traces of<br />

the Zr2Fe phase<br />

a = 333 [2002Ste]<br />

b = 1095<br />

c = 882<br />

at 75 at.% Zr [1991Ard]<br />

ZrNi5 < 1300 cF24<br />

F4m<br />

a = 670.64 ± 0.06 at 14.85 at.% Zr [1991Nas]<br />

AuBe5 a = 670.72 ± 0.06 at 18.40 at.% Zr<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_18<br />

ß Springer 2009


6 18<br />

Fe–Ni–Zr<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

Zr2Ni7 mC36 a = 469.8 ± 0.9 [1991Nas]<br />

< 1440 C2/m b = 823.5 ± 1.3 dissolves Fe up to gross composition<br />

Ni7Zr2 c = 1219.3 ± 1.6<br />

β = 95.83˚<br />

Zr0.219Fe0.423Ni0.358 [1999Vju]<br />

ZrNi3 hP8 a = 530.9 [1991Nas]<br />

< 920 P63/mmc Ni3Sn<br />

c = 430.3<br />

Zr8Ni21 aP29 a = 647.21 [1991Nas]<br />

< 1180 P1 b = 806.45<br />

Ni21Hf8 c = 858.75<br />

α = 75.18˚<br />

β = 68.00˚<br />

γ = 75.20˚<br />

Zr7Ni10 oC68 a = 1238.6 ± 0.6 at 41.07 at.% Zr [1991Nas]<br />

< 1160 Aba2 b = 915.6 ± 0.5<br />

Ni10Zr7 c = 921.1 ± 0.5<br />

a = 1249.7 ± 0.4<br />

b = 921.0 ± 0.5<br />

c = 932.5 ± 0.2<br />

at 43.54 at.% Zr [1991Nas]<br />

Zr9Ni11 tI40 a = 988.0 ± 0.1 [1991Nas]<br />

1170 - 978 I4/m<br />

Pt11Zr9 c = 661 ± 1<br />

Zr oC8 a = 326.8 [1991Nas]<br />

Ni Cmcm b = 993.7<br />

< 1280 CrB c = 410.2<br />

Zr2(Fe1–xNix) tI12,<br />

I4/mmc complete solid solution at 850˚C [1972Hav] C16<br />

CuAl2 structure<br />

Zr2Fe a = 637.3 ± 0.1 at x = 0 in the alloy Zr40Fe60 (at.%) annealed at 800˚<br />

951 - 780 c = 560.4 ± 0.1 C for 500 h, together with the λ2 <strong>and</strong> Zr3Fe phases<br />

[2002Ste]<br />

Zr 2Ni a = 648.3 at x =1[1991Nas]<br />

< 1120 c = 526.7 see Fig. 7 for dependence on x<br />

DOI: 10.1007/978-3-540-70890-2_18 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Zr 6Fe 23<br />

(metastable)<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

cF116 20.6 to 21.6 at.% Zr; metastable;<br />

Fm3m an oxygen-stabilized phase [2002Ste]<br />

Th6Mn23 a = 1172 in the alloy Zr30Fe70 (at.%) annealed at 1000˚C for<br />

200 h, together with the ZrFe2(h2) phase [2002Ste]<br />

a = 1169 [V-C2]<br />

. Table 3<br />

Thermodynamic Data of Reaction or Transformation<br />

Reaction or Transformation<br />

(1–x) Ni(L) + 0.67x Fe(L) + 0.33x<br />

Zr(L) = Ni 1–xFe 0.67xZr 0.33x(L)<br />

0.67(1–x) Fe(L) + 0.14(1–x)<br />

Ni(L) + x Zr(L) =<br />

Fe 0.67(1–x)Ni 0.14(1–x)Zr x(L)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

Temperature<br />

[˚C]<br />

1600 ΔH = x(1–x)<br />

(–96.17–52.86x<br />

+233.42x 2 )<br />

Quantity, per<br />

mole of atoms<br />

[kJ, mol, K] Comments<br />

1600 ΔH = 1.521 x =0<br />

Fe–Ni–Zr 18<br />

7<br />

0 ≤ x ≤ 0.15 high-temperature<br />

isoperibolic calorimetry<br />

[1989Sid]<br />

ΔH = 2.716 x = 0.013<br />

ΔH = 4.975 x = 0.037<br />

ΔH = 7.252 x = 0.061<br />

ΔH = 9.937 x = 0.092<br />

ΔH = 12.46 x = 0.122<br />

ΔH = 14.60 x = 0.151<br />

ΔH = 16.52 x = 0.178<br />

ΔH = 17.87 x = 0.194<br />

ΔH ± 5% high-temperature calorimetry<br />

[1993Wan]<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_18<br />

ß Springer 2009


8 18<br />

Fe–Ni–Zr<br />

. Fig. 1<br />

Fe-Ni-Zr. The Fe-Zr system<br />

DOI: 10.1007/978-3-540-70890-2_18 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-Ni-Zr. The Ni-Zr system<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ni–Zr 18<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_18<br />

ß Springer 2009


10 18<br />

Fe–Ni–Zr<br />

. Fig. 3<br />

Fe-Ni-Zr. Solubility of Fe <strong>and</strong> Ni in (βZr) at 1100˚C<br />

DOI: 10.1007/978-3-540-70890-2_18 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Zr 18<br />

11<br />

. Fig. 4<br />

Fe-Ni-Zr. Partial isothermal section at 1000˚C. Dashed lines in two-phase regions are tie lines<br />

determined by EPMA<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_18<br />

ß Springer 2009


12 18<br />

Fe–Ni–Zr<br />

. Fig. 5<br />

Fe-Ni-Zr. Solubility of Fe <strong>and</strong> Ni in (βZr) at 900˚C<br />

DOI: 10.1007/978-3-540-70890-2_18 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Zr 18<br />

13<br />

. Fig. 6<br />

Fe-Ni-Zr. Enthalpies of formation of the liquid phase from liquid components at 1600˚C on the<br />

section ZrNi-Fe<br />

1 - experimental points,<br />

2 - calculated using regular associated model,<br />

3 - point from [1993Wan] falling to the section<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_18<br />

ß Springer 2009


14 18<br />

Fe–Ni–Zr<br />

. Fig. 7<br />

Fe-Ni-Zr. Lattice parameters of the Zr 2(Fe 1–xNi x) solid solution (metastable at room temperature)<br />

DOI: 10.1007/978-3-540-70890-2_18 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–Ni–Zr 18<br />

15<br />

[1958Ell] Elliott, R.P., Rostoker, W., “The Occurrence of Laves-Type <strong>Phase</strong> Among Transition Elements”, Trans.<br />

Am. Soc. Met., 50, 617–632 (1958) (Crys. Structure, Experimental, 27)<br />

[1968Tar1] Tararaeva, E.M., Grigor’ev, A.T., “The Zr corner of the Zr-Fe-Ni System” (in Russian), Fiz.-Khim.<br />

Splavov Tsirkoniya, 107–113 (1968) (<strong>Phase</strong> Diagram, Experimental, *, #, 7)<br />

[1968Tar2] Tararaeva, E.M., Grigor’ev, A.T., “Corrosional <strong>and</strong> Mechanical Properties of the <strong>Alloy</strong>s Zirconium-<br />

Iron-Nickel” (in Russian), Fiz.-Khim. Splavov Tsirkoniya, 113–117 (1968) (Experimental, Interface<br />

Phenomena, Mechan. Prop., 7)<br />

[1972Hav] Havinga, E.E., Damsma, H., Hokkeling, P., “Compounds <strong>and</strong> Pseudo-Binary <strong>Alloy</strong>s with the CuAl 2<br />

(C16)-Type Structure”, J. Less-Common Met., 27, 169–186 (1972) (Crys. Structure, <strong>Phase</strong> Relations,<br />

Experimental, *, 19)<br />

[1973Tar] Tararaeva, E.M., Ivanov, O.S., “The Zr-Fe-Ni Diagram” (in Russian), Stroenie i Svoistva Splavov dlya<br />

Atom. Energ., 131–138 (1973) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, <strong>Phase</strong> Relations, Experimental, *, #, 3)<br />

[1977Mur] Muraoka, Y., Shiga, M., Nakamura, Y., “Magnetic Properties <strong>and</strong> Mössbauer Effects of A(Fe 1–xB x) 2<br />

(A = Y or Zr, B = Al or Ni) Laves <strong>Phase</strong> Inter-Metallic Compounds”, Phys. Status Solidi, 42A, 369–374<br />

(1977) (Crys. Structure, Experimental, Magn. Prop., 15)<br />

[1982Osi] Osipova, L.V., Panteleymonov, L.A., “Magnetic Properties of Fe-Ni-Zr <strong>and</strong> Fe-Ni-Nb <strong>Alloy</strong>s”, Russ.<br />

Metall., (3), 183–185 (1982), translated from Izv. Akad. Nauk, Met., (3), 205–207 (1982) (Experimental,<br />

Magn. Prop., 8)<br />

[1983Ino] Inoue, A., Tomioka, H., Masumoto, T., “Mechanical Properties of Ductile Fe-Ni-Zr <strong>and</strong> Fe-Ni-Zr (Nb<br />

or Ta) Amorphous <strong>Alloy</strong>s Containing Fine Crystalline Particles”, J. Mater. Sci., 18, 153–160 (1983)<br />

(Crys. Structure, Experimental, Mechan. Prop., Morphology, 5)<br />

[1983Shi] Shirakawa, K., Fukamichi, K., Kaneko, T., Masumoto, T., “Electrical Resistance of Fe-Zr <strong>and</strong> Fe-Ni-Zr<br />

Amorphous <strong>Alloy</strong>s Under Hydrostatic Pressure”, Phys. Lett. A, 97, 213–216 (1983) (Experimental,<br />

Electr. Prop., 28)<br />

[1984Kri] Krishnan, R., Rao, K.V., Liebermann, H.H., “Magnetization <strong>and</strong> FMR Studies in Amorphous Fe 90Zr 10<br />

<strong>and</strong> Fe 70Ni 20Zr 10 Ribbons”, J. Appl. Phys., 55, 1823–1825 (1984) (Experimental, Magn. Prop., 16)<br />

[1984Shi] Shirakawa, K., Fukamichi, K., Kaneko, T., Masumoto, T., “Electrical Resistivity Minima of Fe-(Ni, Co)-<br />

Zr Amorphous <strong>Alloy</strong>s”, J. Phys. F: Met. Phys., 14, 1491–1499 (1984) (Electr. Prop., Experimental, 36)<br />

[1985Col] Colinet, C., Pasturel, A., Hicter, P., “A d B<strong>and</strong> Bonding Model of the Enthalpy of Formation of <strong>Ternary</strong><br />

Transition Metal <strong>Alloy</strong>s”, Z. Metallkd., 76, 542–545 (1985) (Calculation, Thermodyn., 33)<br />

[1987Puz] Puzniak, R., Rao, K.V., “Anomalous Temperature Dependence of the Effective Susceptibility Exponent<br />

in Amorphous Fe-Ni-Zr <strong>Alloy</strong>s (Abstract)”, J. Appl. Phys., 61, 4428–4428 (1987) (Abstract, Magn.<br />

Prop., 1)<br />

[1987Sta] Stadnik, Z., Griesbach, P., Dehe, G., Guetlich, P., Miyazaki, T., “Nickel Contribution to the Magnetism<br />

of Fe-Ni-Zr Metallic Glasses”, Phys. Rev. B, 35, 430–432 (1987) (Electr. Prop., Experimental, Magn.<br />

Prop., 27)<br />

[1988Vio1] Violet, C.E., Borg, R.J., Rao, K.V., Noques, J., Taylor, R.D., Batra, A.P., “Temperature Hysteresis <strong>and</strong><br />

Relaxation Effects in Amorphous Fe-Ni-Zr <strong>Alloy</strong>s (Abstract)”, J. Appl. Phys., 63, 3398–3398 (1988)<br />

(Abstract, Magn. Prop., 0)<br />

[1988Vio2] Violet, C.E., Borg, R.J., May, L., Rao, K.V., Nogues, J., Taylor, R.D., Batra, A.P., “Magnetic Behavior of<br />

Amorphous Fe-Ni-Zr <strong>Alloy</strong>s <strong>and</strong> Their Response to Radiation Damage”, Hyperfine Interact., 42,<br />

963–966 (1988) (Electrical Prop., Experimental, 4)<br />

[1989Sid] Sidorov, O.Yu., Esin, Yu.O., Geld, P.V., “Enthalpies of Formation of Zirconium <strong>Alloy</strong>s with Iron,<br />

Cobalt, Nickel, <strong>and</strong> Copper” (in Russian), Rasplavy, (3), 28–33 (1989) (Calculation, Experimental,<br />

Thermodyn., *, 22)<br />

[1990Sid] Sidorov, O.Yu., Valishev, M.G., Pletneva, E.D., Esin, Yu.D., Geld, P.V., “Enthalpies of Formation of<br />

Nickel-based <strong>Ternary</strong> Liquid <strong>Alloy</strong>s”, J. Appl. Chem. USSR, 63, 1497–1501 (1990), transl. from Zh. Prikl.<br />

Khim., 63, 1371–1374, (1990) (Experimental, Calculation, Thermodyn., 27)<br />

[1991Ard] Ardisson, J.D., Mansur, R.A., da Silva, E.G., “A Study of Structural <strong>and</strong> Electronic Properties of the<br />

<strong>Alloy</strong> <strong>Systems</strong> (Zr 1–xTi x) 2Fe <strong>and</strong> (Zr 1–xTi x) 3Fe in the Range 0 ≤ x ≤ 0.2”, Scr. Met. Mater., 25(6),<br />

1327–1331 (1991) (Crys. Structure, Experimental, Electronic Structure, Magn. Prop., 6) cited from<br />

abstract<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_18<br />

ß Springer 2009


16 18<br />

Fe–Ni–Zr<br />

[1991Nas] Nash, P., Zayanth C.S., “Ni-Zr (Nickel-Zirconium)” in “<strong>Phase</strong> <strong>Diagrams</strong> of Binary Nickel <strong>Alloy</strong>s”,<br />

Nash, P., (Ed.), ASM Intl., Materials Park, OH, 390–394 (1991) (<strong>Phase</strong> Relations, Crys. Structure,<br />

Assessment, 38)<br />

[1992Rag] Raghavan, V., “The Fe-Ni-Zr (Iron-Nickel-Zirconium) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Indian Institut of Metals, Calcutta, 6B, 1094–1098 (1992) (Crys. Structure, <strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Review, 7)<br />

[1992Zhi] Zhigalina, O.M., Sosnin, V.V., Glezer, A.M., “Structure <strong>and</strong> Mechanical Properties of Microcrystalline<br />

<strong>Alloy</strong>s of the System Ni-Fe-Zr”, Met. Sci. Heat Treat., 34, 263–268 (1992), translated from Metallov.<br />

Termich. Obrab. Met., 34, 25–28 (1992) (Crys. Structure, Experimental, Mechan. Prop., Morphology, 7)<br />

[1993Noh] Noh, T.-H., Inoue, A., Fujimori, H., Masumoto, T., “Enthalpy Relaxation <strong>and</strong> Curie Temperature<br />

Behavior in Fe-(Ni,Co)-Zr Amorphous <strong>Alloy</strong>s”, J. Non-Cryst. Solids, 152, 212–218 (1993) (Experimental,<br />

<strong>Phase</strong> Relations, 16)<br />

[1993Pec] Pecheur, D., Lefebvre, F., Motta, A.T., Lemaignan, C., Charquet, D., “Effect of Irradiation on<br />

the Precipitate Stability in Zr <strong>Alloy</strong>s”, J. Non-Cryst. Solids, 205, 445–451 (1993) (Experimental,<br />

Morphology, 14)<br />

[1993Wan] Wang, H., Lueck, R., Predel, B., “Thermodynamic Investigation on Liquid Iron-Nickel-Zirconium<br />

<strong>Alloy</strong>s”, J. <strong>Phase</strong> Equilib., 14, 48–53 (1993) (Experimental, Calculation, Thermodyn., *, 15)<br />

[1994Zat] Zatroch, M., Kovac, J., Rohr, L., Aubertin, F., Gonser, U., “Moessbauer <strong>and</strong> Magnetic Investigations of<br />

Iron-rich Fe-Ni-Zr Amorphous <strong>Alloy</strong>s”, Phys. Status Solidi B, 184, 499–508 (1994) (Electr. Prop.,<br />

Experimental, Magn. Prop., Thermodyn., 23)<br />

[1995Tom] Tomiska, J., Wang, H., “On the Algebraic Evaluation of the <strong>Ternary</strong> Molar Heat of Mixing HE from<br />

Calorimetric Investigations”, Ber. Bunsen-Ges. Phys. Chem., 99, 633–640 (1995) (Calculation, Thermodyn.,<br />

27)<br />

[1996Tom] Tomiska, J., Neckel, A., “The Margules Concept: The Basis of Modern Algebraic Representations of<br />

Thermodynamic Excess Properties”, J. <strong>Phase</strong> Equilib., 17, 11–20 (1996) (Calculation, Thermodyn., 23)<br />

[1999Dik] Dikeakos, M., Altounian, Z., Ryan, D.H., Kwon, S.J., “Local Structure in Amorphous Fe-TM-Zr (TM =<br />

Co, Ni, Cu) Studied by Moessbauer Spectroscopy”, J. Non-Cryst. Solids, 250–252, 637–641 (1999) (Crys.<br />

Structure, Electr. Prop., Experimental, 17)<br />

[1999Thi] Thiedemann, U., Roesner-Kuhn, M., Drewes, K., Kuppermann, G., Frohberg, M.G., “Mixing Enthalpy<br />

Measurements of Liquid Ti-Zr, Fe-Ti-Zr <strong>and</strong> Fe-Ni-Zr <strong>Alloy</strong>s”, Steel Res., 70, 3–8 (1999) (Experimental,<br />

Calculation, Thermodyn., *, 20)<br />

[1999Vju] Vjunitsky, I.V., Abramycheva, N.L., Kalmykov, K.B., Dunayev, S.F., “II. Solid <strong>Phase</strong> Interaction of<br />

Elements in the Fe-Ni-Zr <strong>and</strong> Fe-Ni-Nb <strong>Systems</strong> at 1273 K” (in Russian), Vestn. Mosk. Univ., Ser. 2,<br />

Khim., 40, 179–182 (1999) (Experimental, <strong>Phase</strong> Relations, *, #, 4)<br />

[2000Sai] Saida, J., Li, Ch., Matsushita, M., Inoue, A., “Nano-Icosahedral Quasicrystalline <strong>Phase</strong> Formation from<br />

a Supercooled Liquid State in Zr-Fe-Ni <strong>Ternary</strong> Metallic Glass”, Appl. Phys. Lett., 76, 3037–3039 (2000)<br />

(Crys. Structure, Experimental, <strong>Phase</strong> Relations, 12)<br />

[2001Abr] Abraham, D.P., Richardson, J.W., McDeavitt, S.M., “Microscopy <strong>and</strong> Neutron Diffraction Study of a<br />

Zirconium-8 mass% Stainless Steel <strong>Alloy</strong>”, J. Mater. Sci., 36, 5143–5154 (2001) (Crys. Structure,<br />

Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 32)<br />

[2002Ste] Stein, F., Sauthoff, G., Palm, M., “Experimental Determination of Intermetallic <strong>Phase</strong>s, <strong>Phase</strong><br />

Equilibria, <strong>and</strong> Invariant Reaction Temperatures in the Fe-Zr System”, J. <strong>Phase</strong> Equilib., 23(6), 480–494<br />

(2002) (Crys. Structure, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 88)<br />

[2004Bio] Biondo, A., Nascimento, V.P., Lassri, H., Passamani, E.C., Morales, M.A., Mello, A., Biasi, R.S., Baggio-<br />

Saitovitch, E., “Structural <strong>and</strong> Magnetic Properties of Ni 81Fe 19/Zr Multilayers”, J. Magn. Magn. Mater.,<br />

277, 144–152 (2004) (Crys. Structure, Experimental, Magn. Prop., Morphology, 22)<br />

[2005Ham] Hamed, F., “Nonlinear I-V Characteristics Observed in Annealed Ni-Fe-Zr Metallic Glass”, Physica B,<br />

364, 213–217 (2005) (Crys. Structure, Experimental, 17)<br />

[2007Oka] Okamoto, H., “Ni-Zr (Nickel-Zirconium)”, J. <strong>Phase</strong> Equilib. Diff., 28, 409 (2007) (<strong>Phase</strong> Relations,<br />

<strong>Phase</strong> Diagram, Review, *, #, 3)<br />

[2007Wan] Wang, N., Li, Ch., Du, Z., Wang, F., “Experimental Study <strong>and</strong> Thermodynamic Re-assessment of the<br />

Ni-Zr System”, Calphad, 31, 413–421 (2007) (Experimental, Assessment, Calculation, <strong>Phase</strong> Relations,<br />

<strong>Phase</strong> Diagram, Thermodyn., *, 30)<br />

[2008Kuz] Kuznetsov, V., “Fe-Ni (Iron-Nickel)”, MSIT Binary Evaluation Program, in MSIT Workplace, Effenberg,<br />

G. (Ed.), MSI, Materials Science International Services, GmbH, Stuttgart; to be published (2008) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Realtions, Assessment, #, 41)<br />

DOI: 10.1007/978-3-540-70890-2_18 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ni–Zr 18<br />

17<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_18<br />

ß Springer 2009


Iron – Oxygen – Lead<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Kostyantyn Korniyenko<br />

Introduction<br />

Ferrites, non-metallic solid magnetic materials, are the complex compounds of the iron oxide<br />

Fe 2O 3 with oxides of other metals by their chemical compositions. By their magnetic properties<br />

the ferrites are the analogues of ferromagnetics but they possess lower densities <strong>and</strong> lesser<br />

losses on the eddy currents. That’s why ferrites are widely used in radio engineering, electronics<br />

<strong>and</strong> super high frequent technology productions. With a view to optimization of alloys<br />

compositions selection for preparation of ferrites information about phase relations in the<br />

corresponding ternary <strong>and</strong> multicomponent systems is of a great importance. Among these<br />

systems the Fe-O-Pb system plays a considerable role, but information concerning phase<br />

relations is quite scanty. It is presented in literature by a partial isobaric section in air<br />

[1984Sha], the solubility of lead in liquid iron in the presence of oxygen [1995Li] <strong>and</strong> the<br />

constitution of the PbO-Fe 2O 3 temperature-composition section [1955Coc, 1957Ber,<br />

1960Mar, 1962Mou, 1978Mex, 1984Sha, 1986Nev]. <strong>Phase</strong> contents of the alloys <strong>and</strong> crystal<br />

structures of the identified intermediate phases were studied by [1928Joh, 1938Ade, 1955Coc,<br />

1957Ber, 1960Mar, 1962Mou, 1978Mex, 1984Sha, 1986Nev, 1988Ara, 1997Dor, 1998Cla,<br />

1998Hua, 2000Dia, 2001Dia, 2002Car, 2002Mar, 2003Cas, 2004Dia, 2005Pal]. Data on thermodynamic<br />

properties were experimentally obtained by [1986Nev] <strong>and</strong> [1995Li]. The applied<br />

experimental methods as well as the studied temperature <strong>and</strong> composition ranges are presented<br />

in Table 1. Literature information concerning the Fe-O-Pb system was reviewed in<br />

[1989Rag]. Further determination of the phase equilibria character is necessary, in particular,<br />

on the constitution of the temperature-composition sections formed by Fe 2O 3 with lead<br />

oxides Pb 3O 4,Pb 12O 17, Pb 12O 19 <strong>and</strong> PbO 2.<br />

Binary <strong>Systems</strong><br />

<strong>Phase</strong> diagrams of the Fe-O <strong>and</strong> Fe-Pb systems are accepted from [Mas2]. The constitution of<br />

the O-Pb system is accepted on the basis of [1998Ris] assessment (Fig. 1).<br />

Solid <strong>Phase</strong>s<br />

Fe–O–Pb 19<br />

1<br />

<strong>Crystallographic</strong> data about known unary, binary <strong>and</strong> ternary phases are compiled in Table 2.<br />

Compositions of the all reported ternary phases lie along the PbO-Fe 2O 3 section. Existence<br />

of the τ 1, τ 2 <strong>and</strong> τ 3 phases was established certainly during both crystal structures <strong>and</strong><br />

phase relations studies. In particular, data about the τ 1 phase were reported by [1955Coc,<br />

1957Ber, 1962Mou, 1978Mex, 1984Sha, 1986Nev], about the τ 2 phase - by [1928Joh, 1957Ber,<br />

1960Mar, 1962Mou, 1984Sha, 1986Nev], as well as concerned the τ 3 phase - by [1938Ade,<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_19<br />

ß Springer 2009


2 19<br />

Fe–O–Pb<br />

1957Ber, 1960Mar, 1962Mou, 1978Mex, 1984Sha, 1986Nev, 1997Dor, 1998Cla, 2000Dia,<br />

2001Dia, 2002Mar, 2003Cas, 2004Dia, 2005Pal]. Also information about the τ 4 <strong>and</strong> τ 5 existence<br />

was presented by [1955Coc], but later it was shown by [1962Mou] that the τ 2 <strong>and</strong> τ 3<br />

phases possess homogeneity ranges covering the compositions of the τ 4 <strong>and</strong> τ 5 phases.<br />

Data about the existence of the τ 6 <strong>and</strong> τ 7 phases ([1960Mar] <strong>and</strong> [1978Mex, 1999Hsu],<br />

respectively) were not confirmed by investigations of phase relations along the PbO-Fe2O3<br />

temperature-composition section [1984Sha, 1986Nev].<br />

Invariant Equilibria<br />

On the basis of a dissociation process studies it was established by [1984Sha] that equilibria<br />

with the participation of the following phases take place: L + τ 2 + τ 3 + β at 1315˚C,<br />

L+βPb3O4 + αPbO + τ1 at 455˚C, L + βPb3O4 + τ1 + τ2 at 430˚C <strong>and</strong> L + βPb3O4 + τ3 + β<br />

at 410˚C. Also equilibria with the participation of the PbOx-based phase with inexact stoichiometry<br />

were reported. The character of all the respective invariant reactions is not established.<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

<strong>Phase</strong> relations at subsolidus temperatures in the range of compositions adjacent to the PbO-<br />

Fe2O3 section were schematically shown by [1984Sha]. It was established that the βPb3O4<br />

phase takes part in equilibria with the τ1, τ2 <strong>and</strong> τ3 phases <strong>and</strong> with the β phase.<br />

Isothermal Sections<br />

The solubility of lead in the liquid iron in the presence of oxygen was studied by [1995Li] at the<br />

temperatures of 1550, 1600 <strong>and</strong> 1650˚C <strong>and</strong> various oxygen contents. The obtained dependences<br />

are shown in Fig. 2. A rise in lead solubility with increasing oxygen content <strong>and</strong><br />

temperature was observed. Using the method of linear regression, the following functions<br />

lg(at.%){Pb} were evaluated as –0.51 + 0.50·{at.% O} ± 0.025 at 1550˚C, –0.43 + 0.67·{at.% O}<br />

± 0.089 at 1600˚C <strong>and</strong> –0.36 + 0.76· {at.% O} ± 0.038 at 1650˚C.<br />

Temperature – Composition Sections<br />

The PbO-Fe2O3 temperature - composition section being named as quasibinary in many<br />

publications, does not possess quasibinary character on the Fe2O3 side because this phase<br />

melts incongruently in the boundary binary Fe-O system. The section shown in Fig. 3 after<br />

[1989Rag] is based on the data of [1986Nev] in the PbO rich part <strong>and</strong> [1962Mou] in the Fe 2O 3<br />

rich side. Another version of the PbO-Fe 2O 3 phase diagram was constructed by [1984Sha]<br />

on the basis of dissociation curves projections. The character of the phase relations at<br />

low temperatures needs further verification using different physico-chemical experimental<br />

techniques.<br />

DOI: 10.1007/978-3-540-70890-2_19 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Thermodynamics<br />

Enthalpies of melting ΔH S melt of the τ 1, τ 2 <strong>and</strong> τ 3 phases were calculated by [1986Nev] using<br />

the solution of equations following from the equilibrium conditions of coexisting phases.<br />

These values were obtained as 22.24 kJ·mol –1 , 49.92 kJ·mol –1 <strong>and</strong> 61.67 kJ·mol –1 , respectively.<br />

The enthalpies of formation of the τ 3 phase from oxides (Δ fH) or from simple substances<br />

(ΔfH298) were calculated by [1992Rez] by approximate methods using the enthalpies of the<br />

change of cation coordination in the formation of the compounds from simple oxides. The<br />

reported values are 37 kJ·mol –1 <strong>and</strong> –5115 kJ·mol –1 , respectively. In the study of lead solubility<br />

in liquid iron, [1995Li] have calculated the activity coefficient f o Pb <strong>and</strong> the interaction<br />

parameter e o Pb at the temperatures of 1550, 1600 <strong>and</strong> 1650˚C (Table 3).<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–O–Pb 19<br />

3<br />

In case Pb is used as heat exchanger liquid in steel tubes of a nuclear reactor, the system is<br />

interesting in case of oxygen contamination of the cooling system producing oxide compounds<br />

which are radioactive <strong>and</strong> may be deposited in cool parts of the tubing system causing<br />

unwanted levels of radiation in the outer parts of the reactor system.<br />

Because of their particular magnetic properties, ferrites, in particular, lead-containing,<br />

find many industrial applications, in the first instance as magneto-electric materials. Information<br />

concerning investigations of the Fe-O-Pb materials properties is collected in Table 4.<br />

[1957Ber] studied dependence of magnetic energy on the temperature of sintering for alloys<br />

with different PbO:Fe2O3 ratios [1957Ber] <strong>and</strong> observed a maximum energy values at the<br />

composition PbO-4Fe 2O 3. The corresponding dependences of the residual magnetic induction<br />

<strong>and</strong> the coercive force were also constructed by [1957Ber]. Magnetic measurements on<br />

the epitaxial films with the composition Fe 12.9PbO 22.9 were carried out by [1997Dor]. These<br />

objects exhibit magnetically isotropic behavior in the film plane with magnetic remanence to<br />

saturation magnetization divided by 4π ratio M(r)/M(s) = 88 ± 2.9% <strong>and</strong> coercive field H c =<br />

198.94 ± 7.72 kA·m –1 . However, the films were anisotropic with respect to the film normal<br />

such that the c crystallographic axis is a magnetically hard direction <strong>and</strong> all directions<br />

normal to the c axis are magnetically easy. The saturation magnetization (4πM (s)) value for<br />

the films is 0.063 T at room temperature. Magnetic properties of thin films with the composition<br />

of Fe 12PbO 19 prepared by deposition on Si\SiO 2 <strong>and</strong> sapphire substrates were<br />

studied by [2000Dia] <strong>and</strong> [2001Dia], respectively. The influence of the substrate temperature<br />

(550-775˚C) <strong>and</strong> the oxygen pressure (1-3 mbar) on the magnetic properties during the<br />

deposition was reported by [2000Dia]. The χ type lead hexaferrite films with high saturation<br />

magnetization <strong>and</strong> high coercive field (302.39 kA·m –1 ) were grown using a substrate temperature<br />

of 700˚C <strong>and</strong> a pressure of 3.0 mbar of oxygen, while moderate value of coercive field of<br />

the thin films deposited on sapphire substrate at 700˚C under 3.0 mbar partial pressure of high<br />

purity oxygen was 198,94 kA·m –1 [2001Dia]. The optimum value of coercive field of the<br />

Fe 12PbO 19 powder obtained by [2004Dia] using modifications to the traditional ceramic route<br />

was 318.31 kA·m –1 at 900˚C. It was concluded that at temperatures higher than 900˚C<br />

the magnetic properties are drastically affected as a consequence of the volatility of PbO.<br />

<strong>Phase</strong> formation during self-propagating high-temperature synthesis of ferrites was studied<br />

by [2002Mar]. The combustion temperature was 1267˚C, the average front velocity was<br />

9·10 –4 m·s –1 , the obtained intermediate phases were FeO, Fe3O4 <strong>and</strong> Fe4PbO7. The value<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_19<br />

ß Springer 2009


4 19<br />

Fe–O–Pb<br />

of coercivity was 48 kA·m –1 . Results of tunneling magnetoresistance effect studies in the Fe-O-<br />

Pb granular films were presented by [1998Cla, 1999Hsu, 2000Hsu]. The dynamics of the 2b<br />

site in the Fe 12PbO 19 compound was investigated by [1998Cla] on polycrystalline <strong>and</strong> oriented<br />

single-crystal samples above the Curie temperature.<br />

. Table 1<br />

Investigations of the Fe-O-Pb <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1928Joh] as quoted<br />

by [1962Mou]<br />

X-ray diffraction Fe 4PbO 7<br />

[1938Ade] X-ray Laue <strong>and</strong> rotation techniques Fe 12PbO 19<br />

[1955Coc] as quoted<br />

by [1960Mar] <strong>and</strong><br />

[1989Rag]<br />

Temperature/<br />

Composition/<strong>Phase</strong><br />

Range Studied<br />

optical microscopy The PbO-Fe 2O 3 section<br />

[1957Ber] X-ray Debye-Scherrer studies, thermal analysis,<br />

magnetic steel tester measurements<br />

[1960Mar] Thermal analysis, metallography, powder X-ray<br />

diffraction<br />

875-1275˚C, the PbO-<br />

Fe 2O 3 section<br />

The PbO-Fe 2O 3 section<br />

[1962Mou] X-ray diffraction (Norelco diffractometer), DTA 600-1400˚C, the PbO-<br />

Fe2O3 section<br />

[1978Mex] Solid state reactions studying,<br />

thermogravimetry, X-ray diffraction<br />

The PbO-Fe2O3 section<br />

[1984Sha] Thermobalance, X-ray diffraction The PbO-Fe2O3 section<br />

[1986Nev] DTA, X-ray diffraction, crystal growth studying The PbO-Fe2O3 section<br />

[1995Li] Gas-light Tammann furnace measurements of 1550, 1600, 1650˚C, the<br />

solubility<br />

Fe rich corner<br />

[1997Dor] X-ray diffraction (st<strong>and</strong>ard <strong>and</strong> grazing 600˚C, room<br />

incidence), Rutherford back-scattering temperature, the<br />

spectrometry<br />

Fe12.9PbO22.9 thin films<br />

[1998Cla] Comparative Fe-57 Mössbauer spectroscopy<br />

(polycrystalline <strong>and</strong> oriented single-crystal<br />

samples)<br />

477-707˚C, Fe12PbO19 [1998Hua] Method of manufacturing granular films whole range of<br />

compositions<br />

[2000Dia] Pulsed laser ablation deposition 550-775˚C, Fe12PbO19 [2001Dia] Pulsed laser ablation deposition, X-ray<br />

diffraction<br />

700˚C, Fe 12PbO 19<br />

DOI: 10.1007/978-3-540-70890-2_19 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[2002Car] Optical microscopy, scanning electron<br />

microscopy, electron probe microanalysis, Xray<br />

diffraction, Mössbauer spectroscopy<br />

[2002Mar] Self-propagating high-temperature synthesis,<br />

X-ray diffraction, thermal analysis, chemical<br />

analysis, magnetic properties determination,<br />

density measurements, arrested front method<br />

Temperature/<br />

Composition/<strong>Phase</strong><br />

Range Studied<br />

476˚C, Fe-O-Pb thin<br />

layers<br />

Fe 12PbO 19<br />

[2003Cas] Laser ablation deposition 700˚C, Fe12PbO19 thin<br />

films<br />

[2004Dia] Mössbauer spectroscopy, X-ray diffraction > 800˚C, Fe12PbO19 [2005Pal] Ceramic method, Rietveld refinement X-ray<br />

diffraction<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–O–Pb 19<br />

Fe 12PbO 19<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(δFe) (h2) cI2 a = 293.15 [Mas2]<br />

1538 - 1394 Im3m<br />

Fe1–x–yPbxOy W x =0,0


6 19<br />

Fe–O–Pb<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(αPb) hP2 a = 326.5 at 25˚C [Mas2]<br />

> 1.03·10 5 bar P6 3/mmc c = 538.7<br />

Mg<br />

α, Fe1–xOx cF8 x = 0.5126 to 0.5457 [Mas2]<br />

(wüstite) Fm3m<br />

1424 - 570 NaCl a = 430.88 in the alloy Fe48.5O51.5, T = 20˚C [E]<br />

a = 428.00 in the alloy Fe47.2O52.8, T = 20˚C [E]<br />

γFe3O4 (h) cF56 57.1 to 58.02 at.% O [Mas2]<br />

1596 - 580 Fd3m<br />

MgAl2O4 a = 840 [E]<br />

βFe3O4 (r) mC224 - ~57.1 at.% O [Mas2]<br />

< 580 Cc<br />

βFe3O4<br />

αFe3O4 (hp)<br />

> 2.5·10<br />

m*14 - ~57.1 at.% O [Mas2]<br />

–5 bar<br />

β, Fe2O3 hR30 59.82 to ~60 at.% O [Mas2]<br />

< 1457 R3c a = 503.42 at 600˚C [Mas2, V-C2]<br />

Al2O3 c = 1374.83<br />

ε (Fe-O) c** - metastable; ~51.3 to ~53.5 at.% O [Mas2]; labelled as<br />

“P’ (wüstite)” [Mas2]<br />

η (Fe-O) mP500? - metastable; ~52 to ~54 at.% O [Mas2]; labelled as “P”<br />

P21/m<br />

(wüstite)” [Mas2]<br />

κ (Fe-O) hR6 - metastable; 51.3 to 53.2 at.% O [Mas2]; labelled as<br />

R3<br />

NiO (l)<br />

“wüstite (low-tempe-rature)” [Mas2]<br />

λ (Fe-O) cI80<br />

Ia3<br />

Mn2O3<br />

- metastable; ~60 at.% O; labelled as “βFe2O3”[Mas2] μ (Fe-O) tP60<br />

P43212 - metastable; ~60 at.% O; labelled as “γFe2O3”[Mas2] ν (Fe-O) m*100 metastable; ~60 at.% O; labelled as “εFe2O3” a = 1299<br />

b = 1021<br />

c = 844<br />

β = 95.33˚<br />

[Mas2] [S]<br />

DOI: 10.1007/978-3-540-70890-2_19 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–O–Pb 19<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

βPbO (h) oP8 50 at.% O, labelled as “PbO-M” [Mas2, 1998Ris]<br />

~887 - ~489 Pbma<br />

or a = 547.6 [1961Lec1]<br />

Pbcm b = 474.3<br />

βPbO c = 587.6<br />

a = 548.9<br />

b = 475.5<br />

c = 589.1<br />

at T = 27˚C [H]<br />

αPbO (r) tP4 50 at.% O, labelled as “PbO-L” [Mas2, 1998Ris]<br />

≲ 489 P4/nmm<br />

αPbO a = 396<br />

c = 501<br />

[1961Lec2]<br />

a = 397.59<br />

c = 502.3<br />

at T = 27˚C [H]<br />

a = 397.2<br />

c = 501.8<br />

[1989Rag]<br />

βPb3O4 (r) tP28 57.1 at.% O, labelled as “Pb3O4-T” [Mas2, 1998Ris]<br />

595 - (–103) P42/mbc βPb3O4 (r) a = 881.5<br />

c = 656.5<br />

at T = 25˚C [S]<br />

a = 880.6<br />

c=656.4<br />

[1989Rag]<br />

αPb3O4 (l) oP28 57.1 at.% O, labelled as “Pb3O4-R” < –103 Pbam [Mas2]<br />

a = 912.4<br />

b = 846.7<br />

c = 656.7<br />

at T = – 268˚C [1988Wri, 2001Guz]<br />

a = 881.89<br />

b = 880.68<br />

c = 656.36<br />

[1989Rag]<br />

γ, Pb12O17 oP28 58.6 at.% O [Mas2, 1998Ris]<br />

361 - < 0 Pmc21? a = 778<br />

b = 1098<br />

c = 1148<br />

[1988Wri, 2001Guz]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_19<br />

ß Springer 2009


8 19<br />

Fe–O–Pb<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

δ, Pb12O19 mP62 61.3 at.% O [Mas2, 1998Ris]<br />

335 - 54 Pc? orP21/c a = 773<br />

b = 1083<br />

c = 1147<br />

β = 88.77˚<br />

in the alloy PbO1.57 [E]<br />

a = 775.3<br />

b = 1084.8<br />

c = 1150.2<br />

β = 88.93˚<br />

[S]<br />

a = 1150<br />

b = 1084.3<br />

c = 777.3<br />

β = 91.08˚<br />

[1988Wri, 2001Guz]<br />

βPbO2 tP6 66.1 to 66.7 at.% O, with a small amount of hydrogen;<br />

251 - < 0 P42/mnm TiO2 (rutile)<br />

labelled as “PbO2-I” [Mas2, 1998Ris]<br />

a = 491<br />

c = 336<br />

[E]<br />

a = 495.5<br />

c = 338.3<br />

[S]<br />

a = 495.56<br />

c = 338.67<br />

1988Wri, 2001Guz]<br />

a = 495.78<br />

c = 338.78<br />

[1989Rag]<br />

αPbO2 (hp) cF12 - metastable;<br />

Fm3m about 66.7 at.% O; contains a small amount of<br />

CaF2 hydrogen; labelled as “PbO2-III” [Mas2]<br />

θ (Pb-O) m** - metastable;<br />

P21 or 21/m 50 at.% O [Mas2]<br />

ρ (Pb-O) o** - metastable;<br />

50 at.% O; labelled as “PbOα” [Mas2]<br />

σ (Pb-O) o** - metastable;<br />

57.1 at.% O [Mas2]<br />

ξ (Pb-O) o** - metastable;<br />

57.1 to 61.1 at.% O; labelled as “PbOn”[Mas2] ζ (Pb-O) pseudocubic - metastable;<br />

58.6 at.% O [Mas2]<br />

DOI: 10.1007/978-3-540-70890-2_19 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Δ, Pb 2O 3, mP20 metastable;<br />

1 bar<br />

hydrostatic<br />

pressure<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

P2 1/a 60 at.% O [1961Whi]<br />

a = 781.4 [1988Wri, 2001Guz]<br />

b = 562.5<br />

c = 846.6<br />

Fe–O–Pb 19<br />

R (Pb-O) pseudocubic - metastable;<br />

61.3 at.% O [Mas2]<br />

R’ (Pb-O) m** - metastable;<br />

61.3 at.% O [Mas2]<br />

f (Pb-O) oP12 - metastable;<br />

Pbcn about 66.7 at.% O; contains a small amount of<br />

Nb2FeO6 hydrogen; labelled as “PbO2-II” [Mas2]<br />

* τ1,Fe2Pb2O5 t** a = 779 [1957Ber, 1962Mou]<br />

870 - ~650 c = 1585<br />

a = 780<br />

c = 1582<br />

[1978Mex]<br />

labelled as “δ” [1962Mou]<br />

* τ2,Fe4PbO7 h** a = 1186 [1928Joh, 1962Mou]<br />

880 - 750 c = 4714<br />

labelled as “γ” [1962Mou]<br />

* τ3,Fe12PbO19 hP64 [1938Ade]<br />

~1315 - ~760 P63/mmc a = 588<br />

c = 2302<br />

in the Fe12.9PbO22.9 epitaxial films<br />

a = 512<br />

c = 2367<br />

deposited at T = 600˚C [1997Dor]<br />

a = 588.5 in the Fe12PbO19 thin films deposited at T = 700˚C<br />

c = 2306.6 [2001Dia]<br />

a = 592<br />

c = 2322<br />

[2002Mar]<br />

a = 587<br />

c = 2312<br />

[2002Mar]<br />

labelled as “β” [1962Mou]<br />

* τ4, Fe10Pb2O17 - - [1955Coc]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_19<br />

ß Springer 2009


10 19<br />

Fe–O–Pb<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

* τ5, Fe10PbO16 - - [1955Coc]<br />

* τ6,Fe8PbO13 h** a = 662<br />

c = 1019<br />

[1960Mar]<br />

* τ7,Fe6PbO10 h** a = 591<br />

c = 2352<br />

[1978Mex]<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

. Table 3<br />

Values of Activity Coefficient <strong>and</strong> Interaction Parameters Referring to O [1995Li]<br />

T [˚C] % {Pb} Fe-Pb f ˚ Pb e˚ Pb<br />

1550 0.31 3.23 – 0.50<br />

1600 0.38 2.66 – 0.67<br />

1650 0.43 2.31 – 0.76<br />

. Table 4<br />

Investigations of the Fe-O-Pb Materials Properties<br />

Reference Method/Experimental Technique Type of Property<br />

[1957Ber] Magnet steel tester measurements Residual magnetic induction, coercive<br />

force, magnetic energy<br />

[1997Dor] Vibrating sample magnetometer, SQUID<br />

magnetometer static magnetic<br />

techniques<br />

[1998Cla] Comparative Fe-57 Mössbauer<br />

spectroscopy<br />

Magnetic anisotropy, magnetic<br />

remanence, coercive field, saturation<br />

magnetization<br />

Dynamics of the 2b site<br />

[1998Hua] Magnetic resistivity measurements Magnetic resistivity<br />

[1999Hsu] Magnetic resistivity measurements Magnetic resistivity<br />

[2000Dia] Saturation magnetization <strong>and</strong> coercive<br />

field measurements<br />

Saturation magnetization, coercive field<br />

[2000Hsu] Tunneling magnetoresistance<br />

measurements<br />

Tunneling magnetoresistance<br />

DOI: 10.1007/978-3-540-70890-2_19 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 4 (continued)<br />

Reference Method/Experimental Technique Type of Property<br />

[2001Dia] Saturation magnetization <strong>and</strong> coercive<br />

field measurements<br />

Fe–O–Pb 19<br />

Saturation magnetization, coercive field<br />

[2002Mar] Coercive field measurements Coercive field<br />

[2004Dia] Saturation magnetization <strong>and</strong> coercive<br />

field measurements<br />

Saturation magnetization, coercive field<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_19<br />

ß Springer 2009


12 19<br />

Fe–O–Pb<br />

. Fig. 1<br />

Fe-O-Pb. The O-Pb phase diagram<br />

DOI: 10.1007/978-3-540-70890-2_19 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Pb 19<br />

13<br />

. Fig. 2<br />

Fe-O-Pb. Lead solubility as a function of oxygen content in liquid iron at 1550, 1600 <strong>and</strong> 1650˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_19<br />

ß Springer 2009


14 19<br />

Fe–O–Pb<br />

. Fig. 3<br />

Fe-O-Pb. Temperature - composition section PbO-Fe 2O 3<br />

DOI: 10.1007/978-3-540-70890-2_19 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–O–Pb 19<br />

15<br />

[1928Joh] Johansson, K., “Mineralogical Communications” (in German), Z. Kristallogr., 68, 87–118 (1928) (Crys.<br />

Structure, Experimental) as quoted by [1962Mou]<br />

[1938Ade] Adelskoeld, V., “X-Ray Studies on Magnetoplumbite, Pb 0.6Fe 2O 3 <strong>and</strong> other Substances Resembling<br />

“β-Alumina”, Na 2O·11Al 2O 3”, Arkiv Kemi, Mineral. Geol., 12A(29), 1–9 (1938) (Crys. Structure, Experimental,<br />

12)<br />

[1955Coc] Cocco, A., “The Binary System PbO-Fe 2O 3” (in Italian), Ann. Chim. (Rome), 45, 737–753 (1955) (Crys.<br />

Structure, <strong>Phase</strong> Relations, Experimental, 4) as quoted by [1960Mar] <strong>and</strong> [1989Rag]<br />

[1957Ber] Berger, W., Pawlek, F., “<strong>Crystallographic</strong> <strong>and</strong> Magnetic Studies of the PbO-Fe 2O 3 System” (in German),<br />

Arch. Eisenhuettenwes., 28(2), 101–108 (1957) (Crys. Structure, <strong>Phase</strong> Diagram, Experimental, Magn.<br />

Prop., 10)<br />

[1960Mar] Margulis, E.V., Kopylov, N.I., “The Lead Monoxide-Ferric Oxide System”, Russ. J. Inorg. Chem. (Engl.<br />

Transl.), 5(11), 1196–1199 (1960), translated from Zh. Neorg. Khim., 5(11), 2474–2479 (Crys. Structure,<br />

Morphology, <strong>Phase</strong> Diagram, Experimental, *, 11)<br />

[1961Lec1] Leciejewicz, J., “Neutron-Diffraction Study of Orthorhombic Lead Monoxide”, Acta Crystallogr., 14(1),<br />

66 (1961) (Crys. Structure, Experimental, 5)<br />

[1961Lec2] Leciejewicz, J., “On the Crystal Structure of Tetragonal (Red) PbO”, Acta Crystallogr., 14(12), 1304<br />

(1961) (Crys. Structure, Experimental, 5)<br />

[1961Whi] White, W.B., Dachille, F., Roy, R., “High-Pressure-High Temperature Polymorphism of the Oxides of<br />

Lead”, J. Am. Ceram. Soc., 44(4), 170–174 (1961) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 16)<br />

[1962Mou] Mountvala, A.J., Ravitz, S.F., “<strong>Phase</strong> Relations <strong>and</strong> Structures in the System PbO-Fe 2O 3”, J. Am. Ceram.<br />

Soc., 45(6), 285–288 (1962) (Crys. Structure, <strong>Phase</strong> Diagram, Experimental, #, 11)<br />

[1978Mex] Mexmain, J., Hivert, S.L., “Preparation <strong>and</strong> Characterization of Lead Ferrites” (in French), Ann. Chim.<br />

(Paris), 3(2), 91–97 (1978) (Crys. Structure, Experimental, <strong>Phase</strong> Diagram, *, 5)<br />

[1984Sha] Shaaban, S.A., Abadir, M.F., Mahdy, A.N., “The System Pb-Fe-O in Air”, British Ceram. Transact. J.,<br />

83(4), 102–105 (1984) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, *, 7)<br />

[1986Nev] Neviva, M., Fischer, K., “Contribution to the Binary <strong>Phase</strong> Diagram of the System PbO-Fe 2O 3”, Mater.<br />

Res. Bull., 21(11), 1285–1290 (1986) (Crys. Structure, <strong>Phase</strong> Diagram, Thermodyn., Calculation,<br />

Experimental, #, 11)<br />

[1988Ara] Arakcheeva, A.V., Karpinskii, O.G., “Polytypic Relations in the Structures of the Group of Hexagonal<br />

Ferrites. II. Ferrites of Ba, Pb, Sr, K”, Sov. Phys.-Crystallogr. (Engl. Transl.), 33, 381–383 (1988),<br />

translated from Kristallografiya, 33, 646–649 (1988) (Crys. Structure, Theory, 7)<br />

[1988Wri] Wriedt, H.A., “O-Pb (Oxygen-Lead)”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 9(2), 106–127 (1988) (Crys. Structure,<br />

<strong>Phase</strong> Diagram, Review, 174) as quoted by [2001Guz]<br />

[1989Rag] Raghavan, V., “The Fe-O-Pb System”, <strong>Ternary</strong> <strong>Systems</strong> Containing Iron <strong>and</strong> Oxygen, 5, 242–244 (1989)<br />

(<strong>Phase</strong> Diagram, Review, #, 9)<br />

[1992Rez] Reznitskii, L.A., “Estimate of the Enthalpies of Formation of Compounds with the Magnetoplumbite<br />

Structure MFe 12O 19 (M = Pb, Sr, Ba) <strong>and</strong> of Barium Ferrites”, Russ. J. Phys. Chem. (Engl. Transl.), 66(7),<br />

1027–1028 (1992), translated from Zh. Fiz. Khim., 66, 1931–1932 (1992) (Thermodyn., Calculation, 8)<br />

[1995Li] Li, L., Weyl, A., Janke, D., “Solubility of Zn <strong>and</strong> Pb in Liquid Iron <strong>and</strong> their Partition Between Liquid<br />

Iron <strong>and</strong> Selected Steelmaking Slag <strong>Systems</strong>”, Steel Research, 66(4), 154–160 (1995) (<strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Thermodyn., Experimental, Kinetics, 19)<br />

[1997Dor] Dorsey, P.C., Qadri, S.B., Grabowski, K.S., Knies, D.L., Lubitz, P., Chrisey, D.B., Horwitz, J.S., “Epitaxial<br />

Pb-Fe-O Film with Large Planar Magnetic Anisotropy on (0 0 0 1) Sapphire”, Appl. Phys. Lett., 70(9),<br />

1173–1175 (1997) (Crys. Structure, Experimental, Magn. Prop.) cited from abstract<br />

[1998Cla] Clark, T.M., Evans, B.J., “Mössbauer Investigation of M-Type Hexaferrites Above Their Curie<br />

Temperatures”, J. Magn. Magn. Mater., 177, 237–238 (1998) (Crys. Structure, Experimental, Magn.<br />

Prop, 5)<br />

[1998Hua] Huang, Y.H., Hsu, J.H., Chen, J.W., Chang, C.R., “Granular Fe-Pb-O Films with Large Tunneling<br />

Magnetoresistance”, Appl. Phys. Lett., 72(17), 2171–2173 (1998) (Crys. Structure, Experimental, Magn.<br />

Prop.) cited from abstract<br />

[1998Ris] Risold, D., Nagata, J.-I., Suzuki, R.O., “Thermodynamic Description of the Pb-O System”, J. <strong>Phase</strong><br />

Equilib., 19(3), 213–233 (1998) (Crys. Structure, <strong>Phase</strong> Relations, Thermodyn., Experimental, 19)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_19<br />

ß Springer 2009


16 19<br />

Fe–O–Pb<br />

[1999Hsu] Hsu, J.H., Huang, Y.H., “Tunneling Magnetoresistance Effect in Fe-Pb-O <strong>and</strong> Fe-PbO Granular Films: a<br />

Comparison”, J. Magn. Magn. Mater., 203, 94–96 (1999) (Morphology, Experimental, Magn. Prop.)<br />

cited from abstract<br />

[2000Dia] Diaz-Castanon, S., Leccabue, F., Watts, B.E., Yapp, R., “PbFe 12O 19 Thin Films Prepared by Pulsed Laser<br />

Deposition on Si/SiO 2 Substrates”, J. Magn. Magn. Mater., 220(1), 79–84 (2000) (Crys. Structure,<br />

Experimental, Magn. Prop.) cited from abstract<br />

[2000Hsu] Hsu, J.H., Chang, C.R., Huang, Y.H., “Enhancement of Tunneling Magnetoresistance through a<br />

Magnetic Barrier of Granular Fe-Pb-O System”, IEEE Trans. Magn., 36(5), 2815–2817 (2000) (Morphology,<br />

Experimental, Magn. Prop.) cited from abstract<br />

[2001Dia] Diaz-Castanon, S., Leccabue, F., Watts, B.E., Yapp, R., Asenjo, A., Vasquez, M., “Oriented PbFe 12O 19<br />

Thin Films Prepared by Pulsed Laser Deposition on Sapphire Substrate”, Mater. Lett., 47(6), 356–361<br />

(2001) (Crys. Structure, Experimental, Magn. Prop.) cited from abstract<br />

[2001Guz] Guzei, L.S., “O-Pb. Oxygen-Lead” in “<strong>Phase</strong> <strong>Diagrams</strong> of Binary Metallic <strong>Systems</strong>” (in Russian), Lyakishev,<br />

N.P. (Ed.), Vol. 3, Chapter 1, Mashinostroenie, Moscow, 768–769 (2001) (Crys. Structure, <strong>Phase</strong><br />

Diagram, Review, 1)<br />

[2002Car] Carbucicchio, M., Rateo, M., Martini, C., Palombarini, G., Benamati, G., Fazio, C., “<strong>Phase</strong><br />

Composition of the Oxidised Layers Grown on Steel Exposed to Liquid Lead at 749 K”, Hyperfine<br />

Interactions, 141(1-4), 403–408 (2002) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, Transport<br />

Phenomena) cited from abstract<br />

[2002Mar] Martirosyan, K.S., Avakyan, P.B., Nersesyan, M.D., “<strong>Phase</strong> Formation during Self-Propagation High-<br />

Tempetature Synthesis of Ferrites”, Inorg. Mater. (Engl. Trans.), 38, 400–403 (2002) (Crys. Structure,<br />

Magn. Prop., Phys. Prop., Experimental, 11)<br />

[2003Cas] Castro-Rodriguez, R., Palomares-Sanchez, S., Leccabue, F., Arisi, E., Watts, B.E., “Optimal Target-<br />

Substrate Distance in the Growth of Oxides Thin Films by Pulsed Laser Deposition”, Mater. Lett., 57<br />

(22-23), 3320–3324 (2003) (Crys Structure, <strong>Phase</strong> Relations, Experimental, Theory, Transport Phenomena)<br />

cited from abstract<br />

[2004Dia] Dias-Castanon, S., Faloh-G<strong>and</strong>arilla, J.C., Leccabue, F., Albanese, G., “The Optimum Synthesis of High<br />

Coercivity Pb-M Hexaferrite Powders Using Modifications to the Traditional Ceramic Route”, J. Magn.<br />

Magn. Mater., 272, 2221–2223 (2004) (Crys. Structure, Experimental, Magn. Prop.) cited from abstract<br />

[2005Pal] Palomares-Sanchez, S.A., Diaz-Castanon, S., Ponce-Castaneda, S., Mirabal-Garcia, M., Leccabue, F.,<br />

Watts, B.E., “Use of the Rietveld Refinement Method for the Preparation of Pure Lead Hexaferrite”,<br />

Mater. Lett., 59(5), 591–594 (2005) (Crys. Structure, Experimental, 17)<br />

[E] Elliott, R.P., Constitution of Binary <strong>Alloy</strong>s, First Supplement, McGraw-Hill, New York (1965)<br />

[H] Hansen, M. <strong>and</strong> Anderko, K., Constitution of Binary <strong>Alloy</strong>s, McGraw-Hill, New York (1958)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park,<br />

Ohio (1990)<br />

[S] Shunk, F.A., Constitution of Binary <strong>Alloy</strong>s, Second Supplement, McGraw-Hill, New York (1969)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s,<br />

2nd edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_19 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Oxygen – Silicon<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Olga Fabrichnaya<br />

Introduction<br />

Fe–O–Si 20<br />

1<br />

The Fe-O-Si system has several applications in materials sciences <strong>and</strong> geology. Silicon is most<br />

commonly used as deoxidizer for molten steel [1952Gok, 1957Fit]. Silicon is also an important<br />

residual alloying element in steels. The extensively studied FeO-Fe 2O 3-SiO 2 system is part of a<br />

slag system [1943Whi] <strong>and</strong> it is important in silica-brick technology [1989Rag]. Iron silicates<br />

are end members of solid solutions important for underst<strong>and</strong>ing of mantle mineralogy <strong>and</strong><br />

seismic structure of the Earth. Therefore, elastic properties, thermal expansion <strong>and</strong> seismic<br />

wave velocities of these minerals were extensively studied by different techniques [2004Fab].<br />

The phase transformations in the FeO-SiO2 system were experimentally studied at high<br />

pressures <strong>and</strong> temperatures [1967Lin, 1967Aki, 1977Aki, 1980Boh, 1987Yag]. Si, S <strong>and</strong> O<br />

are possible light elements, which dissolve in Fe-Ni alloys composing the outer core of the<br />

Earth [1989And, 1989Sve, 1991Ito]. Iron alloys <strong>and</strong> silicates were studied under extreme<br />

pressure <strong>and</strong> temperature conditions to underst<strong>and</strong> the processes in the mantle <strong>and</strong> core of<br />

the Earth [1991Ito, 1996Boe]. Experiments in diamond anvil cells <strong>and</strong> shock-wave studies<br />

enable to study materials at the p, T conditions of the Earth interior <strong>and</strong> to interpret results of<br />

seismic studies [1989And, 1989Sve, 1991Ito, 2002Che].<br />

In the experimental study of the iron saturated FeO-SiO2 system by [1932Bow, 1939Cro,<br />

1951Sch, 1952Mic, 1955All] the phase diagram was constructed <strong>and</strong> liquid compositions<br />

(content of FeO, Fe 2O 3, SiO 2) were determined. The silica rich part of this diagram is<br />

characterized by the presence of a miscibility gap in liquid. The invariant equilibrium between<br />

two liquids of different composition <strong>and</strong> silica was investigated by [1927Gre1, 1927Gre2].<br />

[1939Cro] experimentally studied melting in the FeO-SiO 2 system in presence of Fe as well as<br />

in SiO 2 crucibles without Fe <strong>and</strong> demonstrated that in the later case melt consists mainly of<br />

Fe 3O 4 <strong>and</strong> SiO 2 forming a different series than in presence of Fe. The temperature dependence<br />

of solid phase buffers (univariant equilibria providing constant activity of O) was measured<br />

by different techniques. An electrochemical method (emf) was used by [1981Jac, 1981Sch,<br />

1985Jac, 1987One, 1988One, 1989Jac]. Equilibration with CO/CO 2 gas mixtures was performed<br />

by [1932Sch, 1946Cir, 1966Sch2], a H 2 membrane method was applied by [1978Hew]<br />

<strong>and</strong> a thermogravimetric method by [1965Val, 1983Mye]. [1948Dar] investigated SiO 2 +<br />

Fe 3O 4+slag <strong>and</strong> SiO 2+Fe 2SiO 4+slag equilibria at different CO 2/CO gas mixtures to determine<br />

melting temperatures. Using data from an earlier study [1932Sch] the phase diagram<br />

log 10(p CO2/p CO) vs temperature was constructed by [1948Dar]. An investigation of [1952Mic]<br />

provides information on SiO2+slag <strong>and</strong> SiO2+Fe3O4+slag equilibria at different oxygen partial<br />

pressures <strong>and</strong> temperatures. Schühmann <strong>and</strong> Esio [1951Sch] determined the oxygen<br />

partial pressure by recording the CO 2/CO ratio in gas phase bubbled through slag in Fe<br />

crucibles. The composition of slag was also analyzed. Distin et al. [1971Dis] carried out oxygen<br />

content measurements in liquid Fe for calculation of the FeO activity in FeO-SiO 2 liquid<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


2 20<br />

Fe–O–Si<br />

equilibrated with liquid iron. Bodsworth [1959Bod] used Fe crucibles <strong>and</strong> H 2/H 2O mixtures<br />

to determine the oxygen partial pressure of FeO-SiO 2 liquid in equilibrium with metallic Fe.<br />

Schühmann et al. [1953Sch] used a quenching technique to study the liquidus surface in<br />

the FeO-Fe 2O 3-SiO 2 region between 1250 <strong>and</strong> 1450˚C. Muan [1955Mua] presented liquidus<br />

data at oxygen partial pressures ranging from 10 –11 to 1 bar. Turkogan <strong>and</strong> Bill [1957Tur]<br />

equilibrated melt with CO2/CO gas mixtures at 1550˚C. Their values were used by [1962Tur]<br />

to calculate SiO2, FeO <strong>and</strong> Fe2O3 activities in melt. Oishi et al. [1982Ois] performed electromotive<br />

force measurements of slag at 1300˚C. Their data for SiO 2+Fe+slag equilibria deviate<br />

from [1951Sch, 1952Mic].<br />

Silicon is the most commonly used deoxidizer for steel. Therefore the equilibrium between<br />

silicon <strong>and</strong> oxygen in molten iron was studied in many works [1950Hil, 1952Gok, 1961Hsi,<br />

1967Buz, 1969Nov, 1970For, 1974Ark, 1977She, 1981Ave, 2005Shi]. Solubility of oxygen in<br />

Fe-Si melt was recently studied by [2005Shi] in inert atmosphere at 1600˚C. A minimum of the<br />

oxygen solubility at 20 mass% Si was indicated by [2005Shi]. At the same temperature of<br />

1600˚C, [1961Hsi], [1967Buz], [1969Nov] <strong>and</strong> [1977She] indicated minima at 5-6, 6.8, 3.6 or<br />

3.89 mass% Si, respectively, while [1950Hil, 1952Gok] studied compositions up to 10 <strong>and</strong><br />

15 mass% Si, respectively <strong>and</strong> in both works no minimum was found. [1974Ark] indicated the<br />

presence of a minimum in the solubility curves at 1600-1700˚C. A maximum of the oxygen<br />

solubility at 85 mass% Si mentioned by [2005Shi] is based on thermodynamic calculations.<br />

There is no experimental confirmation of this maximum. An isothermal section at 1600˚C<br />

showing details of the Si <strong>and</strong> O solubility in the Fe rich corner was constructed in the works<br />

[1952Gok, 1970For]. An assessment of interaction parameters is presented by [1966Sch1,<br />

1974Sig].<br />

The equilibrium between silicon <strong>and</strong> oxygen in (δFe) in contact with liquid iron has been<br />

studied by [1970Nis] <strong>and</strong> [1981Fuj]. [1981Fuj] calculated a first-order interaction coefficient<br />

in the δ phase for compositions up to 0.1 mass% Si.<br />

The activities of Si <strong>and</strong> O in liquid iron alloys were studied by [1967Sch, 1973Vla,<br />

1986Zin] using the emf technique. [1964Tay, 1981Lev] applied the emf method to derive<br />

the Gibbs energy of the Fe 2SiO 4 (fayalite) phase. Activity of FeO in the FeO-SiO 2 system was<br />

measured by a gas equilibration technique [2004Fre]. Ban-ya et al. measured the activity of<br />

FeO at 1400˚C [1980Ban] <strong>and</strong> the enthalpy of mixing of FeO-SiO2 melts at 1420˚C in Fe<br />

crucibles [1982Ban].<br />

A review of thermodynamic data (enthalpy of formation, entropy <strong>and</strong> C p) of the phases in<br />

the FeO-Fe 2O 3-SiO 2 system is presented by [2004Fab]. There are calorimetric data available<br />

for fayalite [1952Kin, 1953Orr, 1982Wat, 1982Rob] <strong>and</strong> for the high-pressure phases γ-spinel<br />

Fe 2SiO 4 [1982Wat, 1979Nav, 1989Aka, 2007Yon] <strong>and</strong> FeSiO 3 [1982Wat, 1979Nav]. Thermodynamic<br />

data for high-pressure phases were also calculated from phase equilibria for ferrosilite<br />

[1980Boh] <strong>and</strong> for γFe2SiO4 [1965Aki, 1977Aki, 1979Oht, 1987Yag].<br />

Reviews of experimental data available for the Fe-O-Si system were presented by<br />

[1937Wen, 1943Whi, 1957Fit, 1965Mua, 1989Rag, 2004Fab].<br />

There are several thermodynamic assessments of the Fe-O-Si system [1979Kau, 1980Goe,<br />

1985Bjo, 1993Wu, 1996Sax, 1997Fab, 1997Sel, 1999Rom, 2004Jun1, 2007Jak]. [1979Kau] used<br />

the substitutional solution model for the liquid phase <strong>and</strong> calculated phase diagrams.<br />

[1997Sel] <strong>and</strong> [1997Fab] used the ionic liquid model to describe the liquid phase <strong>and</strong> obtained<br />

very similar results. The difference between these two assessments is in the thermodynamic<br />

parameters selected for the phases <strong>and</strong> in the additional consideration of high pressure<br />

phases by [1997Fab]. [1980Goe] used the associate model to describe the liquid phase.<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


[1985Bjo] described liquid as an ideal solution of three silicate complexes. [1985Sas] used the<br />

model of central atom to calculate activity, enthalpy of mixing <strong>and</strong> enthalpy of formation of<br />

fayalite. [2002Dav] also assessed this system using the associate model. [1993Wu, 1999Rom]<br />

assessed the FeO-SiO 2 system using the quasichemical model. The modified quasichemical<br />

model was also used by [2004Jun1, 2007Jak] to assess thermodynamic parameters in the FeO-<br />

Fe 2O 3-SiO 2 system <strong>and</strong> to calculate phase diagrams. Jung et al. [2004Jun2] used a modified<br />

Wagner model to calculate deoxidation equilibria in liquid iron for 15 elements including Si.<br />

Experimental <strong>and</strong> theoretical studies of the Fe-O-Si system are summarized in Table 1.<br />

Binary <strong>Systems</strong><br />

The Fe-Si binary system is accepted from [1982Kub]. Si-O is accepted from [1992Hal] based<br />

on an evaluation of [1990Wri]. Polymorphic transformations in SiO 2 at high pressures<br />

<strong>and</strong> temperatures are accepted from [2004Fab]. The phase diagram of the Fe-O system is<br />

accepted from [1991Sun]. The thermodynamic assessment of [1991Sun] gives results very<br />

close to [Mas2].<br />

Solid <strong>Phase</strong>s<br />

Fe–O–Si 20<br />

3<br />

The crystallographic data for solid phases are listed in Table 2. Fe <strong>and</strong> Si have very low<br />

solubility for oxygen, Si has practically no solubility for Fe, while Fe can dissolve up to 25<br />

at.% of Si. The SiO2 binary compound undergoes polymorphic transformations, the order<br />

with increasing temperature is α-quartz, β-quartz, tridymite, crystobalite. Two high pressure<br />

modifications of SiO 2 were found experimentally with coesite <strong>and</strong> stishovite structure. Coesite<br />

forms at a pressure of 3-4 GPa. With the pressure increasing above 9 GPa it transforms to the<br />

more dense stishovite phase with rutile structure. At atmospheric pressure only one ternary<br />

phase Fe 2SiO 4 (fayalite) is stable, having the olivine structure. However, at pressures of<br />

5-8 GPa fayalite transforms to the spinel structure (γ-spinel), which decomposes to a mixture<br />

of FexO (wüstite) <strong>and</strong> SiO2 (stishovite) at pressures of about 18 GPa. A crystal structure<br />

investigation of spinel Fe2SiO4, performed by [1990Din], indicates that it has mixed normalinverse<br />

structure - 37.9% of Si occupy octahedral sites <strong>and</strong> 18.9% of Fe occupy tetrahedral<br />

sites. A FeSiO 3 ferrosilite ternary phase with pyroxene structure forms at 1-3 GPa from<br />

fayalite <strong>and</strong> SiO 2 (β-quartz) [1980Boh]. At high pressures <strong>and</strong> temperatures an ortho modification<br />

<strong>and</strong> two clino modifications of pyroxene were found [1984Sue, 1997Hug, 1997Woo]<br />

(see Fig. 1). According to the phase diagram presented by [1994Hug] a triple point for<br />

ferrosilite composition is placed at 4.6 GPa <strong>and</strong> a temperature of about 800˚C. [1997Woo]<br />

studied the equilibrium between ortho- <strong>and</strong> high-clinoferrosilite at 800-1300˚C. [1983Web]<br />

reported high-temperature pyroxenoid FeSiO3 with triclinic structure, synthesized at 2 GPa<br />

<strong>and</strong> 1250˚C. Ferrosilite decomposes in the range 8-10 GPa to a mixture of γ spinel Fe 2SiO 4 <strong>and</strong><br />

SiO 2 (Stishovite). Calculated p-T phase diagrams of SiO 2 <strong>and</strong> FeO-SiO 2 systems at high<br />

pressures are presented in [2004Fab] (see Fig. 2 <strong>and</strong> 3). Transformations between the ortho<br />

<strong>and</strong> clino modifications of FeSiO 3 are not shown in Fig 3, because these two phases were<br />

described as a single phase by [2004Fab] due to lack of thermodynamic data. Several experimental<br />

studies [1992Ros, 1997Oht, 1998Ang, 1998Woo, 2000Haz] indicated stability of<br />

spinelloid solid solutions of composition Fe3–xSixO4 (x = 0.28-0.75), which form in the<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


4 20<br />

Fe–O–Si<br />

Fe 3O 4-Fe 2SiO 4 system at pressures of 3-8 GPa. A complete solid solution with γ-spinel<br />

structure is stable in this system above 9 GPa. In this work γ-spinel <strong>and</strong> Fe 3O 4 are presented<br />

as different phases because at normal pressure Fe 3O 4 does not dissolve any Fe 2SiO 4. According<br />

to [2000Woo] there are three spinelloid polytypes II, III <strong>and</strong> V (spd II, spd III, spd V) which<br />

differ in the b unit cell parameter. The phase diagram of [2000Woo] at 1100˚C is presented in<br />

Fig. 4. It was also shown by [2000Woo] that a phase Fe7SiO10, previously reported as<br />

metastable [1985Mod], appears in phase assemblages at 5-6 GPa <strong>and</strong> therefore it is a stable<br />

phase at moderate pressures. The crystal structure of Fe 7SiO 10 was investigated by [2005Ake]<br />

using TEM <strong>and</strong>, combining the obtained results with XRD data of [1985Mod], a space group<br />

different from that given by [1985Mod] was determined for this compound.<br />

Quasibinary <strong>Systems</strong><br />

The isobaric section of the FeO-Fe2O3-SiO2 system at the oxygen partial pressure of air<br />

approximately is a quasibinary system Fe 3O 4-SiO 2 [1965Mua], because magnetite is stable<br />

phase at this condition. Strictly speaking this diagram is not exactly quasibinary, because the<br />

Fe +2 /Fe +3 ratio of Fe 3O 4 in air slightly changes with temperature. Experimentally this system<br />

was studied by [1927Gre2, 1955Mua]. The results of these experimental studies are summarized<br />

in [1959Phi, 1965Mua]. The calculated diagram at oxygen partial pressure of air agrees<br />

well with data of [1965Mua], it is presented in Fig. 5.<br />

A calculated phase diagram of the Fe2O3-SiO2 system [1997Sel] is presented in Fig. 6. In<br />

this calculation the gas phase is suppressed <strong>and</strong> thus it is hypothetical, as at elevated temperatures<br />

all Fe-containing phases decompose into O 2 gas <strong>and</strong> phases with lower O-content.<br />

The miscibility gap in the iron-saturated FeO-SiO 2 system was studied by [1927Gre1]. The<br />

phase diagram of the FeO-SiO 2 system at iron saturation was experimentally studied by<br />

[1932Bow]. The corresponding calculated phase diagram from [1997Fab] is presented in<br />

Fig. 7a. The Fe 2O 3 content in the liquid phase is presented in Fig. 7b. Strictly speaking this<br />

diagram is not exactly quasibinary, because metallic Fe is present at some amount.<br />

Kato et al. [1984Kat] investigated melting relations in the Fe2SiO4-FeSiO3 quasibinary part<br />

of the FeO-SiO2 system at pressures of 5, 6 <strong>and</strong> 9 GPa. Between the fayalite <strong>and</strong> ferrosilite<br />

compositions a eutectic melting occurs. Ferrosilite was observed to melt incongruently forming<br />

liquid <strong>and</strong> coesite. <strong>Phase</strong> diagrams at 6 <strong>and</strong> 9 GPa from [1984Kat] are presented in Figs. 8a<br />

<strong>and</strong> 8b.<br />

Invariant Equilibria<br />

A reaction scheme of the Fe-Fe2O3-SiO2-Si partial system is presented in Figs. 9a to 9c. Itis<br />

based on the review of [1989Rag] with some corrections according to [1997Fab]. This scheme<br />

does not include equilibria with the gas phase. Details (temperatures <strong>and</strong> phase compositions)<br />

of the invariant reactions in the FeO-Fe 2O 3-SiO 2 system calculated by [1997Fab] are presented<br />

in Table 3.<br />

Invariant equilibria at high pressures were determined by [1984Kat]. A eutectic point<br />

L Fe Ð Fe 2SiO 4+FeSiO 3 was indicated at an Fe 2SiO 4 content of 74 mol% <strong>and</strong> a temperature of<br />

1335˚C at 6 GPa. A eutectic point L Ð γFe2SiO4+FeSiO3 was indicated at 55 mol% Fe2SiO4,<br />

1530˚C <strong>and</strong> 9 GPa. A peritectic formation of FeSiO3 from liquid <strong>and</strong> SiO2(Coes) was<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


determined at 35 mol% of Fe 2SiO 4 at 1435˚C at 6 GPa <strong>and</strong> 15 mol% Fe 2SiO 4 at 1610˚C <strong>and</strong><br />

9 GPa. According to [1967Aki] an invariant point αFe 2SiO 4-γFe 2SiO 4-liquid was indicated at<br />

1520˚C <strong>and</strong> 6.2 GPa, while [1979Oht] placed this point at the same temperature but at a<br />

pressure of 7 GPa.<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

The liquidus surface projection of the FeO-Fe 2O 3-SiO 2 partial system, calculated by<br />

[1997Fab], is presented in Fig. 10. It agrees well with the experimental data of [1953Sch,<br />

1955Mua]. A schematic liquidus surface of the larger region Fe-Fe 3O 4-SiO 2-Si from [1989Rag]<br />

is presented in Fig. 11 based on calculations performed by [1973Iye].<br />

The Tr = Cr transformation in SiO 2 was not taken into account by [1989Rag] <strong>and</strong> the<br />

corresponding degenerated reactions D 1 <strong>and</strong> D 2 at 1471˚C are not shown in the reaction<br />

scheme.<br />

Liquidus phase relations at high pressures were established in the works of Lindsley<br />

[1964Lin, 1967Lin], Alimoto et al. [1967Aki], Ohtani [1979Oht] <strong>and</strong> Kato et al. [1984Kat].<br />

The schematic liquidus relations of the FeO-SiO 2 system at high pressures are presented in<br />

Fig. 12, taken from [1984Kat]. [1967Aki] found that both αFe 2SiO 4 <strong>and</strong> γFe 2SiO 4 melt<br />

congruently at pressures up to ~7 GPa. [1979Oht] confirmed congruent melting of<br />

γFe 2SiO 4 up to 13 GPa, while at pressures above 13 GPa it melts incongruently decomposing<br />

to liquid <strong>and</strong> stishovite. The phase diagram from [1979Oht] is presented in Fig. 13.<br />

Isothermal Sections<br />

In the work of Schuhmann et al. [1953Sch] isothermal sections of the FeO-Fe 2O 3-SiO 2 partial<br />

system were constructed based on experimental phase equilibrium studies at 1250, 1300, 1350,<br />

1400, 1450˚C. Isothermal sections at lower temperatures (1000˚C <strong>and</strong> 25˚C) are constructed by<br />

extrapolations. [1982Ois] constructed a partial isothermal section at 1300˚C from emf measurements.<br />

[1997Sel] <strong>and</strong> [1997Fab] calculated isothermal sections at 1300 <strong>and</strong> 1450˚C, which<br />

are in reasonable agreement with data of [1953Sch, 1982Ois], although the experimental<br />

solubilities of FeO <strong>and</strong> Fe 2O 3 in liquid at 1300˚C are slightly higher than the calculated<br />

ones. The isothermal sections at 1300 <strong>and</strong> 1450˚C from [1997Fab] are presented in Figs. 14a<br />

<strong>and</strong> 14b.<br />

The isothermal section of the iron rich corner of the Fe-O-Si system at 1600˚C showing<br />

details of solubilities at SiO 2 saturation is shown in Fig. 15 according to [1989Rag].<br />

Potential <strong>Diagrams</strong><br />

Fe–O–Si 20<br />

5<br />

The potential diagram log 10(p CO2/p CO) vs temperature was constructed by Darken [1948Dar]<br />

including his own experimental results <strong>and</strong> results from other studies. The value of log 10(p CO2/<br />

p CO) is directly related to the partial pressure of oxygen at the temperature given. Figure 16<br />

presents a diagram of this type, log 10(p CO2/p CO) vs T, of the FeO-SiO 2-O 2 partial system,<br />

calculated by [1997Fab]. It agrees very well with the diagram of [1948Dar] <strong>and</strong> with results of<br />

[1932Sch, 1946Cir, 1952Mic, 1951Sch, 1927Gre2, 1966Sch2]. The potential diagram for<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


6 20<br />

Fe–O–Si<br />

equilibrium between liquid <strong>and</strong> silica, calculated at 1250, 1300 <strong>and</strong> 1350˚C is presented in<br />

Fig. 17. This diagram demonstrates that the content of Fe 2O 3 in slag equilibrated with SiO 2 at<br />

fixed partial pressure of oxygen does not depend on the temperature in the calculated<br />

temperature region. The calculated diagrams agree well with the experimental data of<br />

[1952Mic, 1982Ois].<br />

Thermodynamics<br />

The reaction of dissolution of silicon <strong>and</strong> oxygen in liquid iron was studied in many works<br />

[1950Hil, 1952Gok, 1961Hsi, 1967Buz, 1969Nov, 1970For, 1974Ark, 1977She, 1981Ave,<br />

2005Shi]. The thermodynamic treatment of experimental results is based on the following<br />

reaction: SiO 2(s)=[Si]+2[O], where symbols in square brackets are concentrations of components<br />

in liquid Fe expressed in mass%. This equilibrium was thermodynamically treated by the<br />

mass action law expressing the product of activities of O <strong>and</strong> Si in Fe melt by an equilibrium<br />

constant [1952Gok] (corrected in [1953Chi]), 1967Buz, 1969Nov, 1973Iye, 1974Sig, 1977She,<br />

1981Ave, 1986Zin, 1999Ma, 2005Mik, 2005Shi]. The first-order interaction parameters at<br />

1600˚C recommended by [1974Sig] are e Si O= – 0.131, e O Si= – 0.23, e O O= – 0.20, e Si Si= 0.11.<br />

A modified Wagner formalism taking into account the formation of SiO associates was used by<br />

[2004Jun2] to calculate deoxidation equilibria in liquid iron at 1550-1650˚C. [1998Lee] used<br />

the ionic liquid model to describe deoxidation equilibria in liquid iron at 1600˚C. Calculated<br />

solubilities of O <strong>and</strong> Si in liquid Fe at 1545, 1600 <strong>and</strong> 1650˚C from [1997Sel] are presented in<br />

Fig. 18. The results are in good agreement with [1952Gok].<br />

The activities of Si <strong>and</strong> O in liquid iron alloys were studied by [1967Sch, 1973Vla,<br />

1986Zin] using the emf technique. The emf method was used to derive the Gibbs energy of<br />

formation of Fe 2SiO 4 (fayalite) in the works of [1964Tay, 1981Lev]. The activity of FeO in the<br />

FeO-SiO 2 system was measured by gas equilibration technique [1951Sch, 1959Bod, 1980Ban,<br />

2004Fre]. Vapor pressure measurements were performed by [1971Dis] to determine FeO<br />

activities at high temperatures. Calculated FeO activities at 1263, 1315, 1364, 1407˚C from<br />

[1997Fab] are presented in Fig.19a. They agree well with [1951Sch, 1959Bod]. Calculated FeO<br />

activities at 1785, 1880 <strong>and</strong> 1960˚C are presented in Fig. 19b. They reproduce the experimental<br />

data of [1971Dis] within the uncertainty limits. Calculations of FeO activities in liquid,<br />

performed in the present evaluation using the thermodynamic database of [1997Fab] show<br />

reasonable agreement with data of [2004Fre] at 1550 <strong>and</strong> 1600˚C.<br />

Ban-ya et al. [1982Ban] measured enthalpies of mixing of FeO-SiO 2 melts in Fe crucibles<br />

at 1420˚C. The calculated enthalpy of mixing of FeO-SiO 2 melts in equilibrium with metallic<br />

Fe from [1997Fab] is presented in Fig. 20.<br />

A review of experimental data for thermodynamic values H, S <strong>and</strong> Cp for phases in the<br />

FeO-Fe2O3-SiO2 system is presented by [2004Fab]. There are calorimetric data available<br />

for the enthalpy of formation of fayalite [1952Kin], entropy derived from adiabatic calorimetry<br />

measurements [1982Rob], enthalpy of fusion obtained by drop calorimetry [1953Orr,<br />

1984Ste], enthalpy increment obtained by drop calorimetry [1953Orr] <strong>and</strong> heat capacity<br />

measurements by differential scanning calorimetry [1982Wat]. For the high-pressure<br />

phases γ-spinel Fe 2SiO 4 the enthalpy of transformation was obtained by solution calorimetry<br />

[1979Nav] <strong>and</strong> drop calorimetry [1989Aka], entropy was derived from adiabatic<br />

calorimetry data [2007Yon] <strong>and</strong> heat capacity was obtained by differential scanning calorimetry<br />

[1982Wat]. Enthalpy of formation of ferrosilite FeSiO3 was obtained by solution<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


calorimetry [1979Nav] <strong>and</strong> heat capacity was measured by differential solution calorimetry<br />

[1982Wat]. The thermodynamic data for high-pressure phases were also calculated [1997Fab]<br />

using available phase equilibria <strong>and</strong> calorimetric data along with equations of state to take into<br />

account pressure contribution to Gibbs energy. In calculations, phase equilibrium data of<br />

[1980Boh] were used for ferrosilite <strong>and</strong> data of [1965Aki, 1977Aki, 1979Oht, 1987Yag] for<br />

γFe 2SiO 4.<br />

There are several thermodynamic assessments of the whole Fe-O-Si system [1979Kau,<br />

1980Goe, 1985Bjo, 1993Wu, 1997Fab, 1997Sel, 1999Rom, 2004Jun1, 2007Jak] using different<br />

models for the liquid phase. [1979Kau] used the substitutional solution model, [1997Sel] used<br />

the ionic liquid model <strong>and</strong> [1980Goe, 1985Bjo, 2002Dav] used the associate model. [1993Wu,<br />

1999Rom] assessed the FeO-SiO 2 partial system using the quasichemical model. The quasichemical<br />

model was also used by [2004Jun1, 2007Jak] to assess thermodynamic parameters in<br />

the FeO-Fe 2O 3-SiO 2 system.<br />

The thermodynamic description of [1997Fab] using the ionic liquid model is recommended<br />

in the present work, because it reproduces well experimental data at 1 bar <strong>and</strong> at high<br />

pressures. Thermodynamic values calculated by [1997Fab] are presented in Tables 4 <strong>and</strong> 5.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–O–Si 20<br />

7<br />

For geophysical applications data like compressibilities, thermal expansions <strong>and</strong> seismic wave<br />

velocities of Fe-containing silicates are important, measured for example by static compression,<br />

ultrasonic <strong>and</strong> Brillouin scattering. The bulk elastic modulus <strong>and</strong> its pressure derivative<br />

are usually derived from static compression experiments. Sound velocities are derived from<br />

Brillouin spectroscopic data. Thermal expansion is usually studied by in-situ XRD measurements.<br />

Review papers are devoted to thermal expansion of spinels [1985Tay] <strong>and</strong> to thermoelastic<br />

properties of phases in the FeO-Fe 2O 3-SiO 2 system including high-pressure phases<br />

[2004Fab].<br />

Magnetic properties of orthoferrosilite FeSiO 3 were determined by susceptibility <strong>and</strong><br />

magnetization measurements as well as by Mössbauer spectroscopy [1986Reg]. From these<br />

data the temperature of magnetic ordering was obtained as 40 K. The electric field gradient for<br />

Fe2SiO4 (fayalite) was determined by Mössbauer spectroscopy of a single crystal [2002Lot].<br />

Magnetic properties of spinel <strong>and</strong> spinelloid structure in the Fe 2SiO 4-Fe 3O 4 system were<br />

measured by [2001Yam1, 2004Kon]. Electric properties of spinel solid solutions in the<br />

Fe 2SiO 4-Fe 3O 4 system were measured by [2001Yam2]. Magnetic properties of the mineral<br />

iscorite Fe 7SiO 10 was measured by [1985Mod]. Paramagnetic behavior was found at temperatures<br />

above –23˚C, weak ferromagnetism was found at temperatures below –23˚C.<br />

Hardness of oxide scales on Fe-Si alloys is important to determine hot-rolling conditions<br />

for production of outst<strong>and</strong>ing steels. Microhardness measurements on Fe-Si alloys (up to<br />

3 mass% Si) at room temperature <strong>and</strong> high temperatures were performed by [2006Ama] after<br />

oxidation at 800 <strong>and</strong> 1000˚C.<br />

Recently attention was focused on synthesis <strong>and</strong> properties of nanocomposite materials in<br />

the Fe-O-Si system for potential applications in electronics <strong>and</strong> optics [2006Kim]. The<br />

alternating current electrical conductivity of gel-derived glass of composition 55Fe 2O 3-<br />

45SiO 2 (mol%) was measured by [2006Bas] after reduction at 650˚C <strong>and</strong> further heattreatment<br />

in air at 500˚C to grow Fe-core Fe 3O 4 shell nanostructure, which forms a percolate<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


8 20<br />

Fe–O–Si<br />

network within silica gel. Magnetic properties of nanocomposite Fe-SiO 2 powders were<br />

studied by [2006Kim].<br />

[2003Kap] studied the contact angle of liquid Fe on a SiO 2 substrate under Ar <strong>and</strong> CO-<br />

CO 2-Ar atmospheres in the temperature range 1550-1560˚C using X-rays <strong>and</strong> the sessile-drop<br />

method. The angle was found to be around 135˚. Fayalite slag formed due to reaction between<br />

substrate <strong>and</strong> Fe was found to accumulate around the drop. The results are of relevance to<br />

explain the mechanism of corrosion of SiO2 containing refractory materials by liquid Fe.<br />

Experimental studies of material properties are presented in Table 6.<br />

Miscellaneous<br />

Conditions for nucleation of oxide particles during deoxidation are reviewed <strong>and</strong> recent<br />

experimental studies of the nucleation of SiO2 are described by [1972Sig]. The critical<br />

supersaturation is discussed <strong>and</strong> influence of the rate of mixing of deoxidant addition on<br />

the number of particles of deoxidation products is considered. Several studies are devoted to<br />

internal oxidation of Fe-Si alloys [1960Sch, 1984Tak, 1986Wie1, 1986Wie2, 1986Tak,<br />

2006Tak]. Diffusion coefficients of oxygen in Fe-Si alloys were derived from experimental<br />

data in [1960Sch, 1984Tak, 1986Tak]. [1987Lee] studied initial oxidation of Fe-Si alloys at<br />

25˚C by different kinds of surface spectroscopies. [1976Mor] studied transition from external<br />

to internal oxidation in Fe-Si alloys as function of oxygen partial pressure. [1971Log] studied<br />

morphology <strong>and</strong> structure of wustite-fayalite scale formed on Fe-Si alloys during oxidation by<br />

CO2/CO gas mixtures at 1000˚C. [1982Rol] studied oxidation <strong>and</strong> creep of Fe-Si alloys.<br />

[1998Won] reported precipitation kinetics of Fe contamination at a Si-SiO 2 interface during<br />

dry oxidation at 900˚C based on TEM <strong>and</strong> atomic force microscopy.<br />

[1967Eib] investigated crystal structure of fayalite Fe 2SiO 4 by Mössbauer spectroscopy as<br />

function of temperature. Splitting of lines, which became more pronounced at high temperatures,<br />

confirms that Fe +3 occupies both non-equivalent octahedral sites of the fayalite structure.<br />

[1992Bec] investigated fayalite Fe 2SiO 4 at elevated temperatures by Mössbauer<br />

spectroscopy, also. The pO2 dependent broadening of Mössbauer lines was discussed in context<br />

of fayalite crystal structure. Kinetics of fayalite formation from FeO <strong>and</strong> SiO2 were investigated<br />

in [1992Bec].<br />

Ross et al. [1999Ros1, 1999Ros2] obtained Raman spectra <strong>and</strong> electronic absorption<br />

spectra for clinoferrosilite at high pressures. Transformation of low-clinoferrosilite to highclinoferrosilite<br />

with pressure increase <strong>and</strong> back with pressure decrease was observed in-situ<br />

[1999Ros1]. [1999Ros2] showed that high FeSiO 3 (space group C2/c) gained additional<br />

stabilization energy at high pressure due to crystal field effect of Fe +2 in octahedral sites.<br />

Results of Ito [1991Ito] on interaction between molten iron <strong>and</strong> silicate at high pressure<br />

<strong>and</strong> temperature indicate that certain amount of SiO2 dissolves into liquid iron from silicate<br />

melt. These results confirm that Si <strong>and</strong> O may be important alloying light elements of Earth’s<br />

core if core segregation proceeds in magmatic ocean of the proto-Earth.<br />

[2001Bel] constructed a molecular dynamic model of the FeO-SiO 2 system using Born-<br />

Mayer pair potential. The potential includes effective dipole-dipole interaction for Fe-Si pairs<br />

obtained from experimental data for the Gibbs energy of solution.<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1<br />

Investigations of the Fe-O-Si <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1927Gre1] <strong>Phase</strong> equilibria in gas furnace,<br />

temperature control by optical<br />

pyrometry, quenching, microscopic study<br />

[1927Gre2] Melting in electric furnace in air,<br />

temperature measurement by optical<br />

pyrometry, chemical analysis<br />

[1932Bow] <strong>Phase</strong> equilibria in presence of Fe,<br />

chemical analysis, microscopic study<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

1700˚C, FeO-SiO2, liquid miscibility gap<br />

1660˚C, FeO-Fe2O3-SiO2, liquid miscibility<br />

gap<br />

1100-1800˚C, Fe-FeO-SiO2<br />

[1932Sch] Equilibration with CO/CO2 gas mixtures 900˚C, Fe2O3-10SiO2,Fe2O3-SiO2, 3Fe2O3- SiO2<br />

[1939Cro] <strong>Phase</strong> equilibria in Fe- <strong>and</strong> siliceous<br />

crucibles, microscopic study, chemical<br />

analysis<br />

1200-1600˚C, Fe-FeO-Fe2O3-SiO2 [1948Dar] Equilibration with CO/CO 2 gas mixtures 900-1600˚C Fe-O-Si log 10(P CO2/P CO) in the<br />

range between –2 <strong>and</strong> 4<br />

[1950Hil] <strong>Phase</strong> equilibria in SiO2, MgO, Al2O3 crucibles in Ar atmosphere<br />

[1951Sch] Equilibration with CO/CO2 gas mixtures in<br />

Fe-crucibles, chemical analysis<br />

[1952Gok] Equilibration Fe-O-Si alloys in SiO2 crucibles with H2O/H2 gas mixture,<br />

quenching <strong>and</strong> chemical analysis<br />

1550, 1600, 1650˚C, Fe-Si alloys<br />

0.001-10 mass% Si<br />

1263, 1315, 1364, 1407, FeO-SiO 2 (up to<br />

50 mass% SiO2) in presence of Fe<br />

1545-1650˚C, up to 15 at.% Si, H 2O/H 2 in<br />

the range 0.002-0.326<br />

[1952Kin] HF solution calorimetry 25˚C, Fe2SiO4 (fayalite) enthalpy of<br />

formation<br />

[1952Mic] Equilibration with CO/CO2 gas mixtures,<br />

SiO2 crucibles<br />

1250, 1300, 1350˚C, FeO-Fe2O3-SiO2 [1953Orr] Drop-calorimetry 25-1451˚C, Fe2SiO4 (heat content,<br />

enthalpy of fusion)<br />

[1953Sch] Equilibration in Pt-crucibles in nitrogen<br />

atmosphere, quenching, optical<br />

microscopy<br />

1250-1450˚C, FeO-Fe2O3-SiO2 [1955All] Equilibration in Fe crucibles in CO/CO 2<br />

gas mixtures, quenching, XRD, optical<br />

microscopy<br />

[1955Mua] Equilibration with CO 2/H 2, quenching,<br />

XRD, optical microscopy<br />

[1955Sch] Thermodynamic calculations of isoactivity<br />

lines<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Si 20<br />

1150-1400˚C; FeO-Fe 2SiO 4 in presence of<br />

Fe<br />

1200-1473˚C, p(O 2) in the range<br />

10 –10.9 -1 atm, FeO-Fe 2O 3-SiO 2<br />

1350˚C, FeO-Fe 2O 3-SiO 2 (FeO from 40 to<br />

100 mass%, Fe 2O 3 from 0 to 60 mass%)<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


10 20<br />

Fe–O–Si<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1957Tur] Equilibration with CO/CO 2 gas mixtures,<br />

chemical analysis after quenching<br />

[1959Bod] Equilibration with H2O/H2 gas mixtures,<br />

chemical analysis after quenching<br />

[1960Sch] Heat treatment in H2O/H2 <strong>and</strong> CO/CO2 atmosphere<br />

[1962Tur] Calculations of activities of SiO 2, FeO,<br />

Fe 2O 3 from phase equilibrium data<br />

[1964Lin] Piston-cylinder high-pressure apparatus,<br />

XRD<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

1550˚C, FeO-Fe 2O 3-SiO 2<br />

1265, 1305, 1365˚C, FeO-SiO 2 in presence<br />

of Fe<br />

820-1056˚C, Fe-Si alloys 0.24-1.6 mass% Si<br />

1550˚C, FeO-Fe 2O 3-SiO 2<br />

1150˚C, 1.8 GPa; 1400˚C, 4.5 GPa;<br />

Fe 2SiO 4+SiO 2<br />

[1964Tay] EMF 750-1200˚C, Fe2SiO4, Gibbs energy of<br />

formation<br />

[1965Aki] Tetahedral-anvil high-pressure apparatus,<br />

XRD<br />

700-1200˚C, 4-7 GPa; Fe2SiO4 [1966Sch2] Equilibration with CO/CO2 gas mixtures,<br />

XRD, optical microscopy<br />

[1967Aki] Tetahedral-anvil high-pressure apparatus,<br />

XRD<br />

[1967Buz] <strong>Phase</strong> equilibria in SiO2 crucibles in Ar<br />

atmosphere, XRD<br />

1000-1200˚C, solid phase oxygen buffers<br />

in Fe-O, Fe-SiO 2-Fe 2SiO 4,Fe 2SiO 4-Fe 3O 4-<br />

SiO 2 systems<br />

800-1700˚C, 2-7.6 GPa; Fe2SiO4 (α = γ<br />

transition, melting)<br />

1600˚C, Fe-Si alloys 0.01-15.5 mass% Si<br />

[1967Eib] XRD, Mössbauer spectroscopy –193-727˚C, Fe 2SiO 4<br />

[1967Sch] EMF 1600˚C, Fe-Si alloys equilibrated with SiO2 1.39-3.13 mass% Si<br />

[1969Kul] Thermodynamic calculations of partial<br />

pressures of species in gas phase<br />

1600˚C, FexO-SiO2 [1969Nov] <strong>Phase</strong> equilibria in SiO 2 crucibles,<br />

chemical analysis<br />

[1970Nis] Equilibrium in Ar atmosphere, chemical<br />

analysis<br />

[1971Dis] Equilibration of levitated Fe beads with<br />

molten FeO-SiO 2 slag<br />

[1971Log] Heat treatment with CO/CO 2 mixture,<br />

optical, electron microscopy, microprobe,<br />

metallography, chemical analysis<br />

1600˚C, Fe-Si alloys 0.008-50 mass% Si<br />

1550˚C, up to 0.07 at.% Si<br />

1785-1960˚C, FeO-SiO 2 (in equilibrium<br />

with Fe) activity of FeO<br />

1000˚C, Fe-Si alloy, 1.5 mass% Si<br />

[1972Sig] Polarography 1550˚C, Fe-Si (0.48 <strong>and</strong> 1.17 mass% Si)<br />

[1973Iye] Calculations based on phase equilibria 1200-1730˚C, Fe-Si-O<br />

[1973Vla] EMF 1550-1650˚C, Fe-Si-O melt Si<br />

0.01-2 mass%<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1974Ark] Equilibration in Ar atmosphere, chemical<br />

analysis<br />

[1976Mor] Heat treatment in gas mixture H 2O/H 2,<br />

Chemical analysis, IR-spectroscopy<br />

[1977Aki] Cubic-anvil high pressure apparatus,<br />

in-situ XRD<br />

[1977She] Equilibration in Ar atmosphere, chemical<br />

analysis<br />

[1978Hew] Hydrothermal system using hydrogen<br />

diffusion membrane<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

1600˚C, Fe-Si alloys 0.008-100 mass% Si<br />

850˚C, Fe-3 mass% Si<br />

600-1100˚C, p(GPa) = 3.64+0.0025T(˚C)<br />

Fe 2SiO 4 (α = γ transformation)<br />

1600, 1650˚C, Fe-Si alloys 0.01-40 mass%<br />

Si<br />

650-850˚C, 0.1 GPa, Fe2SiO4+Fe3O4+SiO2<br />

(QFM) buffer<br />

[1979Kau] Calphad 25-2127˚C, Fe2O3-SiO2,Fe3O4-SiO2, FeO-SiO2<br />

[1979Nav] Solution calorimetry (2PbO·B2O3 melt), 713˚C, αFe2SiO4, γFe2SiO4, FeSiO3 high pressure synthesis, XRD, microprobe,<br />

microscopy, calculations<br />

Enthalpy of transformation <strong>and</strong> reactions<br />

[1979Oht] Multianvil high pressure apparatus, XRD,<br />

optical microscopy<br />

[1980Ban] Equilibration with H2O/H2 gas mixture in<br />

iron crucibles<br />

[1980Boh] Piston-cylinder high pressure apparatus,<br />

XRD, electron microprobe<br />

[1980Goe] Thermodynamic calculations based on<br />

associate model for liquid<br />

[1981Ave] Equilibrium in H 2O-H 2-Ar mixture in SiO 2<br />

crucibles<br />

1000-2700˚C, 5-20 GPa, αFe 2SiO 4,<br />

γFe 2SiO 4 melting<br />

1400˚C, FexO-SiO2, activity of FexO<br />

700-1050˚C, 1-1.6 GPa, FeSiO 3<br />

1100-1400˚C, Fe-FeO-Fe 2O 3-SiO 2<br />

1600, 1650, 1700˚C, Fe-Si alloys with<br />

0.005-2.32 mass% Si<br />

[1981Fuj] Zone melting technique 1530-1535˚C, δFe-Si alloy up to 0.1 mass<br />

%Si<br />

[1981Lev] EMF 1100-1300˚C, Gibbs energy of formation<br />

of Fe2SiO4 [1982Ban] High-temperature isoperibolic<br />

calorimetry<br />

Fe–O–Si 20<br />

1420˚C, Fe xO-SiO 2 x(SiO 2) from 0 to<br />

20 mol%<br />

11<br />

[1982Ois] EMF 1200, 1300˚C, SiO2 saturated iron silicate<br />

slag in the range from Fe to Fe3O4 saturation<br />

[1982Rob] Adiabatic calorimetry –268-108˚C, Fe2SiO4 (fayalite)<br />

[1982Rol] XRD, optical <strong>and</strong> electron metallography 700-800˚C, pO2 = 2·10 3 -1.013·10 5 Pa, 16 N/<br />

mm 2 tensil stress, Fe-Si (1 <strong>and</strong> 4 mass% Si)<br />

[1982Wat] Differential scanning calorimetry 77-427˚C, α- <strong>and</strong> γFe2SiO4, FeSiO3 clinopyroxene (heat capacity)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


12 20<br />

Fe–O–Si<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1983Kuh] XRD, SEM, IR-spectroscopy, X-ray<br />

photoelectron spectroscopy<br />

[1983Mye] Thermogravimetric gas mixing furnace,<br />

CO 2/H 2 gas mixtures, oxygen partial<br />

pressure measurement with ZrO 2<br />

electrode, equilibrium control<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

850˚C, Fe-Si alloys 10-40 mass% Si<br />

800-1300˚C, solid phase oxygen buffers<br />

in Fe-O, Fe-SiO 2-Fe 2SiO 4,Fe 2SiO 4-Fe 3O 4-<br />

SiO 2 systems<br />

[1983Web] Piston-cylinder, XRD 1250˚C, 2 GPa, FeSiO3 triclinic structure<br />

[1984Kat] Multianvil high-pressure apparatus, XRD,<br />

electron microprobe<br />

1250-1550˚C, 5-9 GPa, Fe2SiO4-FeSiO3 [1984Ste] Drop calorimetry 712-1432˚C, Fe2SiO4 (fayalite)<br />

[1984Sue] High-temperature XRD, FeSiO3 hydrothermal synthesis at 800˚C <strong>and</strong><br />

2 GPa<br />

1050˚C, FeSiO3 [1984Tak] XRD, electron microprobe analysis 950-1050˚C, γ-Fe-Si alloys with 0.07-0.92<br />

mass% Si<br />

[1985Bjo] Calphad, associate model 1100-1900˚C, Fe-FeO-Fe2O3-SiO2 [1985Mod] XRD, electron microprobe analysis 900˚C, Fe 7(Si 0.94Fe 0.06)O 10<br />

[1985Sas] Thermodynamic calculations, central<br />

atom model<br />

1315-1600˚C, FeO-SiO2<br />

[1986Tak] XRD, microprobe analysis 800-900˚C, Fe-Si alloys (0.07-0.4 mass%<br />

Si)<br />

[1986Wie1] Light microscopy, SEM, microprobe<br />

analysis<br />

1450˚C, Fe-Si alloys (up to 3 mass% Si)<br />

[1986Wie2] TGA, XRD, microprobe analysis, SEM, IR 850˚C, Fe-Si alloys (0.5-3 mass% Si)<br />

[1986Zin] EMF 1600-1670˚C, 0.043-0.391 mass% Si<br />

(activity Si <strong>and</strong> O in liquid Fe)<br />

[1987Lee] Surface spectroscopies: Auger Electron<br />

(AES), Electron Energy Loss (EELS), X-ray<br />

photoelectron (XPS)<br />

25˚C, Fe-8.75 at.% Si at initial stage of<br />

oxidation at very low P O2<br />

[1987One] EMF 627-1147˚C, Fe+Fe 2SiO 4+SiO 2<br />

627-1147˚C, Fe 3O 4+Fe 2SiO 4+SiO 2<br />

[1987Yag] Multianvil high-pressure apparatus, in situ<br />

XRD combined with synchrotron<br />

radiation<br />

800-1200˚C, 4-6 GPa, Fe 2SiO 4 α = γ<br />

transition<br />

[1989Aka] H-Tsolution calorimetry, XRD 702˚C, Fe2SiO4, enthalpy of α = γ<br />

transformation<br />

[1989Jac] EMF 623-1127˚C, Fe+Fe2SiO4+SiO2 807-1067˚C, Fe3O4+Fe2SiO4+SiO2 DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

[1990Din] XRD 900˚C, 7 GPa (synthesis) of Fe2SiO4 (γ-spinel), crystal structure<br />

[1992Bec] High-temperature Mössbauer<br />

spectroscopy<br />

500-1130˚C, pO2 = 5·10 –14 , αFe2SiO4 [1992Ros] Multi-anvil high pressure apparatus,<br />

microprobe, XRD<br />

1200˚C, 7 GPa, Fe 2SiO 4-Fe 3O 4<br />

[1993Tyu] Thermodynamic calculations 1300˚C, FeO-SiO2 (in presence of Fe), FeO<br />

activity<br />

[1994Hug] Single-crystal X-ray in diamond-anvil cell T = 800-1200˚C, p = 1-8 GPa, FeSiO3<br />

[1994Mat] Thermodynamic calculations 1250˚C, FeO-SiO 2 (in presence of Fe), O 2<br />

activity<br />

[1996Hug] Piston-cylinder high-pressure apparatus,<br />

single crystal XRD in diamond anvil cell,<br />

TEM<br />

Synthesis at 1100˚C, 3 GPa; FeSiO3, upto<br />

4.6 GPa<br />

[1997Fab] CALPHAD assessment, ionic liquid model pressure up to p = 20 GPa <strong>and</strong><br />

temperature up to 2000˚C, Fe-FeO-Fe 2O 3-<br />

SiO 2<br />

[1997Hug] Piston-cylinder high-pressure apparatus,<br />

multianvil high-pressure apparatus, XRD<br />

950˚C, 2 GPa, ortho FeSiO3, 1100˚C,<br />

9 GPa, clino FeSiO 3, 20-821˚C, unit-cell<br />

parameters<br />

[1997Li] EMF 1550˚C, Fe-2.5 mass% Si under CO2<br />

blowing (activity of O <strong>and</strong> Si)<br />

[1997Oht] Multi-anvil high pressure apparatus 1200˚C, 4-10 GPa, Fe2SiO4-Fe3O4 [1997Sel] CALPHAD assessment, ionic liquid model p =10 5 Pa, temperature up to 2000˚C,<br />

Fe-FeO-Fe 2O 3-SiO 2<br />

[1997Woo] Multi-anvil high pressure apparatus, XRD<br />

of quenched samples, TEM<br />

[1998Ang] Belt high-pressure apparatus, single<br />

crystal XRD, electron microprobe<br />

Fe–O–Si 20<br />

800-1300˚C, 5-8 GPa, ortho=high-clino<br />

FeSiO 3 transition<br />

13<br />

1200˚C, 4 GPa (synthesis) of Fe 2.57Si 0.43O 4,<br />

XRD spectra at 25˚C<br />

[1998Lee] Calculation with ionic liquid model 1600˚C, Fe-O-Si alloys with content of Si<br />

(up to 10 mass%) <strong>and</strong> O (up to 0.1 mass%)<br />

[1998Won] TEM, atomic force microscopy 900˚C, Fe contamination of Si-SiO2 interface<br />

[1998Woo] Piston-cylinder high-pressure apparatus,<br />

XRD<br />

1100˚C, 5.6 GPa, Fe2.45Si0.55O4 [1999Ma] Thermodynamic calculations 1600˚C, Fe-O-Si alloys with content of Si<br />

(up to 0.01 mass%) <strong>and</strong> O (up to 0.25<br />

mass%)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


14 20<br />

Fe–O–Si<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1999Rom] CALPHAD assessment, quasichemical<br />

model<br />

[1999Ros1] Synthesis in multianvil high-pressure<br />

apparatus, XRD, Raman spectra at high<br />

pressure (diamond anvil cell)<br />

[1999Ros2] Synthesis in multianvil high-pressure<br />

apparatus, XRD, Mössbauer spectra,<br />

electronic absorbtion spectra at high<br />

pressure (diamond anvil cell)<br />

[2000Haz] Multi-anvil high pressure apparatus,<br />

single crystal X-ray in diamond anvil cell<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

1000-1800˚C, FeO-SiO 2 in presence of Fe.<br />

1100˚C, 9 GPa (synthesis), 1.57-175 GPa:<br />

low-high clinoferrosilite (FeSiO 3)<br />

transition<br />

1200˚C, 8 GPa (synthesis) FeSiO 3, spectra<br />

measurements from 1 atm to 5 GPa<br />

Synthesis at 6 GPa, 1200˚C, crystal<br />

structure study up to 8.95 GPa, Fe 2SiO 4-<br />

Fe 3O 4<br />

[2000Woo] Multi-anvil high-pressure apparatus 900-1200˚C, 2-9 GPa, Fe 2SiO 4-Fe 3O 4<br />

[2001Fri] Compound energy formalism 1130˚C, Fe2SiO4 nonstoichiometry, mole<br />

fraction of Fe +3 <strong>and</strong> vacancies at pO2 in<br />

the range 10 –14 -10 –8 atm<br />

[2001Ott] Polymeric model of liquid 1600˚C, activity of FeO in FeO-SiO2 in<br />

presence of Fe<br />

[2001Zha] Thermodynamic calculation 1600˚C, activity of FeO in FeO-SiO2 in<br />

presence of Fe<br />

[2004Fre] Equilibration with gas mixtures,<br />

thermodynamic calculations<br />

1550-1600˚C, FeO-SiO2-O2 [2004Jun1] CALPHAD assessment, modified<br />

quasichemical model<br />

[2004Jun2] Assessment, modified Wagner’s<br />

formalism<br />

400-2000˚C, Fe-FeO-SiO 2-O 2<br />

1550-1650˚C, 10 –3 -100 mass% Si<br />

equilibrium between liquid Fe <strong>and</strong> solid<br />

SiO 2<br />

[2004Tyu] Thermodynamic calculation 25˚C, Fe-Si-O<br />

[2005Ake] TEM, energy dispersive X-ray<br />

microanalysis (EDX), electron energy loss<br />

spectroscopy (EELS)<br />

1200˚C, 6 GPa (synthesis), Fe7SiO10 [2005Mik] Numerical analysis on Si deoxidation of<br />

molten Fe using Darken formalism<br />

[2005Shi] Equilibrium study in inert atmosphere,<br />

chemical analysis, gravimetry<br />

1550-1650˚C, up to 2.1 mass% Si <strong>and</strong><br />

0.036 mass% O<br />

1600˚C, Fe-Si (0.1-70 mass% Si) in<br />

equilibrium with SiO 2<br />

[2006Ama] XRD, microprobe, SEM Fe-Si (0-3 mass% Si) after oxidation at<br />

800, 1000˚C<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

[2006Bas] TEM, Mössbauer spectroscopy 500-650˚C, 55Fe2O3-45SiO2 (mol%) glass<br />

after reduction <strong>and</strong> heat treatment to<br />

produce Fe-core Fe3O4 shell<br />

nanostructure<br />

[2006Kim] Chemical vapor condensation, XRD, TEM 700-1100˚C, Fe/SiO2 nanocomposite<br />

[2006Tak] Hot-compression test at 1000˚C, Raman<br />

spectroscopy, X-ray absorption analysis,<br />

in-situ XRD up to 900˚C<br />

[2007Jak] CALPHAD assessment, modified<br />

quasichemical model<br />

1100, 1200˚C, Fe-Si (up to 3 mass% Si) in<br />

gas 74%N 2-17%H 2O-8%CO 2-1%O 2<br />

1000-2000˚C, Fe-FeO-Fe 2O 3-O 2<br />

[2007Yon] Adiabatic calorimetry –268-30˚C, γFe 2SiO 4 (heat capacity,<br />

st<strong>and</strong>ard entropy)<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–O–Si 20<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

15<br />

(αδFe) cI2<br />

Im3m a = 293.15 pure Fe at 1390˚C [Mas2]<br />

(δFe) W<br />

1538 - 1394 a = 286.65 pure Fe at 25˚C [Mas2]<br />

(αFe)<br />

< 912<br />

dissolves 4.6 at.% Ni at 495˚C<br />

(γFe) cF4 a = 364.67 pure Fe at 915˚C [V-C2, Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc<br />

Mg<br />

c = 396.0<br />

(Si) cF8 a = 543.06 at 25˚C [Mas2]<br />

< 1414 Fd3m<br />

C (diamond)<br />

α1,Fe3Si cF16 ordered D03 modification of Fe with 11<br />

to 30 at.% Si [1982Kub, Mas2]<br />

≤ 1235 Fm3m<br />

BiF3 a = 565 [V-C2]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


16 20<br />

Fe–O–Si<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

α2, Fe-S cP2 ordered B2 modification of Fe with 10<br />

to 22 at.% Si [1982Kub, Mas2]<br />

≤ 1280 Pm3m<br />

CsCl a = 281 [V-C2]<br />

Fe2Si hP6 33.0 to 34.5 at.% Si [Mas2]<br />

1212 - 1040 P3m1 a = 405.2 ± 0.2 [V-C2]<br />

Fe2Si c = 508.55 ± 0.3<br />

Fe5Si3 hP16 37.5 at.% Si [1982Kub]<br />

1060 - 825 P63/mmc a = 675.9 ± 0.5 [V-C2]<br />

Mn5Si3 c = 472.0 ± 0.5<br />

FeSi cP8 49.6 to 50.8 at.% Si [1982Kub]<br />

≤ 1410 P213 FeSi<br />

a = 451.7 ± 0.5 [V-C2]<br />

FeSi2(h) tP3 69.5 to 73.0 at.% Si [Mas2]<br />

1220 - 937 P4/mmm a = 269.01 [V-C2]<br />

βFeSi2 c = 513.4<br />

FeSi2(r) oC48 66.7 at.% Si [1982Kub]<br />

≤ 982 Cmca a = 986.3 ± 0.7 [V-C2]<br />

αFeSi2 b = 779.1 ± 0.6<br />

c = 783.3 ± 0.6<br />

Fe2O3 hR30 ~60 at.% O<br />

< 1457 R3c a = 503.42 ± 0.03 [V-C2]<br />

Al2O3 c = 1374.83 ± 0.04<br />

FexO cF8 wustite, 0.845 ≤ x ≤ 0.961<br />

1424 - 570 Fm3m<br />

NaCl<br />

a = 435.35 at 1000˚C [V-C2]<br />

Fe3O4+y Fe3O4 < 1596<br />

cF56<br />

Fd3m a = 841.1 magnetite, 57.1 to 58.0 at.% O<br />

MgAl2O4 at 200˚C [V-C2]<br />

αQ, SiO2 hP9 α-Quartz<br />

< 573 P3221 a = 491.38 ± 2 at 25˚C [V-C2]<br />

SiO2 (low<br />

quartz)<br />

c = 540.52 ± 2 [L-B]<br />

βQ, SiO2 hP9 β-Quartz<br />

867-573 P6222 a = 502.0 at 600˚C [V-C2]<br />

SiO2 (high<br />

quartz)<br />

c = 552.3<br />

a = 503.8<br />

c = 546<br />

[L-B]<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

SiO2 Low-Tridymite mC144 a = 1854 at 25˚C [L-B]<br />

(monoclinic) Cc b = 501 metastable<br />

< 60 SiO2 (monoclinic<br />

tridymite)<br />

c = 2579<br />

β = 117˚40´<br />

SiO2 Low-Tridymite oC24 a = 874 at 220˚C [L-B]<br />

(orthorhombic) C2221 b = 505 metastable<br />

350 - 160 SiO2 (orthorhomb.<br />

tridymite)<br />

c = 824<br />

Fe–O–Si 20<br />

17<br />

Tr, SiO2 hP12 High-Tridymite<br />

1470 - 350 P63/mmc a = 505.2 ± 0.9 at 550˚C [V-C2]<br />

SiO2 (high<br />

tridymite)<br />

b = 827 ± 2<br />

a = 503<br />

b = 822 [L-B]<br />

SiO2 tP12 Low-Cristobalite<br />

< 250 P41212 a = 497.8 25˚C [V-C2]<br />

SiO2 (low<br />

cristobalite)<br />

c = 694.8<br />

a = 497 ± 3<br />

c = 691 ± 3<br />

[L-B]<br />

Cr, SiO2 cF104 High-Cristobalite<br />

1723 - 250 Fd3m a = 716.6 220˚C [V-C2]<br />

SiO2 (high<br />

cristobalite)<br />

a = 712.97 ± 0.08 300˚C [L-B]<br />

Coes, SiO2 mC48 Coesite, stable between 3-9.5 GPa<br />

C2/c a = 709.8 ± 0.2 [V-C2]<br />

SiO2 (coesite) b = 1233.4 ± 0.3<br />

c = 714.8 ± 0.2<br />

γ = 120.10˚<br />

St, SiO2 tP6 Stishovite, stable above 9.5GPa<br />

P42/mnm a = 417.97 ± 0.02 at 25˚C [V-C2]<br />

TiO2 c = 266.69 ± 0.01<br />

αFe2SiO4 oP28 a = 1045.97 Mineral fayalite, end-member of olivine<br />

solid solution [2002Lot]<br />

Pnma b = 608.18<br />

Mg2SiO4 c = 481.50<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


18 20<br />

Fe–O–Si<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

γFe2SiO4 cF56<br />

Fd3m<br />

MgAl2O4 at p > 9 GPa γ-spinel forms continuous<br />

solid solution Fe3–xSixO4 with 0 < x


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

Fe3–xSixO4 oI56 structure wadsleite, β-spinel [2000Woo]<br />

Imma a = 586.64 Spd V, x = 0.45<br />

Mn2GeO4 b = 891.32<br />

c = 836.4<br />

a = 585.7<br />

b = 889.1<br />

c = 835.4<br />

Spd V, x = 0.54 [1997Oht]<br />

a = 585.61<br />

b = 1189.29<br />

c = 836.83<br />

Spd III, x = 0.548 [2000Woo]<br />

a = 584.9<br />

b = 1185.57<br />

c = 837.72<br />

Spd III, x = 0.67 [2000Haz]<br />

a = 585.93<br />

b = 1798.0<br />

c = 838.4<br />

Spd II, x = 0.43 [1998Ang], x = 0.4346<br />

[2000Woo]<br />

Fe7SiO10 mP36 a = 2133.6 stable at 5-6 GPa [2000Woo], mineral<br />

iscorite [1985Mod]<br />

P21/m or P2/m b = 306.79<br />

β = 98.06<br />

or<br />

I12/m1<br />

[2005Ake]<br />

. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe–O–Si 20<br />

Fe<br />

Composition (at.%)<br />

Si O<br />

19<br />

L1 +LFe Ð L + SiO2(Cr) 1664 U1 L 17.19 21.85 60.96<br />

L1 1.00 32.67 66.34<br />

L Ð Fe2O3+Fe3O4+SiO2(Tr) 1443 E1 L 31.02 8.53 60.45<br />

L+(γFe) Ð FexO+αFe2SiO4 1180 U5 L 33.00 11.10 55.90<br />

L+(γFe) Ð αFe2SiO4 + SiO2 1178 U6 L 23.93 17.34 58.73<br />

L+FexOÐ Fe3O4 + αFe2SiO4 1160 U9 L 30.78 12.10 57.12<br />

L Ð Fe3O4+ αFe2SiO4 +(γFe) 1137 E5 L 25.96 15.46 58.58<br />

FexO Ð Fe3O4+(αFe)+αFe2SiO4 559 E6 - - - -<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


20 20<br />

Fe–O–Si<br />

. Table 4<br />

Thermodynamic Data of Reaction or Transformation<br />

Reaction or Transformation T [˚C]<br />

Quantity, per mol of atoms<br />

[kJ, mol, K] Comments<br />

1/7 {Fe(α) + Si+2O2=αFe2SiO4} 25 H = –211.05 [2004Fab]<br />

1/7 {2Fe(α) + Si+2O2=γFe2SiO4} 25 H = –209.296 [2004Fab]<br />

1/5{Fe(α) + Si+1.5O2=αFeSiO3} 25 H = –238.529 [2004Fab]<br />

. Table 5<br />

Thermodynamic Properties of Single <strong>Phase</strong>s<br />

<strong>Phase</strong><br />

Temperature<br />

Range [˚C] Property, per mole of atoms [J, mol, K] Comments<br />

αFe 2SiO 4 2525 - 1177 S = 21.57·C p = 25.146 – 0.001258·T + 3.53·10 –6 ·T 2 –<br />

555571·T –2<br />

γFe 2SiO 4 2525 - 1527 S = 20.975·C p= 23.9371 + 0.004018·T –<br />

8.07814·10 5 ·T –2 + 1.11769·10 8 ·T –3 – 509.2·T –1<br />

FeSiO 3(ortho) 2525 - 1527 S = 19.32·C p = 22.0296 + 0.003044·T – 1.66832·10 6 ·T –2<br />

+ 1.83445·10 8 ·T –3 + 1878·T –1<br />

. Table 6<br />

Investigations of the Fe-O-Si Materials Properties<br />

Reference<br />

Method / Experimental<br />

Technique Type of Property<br />

[2004Fab]<br />

[2004Fab]<br />

[2004Fab]<br />

[1985Mod] Magnetic susceptibility Magnetic properties of Fe7SiO10 (iscorite)<br />

[1986Reg] Susceptibility <strong>and</strong> magnetization,<br />

Mössbauer spectroscopy<br />

Magnetic properties of ortho FeSiO3 [1987Yag] In-situ XRD 25-1000˚C, 5.3 GPa Thermal expansion of αFe 2SiO 4 <strong>and</strong> γFe 2SiO 4<br />

[2000Haz] Single crystal X-ray in diamond<br />

anvil cell<br />

Isothermal bulk modulus <strong>and</strong> it’s pressure<br />

derivative for modified spinel in the Fe 3O 4-<br />

Fe 2SiO 4 join<br />

[2001Yam1] Magnetization Curie <strong>and</strong> Neel temperature, magnetic<br />

properties for spinel structures in the Fe3O4- Fe2SiO4 join<br />

[2001Yam2] Resistivity at –265-27˚C Electric conductivity<br />

[2002Lot] Mössbauer spectroscopy Electric field gradient in fayalite Fe2SiO4 [2003Kap] X-ray sessile method at<br />

1550-1560˚C<br />

Contact angle between liquid Fe <strong>and</strong> SiO 2<br />

substrate<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 6 (continued)<br />

Reference<br />

Method / Experimental<br />

Technique Type of Property<br />

[2004Kon] Susceptibility at –192-700˚C Curie temperature, magnetic properties for<br />

spinel <strong>and</strong> spinelloid structures in the Fe 3O 4-<br />

Fe 2SiO 4 join<br />

[2006Ama] Vickers mictro-hardness<br />

measurement at room<br />

temperature <strong>and</strong> 1000˚C<br />

[2006Bas] Impedance measurements over<br />

100 Hz - 6 MHz at –153-167˚C<br />

[2006Kim] Vibration sample magnetometer at<br />

25˚C <strong>and</strong> 20 kOe<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Si 20<br />

Hardness of oxide scales Fe (0-3)Si after<br />

oxidation at 800 <strong>and</strong> 1000˚C<br />

Electric conductivity 55Fe 2O 3-45SiO 2 glass after<br />

reduction <strong>and</strong> heat treatment<br />

Magnetization of Fe/SiO 2 nanocomposite<br />

21<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


22 20<br />

Fe–O–Si<br />

. Fig. 1<br />

Fe-O-Si. p-T phase diagram of FeSiO 3<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-O-Si. p-T phase diagram for the SiO 2 system at high pressures<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Si 20<br />

23<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


24 20<br />

Fe–O–Si<br />

. Fig. 3<br />

Fe-O-Si. p-T phase diagram for the FeO-SiO 2 system at high pressures up to 20 GPa from<br />

[2004Fab]. The melting curve from the experimental study of [1979Oht] is shown by a dashed<br />

line<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-O-Si. p-x phase diagram of the Fe 3O 4-Fe 2SiO 4 system at 1100˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Si 20<br />

25<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


26 20<br />

Fe–O–Si<br />

. Fig. 5<br />

Fe-O-Si. <strong>Phase</strong> diagram of the FeO-Fe 2O 3-SiO 2 at O 2 partial pressure of air<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

. Fig. 6<br />

Fe-O-Si. <strong>Phase</strong> diagram of the Fe 2O 3-SiO 2 quasibinary system (p O2 = 1 bar)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

27<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


28 20<br />

Fe–O–Si<br />

. Fig. 7a<br />

Fe-O-Si. <strong>Phase</strong> diagram of the FeO-SiO 2 system in presence of metallic Fe<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 7b<br />

Fe-O-Si. Content of Fe 2O 3 in liquid vs SiO 2 content<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Si 20<br />

29<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


30 20<br />

Fe–O–Si<br />

. Fig. 8a<br />

Fe-O-Si. <strong>Phase</strong> diagram of the Fe 2SiO 4-FeSiO 3 system at high pressure, p = 6 GPa<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

. Fig. 8b<br />

Fe-O-Si. <strong>Phase</strong> diagram of the Fe 2SiO 4-FeSiO 3 system at high pressure, p = 9 GPa<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

31<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


32 20<br />

. Fig. 9a<br />

Fe-O-Si. Reaction scheme, part 1<br />

Fe–O–Si<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 9b<br />

Fe-O-Si. Reaction scheme, part 2<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Si 20<br />

33<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


34 20<br />

. Fig. 9c<br />

Fe-O-Si. Reaction scheme, part 3<br />

Fe–O–Si<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

. Fig. 10<br />

Fe-O-Si. Calculated liquidus surface projection of the FeO-Fe 2O 3-SiO 2 system<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

35<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


36 20<br />

Fe–O–Si<br />

. Fig. 11<br />

Fe-O-Si. Schematic liquidus surface projection<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

. Fig. 12<br />

Fe-O-Si. Schematic liquidus relations of the FeO-SiO 2 system at high pressures<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

37<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


38 20<br />

Fe–O–Si<br />

. Fig. 13<br />

Fe-O-Si. p-T phase diagram of the composition Fe 2SiO 4<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

. Fig. 14a<br />

Fe-O-Si. Isothermal sections of the FeO-Fe 2O 3-SiO 2 system calculated at 1300˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

39<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


40 20<br />

Fe–O–Si<br />

. Fig. 14b<br />

Fe-O-Si. Isothermal section of the FeO-Fe 2O 3-SiO 2 system calculated at 1450˚C<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 15<br />

Fe-O-Si. Partial isothermal section at 1600˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Si 20<br />

41<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


42 20<br />

Fe–O–Si<br />

. Fig. 16<br />

Fe-O-Si. Potential diagram log 10 (p CO/p CO2) vs temperature. The relation between CO 2/CO ratio<br />

<strong>and</strong> oxygen partial pressure is based on the SGTE thermodynamic database: log 10 (p CO2/p CO) =<br />

(7312/T–2.215)log 10 (p O2)<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

43<br />

. Fig. 17<br />

Fe-O-Si. Liquid in equilibrium with solid SiO 2 at 1250-1350˚C vs oxygen partial pressure. The lines<br />

go from iron to magnetite saturation<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


44 20<br />

Fe–O–Si<br />

. Fig. 18<br />

Fe-O-Si. Calculated solubility of silica in liquid iron at 1545, 1600 <strong>and</strong> 1650˚C<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

. Fig. 19a<br />

Fe-O-Si. Calculated activity of FeO in liquid FeO-SiO 2 in equilibrium with metallic Fe at 1263,<br />

1315, 1364 <strong>and</strong> 1407˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

45<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


46 20<br />

Fe–O–Si<br />

. Fig. 19b<br />

Fe-O-Si. Calculated activity of FeO in liquid FeO-SiO 2 in equilibrium with metallic Fe at 1785,<br />

1880 <strong>and</strong> 1960˚C<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

. Fig. 20<br />

Fe-O-Si. Enthalpy of mixing of the FeO-SiO 2 liquid in equilibrium with metallic Fe<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

47<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


48 20<br />

Fe–O–Si<br />

References<br />

[1927Gre1] Greig, J.W., “Immiscibility in Silicate Melts”, Amer. J. Sci., 13(15), 133–154 (1927) (Experimental, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, 11)<br />

[1927Gre2] Greig, J.W., “On Liquid Immiscibility in the System FeO-Fe2O3-Al2O3-SiO2”, Amer. J. Sci., 14(5Ser.),<br />

473–484 (1927) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 5)<br />

[1932Bow] Bowen, N.L., Schairer, J.F., “The FeO-SiO 2 System”, Amer. J. Sci., 24, 177–213 (1932) (Experimental,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 22)<br />

[1932Sch] Schenck, R., Franz, H., Laymann, A., “Investigation of Equilibria of Reduction <strong>and</strong> Oxidation of Iron”,<br />

Z. Anorg. Allg. Chem. 206, 129–151 (1932) (Experimental, <strong>Phase</strong> Relations, 3)<br />

[1937Wen] Wentrup, H., “The <strong>Phase</strong> Diagram of Sulphide Inclusions in Steel” (in German), Techn. Mitt. Krupp, 5,<br />

131–152 (1937) (Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 27)<br />

[1939Cro] Crook, W.J., “The Series Iron Oxides-Silica”, J. Am. Ceram. Soc., 22, 322–334 (1939) (Experimental,<br />

Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 15)<br />

[1943Whi] White, J., “The Physical Chemistry of Open-Hearth Slags”, J. Iron Steel Inst., London, 148, 579–694<br />

(1943) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 195)<br />

[1946Cir] Cirilli, V., “Study of Balance Reduction with Carbon Oxide of the Iron Oxides in Presence of Silica”,<br />

Gazz. Chim. Ital., 76, 331–338 (1946) as quoted in [1997Fab]<br />

[1948Dar] Darken, L.S., “Melting Points of Iron Oxides on Silica; <strong>Phase</strong> Equilibria in the System Fe-O-Si as a<br />

Function of Gas Composition <strong>and</strong> Temperature”, J. Am. Chem. Soc., 70, 2046–2053 (1948) (Experimental,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Theory, 12)<br />

[1950Hil] Hilty, D.C., Crafts, W., “Solubility of Oxygen in Liquid Iron Containing Silicon <strong>and</strong> Manganese”,<br />

Trans. Am. Inst. Min. Metall. Eng., 188, 425–436 (1950) (Experimental, <strong>Phase</strong> Relations, 18)<br />

[1951Sch] Schumann, Jr.R., Ensio, P.J., “Thermodynamics of Iron Silicate Slag: Slag Saturated with γ Iron”, Trans.<br />

AIME, 191, 401–411 (1951) (Experimental, <strong>Phase</strong> Relations, Thermodyn., <strong>Phase</strong> Diagram, 15)<br />

[1952Gok] Gokcen, N.A., Chipman, J.C., “Silicon-Oxygen Equilibrium in Liquid Iron”, Trans. Amer. Inst. Min.<br />

Met Eng., 194, 171–181 (1952) (Calculation, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn.,<br />

21)<br />

[1952Kin] King, E.F., “Heat of Formation of Manganous Metasilicate (Rhodonite) <strong>and</strong> Ferrous Orthosilicate<br />

(Fayalite)”, J. Am. Chem. Soc., 74, 4446–4448 (1952) (Experimental, Thermodyn., 3)<br />

[1952Mic] Michal, E.J., Schuhmann, Jr.R., “Thermodynamics of Iron-Silicate Slags: Slags Saturated with Solid<br />

Silica”, Trans. AIME, 194, 723–728 (1952) (Calculation, Experimental, Thermodyn., 6)<br />

[1953Chi] Chipman, J., Gokcen, A., “Silicon-Oxygen Equilibrium in Liquid Iron - A Revision”, Trans. Am. Inst.<br />

Min. Metall. Eng., 197(8), 1017–1018 (1953) (Calculation, <strong>Phase</strong> Relations, Thermodyn., 10)<br />

[1953Sch] Schumann, R.Jr., Powell, R.G., Michal, E.J., “Constitution of the FeO-Fe 2O 3-SiO 2 System at Slagmaking<br />

Temperatures”, Trans. Amer. Inst. Min. Met. Eng.,, 197, 1097–1104 (1953) (Experimental, Morphology,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 7)<br />

[1953Orr] Orr, R.I., “High Temperature Heat Contents of Magnesium Orthosilicate <strong>and</strong> Ferrous Orthosilicate”, J.<br />

Am. Chem. Soc., 75, 528–529 (1953) (Experimental, Thermodyn., 9)<br />

[1955All] Allen, W.C., Snow, R.B., “The Orthosilicate-Iron Oxide Portion of the System CaO-FeO-SiO 2”, J. Am.<br />

Ceram. Soc., 38(8), 264–280 (1955) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 12)<br />

[1955Mua] Muan, A., “<strong>Phase</strong> Equilibria in the System FeO-Fe2O3-SiO2”, Trans. Amer. Inst. Min. Met. Eng., 203,<br />

965–976 (1955) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 16)<br />

[1955Sch] Schuhmann, R., “Application of Gibbs-Duhem Equations to <strong>Ternary</strong> <strong>Systems</strong>”, Acta Metall., 3, 219–226<br />

(1955) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Theory, Thermodyn., Calculation, 15)<br />

[1957Fit] Fitterer, G.R., “The Physical Chemistry of Steelmaking - A Tribute to Dr. C. H. Herty, Jr.”, Proc. 40th<br />

Nat. Open Hearth Steel Comm. Iron Steel Division, AIME, Pittsburgh, Pennsylvania, 8-10 April<br />

(1957), Mathews, D.R., Kennedy, E.J., Shearman, R.W., Lovell, K.S., (Eds.), Metall. Soc. Amer. Inst. Min.<br />

Metall. Petrol. Eng., 40, 281–303 (1957) (Assessment, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Phys. Prop., 40)<br />

[1957Tur] Turkdogan, E.T., Bills, P.M., “A Thermodynamic Study of FeO-Fe 2O 3-SiO 2, FeO-Fe 2O 3-P 2O 5 <strong>and</strong> FeO-<br />

Fe 2O 3-SiO 2-P 2O 5 Molten <strong>Systems</strong>”, J. Iron Steel Inst., London, 186, 329–339 (1957) (Experimental,<br />

Thermodyn., 22)<br />

[1959Bod] Bodsworth, C., “The Activity of Ferrous Oxide in Silicate Melts”, J. Iron Steel Inst., London, 193, 13–24<br />

(1959) (Experimental, Kinetics, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 25)<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

49<br />

[1959Phi] Phillips, B., Muan, A., “<strong>Phase</strong> Equilibria in the System CaO-Iron Oxide-SiO 2 in Air”, J. Am. Ceram.<br />

Soc., 42, 413–423 (1959) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 18)<br />

[1960Sch] Schenck, H., Schmidtmann, E., Mueller, H., “Influence of the Thermal Treatment <strong>and</strong> <strong>Alloy</strong><br />

Composition on the Internal Oxidation of Iron <strong>Alloy</strong>s” (in German), Arch. Eisenhuettenwes., 31, 121<br />

(1960) (Experimental, Morphology, Thermodyn., 43)<br />

[1961Hsi] Hsi, C.-C., Polyakov, A.Ya., Samarin, A.M., “Oxygen Solubility in Liquid Fe-Si <strong>Alloy</strong>s at Atmospheric<br />

Pressure <strong>and</strong> under Vacuum” (in Russian), Izv. Akad. Nauk SSSR, (Tekhn.), (2), 115–118 (1961)<br />

(Experimental, <strong>Phase</strong> Relations, 3)<br />

[1962Tur] Turkdogan, E.T., “Activities of Oxides in SiO 2-FeO-Fe 2O 3 Melts”, Trans. Metall. Soc. AIME, 224,<br />

294–299 (1962) (Assessment, Calculation, <strong>Phase</strong> Relations, Thermodyn., 17)<br />

[1964Lin] Lindsley, D.H., MacGregor, I.D., Davis, B.T.C., “Ferrosilite (FeSiO3) Synthesis at High Pressures <strong>and</strong><br />

Temperatures”, Science, 144, 73–74 (1964) (Experimental, <strong>Phase</strong> Relations, 6)<br />

[1964Tay] Taylor, R.W., Schmalzried, H., “The Free Energy of Formation of Some Titanates, Silicates, <strong>and</strong><br />

Magnesium Aluminate from Measurements Made With Galvanic Cells”, J. Phys. Chem., 68(9),<br />

2444–2449 (1964) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 24)<br />

[1965Aki] Akimoto, S., Fujisawa, I., Katsura, T., “The Olivine-Spinel Transition in Fe 2SiO 4 <strong>and</strong> Ni 2SiO 4”,<br />

J. Geophys. Res., 70(8), 1969–1977 (1965) (Experimental, <strong>Phase</strong> Relations, 23)<br />

[1965Mua] Muan, A., Osborn, E.F., “Fe-Si-O” in “<strong>Phase</strong> Equilibria Among Oxides in Steelmaking”, Addison-Wesley<br />

Publ. Comp., 53–69 (1965) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 6)<br />

[1965Val] Vallet, P., Raccah, P, “Thermodynamic Properties of Solid Iron (II) Oxide”, Mem. Sci. Rev. Met., 62,<br />

1–29 (1965) as quoted in [1997Fab]<br />

[1966Sch1] Schenck, H., Steinmetz, E., “Activity, St<strong>and</strong>ard Condition <strong>and</strong> Coefficient of Activity” (in German),<br />

Stahleisen-Sonderberichte, Düsseldorf: Verlag Stahleisen, (7), 1–36 (1966) (Review, 161)<br />

[1966Sch2] Schwerdtfeger, K., Muan, A., Darken, L.S., “Activities in Olivine <strong>and</strong> Pyroxenoid Solid Solutions of the<br />

System Fe-Mn-Si-O at 1150˚C”, Trans. Metall. Soc. AIME, 236, 201–211 (1966) (Experimental, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Thermodyn., 27)<br />

[1967Aki] Akimoto, S.-I., Komada, E., Kushiro, I., “Effect of Pressure on the Melting of Olivine <strong>and</strong> Spinel<br />

Polymorph of Fe 2SiO 4”, J. Geophys. Res., 72(2), 679–686 (1967) (Experimental, <strong>Phase</strong> Relations,<br />

Thermodyn., 8)<br />

[1967Buz] Buzek, Z., Schindlerova, V., Macoszek, M., “The Influence of Cr, Mn, V, Si, Ti, Al, Zr, Ce <strong>and</strong> Ca on the<br />

Activity <strong>and</strong> Solubility of Oxygen in Liquid Iron”, Sb. Ved. Pr. Vys. Sk. Banske Ostrave, Rada Hutn.,<br />

13(2-3), 175–193 (1967) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 26)<br />

[1967Eib] Eibschuetz, M., Ganiel, U., “Mössbauer Studies of Fe 3+ in Paramagnetic Fayalite (Fe 2SiO 4)”, Sol. State<br />

Comm., 5(4), 267–270 (1967) (Experimental, Crys. Structure, 12)<br />

[1967Lin] Lindsley, D.H., “Pressure-Temperature Relations in the System FeO-SiO 2”, Year Book-Carnegie Inst.<br />

(Washington), 65, 226–230 (1967) (Experimental, Kinetics, <strong>Phase</strong> Relations, Thermodyn., 11)<br />

[1967Sch] Schwerdtfeger, K., “Measurement of Oxygen Activity in Iron, Iron-Silicon, Manganese, <strong>and</strong> Iron-<br />

Manganese Melts Using Solid Electrolyte Galvanic Cells”, Trans. Nat. Res. Inst. Met. (Jpn.), 239,<br />

1267–1281 (1967) (Electrochemistry, Experimental, Thermodyn., 30)<br />

[1969Kul] Kulikov, I.S., “Thermal Dissociation of Compounds” (in Russian), Metallurgia, Moscow, 533–562 (1969)<br />

(Calculation, Phys. Prop., Thermodyn., 136)<br />

[1969Nov] Novokhatsky, I.A., Belov, B.F., “Concentration Dependence of the Solubility of Oxygen in <strong>Alloy</strong>s” (in<br />

Russian), Izv. Akad. Nauk SSSR, Met., (3), 15–26 (1969) (Experimental, <strong>Phase</strong> Relations, 29)<br />

[1970For] Forward, G., Elliott, J.F., Kuwabara, T., “Formation of Silica <strong>and</strong> Silicates During the Solidilication of<br />

Fe-O-Si <strong>Alloy</strong>s”, Metall. Trans., 1, 2889–2898 (1970) (Experimental, <strong>Phase</strong> Relations, 18)<br />

[1970Nis] Nishikawa, K., Kusano, A., Ito, K., Sano, K., “The Effect of <strong>Alloy</strong>ing Elements on the Solubility of<br />

Oxygen in Delta-Iron”, Trans. Iron Steel Inst. Jpn., 10, 83–88 (1970) (Experimental, Kinetics, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, 17)<br />

[1971Dis] Distin, P.A., Whiteway, S.G., Masson, C.R., “Solubility of Oxygen in Liquid Iron from 1785 to 1960˚C.<br />

A New Technique for Study of Slag-Metal Equilibria”, Can. Metall. Quat., 10, 73–78 (1971) (Experimental,<br />

Thermodyn., 8)<br />

[1971Log] Logani, R.C., Smeltzer, W.W., “Development of the Wustite-Fayalite Scale on an Iron-1.5 wt.% Silicon<br />

<strong>Alloy</strong> at 1000˚C”, Oxidation of Metals, 3(1), 15–32 (1971) (Experimental, <strong>Phase</strong> Relations, 28)<br />

[1972Sig] Sigworth, G.K., Elliott, J.F., “Conditions for Nucleation of Oxides in Fe-O-Si <strong>Alloy</strong>s”, Can. Metall.<br />

Quart., 11(2), 337–346 (1972) (Review, Thermodyn., 36)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


50 20<br />

Fe–O–Si<br />

[1973Vla] Vladimirov, L.P., Kopitsa, N.M., Sumenkova, V.V., “Activity of Oxygen <strong>and</strong> Silicon in Fe-O-Si <strong>Alloy</strong>s”,<br />

Russ. Metall., 5, 61–65 (1973) (Experimental, Thermodyn., 13)<br />

[1973Iye] Iyengar, R.K., Philbrook, W.O., “Application of Thermodynamics of Heterogeneous <strong>Phase</strong> Equilibria<br />

to the Construction of the Fe-O-Si <strong>Ternary</strong> <strong>Phase</strong> Diagram”, Metall. Trans., 4, 2181–2188 (1973)<br />

(Theory, <strong>Phase</strong> Relations, 13)<br />

[1974Ark] Arkahrov, V.I., Belov, B.F., Novokhatskii, I.A., “The Solubility of Oxygen in Metallic Melts” (in<br />

Russian), Ukr. Khim. Zh. (Russ. Ed.), 40(2), 129–134 (1974) (Experimental, <strong>Phase</strong> Relations, Thermodyn.,<br />

15)<br />

[1974Sig] Sigworth, G.K., Elliott, J.F., “The Thermodynamics of Liquid Dilute Iron <strong>Alloy</strong>s”, Met. Sci., 8, 298–310<br />

(1974) (Review, Thermodyn., 249)<br />

[1976Mor] Morito, N., Ichida, T., “Transaction from External to Internal Oxidation in Fe-Si <strong>Alloy</strong> as a Function of<br />

Oxygen Potential of the Ambient Atmosphere”, Scr. Metall., 10, 619–622 (1976) (Experimental, <strong>Phase</strong><br />

Relations, 10)<br />

[1977Aki] Akimoto, S., Yagi, T., Inoue, K., “High Temperature-Pressure <strong>Phase</strong> Boundaries in Silicate <strong>Systems</strong><br />

Using in Situ X-Ray Diffraction”, High-Pressure Research (Applicat. Geophys.), 15, 585–602 (1977)<br />

(Experimental, <strong>Phase</strong> Relations, 14)<br />

[1977She] Shevtsov, V.E., Brovkov, V.A., Lekhtmets, V.L., “Thermodynamics of Oxygen Solutions in Fe-Si Melts”<br />

(in Russian), Izv. VUZ Chern. Metall, (11), 42–45 (1977) (Experimental, Kinetics, 13)<br />

[1978Hew] Hewitt, D.A., “A Redetermination of the Fayalite-Magnetite-Quartz Equilibrium Between 650˚C <strong>and</strong><br />

850˚C”, Amer. J. Sci., 278, 715–724 (1978) (Experimental, Thermodyn., 20)<br />

[1979Kau] Kaufman, L., “Calculation of Quasibinary <strong>and</strong> Quasiternary Oxide <strong>Systems</strong> II”, Calphad, 3(1), 27–44<br />

(1979) (<strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, Thermodyn., Calculation, 5)<br />

[1979Nav] Navrotsky, A., Pintchovski, F.S., Akimoto, S., “Calorimetric Study of the Stability of High Pressure<br />

<strong>Phase</strong>s in the <strong>Systems</strong> CoO-SiO 2 <strong>and</strong> "FeO"-SiO 2, <strong>and</strong> Calculation of <strong>Phase</strong> <strong>Diagrams</strong> in MO-SiO 2<br />

<strong>Systems</strong>”, Phys. Earth Planet. Interiors, 19, 275–292 (1979) (Calculation, Experimental, <strong>Phase</strong> Relations,<br />

Thermodyn., 71)<br />

[1979Oht] Ohtani, E., “Melting Relation of Fe 2SiO 4 up to about 200 kbar”, J. Phys. Earth, 27, 189–208 (1979)<br />

(Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 34)<br />

[1980Ban] Ban-Ya, S., Chiba, A., Hikosaka, A., “Thermodynamics of Fe(t)O-M(x)O(y) (M(x)O(y) = CaO, SiO 2,<br />

TiO 2 <strong>and</strong> Al 2O 3) Binary Melts Saturated with Solid Iron” “Austral.-Jap. Extractive Metall. Symp.”,<br />

Sydney, Australia 16-18 July 1980, Australian Inst. Min. Metall., 23, 457–467 (1980) (Experimental,<br />

Thermodyn., 22)<br />

[1980Boh] Bohlen, S.R., Essene, E.J., Boettcher, A.L., “Reinvestigation <strong>and</strong> Application of Olivine-<br />

Quartz-Orthopyroxene Barometry”, Earth Planet. Sci. Letters, 47, 1–10 (1980) (Experimental, <strong>Phase</strong><br />

Relations, 51)<br />

[1980Goe] Goel, R.P., Kellogg, H.H., Larrain, J., “Mathematical Description of the Thermodynamic Properties of<br />

the System Fe-O <strong>and</strong> Fe-O-SiO 2”, Metall. Mater. Trans. B, 11B, 107–117 (1980) (<strong>Phase</strong> Diagram,<br />

Theory, 30)<br />

[1981Ave] Averbukh, S.M., Smirnov, L.A., Popel, S.I., “Equilibrium of Silicon with Oxygen in Molten Iron” (in<br />

Russian), Izv. VUZ Chern. Metall, (11), 5–11 (1981) (Experimental, Kinetics, Thermodyn., 14)<br />

[1981Fuj] Fujisawa, T., Nomura, M., Sakao, H., “Silicon-Oxygen Equilibrium in Delta Iron at the Solid-Liquid<br />

Equilibrium Temperature”, Trans. Iron Steel Inst. Jpn., 21(9), 624–631 (1981) (Experimental, Thermodyn.,<br />

29)<br />

[1981Jac] Jacobson, E., Rosen, E., “Thermodynamic Study of High Temperature Equilibria. 25. Solid State<br />

emf Studies of the <strong>Systems</strong> Fe-FeO, Ni-NiO <strong>and</strong> Co-CoO in the Temperature Range 1000-1600˚C”,<br />

Sc<strong>and</strong>. J. Metall., 10, 39–43 (1981) (Electrochemistry, Experimental, Thermodyn., <strong>Phase</strong> Relations, 9)<br />

[1981Lev] Levitskii, V.A., Popov, S.G., Gerasimov, Y.I., “Studies on the Thermodynamics of Complex Oxides of<br />

Iron Subgroup Metals” (in Russian), in “Fiz. Khim. Okislov Met.”, Balakirev (Ed.), Nauka, Moscow,<br />

88–96 (1981) (Experimental, Thermodyn., 35)<br />

[1981Sch] Schwab, R.G., Küstner, D., “ The Equilibrium Fugacities of Important Oxygen Buffers in Technology<br />

<strong>and</strong> Petrology”, Neues Jb. Mineral. Abh<strong>and</strong>lungen, 140, 111–141 (1981) as quoted in [1987One]<br />

[1982Ban] Ban-Ya, S., Iguchi, Y., Honda H., “Heat of Mixing of Liquid Fe tO-SiO 2 Slag” in “Proc. International<br />

Symposium on the Physical Chemistry of Iron <strong>and</strong> Steelmaking”, Toronto, III/39-III-44 (1982) (Experimental,<br />

Thermodyn., 19)<br />

[1982Kub] Kubaschewski, O., “Iron - Silicon” in “Iron Binary <strong>Phase</strong> <strong>Diagrams</strong>”, Springer Verlag, Berlin, 136–139<br />

(1982) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, #, 23)<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

51<br />

[1982Ois] Oishi, T., Goto, T., Kahayara, Y., Ono, K., Moriyama, J., “Oxygen Pressure Measurements of Silica<br />

Saturated Iron-Oxygen-Silicon Dioxide Melts by the EMF Method Using Zirconia Solid Electrolyte”,<br />

Metall. Mater. Trans. B, 13B, 423–427 (1982) (Experimental, Thermodyn., <strong>Phase</strong> Relations, 11)<br />

[1982Rob] Robie, R.A., Finch, C.B., Hemingway, B.S., “Heat Capacity <strong>and</strong> Entropy of Fayalite (Fe 2SiO 4) between<br />

5.1 <strong>and</strong> 383 K: Comparison of Calorimetric <strong>and</strong> Equilibrium Values for the QFM Buffer Reaction”, Am.<br />

Mineral., 67, 463–469 (1982) (Experimental, Thermodyn., 34)<br />

[1982Rol] Rolls, R., Shahhosseini, M.H., “Effect of Creep on the Oxidation Characteristics of Fe-Si <strong>Alloy</strong>s at<br />

973-1073 K”, Oxidation of Metals, 18(3/4), 115–126 (1982) (Experimental, Mechan. Prop., 24)<br />

[1982Wat] Watanabe, H., “Thermochemical Properties of Synthetic High-Pressure Compounds Relevant to the<br />

Earths Mantle”, High-Press. Research in Geophys., 441–464 (1982) (Experimental, Thermodyn., 78)<br />

[1983Kuh] Kuhn, A.T., Wakeman, D., El Roubi, E.Y., Collins, G.C.S., “Anodic Dissolution <strong>and</strong> Oxygen Evolution<br />

on Binary <strong>and</strong> <strong>Ternary</strong> Iron-Silicon <strong>Alloy</strong>s”, Electr. Acta, 28(4), 515–527 (1983) (Experimental, <strong>Phase</strong><br />

Relations, 25)<br />

[1983Mye] Myers, J., Eugster, H.P., “The System Fe-O-Si - Oxygen Buffer Calibrations to 1500 K”, Contribution to<br />

Mineralogy <strong>and</strong> Petrology, 82(1), 75–90 (1983) (Experimental, Thermodyn., 53)<br />

[1983Web] Weber, H.P., “Ferrosilite, the High Temperature Polymorph of FeSiO 3”, Acta Crystallogr., 39C(1), 1–3<br />

(1983) (Crys. Structure, Experimental, 11)<br />

[1984Kat] Kato, T., Ohtani, E., Kumazawa, M., “Effect of High Pressure on the Melting Relation of the Fe 2SiO 4-<br />

FeSiO 3 System”, J. Phys. Earth, 32, 97–111 (1984) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 23)<br />

[1984Ste] Stebbins, J.F., Carmichael, I.S.E., “The Heat of Fusion of Fayalite”, Am. Mineral., 69, 292–297 (1984)<br />

(Experimental, Thermodyn., 15)<br />

[1984Sue] Sueno, S., Kimata, M., Prewitt, C.T., “The Crystal Structure of High Clinoferrosilite”, Am. Mineral.,<br />

69(3-4), 264–269 (1984) (Experimental, Crys. Structure, 14)<br />

[1984Tak] Takada, J., Kashiwagi, K., Adachi, M., “Internal Oxidation of Fe-Si <strong>Alloy</strong>s in γ-<strong>Phase</strong> Region”, J. Mater.<br />

Sci., 19(10), 3451–3458 (1984) (Experimental, <strong>Phase</strong> Relations, 19)<br />

[1985Bjo] Bjoerkman, B., “An Assessment of the System Fe-O-Si Using a Structure Based Model for the Liquid<br />

Silicate”, Calphad, 9(3), 271–282 (1985) (Thermodyn., <strong>Phase</strong> Relations, Assessment, 37)<br />

[1985Jac] Jacobson, E., “Solid State EMF Studies of the <strong>Systems</strong> FeO-Fe 2O 3 <strong>and</strong> Fe 3O 4-Fe 2O 3 in the Temperature<br />

Range 1000-1600 K”, Sc<strong>and</strong>. J. Metall., 14, 252–256 (Experimental, Thermodyn., 21)<br />

[1985Mod] Modaressi, A., Malaman, B., Gleitzer, C., Tilley, R.J.D., “Preparation <strong>and</strong> Study of the Oxysilicate of the<br />

Mixed Valency Fe 7(SiO 4)O 6 (Iscorite)” (in French), J. Solid State Chem., 60, 107–114 (1985) (Crys.<br />

Structure, Experimental, 10)<br />

[1985Sas] Sastri, P., Lahiri, A.K., “Applicability of Central Atoms Models to Binary Silicate <strong>and</strong> Aluminate Melts”,<br />

Metall. Trans. B, 16, 325–331 (1985) (Calculation, Experimental, Theory, Thermodyn., 35)<br />

[1985Tay] Taylor, D., “Thermal Expansion Data. VI. Complex Oxides, AB 2O 4, the Spinels”, Br. Ceram. Trans. J.,<br />

84(4), 121–127 (1985) (Calculation, Crys. Structure, Review, 99)<br />

[1986Reg] Regnard, J.R., Guillen, R., Wiedenmann, A., Fillion, G., Hafner, S., Langer, K., “Mössbauer <strong>and</strong><br />

Magnetic Studies of Orthorhombic FeSiO 3”, Hyperfine Interact., 28, 589–592 (1986) (Crys. Structure,<br />

Mag. Prop., Experimental, 8)<br />

[1986Tak] Takada, J., Adachi, M., “Determination of Diffusion Coefficient of Oxygen in α-Iron from Internal<br />

Oxidation Measurements in Fe-Si <strong>Alloy</strong>s”, J. Mater. Sci., 21(6), 2133–2137 (1986) (Experimental, <strong>Phase</strong><br />

Relations, Kinetics, 12)<br />

[1986Wie1] Wiesner, U., “On the Internal <strong>and</strong> External Oxidation in Fe-Si- <strong>Alloy</strong>s” (in German), Neue Huette,<br />

31(9), 330–3331 (1986) (Experimental, <strong>Phase</strong> Relations, 12)<br />

[1986Wie2] Wiesner, U., Kunze, J., “On the Oxidation <strong>and</strong> Decarbonizing Behavior of Fe-Si <strong>Alloy</strong>s” (in German),<br />

Neue Huette, 31(7), 250–253 (1986) (Experimental, <strong>Phase</strong> Relations, 16)<br />

[1986Zin] Zinevich, T.N., Batalin, G.I., “Mutual Effect of Silicon <strong>and</strong> Oxygen on their Thermodynamic<br />

Activity in the Fe-O-Si Melts” (in Russian), Ukr. Khim. Zh., 52(3), 242–247 (1986) (Experimental,<br />

Thermodyn., 16)<br />

[1987Lee] Lee, Y.P., Bevolo, A. J., Lynch, D.W., “Studies of the Initial Oxidation of Fe-Si <strong>Alloy</strong>s by AES, XPS <strong>and</strong><br />

EELS”, Surface Sci., 188(1/2), 267–286 (1987) (Experimental, <strong>Phase</strong> Relations, 35)<br />

[1987One] O´Neill, H.St.C., “Quartz-Fayalite-Iron <strong>and</strong> Quartz-Fayalite-Magnetite Equilibria <strong>and</strong> the Free Energy<br />

of Formation of Fayalite (Fe 2SiO 4) <strong>and</strong> Magnetite (Fe 3O 4)”, Am. Mineral., 72, 67–75 (1987) (Experimental,<br />

Thermodyn., 34<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


52 20<br />

Fe–O–Si<br />

[1987Yag] Yagi, T., Akaogi, M., Shimomura, O., Suzuki, T., Akimoto, S.-i., “In Situ Observation of Olivine-Spinel<br />

<strong>Phase</strong> Transformation in Fe 2SiO 4 Using Synchrotron Radiation”, J. Geophys. Res., 92(B7), 6207–6213<br />

(1987) (Calculation, Experimental, <strong>Phase</strong> Relations, Thermodyn., 29)<br />

[1988One] O´Neill, H.St.C., “<strong>Systems</strong> Fe-O <strong>and</strong> Cu-O: Thermodynamic data for the Equilibria Fe-“FeO”,<br />

Fe-Fe 3O 4, “FeO”-Fe 3O 4,Fe 3O 4-Fe 2O 3, Cu-Cu 2O <strong>and</strong> Cu 2O-CuO from emf Measurements”, Am. Mineral.,<br />

73, 470–486 (1988) (Experimental, Thermodyn., 46)<br />

[1989Aka] Akaogi, M., Ito, E., Navrotsky, A., “Olivine-Modified Spinel-Spinel Transitions in the System<br />

Mg 2SiO 4-Fe 2SiO 4: Calorimetric Measurements, Thermochemical Calculation, <strong>and</strong> Geophysical Application”,<br />

J. Geophys. Res., 94(B11), 15671–15685 (1989) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Thermodyn., 60)<br />

[1989And] Anderson, W.W., Svendsen, B., Ahrens, T.J., “<strong>Phase</strong> Relations in Iron rich System <strong>and</strong> Implications for<br />

the Earth’s Core”, Phys. Earth Inter., 55, 208–220 (1989) (Review, <strong>Phase</strong> Relations, 48)<br />

[1989Jac] Jacob, K.T., Kale, G.M., Iyengar, G.N.K., “Chemical Potentials of Oxygen for Fayalite-Quartz-Iron <strong>and</strong><br />

Fayalite-Quartz-Magnetite Equilibria”, Metall. Trans. B, 20, 679–685 (1989) (Experimental, Thermodyn.,<br />

37)<br />

[1989Rag] Raghavan, V., “The Fe-O-Si System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s”, Indian Inst. Met.,<br />

Calcutta, 5, 260–277 (1989) (Review, <strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, 36)<br />

[1989Sve] Svendsen, B., Anderson, W.W., Ahrens, T.J., Bass, J.D., “Ideal Fe-FeS, Fe-FeO <strong>Phase</strong> Relations <strong>and</strong><br />

Earth’s Core”, Phys. Earth Inter., 55, 154–186 (1989) (Review, <strong>Phase</strong> Relations, 68)<br />

[1990Din] Ding, J., Li, D.-Y., “X-Ray Powder Structural Analysis of the Spinel Polymorph of Fe 2SiO 4”, Powder<br />

Diffr., 5(4), 221–222 (1990) (Crys. Structure, Experimental, 16)<br />

[1990Wri] Wriedt, H.A., “The O-Si (Oxygen-Silicon) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 11(1), 43–61 (1990)<br />

(<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 247)<br />

[1991Ito] Ito, E., Katsura, T., “Dissolution of Silicon <strong>and</strong> Oxygen in Molten Iron at High Pressure <strong>and</strong><br />

Temperature”, Proc. Japan Acad., Ser. B, 67(9), 153–158 (1991) (<strong>Phase</strong> Relations, Experimental, 14)<br />

[1991Sun] Sundman, B., “An Assessment of the Fe-O System”, J. <strong>Phase</strong> Equilib., 12(1), 127–140 (1991) (<strong>Phase</strong><br />

Relations, <strong>Phase</strong> Diagram, Assessment, 53)<br />

[1992Bec] Becker, K.D., Dreher, S., Wissmann, S., “A High-Temperature Mössbauer Study of Fayalite, Fe 2SiO 4:<br />

Cation Diffusion <strong>and</strong> Reactivity”, Ber. Bunsen-Ges. Phys. Chem., 96(11), 1778–1783 (1992) (Experimental,<br />

Crys. Structure, 21)<br />

[1992Hal] Hallstedt, B., “Thermodynamic Assessment of the Silicon-Oxygen System”, Calphad, 16(1), 53–61<br />

(1992) (Calculation, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 22)<br />

[1992Ros] Ross, C.R., Armbruster, T., Canil, D., “Crystal-structure Refinement of a Spinelloid in the System<br />

Fe 3O 4-Fe 2SiO 4”, Am. Mineral., 77, 507–511 (1992) (Experimental, Crys. Structure, 17)<br />

[1993Tyu] Tyurin, A.G., “Thermodynamics of Molecular <strong>and</strong> Ionic Solutions”, Russ. Metall. (Engl. Transl.), (2),<br />

39–47 (1993), translated from Izv. RAN, Met., (2), 48–56 (1993) (Theory, Thermodyn., 35)<br />

[1993Wu] Wu, P., Eriksson, G., Pelton, A.D., Bl<strong>and</strong>er, M., “Prediction of the Thermodynamic Properties <strong>and</strong><br />

<strong>Phase</strong> <strong>Diagrams</strong> of Silicate <strong>Systems</strong> – Evaluation of the FeO-MgO-SiO 2 System”, ISIJ Int., 33(1) 26–35<br />

(1993) (Assessment, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Calculation, 55)<br />

[1994Hug] HughJones, D.A., Woodl<strong>and</strong>, A.B., Angel, R.J., “The Structure of High-Pressure C2/c Ferrosilite <strong>and</strong><br />

Crystal-Chemistry of High-Pressure C2/c Pyroxenes”, Am. Mineral., 79, 1032–1041 (1994) (Experimental,<br />

Crys. Structure, 34)<br />

[1994Mat] Matousek, J.W., “Equilibrium Oxygen Pressures of Iron Silicate Slags”, Metall. Mat. Trans. B, 25(3),<br />

463–465 (1994) (Thermodyn., Calculation, 12)<br />

[1996Boe] Boeher, R., “Experimental Constraints on Melting Conditions Relevant to Core Formation”, Geochim.<br />

Cosmochim. Acta, 60(7), 1109–1112 (Review, <strong>Phase</strong> Relations, 30)<br />

[1996Hug] HughJones, D., Sharp, T., Angel, R., Woodl<strong>and</strong>, A., “The Transition of Orthoferrosilite to High-<br />

Pressure C2/c Clinoferrosilite at Ambient Temperature”, Eur. J. Mineral., 8, 1337–1345 (1996) (Experimental,<br />

Crys. Structure, 36)<br />

[1996Sax] Saxena, S.K., “Earth Mineralogical Model: Gibbs Free Energy Minimization in the System MgO-FeO-<br />

SiO 2”, Geochim. Cosmochim. Acta, 60, 2379–2395 (1996) (Assessment, Thermodyn., <strong>Phase</strong> Relations,<br />

125)<br />

[1997Fab] Fabrichnaya, O.B., Sundman, B., “The Assessment of Thermodynamic Parameters in the Fe-O <strong>and</strong><br />

Fe-O-Si <strong>Systems</strong>”, Geochim. Cosmochim. Acta, 61(21), 4539–4555 (1997) (Assessment, Thermodyn.,<br />

<strong>Phase</strong> Relations, 79)<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

53<br />

[1997Hug] HughJones D., “Thermal Expansion of MgSiO 3 <strong>and</strong> FeSiO 3 Ortho- <strong>and</strong> Cinopyroxenes”, Am. Mineral.<br />

82, 689–696 (1997) (Experimental, Crys. Structure, 31)<br />

[1997Li] Li, G.Q., Suito, H., “Electrochemical Measurement of Critical Supersaturation in Fe-O-M (M = Al, Si,<br />

<strong>and</strong> Zr) <strong>and</strong> Fe-O-Al-M (M = C, Mn, Cr, Si, <strong>and</strong> Ti) Melts by Solid Electrolyte Galvanic Cell”, ISIJ Int.,<br />

37(8), 762–769 (1997) (Experimental, <strong>Phase</strong> Relations, 26)<br />

[1997Oht] Ohtaka, O., Tobe, H., Yamanaka, T., “<strong>Phase</strong> Equilibria for the Fe 2SiO 4-Fe 3O 4 System Under High<br />

Pressure”, Phys. Chem. Miner., 24(8), 555–560 (1997) (Experimental, Morphology, <strong>Phase</strong> Relations, 25)<br />

[1997Sel] Selleby, M., “An Assessment of the Fe-O-Si System”, Metall. Mater. Trans. B, 28, 563–576 (1997)<br />

(Assessment, Experimental, Kinetics, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Phys. Prop., 45)<br />

[1997Woo] Woodl<strong>and</strong>, A.B., Angel, R.J., “Reversal of the Orthoferrosilite- High-P Clinoferrosilite Transition, a<br />

<strong>Phase</strong> Diagram for FeSiO3 <strong>and</strong> Implications for the Mineralogy of the Earth‘s Upper Mantle”, Eur.<br />

J. Mineral, 9, 245–254 (1997) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 33)<br />

[1998Ang] Angel, R.J., Woodl<strong>and</strong>, A.B., “Crystal Structure of Spinelloid II in the System Fe 3O 4-Fe 2SiO 4”, Eur.<br />

J. Mineral, 10, 607–611 (1998) (Crys. Structure, Experimental, 23)<br />

[1998Lee] Lee, B.-J., “Thermodynamic Calculation for Stability of Oxides in Steel <strong>Systems</strong>” (in Japanese),<br />

J. Korean Inst. Met., 36(2), 217–224 (1998) (Calculation, Thermodyn., 57)<br />

[1998Won] Wong-Leung, J., Eagelsham, D.J., Sapjeta, J., Jacobson, D.C., Poate, J.M., “The Precipitation of the<br />

Si-SiO 2 Interface”, J. Appl. Phys., 83(1), 580–584 (1998) (Experimental, <strong>Phase</strong> Relations, 19)<br />

[1998Woo] Woodl<strong>and</strong>, A.B., Angel, R.J., “Crystal Structure of a New Spinelloid with the Wadsleyite Structure in<br />

the System Fe 2SiO 4 -Fe 3O 4 <strong>and</strong> Implications for the Earth‘s Mantle”, Am. Mineral., 83, 404–408 (1998)<br />

(Crys. Structure, Experimental, 27)<br />

[1999Ma] Ma, Z., Janke, D., “Oxygen <strong>and</strong> Nitrogen Reactions in Fe-X <strong>and</strong> Fe-Cr-Ni-X Melts”, Steel Research,<br />

70(10), 395–402 (1999) (Calculation, Thermodyn., 69)<br />

[1999Rom] Romero-Serrano, A., Pelton, A.D., “Thermodynamic Analysis of Binary <strong>and</strong> <strong>Ternary</strong> Silicate <strong>Systems</strong><br />

by a Structural Model”, ISIJ Int., 39(5), 399–408 (1999) (Assessment, <strong>Phase</strong> Relations, Thermodyn., 23)<br />

[1999Ros1] Ross, N.L., Reynard, B.R., “The Effect of Iron on the P2 1/c to C2/c Transition in (Mg,Fe)SiO 3<br />

Clinopyroxenes”, Eur. J. Mineral, 11(3), 585–589 (1999) (Experimental, Optical Prop., <strong>Phase</strong> Relations,<br />

18)<br />

[1999Ros2] Ross, N.L., Sowerby, J.R., “High-Pressure Crystal-Field Spectra of Single-Crystal Clinoferrosilite”, Eur.<br />

J. Mineral, 11, 791–801 (1999) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 29)<br />

[2000Haz] Hazen, R.M., Yang, H.X., Prewitt, C.T., “High-pressure Crystal Chemistry of Fe +3 -wadsleite,<br />

β-Fe 2.33Si 0.67O 4”, Am. Mineral., 85, 778–783 (2000) (Experimental, Crys. Structure, 37)<br />

[2000Woo] Woodl<strong>and</strong>, A.B., Angel, R.J., “<strong>Phase</strong> Relations in the System Fayalite-Magnetite at High Pressures <strong>and</strong><br />

Temperatures”, Contrib. Mineral. Petrol., 139, 734–747 (2000) (Experimental, <strong>Phase</strong> Relations, 44)<br />

[2001Bel] Belashchenko, D.K., Ostrovski, O.I., Skvortsov, L.V., “Molecular Dynamic Simulation of Binary CaO-<br />

FeO, MgO-SiO 2, FeO-SiO 2 <strong>and</strong> <strong>Ternary</strong> CaO-FeO-SiO 2 <strong>Systems</strong>”, Thermochim. Acta, 372, 153–163<br />

(2001) (Calculation, Thermodyn., 20)<br />

[2001Fri] Frisk, K., Selleby, M., “The Compound Energy Formalism: Applications”, J. <strong>Alloy</strong>s Compd., 320(2),<br />

177–188 (2001) (Assessment, <strong>Phase</strong> Relations, Review, 41)<br />

[2001Zha] Zhang, J., Wang, P., “The Widespread Applicability of the Mass Action Law to Metallurgical Melts <strong>and</strong><br />

Organic Solutions”, Calphad, 25(2), 343–354 (2001) (Calculation, Thermodyn., 19)<br />

[2001Ott] Ottonello, G., “Thermodynamic Constraints Arising from the Polymeric Approach to Silicate Slags:<br />

the System CaO-FeO-SiO 2 as an Example”, J. Non-Cryst. Solids, 282, 72–85 (2001) (Assessment, <strong>Phase</strong><br />

Relations, Thermodyn., 42)<br />

[2001Yam1] Yamanaka, T., Shimazu, H., Ota, K., “Magnetic Properties of Fe 2SiO 4-Fe 3O 4 Spinel Solid Solutions”,<br />

Phys. Chem. Miner., 28, 102–109 (2001) (Crys. Structure, Magn. Properties, Experimental, 28)<br />

[2001Yam2] Yamanaka, T., Shimazu, H., Ota, K., “Electric Conductivity of Fe 2SiO 4-Fe 3O 4 Spinel Solid Solutions”,<br />

Phys. Chem. Miner., 28, 110–118 (2001) (Crys. Structure, Electr. Prop., Experimental, 35)<br />

[2002Che] Chen, G.Q., Ahrens, T.J., Stolper, E.M., “Schock-Wave Equations of State of Molten <strong>and</strong> Solid<br />

Fayalite”, Phys. Earth Planet. Inter., 134, 35–52 (2002) (Experimental, Mechan. Prop., 54)<br />

[2002Dav] Davies, R.H., Dinsdale, A.T., Gisby, J.A., Robinson, J.A.J., Martin, S.M., “MTDATA - Thermodynamic<br />

<strong>and</strong> <strong>Phase</strong> Equilibrium Software from the National Physical Laboratory”, Calphad, 26(2), 229–271<br />

(2002) (Calculation, <strong>Phase</strong> Relations, Thermodyn., 29)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


54 20<br />

Fe–O–Si<br />

[2002Lot] Lottermoser, W., Steiner, K., Grodzicki, M., Jiang, K., Scharfetter, G., Bats, J. W., Redhammer, G.,<br />

Treutmann, W., Hosoya, S., Amthauer, G., “The Electric Field Gradient in Synthetic Fayalite α-Fe 2SiO 4<br />

at Moderate Temperatures”, Phys. Chem. Miner., 29, 112–121 (2002) (Crys. Structure, Electr. Prop.,<br />

Experimental, Optical Prop., 26)<br />

[2003Kap] Kapilashrami, E., Lahiri, A.K., Cramb, A.W., Seetharaman, S., “Investigation of the Reaction between<br />

Oxygen-Containing Iron <strong>and</strong> SiO 2 Substrate by X-Ray Sessile-Drop Technique”, Metall. Mater. Trans. B,<br />

34b(5), 647–652 (2003) (Interface Phenomena, Experimental, 11)<br />

[2004Fab] Fabrichnaya, O., Saxena, S.K., Richet, P., Westrum, E.F., “Thermodynamic Data, Model <strong>and</strong> <strong>Phase</strong><br />

<strong>Diagrams</strong> in Multicomponent Oxide <strong>Systems</strong>”, Springer Verlag, Berlin Heidelberg, (2004) (Review, <strong>Phase</strong><br />

Diagram, Thermodyn., Phys. Prop., 479)<br />

[2004Fre] Fredriksson, P., Seetharaman, S., “Thermodynamics Activities of FeO in some Binary FeO-Containing<br />

Slags”, Steel Res., 75, 240–246 (2004) (Calculation, Experimental, Thermodyn., 23)<br />

[2004Jun1] Jung, I.-H., Decterov, S.A., Pelton, A.D., “Critical Evaluation <strong>and</strong> Optimization in the FeO-<br />

Fe 2O 3-MgO-SiO 2 System”, Metall. Mater. Trans. B, 35b(5), 877–889 (2004) (Calculation, Theory,<br />

Thermodyn., 59)<br />

[2004Jun2] Jung, I.-H., Decterov, S.A., Pelton, A.D., “A Thermodynamic Model for Deoxidation Equilibria in<br />

Steel”, Metall. Mater. Trans. B, 35b(3), 493–507 (2004) (Calculation, Theory, Thermodyn., 100)<br />

[2004Kon] Kontny, A., Woodl<strong>and</strong>, A.B., Koch, M., “Temperature-Dependent Magnetic Susceptibility Behaviour of<br />

Spinelloid <strong>and</strong> Spinel Solid Solutions in the <strong>Systems</strong> Fe 2SiO 4-Fe 3O 4 <strong>and</strong> (Fe,Mg) 2SiO 4-Fe 3O 4”, Phys.<br />

Chem. Miner., 31, 28–40 (2004) (Experimental, Magn. Prop., <strong>Phase</strong> Relations, 36)<br />

[2004Tyu] Tyurin, A.G., “Thermodynamic Analysis of the Silicon Effect on Chemical <strong>and</strong> Electrochemical<br />

Stability of Iron-Chromium <strong>Alloy</strong>s”, Prot. Met., 40(1), 14–22 (2004) (Calculation, <strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Thermodyn., 17)<br />

[2005Ake] van Aken, P.A., Miehe, G., Woodl<strong>and</strong>, A.B., Angel, R.J., “Crystal Structure <strong>and</strong> Cation Distribution in<br />

Fe 7SiO 10 (Iscorite)”, Eur. J. Mineral, 17, 723–731 (2005) (Crys. Structure, Experimental, Phys. Prop., 13)<br />

[2005Mik] Miki, T., Hino, M., “Numerical Analysis on Si Deoxidation of Molten Fe, Ni, Fe-Ni, Fe-Cr, Fe-Cr-Ni,<br />

Ni-Cu <strong>and</strong> Ni-Co <strong>Alloy</strong>s by Quadratic Formalism”, ISIJ Int., 45(12), 1848–1855 (2005) (Calculation,<br />

<strong>Phase</strong> Diagram, Thermodyn., <strong>Phase</strong> Relations, 27)<br />

[2005Shi] Shibaev, S.S., Krasovskii, P.V., Grigorovitch, K.V., “Solubility of Oxygen in Iron-Silicon Melts in<br />

Equilibrium with Silica at 1873 K”, ISIJ Int., 45(9), 1243–1247 (2005) (Experimental, <strong>Phase</strong> Diagram,<br />

Thermodyn., 16)<br />

[2006Ama] Amano, T., Okazaki, M., Takezawa, Y., Shiino, A., Takeda, M., Onishi, T., Seto, K., Ohkubo, A.,<br />

Shishido, T., “Hardness of Oxide Scales on Fe-Si <strong>Alloy</strong>s at Room- <strong>and</strong> High-Temperatures”, Mat. Sci.<br />

Forum, 522–523, 469–476 (2006) (Experimental, Kinetics, Mechan. Prop., Morphology, <strong>Phase</strong> Relations,<br />

15)<br />

[2006Bas] Basu, S., Macdonald, J.R., Chakravorty, D., “Conductivity Relaxation in the Interfacial <strong>Phase</strong> of Iron<br />

Core-Iron Oxide Shell Nanocomposites”, J. Mater. Res., 21(7), 1704–1711 (2006) (Crys. Structure,<br />

Experimental, Morphology, Nano, 24)<br />

[2006Kim] Kim, J.C., Lee, J.W., Park, B.Y., Choi, C.J., “Synthesis <strong>and</strong> Magnetic Properties of Fe/SiO 2 Nanocomposite<br />

Powders by the Chemical Vapor Condensation Process”, Mat. Sci. Forum, 510–511, 762–765<br />

(2006) (Crys. Structure, Experimental, Morphology, Nano, 7)<br />

[2006Tak] Takeda, M., Onishi, T., “Oxidation Behavior <strong>and</strong> Scale Properties on the Si Containing Steels”, Mater.<br />

Sci. Forum, 522–523, 477–488 (2006) (Crys. Structure, Experimental, Kinetics, Morphology, <strong>Phase</strong><br />

Relations, 10)<br />

[2007Jak] Jak, E., Hayes, P., Pelton, A., Decterov, S., “Thermodynamic optimization of the FeO-Fe 2O 3-SiO 2 (Fe-<br />

O-Si) system by FactSage”, Int. J. Mater. Res., 98(9), 847–854 (Assessment, <strong>Phase</strong> Diagram, Thermodyn.,<br />

<strong>Phase</strong> Relations, Calculation, 55)<br />

[2007Yon] Yong, W., Dachs, E., Withers, A.C., Essene, E.J., “Heat Capacity of γ-Fe 2SiO 4 Between 5 <strong>and</strong> 303 K <strong>and</strong><br />

Derived Thermodynamic Properties”, Phys. Chem. Min., 34, 121–127, (2007) (Experimental, Thermodyn.,<br />

30)<br />

DOI: 10.1007/978-3-540-70890-2_20 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Si 20<br />

55<br />

[L-B] L<strong>and</strong>olt-Boernstein, Numerical Data <strong>and</strong> Functional Relationships in Science <strong>and</strong> Technology (New<br />

Series). Group 3 (Crystal <strong>and</strong> Solid State Physics), Vol. 6, Eckerlin, P., K<strong>and</strong>ler, H. <strong>and</strong> Stegherr, A.,<br />

Structure Data of Elements <strong>and</strong> Intermetallic <strong>Phase</strong>s (1971); Vol. 7, Pies, W. <strong>and</strong> Weiss, A., Crystal<br />

Structure of Inorganic Compounds, Part c, Key Elements: N, P, As, Sb, Bi, C (1979); Group 4: Macroscopic<br />

<strong>and</strong> Technical Properties of Matter, Vol. 5, Predel, B., <strong>Phase</strong> Equilibria, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic<br />

Data of Binary <strong>Alloy</strong>s, Subvol. a: Ac-Au … Au-Zr (1991); Springer-Verlag, Berlin.<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_20<br />

ß Springer 2009


Iron – Oxygen – Uranium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Pankaj Nerikar, Hans Jürgen Seifert, Pierre Perrot<br />

Introduction<br />

The Fe-O-U system is a key system in the disposal of nuclear waste where iron oxide is used<br />

with uranium waste <strong>and</strong> finds relevance in the prediction of high temperature phase behavior<br />

of corium. Two ternary compounds have been reported for the Fe-O-U system: UFeO 4 <strong>and</strong><br />

UFe 2O 6 which seems to be stable only under high pressures [1978Col]. The experimental work<br />

is summarized in Table 1. The Fe-O-U ternary system was reviewed by [1989Rag]. [1964Eva]<br />

<strong>and</strong> [1983Smi] have constructed isothermal sections at different temperatures <strong>and</strong> partial<br />

pressures. [1973Buz] has reported the solubility of oxygen in (Fe,U) liquid alloys at 1600˚C.<br />

Binary <strong>Systems</strong><br />

The Fe-U <strong>and</strong> O-U binary systems are accepted from the critical assessments of [2003Cha] <strong>and</strong><br />

[2004Che], respectively. A precise model of the solid <strong>and</strong> liquid oxide solutions taking into<br />

account the oxygen vacancies in the O-U system may be found in [2002Gue]. The O-U binary<br />

phase diagram from [2004Che] is presented in Fig. 1. The Fe-O phase diagram is accepted<br />

from the assessment by [1991Sun].<br />

Solid <strong>Phase</strong>s<br />

The crystallographic data for the phases present in the Fe-O-U system <strong>and</strong> their ranges of<br />

stability are summarized in Table 2.<br />

Invariant Equilibria<br />

Table 3 lists the invariant reactions of the Fe-O-U ternary system from investigation of<br />

[1964Eva]. They have identified two ternary eutectic points which occur at oxygen partial<br />

pressures of 0.028 <strong>and</strong> 0.011 bar, respectively.<br />

Isothermal Sections<br />

Fe–O–U 21<br />

1<br />

[1989Rag] gave the Fe-O-U isothermal section at 400˚C from the experimental investigations<br />

of [1983Smi]. This diagram, shown in Fig. 2, is compatible with the well known fact that Fe 3O 4<br />

oxidizes into Fe 2O 3 at lower oxygen pressures than UO 2 oxidizes into U 4O 9. Unfortunately,<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_21<br />

ß Springer 2009


2 21<br />

Fe–O–U<br />

neither [1964Eva] nor [1983Smi] took into account the ternary compound UFeO 4 obtained<br />

from the reaction:<br />

2U 3O 8+3Fe 2O Ð UFeO 4+0.5O 2.<br />

Temperature – Composition Sections<br />

[1964Eva] have carefully investigated the equilibrium relationships between uranium <strong>and</strong> iron<br />

oxides as a function of oxygen pressure (586-21300 Pa) <strong>and</strong> temperature (1200-1460˚C).<br />

Figures 3 to 8 show the projected isobaric sections under oxygen pressures of 21300 (air<br />

atmosphere), 7093, 3456, 1773, 892 <strong>and</strong> 586 Pa, respectively. It must be pointed out that the<br />

diagrams presented are not vertical sections because the phases in equilibrium are strongly<br />

dependent of the oxygen pressure. For instance, under air atmosphere Fe 2O 3, stable under<br />

1415˚C loses its oxygen to give Fe3O4 above that temperature as shown in Fig. 3. The transition<br />

Fe2O3 Ð Fe3O4 occurs at 1359, 1328, 1306, 1289 <strong>and</strong> 1273˚C under 7093, 3456, 1773, 892 <strong>and</strong><br />

586 Pa of oxygen pressure, respectively. In the same way, the transition U 3O 8 Ð UO 2 occurs at<br />

1448, 1385, 1358, 1316 <strong>and</strong> 1296˚C under 7093, 3456, 1773, 892 <strong>and</strong> 586 Pa of oxygen pressure,<br />

respectively. The three phases UO 2-Fe 2O 3-Fe 3O 4 coexist in the solid state at 1248˚C under 200<br />

Pa of oxygen pressure.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

The ferric-ferrous buffer (mixture Fe 3O 4-Fe 2O 3) found naturally may be used to stabilize the<br />

state of oxidation IV of uranium [1983Smi].<br />

Fe-U oxides can be used in an energetically efficient way as catalysts for the partial<br />

oxidation of propane <strong>and</strong> propene into formaldehyde which is an industrially important<br />

intermediate [2003Tay] in addition to the applications mentioned in the Introduction.<br />

. Table 1<br />

Investigations of the Fe-O-U <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1964Eva] Thermogravimetric analysis under<br />

controlled oxygen pressures<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

UO 2-U 3O 8-Fe 2O 3-Fe 3O 4, 1260-1460˚C, 586 to<br />

21300 Pa of oxygen pressure<br />

[1973Buz] Interaction parameters measurements Liquid Fe-O-U alloy (< 10 mass% U,<br />


. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature Range<br />

[˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–O–U 21<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(αU) oC4 a = 285.37 at 25˚C [Mas2]<br />

< 668 Cmcm b = 586.95<br />

αU c=495.48<br />

(βU) tP30 a = 1075.9 at 25˚C [Mas2]<br />

776 - 668 P42/mnm βU<br />

c = 565.6<br />

(γU) cI2 a = 352.4 [Mas2]<br />

1135 - 776 Im3m<br />

W<br />

(Fe) cI2 a = 286.65 at 25˚C [Mas2]<br />

1538 - 1394 Im3m a = 293.15 at > 1394˚C [Mas2]<br />

< 912 W<br />

(γFe) cF4 a = 364.67 at 25˚C [Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

Fe2U cF24 a = 705.5 [2003Cha]<br />

< 1235 Fd3m<br />

Cu2Mg FeU6 tI28 a = 1024.99 [2003Cha]<br />

< 829 I4/mcm<br />

MnU6 c = 525.00<br />

Fe1–xO (wüstite) cF8 0.05 < x < 0.12 [1991Sun]<br />

1422 - 569 Fm3m a = 431.0 x = 0.05<br />

NaCl a = 429.3 x = 0.12<br />

Fe3O4 (r) oP56 a = 1186.8 [V-C2]<br />

< 580 Pbcm b = 1185.1<br />

Fe3O4 (r) c=1675.2<br />

Fe3O4 (h) (magnetite) cF56 a = 839.6 at 25˚C<br />

1597 - 580 Fd3m<br />

MgAl204 a = 854.5 at 1000˚C [V-C2]<br />

αFe2O3 (hematite) hR30 a = 503.42 at 600˚C [Mas2, V-C2]<br />

< 1451 R3c<br />

Al2O3 c = 1374.83<br />

βFe2O3 cI80<br />

Ia3<br />

Mn2O3 a = 939.3 metastable phase [V-C2]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

3<br />

DOI: 10.1007/978-3-540-70890-2_21<br />

ß Springer 2009


4 21<br />

Fe–O–U<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature Range<br />

[˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

γFe2O3 (maghemite) tP60 a = 833.96 metatable phase [V-C2]<br />

P41212 Mn5Si2 (?)<br />

c = 832.21<br />

UO2 cF12 a = 547.0 from 62.7 to 66.7 at.% O [2004Che]<br />

< 2852 Fm3m<br />

CaF2 U4O9 cI832 a = 2176 [2004Che]<br />

< 1123 I432 or<br />

I4132 U3O8 oC44 a = 706.9 [2004Che]<br />

< 1870 Cmcm b = 1144.5<br />

c = 830.3<br />

UO3 cP4 a = 414.6 [2004Che]<br />

< 669 Pm3m<br />

ReO3 * UFeO4 oP* a = 488.80 [1989Rag]<br />

Pbcn b = 1193.7<br />

c = 511.0<br />

* UFe2O6 hP* a = 504.0 ± 0.1 [1978Col] High pressure phase (600˚C,<br />

P31m<br />

PbSb2O6 c = 469.2 ± 0.1 3 GPa)<br />

. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Composition (at.%)<br />

U Fe O<br />

L Ð U3O8 +Fe2O3 +Fe3O4 1318 E1 L 13.50 21.76 64.74<br />

L Ð U3O8 +UO2 +Fe3O4 1326 E2 L 14.65 20.75 64.60<br />

DOI: 10.1007/978-3-540-70890-2_21 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-O-U. The calculated O-U equilibrium phase diagram<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–U 21<br />

5<br />

DOI: 10.1007/978-3-540-70890-2_21<br />

ß Springer 2009


6 21<br />

Fe–O–U<br />

. Fig. 2<br />

Fe-O-U. Isothermal section at 400˚C<br />

DOI: 10.1007/978-3-540-70890-2_21 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-O-U. Isobaric section under 21300 Pa of oxygen (1355 <strong>and</strong> 1415˚C)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–U 21<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_21<br />

ß Springer 2009


8 21<br />

Fe–O–U<br />

. Fig. 4<br />

Fe-O-U. Isobaric section under 7093 Pa of oxygen (1328, 1359 <strong>and</strong> 1448˚C)<br />

DOI: 10.1007/978-3-540-70890-2_21 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-O-U. Isobaric section under 3456 Pa of oxygen (1322, 1328 <strong>and</strong> 1385˚C)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–U 21<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_21<br />

ß Springer 2009


10 21<br />

Fe–O–U<br />

. Fig. 6<br />

Fe-O-U. Isobaric section under 1173 Pa of oxygen (1306, 1334 <strong>and</strong> 1358˚C)<br />

DOI: 10.1007/978-3-540-70890-2_21 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 7<br />

Fe-O-U. Isobaric section under 892 Pa of oxygen (1289, 1316 <strong>and</strong> 1334˚C)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–U 21<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_21<br />

ß Springer 2009


12 21<br />

Fe–O–U<br />

. Fig. 8<br />

Fe-O-U. Isobaric section under 586 Pa of oxygen (1273, 1296 <strong>and</strong> 1350˚C)<br />

DOI: 10.1007/978-3-540-70890-2_21 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–O–U 21<br />

13<br />

[1964Eva] Evans, W.D.J., White, J., “Equilibrium Relationships in the System UO 2-Fe 3O 4-O”, Trans. Brit. Ceram.<br />

Soc., 63(12), 705–724 (1964) (<strong>Phase</strong> Diagram, Thermodyn., Experimental, *, #, 10)<br />

[1973Buz] Buzek, Z., “Effect of <strong>Alloy</strong>ing Elements on the Solubility <strong>and</strong> Activity of Oxygen <strong>and</strong> Sulphur in Liquid<br />

Iron at 1600˚C”, Int. Symp. Metallurgical Chemistry - Applications in Ferrous Metallurgy, Iron <strong>and</strong> Steel<br />

Inst, London, 173–177 (1973) (Crys. Structure, Experimental, Review, 8)<br />

[1978Col] Collomb, A., Capponi, J.J., Gondr<strong>and</strong>, M., Joubert, J.C., “Hydrothermal Synthesis of Some Mixed<br />

Oxides A 6+ B 3+ O6 under High Pressures” (in French), J. Solid State Chem., 23, 315–319 (1978) (Crys.<br />

Structure, Experimental, 16)<br />

[1983Smi] Smith, D.K., Freeborn, W.P., Scheetz, B.E., “Compatibility Relationships in the U-Fe-O (-H) at 400˚C:<br />

The Implications of the Ferric-Ferrous Buffer for the Immobilization of Uranium <strong>and</strong> Transuranic<br />

Elements”, Mater. Res. Soc.: Symp. Proc., Sci. Basis Nucl. Waste Managt., 15(6), 91–95 (1983) (Experimental,<br />

*, 6)<br />

[1989Rag] Raghavan, V., “The Fe-O-U (Iron-Oxygen-Uranium) System”, <strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s<br />

(Indian Inst. Metals, Ed.) 5, 332–335 (1989) (<strong>Phase</strong> Diagram, Review, 6)<br />

[1991Sun] Sundman, B., “An Assessment of the Fe-O System”, J. <strong>Phase</strong> Equilib., 12(1), 127–140 (1991) (<strong>Phase</strong><br />

Diagram, Thermodyn., Assessment, #, 53)<br />

[2002Gue] Gueneau, C., Baichi, M., Labroche, D., Chatillon, C., Sundman, B., “Thermodynamic Assessment of the<br />

Uranium-Oxygen System”, J. Nucl. Mater., 304, 161–175 (2002) (Assessment, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Thermodyn., #, 88)<br />

[2003Cha] Chatain, S., Gueneau, C., Labroche D., Rogez, J., Dugne, O., “Thermodynamic Assessment of the Fe-U<br />

Binary System”, J. <strong>Phase</strong> Equilib., 24(2), 122–131 (2003) (Thermodyn., Assessment, Review, #, 34)<br />

[2003Tay] Taylor, S.H., Hutchings, G.J., Palacios, M.-L., Lee, D.F., “The Partial Oxidation of Propane to<br />

Formaldehyde Using Uranium Mixed Oxide Catalysts”, Catal. Today, 81, 171–178 (2003) (Catalysis,<br />

Experimental, Interface Phenomena, 9)<br />

[2004Che] Chevalier, P.-Y., Fischer, E., Cheynet, B., “Progress in the Thermodynamic Modelling of the O-U-Zr<br />

<strong>Ternary</strong> System”, Calphad, 28, 15–40 (2004) (Assessment, Calculation, <strong>Phase</strong> Diagram, Thermodyn., 92)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_21<br />

ß Springer 2009


Iron – Oxygen – Tungsten<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Kostyantyn Korniyenko<br />

Introduction<br />

The phase relationships in the Fe-O-W system are of great interest from a number of different<br />

aspects. In particular, ternary phases of this system have been the subject of many experimental<br />

studies aimed to establish the correlation among their structural, magnetic <strong>and</strong> conducting<br />

properties because these phases have found application in the direct conversion of solar to<br />

electrical energy [1999Gus]. Moreover, the WO 3/Fe 2O 3 composite is the best material for the<br />

manufacture of nanostructured photo-electrodes owing to its enhanced photocurrent-voltage<br />

characteristics [2007Luo]. Multi-component systems of transition metal oxides (in particular,<br />

of tungsten <strong>and</strong> iron) are of interest because of the catalytic properties of their components,<br />

which can be used to oxidize organic substances.<br />

However, information about the constitution of the Fe-O-W system is incomplete.<br />

Experimental studies of phase equilibria have dealt with the WO 3-Fe 2O 3 temperature-composition<br />

section [1978Gar, 1978Tru, 1993Wal] along with partial sections of the Fe-O-W system<br />

at 1100˚C [1977Eks], 1000˚C [1969Sch, 1970Kot, 1977Gel] <strong>and</strong> 900˚C [1972Sch]. Further<br />

determinations of the phase relations are needed, especially for the liquid-solid equilibria.<br />

Publications devoted to the experimental study of the phase relations, crystal structures<br />

<strong>and</strong> thermodynamics are listed in Table 1. Reviews of the literature relating to phase equilibria<br />

<strong>and</strong> crystal structures of the Fe-O-W phases have been presented in [1976Jeh, 1989Rag].<br />

Binary <strong>Systems</strong><br />

The Fe-O boundary binary system is accepted as compiled in [Mas2]. The O-W boundary<br />

system is taken from the important review of [1989Wri], which has been reproduced in<br />

[Mas2]. The Fe-W boundary binary system is accepted according to the thermodynamic<br />

assessment of [1987Gus] as accepted by [1988Fer]. This diagram differs from that given by<br />

[Mas2] in relation to the μ (W 6Fe 7) phase field. The δ (WFe) phase is considered as<br />

metastable.<br />

Solid <strong>Phase</strong>s<br />

Fe–O–W 22<br />

1<br />

<strong>Crystallographic</strong> data for the known unary, binary <strong>and</strong> ternary Fe-O-W phases are given in<br />

Table 2. No solubility of the third element in the binary phases has been reported.<br />

The crystal structure of the τ1, WFeO4, phase has been widely reported in the literature<br />

[1930Bro, 1957Koz, 1967Uel, 1968Cid, 1970Kle, 1972Sle, 1974Lyo, 1982Sie, 1991Sch, 1993Yu,<br />

2003Yu, 2006McK]. The phase possesses a monoclinic symmetry with a value of the β angle of<br />

about 90˚, according to practically unanimous agreement of the different investigators. The<br />

hydrothermal synthesis of WFeO 4 crystals has been studied by [1970Kle].<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_22<br />

ß Springer 2009


2 22<br />

Fe–O–W<br />

For quite a long period of time, the τ 2,WFe 2O 6, ternary phase was considered as occurring<br />

in two polymorphic varieties. The low-temperature form possessing a columbite type<br />

structure, forming at 800˚C, undergoes a monotropic transformation at 950˚C to a hightemperature<br />

modification with a αPbO 2 structure. But [1993Wal] established that the<br />

low-temperature modification, designated as τ 2y¯, WFe 2O 6 (r) in Table 2, being formed at<br />

650-800˚C, transforms monotropically into a monoclinic modification (τ2´, WFe2O6 (h1))<br />

during heating up to 750-900˚C. At 950˚C, the latter undergoes an enantiotropic polymorphic<br />

transformation to the τ 2,WFe 2O 6 (h 2) phase with a αPbO 2 structure, that was earlier described<br />

in the literature as the high-temperature form of the compound. The crystal structure of the<br />

τ 2 phase has been reported in [1957Koz, 1966Tru, 1973Par, 1974Sen, 1976Wei, 1977Pin,<br />

1982Lei1, 1982Lei2, 1988Bir]. The τ 3,WFe 0.1O 3 <strong>and</strong> τ 4,W 0.99Fe 0.01O 2.80, phases were observed<br />

by [1977Eks, 1978McC].<br />

Other reported ternary phases are not stable. The WFeO x (0.4 ≤ x ≤ 1.0) <strong>and</strong> W 3Fe 3O<br />

phases were reported by [1954Sch1] <strong>and</strong> [1954Sch2], respectively, but subsequently, their<br />

existence in the equilibrium state has not been confirmed. Consequently, the W3Fe3O<br />

phase was not seen by [1970Kot] in their investigations at 1000˚C, <strong>and</strong> it was concluded<br />

that this phase had been stabilized by the presence of nitrogen in samples used the studies<br />

undertaken by [1954Sch2]. Neither phase was found in studies at 1000˚C undertaken by<br />

[1977Gel]. The tungstate Fe 2(WO 4) 3 (or W 3Fe 2O 12) was reported by [1985Har, 1987Mai,<br />

2003Sri]. It was found to decompose at temperatures above 450˚C to give Fe 2WO 6 which, at<br />

750˚C, loses oxygen to give 2FeWO 4 +WO 3.[2003Sri] found it very difficult to prepare<br />

this phase by solid state synthesis starting from the component oxides, but proposed that<br />

aqueous solutions of ferrous ammonium sulfate <strong>and</strong> sodium tungstate be used as precursor<br />

materials.<br />

Isothermal Sections<br />

<strong>Phase</strong> relationships in the WO 2-WO 3-WFe 2O 6 partial system at 1100˚C were studied by<br />

[1977Eks]. The samples used in the investigations were obtained from WO4H2 <strong>and</strong> Fe2O3<br />

starting materials. Firstly, WO3 oxide was prepared by heating WO4H2 in air at about 827˚C<br />

for several days, <strong>and</strong> WO 2 was prepared from the trioxide by reduction in a stream of a H 2/<br />

H 2O gas mixture at 750˚C. In order to obtain a suitable partial pressure of water, the hydrogen<br />

gas was allowed to bubble through water held at a temperature of 85˚C. Appropriate amounts<br />

of the oxides were thoroughly mixed <strong>and</strong> sealed in evacuated silica tubes or in Pt ampoules <strong>and</strong><br />

heated at a temperature of 1100˚C for periods ranging from 3 days up to 3 months. On the<br />

basis of X-ray diffraction, <strong>and</strong> optical <strong>and</strong> electron microscopy studies, a partial isothermal<br />

section for 1100˚C was constructed; it is shown in Fig. 1 with amendments to ensure<br />

compatibility with the phase boundaries in the accepted O-W phase diagram. The W24O68<br />

phase that was observed by [1989Wri] in mixtures of WO 3 <strong>and</strong> W that had been annealed at<br />

1100˚C is added, <strong>and</strong> equilibria involving this phase are given with dashed lines. The W 20O 58<br />

phase that was reported by [1977Eks] as being stable at this temperature, is shown as it is a<br />

member of the W nO 3n–2 series of compositions. No evidence for Fe substituting in any<br />

significant amount for W in the binary tungsten oxides was found by [1977Eks]. The “irontungsten<br />

bronze” WFe xO 3 phases in this region were found to be metastable.<br />

<strong>Phase</strong> equilibria at 1000˚C were investigated by [1969Sch, 1970Kot, 1977Gel]. [1969Sch]<br />

prepared samples of Fe3O4, FeO, WFeO3, WFeO4 <strong>and</strong> WO2 by annealing in evacuated quartz<br />

DOI: 10.1007/978-3-540-70890-2_22 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


ampoules, followed by further heating of to enable the reactions between them to progress.<br />

It was reported that at 1000˚C, the τ 1 phase possesses a wide homogeneity range enclosed by<br />

the WO 2-FeO <strong>and</strong> WO 3-FeO lines. [1970Kot] prepared samples at 20 compositions around<br />

W 3Fe 3O in a two stage process. Firstly, mixtures of Fe, W <strong>and</strong> Fe 2O 3 were sintered for 100 h at<br />

1000˚C in evacuated Vycor capsules. This was followed by crushing, pressing <strong>and</strong> sintering<br />

again for 100 h at 1000˚C. The so-called W 3Fe 3O phase with a Ti 2Ni-type structure reported by<br />

[1954Sch2], was not observed. Instead, the Fe2O3 oxide was found to react with the metals to<br />

produce binary metallic phases. [1977Gel] annealed samples in evacuated quartz tubes at a<br />

temperature of 1000˚C for between 2 <strong>and</strong> 10 days followed by cooling in air. An isothermal<br />

section for the W-WO 2-τ 1-τ 2-Fe 2O 3-Fe region was proposed. It is presented in Fig. 2 with<br />

small corrections introduced to take into account the phase boundaries of the accepted binary<br />

systems. In particular, (δαFe) <strong>and</strong> (γFe) were introduced instead of (Fe) as presented by<br />

[1977Gel]; the three-phase region τ 1 + δα +(γFe) was added (marked by dashed lines). The<br />

boundary tie line (W)-τ 1 of the (W) + μ + τ 1 three-phase region is plotted, also by dashed<br />

lines. As noted in the review of [1989Rag], the phase boundaries of the τ1 phase field could not<br />

be determined accurately owing to experimental difficulties <strong>and</strong> therefore this boundary is<br />

drawn with dashed lines.<br />

<strong>Phase</strong> relationships in the W-WO 3-Fe 2O 3-Fe partial system were studied by [1972Sch] at<br />

900˚C by determining chemical equilibria under CO/CO 2 atmospheres. It was reported<br />

that at 900˚C, the τ 1 phase dissolves 32 mol% Fe 3O 4. Generally, the characteristics of<br />

phase relations proposed by [1972Sch] are similar to those reported by [1969Sch, 1970Kot,<br />

1977Gel] at 1000˚C but the participation of the λ phase was ignored.<br />

Temperature – Composition Sections<br />

Fe–O–W 22<br />

3<br />

The WO 3-Fe 2O 3 temperature-composition section was presented in [1978Gar, 1978Tru,<br />

1993Wal] as well as in the review of [1989Rag] as quasibinary but actually, the solid liquid<br />

equilibria as well as the oxidation state of the phases depend strongly on the imposed oxygen<br />

pressure. The heat treatment of WO 3 <strong>and</strong> Fe 2O 3 pelletized mixtures was carried out in the<br />

temperature range 1150-1000˚C [1978Gar]. The temperature-composition section was constructed<br />

from X-ray diffraction <strong>and</strong> optical microscopy studies. The congruent melting of the<br />

τ 2 phase at 1142 ± 5˚C, together with two eutectic equilibria between this phase <strong>and</strong> WO 3 <strong>and</strong><br />

Fe 2O 3 at the temperatures of 1050˚C <strong>and</strong> 1120 ± 5˚C, respectively, were proposed. At the same<br />

time, both [1974Sen] <strong>and</strong> [1978Tru] reported the incongruent melting of τ 2; at 1130 <strong>and</strong><br />

1156 ± 4˚C, respectively. According to the data of [1978Tru], eutectic solidification takes place<br />

only in the WO 3-τ 2 part of the system (the eutectic point is placed at 1051˚C <strong>and</strong> 26 mol. %<br />

Fe 2O 3). Both [1978Gar] <strong>and</strong> [1978Tru] concluded that no visible solubility or homogeneity<br />

range exists for the compounds of this section. Later, the section was studied by [1993Wal]<br />

using both X-ray diffraction <strong>and</strong> differential thermal analysis techniques. Samples were<br />

prepared from mixtures of WO 3 <strong>and</strong> Fe 2O 3 oxides in appropriate ratios. These mixtures<br />

were homogenized by powdering, pressing <strong>and</strong> heating at 900˚C for 24 h <strong>and</strong> at 950˚C for<br />

24 h. DTA measurements were performed at temperatures between 20 <strong>and</strong> 1200˚C. On the<br />

basis of the experimental results obtained, a temperature-composition section for WO 3-Fe 2O 3<br />

was constructed. It is presented in Fig. 3 with corrections relating to the locations of the phase<br />

boundaries in the accepted O-Fe <strong>and</strong> O-W systems. With a view to eliminating ambiguity in<br />

the designations of the phase fields containing the different modifications of the τ2 <strong>and</strong> WO3<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_22<br />

ß Springer 2009


4 22<br />

Fe–O–W<br />

phases, the lower temperature limit of the section was increased to slightly higher than 950˚C<br />

(contrary to about 900˚C in [1993Wal]). The incongruent melting temperature of τ 2, (WFe 2O 6<br />

(h 2)) was accepted as 1100 ± 10˚C.<br />

Thermodynamics<br />

The thermodynamic properties of dilute solutions of oxygen in Fe-W alloys were studied by<br />

[1965Tan] by means of hydrogen-water vapor equilibria measurements. The reaction studied<br />

was H 2 (gas) + O (solution) Ð H 2O (gas). The equilibrium constant for this reaction is: K =<br />

p H2O/(p H2 {% O}), where p H2O <strong>and</strong> p H2 are the partial pressures of water vapor <strong>and</strong> hydrogen<br />

<strong>and</strong> {%O} is the amount of dissolved oxygen in mass%. It was shown for the W 20Fe 80 (mass%;<br />

W 7.06Fe 92.94 in at.%) alloy that at 1550˚C, the equilibrium constant is relatively independent of<br />

the oxygen content in the range up to 0.1 mass% O. For this alloy, the relationship between the<br />

equilibrium constant <strong>and</strong> temperature in the temperature range 1550-1700˚C is: log10 K=<br />

{(6917 ± 20)/T)} – (3.05 ± 0.01). The interaction parameter for tungsten contents up to 20<br />

mass% is ε O W = 0.008. Later, the oxygen activity in an iron melt containing up to 32 mass% W<br />

was determined by [1971Fis] using solid electrolyte cells. The value of interaction parameter in<br />

the range of compositions 3.86 to 31.5 mass% W at 1600˚C was obtained as ε O W = 0.011.<br />

Using equilibria under CO/CO 2 gas mixtures, [1972Sch] established that at 900˚C,<br />

the values of Δ rG for the reactions “FeO” + WO 3 Ð WFeO 4 <strong>and</strong> Fe 2O 3 +WO 3 Ð WFe 2O 6<br />

are –43.1 ± 5.0 <strong>and</strong> –95.3 ± 23.4 kJ·mol –1 , respectively.<br />

The heat capacity of WFeO4 was measured by [1974Lyo] in the temperature range 5-550 K<br />

by adiabatic calorimetry. The temperature of the maximum heat capacity of the antiferromagnetic<br />

anomaly was found to be (75.25 ± 0.1) K. [1980Amo] used high temperature<br />

solution calorimetry to determine the enthalpy of reaction for WO 3 (solid, 298.15 K) + FeO<br />

(solid, 298.15 K) Ð WFeO 4 (solid, 298.15 K) giving Δ rH 0 (WFeO 4, solid, 298.15 K) =<br />

– (77.1 ± 6.0) kJ·mol –1 . The Gibbs energy of formation of the τ 1, WFeO 4 phase was determined<br />

by [1980Kle, 1983Kle] by emf measurements using solid galvanic cells using a ThO 2<br />

electrolyte. The following equation was obtained for the temperature range 1180-1330 K<br />

(907 to 1057˚C): – 1138200 + 299.2 T ± 2200 J·mol –1 . St<strong>and</strong>ard entropy values for the<br />

WFeO 4 compound were used by [1988Bag] to calculate (H 0 298 - H 0 0). Good agreement was<br />

observed between calculated <strong>and</strong> experimental data.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe-O-W alloys are of great interest for a number of practical applications in modern technology,<br />

in particular in relation to energetics, as catalysts in the chemical industry (W3Fe2O12), as<br />

nanostructured photoelectrodes (WO 3/Fe 2O 3 composite) etc. The experimental techniques<br />

used in the investigation of physical properties of Fe-O-W alloys are listed in Table 3.<br />

P-type conduction has been reported from thermopower investigations of WFeO 4<br />

[1991Sch]. The non-stoichiometric samples were produced under slightly oxidizing conditions<br />

<strong>and</strong> exhibited a reduced electrical resistivity which appears to be related to the presence<br />

of an enhanced Fe 3+ content in addition to Fe 2+ . This compound was reported by<br />

[2001Kaw] as possessing antiferromagnetic properties with a Néel temperature of 70 K.<br />

Magnetic susceptibility <strong>and</strong> EPR measurements using modifications of the τ2, WFe2O6,<br />

DOI: 10.1007/978-3-540-70890-2_22 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


phase at low temperatures [1995Gus] revealed a significant paramagnetic contribution,<br />

probably resulting from local distortions of the antiferromagnetic bulk structure induced by<br />

a disturbed cation ordering or the presence of Fe 2+ ions. The high-electrical resistivity found<br />

for the modifications of the τ 2 phase as observed by [1999Gus] are consistent with the presence<br />

of the dominant antiferromagnetic component of the compounds.<br />

Electrodes of WO 3/Fe 2O 3 were prepared on a FTO substrate by [2007Luo] using a sol-gel<br />

method, <strong>and</strong> subsequently, their photoelectrochemical properties were studied in a threeelectrode<br />

cell. The semiconductor electrodes generated an anode photocurrent, which suggested<br />

they were n-type semiconductors.<br />

Miscellaneous<br />

Fe–O–W 22<br />

5<br />

The kinetics of the reactions between iron oxides <strong>and</strong> WO 3 were studied by [1957Koz]. The<br />

kinetics of oxidation in air of the alloy Fe90.23W9.77 (mass%; in at.% - Fe96.82W3.18) at the<br />

temperatures of 740, 830, 900 <strong>and</strong> 960˚C were investigated by [1962Yat]. An ‘induction period’<br />

of the oxidation lasting from 5 to 20 h at temperatures from 740 to 900˚C was noted. It was<br />

established that the resultant oxide film consisted of three layers. The kinetics of crystallization<br />

of WFeO 4 was studied by [1984Buh] using hydrothermally reacting the metal (II)-chlorides<br />

<strong>and</strong> sodium tungstate in a special autoclave, at 300 <strong>and</strong> 400˚C <strong>and</strong> a pressure of 1 kbar. The<br />

rates of crystallization were determined by continual removal of the reactants from the<br />

autoclave. At both temperatures, a decrease in the tungstate concentration in the solution<br />

followed first order reaction kinetics. The rate constants of the reactions were calculated <strong>and</strong><br />

the Jerofejev equation was used to describe the kinetics. In order to explain the experimentally<br />

observed influence of the gases on the synthesis of iron tungstate (Fe 2O 3 +WO 3 + WFe 2O 6),<br />

different solid-solid mechanisms [1984Tho2] <strong>and</strong> gas-solid mechanisms [1984Tho3] have<br />

been considered. Comparisons between the theoretical <strong>and</strong> experimental kinetics curves show<br />

that diffusion in the solid state is not the only limiting step in the synthesis, <strong>and</strong> the strong<br />

influence of gases on the reaction kinetics confirms this conclusion [1984Tho2]. In<br />

[1984Tho3], a gas-solid mechanism for the synthesis of iron tungstate <strong>and</strong> a description of<br />

its elementary steps (tungsten oxide volatilization, gaseous diffusion <strong>and</strong> condensation) have<br />

been developed, <strong>and</strong> new kinetics laws for pure volatilization or condensation have been given.<br />

It was noted that some experimental results agreed with models of sublimation or condensation,<br />

but the comparison between experimental <strong>and</strong> theoretical kinetics curves indicated that<br />

the iron tungstate synthesis is governed at 800 or 760˚C by a mixed regime of volatilization <strong>and</strong><br />

diffusion in the solid phase. Ferric tungstate W 3Fe 2O 12 was investigated by [1985Har] asa<br />

catalyst for the selective oxidation of methanol <strong>and</strong> was shown to have very different properties<br />

from ferric molybdate for this application. Over the molybdate, the predominant reaction<br />

is the oxidation of methanol to formaldehyde, whereas over the tungstate it is dehydration to<br />

dimethyl ether. Structural changes of coprecipitated <strong>and</strong> mechanically mixed iron/tungsten<br />

oxides occurring during calcination <strong>and</strong> reduction were studied by [1987Mai]. The temperature<br />

dependence of the EPR spectrum for the τ 2, (WFe 2O 6 (r)) phase has been investigated by<br />

[1998Gus] over the temperature range 40-260 K.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_22<br />

ß Springer 2009


6 22<br />

Fe–O–W<br />

. Table 1<br />

Investigations of the Fe-O-W <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method / Experimental Technique<br />

[1930Bro] X-ray powder diffraction (XRD) WFeO 4<br />

Temperature / Composition<br />

/ <strong>Phase</strong> Range Studied<br />

[1954Sch1] XRD (Guinier technique) WFeOx (x = 0.4 to 1.0)<br />

[1954Sch2] XRD (Guinier technique) W3Fe3O, WO2 [1957Koz] Diffusion annealing, XRD, chemical analysis WFeO 4, WFe 2O 6<br />

[1965Tan] Hydrogen-water vapor equilibrium 1550-1700˚C, 70-100 mass%<br />

Fe, ≤ 0.12 mass% O<br />

[1966Tru] XRD 1200˚C, 1000˚C, the WO3- Fe2O3 section<br />

[1967Uel] XRD WFeO4 [1968Cid] XRD on single crystal, chemical analysis WFeO 4<br />

[1969Sch] Solid state reactions in evacuated quartz ampoules, Xray<br />

diffraction<br />

1000˚C, 50 to 75 at.% O<br />

[1970Kle] Hydrothermal synthesis, XRD, thermal analysis 600-375˚C,<br />

p = 400-1700 atm, WFeO 4<br />

[1970Kot] Sintering, XRD, optical microscopy 1000˚C, composition range<br />

around W3Fe3O [1971Fis] Solid electrolyte cells 1600˚C<br />

[1972Sch] Equilibria measurements under CO/CO2 gas mixture 900˚C, the W-WO3-Fe2O3-Fe partial system<br />

[1972Sle] XRD (Haegg-Guinier camera) WFeO4 [1973Par] Annealing, XRD WFe 2O 6<br />

[1974Lyo] Adiabatic calorimetry (Mark II adiabatic cryostat, Mark<br />

IV adiabatic thermostat)<br />

5-550 K, WFeO 4<br />

[1974Sen] Annealing, XRD WFe 2O 6<br />

[1976Wei] Neutron diffraction WFe 2O 6<br />

[1977Eks] Heating of WO4H2 in air, reduction of WO3, X-ray<br />

powder diffraction, optical microscopy, electron<br />

microscopy<br />

1100˚C, the WO2-WO3-<br />

Fe 2WO 6 partial system<br />

[1977Gel] Annealing, XRD (Guinier camera) 1000˚C, the W-WO2-τ1-τ2-<br />

Fe2O3-Fe region<br />

[1977Pin] XRD, neutron diffraction WFe2O6 [1978Gar] Annealing, quenching, XRD, reflected light microscopy 1150-1000˚C, the WO3-Fe2O3 section<br />

[1978McC] Heating, pressurizing; optical microscopy XRD,<br />

Weissenberg X-ray technique<br />

≤ 1100˚C, the WO3-Fe section<br />

DOI: 10.1007/978-3-540-70890-2_22 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method / Experimental Technique<br />

Temperature / Composition<br />

/ <strong>Phase</strong> Range Studied<br />

[1980Amo] High-temperature solution calorimetry 667˚C, 25˚C, WFeO 4, FeO +<br />

WO 3<br />

[1980Kle] Emf measurements 907-1057˚C, WFeO 4<br />

[1982Lei1] Solid state reactions, XRD, (Debye- Scherrer technique) WFe 2O 6<br />

[1982Sie] Solid state reactions, single crystals synthesis, XRD WFeO 4<br />

[1985Har] XRD Fe2(WO4)3, preparation,<br />

catalytic properties<br />

[1987Mai] XRD, DTA Fe2(WO4) 3, preparation,<br />

decomposition<br />

[1988Bir] Calcination in air, Mössbauer, XRD WFe2O6 [1991Sch] Single crystals <strong>and</strong> polycrystalline samples<br />

preparations, XRD (Laue technique)<br />

WFeO 4<br />

[1993Wal] Annealing, DTA, XRD 950˚C, 900˚C, the WO3-Fe2O3 section<br />

[1993Yu] Single crystals preparation, XRD, electron microprobe<br />

analysis<br />

WFeO4 [2003Sri] XRD, XRD Preparation of Fe2(WO4) 3 <strong>and</strong><br />

calcination in air<br />

[2003Yu] Hydrothermal treating, XRD WFeO4 [2006McK] XRD, Mössbauer WFeO4; WFeO4 +C<br />

[2007Luo] Sol-gel method; XRD, UV-visible transmission<br />

spectroscopy, SEM, EDS<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–W 22<br />

WO 3,Fe 2O 3, the WO 3/Fe 2O 3<br />

composites<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_22<br />

ß Springer 2009


8 22<br />

Fe–O–W<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(W) cI2 a =316.52 at 25˚C [Mas2]<br />

< 3422 Im3m<br />

W<br />

Dissolves 2.6 at.% Fe at 1637˚C<br />

δα, (δFe,αFe) cI2<br />

Im3m<br />

(δFe) W a = 293.15 at 1394˚C [Mas2]<br />

1538 - 1394 Dissolves 14.3 at.% W at 1548˚C<br />

(αFe) (Ferrite)<br />

< 912<br />

a = 286.65 pure Fe at 25˚C [Mas2]<br />

(γFe) (Austenite) cF4 a = 364.67 at 915˚C [Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

Dissolves 1.2 at.% W at 1100˚C [Mas2]<br />

(εFe) hP2 a = 246.8 at 25˚C, > 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

λ,WFe2 hP12 a = 473.7 [1986Nag, 1987Gus]<br />

< 1062 P63/mmc MgZn2 c = 770.0 C14 structure<br />

μ, W6Fe7 hR39 ~56 to 59.5 at.% Fe<br />

< 1641 R3m D85structure [1989Rag]<br />

W6Fe7 a = 476.4 ±⊊0.3 [V-C2]<br />

c = 2585 ±⊊2<br />

δ, WFe oP*<br />

P212121 MoNi<br />

- metastable [1988Fer]<br />

FeO (Wüstite) cF8 actually (Fe1–xO with 0.05 < x < 0.12)<br />

1422 - 569 Fm3m a = 431.2 x = 0.05 [V-C2]<br />

NaCl a = 429.3 x=0.12 [V-C2]<br />

αFe3O4 (r) oP56 a = 1186.8 [V-C2]<br />

< 580 Pbcm b = 1185.1<br />

Fe3O4 I c=1675.2<br />

βFe3O4 (h)<br />

(Magnetite)<br />

cF56 inverse Spinel<br />

1597 - 580 Fd3m a = 854.5 at 1000˚C [V-C2]<br />

MgAl2O4 (Spinel)<br />

a = 839.6 at 25˚C [V-C2]<br />

DOI: 10.1007/978-3-540-70890-2_22 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

αFe2O3 (Hematite) hR30 a = 503.42 [1989Rag]<br />

< 1457 R3c αAl2O3 (Corundum)<br />

c=1374.83<br />

βFe2O3 cI80 metastable phase<br />

Ia3<br />

βMn2O3 (Bixbyite)<br />

a = 939.3 [V-C2]<br />

γFe 2O 3<br />

(Maghemite)<br />

cF56 metastable phase<br />

Fd3m a = 834<br />

MgAl2O4<br />

[1989Rag]<br />

Fe–O–W 22<br />

εFe2O3 m*100 metastable<br />

a = 1299<br />

b = 1021<br />

c = 844<br />

β = 95.33<br />

[V-C2]<br />

WO2 mP12 a = 555.6 ~ 66.7 at.% O [1989Wri]<br />

< 1530 P21/c b = 489.31<br />

VO2 c = 565.77<br />

β = 120.42˚<br />

W18O49 mP67 a = 1832.4 ~73.1 at.% O [1989Wri]<br />

> 1700 - 585 P2/m b = 378.4<br />

W18O49 c = 1403.5<br />

β = 115.20˚<br />

W24O68 m*92 a = 1931 ~ 73.9 at.% O [1989Wri]<br />

W24O68 b = 378.1<br />

c = 1707<br />

β= 104.4˚<br />

W20O58 mP78 a = 1205 74.4 at.% O; member of the WnO3n–2 series<br />

P2/m b = 376.7 [1989Wri]<br />

W20O58 c = 2359<br />

β = 85.47˚<br />

W24O70 mP94 a = 1207 74.5 at.% O; member of the WnO3n–2 series<br />

W24O70 b = 378<br />

c = 2890<br />

β = 98.6˚<br />

[1989Wri]<br />

W25O73 mP98 a = 1193 74.5 at.% O; member of the WnO3n-2 series<br />

P2/c b = 382 [1989Wri]<br />

W25O73 c = 5972<br />

β = 98.3˚<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_22<br />

ß Springer 2009


10 22<br />

Fe–O–W<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

W25O74 mP99 a = 1190 74.7 at.% O; probable member of the WnO3n–1 P2/m b = 382.6 series [1989Wri] labelled as WO2.96 W25O73 c = 2982<br />

β = 98.4˚<br />

WO3 (h4) tP8 (?) 75.0 at.% O [1989Wri] labelled as WO3-A 1474 - 1230 P4/nmm (?)<br />

WO3 (h4) a = 525.7<br />

c=391.2<br />

T = 1260˚C [1989Wri]<br />

WO3 (h3) tP8 75.0 at.% O; labelled as WO3-B 1230 - 900 P4/nmm a = 527.2 T = 950˚C [1989Wri]<br />

WO3 (h3) c=392.0<br />

WO3 (h2) tP8 75.0 at.% O; labelled as WO3-C 900 - 740 P4/nmn a = 525.0 T = 770˚C [1989Wri]<br />

WO3 (h2) a<br />

c=391.5<br />

WO3 (h1) oP32 75.0 at.% O; labelled as WO3-D 740 - 330 Pmnb a = 734.1 T = 480˚C [1989Wri]<br />

WO3 (h1) a<br />

b = 757.0<br />

c=775.4<br />

WO3 (r) mP32 75.0 at.% O; labelled as WO3-E 330 - 17 P21/n a = 730.6 at 25˚C [1989Wri]<br />

WO3 (r) a<br />

b = 754.0<br />

c=769.2<br />

β = 90.881˚<br />

WO3 (l1) aP32 75.0 at.% O; labelled as WO3-F<br />

17 - (–40) P1 a = 730.9 at 25˚C [1989Wri]<br />

WO3 (l1) b = 752.2<br />

c=767.8<br />

α = 88.81˚<br />

β = 90.92˚<br />

γ = 90.93˚<br />

WO3 (l2) mP16 75.0 at.% O; labelled as WO3-G (–40) - (–143) Pc a = 527.5 T = –70˚C [1989Wri]<br />

WO3 (l2) b = 515.5<br />

c=767.2<br />

β = 91.7˚<br />

WO3 (l3) (–143) - (–208)<br />

- - 75.0 at.% O; labelled as WO3-H [1989Wri]<br />

WO3 (l4) (–208) - (–233)<br />

- - 75.0 at.% O; labelled as WO3-J [1989Wri]<br />

DOI: 10.1007/978-3-540-70890-2_22 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

WO3 (l5) (–233) - (–257)<br />

- - 75.0 at.% O; labelled as WO3-K [1989Wri]<br />

WO3 (l6) < –257<br />

- - 75.0 at.% O; labelled as WO3-M [1989Wri]<br />

τ 1, WFeO 4<br />

(Ferberite)<br />

mP12 a = 473.4 [1989Rag, 2003Yu]<br />

P2/c b = 570.9<br />

WFeO4 c=496.3<br />

β = 90˚<br />

τ2, WFe2O6 (h2) oP9 a = 457.6 [1982Lei1, 1989Rag] labelled as γWFe2O6 1100 - 900 Pbcn b = 1676.6 [1999Gus]<br />

αPbO2 c=496.7<br />

τ2´, WFe2O6 (h1) m** - labelled as βWFe2O6 840 - 750 - [1999Gus]<br />

τ2´´, WFe2O6 (r) oP9 a = 1374.9 [1973Par, 1993Wal] labelled as αWFe2O6 < 800 Pbcn b = 1679.3 [1999Gus]<br />

columbite c=995.8<br />

τ3, WFe0.1O3 h** a = 742.2 iron-tungsten bronze [1978McC]<br />

- c=376.6<br />

τ4,W0.99Fe0.01O2.80 tP* a = 2329 [1977Eks]<br />

P421m -<br />

c = 379.4<br />

WFeOx hP3 a = 431 x = 0.4 to 1.0 [1954Sch1]<br />

P63/mmc Fe2N c = 275<br />

W3Fe3O cF96<br />

Fd3m<br />

Ti2Ni a = 1096 ± 1 [1954Sch2]<br />

W3Fe2O12 - a = 1586 or Fe2(WO4) 3<br />

b = 929.5<br />

c=1842<br />

β = 125.1˚<br />

metastable phase [2003Sri]<br />

a)Often described as a slightly distorted ReO 3-type [1989Wri, Mas2]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–W 22<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_22<br />

ß Springer 2009


12 22<br />

Fe–O–W<br />

. Table 3<br />

Investigations of the Fe-O-W Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1967Uel] Neutron diffraction Antiferromagnetic ordering<br />

[1976Wei] Neutron diffraction Magnetic structure of the τ2, WFe2O6 (h2)<br />

phase<br />

[1977Gel] Picnometer method, Mössbauer<br />

spectroscopy<br />

Density, electronic structure<br />

[1977Pin] Neutron diffraction Magnetic structure of the τ 2, WFe 2O 6 (h 2)<br />

phase<br />

[1981Bha] Electrical conductivity <strong>and</strong> thermoelectric<br />

power measurements<br />

[1982Lei1] Faraday balance method van der Pauw<br />

technique, photoelectrolytic<br />

measurements<br />

[1982Sie] Hydrostatic technique,<br />

thermogravimetric analysis (Cahn<br />

electrobalance), Faraday balance method,<br />

van der Pauw technique<br />

d.c. <strong>and</strong> a.c. electrical conductivity,<br />

thermoelectric power of the τ 2, WFe 2O 6<br />

(h 2) phase<br />

The τ 2, WFe 2O 6 (h 2) phase: magnetic<br />

susceptibility, dependence of<br />

photocurrent on anode potential,<br />

electrical resistivity, quantum efficiency<br />

The τ 1, WFeO 4 phase: density, stability<br />

towards oxidation, electrical resistivity,<br />

magnetic susceptibility<br />

[1984Tho1] Thermomagnetic analysis The τ2, WFe2O6 (h2) phase - magnetic<br />

susceptibility<br />

[1988Bir] Mössbauer spectroscopy Mössbauer parameters for the WFe2O6 phase containing samples<br />

[1991Sch] Electrical resistivity measurements<br />

(Wheatstone- <strong>and</strong> Schering-type bridges),<br />

thermoelectric power measurements<br />

[1995Gus] EPR measurements (a st<strong>and</strong>ard X-b<strong>and</strong><br />

spectrometer Bruker 200D), d.c. magnetic<br />

measurements (vibrating sample<br />

magnetometer)<br />

[1998Gus] EPR measurements (a st<strong>and</strong>ard X-b<strong>and</strong><br />

spectrometer Radiopan R-10), NMR<br />

technique<br />

[1999Gus] EPR measurements (a st<strong>and</strong>ard X-b<strong>and</strong><br />

spectrometer Radiopan SEX-104), d.c.<br />

electrical resistivity measurements<br />

(Keithley 181 electrometer)<br />

The τ 1, WFeO 4 phase: d.c. <strong>and</strong> a.c.<br />

electrical resistivity, thermoelectric power<br />

The WFe 2O 6 phases: d.c. magnetic<br />

susceptibility, EPR spectra<br />

The τ 2, WFe 2O 6 (r) phase - EPR spectra<br />

The WFe 2O 6 phases: electrical resistivity,<br />

EPR spectra<br />

[2001Kaw] Mössbauer spectroscopy The τ1, WFeO4 phase: electronic structure<br />

[2003Yu] TEM, selected area electron diffraction<br />

(SAED)<br />

Morphology of nanorods<br />

DOI: 10.1007/978-3-540-70890-2_22 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[2006Azi] X-ray photoelectron spectroscopy (XPS),<br />

atomic force microscopy<br />

[2006Eji] Optical (absorption <strong>and</strong> reflection)<br />

spectroscopy, ultraviolet photoelectron<br />

spectroscopy (UPS)<br />

[2007Luo] CH1600B electrochemical analysis, monochrome<br />

filters, photometry<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–W 22<br />

The (WO 3) 1–x-(Fe 2O 3) x thin films:<br />

optical density, electrochromic properties<br />

Single WFeO 4 microcrystals: absorption<br />

coefficient <strong>and</strong> reflectance spectra,<br />

valence b<strong>and</strong> photoelectrons spectra<br />

Photocurrent under different applied<br />

potentials, incident photon conversion<br />

efficiency (IPCE), light intensity<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_22<br />

ß Springer 2009


14 22<br />

Fe–O–W<br />

. Fig. 1<br />

Fe-O-W. Partial isothermal section at 1100˚C<br />

DOI: 10.1007/978-3-540-70890-2_22 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-O-W. Partial isothermal section at 1000˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–W 22<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_22<br />

ß Springer 2009


16 22<br />

Fe–O–W<br />

. Fig. 3<br />

Fe-O-W. Temperature - composition section WO 3-Fe 2O 3<br />

DOI: 10.1007/978-3-540-70890-2_22 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–O–W 22<br />

17<br />

[1930Bro] Broch, E.K., “Investigation of Crystal Structures of Wolframit-Type <strong>and</strong> Sheelit-Type Compounds” (in<br />

German), Mat.-Nat. Klasse, (8), 3–62 (1930) (Crys. Structure, Experimental, Review, 64)<br />

[1954Sch1] Schoenberg, N., “On the Existence of Metallic <strong>Ternary</strong> Oxides Me’Me’’O with the Metal Atoms in<br />

Hexagonal Close-Packing”, Acta Chem. Sc<strong>and</strong>., 8 (4), 630–632 (1954) (Crys. Structure, Experimental, 5)<br />

[1954Sch2] Schoenberg, N., “On the Existence of <strong>Ternary</strong> Transition Metal Oxides”, Acta Chem. Sc<strong>and</strong>., 8(6),<br />

932–936 (1954) (Crys. Structure, Experimental, 13)<br />

[1957Koz] Kozmanov, Yu.D., “An X-Ray Study of the Reaction Between Solid Iron Oxides <strong>and</strong> the Oxides of<br />

Tungsten <strong>and</strong> Molybdenum” (in Russian), Zh. Fiz. Khim., 31(8), 1861–1865 (1957) (Crys. Structure,<br />

Experimental, Kinetics, 6)<br />

[1962Yat] Yatsyuk, M.A., Solomko, V.Ya., “Kinetics of Oxidation of the Iron <strong>Alloy</strong> with 9.77% of Tungsten at<br />

740-960˚C” (in Russian), Zh. Prikl. Khim., 35(10), 2336–2338 (1962) (Morphology, Experimental,<br />

Kinetics, 2)<br />

[1965Tan] Tankins, E.S., Thomas, M.K., Erthal, J.F., Williams, F.S., “The Activity of Oxygen in Liquid Iron-<br />

Molybdenum <strong>and</strong> Iron-Tungsten <strong>Alloy</strong>s”, Trans. Am. Soc. Met., 58(3), 245–252 (1965) (<strong>Phase</strong> Relations,<br />

Thermodyn., Experimental, 10)<br />

[1966Tru] Trunov, V.K., Kovba, L.M., “Interaction of Molybdenum <strong>and</strong> Tungsten Trioxides with Iron (III) <strong>and</strong><br />

Chromium (II) Oxides”, Izv. Akad. Nauk SSSR, Neorg. Mater., 2(1), 151–154 (1966) (Crys. Structure,<br />

Experimental) as quoted by [1978Gar]<br />

[1967Uel] Uelkue, D., “Investigations of Crystal Structure <strong>and</strong> Magnetic Structure of the Ferberits FeWO 4” (in<br />

German), Z. Kristallogr., 124(3), 192–219 (1967) (Crys. Structure, Experimental, Magn. Prop., 15)<br />

[1968Cid] Cid-Dresdner, H., Escobar, C., “The Crystal Structure of Ferberite, FeWO 4”, Z. Kristallogr., 127, 61–72<br />

(1968) (Crys. Structure, Experimental, 17)<br />

[1969Sch] Schroecke, H., “Solid <strong>Phase</strong> Equilibria in the Fe-Mn-W-O System” (in German), Neues Jahrb. Mineral,<br />

Abh<strong>and</strong>l., 110(2), 115–127 (1969) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, *, 24)<br />

[1970Kle] Klevtsov, P.V., Novgorodtseva, N.A., Kharchenko, L.Yu., “Hydrothermal Synthesis of FeWO 4 Crystals”<br />

(in Russian), Kristallografiya, 15(3), 609–610 (1970) (Crys. Structure, Experimental, 9)<br />

[1970Kot] Kotyk, M., Stadelmaier, H.H., “Study of Filled Ti 2Ni-Type <strong>Phase</strong>s with Hf, Ta, <strong>and</strong> W”, Metall. Trans., 1,<br />

899–903 (1970) (Crys. Structure, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, *, 16)<br />

[1971Fis] Fischer, W.A., Janke, D., “The Activity of Oxygen in Iron Melts Containing Molybdenum, Tungsten,<br />

Niobium or Tantalum” (in German), Arch. Eisenhuettenwes., 42(10), 695–698 (1971) (Thermodyn.,<br />

Experimental, 15)<br />

[1972Sch] Schmahl, N.G., Dillenburg, H., “<strong>Phase</strong> Equilibria <strong>and</strong> Thermodynamics of the <strong>Ternary</strong> <strong>Systems</strong><br />

Fe-Mo-O <strong>and</strong> Fe-W-O” (in German), Z. Physik. Chem. Neue Folge, 77, 113–126 (1972) (<strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Thermodyn., Experimental, 40)<br />

[1972Sle] Sleight, A.W., “Accurate Cell Dimensions for ABO 4 Molybdates <strong>and</strong> Tungstates”, Acta Crystallogr., B28,<br />

2899–2902 (1972) (Crys. Structure, Experimental, 19)<br />

[1973Par] Parant, C., Bernier, J.C., Michel, A., “Two Orthorhombic Forms of Iron Tungstate” (in French), Compt.<br />

Rend., Ser. C, 276C, 495–497 (1973) (Crys. Structure, Experimental, 10)<br />

[1974Lyo] Lyon, W.G., Westrum, E.F., Jr., “Heat Capacities of Zinc Tungstate <strong>and</strong> Ferrous Tungstate from 5 to<br />

550 K”, J. Chem. Thermodyn., 6, 763–780 (1974) (Crys. Structure, Thermodyn., Calculation, Experimental,<br />

39)<br />

[1974Sen] Senegas, J., Galy, J., “The Double Oxide Fe 2WO 6. I. Crystal Structure <strong>and</strong> Filiation Structures” (in<br />

French), J. Solid State Chem., 10, 5–11 (1974) (Crys. Structure, Experimental, 8)<br />

[1976Jeh] Jehn, H., “Wolfram” (in German), in “Gase und Kohlenstoff in Metallen”, Springer-Verlag Berlin<br />

Heidelberg New York, 552–563 (1976) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Review, Kinetics,<br />

Phys. Prop., 112)<br />

[1976Wei] Weitzel, H., “Magnetic Structures of NiNb 2O 6 <strong>and</strong> Fe 2WO 6” (in German), Acta Crystallogr., Sect. A:<br />

Found. Crystallogr., A32, 592–597 (1976) (Crys. Structure, Experimental, Magn. Prop., 16)<br />

[1977Eks] Ekstroem, T., Tilley, R.J.D., “<strong>Phase</strong> Relations in the Dioxide-Trioxide Region of Some 3d Transition<br />

Metal-W-O <strong>Ternary</strong> <strong>Systems</strong>”, J. Solid State Chem., 22, 331–340 (1977) (Crys. Structure, <strong>Phase</strong> Relations,<br />

Experimental, #, 30)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_22<br />

ß Springer 2009


18 22<br />

Fe–O–W<br />

[1977Gel] Geller, R., Kostakis, G., Trumm, A., Weitzel, H., Schroecke, H., “Examinations in the System Fe-W-O”<br />

(in German), Neues Jahrb. Mineral. Abh., 129(2), 211–231 (1977) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Experimental, Phys. Prop., #, 18)<br />

[1977Pin] Pinto, H., Melamud, M., Shaked, H., “Magnetic Structure of Fe 2WO 6, a Neutron Diffraction Study”,<br />

Acta Crystallogr., Sect. A: Found. Crystallogr., A33, 663–667 (1977) (Crys. Structure, Experimental,<br />

Magn. Prop., 6)<br />

[1978Gar] Gardiner, C.F., Chang, L.L.Y., “<strong>Phase</strong> Relations in the <strong>Systems</strong> Cr 2O 3-WO 3 <strong>and</strong> Fe 2O 3-WO 3”, J. Am.<br />

Ceram. Soc., 61(7), 376 (1978) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, 4)<br />

[1978McC] McColm, I.J., Steadman, R., Wilson, S.J., “Iron-Promoted <strong>Phase</strong>s in the Tungsten-Oxygen System”,<br />

J. Solid State Chem., 23, 33–42 (1978) (Crys. Structure, Morphology, <strong>Phase</strong> Relations, Experimental, 27)<br />

[1978Tru] Trumm, A., “<strong>Phase</strong> Diagram of the Fe 2O 3-WO 3 System” (in German), Neues Jahrb. Mineral., Monatsh.,<br />

(11), 481–484 (1978) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, *) as quoted by [1989Rag] <strong>and</strong><br />

[1993Wal]<br />

[1980Amo] Amosse, J., Mathieu, J.C., “The Enthalpies of Formation of FeWO 4, MnWO 4, <strong>and</strong> their Solid Solutions”,<br />

J. Chem. Thermodyn., 12(7), 683–689 (1980) (Thermodyn., Experimental, 16)<br />

[1980Kle] Kleykamp, H., “Thermodynamics of the <strong>Systems</strong> Fe-W, Fe-W-O <strong>and</strong> Fe-W-C” (in German), J. Less-<br />

Common Met., 71(1), 127–134 (1980) (Thermodyn., Experimental, 23)<br />

[1981Bha] Bharati, R., Singh, R.A., “The Electrical Properties of Fe 2WO 6”, J. Mater. Sci., 16, 511–514 (1981)<br />

(Morphology, Experimental, Electr. Prop., 19)<br />

[1982Lei1] Leiva, H., Dwight, K., Wold, A., “Preparation <strong>and</strong> Characterization of Conducting Iron Tungstates”,<br />

J. Solid State Chem., 42, 41–46 (1982) (Crys. Structure, Experimental, Electr. Prop., Magn. Prop.,<br />

Optical Prop., 23)<br />

[1982Lei2] Leiva, H., Sieber, K., Khazai, B., Dwight, K., Wold, A., “Structural <strong>and</strong> Electronic Relationships<br />

between Conducting Iron Niobates <strong>and</strong> Iron Tungstates”, J. Solid State Chem., 44, 113–118 (1982)<br />

(Crys. Structure, Review, Theory, Electronic Structure, 20)<br />

[1982Sie] Sieber, K., Kourtakis, K., Kershaw, R., Dwight, K., Wold, A., “Preparation <strong>and</strong> Photoelectronic<br />

Properties of FeWO 4”, Mater. Res. Bull., 17 (6), 721–725 (1982) (Crys. Structure, Experimental, Electr.<br />

Prop., Optical Prop., 13)<br />

[1983Kle] Kleykamp, H., “Experimental Aspects of Solid Galvanic Cell Methods for Thermodynamic Studies on<br />

<strong>Alloy</strong>s”, Ber. Bunsen-Ges. Phys. Chem., 87(9), 777–781 (1983) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn.,<br />

Review, 32)<br />

[1984Buh] Buhl, J.C., Willgallis, A., “Kinetics <strong>and</strong> Mechanism of Huebnerite (MnWO 4) <strong>and</strong> Ferberite (FeWO 4).<br />

Crystallization under Hydrothermal Conditions”, Z. Naturforsch., Teil A, 39A (10), 963–965 (1984)<br />

(Morphology, Experimental, Kinetics, 18)<br />

[1984Tho1] Thomas, G., Ropital, F., “Influence of Gas on the Summary of Iron Tungstate Fe 2WO 6 1. Experimental<br />

Study” (in French), Mater. Chem. Phys., 11, 549–562 (1984) (Morphology, Experimental, Magn.<br />

Prop., 16)<br />

[1984Tho2] Thomas, G., Ropital, F., “Influence of Gas on the Summary of Iron Tungstate Fe 2WO 6 2. Study of<br />

Mechanism Solide-Solide” (in French), Mater. Chem. Phys., 11, 563–575 (1984) (Morphology, Experimental,<br />

Kinetics, 9)<br />

[1984Tho3] Thomas, G., Ropital, F., “Influence of Gas on the Summary of Iron Tungstate Fe 2WO 6 3. Study of<br />

Machinery Gas-Solid” (in French), Mater. Chem. Phys., 11, 577–590 (1984) (Morphology, Calculation,<br />

Experimental, Kinetics, 4)<br />

[1985Har] Harrison, W.T.A., Chowdhry, U., Machiels, C.J., Sleight, A.W., Cheetham, A.K., “Preparation of Ferric<br />

Tungstate <strong>and</strong> its Catalytic behavior Toward Methanol”, J. Solid State Chem., 60, 101–106 (1985) (Crys.<br />

Structure, Experimental, Kinetics, 23)<br />

[1986Nag] Nagender Naidu, S.V., Sriramamurthy, A.M., Rama Rao, P., “Fe-W (Iron-Tungsten)”, J. <strong>Alloy</strong> <strong>Phase</strong><br />

<strong>Diagrams</strong>, 2(3), 176–188 (1986) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 80)<br />

[1987Gus] Gustafson, P., “A Thermodynamic Evaluation of the C-Fe-W System”, Metall. Trans. A, 18A(2), 175–188<br />

(1987) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 53)<br />

[1987Mai] Maiti, G.C., Loechner, U., Baerns, M., “Studies on the Reduction of Iron/Tungsten Mixed Oxides”,<br />

Thermochim. Acta, 112, 221–229 (1987) (Crys. Structure, Experimental, Kinetics, 61)<br />

[1988Bag] Bagdavadze, D.I., Tsagareishvili, D.Sh., Tskhadaya, R.A., Gvelesiani, G.G., “Method of Computation of<br />

Enthalpy Increment of Crystalline Inorganic Compounds at 0-298.15 K Temperature Range” (in<br />

Russian), Izv. Akad. Nauk Gruz. SSR, Ser. Khim, 14(3), 199–206 (1988) (Thermodyn., Calculation,<br />

Review, 8)<br />

DOI: 10.1007/978-3-540-70890-2_22 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–W 22<br />

19<br />

[1988Bir] Birchall, T., Hallett, C., Vaillancourt, A., Ruebenbauer, K., “A Study of Iron-Tungsten Oxides <strong>and</strong> Iron-<br />

Chromium-Tungsten Oxides”, Can. J. Chem., 66(4), 698–702 (1988) (Crys. Structure, Experimental,<br />

Electronic Structure, 18)<br />

[1988Fer] Fern<strong>and</strong>ez-Guillermet, A., “Thermodynamic Calculation of the Fe-Co-W <strong>Phase</strong> Diagram”,<br />

Z. Metallkd., 79(10), 633–642 (1988) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, Thermodyn., 34)<br />

[1989Rag] Raghavan, V., “The Fe-O-W (Iron-Oxygen-Tungsten) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Indian Inst. Metal., Calcutta, 5, 349–354 (1989) (Crys. Structure, <strong>Phase</strong> Diagram, Review, #, 17)<br />

[1989Wri] Wriedt, H.A., “The O-W (Oxygen-Tungsten) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 10(4), 368–384<br />

(1989) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, Review, 154)<br />

[1991Sch] Schmidbauer, E., Schanz, U., Yu, F.J., “Electrical Transport Properties of Mono- <strong>and</strong> Polycrystalline<br />

FeWO4”, J. Phys.: Condens. Matter, (3), 5341–5352 (1991) (Crys. Structure, Experimental, Electr.<br />

Prop., 28)<br />

[1993Wal] Walczak, J., Rychlowska-Himmel, I., “<strong>Phase</strong> Equilibria in the <strong>Systems</strong> Fe 2O 3-WO 3 <strong>and</strong> FeVO 4-WO 3”,<br />

Thermochim. Acta, 221(1), 115–121 (1993) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, #, 20)<br />

[1993Yu] Yu, F., Schanz, U., Schmidbauer, E., “Single Crystal Growth of FeWO 4 <strong>and</strong> CuWO 4”, J. Cryst. Growth,<br />

132, 606–608 (1993) (Crys. Structure, Morphology, Experimental, 13)<br />

[1995Gus] Guskos, N., Sadlowski, L., Typek, J., Likodimos, V., Gamari-Seale, H., Bojanowski, B., Wabia, M.,<br />

Walczak, J., Rychlowska-Himmel, I., “Magnetic <strong>and</strong> EPR Studies of α-, β- <strong>and</strong> γ-Fe 2WO 6 <strong>Phase</strong>s at Low<br />

Temperatures”, J. Solid State Chem., 120, 216–222 (1995) (Morphology, Experimental, Electronic<br />

Structure, Magn. Prop., 22)<br />

[1998Gus] Guskos, N., Typek, J., Wabia, M., Likodimos, V., Fuks, H., Rychlowska-Himmel, I., Walczak, J., “<strong>Phase</strong><br />

Transition Study in α-Fe 2WO 6 Compound by EPR”, Appl. Magn. Resonance, 14(2-3), 397–402 (1998)<br />

(Morphology, Experimental, Electronic Structure, Magn. Prop., 13)<br />

[1999Gus] Guskos, N., Likodimos, V., Glenis, S., Patapis, S.K., Palilis, L.C., Typek, J., Wabia, M., Rychlowska-<br />

Himmel, I., “Electrical Transport <strong>and</strong> EPR Properties of the α, β, <strong>and</strong> γ <strong>Phase</strong>s of Fe 2WO 6”, Phys. Rev. B,<br />

60 (11), 7687–7690 (1999) (Morphology, Experimental, Electr. Prop., Magn. Prop., 27)<br />

[2001Kaw] Kawanaka, H., Miyamoto, R., Nishihara, Y., “Electronic State of Iron Oxides FeWO 4 (Mössbauer<br />

Study)”, J. Magn. Soc. Jpn., 25(4, part 2), 715–718 (2001) (Morphology, Experimental, Electronic<br />

Structure, Magn. Prop.) cited from abstract<br />

[2003Sri] Sriraman, A.K., Tyagi, A.K., “A New Method of Fe 2(WO 4) 3 Preparation <strong>and</strong> its Thermal Stability”,<br />

Thermochim. Acta, 406, 29–33 (2003) (Crys. Structure, Experimental, 8)<br />

[2003Yu] Yu, S.-H., Liu, B., Mo, M.-S., Huang, J.-H., Liu, X.-M., Qian, Y.-T., “General Synthesis of Single-Crystal<br />

Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach”, Adv. Func. Mater., 13<br />

(8), 639–647 (2003) (Crys. Structure, Morphology, Experimental, 55)<br />

[2006Azi] Azimirad, R., Akhavan, O., Moshfegh, A.Z., “An Investigation on Electrochromic Properties of<br />

(WO 3) 1–x-(Fe 2O 3) x Thin Films”, Thin Solid Films, 515, 644–647 (2006) (Morphology, Experimental,<br />

Optical Prop., 16)<br />

[2006Eji] Ejima, T., Banse, T., Takatsuka, H., Kondo, Y., Ishino, M., Kimura, N., Watanabe, M., Matsubara, I.,<br />

“Microscopic Optical <strong>and</strong> Photoelectron Measurements of MWO 4 (M = Mn, Fe, <strong>and</strong> Ni)”, J. Lumin.,<br />

119–120, 59–63 (2006) (Morphology, Experimental, Optical Prop., 20)<br />

[2006McK] McKenzie, K.J.D., Temuujin, J., McCammon, C., Senna, M., “Mechanochemical Activation of Mixtures<br />

of Wolframite (FeWO 4) with Carbon, Studied by 57 Fe Mössbauer Spectroscopy”, J. Eur. Ceram. Soc., 26,<br />

2581–2585 (2006) (Crys. Structure, Experimental, 11)<br />

[2007Luo] Luo, W., Yu, T., Wang, Y., Li, Z., Ye, J., Zou, Z., “Enhanced Photocurrent-Voltage Characteristics of<br />

WO 3/Fe 2O 3 Nano-Electrodes”, J. Phys. D: Appl. Phys., 40, 1091–1096 (2007) (Crys. Structure, Morphology,<br />

Experimental, Optical Prop., 33)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_22<br />

ß Springer 2009


Iron – Oxygen – Yttrium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Pierre Perrot<br />

Introduction<br />

The Fe-O-Y system has provided much interest because of the ferrimagnetic garnet Y 3Fe 5O 12,<br />

known as YIG (Yttrium Iron Garnet) interesting for its applications in microwave devices.<br />

This garnet has an incongruent melting <strong>and</strong> the knowledge of its crystallization field is of<br />

interest for the single crystals growth. The main experimental results about the Fe-O-Y<br />

diagram are presented in Table 1. A review was presented by [1989Rag]. No Calphad<br />

assessment has been carried out.<br />

Binary <strong>Systems</strong><br />

The Fe-Y system is accepted from the assessment of [1992Zha]. The Fe-O system is accepted<br />

from [Mas2], where it is mainly based on the fundamental work of [1945Dar, 1946Dar]. Later<br />

it has been carefully assessed by [1991Sun, 1995Kow]. The O-Y binary system is accepted from<br />

[1990Car].<br />

Solid <strong>Phase</strong>s<br />

Fe–O–Y 23<br />

1<br />

Solid phases are presented in Table 2.<br />

τ 1,YFeO 3 presents a congruent melting at 1720˚C <strong>and</strong> has a perowskite like structure,<br />

explained by the small size of the Fe 3+ ion which has the minimum radius (55 pm) to occupy<br />

the octahedra sites of the oxygen lattice [2004Li] so that a stable perowskite structure cannot<br />

be expected.<br />

τ2,YFe2O4, was observed by [1975Kim] <strong>and</strong> its stability above 1010˚C was confirmed by<br />

[1979Pie, 1980Mat]. However, [2004Kit] considers τ 2 as metastable at 1100˚C.<br />

τ 3,Y 3Fe 5O 12 presents an incongruent melting at 1555˚C under air <strong>and</strong> at 1582˚C under<br />

pure O 2 [1962Hoo]. Its non stoichiometry has been clearly put into evidence by [1961Hoo]on<br />

samples water quenched from 1400˚C to 1540˚C <strong>and</strong> confirmed by [1980Vor]. Its composition<br />

range varies from 37 to 37.5 mol% Y 2O 3, which means that Fe may substitute Y to a small<br />

extent in the Y sublattice. Under low oxygen potentials, τ 3 may loose oxygen leading to<br />

Y 3Fe 5O 12–δ (δ < 0.9). A DTA analysis of τ 3 was carried out by [1963Ber], but it is probable<br />

that the sample hold unreacted Fe2O3 because the observed peaks correspond to the oxygen<br />

loss by Fe 2O 3 under air (1380˚C) <strong>and</strong> to the eutectic Fe 3O 4-τ 3 (1469˚C).<br />

τ 5,YFe 3+xO 1.5(4+x) was synthesized by [2004Sug1] under radiofrequency Ar-O 2 thermal<br />

plasma <strong>and</strong> was shown to be paramagnetic [2004Sug2]. The values of x are not well determined<br />

because τ 5 was contaminated with by-products such as γFe 2O 3 <strong>and</strong> τ 1,YFeO 3.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_23<br />

ß Springer 2009


2 23<br />

Fe–O–Y<br />

The crystal parameter constant for 0.1 < x < 1 is an indication that τ 5 may be a stoichiometric<br />

compound whose exact composition has to be defined.<br />

Quasibinary <strong>Systems</strong><br />

The αY2O3-αFe2O3 quasibinary system under air atmosphere is presented in Fig. 1 according<br />

to the measurements of [1958Nie, 1962Hoo, 1975Lev]. This system is not truly binary because<br />

Fe 2O 3 looses its oxygen to form Fe 3O 4 above a temperature which increases with the imposed<br />

oxygen potential (1380˚C under air, 1460˚C under 0.1 MPa of O 2 pressure). The Fe 2O 3-τ 1,<br />

YFeO 3 part of the diagram is reproduced from [1975Lev]. The incongruent melting point of<br />

τ 3,Y 3Fe 5O 12 depends also on the imposed oxygen potential: 1495˚C under pure CO 2, 1555˚C<br />

under air <strong>and</strong> 1582˚C under 0.1 MPa of O 2 pressure [1961Hoo, 1962Hoo].<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

The liquidus lines in the Y 3Fe 5O 12-Fe 2O 3-FeO part of the diagram, investigated by [1962Hoo],<br />

are shown in Fig. 2 together with some solidus lines. The primary crystallization field of the<br />

garnet τ 3,Y 3Fe 5O 12 is narrow, opposite to thee wide primary crystallization field of τ 1,YFeO 3.<br />

The ternary eutectic E was measured at 1453˚C under 90 kPa of oxygen pressure. The ternary<br />

transformation point U1 was measured at 1465˚C under an oxygen pressure lower than 10 Pa<br />

which is the oxygen pressure of pure CO2 at the same temperature. The ternary transformation<br />

point U 2 is estimated lower than 1420˚C under an oxygen pressure lower than 0.1 Pa<br />

which is the oxygen pressure of the equilibrium FeO-Fe 3O 4 at 1420˚C. The maximum on the<br />

EU 1 line is estimated at a temperature higher than 1469˚C.<br />

Isothermal Sections<br />

The isothermal section at 1200˚C, mainly from [1975Kim], is represented in Fig. 3. The<br />

isothermal section at 1000˚C shown in Fig. 4 is drawn from the thermodynamic measurements<br />

of [1977Tre, 1978Pie, 1983Fet]. The difference between both sections comes from the phases in<br />

equilibrium with τ 1,YFeO 3. Below 1078˚C, τ 1 is in equilibrium with Fe <strong>and</strong> FeO, whereas above<br />

1080˚C, τ 1 is in equilibrium with FeO <strong>and</strong> Fe 3O 4.[2004Kit] presents a phase diagram at 1100˚<br />

C which agrees with that presented at 1200˚C by [1975Kim], but considers τ 2,YFe 2O 4 as a<br />

metastable compound. Y is a stronger oxidizer than Fe <strong>and</strong>, whatever the temperature, pure Fe<br />

<strong>and</strong> (Fe-Y) intermetallic compounds are in equilibrium with Y2O3. Between 700 <strong>and</strong> 1200˚C,<br />

under low oxygen pressure (0.04 Pa), pure Fe oxidizes into FeO, Fe3O4 <strong>and</strong> Fe2O3 whereas<br />

Y-doped Fe oxidizes with formation of τ 1,YFeO 3 <strong>and</strong> τ 2,YFe 2O 4 [1999Cau, 2001Cau]. Under<br />

0.1 MPa of O 2 pressure, Fe-Yalloys are oxidized at 700-800˚C with formation of τ 1,YFeO 3 <strong>and</strong><br />

τ 3,Y 3Fe 5O 12 together with iron oxides [1999Li], so that Y cannot prevent the Fe oxidation. In<br />

low oxygen pressures generated by H 2-CO 2 mixtures (~10 –15 Pa at 700˚C), yttrium-iron oxides<br />

are observed together with pure Y 2O 3 [1998Niu], which form a non protective layer.<br />

DOI: 10.1007/978-3-540-70890-2_23 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Thermodynamics<br />

The interaction coefficient between O <strong>and</strong> Y in liquid iron has been calculated by [1973Buz]<br />

from solubility measurements <strong>and</strong> found e O (Y) =(∂ log10 f O / ∂ mass% Y) = – 0.46 at 1600˚C<br />

where f O = (mass% O in pure Fe / mass% O in the alloy). Such a value, very negative, means<br />

that Y in liquid iron increases the oxygen solubility. The interaction coefficient, evaluated later<br />

by [1985Tin] <strong>and</strong> reproduced in [1987Lon], two order of magnitude higher, is not credible. An<br />

evaluation by [1995Ish] gives a result one order of magnitude higher. On the other h<strong>and</strong>, as Y<br />

presents one of the greatest affinity for oxygen, the increase of the oxygen solubility in liquid<br />

iron is quickly limited by the precipitation of Y 2O 3, whence a difficulty to evaluate the slope of<br />

the curve f O vs {mass% Y}, which explains the discrepancy observed between the various<br />

experimental results. The solubility product of Y 2O 3 in liquid Fe is given in Table 3.<br />

The thermodynamic quantities of formation of τ 1,YFeO 3, τ 2,YFe 2O 3.9 <strong>and</strong> τ 3,Y 3Fe 5O 12<br />

from Fe, Y 2O 3 <strong>and</strong> O 2 are given at 1200˚C in Table 3. The reactions are expressed for 1 mole<br />

O2, which allows the comparison of the oxygen pressures at equilibria (Fe + Y2O3 + YFeO3),<br />

(Fe + Y2O3 + YFe2O3.9) <strong>and</strong> (Fe + Y2O3 +Y3Fe5O12). For the sake of comparison, the oxygen<br />

pressures at equilibria (Fe + FeO) <strong>and</strong> (FeO + Fe 3O 4) at 1200˚C are 1.20 · 10 –7 <strong>and</strong> 7.20 · 10 –5<br />

Pa, respectively. As a consequence, only τ 2,YFe 2O 3.9 may be in equilibrium with Fe <strong>and</strong> FeO at<br />

1200˚C. τ 1,YFeO 3 may be in equilibrium with Fe, FeO <strong>and</strong> Fe 3O 4 whereas τ 3,Y 3Fe 5O 12 may be<br />

in equilibrium with Fe 3O 4 <strong>and</strong> Fe 2O 3. The equilibria (Fe + Y 2O 3 +YFeO 3) <strong>and</strong> (Fe + Y 2O 3 +<br />

Y 3Fe 5O 12) are metastable at 1200˚C. An investigation of the (Fe + Y 2O 3 +YFeO 3) equilibrium<br />

by [1977Tre, 1979Pie, 1985Sko] in a wider temperature range (900-1250˚C) shows that this<br />

equilibrium is stable below 1010˚C, temperature of formation of τ2,YFe2O4. An extrapolation<br />

of the oxygen pressure measured towards higher temperature shows that, at 1110˚C, the<br />

oxygen pressure is the same for the equilibria (Fe + Y 2O 3 + YFeO 3) <strong>and</strong> (Fe + FeO), which<br />

means that, above 1110˚C, YFeO 3 cannot be in equilibrium with Fe, in agreement with<br />

the observation of [1975Kim] at 1200˚C. A further extension of the temperature range<br />

(900-1250˚C) investigated by [1978Pie, 1979Pie] shows that the invariant equilibrium is at<br />

1078˚C, temperature accepted in this report. The τ 2,YFe 2O 4 was shown to be stable only<br />

above 1010˚C [1979Pie]. However, [2004Kit] by investigating the Fe-Fe 2O 3-Y 2O 3 equilibria at<br />

1100˚C under CO2-H2 atmospheres did not observe the formation of τ2 <strong>and</strong> concluded to its<br />

instability. It is probable that the narrowness of the stability domain of τ2 at 1100˚C prevents<br />

its observation. The thermodynamic properties of the ferrites τ 1, τ 2 <strong>and</strong> τ 3, from [1979Pie,<br />

1988Pie] are given in Table 4. A general review of the thermodynamic properties of the rare<br />

earth <strong>and</strong> iron mixed oxides was presented by [1978Kat]. The stabilities of rare earth <strong>and</strong> iron<br />

mixed oxides are compared in [1983Kim]. A general trend is the increase of stability with the<br />

size of the rare earth ion, which puts iron <strong>and</strong> yttrium mixed oxides amongst the less stable of<br />

the iron <strong>and</strong> rare earth mixed oxides. This trend has been modelled by [1984Pie] which<br />

proposes empirical expressions of the thermodynamic quantities taking into account the ionic<br />

radius of the rare earth ions.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–O–Y 23<br />

3<br />

The main experimental works regarding properties are summarized in Table 5. Y may be used<br />

as deoxidizer in steelmaking. Although it is known as one the best deoxidizer, its use is limited<br />

by its price.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_23<br />

ß Springer 2009


4 23<br />

Fe–O–Y<br />

τ 1,YFeO 3 has been proposed for a number of applications from catalysis, reflective coatings,<br />

electrode material to fast ion conductor. It may be synthesized by ceramics methods<br />

(Fe 2O 3 +Y 2O 3 annealed several days above 1000˚C) but more efficiently at lower temperature<br />

(2 h at 800˚C) from a fused salts flux YCl 3 + FeCl 3 +Li 2O[1996Par].<br />

τ 2,YFe 2O 4 is a ferrimagnetic compound whose Neel temperature is 205 K. Below the Neel<br />

point, the non stoichiometric ferrite τ2,YFe2O3.9 presents extra reflections in the electron<br />

diffraction pattern [1980Mat] which may possibly be related to the magnetic behavior known<br />

as “parasitic ferrimagnetism”.<br />

τ 3,Y 3Fe 5O 12, a ferrimagnetic garnet (YIG) whose Neel temperature is 275˚C, has led to very<br />

intensive studies on the crystallographic, magnetic <strong>and</strong> electrical properties. It is very effective<br />

as microwave filter, as well as transducer <strong>and</strong> transmitter of acoustic energy. YIG is also of<br />

interest because its ferrimagnetic properties are tunable by partial substitution of non magnetic<br />

ions for magnetic ones at different sites. It may be synthesized from homogenized<br />

mixtures of hematite <strong>and</strong> yttria, but the garnet formation starts above 1000˚C <strong>and</strong> is complete<br />

at 1400˚C [2000Pet]. It has been prepared by combustion synthesis [2000Kuz] from a mixture<br />

(Y 2O 3 +Fe 2O 3 + Fe + NaClO 4) followed by an annealing for 4 h at 1450˚C or grown by laser<br />

heating [2003Che]. Nanoparticles have also been obtained by a sol-gel combustion synthesis<br />

(metal nitrates + citric acid) process [2007Hos]. TIG crystals are never grown from the melt,<br />

even when undercooled at temperatures lower than 1582˚C, the peritectic temperature of the<br />

Fe 2O 3-YIG system [2002Nag]. The first phase to precipitate is always the pseudo-perowskite<br />

YFeO 3. The formation of YIG from the melt needs hyperquenching. Single crystals are easily<br />

grown in a PbO flux [1958Nie], the most convenient composition for the bath being 52.5 PbO,<br />

44 Fe2O3, 3.5 Y2O3 (in mol%).<br />

τ 4,Y 12Fe 32O 2 is ferromagnetic [1976Dar] with a Curie temperature at 182 K; its saturation<br />

magnetization at 4.2 K is 32.4 B per unit formula. τ 4 is sometimes encountered as a by product<br />

in the preparation of τ 3,Y 3Fe 5O 12 [2000Tak].<br />

τ 5,YFe 3+xO 1.5(4+x) is a paramagnetic compound [2004Sug2].<br />

Miscellaneous<br />

The formation mechanism of YIG from its oxides has been investigated by [2000Pet]. It may<br />

be described by a two-step process:<br />

3Y 2O 3 +5Fe 2O 3 Ð 6YFeO 3 +2Fe 2O 3 Ð 2Y 3Fe 5O 12<br />

The orthoferrite formation starts at 816 ± 25˚C whereas the garnet formation started at<br />

1011 ± 25˚C.<br />

The YIG has also been prepared in 10 min by microwave heating (2.45 GHz) of a mixture<br />

Y2O3 +Fe3O4 in the ratio Y/Fe = 3/5 under air atmosphere [1997Ost, 2001Pee]. Fe3O4 is used<br />

instead of Fe2O3 because hematite is a poor microwave absorber. During the synthesis,<br />

orthoferrite YFeO 3 appears always as an intermediate compound <strong>and</strong> even YFe 2O 4 may be<br />

observed.<br />

The temperature dependence of electrical conductivity <strong>and</strong> Seebeck coefficient was<br />

measured on YIG single crystals for various orientations <strong>and</strong> different degrees of perfection<br />

[2003Lom]. The electrical properties of YIG are completely determined by the mechanism of<br />

DOI: 10.1007/978-3-540-70890-2_23 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


scattering of charge carriers <strong>and</strong> by their energy spectrum. The intensity ratio of coherent <strong>and</strong><br />

incoherent X-ray scattering characterizes the fraction of conduction electrons in a given<br />

sample.<br />

. Table 1<br />

Investigations of the Fe-O-Y <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1958Nie] Thermal analysis, crystal growth of<br />

Y3Fe5O12 in a PbO flux<br />

[1961Hoo] XRD, thermogravimetry, thermal analysis<br />

(water quenching)<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

1400-1750˚C, the Fe 2O 3-YFeO 3 phase<br />

diagram<br />

1150-1550˚C, Fe 2O 3-YFeO 3-Fe 3O 4 under<br />

air<br />

[1962Hoo] Thermal analysis, liquidus determination 1400-1600˚C, Fe2O3-YFeO3-FeO under<br />

O2, air <strong>and</strong> CO2 atmospheres<br />

[1963Ber] Differential thermal analysis < 1500˚C, Y3Fe5O12, under air<br />

[1975Kim] XRD, chemical analysis, emf<br />

measurements<br />

[1977Tre] emf measurements (Y2O3 stabilized ZrO2 as solid electrolyte)<br />

[1978Pie] emf measurements (CaO stabilized ZrO2 as solid electrolyte)<br />

[1979Pie] emf measurements (CaO stabilized ZrO2 as solid electrolyte)<br />

[1980Vor] XRD, microscopy, Seebeck coefficient<br />

measurements<br />

1200˚C, Fe-Fe 2O 3-Y 2O 3 diagram, Δ fG˚<br />

(YFe 2O 3.9, YFeO 3,Y 3Fe 5O 12)<br />

900-1100˚C, p O2 at equilibrium (Fe +<br />

Y 2O 3 + YFeO 3)<br />

900-1250˚C, Δ fG˚(YFeO 3 <strong>and</strong> Y 3Fe 5O 12)<br />

900-1250˚C, Δ fG˚(YFeO 3,Y 3Fe 5O 12 <strong>and</strong><br />

YFe 2O 4)<br />

800-1400˚C, Y 3Fe 5O 12, departure to<br />

stoichiometry<br />

[1983Fet] XRD, thermogravimetry 1000˚C, Y3Fe5O12, reduction under<br />

H2-H2O atmospheres<br />

[1985Sko] EMF measurements (CaF2+YF3 or<br />

CaF2+YOF as solid electrolyte)<br />

900-1150˚C, ΔfG˚(YFeO3 <strong>and</strong> Y3Fe5O12)<br />

[1985Tin,<br />

1987Lon]<br />

XRD, solubility measurements in (Fe,Y)<br />

liquid alloys<br />

[1995Ish] XRD, solubility measurements in (Fe,Y)<br />

liquid alloys<br />

Fe–O–Y 23<br />

1575-1625˚C, < 0.2 mass% Y,<br />

< 0.2 mass% O<br />

1600-1700˚C, < 0.11 mass% Y,<br />

< 0.2 mass% O<br />

[2004Kit] XRD, thermogravimetry 1100˚C, Fe-Fe2O3-Y2O3 diagram, CO2-H2<br />

<strong>and</strong> CO 2-O 2 atmospheres<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

5<br />

DOI: 10.1007/978-3-540-70890-2_23<br />

ß Springer 2009


6 23<br />

Fe–O–Y<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(αδFe) cI2<br />

(δFe) Im3m a = 293.15 pure Fe at 1394˚C<br />

1538 - 1394 W<br />

a = 286.65<br />

(αFe) (Ferrite)<br />

< 912<br />

pure Fe at 25˚C [Mas2, V-C2]<br />

(εFe) hP2 a = 246.8 at 25˚C, > 13 GPa<br />

P63/mmc Mg<br />

c = 396.0 [Mas2]<br />

(γFe) (Austenite) cF4 a = 364.67 at 915˚C [V-C2, Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

(βY) cI2 a = 407 dissolves up to 30.4 at.% O at 1560˚C<br />

1522 - 1478 Im3m<br />

W<br />

[1990Car, 1992Zha]<br />

(αY) hP2 a = 364.82 Dissolves up to 14.3 at.% O at 1180˚C<br />

< 1478 P63/mmc Mg<br />

c = 573.18 [1990Car, 1992Zha]<br />

YFe2 cF24 a = 735.6 [Mas2] cubic Laves phase<br />

≲ 1125 Fd3m<br />

MgCu2 YFe3 hR36 a = 513.3 [1989Rag]<br />

≲ 1330 R3m<br />

PuNi3 c = 2460.0<br />

Y6Fe23 cF116 a = 1212.0 [1989Rag]<br />

≲ 1300 Fm3m<br />

Th6Mn23 βY2Fe17 hP38 a = 846.3 [1989Rag, 1992Zha]<br />

≲ 1400 P63/mmc Th2Ni17 c = 828.2<br />

αY2Fe17 hR57 a = 846.0 [1989Rag, 1992Zha]<br />

R3m<br />

Th2Zn17 c = 1241.0<br />

Fe1–xO (Wüstite) cF8 a = 431.0 x = 0.05<br />

1422 - 569 Fm3m<br />

NaCl<br />

a = 429.3 x=0.12 [1989Rag]<br />

DOI: 10.1007/978-3-540-70890-2_23 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–O–Y 23<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

Fe3O4 oP56 a = 1186.8 [V-C2, 1989Rag]<br />

< 580 Pbcm b = 1185.1<br />

Fe3O4 c=1675.2<br />

βFe3O4 (Magnetite) cF56 inverse spinel<br />

1597 - 580 Fd3m a = 854.5 at 1000˚C<br />

MgAl2O4 a = 839.6 at 25˚C<br />

αFe2O3 (Hematite) hR30 a = 503.42 [1989Rag]<br />

< 1457 R3c<br />

αAl2O3 (Corundum)<br />

c = 1374.83<br />

βFe2O3 cI80 a = 939.3 metastable phase<br />

Ia3<br />

βMn2O3<br />

(Bixbyite)<br />

[V-C2, 1989Rag]<br />

γFe2O3 (Maghemite) cF56<br />

Fd3m<br />

MgAl2O4 a = 834 metastable phase [1989Rag]<br />

βY2O3 hP* a = 381.3 at 2380˚C [1990Car]<br />

2430 - 2325 P3m1 c=609<br />

γY2O3 mC* a = 1391 high pressure phase<br />

C2/m b = 348.3<br />

c=859.3<br />

(> 250 MPa at 1000˚C) [1990Car]<br />

αY2O3 (Yttria) cI80 a = 1060.73 59.3 to 60 at.% O [1990Car]<br />

< 2325 Ia3<br />

βMn2O3<br />

* τ1, YFeO3 oP20 a = 528.19 ± 0.02 [1965Cop] Distorted perowskite<br />

< 1720 Pbmn b = 559.57 ± 0.05<br />

c = 760.46 ± 0.04<br />

structure<br />

cI* a = 1059.6 [1957Cur] (Metastable?)<br />

* τ2, YFe2O4 hR* a = 609.0 ± 0.4 [1975Kim]. Probably YFe2O4–x R3m c = 2478.8 ± 0.4 (x < 0.1)<br />

* τ3,Y3Fe5O12 (Yttrium cI160<br />

quenched from 1400˚C<br />

Iron Garnet)<br />

Ia3d<br />

< 1555 (under air) a = 1237.4 37 mol% Y2O3 a = 1237.8 37.5 mol% Y2O3 [1961Hoo]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_23<br />

ß Springer 2009


8 23<br />

Fe–O–Y<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

* τ4,Y12Fe32Ox cI46 x


. Table 3 (continued)<br />

Reaction or Transformation<br />

(4/3) Fe + (2/5) Y 2O 3 +O 2 Ð (4/15)<br />

Y 3Fe 5O 12<br />

Temperature<br />

[˚C]<br />

Quantity, per mol of O 2<br />

[J, mol, K]<br />

Comments<br />

1200 Δ fG˚ = – 322400 ± 600 [1975Kim]<br />

pO2 = 3.69 · 10 –7 900 - 1250<br />

Pa<br />

ΔfG˚ = – 554200 + 156.0 T<br />

pO2 = 3.13 · 10<br />

[1979Pie]<br />

–7 Pa at<br />

1200˚C<br />

Y2O3 Ð 2 {Y} + 3 {O} (in liquid Fe) 1575 - 1625 ΔrG˚ = 1793000 – 658.0 T<br />

(St<strong>and</strong>ard state: 1 mass% in<br />

Fe)<br />

[1985Tin]<br />

{mass% Y} 2 {mass% O} 3<br />

1600 - 1700 4.19 – (18810 / T) [1995Ish]<br />

. Table 4<br />

Thermodynamic Properties of Single <strong>Phase</strong>s<br />

<strong>Phase</strong><br />

Temperature Range<br />

[˚C]<br />

Fe–O–Y 23<br />

Property, per mole of atoms<br />

[J, mol, K] Comments<br />

(1/5)YFeO3 25 ΔfH ˚ = – 273200 ± 200<br />

ΔfS ˚ = – 50.5 ± 1.0<br />

[1979Pie]<br />

S˚ = 24.902 [1988Pie]<br />

900-1250 Cp = 21.072 + 3.764 · 10 –3 T – 1.996 · 10 5 T –2<br />

(1/7) YFe2O4 1010-1250 ΔfH ˚ = – 230800 ± 800<br />

ΔfS ˚ = – 43.8 ± 2.0<br />

[1979Pie]<br />

(1/20) Y3Fe5O12 25 ΔfH ˚ = – 245600 ± 150<br />

ΔfS ˚ = – 49.9 ± 0.60<br />

[1979Pie]<br />

S˚ = 23.214 [1988Pie]<br />

900-1250 Cp = 22.749 + 2.858 · 10 –3 T – 1.511 · 10 5 T –2<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_23<br />

ß Springer 2009


10 23<br />

Fe–O–Y<br />

. Table 5<br />

Investigations of the Fe-O-Y Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1957Cur] XRD, powder diffraction τ1,YFeO3, crystal structure<br />

[1957Gel] XRD, single crystal τ3,Y3Fe5O12, crystal structure<br />

[1965Cop] XRD, powder diffraction τ1,YFeO3, crystal structure<br />

[1976Dar] XRD, powder diffraction τ4,Y12Fe32O2, crystal structure<br />

[1980Mat] Electron diffraction τ2,YFe2O4, parasitic ferrimagnetism<br />

[1988Pie] CVD, transport by Cl or CCl4 at 800- τ1,YFeO3 <strong>and</strong> τ3,Y3Fe5O12, single crystal<br />

1000˚C<br />

growth<br />

[1992Boc] XRD, XPS τ1,YFeO3, electronic structure<br />

[1996Par] XRD, SEM, energy dispersive analysis τ1,YFeO3 synthesis by mixture YCl3 + FeCl3 +<br />

by X-Rays (EDAX), Fourier transform IR<br />

(FT-IR)<br />

Li2O (2 h at 800˚C)<br />

[1997Ost] XRD, magnetism, monomodal<br />

microwave oven at 2.45 GHz<br />

[1998Niu] High temperature XRD,<br />

thermogravimetry<br />

[1999Cau,<br />

2001Cau]<br />

High temperature XRD,<br />

thermogravimetry<br />

[1999Li] High temperature XRD,<br />

thermogravimetry<br />

[2000Kuz] XRD, SEM, EDAX, IR <strong>and</strong> Mössbauer<br />

spectrometry<br />

[2000Pet] High temperature XRD, Rietveld<br />

analysis in situ<br />

[2000Tak] XRD, TEM, SAES (Selected Area<br />

Electron Diffraction)<br />

[2001Pee] Multimodal microwave oven at<br />

2.45 GHz<br />

< 500˚C, synthesis of Y 3Fe 5O 12, YFeO 3 <strong>and</strong><br />

YFe 2O 4 from oxides<br />

600-700˚C, 15 <strong>and</strong> 30 mass% Y in Fe under<br />

H 2-CO 2 atmospheres<br />

700˚C, Y-doped <strong>and</strong> undoped Fe under<br />

0.04 Pa of O 2 pressure<br />

700-800˚C, 15 <strong>and</strong> 30 mass% Y in Fe under<br />

0.1 MPa of O2 pressure<br />

τ 3,Y 3Fe 5O 12, combustion synthesis from Y 2O 3<br />

+Fe 2O 3 + Fe + NaClO 4 then annealing 4 h at<br />

1450˚C<br />

< 1400˚C, formation mechanism of Y 3Fe 5O 12<br />

from 3 Y 2O 3 +5Fe 2O 3<br />

Nanocrystalline Y 3Fe 5O 12 prepared by the<br />

alkoxide method<br />

900-1300˚C, synthesis of Y 3Fe 5O 12 from Y 2O 3<br />

+Fe 3O 4 under air<br />

[2002Nag] XRD, SEM, micrography Crystallization from undercooled Y 3Fe 5O 12<br />

melts below 1582˚C<br />

[2003Che] XRD, SQUID (Superconducting<br />

Quantum Interference Device)<br />

[2003Lom] Resistivity, thermoelectric power,<br />

X-ray scattering<br />

Composition of Y 3Fe 5O 12 obtained by Laser<br />

Heated Pedestal Growth<br />

200-410˚C, Y 3Fe 5O 12 single crystal<br />

DOI: 10.1007/978-3-540-70890-2_23 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 5 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[2004Sug1,<br />

2004Sug2]<br />

XRD, TEM, Mössbauer, saturation<br />

magnetization<br />

[2004Wu] XRD, SEM, TEM, FT-IR, Raman<br />

spectroscopy, DSC, TGA<br />

Fe–O–Y 23<br />

τ 5,YFe 3+xO 1.5(4+x), prepared by rf Ar-O 2<br />

thermal plasma<br />

YFeO 3 nano prepared by self-propagating<br />

combustion synthesis<br />

11<br />

[2007Hos] XRD, SEM, DTA/TGA Y 3Fe 5O 12, nanoparticles prepared by a sol-gel<br />

autocombustion process<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_23<br />

ß Springer 2009


12 23<br />

Fe–O–Y<br />

. Fig. 1<br />

Fe-O-Y. The Y 2O 3-Fe 2O 3 quasibinary system under air atmosphere<br />

DOI: 10.1007/978-3-540-70890-2_23 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-O-Y. Liquidus surface projection<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Y 23<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_23<br />

ß Springer 2009


14 23<br />

Fe–O–Y<br />

. Fig. 3<br />

Fe-O-Y. <strong>Phase</strong> equilibria at 1200˚C<br />

DOI: 10.1007/978-3-540-70890-2_23 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-O-Y. <strong>Phase</strong> equilibria at 1000˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Y 23<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_23<br />

ß Springer 2009


16 23<br />

Fe–O–Y<br />

References<br />

[1945Dar] Darken, L.S., Gurry, G.W., “The System Iron-Oxygen. I- The Wuestite Field <strong>and</strong> Related Equilibria”,<br />

J. Am. Chem. Soc., 67, 1398–1412 (1945) (Experimental, <strong>Phase</strong> Diagram, Thermodyn., *, 26)<br />

[1946Dar] Darken, L.S., Gurry, G.W., “The System Iron-Oxygen. II- Equilibria <strong>and</strong> Thermodynamics of Liquid<br />

Oxides <strong>and</strong> Other <strong>Phase</strong>s”, J. Am. Chem. Soc., 68, 798–816 (1946) (Experimental, <strong>Phase</strong> Diagram,<br />

Thermodyn., *, 24)<br />

[1957Cur] Curtis, C.E., “Properties of Yttrium Oxide Ceramics”, J. Am. Ceram. Soc., 40(8), 274–278 (1957) (Crys.<br />

Structure, Experimental, 14)<br />

[1957Gel] Geller, S., Gilleo, M.A., “The Crystal Structure <strong>and</strong> Ferrimagnetism of Yttrium-Iron Garnet,<br />

Y 3Fe 2(FeO 4) 3”, J. Phys. Chem. Solids, 3, 30–36 (1957) (Crys. Structure, Experimental, 28)<br />

[1958Nie] Nielsen, J.W., Dearborn, E.F., “The Growth of Single Crystals of Magnetic Garnets”, J. Phys. Chem.<br />

Solids, 5, 202–207 (1958) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, 8)<br />

[1961Hoo] Van Hook, H.J., “<strong>Phase</strong> Relations in the System Fe 2O 3-Fe 3O 4-YFeO 3 in Air”, J. Am. Ceram. Soc., 44(5),<br />

208–214 (1961) (Experimental, <strong>Phase</strong> Diagram, 6)<br />

[1962Hoo] Van Hook, H.J., “<strong>Phase</strong> Relations in the <strong>Ternary</strong> <strong>Systems</strong> Fe 2O 3-FeO-YFeO 3”, J. Am. Ceram. Soc., 45(4),<br />

162–165 (1962) (Experimental, <strong>Phase</strong> Diagram, 9)<br />

[1963Ber] Beretka, J., “Differential Thermal Analysis of Yttrium Iron Garnet”, J. Phys. Chem. Solids, 24(1), 169–171<br />

(1963) (Experimental, <strong>Phase</strong> Relations, 3)<br />

[1965Cop] Coppens, P., Eibschutz, M., “Determination of the Crystal Structure of Yttrium Orthoferrite <strong>and</strong><br />

Refinement of Gadolinium Orthoferrite”, Acta Crystallogr., 19, 524–531 (1965) (Crys. Structure,<br />

Experimental, 13)<br />

[1973Buz] Buzek, Z., “Effect of <strong>Alloy</strong>ing Elements on the Solubility <strong>and</strong> Activity of Oxygen <strong>and</strong> Sulphur in Liquid<br />

Iron at 1600˚C”, Int. Symp. Metall. Chem. - Appl. Ferrous Metall., Sheffield, July 1971, Iron <strong>and</strong> Steel Inst,<br />

London, 173–177 (1973) (<strong>Phase</strong> Relations, Thermodyn., Review, 8)<br />

[1975Lev] Levin, E.M., McMurdie, H.F., <strong>Phase</strong> <strong>Diagrams</strong> for Ceramists, Am. Ceram. Soc. Vol. 3, p. 44, Fig. 4212<br />

(1975), as quoted in Cassedanne, J., Compt. Rend. Acad. Sci., Paris, 252, 3262 (1961)<br />

[1975Kim] Kimizuka, N., Katsura, T., “St<strong>and</strong>ard Free Energy of Formation of YFeO 3,Y 3Fe 5O 12, <strong>and</strong> a New<br />

Compound YFe 2O 4 in the Fe-Fe 2O 3-Y 2O 3 System at 1200˚C”, J. Solid State Chem., 13, 176–181 (1975)<br />

(Experimental, Thermodyn., <strong>Phase</strong> Diagram, 8)<br />

[1976Dar] Dariel, M.P., Pickus, M.R., “Structural <strong>and</strong> Magnetic Study of Some Oxygen Stabilised Rare-Earth-Iron<br />

Intermetallic Compounds”, J. Less-Common Met., 50, 125–137 (1976) (Crys. Structure, Experimental,<br />

18)<br />

[1977Tre] Tretyakov, Yu.D., Kaul, A.R., Portnoy, V.K., “Formation of Rare Earth <strong>and</strong> Yttrium Orthoferrites:<br />

A Thermodynamic Study”, High Temp. Sci., 9, 61–70 (1977) (Experimental, <strong>Phase</strong> Relations, Thermodyn.,<br />

19)<br />

[1978Kat] Katsura, T., Sekine, K., Kitayama, K., Sugihara, T., Kimizuka, N., “Thermodynamic Properties of<br />

Fe-Lanthanoid-O Compounds at High Temperatures”, J. Solid State Chem., 23, 43–57 (1978) (<strong>Phase</strong><br />

<strong>Diagrams</strong>, Thermodyn., Review, 24)<br />

[1978Pie] Piekarczyk, W., Weppner, W., Rabenau, A., “Dissociation Pressure <strong>and</strong> Gibbs Energy of Formation of<br />

Y 2Fe 5O 12 <strong>and</strong> YFeO 3”, Mater. Res. Bull., 13, 1077–1083 (1978) (Experimental, Thermodyn., 11)<br />

[1979Pie] Piekarczyk, W., Weppner, W., Rabenau, A., “Solid State Electrochemical Study of <strong>Phase</strong> Equilibria <strong>and</strong><br />

Thermodynamics of the <strong>Ternary</strong> System Y-Fe-O at Elevated Temperatures”, Z. Naturforsch. A, 34(4),<br />

430–436 (1979) (Experimental, <strong>Phase</strong> Diagram, Thermodyn., 23)<br />

[1980Mat] Matsui, Y., “Extra Electron Reflections Observed in YFe 2O 4, YbFe 2O 4,Yb 2Fe 3O 7 <strong>and</strong> Yb 3Fe 4O 10”,<br />

J. Appl. Crystallogr., 13, 395–397 (1980) (Crys. Structure, Experimental, 8)<br />

[1980Vor] Vorobev, Yu.P., Dragoshanskaya, T.I., Matskevich, S.L., Men, A.N., “Determination of Departure of<br />

Y 3Fe 5O 12, Gd 3Fe 5O 12 <strong>and</strong> Y 1.5Gd 1.5Fe 5O 12 from Stoichiometry at 800-1400˚C”, Inorg. Mater., 16(6),<br />

754–758 (1980), translated from Izv. Akad.. Nauk SSSR, Neorgan. Mater., 16(6), 1083–1087 (1980) (Crys.<br />

Structure, Experimental, 20)<br />

[1983Fet] Fetisov, V.B., Dvinina, M.A., Vorobev, Yu.P., Sapozhnikova, T.V., Shapovalov, A.G., Pankov, Yu.V.,<br />

Sovkov, V.E., Men, A.N., “<strong>Phase</strong> Equilibria in the Y-Fe-O System at 1270K”, Inorg. Mater., 19(11),<br />

1650–1652 (1983), translated from Izv. Akad. Nauk SSSR, Neorgan. Mater., 19(11), 1871–1874 (1983)<br />

(<strong>Phase</strong> Relations, Experimental, 12)<br />

DOI: 10.1007/978-3-540-70890-2_23 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Y 23<br />

17<br />

[1983Kim] Kimizuka, N., Yamamoto, A., Ohashi, H., Sugihara, T., Sekine, T., “The Stability of the <strong>Phase</strong>s in the<br />

Ln 2O 3-FeO-Fe 2O 3 <strong>Systems</strong> which are Stable at Elevated Temperatures (Ln: Lanthanide Elements <strong>and</strong><br />

Y)”, J. Solid State Chem., 49, 65–76 (1983) (Review, Thermodyn., 30)<br />

[1984Pie] Piekarczyk, W., Rabenau, A., Weppner, W., “Relations between the Thermodynamic Potentials for the<br />

Formation of Yttrium <strong>and</strong> Rare Earth Iron Perovskites <strong>and</strong> Garnets <strong>and</strong> the Ionic Radii of Yttrium <strong>and</strong><br />

the Rare Earth Elements”, (in German), Z. Anorg. Allg. Chem., 516, 153–158 (1984) (Review, Calculation,<br />

Thermodyn., 22)<br />

[1985Sko] Skolis, Yu.Ya., Kitsenko, S.V., Levitskii, V.A., “Measurement of the Thermodynamic Properties of<br />

Yttrium Ferrites by the E.m.f. Method with a Solid Fluoride-ion Electrolyte”, Russ. J. Phys. Chem., 59(9),<br />

1403–1404 (1985), translated from Zh. Fiz. Khim., 59(9), 2356–2358 (1985) (Experimental, Thermodyn.,<br />

9)<br />

[1985Tin] Ting, D., Longmei, W., “Thermodynamics of Fe-Y-S, Fe-Y-O <strong>and</strong> Fe-Y-S-O Metallic Solutions”, J. Less-<br />

Common Met., 110, 179–185 (1985) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 10)<br />

[1987Lon] Longmei, W., Ting, D., Kexiang, Y., “A Study of Thermodynamics <strong>and</strong> <strong>Phase</strong> Equilibria in Order to<br />

Predict the Behavior of Yttrium in Iron <strong>and</strong> Steel”, Inorg. Chim. Acta, 140(1-2), 189–191 (1987)<br />

(Experimental, <strong>Phase</strong> Relations, Thermodyn., 8)<br />

[1988Pie] Piekarczyk, W., “Thermodynamic Model of Chemical Vapour Transport <strong>and</strong> its Application to some<br />

<strong>Ternary</strong> Compounds”, J. Cryst. Growth, 89, 267–286 (1988) (Experimental, Review, Calculation, Thermodyn.,<br />

27)<br />

[1989Rag] Raghavan, V., “The Fe-O-Y (Iron-Oxygen-Yttrium) System”, <strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s, Ind.<br />

Inst. Metals, Calcutta, 5, 355–365 (1989) (<strong>Phase</strong> Diagram, Crys. Structure, Review, 22)<br />

[1990Car] Carlson, O.N., “The O-Y (Oxygen-Yttrium) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 11(1), 61–66, (1990)<br />

(<strong>Phase</strong> Diagram, Crys. Structure, Thermodyn., Calculation, 28)<br />

[1991Sun] Sundman, B., “An Assessment of the Fe-O System”, J. <strong>Phase</strong> Equilib., 12(1), 127–140 (1991) (<strong>Phase</strong><br />

Diagram, Thermodyn., Assessment, Calculation, 53)<br />

[1992Boc] Bocquet, A.E., Fujimori, A., Mizokawa, T., Saitoh, T., Namatame, H., Suga, S., Kimizuka, N., Takeda, Y.,<br />

Takano, M., “Electronic Structure of SrFe 4+ O 3 <strong>and</strong> Related Fe Perovskite Oxides”, Phys. Rev. B, 45(4),<br />

1561–1570 (1992) (Experimental, Electronic Structure, 35)<br />

[1992Zha] Zhang, W., Liu, G., Han, K., “The Fe-Y (Iron-Yttrium) System”, J. <strong>Phase</strong> Equilib., 13(3), 304–308 (1992)<br />

(<strong>Phase</strong> Diagram, Crys. Structure, Review, 29)<br />

[1995Ish] Ishii, F., Ban-ya, S., “Equilibrium between Yttrium <strong>and</strong> Oxygen in Liquid Iron <strong>and</strong> Nickel”, ISIJ Int.,<br />

35(3), 280–285 (1995), translated from Tetsu to Hagane, 80(5), 359–364 (1994) (<strong>Phase</strong> Relations,<br />

Thermodyn., Experimental, 29)<br />

[1995Kow] Kowalski, M., Spencer, P.J., “Thermodynamic Revaluation of the Cr-O, Fe-O <strong>and</strong> Ni-O <strong>Systems</strong>:<br />

Remodelling the Liquid, BCC <strong>and</strong> FCC <strong>Phase</strong>s”, Calphad, 19(3), 229–243 (1995) (Assessment, <strong>Phase</strong><br />

Diagram, Thermodyn., Review, 47)<br />

[1996Par] Parkin, I.P., Komarov, A.V., Fang, Q., “Alternative Solid State Routes to Mixed Metal Oxides (LnCrO3,<br />

LnFeO 3)”, Polyhedron, 15(18), 3117–3121 (1996) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 10)<br />

[1997Ost] Ostorero, J., Gasgnier, M., Petit, A., “Yttrium Iron Garnet <strong>and</strong> Y, Fe Oxides Synthesized by Microwave<br />

Monomode Energy Transfert”, J. <strong>Alloy</strong>s Compd., 262/263, 275–280 (1997) (Crys. Structure, <strong>Phase</strong><br />

Relations, Experimental, 17)<br />

[1998Niu] Niu, Y., Yan, R.Y., Fu, G.Y., Wu, W.T., Gesmundo, F., “The Oxidation of two Fe-Y <strong>Alloy</strong>s under Low<br />

Oxygen Pressures at 600-800˚C”, Oxid. Met., 49, 91–114 (1999) (Experimental, <strong>Phase</strong> Relations,<br />

Kinetics, 26)<br />

[1999Cau] Caudron, E., Buscail, H., Riffard, F., “Initial Oxidation Stages of Yttrium-Implanted Pure Iron at 700˚C<br />

by In-situ High Temperature X-Ray Diffraction”, Eur. Phys. J. - Applied Phys., 8(3), 233–240 (1999)<br />

(Experimental, <strong>Phase</strong> Relations, Kinetics, 38)<br />

[1999Li] Li, Y.S., Niu, Y., Gesmundo, F., “High Temperature Scaling of Binary Fe-Y <strong>Alloy</strong>s in Pure Oxygen”, High<br />

Temp. Mater. Proc., 18(3), 185–195 (1999) (Experimental, <strong>Phase</strong> Relations, Kinetics, 29)<br />

[2000Kuz] Kuznetsov, M.V., Pankhurst, Q.A., Parkin, I.P., Affleck, L., Morozov, Y.G., “Self-Propagating High<br />

Temperature Synthesis of Yttrium Iron Chromium Garnets Y 3Fe 5–xCr xO 12 (x < 0 < 0.6)”, J. Mater.<br />

Chem., 10, 755–760 (2000) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 30)<br />

[2000Pet] Petras, L., Preisinger, A., “Reaction Kinetics of Yttrium Iron Garnet Formation in Air up to 1400˚C”,<br />

Mater. Sci. Forum, 321–324, 368–373 (2000) (Experimental, <strong>Phase</strong> Relations, Kinetics, 4)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_23<br />

ß Springer 2009


18 23<br />

Fe–O–Y<br />

[2000Tak] Taketomi, S., Sai, Z.R., Ohuchi, F.S., “Electron Diffraction of Yttrium Iron Oxides Nanocrystals<br />

Prepared by the Alkoxide Method”, J. Magn. Magn. Mater., 217, 5–13 (2000) (Experimental, <strong>Phase</strong><br />

Relations, Morphology, Nano, 22)<br />

[2001Cau] Caudron, E., Buscail, H., “Initial Stages of Oxidation of Yttrium-Implanted Pure Iron <strong>and</strong> Various<br />

Steels at 700˚C under Low Oxygen Partial Pressure”, Corros. Sci., 43(8), 1477–1495 (2001) (Experimental,<br />

<strong>Phase</strong> Relations, Kinetics, 39)<br />

[2001Pee] Peelamedu, R.D., Roy, R., Agrawal, D.K., “Reaction Kinetics <strong>and</strong> Anisothermal Effects in Microwave<br />

Fields: System Y 2O 3-Fe 3O 4”, J. Mater. Res., 16(10), 2770–2772 (2001) (Experimental, <strong>Phase</strong> Relations,<br />

Kinetics, 13)<br />

[2002Nag] Nagashio, K., Kuribayashi, K., “<strong>Phase</strong> Selection in the Undercooled Peritectic Y 3Fe 5O 12 Melt”, Acta<br />

Mater., 50, 1973–1981 (2002) (Experimental, <strong>Phase</strong> Relations, Transport Phenomena, 27)<br />

[2003Che] Chen, C., Hu, C.C., “Quantitative Analysis of YIG, YFeO 3 <strong>and</strong> Fe 3O 4 in LHPG-Grown YIG Rods”,<br />

J. Cryst. Growth, 249, 245–250 (2003) (Crys. Structure, <strong>Phase</strong> Relations, Magn. Prop., 12)<br />

[2003Lom] Lomako, I.D., Pavlov, V.I., Shishkin, N.Ya., “Transport Properties of Y 3Fe 5O 12 Garnet Crystals”,<br />

Crystallography Reports, 48(1), 116–123 (2003), translated from Kristallografiya, 48(1), 121–129<br />

(2003), (Experimental, Electric Prop., Transport Phenomena, 22)<br />

[2004Kit] Kitayama, K., Sakaguchi, M., Takahara, Y., Endo, H., Ueki, H., “<strong>Phase</strong> Equilibrium in the System<br />

Y-Fe-O at 1100˚C”, J. Solid State Chem., 177(6), 1933–1938 (2004) (Experimental, <strong>Phase</strong> Diagram,<br />

Thermodyn., 17)<br />

[2004Li] Li, C., Soh, K.C.K., Wu, P., “Formability of ABO 3 Perovskites”, J. <strong>Alloy</strong>s Compd., 372, 40–48 (2004)<br />

(Crys. Structure, Theory, 28)<br />

[2004Sug1] Sugasava, M., Kikukawa, N., Nagano, Y., Kayano, N., Kimura, T., “Characterisation of the Y-Fe-O<br />

Ultrafine Particles Containing a New Compound YFe 3+xO 1.5(4+x) Sythesized by rf Thermal Plasmas”,<br />

Ceramic Intl., 30(4), 515–523 (2004) (Crys. Structure, Magn. Prop., Experimental, 13)<br />

[2004Sug2] Sugasava, M., Kikukawa, N., Nagano, Y., Kayano, N., Kimura, T., “Magneic Properties of Y-Fe-O<br />

Ultrafine Particles YFe 3+xO 1.5(4+x) Sythesized by rf Thermal Plasma”, Ceramic Intl., 30(8), 2191–2201<br />

(2004) (Crys. Structure, Magn. Prop., M‘ssbauer, Experimental, 16)<br />

[2004Wu] Wu, L., Yu, J.C., Zhang, L., Wang, X., Li, S., “Selective Self-propagating Combustion Synthesis of<br />

Hexagonal <strong>and</strong> Orthorhombic Nanocrystalline Yttrium Iron Oxide”, J. Solid State Chem., 177(10),<br />

3666–3674 (2004) (Crys. Structure, Experimental, Magn. Prop., Morphology, Nano, <strong>Phase</strong> Relations,<br />

43)<br />

[2007Hos] Hosseini Vajargah, S., Madaah Hosseini, H.R., Nemati, Z.A., “Preparation <strong>and</strong> Characterization of<br />

Yttrium Iron Garnet (YIG) Nanocrystalline Powders by Auto-Combustion of Nitrate-Citrate Gel”,<br />

J. <strong>Alloy</strong>s Compd., 430(1-2), 339–343 (2007) (Crys. Structure, Experimental, Nano, 18)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_23 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Oxygen – Zirconium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Olga Fabrichnaya<br />

Introduction<br />

Fe–O–Zr 24<br />

1<br />

The ZrO 2 <strong>and</strong> FeO are the major components in systems significant for underst<strong>and</strong>ing<br />

whether refractories would react with metallurgical slag <strong>and</strong> whether the melt in the active<br />

zone of a nuclear reactor would react with its housing material <strong>and</strong> with a device designed to<br />

keep the melt in active zone of a reactor in case of severe nuclear accident. The phase relations<br />

in the Zr-Fe-O system are also of interest because of deoxidation <strong>and</strong> inclusion shape control<br />

in steels. Stabilized ZrO 2 are widely used as oxygen sensors [2001Cao]. Fe 2O 3 stabilization of<br />

ZrO 2 decreases operating temperature down to 320˚C. The ZrO 2-Fe 2O 3 samples prepared by<br />

co-precipitation followed by calcination revealed catalytic activity for different organic chemistry<br />

reactions [1981Jin, 1993Wu].<br />

The phase relations in the FeO-ZrO 2 system were experimentally studied in an inert<br />

atmosphere by [1957Fis]. Recently the phase relations in this system were studied by<br />

[2006Bec] <strong>and</strong> [2006Bes] under an inert atmosphere <strong>and</strong> the eutectic temperature <strong>and</strong><br />

composition were refined. [1967Jon] presented a phase diagram of the ZrO 2-Fe 3O 4 system.<br />

[1975Kat] used thermogravimetric analysis in oxygen controlled atmosphere <strong>and</strong> presented<br />

the isothermal section of the ZrO 2-FeO-Fe 2O 3 system at 1200˚C. [1987Kim] <strong>and</strong> [1988Kim]<br />

studied the ZrO2-FeO-Fe2O3 system using thermogravimetry at air condition <strong>and</strong> partial<br />

oxygen pressure of 2.1·10 2 Pa.<br />

[2002Pet] studied the ZrO 2-FeO-Fe 2O 3 system at air conditions in the temperature range<br />

of 1870-2230˚C <strong>and</strong> found liquid immiscibility in the composition range 34-82 mass% ZrO 2.<br />

The liquidus surface <strong>and</strong> phase diagram of the ZrO 2-FeO 1.357 join were calculated by [2002Pet]<br />

using regular solution model.<br />

The solubility of oxygen in Fe-Zr melts was experimentally studied by equilibration<br />

technique in [1965Buz, 1973Buz, 1974Fru, 1976Jan]. Minimum solubility of oxygen (0.0008<br />

mass% O) was found by [1974Fru] at 0.08 mass% Zr <strong>and</strong> 1680˚C. Oxygen activity in Fe-Zr<br />

melts was measured by emf method in [1973Tep, 1976Jan].<br />

Investigation of thermal stability <strong>and</strong> properties of the ZrO 2-Fe 2O 3 solid solutions produced<br />

by high-energy ball milling at room temperature was performed by [1996Ton, 2000Cao,<br />

2001Cao, 2002Cao, 2006Fig].<br />

Co-precipitation method was used in several studies [1977Heu, 1997Nar, 1999Ste,<br />

2000Laj, 2000Ste, 2001Ste] to produce an amorphous phase in the ZrO 2-Fe 2O 3 system. The<br />

microstructures <strong>and</strong> phase development were observed for different temperatures <strong>and</strong> times of<br />

heat treatment. It was shown that in this system metastable phases were formed first, which<br />

transform to the stable phases during heat treatment.<br />

An evaluation of the experimental data for the Fe-O-Zr system was performed by<br />

[1989Rag1] <strong>and</strong> the isothermal section at 1000˚C was constructed as well as the solubility<br />

curves of oxygen at 1680 <strong>and</strong> 1800˚C based on the available experimental data of [1974Fru,<br />

1967Buz].<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


2 24<br />

Fe–O–Zr<br />

Wagner’s formalism was used in studies of [1965Buz, 1967Buz, 1973Buz, 1974Fru,<br />

1976Jan, 1986Gho] to calculate interaction parameters <strong>and</strong> deoxidation constant.<br />

[2004Hua] made a Calphad-type assessment for the Fe-O-Zr system using ionic model for<br />

the liquid description. However experimental data on the Fe solubility in βZrO 2 <strong>and</strong> γZrO 2<br />

were not taken into account as well as Zr solubility in hematite <strong>and</strong> magnetite phases. The<br />

derived database was used to calculate solubility of oxygen in Fe-Zr melt. [2004Jun] used<br />

associate model to calculate solubility curves at 1600 <strong>and</strong> 1680˚C as well as activity of oxygen<br />

in Fe-Zr melt.<br />

Experimental studies <strong>and</strong> modelling in the Fe-O-Zr system are summarized in Table 1.<br />

Binary <strong>Systems</strong><br />

The Fe-Zr binary system is accepted from the experimental study of [2002Ste]. In this study it<br />

was shown that the Fe23Zr6 phase shown by [Mas2] is oxygen stabilized <strong>and</strong> is not an<br />

equilibrium phase. According to [2002Ste] the Zr 2Fe phase is stable in a quite narrow<br />

temperature range of 780-951˚C, while according to [Mas2] it is stable below 974˚C. The<br />

phase diagram of the Fe-O system is accepted from [1991Sun]. The thermodynamic assessment<br />

of [1991Sun] gives results very close to [Mas2]. The phase diagram of the Zr-O system is<br />

accepted from a thermodynamic assessment of Wang et al. [2004Wan, 2006Wan] which is in<br />

good agreement with [Mas2].<br />

Solid <strong>Phase</strong>s<br />

The crystallographic data for solid phases are listed in Table 2. Polymorphic modifications of<br />

ZrO 2 dissolve some amount of FeO [2006Bes]. The cubic phase γZrO 2 with the fluorite<br />

structure dissolves up to 13 mol% FeO at T~1800˚C <strong>and</strong> the tetragonal phase βZrO 2 up to<br />

2.2 mol% at 1332˚C. According to [1957Fis] the FeO solubility in the tetragonal phase is<br />

higher (6.7 <strong>and</strong> 5 mol% FeO at 1450 <strong>and</strong> 1800˚C, respectively). It should be mentioned that a<br />

tetragonal phase t’ obtained by fast quenching from high temperature forms by diffusionless<br />

mechanism <strong>and</strong> differs in the unit cell parameters from the tetragonal phase obtained by slow<br />

cooling (equilibrium phase). For the t’ phase the c/a ratio is slightly above 1. Probably, in fact,<br />

[2006Bes] obtained the t’ phase, therefore the unit cell parameters were different from βZrO 2.<br />

The monoclinic phase αZrO 2 does not dissolve any detectable amount of FeO. Fe xOwüstite<br />

does not dissolve any detectable amount of ZrO 2 [1989Rag1]. According to [1975Kat]<br />

magnetite Fe 3O 4+x dissolves ~2.7 mol% of ZrO 2. Kiminami [1987Kim, 1988Kim] reported<br />

data on the reaction of decomposition of magnetite to hematite. The temperature of this<br />

reaction increases from 1300 to 1437˚C with an increase of the partial pressure of oxygen<br />

from 2·10 2 to 2·10 4 Pa accompanied by an increase of the solubility of ZrO 2 in Fe 2O 3 from 2 to<br />

6 mol% <strong>and</strong> decrease of the solubility of Fe 2O 3 in ZrO 2 from 8 to 3 mol% of Fe 2O 3. The results<br />

of [1967Jon] on the solubility of ZrO 2 in hematite <strong>and</strong> magnetite <strong>and</strong> solubility of Fe 3O 4 in<br />

ZrO 2 are in reasonable agreement with [1987Kim]. [2002Pet] found the maximal solubility of<br />

FeO 1.357 in the monoclinic ZrO 2 as high as 6.6 mass% <strong>and</strong> maximal solubility of ZrO 2 in Fe 3O 4<br />

as high as 2.5 mass%. The iron oxide solubility in monoclinic ZrO 2 seems to be too high <strong>and</strong><br />

probably refers to another modification of ZrO2.<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


[2002Kov] reported solid solutions Zr 3FeO x of the BRe 3 type forming at 800˚C in the range<br />

of x = 0-1.<br />

[1960Nev] found a Ti 2Ni type cubic ternary compound τ 1 with a small homogeneity range<br />

(Zr 2Fe) 1–xO x stable at 1000˚C. The maximal concentration of oxygen in this compound was<br />

around 10 mol%. The same structure TiNi 2 was reported by [1967Hol] <strong>and</strong> by [1998Zav] after<br />

annealing at 800-1000˚C in the purified Ar. The composition of the τ 1 phase determined by<br />

[1998Zav] (Zr4Fe2O0.6) was close to the data of [1967Hol] (Zr6Fe3O) <strong>and</strong> [1960Nev]. A cubic<br />

ternary compound of ZrFe2.67O0.67 was mentioned by [1989Rag1] by mistake referring<br />

[1984Pap]. The compound studied by [1984Pap] is oxifluoride <strong>and</strong> it is not relevant to the<br />

Fe-O-Zr system. [2001Wu] reported on the synthesis of iron zirconate by aging at 850˚C of<br />

sintered mixture of ZrO 2 <strong>and</strong> αFe 2O 3. This phase with the Zr/Fe ratio of approximately 1 has<br />

the monoclinic crystallographic symmetry <strong>and</strong> it is most probably metastable.<br />

Quasibinary <strong>Systems</strong><br />

[1957Fis] experimentally studied the phase relations in the FeO-ZrO 2 system. It is a simple<br />

eutectic system with no significant solubility of ZrO 2 in FeO <strong>and</strong> small solubility of iron oxide<br />

in ZrO 2. Later this system was studies by [2006Bec, 2006Bes]. The position of the eutectic<br />

point was refined at 1332˚C <strong>and</strong> 10.3 mol% ZrO 2. The maximal solubility of FeO in the<br />

tetragonal ZrO2 (βZrO2) was determined as 2.2 mol% FeO at 1332˚C. The obtained temperature<br />

is in agreement with [1957Fis], while eutectic composition (ZrO 2 content) is higher than<br />

one obtained by [1957Fis]. The position of the metatectic reaction γZrO 2 Ð βZrO 2+L was<br />

approximately determined by [2006Bes] at the temperature of 1800˚C or below with the<br />

maximal solubility of FeO in the cubic ZrO 2 (γZrO 2) ~13 mol%. The experimental phase<br />

diagram of the ZrO 2-FeO system from the work of [2006Bes] is presented in Fig. 1. Strictly<br />

speaking this system is not quasibinary because metallic Fe was in equilibrium with FeO.<br />

The ZrO 2-Fe 2O 3 system was extensively studied in many works [1977Heu, 1996Pop,<br />

1997Nar, 1999Ste, 2000Ste, 2001Ste], but many of them dealt with metastable phase formations<br />

at low temperature (500-900˚C). An equilibrium study was performed at 1100˚C by<br />

[1996Pop] <strong>and</strong> the maximal mutual solubility of ZrO 2 <strong>and</strong> Fe 2O 3 was determined by XRD. It<br />

was up to 2 mol% of Fe 2O 3 in the monoclinic ZrO 2 (αZrO 2) <strong>and</strong> 1 mol% of ZrO 2 in αFe 2O 3.<br />

For the composition range between 2 <strong>and</strong> 99 mol% Fe 2O 3 two solid solution phases αZrO 2<br />

<strong>and</strong> αFe 2O 3 were found in equilibrium.<br />

Invariant Equilibria<br />

The data on the invariant reactions obtained by [2006Bes] <strong>and</strong> [1967Jon] are presented<br />

in Table 3. [1991Zhu] studied a eutectoid reaction in the Zr-Fe-O (0.98 mass% Fe,<br />

0.21 mass% O) alloy using DTA, but these data are not accepted in the present evaluation<br />

due to difference in the transformation temperatures in pure Zr <strong>and</strong> Fe-Zr system.<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

Fe–O–Zr 24<br />

3<br />

The liquidus surface in the ZrO 2-FeO-Fe 2O 3 was calculated by [2002Pet]. However, the<br />

thermodynamic data were not presented by [2002Pet] <strong>and</strong> polymorphic transformations in<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


4 24<br />

Fe–O–Zr<br />

ZrO 2 were not taken into account. The ZrO 2 phase with the hexagonal structure found by<br />

[2002Pet] seems to be erroneous. The monovariant line FeO+Fe 3O 4+L was missing. Therefore<br />

the calculated liquidus surface <strong>and</strong> invariant reactions from [2002Pet] are not presented in this<br />

evaluation. According to the calculations of [2002Pet] there is a quite large liquid miscibility<br />

gap starting in the ZrO 2-Fe 2O 3 system extending into the ternary system up to 40 mass% of<br />

FeO. The presence of the miscibility gap was also confirmed by the experimental studies<br />

performed in [2002Pet]. However, it should be mentioned that the miscibility gap was not<br />

indicated in other ZrO 2 based systems (see [2005ACS]). It is not clear why the miscibility gap<br />

appears only in the ZrO 2-Fe 2O 3 system, but not in the ZrO 2-Al 2O 3. It should be also<br />

mentioned that the samples investigated by [2002Pet] contained a remarkable amount of<br />

impurities.<br />

Isothermal Sections<br />

The isothermal section of the Fe-O-Zr system at 1000˚C presented in Fig. 2 is from the<br />

evaluation of [1989Rag1] who took into account data of [1960Nev] <strong>and</strong> data of [1975Kat]<br />

obtained at 1200˚C with the corrected solubility of Zr in magnetite ~0.3 at.% at 1000˚C instead<br />

of 0.8 at.% at 1200˚C. Some corrections were made in Fig. 2 according to the accepted binary<br />

Fe-Zr system. The isothermal section in the ZrO 2-FeO-Fe 2O 3 system at 1200˚C from<br />

[1975Kat] is shown in Fig. 3. The solubility of FeO in ZrO 2 <strong>and</strong> ZrO 2 in Fe 2O 3 was not<br />

determined. The isothermal section at 1437˚C at air oxygen partial pressure from [1987Kim]<br />

<strong>and</strong> at T ≤1380˚C at p(O2) = 2.1·10 2 Pa from [1988Kim] are presented in Figs. 4a <strong>and</strong> 4b.<br />

Temperature – Composition Sections<br />

The system Fe 3O 4-ZrO 2 was studied by [1967Jon]. Two invariant reactions an eutectic <strong>and</strong> a<br />

peritectic were found at 1525 <strong>and</strong> 1434˚C, respectively. The phase diagram from [1967Jon] is<br />

presented in Fig. 5. At high temperatures the phase diagram is shown tentatively <strong>and</strong> the<br />

cubic-tetragonal transformation was not presented. As mentioned in the section of Solid<br />

<strong>Phase</strong>s, according to [1967Jon], the ZrO 2 phase dissolved ~6 mol% of Fe 3O 4 <strong>and</strong> the Fe 3O 4<br />

<strong>and</strong> Fe 2O 3 phases dissolve limited amount of ZrO 2. However, it was not indicated which ZrO 2<br />

modification participate in the equilibrium. The data of [1987Kim] indicated that the<br />

solubility of ZrO 2 in Fe 2O 3 increases the temperature of decomposition of hematite to<br />

magnetite <strong>and</strong> oxygen from 1380 to 1437˚C in air condition, that is in agreement with<br />

[1967Jon] within uncertainty limits. [1988Kim] studied a reaction of the hematite decomposition<br />

at lower partial pressure of oxygen (p(O2)=2.1·10 2 Pa) than in [1987Kim] <strong>and</strong> it was<br />

found that due to the solubility of ZrO2 in hematite the temperature of its decomposition<br />

increased from 1265˚C in pure Fe-O system to 1300˚C in the ZrO 2 containing system.<br />

Thermodynamics<br />

The effect of Zr in liquid iron on oxygen activity along liquid/ZrO 2 equilibrium was experimentally<br />

studied by emf method in [1973Tep] <strong>and</strong> [1976Jan]. The experimentally determined<br />

oxygen content in the Fe-Zr melts by [1976Jan] was higher than the calculated from the<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


activity data using Wagner’s formalism. The calculation of [2004Jun] based on the associate<br />

model reproduce experimental data on oxygen activity very well. The calculated activities of<br />

oxygen in the Fe-Zr liquid alloys at 1550-1650˚C from [2004Jun] are presented in Fig. 6. The<br />

calculated oxygen solubility at 1600 <strong>and</strong> 1680˚C in the composition range 0.1-1.5 mass% Zr by<br />

[2004Jun] is in reasonable agreement with the experimental data of [1976Jan] <strong>and</strong> [1974Fru],<br />

respectively. However, at lower Zr content the calculated solubility is lower than that measured<br />

experimentally. It should be mentioned that there is a large scatter in the experimental data on<br />

the solubility of oxygen in [1965Buz] <strong>and</strong> [1976Jan].<br />

The calculated activity <strong>and</strong> solubility of oxygen in molten Fe based on partially ionic<br />

liquid model by [2004Hua] seems to be inconsistent with experimental data. The calculated<br />

O solubility [2004Hua] is one order of magnitude lower than the experimental data <strong>and</strong><br />

the calculated minimum of oxygen solubility is at much higher Zr content. This implies<br />

that the measured O-Zr interaction is much stronger that predicted by the modelling of<br />

[2004Hua].<br />

Fruehan [1974Fru] applied Wagner’s formalism for dilute solutions to derive e Zr O =–3<br />

<strong>and</strong> K O Zr = 3.5·10 –8 using his own experimental data on oxygen solubility in Fe-Zr melt.<br />

[1986Gho] treated experimental data of [1974Fru] using Wagner’s formalism to calculate<br />

first <strong>and</strong> second order interaction parameters as well as deoxidation constant at 1680˚C.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–O–Zr 24<br />

5<br />

ZrO2 based oxygen gas sensors have wide applications [2000Tan, 2001Cao, 2002Cao].<br />

[2000Tan] prepared nanostructured non-equilibrium solid solution in the ZrO2-Fe2O3 system<br />

by high-energy ball milling <strong>and</strong> annealing at 400-650˚C <strong>and</strong> studied gas sensing properties.<br />

According to [2001Cao] the ZrO 2-Fe 2O 3 oxygen sensors obtained by ball milling, annealed at<br />

400-800˚C have low operating temperature of 350˚C. [2000Cao] studied oxygen sensitivity<br />

<strong>and</strong> electric conductivity of 0.8ZrO 2-0.2Fe 2O 3 mixtures depending on time of annealing.<br />

[2001Cao] studied oxygen sensitivity for different annealing temperatures depending on<br />

time of annealing. Additionally, the effect of composition, annealing temperature <strong>and</strong> milling<br />

time on sensitivity were studied. Also the response time for the composition of 0.8ZrO2-<br />

0.2Fe2O3 annealed at 600˚C was quite good for such a low operating temperature as 320˚C.<br />

[2002Cao] used XPS spectra to estimate oxygen vacancy concentration in ZrO 2-Fe 2O 3 solid<br />

solutions obtained by high energy ball milling.<br />

Thin films in the ZrO 2-Fe 2O 3 system were annealed in two stages at 77 <strong>and</strong> 97-997˚C <strong>and</strong><br />

optical properties of these films were studied by [2002Koz]. A decomposition of the solid<br />

solution <strong>and</strong> the formation of Fe 2O 3 was observed with increasing of the annealing temperature<br />

from 427-727˚C. This was accompanied by increase of light absorbtion in the visible<br />

region. The thin films are dielectric with high refractive indexes. They absorb radiation in<br />

210-340 nm <strong>and</strong> 500-800 nm, the latter can be referred to high energy-gap semiconductors.<br />

[1998Zav] studied hydrogenation of Zr 4Fe 2O 0.6 composition <strong>and</strong> magnetic properties of<br />

this compound <strong>and</strong> products of hydrogenation.<br />

[1992Lou] performed thermoelectric-power <strong>and</strong> resistivity measurements to study precipitation<br />

kinetics of the Fe-O-Zr alloys between 450 <strong>and</strong> 600˚C. The correlation between<br />

these two properties was shown due to the precipitation. The solubility of Fe in Zr alloys<br />

between 450 <strong>and</strong> 550˚C depended on the presence of oxygen. Experimental studies of material<br />

properties are presented in Table 4.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


6 24<br />

Fe–O–Zr<br />

Miscellaneous<br />

There are several papers devoted to microstructure <strong>and</strong> phase development during heat<br />

treatment of amorphous precursors obtained by co-precipitation method in the ZrO 2-Fe 2O 3<br />

system [1977Heu, 1997Nar, 1999Ste, 2000Ste, 2001Ste]. [1977Heu] indicated that in the<br />

ZrO2-Fe2O3 system a metastable cubic phase crystallized first then transformed to a stable<br />

phase assemblage by heat treatment. Similar observation was made by [1997Nar]. [1997Nar]<br />

also indicated an amorphous phase first crystallized as a single-phase solid solution appeared<br />

as cubic by XRD <strong>and</strong> tetragonal by electron diffraction. At higher temperatures this phase<br />

transforms to the tetragonal phase <strong>and</strong> γFe 2O 3 (observed only by TEM), which transformed to<br />

αFe 2O 3 at even higher temperatures. Thermal stability of the ZrO 2-Fe 2O 3 amorphous precursors<br />

obtained by co-precipitation from aqueous solutions were studied after calcination at<br />

500-1100˚C by XRD, Raman <strong>and</strong> Mössbauer spectroscopy by [1999Ste, 2000Ste, 2001Ste].<br />

[2000Ste] additionally studied thermal stability under low pressure (4·10 –3 Pa). Amorphous<br />

samples were studied by thermal analysis <strong>and</strong> gravimetry. It was found that incorporation of<br />

Fe +3 stabilized cubic polymorph of ZrO 2 occurring at Fe 2O 3 content ≥10 mol%. The presence<br />

of Fe 2O 3 above solubility limit caused transformation to monoclinic ZrO 2. Terminal solubility<br />

limit of Fe 2O 3 in the ZrO 2 decreased with temperature increase from 33 mol% at 600˚C to 2%<br />

at 1100˚C. Mössbauer spectroscopy indicated incorporation of Zr +4 into αFe 2O 3 structure<br />

decreasing with temperature increase. A comparison of the results obtained at atmospheric<br />

pressure <strong>and</strong> at low pressure showed that Fe +3 destabilized cubic ZrO 2 at low pressure<br />

[2001Ste]. Also, it was found by [2001Ste] that the solubility of Fe2O3 in ZrO2 was higher at<br />

low pressure. The effect of pressure was attributed to the influence of oxygen vacancies<br />

introduced during calcination at low pressure. Nanocrystallized cubic Fe-stabilized zirconia<br />

were prepared by co-precipitation method <strong>and</strong> heat treated at different temperatures between<br />

400 <strong>and</strong> 900˚C in [2000Laj]. It transformed to the tetragonal phase at the temperatures above<br />

800˚C <strong>and</strong> then to the monoclinic phase at 900˚C. An addition of 30 mol% of Fe +3 stabilized<br />

cubic phase above 800˚C in Ar. Higher Fe 2O 3 content resulted in phase separation of hematite.<br />

The greatest thermal stability was found at 20 mol% of Fe +3 . Particle size was a primary factor<br />

determining cubic-tetragonal transformation.<br />

The mixtures of ZrO2-Fe2O3 (16.7 mass% Fe2O3) obtained by high energy ball milling at<br />

room temperature were investigated by XRD <strong>and</strong> TEM in work of [1996Ton]. It was shown<br />

that nanocrystalline structure was forming during milling that enables the formation of the<br />

tetragonal phase. TEM study showed that grains were slading <strong>and</strong> overlapping each other. The<br />

obtained patterns could be ascribed to tetragonal or cubic phases. Cao et al. [2000Cao,<br />

2001Cao, 2002Cao] studied thermal stability, electric conductivity <strong>and</strong> gas sensitivity of<br />

powders obtained by ball milling at room temperature. [2000Cao] showed using XRD, DTA<br />

<strong>and</strong> TEM that after 60 h of milling monoclinic ZrO2 transformed to Fe +3 stabilized cubic<br />

structure which forms to amorphous-like conglomerates at 120 hours of milling. After heat<br />

treatment at 650˚C the Fe +3 expelled from the metastable cubic phase forming αFe 2O 3<br />

[2000Cao]. [2002Cao] obtained XPS spectra <strong>and</strong> calculated oxygen vacancy concentration.<br />

Thermal stability of the ZrO 2-15 mol% Fe 2O 3 solid solutions obtained by ball milling at<br />

room temperature was studies by [2006Fig] using Mössbauer spectroscopy, XRD <strong>and</strong> DTA.<br />

It was shown that all Fe 2O 3 was incorporated in cubic ZrO 2 structure by ball milling,<br />

producing very disrupted solid solution which crystallized in cubic form after annealing at<br />

620˚C. After annealing at 900˚C cubic solid solution decomposed to hematite <strong>and</strong> tetragonal<br />

solid solution. Annealing at 1100˚C results in the formation of the monoclinic ZrO2 phase.<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


The temperature of 900˚C is indicated as a limit of the stability of the tetragonal metastable<br />

solid solution.<br />

[2005Str] studied interaction of stabilized ZrO 2 solutions with Fe 2O 3 at 1750˚C. It was<br />

found that only MgO stabilized cubic zirconia reacted with Fe 2O 3 forming MgFe 2O 4 spinel,<br />

while Ca, Y <strong>and</strong> Nd stabilized ZrO 2 resisted decomposition by Fe 2O 3 attack. Some dissolution<br />

of Fe 2O 3 in cubic structure was indicated.<br />

Influence of Fe2O3 on martensitic transformation of tetragonal to monoclinic phase in the<br />

ZrO2 was studied in works of [1990Kim] <strong>and</strong> [1999Boh].<br />

Supersaturation phenomenon when deoxidation products precipitate from liquid was<br />

studied in Fe-0.04 mass% Zr alloy by [1997Li] by EMF technique in Ar-20 vol% H 2 atmosphere.<br />

Supersaturation ratio (a Zr·a 2 O)ss/(a Zr·a 2 O)eq was found to be equal to 1.3.<br />

. Table 1<br />

Investigations of the Fe-O-Zr <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1957Fis] Equilibrium study, thermal analysis, XRD,<br />

optical microscopy<br />

[1960Nev] Arc melting, annealing in vacuum,<br />

metallography, XRD<br />

[1965Buz],<br />

[1967Buz]<br />

Equilibrium studies, thermodynamic<br />

calculations<br />

[1967Jon] Vertical tube furnace with quenching,<br />

optical microscopy <strong>and</strong> XRD<br />

[1973Buz] Equilibrium studies, thermodynamic<br />

calculations<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

1300-1800˚C in air, ZrO 2-FeO<br />

1000˚C, vacuum 5·10 –5 mm Hg, x < 0.1<br />

1800˚C, Fe-Zr 0.15-1.5 mass% Zr<br />

1250-1600˚C, p(O 2) = 2.1·10 –2 Pa, ZrO 2-<br />

Fe 3O 4<br />

1600˚C Ar, Fe-Zr 0.01-1.85 mass% Zr<br />

[1973Tep] EMF, chemical analysis 1550, 1600 <strong>and</strong> 1650˚C,<br />

0.001-0.3 mass% Zr<br />

[1974Fru] Equilibrium studies in He atmosphere ZrO2 crucibles<br />

1680˚C, Fe-Zr alloys 0.05-1 mass% Zr<br />

[1975Kat] Thermogravimetry (TGA), equilibration<br />

with gas mixture CO 2/H 2, oxygen control<br />

by gas sensors<br />

1200˚C, p(O 2)=10 –3.76 -10 –12.82 atm,<br />

ZrO 2-FeO-Fe 2O 3<br />

[1976Jan] Equilibrium studies, chemical analysis, EMF 1600˚C, Fe-Zr alloys 0.0009-1.7 mass%<br />

Zr<br />

[1977Heu] Co-precipitation, XRD, DTA, dilatometry, IRspectrometry<br />

Fe–O–Zr 24<br />

400-1200˚C, ZrO 2-Fe 2O 3 (0-90 mol%<br />

Fe 2O 3)<br />

[1986Gho] Thermodynamic calculations 1680˚C, Fe-Zr (up to 1 mass% Zr)<br />

[1987Kim] TGA p(O2) = 2.1·10 –2 Pa, T up to 1500˚C<br />

ZrO2-FeO-Fe2O3 [1988Kim] TGA p(O2) = 2.1·10 –4 Pa, T up to 1380˚C<br />

ZrO2-FeO-Fe2O3<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


8 24<br />

Fe–O–Zr<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

[1990Kim] HT-XRD, DTA Up to 1400˚C, ZrO2-Fe2O3 (0-98 mol%<br />

Fe2O3) [1991Zhu] DTA in Ar 792-856˚C, Zr-0.98Fe-0.21O (mass%)<br />

[1996Pop] Co-precipitation, XRD, Mössbauer<br />

spectroscopy<br />

1100˚C, ZrO2-Fe2O3 [1996Ton] High-energy ball milling, XRD, TEM ZrO2-Fe2O3 (16.7 mass% Fe2O3) [1997Li] EMF in Ar-20 vol% H2 1600˚C, supersaturation during<br />

deoxidation <strong>and</strong> ZrO2 precipitation of<br />

Fe-0.04 mass% Zr liquid alloy<br />

[1997Nar] Co-precipitation, XRD, TEM/EDX, SEM 500-1300˚C, ZrO2-Fe2O3 (10-40 mol%<br />

Fe2O3) [1998Zav] Arc-melting in Ar, XRD, Mössbauer<br />

spectroscopy<br />

800 <strong>and</strong> 1000˚C annealing, Zr4Fe2O0.6<br />

[1998Zio] X-ray radial electronic density distribution<br />

spectra<br />

Co-precipitation, calcination at 110<br />

<strong>and</strong> 400˚C, ZrO2-Fe2O3 (Zr:Fe =<br />

0.907:0.093)<br />

[1999Boh] XRD, SEM/EDX 840-950˚C, ZrO 2-Fe 2O 3 (50 mass%)<br />

[2000Laj] XRD, HT-XRD, electron paramagnetic<br />

resonance spectra<br />

Co-precipitation, 400-900˚C heat<br />

treatment, ZrO 2-Fe 2O 3 (5-40 mol%<br />

FeO 1.5)<br />

[2000Cao] High-energy ball milling, XRD, TEM, DTA 200-1000˚C, 0.8ZrO2-0.2αFe2O3<br />

[2000Tan] High-energy ball milling, XRD Annealing 400-650˚C, ZrO 2-Fe 2O 3 with<br />

0-20 mol% ZrO 2<br />

[1999Ste],<br />

[2000Ste],<br />

[2001Ste]<br />

Co-presipitation <strong>and</strong> calcination of<br />

amorphos samples, XRD, Raman, DTA, TGA,<br />

Mössbauer spectroscopy<br />

600-1100˚C calcination, ZrO 2-Fe 2O 3<br />

(0-50 mol% Fe 2O 3)<br />

[2001Cao] High-energy ball milling, XRD, TEM ZrO 2-Fe 2O 3 with 5-25 mol% Fe 2O 3<br />

[2001Wu] XRD, analytical electron microscopy, EDX Sintering of oxide mixture at 1200˚C<br />

<strong>and</strong> aging at 850˚C, Fe/Zr ≈ 1<br />

[2002Cao] High-energy ball milling, XPS ZrO2-Fe2O3 with 5-30 mol% Fe2O3 [2002Kov] XRD Annealing at 800˚C, Zr 3FeO x (x = 0, 0.2,<br />

0.4, 0.6, 0.8, 1)<br />

[2002Pet] Induction melting, XRD, microprobe<br />

analysis, SEM, calculation<br />

Air condition, 1870-2230˚C, ZrO 2-FeO-<br />

Fe 2O 3<br />

[2004Hua] CALPHAD, ionic liquid model 1600, 1680˚C, Zr-Fe-O<br />

[2004Jun] CALPHAD, associate model 1600, 1680˚C, Zr-Fe-O<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[2006Bec]<br />

[2006Bes]<br />

DSC, chemical analysis, visual polythermal<br />

analysis in induction melting in cold<br />

crucible or Galakhov furnace, XRD, SEM/<br />

EDX<br />

[2006Fig] High energy ball milling, Mössbauer<br />

spectra, Perturbed Angular Correlation<br />

spectra, XRD, DTA<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–O–Zr 24<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

1100-2710˚C, inert atm. Ar/He, ZrO 2-<br />

FeO<br />

25˚C, 250-1100˚C (annealing<br />

temperature), Zr 0.7Fe 0.3O 1.85<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(δFe) cI2 a = 293.15 pure Fe at 1390˚C [Mas2]<br />

1538 - 1394 Im3m<br />

W<br />

(γFe) cF4 a = 364.67 pure Fe at 915˚C [V-C2, Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

(αFe) cI2 a = 286.65 pure Fe at 25˚C [Mas2]<br />

< 912 Im3m<br />

W<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

(βZr) cI2 a = 352.4 up to 4 at.% Fe<br />

1855 - 775 Im3m<br />

W<br />

a = 360.9 805˚C 100% Zr [1989She]<br />

(αZr) hP2 a = 323.17 at 25˚C 100% Zr [1989She]<br />

< 863 P63/mmc Mg<br />

c = 514.7<br />

αFe2O3 hR30 ~60 at.% O, ~6 mol% ZrO2 at 1437˚C<br />

< 1457 R3c<br />

[1987Kim]<br />

Al2O3 a = 503.42 ± 0.03<br />

c = 1374.83 ± 0.04<br />

[V-C2]<br />

γFe2O3 cF56 a = 834 [1989Rag2]<br />

Fd3m<br />

MgAl2O4 metastable<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


10 24<br />

Fe–O–Zr<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

FexO cF8 wustite, 0.845 ≤ x ≤ 0.961<br />

1424 - 570 Fm3m<br />

NaCl<br />

a = 435.35 at 1000˚C [V-C2]<br />

Fe3O4+y cF56<br />

Fe3O4 Fd3m magnetite<br />

< 1596 MgAl2O4 57.1 to 58.0 at.% O, ~6 mol% ZrO2 a = 841.1 at 1437˚C [1987Kim]<br />

at 200˚C [V-C2]<br />

ZrFe2 cF24 a = 702 to 709 27.5 to 34.4 at.% Zr [2002Ste]<br />

(h1) Fd3m C15 structure<br />

< 1673 MgCu2<br />

λZrFe2 hP24 a = 495 26.5 to 27 at.% Zr [2002Ste]<br />

(h2) P63/mmc c = 1614 C36 structure<br />

1345 - 1240 MgNi2<br />

Zr2Fe tI12, 66.7 to 67.2 at.% Zr, C16 structure<br />

951 - 780 I4/mmc a = 638 [2002Ste]<br />

CuAl2 c = 560<br />

Zr3FeOx oC16 solid solution 0 ≤ x ≤ 1[2002Kov]<br />

Cmcm a = 332.28 x =1<br />

BRe3 b = 1111.37<br />

c = 872.3<br />

Zr3Fe 74.8 to 75.4 at.% Zr [2002Ste]<br />

≤ 851 a = 332<br />

b = 1100<br />

c = 882<br />

x =0[2002Ste]<br />

Zr6Fe23 cF116 a = 1172 metastable, stabilized by oxygen<br />

Fm3m<br />

Th6Mn23 [2002Ste]<br />

γZrO2 cF12 [1989Rag1], [2006Wan]<br />

2710 - 2311 Fm3m 13 mol% FeO at 1800˚C<br />

CaF2 a = 509 pure ZrO2 [V-C2]<br />

a = 508.5 11.3 mol% FeO [2006Bes]<br />

βZrO2 tP6 up to 2.2 mol% FeO at 1332˚C<br />

2311 - 1094 P42/nmc [2006Bes]<br />

ZrO2 a = 360.55<br />

c = 517.97<br />

pure ZrO2 [V-C2]<br />

t’ (?) a = 507<br />

c = 517<br />

2.2 mol% FeO [2006Bes]<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

αZrO2 mP12 a = 514.15 baddeleyite pure ZrO2 [V-C2]<br />

≤1094 P21/c b = 520.56<br />

ZrO2 c = 531.28<br />

β = 99.30<br />

τ1 (Zr2Fe) 1–xOx cF96 a = 1218.9 60.2-65.6 at.% Zr, 3.1-8.6 at.% O<br />

Fd3m<br />

[1960Nev]<br />

NiTi2 a = 1221 x = 0 metastable [2002Ste]<br />

. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Composition (at.%)<br />

Fe O Zr<br />

γZrO2 Ð βZrO2+L ~1800 p γZrO2 4.53 65.16 30.31<br />

βZrO2 0.67 66.44 32.89<br />

L 36.36 54.54 9.09<br />

L Ð βZrO2+FexO 1332 e L 42.65 52.45 4.9<br />

βZrO2 0.74 66.42 32.84<br />

FexO 49.7 51.30 0<br />

L Ð Fe3O4+y+ZrO2 1525 e L 38.71 58.06 3.23<br />

Fe2O3 Ð Fe3O4+y +O2 (ZrO2) 1434 d Fe2O3 38.52 60.25 1.23<br />

Fe3O4+y 42.49 57.22 0.29<br />

βZrO2 5.56 65.43 29.01<br />

. Table 4<br />

Investigations of the Fe-O-Zr Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1992Lou] Voltage between sample <strong>and</strong> metallic reference<br />

blocks at T <strong>and</strong> T+ΔT temperature, voltage <strong>and</strong><br />

electric current measurements<br />

[1998Zav] Mössbauer spectroscopy, magnetic susceptibility<br />

measurements<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Zr 24<br />

Thermal electric power <strong>and</strong><br />

resistivity of Zr-Fe-O alloys<br />

Magnetic properties<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


12 24<br />

Fe–O–Zr<br />

. Table 4 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[2000Cao] Gas sensing measurement system Oxygen gas sensitivity, electric<br />

conductivity<br />

[2001Cao] Gas sensing measurement system Oxygen gas sensitivity, response<br />

time<br />

[2002Cao] Gas sensing measurement system, XPS Oxygen gas sensitivity <strong>and</strong><br />

concentration of oxygen<br />

vacancies<br />

[2002Koz] Spectrophotometry <strong>and</strong> elipsometry Optical properties of thin films<br />

[2002Sei] Transmission Mössbauer spectroscopy Magnetic properties<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-O-Zr. <strong>Phase</strong> diagram of the FeO-ZrO 2 system<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–O–Zr 24<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


14 24<br />

Fe–O–Zr<br />

. Fig. 2<br />

Fe-O-Zr. Isothermal section at 1000˚C<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Zr 24<br />

. Fig. 3<br />

Fe-O-Zr. Isothermal section of the ZrO 2-FeO-Fe 2O 3 system at 1200˚C together with isobars<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


16 24<br />

Fe–O–Zr<br />

. Fig. 4a<br />

Fe-O-Zr. Isothermal section of the ZrO 2-FeO-Fe 2O 3 system at 1437˚C <strong>and</strong> p(O 2) = 2.1·10 4 Pa<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Zr 24<br />

17<br />

. Fig. 4b<br />

Fe-O-Zr. Isothermal section of the ZrO 2-FeO-Fe 2O 3 system at T ≤ 1380˚C <strong>and</strong> p(O 2) = 2.1·10 2 Pa<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


18 24<br />

Fe–O–Zr<br />

. Fig. 5<br />

Fe-O-Zr. <strong>Phase</strong> diagram for the Fe 3O 4-ZrO 2 system from [1967Jon] in air. The β Ð γ<br />

transformation in ZrO 2 is accepted according to [2006Wan], the γ Ð β+L transition is tentatively<br />

shown by a dashed line<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Zr 24<br />

. Fig. 6<br />

Fe-O-Zr. Calculated oxygen activity in liquid Fe-O-Zr alloys in equilibrium with solid ZrO 2 at<br />

1550-1650˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

19<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


20 24<br />

Fe–O–Zr<br />

References<br />

[1957Fis] Fischer, W.A., Hoffmann, A., “Equilibrium Studies in the System FeO-ZrO 2” (in German), Arch.<br />

Eisenhuettenwes., 28(11), 739–743 (1957) (Experimental, <strong>Phase</strong> Relations, #, 23)<br />

[1960Nev] Nevitt, M.V., Downey, J.W., Morris, R.A., “A Further Study of Ti2Ni-Type <strong>Phase</strong>s Containing Titanium,<br />

Zirconium or Hafnium”, Trans. Met. Soc. AIME, 218, 1019–1023 (1960) (Crys. Structure, Experimental,<br />

<strong>Phase</strong> Diagram, #, 7)<br />

[1965Buz] Buzek, Z., “The Effect of Aluminium, Titanium, Zirconium, <strong>and</strong> Cerium on the Solubility of Oxygen in<br />

Liquid Iron at 1800˚C”, Sb. Ved. Pr. Vys. Sk. Banske Ostrave, Rada Hutn., 11, 395–400 (1965) (Experimental,<br />

<strong>Phase</strong> Relations, 10)<br />

[1967Buz] Buzek, Z., Schindlerova, V., Macoszek, M., “The Influence of Cr, Mn, V, Si, Ti, Al, Zr, Ce <strong>and</strong> Ca on<br />

the Activity <strong>and</strong> Solubility of Oxygen in Liquid Iron”, Sb. Ved. Pr. Vys. Sk. Banske Ostrave, Rada Hutn.,<br />

13(2-3), 175–193 (1967) (Experimental, <strong>Phase</strong> Relations, 26)<br />

[1967Hol] Holleck, H., Thuemmler, F., “Investigations on the Formation of Metalloid-Stabilised Zr-Rich<br />

Transition” (in German), J. Nucl. Mater., 23, 88–94 (1967) (Crys. Structure, Experimental, 12)<br />

[1967Jon] Jones, T.S., Kimura, S., Muan, A., “<strong>Phase</strong> Relations in the System FeO-Fe 2O 3-ZrO 2-SiO 2”, J. Amer.<br />

Ceram. Soc., 50(3), 137–142 (1967) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, #, 16)<br />

[1973Tep] Teplitsky, E.B., Vladimirov, L.P., “Thermodynamics of Steel Killing by Zirconium” (in Russian), Izv.<br />

Vyss. Uchebn. Zaved., Chern. Metall., (3), 5–7 (1973) (Experimental, Thermodyn., 6)<br />

[1973Buz] Buzek, Z., “Effect of <strong>Alloy</strong>ing Elements on the Solubility <strong>and</strong> Activity of Oxygen <strong>and</strong> Sulphur in Liquid<br />

Iron at 1600˚C” in “Metall. Chem. - Appl. Ferrous Metall.”, Int. Symp., Sheffield, July 1971, Iron Steel<br />

Inst., London, 173–177 (1973) (Crys. Structure, Experimental, Review, 8)<br />

[1974Fru] Fruehan, R.J., “The Effect of Zr, Ce, <strong>and</strong> La on the Solubility of Oxygen in Liquid Fe”, Metall. Trans., 5,<br />

345–347 (1974) (Experimental, <strong>Phase</strong> Relations, 5)<br />

[1975Kat] Katsura, T., Wakihara, M., Hara, S.I., Sugihara, T., “Some Thermodynamic Properties in Spinel Solid<br />

Solutions with the Fe 3O 4 Component”, J. Solid State Chem., 13(1-2), 107–113 (1975) (Calculation,<br />

Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., #, 11)<br />

[1976Jan] Janke, D., Fischer, W.A., “Deoxidation Equilibria of Ti, Al <strong>and</strong> Zr in Fe Melts at 1600˚C” (in German),<br />

Arch. Eisenhuettenwes., 47(4), 195–198 (1976) (Experimental, <strong>Phase</strong> Relations, 30)<br />

[1977Heu] Heughebaert-Therasse, M., “Study Contribution to the Evolution <strong>and</strong> Sintering of Several Oxides<br />

Stabilized Zirconia, at Temperatures below 1300˚C” (in French), Ann. Chim., 2, 229–243 (1977) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 38)<br />

[1981Jin] Jin, T., Hattori, H., Tanabe, K., “Formation of Butane from Butanol Catalyzed by Fe 2O 3,Fe 2O 3-ZrO 2,<br />

<strong>and</strong> Fe 2O 3-ZnO”, Chem. Lett., 10(11), 1533–1534 (1981) (Experimental, Catalysis, 2)<br />

[1984Pap] Papiernik, R., Frit, B., “Crystal Structure of Cubic <strong>Phase</strong> Disordered Anion Excess ZrFe 2.67 Related to<br />

the ReO 3” (in French), Mater. Res. Bull., 19(4), 509–516 (1984) (Crys. Structure, Experimental, 20)<br />

[1986Gho] Ghosh, A., Murthy, G.V.R., “An Assessment of Thermodynamic Parameters for Deoxidation of Molten<br />

Iron by Cr, V, Al, Zr <strong>and</strong> Ti”, Trans. Iron Steel Inst. Jpn., 26(7), 629–637 (1986) (Assessment, <strong>Phase</strong><br />

Diagram, Thermodyn., <strong>Phase</strong> Relations, 41)<br />

[1987Kim] Kiminami, R.H.G.A., “Study of the ZrO 2-FeO-Fe 2O 3 System by Thermogravimetry at Air-Oxygen<br />

Partial Pressures <strong>and</strong> Temperatures up to 1500˚C” (in Portuguese), Ceramica (Sao Paulo), 33(213),<br />

207–209 (1987) (Experimental) as quoted in [2005ACS]<br />

[1988Kim] Kiminami, R.H.G.A., “Study of the ZrO 2-FeO-Fe 2O 3 System by Thermogravimetry at Oxygen Partial<br />

Pressures 2.1·10 2 Pa <strong>and</strong> Temperatures up to 1380˚C” (in Portuguese), Ceramica (Sao Paulo), 34(223),<br />

121–123 (1988) (Experimental) as quoted in [2005ACS]<br />

[1989Rag1] Raghavan, V., “The Fe-O-Zr System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s”, Indian Inst. Met.,<br />

Calcutta, 5, 374–379 (1989) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 11)<br />

[1989Rag2] Raghavan, V., “The Fe-O System”, <strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s, Indian Inst. Met., Calcutta, 5,<br />

5–8 (1989) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Crys. Structure, Review, 3)<br />

[1989She] Sheldon, R.I., Peterson D.E., “The U-Zr (Uranium-Zirconium) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 10<br />

(2), 165–171 (1998) (Review, Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 33)<br />

[1990Kim] Kiminami, R.H.G., “The Monoclinic-Tetragonal <strong>Phase</strong> Transformation of Zirconia in the System ZrO 2-<br />

Fe 2O 3”, J. Mater. Sci. Lett., 9(4), 373–374 (1990) (Experimental, <strong>Phase</strong> Relations, 9)<br />

[1991Sun] Sundman, B., “An assessment of the Fe-O system”, J. <strong>Phase</strong> Equilib., 12(1), 127–140 (1991) (<strong>Phase</strong><br />

Relations, <strong>Phase</strong> Diagram, Thermodyn., Assessment, 53)<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–O–Zr 24<br />

21<br />

[1991Zhu] Zhu, Y.T., Devletian, J.H., “Precise Determination of Isomorphous <strong>and</strong> Eutectoid Transformation<br />

Temperatures in Binary <strong>and</strong> <strong>Ternary</strong> Zr <strong>Alloy</strong>s”, J. Mater. Sci., 26, 6218–6222 (1991) (Experimental,<br />

Thermodyn., 13)<br />

[1992Lou] Loucif, K., Borrelly, R., Merle, P., “Study by Thermoelectric-Power <strong>and</strong> Resistivity Measurements of the<br />

Precipitation Kinetics in Zirconium <strong>Alloy</strong>s Between 450˚C <strong>and</strong> 600˚C”, J. Nucl. Mater., 189(1), 34–45<br />

(1992) (Electr. Prop., Experimental, Kinetics, Thermodyn., 24)<br />

[1993Wu] Wu, J.-C., Liu, D.-S., Ko, A.-N., “Dehydrogenation of Ethylbenzene over TiO 2-Fe 2O 3 <strong>and</strong> ZrO 2-Fe 2O 3<br />

Mixed Oxide Catalysts”, Catal. Lett., 20(3-4), 191–201 (1993) (Experimental, <strong>Phase</strong> Relations, Phys.<br />

Prop., 28)<br />

[1996Pop] Popovic, S., Grzeta, B., Stefanic, G., Czako-Nagy, I., Music, S., “Structural Properties of the System<br />

m-ZrO2-α-Fe2O3”, J. <strong>Alloy</strong>s Compd., 241(1-2), 10–15 (1996) (Crys. Structure, Experimental, <strong>Phase</strong><br />

Relations, 19)<br />

[1996Ton] Tonejc, A.M., Tonejc, A., “Zirconia Solid Solutions ZrO 2-Y 2O 3 (CoO or Fe 2O 3) Obtained by Mechanical<br />

<strong>Alloy</strong>ing”, Mater. Sci. Forum, 225–227(pt.1), 497–502 (1996) (Experimental, Morphology, 10)<br />

[1997Li] Li, G.Q., Suito, H., “Electrochemical Measurement of Critical Supersaturation in Fe-O-M (M = Al, Si,<br />

<strong>and</strong> Zr) <strong>and</strong> Fe-O-Al-M (M = C, Mn, Cr, Si, <strong>and</strong> Ti) Melts by Solid Electrolyte Galvanic Cell”, ISIJ Int.,<br />

37(8), 762–769 (1997) (Experimental, <strong>Phase</strong> Relations, 26)<br />

[1997Nar] Narwankar, P.K., Lange, F.F., Levi, C.G., “Microstructure Evolution of ZrO 2-(Fe 2O 3,Al 2O 3) Materials<br />

Synthesized with Solution Precursors”, J. Am. Ceram. Soc., 80(7), 1684–1690 (1997) (Experimental,<br />

Morphology, <strong>Phase</strong> Relations, 8)<br />

[1998Zav] Zavaliy, I.Yu., Riabov, A.B., Yartys, V.A., Wiesinger, G., Michor, H., Hilscher, G., “(Hf,Zr) 2Fe<br />

<strong>and</strong> Zr 4Fe 2O 0.6 Compounds <strong>and</strong> Their Hydrides: <strong>Phase</strong> Equilibria, Crystal Structure <strong>and</strong> Magnetic<br />

Properties”, J. <strong>Alloy</strong>s Compd., 265, 6–14 (1998) (Crys. Structure, Experimental, Magn. Prop., <strong>Phase</strong><br />

Relations, 22)<br />

[1998Zio] Ziouzin, D.A., Moroz, E.M., Ivanova, A.S., “X-Ray Diffraction Study of Amorphous Zr-Fe-O System”,<br />

Mater. Sci. Forum, 278–281(2), 826–832 (1998) (Crys. Structure, Experimental, 3)<br />

[1999Boh] Bohe, A.E., Gamboa, J.J.A., Pasquevich, D.M., “Enhancement of the Martensitic Transformation of<br />

Tetragonal Zirconia Powder in the Presence of Iron Oxide”, Mater. Sci. Forum, 273, 218–221 (1999)<br />

(Crys. Structure, Experimental, Morphology, 15)<br />

[1999Ste] Stefanic, G., Music, S., Popovic, S., Nomura, K., “A Study of the ZrO 2-Fe 2O 3 System by XRD, 57 Fe<br />

Mössbauer <strong>and</strong> Vibrational Spectroscopies”, J. Mol. Struct., 480–481, 627–631 (1999) (Electr. Prop.,<br />

Experimental, 11)<br />

[2000Cao] Cao, W., Tan, O.K., Zhu, W., Jiang, B., “Mechanical <strong>Alloy</strong>ing <strong>and</strong> Thermal Decomposition of (ZrO 2) 0.8-<br />

(α-Fe 2O 3) 0.2 Powder for Gas Sensing Applications”, J. Solid State Chem., 155, 320–325 (2000) (Crys.<br />

Structure, Electrical Properties, Experimental, <strong>Phase</strong> Relations, 14)<br />

[2000Laj] Lajavardi, M., Kenney, D.J., Lin, Sh.H., “Time-Resolved High <strong>and</strong> Low Temperature <strong>Phase</strong> Transitions<br />

of the Nanocrystalline Cubic <strong>Phase</strong> in the Y2O3-ZrO2 <strong>and</strong> Fe2O3-ZrO2 System”, J. Chin. Chem. Soc., 47,<br />

1065–1075 (2000) (Crys. Structure, Experimental, 56)<br />

[2000Ste] Stefanic, G., Grzeta, B., Music, S., “Influence of Oxygen on the Thermal Behavior of the ZrO 2-Fe 2O 3<br />

System”, Mater. Chem. Phys., 65(2), 216–221 (2000) (Crys. Structure, Experimental, <strong>Phase</strong> Relations, 14)<br />

[2000Tan] Tan, O.K., Cao, W., Zhu, W., “Alcohol Sensor Based on a Non-Equilibrium Nanostructured xZrO 2-<br />

(1–x)α-Fe 2O 3 Solid Solution System”, Sens. Act. B (Chemical), 63(1-2), 129–134 (2000) (Crys. Structure,<br />

Experimental, Nano, <strong>Phase</strong> Relations, 15)<br />

[2001Cao] Cao, W., Tan, O.K., Zhu, W., Jiang, B., Gopal Reddy, C.V., “An Amorphous-Like xα-Fe 2O 3-(1–x)ZrO 2<br />

Solid Solution System for Low Temperature Resistive-Type Oxygen Sensing”, Sens. Act. B, 77(1-2),<br />

421–426 (2001) (Experimental, <strong>Phase</strong> Relations, 10)<br />

[2001Ste] Stefanic, G., Grzeta, B., Nomura, K., Trojko, R., Music, S., “The Influence of Thermal Treatment on<br />

<strong>Phase</strong> Development in ZrO2-Fe2O3 <strong>and</strong> HfO2-Fe2O3 <strong>Systems</strong>”, J. <strong>Alloy</strong>s Compd., 327, 151–160 (2001)<br />

(Crys. Structure, Experimental, 30)<br />

[2001Wu] Wu, M.L., Gan, D., Shen, P., “Precipitation of Iron Zirconate from Zr 4+ -Oversaturated Fe 2O 3–x (I)”,<br />

Mater. Sci. Eng. A, 297(1-2), 119–123 (2001) (Crys. Structure, Experimental, Morphology, <strong>Phase</strong><br />

Relations, 20)<br />

[2002Cao] Cao, W., Tan, O.K., Pan, J.S. Zhu, W., Gopal Reddy, C.V., “XPS Characterization of xα-Fe 2O 3-(1–x)<br />

ZrO 2 for Oxygen Gas Sensing Application”, Mater. Chem. Phys., 75(1-3), 67–70 (2002) (Experimental,<br />

<strong>Phase</strong> Relations, 14)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_24<br />

ß Springer 2009


22 24<br />

Fe–O–Zr<br />

[2002Kov] Kovalchuk, I.V., Zavaliy, I.Y., “Hydrogenation of Oxygen-Stabilized Zr 3FeO x <strong>Phase</strong> with Filled Re 3B-<br />

Type of Structure” in “Crys. Chem.”, VII Int. Conf., Lviv., 133 (2002) (Crys. Structure, Experimental, 4)<br />

[2002Koz] Kozik, V.V., Shul‘pekov, A.M., Borilo, L.P., “The Structure <strong>and</strong> Optical Properties of Thin ZrO 2, ZrO 2-<br />

Y 2O 3, <strong>and</strong> ZrO 2-Fe 2O 3 Films”, Russ. Phys. J., 45(12), 1228–1230 (2002), translated from Izv. Vyss. Ucheb.<br />

Zaved., Fiz., 45(12), 77–78 (2002) (Crys. Structure, Experimental, Optical Prop., 3)<br />

[2002Pet] Petrov, Yu.B., Udalov, Yu.P., Slovak, J., Morozov, Yu.G., “Liquid Immiscibility Phenomena in Melts of<br />

the ZrO 2-FeO-Fe 2O 3 System”, Glass Phys. Chem., 28(3), 139–146 (2002), translated from Fiz. Khim.<br />

Stekla, Russia, 28(3), 139–146 (2002) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 14)<br />

[2002Sei] Seifu, D., Li, F., “Mössbauer Study of Nano-Crystalline Thin Films of Fe-Zr-O”, Phys. Status Solidi A,<br />

189(3), 731–734 (2002) (Experimental, Crys. Structure, 3)<br />

[2002Ste] Stein, F., Sauthoff, G., Palm, M., “Experimental Determination of Intermetallic <strong>Phase</strong>s, <strong>Phase</strong><br />

Equilibria, <strong>and</strong> Invariant Reaction Temperatures in the Fe-Zr System”, J. <strong>Phase</strong> Equilib., 23(6), 480–494<br />

(2002) (Crys. Structure, Experimental, <strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, 88)<br />

[2004Hua] Huang, W., “Oxygen Solubility in Fe-Zr-O Liquid”, Calphad, 28(2), 153–157 (2004) (Calculation, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Thermodyn., 15)<br />

[2004Jun] Jung, I.-H., Decterov, S.A., Pelton, A.D., “A Thermodynamic Model for Deoxidation Equilibria in<br />

Steel”, Metall. Mater. Trans. B, 35b(3), 493–507 (2004) (Calculation, Theory, Thermodyn., 100)<br />

[2004Wan] Wang, C., Zinkevich, M., Aldinger, F., “On the Thermodynamic Modeling of the Zr-O System”,<br />

Calphad, 28(3), 281–292 (2004) (Calculation, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 77)<br />

[2005ACS] American Ceramic Society – NIST “<strong>Phase</strong> Equilibria <strong>Diagrams</strong>”, CD-ROM Database, Version 3.1,<br />

ACerS-NIST (2004-2005)<br />

[2005Str] Strakhov, V.I., Ivanova, I.V., Arsirii, A.I., Velkova, K., Migal, V.P., Gershkovich, S.I., “<strong>Phase</strong><br />

Transformations in Stabilized ZrO 2-Fe 2O 3 Compositions”, Refract. Indust. Ceram., 46(5), 322–324<br />

(2005) (Experimental, <strong>Phase</strong> Relations, 4)<br />

[2006Bec] Bechta, S.V., Krushinov, E.V., Almjashev, V.I., Vitol, S.A., Mezentseva, L.P., Petrov, Yu.B., Lopukh, D.B.,<br />

Khabensky, V.B., Barrachin, M., Hellmann, S., et al, “<strong>Phase</strong> Diagram of the ZrO 2-FeO System”, J. Nucl.<br />

Mater., 348(1-2), 114–121 (2006) (Crys. Structure, Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, #, 26)<br />

[2006Bes] Beshta, S.V., Krushinov, E.V., Al‘myashev, V.I., Vitol‘, S.A., Mezentseva, L.P., Petrov, Yu.B., Lopukh, D.<br />

B., Khabenskii, V.B., Barrachin, M., Hellmann, S., Gusarov, V.V., “<strong>Phase</strong> Relations in the ZrO 2-FeO<br />

System”, Russ. J. Inorg. Chem. (Engl. Transl.), 51(2), 325–331 (2006), translated from Zh. Neorgan. Khim.,<br />

51(2), 367–374 (2006) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, #, 25)<br />

[2006Fig] Figueroa, S., Desimoni, J., Rivas, P.C., Caracoche, M.C., de Sanctis, O., “Local Structures in the ZrO2-<br />

15 mol% Fe 2O 3 System Obtained by Ball Milling”, J. Am. Ceram. Soc., 89(12), 3759–3764 (2006) (Crys.<br />

Structure, Electr. Prop., Experimental, #, 16)<br />

[2006Wan] Wang, C., Zinkevich, M., Aldinger, F., “The Zirconia - Hafnia: DTA Measurements <strong>and</strong><br />

Thermodynamic Calculations”, J. Am. Ceram. Soc., 89(12) 3751–3758 (2006) (Experimental, Calculation,<br />

<strong>Phase</strong> Relations, Thermodyn., 78)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_24 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Phosphorus – Silicon<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Kostyantyn Korniyenko<br />

Introduction<br />

<strong>Phase</strong> relations in the Fe-P-Si system are of great interest mainly in two aspects - application of<br />

phosphorus as dopant in Si-semiconductors containing iron, <strong>and</strong> development of nanocrystalline<br />

materials produced by controlled crystallization of amorphous alloys containing phosphorus<br />

<strong>and</strong> iron in combination with silicon or with d metals. At the same time, the amount of<br />

information on the constitution of the Fe-P-Si system is still insufficient. Most of the experimental<br />

data on phase equilibria were published long ago [1930Hum, 1933Sau, 1959Vog]. The<br />

reaction scheme, liquidus surface projection <strong>and</strong> isothermal section at room temperature of<br />

the Fe-FeP2-FeSi-Si partial system as well as a series of vertical sections were reported. Later<br />

certain information about the effect of silicon on the solubility of phosphorus in iron at<br />

different temperatures was presented in [1965Kan2]. The phase contents of the Fe-P-Si alloys<br />

annealed at different temperatures were reported in [1997Vav, 1998Vav, 1999Vav]. At the same<br />

time, new data on dissolution of the third component in the binary Fe-P <strong>and</strong> Fe-Si phases<br />

[1962Run, 1965Sab, 1984Jer] <strong>and</strong> about new crystal structures identified in the ternary<br />

system contradict the earlier version of the phase relations, <strong>and</strong> therefore, reinvestigation of<br />

the Fe-P-Si system using modern physico-chemical analysis techniques is required.<br />

The experimental works on the phase relations, crystal structures <strong>and</strong> thermodynamics<br />

are listed in Table 1. The crystal structure data of the binary <strong>and</strong> ternary phases existing in the<br />

Fe-P-Si system were published in [1933Sau, 1959Vog, 1962Run, 1965Sab, 1983And, 1984Jer,<br />

1991Men, 1993Bal, 1995Per, 1998Vav, 1999Vav, 2002Ito, 2002Tan, 2003Bal]. Information on<br />

thermodynamic properties, in particular activity of phosphorus in liquid iron with silicon<br />

additions, was experimentally obtained by [1979Yam, 1983Ban, 1983Yam, 1997Ued]. Reviews<br />

of literature data on phase equilibria in the Fe-P-Si system are presented in [1949Jae,<br />

1965Kan1, 1988Rag], crystal structures - in [1988Rag], thermodynamics - in [1979Yam,<br />

1983Ban]. A database of thermochemical parameters for liquid Fe based alloys containing Si<br />

<strong>and</strong> P was proposed by [1995Bou].<br />

Binary <strong>Systems</strong><br />

The Fe-P binary boundary system is accepted from [2002Per]. The Fe-Si <strong>and</strong> P-Si boundary<br />

systems are accepted from [Mas2].<br />

Solid <strong>Phase</strong>s<br />

Fe–P–Si 25<br />

1<br />

<strong>Crystallographic</strong> data for the known unary, binary <strong>and</strong> ternary Fe-P-Si phases are listed in<br />

Table 2. The investigations of the crystal structures of the phases deal mainly with the<br />

additions of the third component to the solid solutions based on the binary phases<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


2 25<br />

Fe–P–Si<br />

[1962Run, 1983And, 1984Jer, 2002Ito, 2002Tan] <strong>and</strong> with the ternary phases [1959Vog,<br />

1965Sab, 1968Sab, 1984Jer, 1995Per].<br />

[1962Run] experimentally determined that solubility of silicon in δ (FeP) reaches about<br />

25 at.%. X-ray diffraction patterns of the ζ 2, FeSi 2–xP x phase (x = 0 to 0.10) obtained after hot<br />

pressing at 900˚C for 3.6 ks under the pressure of 25 MPa were published by [2002Ito]. The<br />

geometrical <strong>and</strong> electronic structures of this phase at x = 0.125 studied using the first<br />

principles pseudopotential calculations based on generalized gradient approximation (GGA)<br />

density function theory are presented in [2002Tan]. It was noted that the calculated structural<br />

parameters depend strongly on the kinds of dopants <strong>and</strong> sites.<br />

The ternary phase τ 1 was identified first by [1959Vog] at an approximate composition of<br />

FeSi 4P 4, with a negligible range of homogeneity. This phase was reported to melt congruently<br />

at a temperature of about 1210˚C. The existence of the τ 1 phase was confirmed by [1965Sab,<br />

1968Sab], but its crystal structure was identified much later by [1995Per] from single crystal<br />

studies. It was noted that this phase, similar to the NiSi3P4 structure type reveals a new family<br />

of ternary phases rich in silicon <strong>and</strong> phosphorus. The existence of a new ternary phase (τ2) was<br />

established in [1984Jer]. They observed a crystallographic hexagonal/orthorhombic transformation<br />

in the partially Si-substituted γ (Fe 2P) solid solution. The transformation temperature<br />

dependence is shown to increase linearly with increasing P/Si substitution. The τ 2,Fe 2Si xP 1–x<br />

phase with a body-centered orthorhombic structure was reported to be stable in the range of<br />

0.20 < x < 0.36 at the temperature of 997˚C (Table 2). [1997Vav, 1998Vav, 1999Vav] reported<br />

a new metastable ternary phase of an undetermined composition <strong>and</strong> type of structure<br />

labeled as FexSizPy. It was found in alloys rapidly quenched <strong>and</strong> then annealed at 500˚C during<br />

10 minutes. The compositions are Fe82Si2P16 <strong>and</strong> Fe78Si10P12 (in at.%). The presence of the<br />

same phase was determined also in the alloys Fe 80Si 6P 14, Fe 78Si 10P 12 <strong>and</strong> Fe 78Si 2P 20 rapidly<br />

quenched <strong>and</strong> then annealed at 600˚C during 10 minutes. In Table 2 this phase is labeled as<br />

ψ (Fe-P-Si).<br />

Quasibinary <strong>Systems</strong><br />

The Fe2P-FeSi quasibinary system was experimentally explored by [1930Hum, 1933Sau]. Its<br />

phase diagram is of the eutectic type, the eutectic temperature was reported to be 1185˚C<br />

(corrected later by [1959Vog] to 1183˚C). The eutectic point e 7 is located at the Fe 58.6Si 24.2P 17.2<br />

composition (Table 3). Solubilities of the third component in the γ (Fe 2P) <strong>and</strong> λ (FeSi) phases<br />

were declared by [1930Hum, 1933Sau] as negligible. However this statement contradicts the<br />

later reported data of [1984Jer] <strong>and</strong> [1965Sab] (Table 2), therefore the Fe 2P-FeSi phase<br />

diagram needs a revision. A similar situation turned out with the quasibinary systems FeP-<br />

FeSi, FeSi- FeSi4P4 <strong>and</strong> ζ1-FeSi4P4, proposed in [1959Vog], because a visible solubility of the<br />

third component was observed in the δ (FeP) [1962Run], λ (FeSi) <strong>and</strong> ζ1 (FeSi2(h)) phases<br />

[1965Sab]. The reported coordinates of the invariant points obtained in these three systems<br />

are listed in Table 3. The Si-FeSi 4P 4 system was also declared by [1959Vog] to be quasibinary.<br />

Invariant Equilibria<br />

The temperatures, types of reactions <strong>and</strong> available compositions of the phases taking part<br />

in the invariant equilibria in the partial Fe-FeP2-FeSi-Si system are listed in Table 3.<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


The presented coordinates <strong>and</strong> a partial reaction scheme (Fig. 1) are adopted mainly from the<br />

data of [1959Vog] on the invariant reactions <strong>and</strong> liquidus surface constitution, with certain<br />

corrections according to the accepted boundary binary systems. In addition, the data of<br />

[1930Hum] about the invariant four-phase equilibria with the participation of liquid at<br />

1110˚C (U 2) <strong>and</strong> 1018˚C (E 6) are accepted. Like in the reaction scheme proposed by<br />

[1988Rag], the transition reaction U 1 has been introduced to eliminate the κ phase from the<br />

liquid equilibria. Also the invariant reactions at high phosphorous concentrations with<br />

the participation of a vapor phase at ambient pressure reported by [1959Vog] are omitted.<br />

But the solid-state transition reactions proposed by [1988Rag] were also omitted because of<br />

their hypothetical character, insufficiently confirmed by experimental results.<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

A liquidus surface projection of the partial Fe-FeP2-FeSi-Si system shown in Fig. 2 is based<br />

on [1988Rag]. It is compiled mainly on the basis of the [1959Vog] experimental results<br />

involving data from [1930Hum] on the partial Fe 2P-related range. Two quasibinary eutectics<br />

e 10 <strong>and</strong> e 13 are inserted on the joins τ 1-μ <strong>and</strong> τ 1-δ respectively, although their positions can be<br />

very roughly given on these joins. The dashed monovariant lines indicate their tentative<br />

character.<br />

One can see in Fig. 2 that the constitution of the liquidus surface projection in the<br />

composition ranges rich in Fe <strong>and</strong> P require further investigations.<br />

Isothermal Sections<br />

The isothermal section of the partial Fe-FeP 2-SiP-Si system at room temperature was constructed<br />

by [1959Vog] from his own experimental results. It was shown that at this temperature<br />

the phases α, β, γ, δ, ε, λ, ζ 2, μ, (Si) <strong>and</strong> τ 1 take part in equilibria. No visible solubility of<br />

the third component in the binary phases was detected. <strong>Phase</strong> relations in the Fe rich corner<br />

(Fe-Fe3P-FeSi partial system) were plotted by dotted lines indicating the tentative character.<br />

Later in his review [1988Rag] attempted to correct this section in accordance with the newer<br />

boundary binary systems <strong>and</strong> using the data of [1962Run] on the solubility of up to 25 at.% Si<br />

in the δ phase. But this section needs further verification, because an essential solubility of the<br />

third component was determined also in the λ <strong>and</strong> ζ 2 phases.<br />

A schematic isothermal section of the Fe-Fe 3P-SiP-Si partial system at 800˚C is shown in<br />

[1965Kan1]. It’s peculiarity consists in the participation of the λ (FeSi) phase in equilibria with<br />

other binary phases (β <strong>and</strong> μ). According to the data of [1965Kan2], the solubility of<br />

phosphorus in (αFe) at 1000˚C decreases from 4.4 at.% (2.5 mass%) without silicon down<br />

to 2.2 at.% (1.3 mass%) at 7.6 at.% (4.0 mass%) Si. With temperature decreasing from 1000 to<br />

800˚C the solubility of P in (αFe) containing 1 at.% Si decreases from 4.0 to 1.9 at.%.<br />

Temperature – Composition Sections<br />

Fe–P–Si 25<br />

3<br />

A series of temperature-composition sections was constructed by [1930Hum, 1959Vog] from<br />

their own experimental data.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


4 25<br />

Fe–P–Si<br />

The Fe 3P-FeSi <strong>and</strong> Fe 83P 17-FeSi sections [1930Hum] need corrections according to the<br />

established visible phosphorus solubility in the λ phase. The position of the liquidus curve of<br />

the joint crystallization of the β <strong>and</strong> λ phases also needs verification. The section at 5 mass% P<br />

(Fe 91.3P 8.7-Fe 53.4Si 39.6P 7.0 in at.%), according to [1930Hum] is shown in Fig. 3. The position of<br />

the border of the primary crystallization fields of the α <strong>and</strong> λ phases needs further amendment.<br />

The section at 8 mass% P (Fe86.4P13.6-Fe55.7Si33.0P11.3 in at.%) which was also presented by<br />

[1930Hum] is omitted here because mutual positions of the α, β, γ <strong>and</strong> λ liquidus surfaces are<br />

not established reliably. <strong>Phase</strong> contents of some alloys lying along the sections constructed in<br />

[1930Hum], in the as-cast <strong>and</strong> annealed states, were later reported by [1933Sau].<br />

Three temperature-composition sections were proposed by [1959Vog]. The Fe 63.7P 36.3-<br />

Si 60.4P 39.6 (in at.%) section needs verification because of uncertainties in the primary crystallization<br />

fields of the τ 1 <strong>and</strong> μ phases. Vertical sections at 13 mass% P (Fe 78.8P 21.2-Si 88.1P 11.9 in<br />

at.%) <strong>and</strong> at 7 mass% Si, 16 to 26 mass% P (Fe 64.3Si 11.6P 24.1-Fe 52.4Si 10.9P 36.7 in at.%) are<br />

shown in Figs. 4 <strong>and</strong> 5, respectively.<br />

Thermodynamics<br />

The effect of silicon on the activity coefficient of phosphorus in liquid iron alloys at different<br />

temperatures was investigated by [1979Yam, 1983Yam, 1997Ued]. The Knudsen cell - mass<br />

spectrometer combination measurements carried out at 1600˚C by [1979Yam, 1983Yam]<br />

show a linear increase of the activity coefficient of P with silicon content increasing up to<br />

12.1 mass%. As a result of the calculations, a value of εP Si = 11.9 ± 0.6 was obtained for the<br />

interaction parameter at 1600˚C. Thermodynamics of phosphorus in molten Fe-Si alloys were<br />

studied by [1997Ued] at 1450˚C by equilibrating the alloys in a controlled phosphorus partial<br />

pressure. The phosphorus content of molten Si in a certain phosphorus partial pressure<br />

decreases with the addition of iron, <strong>and</strong> it shows a minimum value at 23 at.% Fe. Interaction<br />

coefficients between phosphorus <strong>and</strong> iron in molten silicon were found to be ε P Fe = 7.43 <strong>and</strong><br />

ρ P Fe = – 16.4 at iron content up to 65 at.%. Thermodynamic considerations using a ternary<br />

regular solution model demonstrated that the obtained results are explained by a strong<br />

interaction between Si <strong>and</strong> Fe. The possibility of dephosphorization of such alloys by calcium<br />

treatment was also evaluated using these results.<br />

The vapor pressure of phosphorus in liquid Fe-P-Si alloys with silicon content up to 12.1<br />

mass% was measured by [1983Ban] applying the transportation method at the temperature of<br />

1400˚C. The obtained results were treated by the model of interstitial solution proposed by J.<br />

Chipman. The effect of silicon on the activity coefficient of phosphorus in liquid iron was<br />

determined by assuming Si as substitutional element. The interaction parameter value was<br />

obtained as εP Si = 7.68 ± 0.44 for 1400˚C. From the set of experimental data obtained by<br />

[1983Ban], [1995Bou] assessed a thermodynamic dataset, but the experimental <strong>and</strong> calculated<br />

values show essential discrepancies. In opinion of [1995Bou], the experimental results are<br />

inconsistent at the Fe-P side, at negligible contents of silicon.<br />

[1993Din] thermodynamically calculated the activity interaction parameter between Si<br />

<strong>and</strong> P in liquid Fe at 1600˚C ε P Si = 13.53 that does not differ essentially from the experimental<br />

data obtained by [1979Yam, 1983Yam] <strong>and</strong> the data cited in [1988The].<br />

The activation energy of crystallization of the Fe 82Si 2P 16 (in at.%) amorphous alloy<br />

was estimated by [1999Vav] using the Kissinger method, in terms of the variation in crystallization<br />

temperature (Tc) as a function of the heating rate in the range 3.75 to 40˚C·min –1 .<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


The obtained value was 471.5 ± 5.4 kJ·mol –1 . After measurements of viscosity of Fe-P-Si melts,<br />

from the slope of Arrhenius plots of kinematic viscosity, [2000Vav1] evaluated the activation<br />

energy for viscous flow: 11.0, 44.0 <strong>and</strong> 44.0 kJ·mol –1 for the alloys (in at.%) Fe 82Si 2P 16,<br />

Fe 78Si 2P 20 <strong>and</strong> Fe 80Si 6P 14, respectively.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Fe–P–Si 25<br />

5<br />

The Fe-P-Si alloys find practical application in modern technology mainly in two aspects.<br />

Firstly, phosphorus usually serves as dopant in Si-semiconductor technology. In particular, the<br />

semiconducting iron disilicide ζ 2, FeSi 2 (r), is a potential c<strong>and</strong>idate for practical use in the high<br />

temperature range (up to about 930˚C) because of its low cost of raw materials, its good<br />

resistance to oxidation, <strong>and</strong> its nontoxicity [2002Ito], with P substitution for Si as an n-type<br />

dopant possess lower thermal conductivity then the nondoped sample. Secondly, a considerable<br />

research effort has recently been concentrated on nanocrystalline materials produced by<br />

controlled crystallization of amorphous alloys, but its high diffusion mobility <strong>and</strong> tendency to<br />

nonuniform distribution leads to segregation brittleness [1999Vav]. In this aspect, a study of<br />

the influence of silicon additions on the segregation of phosphorus atoms in iron is desirable.<br />

The applied experimental techniques <strong>and</strong> investigated types of properties of Fe-P-Si alloys<br />

are presented in Table 4.<br />

[1981Yan] established that the addition of phosphorus to Fe-3 w/o Si alloys enhances the<br />

sinterability but decreases the maximum permeability (mu max) <strong>and</strong> increases the coercive<br />

force (Hc). These phenomena were discussed in terms of pore distribution, the formation of<br />

secondary phases in the grain <strong>and</strong> the formation of amorphous phase in the grain boundary.<br />

The resistivities of sintered compacts increase with the increase of the amount of phosphorus.<br />

The γ, Fe 2P (I) phase with additions of Si was reported by [1983And] to be ferromagnetic or<br />

possibly ferrimagnetic; the Curie temperature of Fe 2Si 0.25P 0.75 was reported as 570 K (297˚C).<br />

Later the Curie temperature of Fe 2Si xP 1–x alloys was found by [1984Jer] to increase with<br />

increasing substitution by silicon - from 216 K (–57˚C) at x = 0 to 660 K (387˚C) at x = 0.35.<br />

[1988Liu] reported that addition of 0.5 mass% Si reduces the ductile-brittle transition<br />

temperature determined by small scale Charpy impact test by about 100 K, <strong>and</strong> the fracture<br />

mode becomes transgranular. Addition of more Si increases the transition temperature, but<br />

the fracture mode remains to be transgranular.<br />

Mechanical, electrical, magnetic <strong>and</strong> other physical properties of Fe-P-Si amorphous alloys<br />

were studied by [1993Bal, 1997Vav, 1998Vav, 1999Vav, 2000Vav1, 2003Bal, 2004Vav]. In<br />

particular, it was concluded that the embrittlement of these alloys is governed by the amount<br />

of (αFe) precipitating during crystallization [1998Vav, 1999Vav]. The effects of P substitution<br />

for Si as n type dopant on the thermoelectric properties of hot-pressed ζ 2, FeSi 2 phase were<br />

reported by [2002Ito]. The Seebeck coefficient, electrical resistivity <strong>and</strong> thermal conductivity<br />

were measured from room temperature up to 1100 K (827˚C), <strong>and</strong> then the power factor <strong>and</strong><br />

figure of merit were evaluated. The Seebeck coefficient of the hot-pressed specimens is<br />

negative, indicating that P atoms are definitely substituted for Si atoms as an n-type dopant<br />

in the ζ 2 phase. The electrical resistivity is significantly reduced by P doping, especially in the<br />

lower temperature range, <strong>and</strong> slightly decreases with increasing P content. The thermal<br />

conductivity of the P-doped sample is smaller than that of the nondoped sample in spite of<br />

the larger amount of metallic λ, FeSi phase, <strong>and</strong> this fact indicates that P solution into the ζ 2<br />

phase is effective for reducing the thermal conductivity.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


6 25<br />

Fe–P–Si<br />

Miscellaneous<br />

A high-resolution scanning Auger microprobe analysis was carried out by [1991Men] on<br />

matching fracture surfaces of symmetrical ∑ = 5 (013) bicrystals of Fe-3 mass% Si doped with<br />

270 ppm phosphorus which were grown from seeds by floating-zone melting. Phosphorus<br />

distribution on some regions of a fracture surface was found to alternate between high <strong>and</strong> low<br />

concentrations. These alternations were often associated with deformation b<strong>and</strong>s, such as<br />

mechanical twins. The reverse pattern was found on the matching region on the opposite<br />

fracture surface.<br />

Investigations of thermo-diffusion processes in Fe-P-Si alloys were carried out by<br />

[1973Wan]. A measuring arrangement for studies of thermo-diffusion in molten iron alloys<br />

was described, the Soret coefficients of silicon <strong>and</strong> phosphorus in the Fe-P-Si heats were<br />

determined. The lattice <strong>and</strong> grain boundary tracer diffusion coefficients D* PL <strong>and</strong> P* P of<br />

phosphorus in the Fe98.91Si0.96P0.13 (at.%) alloy were measured by [1983Mat] in the temperature<br />

range from 710 to 882˚C. The effect of Si additions on D*PL <strong>and</strong> P*P was concluded to be<br />

small. The sintering <strong>and</strong> alloying behavior of ferrous metal powder ternary compact Fe-3 mass<br />

% Si-3 mass% Fe 3P (Fe 90.06Si 5.21P 4.73 in at.%) was studied by [1990Qu] using dilatometry <strong>and</strong><br />

SEM. It was found that phosphorus <strong>and</strong> silicon behave synergetically; phosphorus enhances<br />

alloying between Fe <strong>and</strong> Si at temperatures in the range 900-1100˚C. The concentration of<br />

interstitially dissolved Fe atoms in a Si crystal doped with a rather high concentration of P was<br />

found by [1994Tak] to depend on the cooling rate of the crystal. It was measured to decrease<br />

with an increase in the concentration of P <strong>and</strong> a decrease in the cooling rate. It was reported by<br />

[1990Reb, 1998Vav] that Fe-P-Si alloys have a tendency to amorphization in the concentration<br />

range between 12 <strong>and</strong> 20 at.% P <strong>and</strong> 2 to 10 at.% Si, but later this range was precised by<br />

[1997Vav, 1999Vav, 2000Vav1] as between 14 <strong>and</strong> 20 at.% P <strong>and</strong> 10 at.% Si at cooling rates of<br />

10 5 to 10 6 K·sec –1 . Annealing was shown by [2000Vav2, 2003Bal] to give a rise to nanoscale<br />

crystallization of amorphous Fe-P-Si alloys. The process occurs in one, two or three steps, <strong>and</strong><br />

the annealed alloys contain crystallites 30 to 140 nm in size. Later the crystallization behavior<br />

of amorphous Fe-P-Si alloys was studied by [2003Bal] applying Mössbauer spectroscopy <strong>and</strong><br />

physico-chemical analysis. The resulting materials are found to contain nanocrystalline<br />

particles of a complex composition, characterized by a doublet <strong>and</strong> several sextets in the<br />

Mössbauer spectrum. The amorphous alloys containing 6 or 10 at.% Si were found to possess<br />

the highest thermal stability, while the alloys with 2 at.% Si have a tendency toward nanoscale<br />

crystallization, accompanied by hardening.<br />

. Table 1<br />

Investigations of the Fe-P-Si <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method / Experimental Technique<br />

[1930Hum] Melting in vacuum furnace, optical microscopy,<br />

thermal analysis, chemical analysis, heating in<br />

vacuum<br />

[1933Sau] Melting in vacuum furnace, heating in vacuum,<br />

X-ray diffraction (Debye technique)<br />

Temperature / Composition /<br />

<strong>Phase</strong> Range Studied<br />

The Fe-Fe 2P-FeSi region<br />

1000˚C, the Fe-Fe 2P-FeSi region<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method / Experimental Technique<br />

[1959Vog] Melting in Pythagoras crucible (calcium chloride<br />

cover), thermal analysis, optical microscopy,<br />

chemical analysis<br />

[1962Run] Induction melting, heating, X-ray diffraction<br />

(Guinier technique)<br />

[1965Kan1] Electrolytical isolation, X-ray diffraction, chemical<br />

analysis<br />

Temperature / Composition /<br />

<strong>Phase</strong> Range Studied<br />

< 1500˚C, the Fe-FeP 2-SiP-Si<br />

region<br />

50 at.% Fe, 0 to 25 at.% Si<br />

1000˚C, 800˚C, 2.5 mass% P in the<br />

alloys<br />

[1965Kan2] X-ray diffraction, chemical analysis 1100-700˚C, ≤ 4 at.% P<br />

[1965Sab] Induction melting, optical microscopy, X-ray<br />

powder diffraction (Debye-Scherrer technique)<br />

1080˚C, the Fe-FeP2-SiP-Si region<br />

[1968Sab] Induction melting, optical microscopy, X-ray<br />

powder diffraction (Debye-Scherrer technique)<br />

1080˚C, the Fe-FeP 2-SiP-Si region<br />

[1979Yam] Melting, Knudsen cell-mass spectrometry<br />

Si<br />

εP in liquid phase, 1600˚C,<br />

≤ 12.1 mass% Si<br />

[1983And] Induction melting, X-ray powder diffraction<br />

(Haegg-Guinier camera)<br />

66.7 at.% Fe, ≤ 22.3 at.% Si<br />

[1983Ban] Transportation method<br />

Si<br />

εP in liquid phase, 1400˚C,<br />

≤ 12.1 mass% Si<br />

[1983Yam] Melting, Knudsen cell-mass spectrometry<br />

Si<br />

εP in liquid phase, 1600˚C,<br />

≤ 12.1 mass% Si<br />

[1984Jer] Induction melting, sintering, X-ray powder<br />

diffraction (Haegg-Guinier camera), Mössbauer<br />

spectroscopy<br />

66.7 at.% Fe, ≤ 22.3 at.% Si<br />

[1990Reb]<br />

57<br />

Fe Mössbauer spectroscopy 2 to 10 at.% Si, 12 to 20 at.% P<br />

[1991Men] Floating-zone technique, high-resolution<br />

scanning Auger spectroscopy of fracture surfaces<br />

Fe rich range<br />

[1993Bal] Arc melting, 57 Fe Mössbauer gamma- resonance<br />

spectroscopy, differential thermal analysis, X-ray<br />

diffraction<br />

[1995Per] Solution growth from molten Sn (single crystal<br />

preparation), powder synthesis, X-ray diffraction<br />

(Guinier technique)<br />

[1997Ued] Equilibration of alloys in controlled P partial<br />

pressure<br />

[1997Vav] Arc melting, X-ray diffraction, thermal analysis,<br />

TEM, electron diffraction, Mössbauer<br />

spectroscopy<br />

[1998Vav] Mössbauer spectroscopy, differential thermal<br />

analysis, X-ray diffraction<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

2 to 10 at.% Si, 12 to 20 at.% P<br />

1127-777˚C, FeSi 4P 4<br />

1450˚C, ≤ 63 at.% Fe, ≤ 0.92 at.% P<br />

≤ 10 at.% Si<br />

Fe–P–Si 25<br />

2 to 10 at.% Si, 12 to 20 at.% P<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


8 25<br />

Fe–P–Si<br />

. Table 1 (continued)<br />

Reference Method / Experimental Technique<br />

[1999Vav] Mössbauer spectroscopy, differential thermal<br />

analysis<br />

[2002Ito] Arc melting, mechanical alloying, X-ray<br />

diffraction, SEM, EDX<br />

[2003Bal] Arc melting, liquid quenching, X-ray diffraction,<br />

DTA<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Temperature / Composition /<br />

<strong>Phase</strong> Range Studied<br />

2 to 10 at.% Si, 12 to 20 at.% P<br />

Hot pressing at 900˚C (3.6 ks, 25<br />

MPa); ≤ 33.3 at.% Fe, ≤ 6.67 at.% P<br />

2 to 10 at.% Si, 12 to 20 at.% P<br />

Lattice Parameters<br />

[pm] Comments/References<br />

α, (αδFe) cI2 dissolves 4.55 at.% P at 1048˚C, 4 at.%<br />

P at 1000˚C [2002Per]<br />

Im3m dissolves 19.5 at.% Si at ~1280˚C [Mas2]<br />

W dissolves 2.2 at.% P at 7.6 at.% Si,<br />

1000˚C [1965Kan2]<br />

(δFe) (h2) 1538 - 1394<br />

a = 293.15 pure Fe, T = 1360˚C [V-C2]<br />

(αFe) (r) (ferrite)<br />

< 912<br />

a = 286.65 pure Fe, T = 25˚C [V-C2]<br />

(γFe) (h1) (austenite) cF4 a = 364.68 pure Fe, T = 912˚C [V-C2]<br />

1394 - 912 Fm3m dissolves 0.56 at.% P <strong>and</strong> 3.19 at.% Si<br />

Cu<br />

at 1150˚C [Mas2]<br />

at 1 at.% Si dissolves 3.9 at.% P at<br />

1000˚C, 1.9 at.% P at 800˚C [1965Kan2]<br />

dissolves 0.8 at.% P at 1.2 mass% Si,<br />

1000˚C; 0.6 at.% P at 3.5 mass% Si<br />

1000˚C [1965Kan2]<br />

(P) (red) c*66 a = 1131 sublimation at 1 bar. Stable form of P.<br />

< 417<br />

Triple point at 576˚C, > 36.3 bar; triple<br />

point at 589.6˚C at 1 atm [Mas2, V-C2]<br />

(P) (white) c** a = 718 common form of P [Mas2, V-C2]<br />

< 44.14 -<br />

P (white)<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–P–Si 25<br />

Lattice Parameters<br />

[pm] Comments/References<br />

(P) (black) oC8 a = 331.36 T = 25˚C [Mas2, V-C2]<br />

Cmca b = 1047.8<br />

P (black) c = 437.63<br />

(αSi) cF8 a = 543.06 T = 25˚C [Mas2, V-C2]<br />

< 1414 Fm3m<br />

C (diamond)<br />

(βSi) (II) tI4 a = 468.6 T = 25˚C, p > 9.624 bar [Mas2, V-C2]<br />

I41/amd βSn<br />

c = 258.5<br />

(γSi) (III) cI16<br />

Im3m<br />

γSi<br />

a = 663.6 T = 25˚C, p > 16.208 bar [Mas2, V-C2]<br />

(δSi) (I) hP4 a = 380 T = 25˚C, p = 16.208-1.013 bar<br />

P63/mmc αLa<br />

c = 628<br />

[Mas2, V-C2]<br />

β, Fe3P tI32 a = 910.8 at 25 at.% P [V-C2]<br />

< 1166 I4 c = 445.5<br />

Ni3P a = 917.4<br />

c = 452.99<br />

T = 678˚C [1990Oka]<br />

γ, Fe2P (I) hP9 at 33.3 at.% P<br />

< 1370 at 1.013 kbar P62m [Mas2, V-C2]<br />

Fe2P a = 586.4<br />

c = 346.0<br />

at 33.3 at.% P [1984Jer]<br />

γ, Fe2SixP1–x a = 586.75 x = 0 to 0.17 at room temperature<br />

c = 345.81<br />

[1984Jer]<br />

a = 592.12<br />

c = 342.26<br />

x = 0.10, room temperature [1984Jer]<br />

Fe2P (II) oP12 a = 577.5 T = 800˚C, 80 kbar<br />

high pressure phase Pnma b = 357.1 [Mas2, V-C2]<br />

Co2Si c = 664.1<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


10 25<br />

Fe–P–Si<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice Parameters<br />

[pm] Comments/References<br />

δ, FeP oP8 50 at.% P [Mas2]<br />

≲ 1370 Pnma a = 519.1 [1962Run]<br />

MnP b = 309.9<br />

c = 579.2<br />

a = 519.3 at 20˚C [1972Sel], symmetry<br />

b = 309.9<br />

diminished to space group Pn21a by<br />

c = 579.3<br />

slight shift of the P atoms<br />

δ, FeSixP1–x x = 0 to 0.5 [1962Run]<br />

a = 524.2<br />

b = 305.9<br />

c = 585.3<br />

x = 0.5 [1962Run]<br />

ε, FeP2 oP6 66 to 67 at.% P [Mas2]<br />

Pnnm a = 497.29 at 66.7 at.% P [1969Dah, 1990Oka]<br />

FeS2 (marcasite)<br />

b = 565.68<br />

c = 272.30<br />

π, FeP4 (I) mP30 80 at.% P [Mas2]<br />

P21/c a = 461.9 [1978Jei]<br />

FeP4 b = 1367.0<br />

c = 700.2<br />

β = 101.48˚<br />

FeP4 (II) oC20 a = 500.5 T = 1100˚C, 60 kbar<br />

high pressure phase C2221 b = 1021.3 [Mas2, V-C2]<br />

FeP4 c = 553.0<br />

α2,Fe4Si or Fe2Si (h) cP2 B2, ~ 10 to 22 at.% Si [Mas2]<br />

≲ 1280 Pm3m a = 281 consecutive annealing of a Fe66.3Si33.7<br />

CsCl<br />

(at.%) button at 1100˚C for 18 h <strong>and</strong><br />

of powder at 1150˚C for 7 min<br />

[1974Koe, V-C2]<br />

α1,Fe3Si cF16 D03, 11 to 30 at.% Si [1982Kub, Mas2]<br />

≲ 1235 Fm3m<br />

BiF3 a = 565.0 [V-C2]<br />

κ, Fe2Si hP6 ~33.0 to ~34.3 at.% Si [1982Kub]<br />

1212 - ~1040 P3m1 a = 405.2 ± 0.2 [V-C2]<br />

Fe2Si c = 508.55 ± 0.03<br />

η, Fe5Si3 hP16 37.5 at.% Si [1982Kub]<br />

1060 - 825 P63/mcm a = 675.9 ± 0.5 [V-C2]<br />

Mn5Si3 c = 472.0 ± 0.5<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice Parameters<br />

[pm] Comments/References<br />

λ, FeSi cP8 ~ 49.6 to ~ 50.8 at.% Si [Mas2]<br />

< 1410 P213 dissolves 2.1 mass% P at 1080˚C<br />

FeSi<br />

[1965Sab]<br />

a = 451.7 ± 0.5 [V-C2]<br />

ζ1, FeSi2(h) tP3<br />

a = 448.61 to 447.64 0 to 4.56 mass% P (0 to 6 at.% P) at<br />

33.8 mass% Si, annealing at 1000˚C for<br />

100 h [1965Sab]<br />

69.5 to 73.5 at.% Si [Mas2]<br />

1220 - 937 P4/mmm a = 268.72 to 269.37 69.6 to 72.1 at.% Si, annealing at<br />

FeSi2 (h) c = 512.8 to 513.9 1080˚C for 100 h [V-C2]<br />

a = 269.09 at 5 mass% P, annealing at 1080˚C for<br />

c = 513.08<br />

100 h [1965Sab]<br />

ζ2, FeSi2(r) oC48 66.7 at.% Si [1982Kub]<br />

< 982 Cmca a = 986.3 ± 0.7 [V-C2]<br />

FeSi2 (r) b = 779.1 ± 0.6<br />

c = 783.3 ± 0.6<br />

μ, SiP oC48 50 at.% P [Mas2]<br />

≲ 1131 Cmc21 a = 351.18 single crystal studies [V-C2]<br />

SiP b = 2048.8<br />

c = 1360.7<br />

ω (Si-P) amorphous - metastable; amorphous phase forming<br />

≲ 1131<br />

from a gaseous mixture of SiH4 <strong>and</strong> PH3 at 450˚C. Decomposed at 600˚C into<br />

(Si) <strong>and</strong> the μ phase [Mas2]<br />

SiP 2 cP12 a = 570.5 studies of a single crystal Si 33.6P 66.4<br />

Pa3<br />

FeS 2 (pyrite)<br />

Fe–P–Si 25<br />

(at.%) heated in an evacuated silica<br />

tube at 900˚C [V-C2]<br />

τ1, FeSi4P4 aP9 [1959Vog, 1965Sab, 1968Sab]<br />

≲ 1210 P1 a = 487.61 single crystal annealed at T = 927˚C<br />

FeSi4P4 b = 554.52<br />

c = 606.43<br />

α = 85.33˚<br />

β = 68.40˚<br />

γ = 70.43˚<br />

[1995Per]<br />

τ2,Fe2SixP1–x oI*<br />

?<br />

Fe2SixP1–x - 0.20 < x < 0.36, T = 997˚C [1984Jer]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


12 25<br />

Fe–P–Si<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice Parameters<br />

[pm] Comments/References<br />

ψ (Fe-Si-P) amorphous - metastable; in alloys (in at.%) Fe82Si2P16<br />

<strong>and</strong> Fe 78Si 10P 12, rapidly quenched <strong>and</strong><br />

then annealed at 500˚C for 10 min; in<br />

alloys Fe80Si6P14, Fe78Si10P12 <strong>and</strong><br />

Fe 78Si 2P 20, rapidly quenched <strong>and</strong><br />

then annealed at 600˚C for 10 min<br />

[1997Vav, 1998Vav, 1999Vav]<br />

. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

P Si<br />

L Ð δ + λ 1223 e2 L 50.0 22.7 27.3<br />

L+κ Ð α + λ - U1L ~ 68 ~ 2 ~ 30<br />

L Ð γ + λ 1183 e7 L 58.6 17.2 24.2<br />

L Ð γ + δ + λ 1166 E1 L 56.4 21.5 22.1<br />

L Ð (Si) + τ1 1123 e9 L 6.8 28.1 65.1<br />

L Ð μ + τ1 - e10 - - - -<br />

L Ð μ + (Si) + τ1 1116 E2 L 3.2 31.4 65.4<br />

L ÐÐζ1 + τ1 1115 e11 L 21.3 19.3 59.4<br />

L Ð ζ1 + (Si) + τ1 1113 E3 L 20.6 19.2 60.2<br />

L+γ Ð β + λ 1110 U2 L 68.1 9.1 22.8<br />

L Ð λ + τ1 1105 e12 L 31.1 21.7 47.2<br />

L Ð δ + τ1 - e13 - - - -<br />

L Ð λ + ζ1 + τ1 1096 E4 L 30.7 21.1 48.2<br />

L Ð λ + δ + τ1 1095 E5 L 31.7 22.9 45.4<br />

L Ð λ + β + α 1018 E6 L 76.8 12.0 11.2<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 4<br />

Investigations of the Fe-P-Si Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1965Sab] PMT-3 mechanical testing, picnometry Microhardness, density<br />

[1981Yan] Hysteresigraph tracer technique Maximum permeability, coercive force<br />

[1983And] Mössbauer spectroscopy Curie temperature<br />

[1983Mat] Residual activity method Curie temperature<br />

[1984Jer] Mössbauer spectroscopy Curie temperature<br />

[1988Liu] Small scale Charpy impact test Ductile-brittle transition temperature<br />

[1993Bal]<br />

57<br />

Fe Mössbauer gamma-resonance Effective magnetic field acting upon the<br />

spectroscopy, mechanical tests<br />

nucleus, microhardness, plasticity of foils<br />

[1994Tak] ESR spectroscopy Magnetic susceptibility versus magnetic<br />

field<br />

[1997Vav] Electrical resistance <strong>and</strong> magnetic Electrical resistance, effective magnetic<br />

measurements<br />

field<br />

[1998Vav] Mechanical properties tests, electrical<br />

resistivity measurements<br />

Brittle temperature, electrical resistivity<br />

[1999Vav] Mechanical properties tests, magnetic<br />

measurements<br />

[2000Vav1] Rapid quenching, X-ray diffraction, thermal<br />

analysis, Mössbauer spectroscopy;<br />

viscosity measurements (rotational<br />

oscillations of a quartz beaker filled with<br />

the melt<br />

[2002Ito] Four probe dc method (computercontrolled<br />

equipment); laser flash method<br />

(thermal contact analyzer ULVAC TC-7000)<br />

[2003Bal] Mechanical properties tests, Mössbauer<br />

spectroscopy<br />

[2004Vav] Thermal annealing, pulsed photon<br />

processing<br />

[2006Jan] Mechanical properties tests, Auger<br />

electron spectroscopy<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Microhardness, plasticity, effective<br />

magnetic field, chemical shift<br />

Kinematic viscosity<br />

Fe–P–Si 25<br />

Seebeck coefficient, electrical resistivity,<br />

thermal diffusivity, specific heat, density,<br />

thermal conductivity<br />

Electrical resistance, microhardness<br />

Size of particles; microhardness<br />

Energy of intergranular fracture<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


14 25<br />

. Fig. 1a<br />

Fe-P-Si. Reaction scheme, part 1<br />

Fe–P–Si<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1b<br />

Fe-P-Si. Reaction scheme, part 2<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–P–Si 25<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


16 25<br />

Fe–P–Si<br />

. Fig. 2<br />

Fe-P-Si. Partial liquidus surface projection<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-P-Si. Temperature - composition section at 5 mass% P, plotted in at.%<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–P–Si 25<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


18 25<br />

Fe–P–Si<br />

. Fig. 4<br />

Fe-P-Si. Temperature - composition section at 13 mass% P, plotted in at.%<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-P-Si. Temperature - composition section at 7 mass% Si, plotted in at.%<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–P–Si 25<br />

19<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


20 25<br />

Fe–P–Si<br />

References<br />

[1930Hum] Hummitzsch, W., Sauerwald, F., “The Iron-Phosphorus-Silicon System” (in German), Z. Anorg. Allg.<br />

Chem., 194, 113–138 (1930) (Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, *, 9)<br />

[1933Sau] Sauerwald, F., Teske, W., Lempert, G., “X-Ray Studies of the Cr-C <strong>and</strong> Fe-Si-P <strong>Systems</strong>” (in German),<br />

Z. Anorg. Chem., 210, 21–25 (1933) (Crys. Structure, Morphology, Experimental, *, 5)<br />

[1949Jae] Jaenecke, E., “Si-Fe-P” (in German), Kurzgefasstes H<strong>and</strong>buch aller Legierungen, Winter Verlag,<br />

Heidelberg, 625–627 (1949) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, *, 16)<br />

[1959Vog] Vogel, R., Giessen, B., “The Iron-Phosphorus-Silicon System” (in German), Arch. Eisenhuettenwes.,<br />

30(10), 619–626 (1959) (Crys. Structure, Morphology, <strong>Phase</strong> Diagram, Experimental, #, 9)<br />

[1962Run] Rundqvist, S., “Phosphides of the B31 (MnP) Structure Type”, Acta Chem. Sc<strong>and</strong>., 16(2), 287–292<br />

(1962) (Crys. Structure, Experimental, 21)<br />

[1965Kan1] Kaneko, H., Nishizawa, T., Tamaki, K., “Phosphide-<strong>Phase</strong>s in <strong>Ternary</strong> <strong>Alloy</strong>s of Iron, Phosphorus <strong>and</strong><br />

Other Elements” (in Japanese), Nippon Kinzoku Gakkai-shi, 29(2), 159–165 (1965) (Morphology, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Experimental, Review, *, 24)<br />

[1965Kan2] Kaneko, H., Nishizawa, T., Tamaki, K., Tanifuji, A., “Solubility of Phosphorus in α- <strong>and</strong> γ-Iron” (in<br />

Japanese), Nippon Kinzoku Gakkai-shi, 29(2), 166–170 (1965) (<strong>Phase</strong> Relations, Experimental, Review,<br />

*, 20)<br />

[1965Sab] Sabirzyanov, A.V., Shumilov, M.A., “The Solubility of Aluminium <strong>and</strong> Phosphorus in Constituents of<br />

High-Silicon Ferrosilicon” (in Russian), Tr. Ural’sk. Politekh. Ins., (144), 35–40 (1965) (Crys. Structure,<br />

Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, Phys. Prop., 14)<br />

[1968Sab] Sabirzyanov, A.V., Gel’d, P.V., “Some Features of the Peritectoid Transformation in β-Leboite (FeSi 2)<br />

<strong>Alloy</strong>s <strong>Alloy</strong>ed with Al, Ca <strong>and</strong> P” (in Russian), Tr. Ural’sk. Politekh. Inst., (167), 75–80 (1968)<br />

(Morphology, <strong>Phase</strong> Relations, Experimental, 6) as quoted by [1988Rag]<br />

[1969Dah] Dahl, E., “Refined Crystal Structures of PtP 2 <strong>and</strong> FeP 2”, Acta Chem. Sc<strong>and</strong>., 23(8), 2677–2684 (1969)<br />

(Crys. Structure, Experimental) as quoted by [1990Oka]<br />

[1972Sel] Selte, K., Kjekshus, A., “Structural <strong>and</strong> Magnetic Properties of FeP”, Acta Chem. Sc<strong>and</strong>., Ser. A, 26(3),<br />

1276–1277 (1972) (Crys. Structure, Experimental, Magn. Prop., 17)<br />

[1973Wan] Wanibe, Y., Sakao, H., Sugiyama, T., Maiwa, K., “Investigations into Thermo-Diffusion with Iron-<br />

Silicon, Iron-Phosphorus <strong>and</strong> Iron-Silicon-Phosphorus <strong>Alloy</strong>s”, Arch. Eisenhuettenwes., 44(8), 579–583<br />

(1973) (Morphology, Experimental, Interface Phenomena) cited from abstract<br />

[1974Koe] Koester, W., “Micro- <strong>and</strong> Crystal-Structure of Iron-Silicon <strong>Alloy</strong>s Containing up to 40 at.% Si”, Trans.<br />

Iron Steel Inst. Jpn., 14(6), 387–394 (1974) (Crys. Structure, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Experimental, 19)<br />

[1978Jei] Jeitschko, W., Braun, D.J., “Synthesis <strong>and</strong> Crystal Structure of the Iron Polyphosphide FeP 4”, Acta Cryst.<br />

B, 34, 3196–3201 (1978) (Crys. Structure, Experimental, 30)<br />

[1979Yam] Yamada, K., Kato, E., “Mass Spectrometric Determination of Activities of Phosphorus in Liquid<br />

Fe-P-Si, Al, Ti, V, Cr, Co, Ni, Nb <strong>and</strong> Mo <strong>Alloy</strong>s” (in Japanese), Tetsu to Hagane (J. Iron Steel Inst. Jpn.),<br />

65(2), 273–280 (1979) (Thermodyn., Calculation, Experimental, Review, 40)<br />

[1981Yan] Yang, H.K., Lee, H.G., Im, H.B., “The Magnetic Properties of Sintered Fe-P <strong>and</strong> Fe-3 w/o Si-P <strong>Alloy</strong>s”,<br />

J. Korean Inst. Met., 19(6), 471–479 (1981) (Morphology, Experimental, Electr. Prop., Magn. Prop.)<br />

cited from abstract<br />

[1982Kub] Kubaschewski, O., “Iron - Silicon” in “Iron Binary <strong>Phase</strong> <strong>Diagrams</strong>”, Springer Verlag, Berlin, 136–139<br />

(1982) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, #, 23)<br />

[1983And] Andersson, Y., “A New <strong>Ternary</strong> <strong>Phase</strong> in the Fe-P-Si System: Fe 2P 1–uSi u, 0.20 < u < 0.36”, VII International<br />

Conference on Solid Compounds <strong>and</strong> Transition Elements, Proc. CNRS, Grenoble (France), IIIA13/<br />

1-IIIA13/3 (1983) (Crys. Structure, Experimental, Magn. Prop.) cited from abstract<br />

[1983Ban] Ban-ya, S., Maruyama, N., Fujino, S., “The Effect of C, Si, Al <strong>and</strong> B on the Activity of Phosphorus in<br />

Liquid Iron”, Tetsu to Hagane, 69, 921–928 (1983) (Thermodyn., Calculation, Experimental, Review, 32)<br />

[1983Mat] Matsuyama, T., Hosokawa, H., Suto, H., “Tracer Diffusion of P in Iron <strong>and</strong> Iron <strong>Alloy</strong>s”, Trans. Jpn.<br />

Inst. Met., 24(8), 589–594 (1983) (Morphology, Experimental, Interface Phenomena, Kinetics, Magn.<br />

Prop., 14)<br />

[1983Yam] Yamada, K., Kato, E., “Effect of Dilute Concentrations of Si, Al, Ti, V, Cr, Co, Ni, Nb <strong>and</strong> Mo on the<br />

Activity Coefficient of P in Liquid Iron”, Trans. Iron Steel Inst. Jpn., 23(1), 51–55 (1983) (Thermodyn.,<br />

Calculation, Experimental, 16)<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–P–Si 25<br />

21<br />

[1984Jer] Jernberg, P., Yousif, A.A., Haeggstroem, L., Andersson, Y., “A Mössbauer Study of Fe 2P 1–xSi x (x ≤ 0.35)”,<br />

J. Solid State Chem., 53, 313–322 (1984) (Crys. Structure, Experimental, Theory, Electronic Structure,<br />

Magn. Prop., 13)<br />

[1988Liu] Liu, C.M., Abiko, K., Kimura, H., “Effect of Silicon on the Grain Boundary Segregation of Phosphorus<br />

<strong>and</strong> the Phosphorus Induced Intergranular Fracture in High Purity Fe-Si-P <strong>Alloy</strong>s” in “Strength of<br />

Metals <strong>and</strong> <strong>Alloy</strong>s (ICSMA8)”, Proc. of the 8 th International Conference, Pergamon, 1101–1106 (1988)<br />

(Morphology, Experimental, Mechan. Prop.) cited from abstract<br />

[1988Rag] Raghavan, V., “The Fe-P-Si (Iron-Phosphorus-Silicon) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Indian Inst. Met., Calcutta, 3, 162–171 (1988) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Review, #, 11)<br />

[1988The] “The 19 th Committee on Steelmaking, The Japan Society for the Promotion of Science” in “Steelmaking<br />

Data Sourcebook”, Gordon <strong>and</strong> Bresch Science Publishers, 280 (1988) (Morphology, Thermodyn.,<br />

Review) as quoted by [1993Din]<br />

[1990Oka] Okamoto, H., “The Fe-P (Iron-Phosphorus) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 11(4), 404–412<br />

(1990) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, Review, Magn.<br />

Prop., *, 88)<br />

[1990Qu] Qu, X., Lund, J.A., Gowri, S., “Synergistic <strong>Alloy</strong>ing-Sintering Effects in Iron-Silicon-Phosphorus<br />

Compacts”, Diffusion <strong>and</strong> Defect Data - Solid State Data, Part B (Solid State Phenomena), B8-9, 319–329<br />

(1990) (Morphology, Experimental, Interface Phenomena) cited from abstract<br />

[1990Reb] Rebrikova, L.K., Kovneristyi, Yu.K., Vavilova, V.V., Levintov, B.L., “<strong>Phase</strong> Equilibria <strong>and</strong> Susceptibility<br />

to Amorphization of Fe-P-Si <strong>Alloy</strong>s” (in Russian), Konferenciya po Fizicheskoi Chimii i Tekhnologii<br />

Fosfidov i Fosforsoderzhaschikh Splavov (Conf. on the Physical Chemistry <strong>and</strong> Technology of<br />

Phosphides <strong>and</strong> Phosphorus-Containing <strong>Alloy</strong>s), Alma-Ata, (1990) (Morphology, <strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Experimental) as quoted by [1998Vav]<br />

[1991Men] Menyhard, M., Rothman, B., McMahon, C.J., Jr., Lejcek, P., Paidar, V., “On the Fracture Path <strong>and</strong> the<br />

Intergranular Phosphorus Distribution in Phosphorus-Doped Fe-Si Symmetrical Bicrystals”, Acta<br />

Metall. Mater., 39(6), 1289–1295 (1991) (Crys. Structure, Morphology, Experimental, Mechan. Prop., 4)<br />

[1993Bal] Baldokhin, Yu.V., Vavilova, V.V., Kovneristyi, Ya.K., Kolotyrkin, P.Ya., Rebrikova, L.K., “Mössbauer<br />

Investigation of the Segregation Processes in the Amorphous <strong>Alloy</strong>s of the <strong>Systems</strong> Fe-P-M (M: Mn, Si,<br />

V)” (in Russian), Dokl. Akad. Nauk, 328(5), 575–579 (1993) (Crys. Structure, <strong>Phase</strong> Relations, Experimental,<br />

Magn. Prop., Mechan. Prop., 7)<br />

[1993Din] Ding, X., Wang, W., Han, Q., “Thermodynamic Calculation of Fe-P-j System Melt”, Acta Metall. Sin.<br />

(China), 29(12), B527–B532 (1993) (Thermodyn., Calculation, Theory, 7)<br />

[1994Tak] Takahashi, H., Suezawa, M., Sumino, K., “Iron-Phosphorus Interaction in Si”, Mater. Sci. Forum,<br />

143–147, 1257–1262 (1994) (Morphology, Experimental, Kinetics, Magn. Prop., 12)<br />

[1995Bou] Bouchard, D., Bale, C.W., “Simultaneous Optimization of Thermochemical Data for Liquid Iron <strong>Alloy</strong>s<br />

Containing C, N, Ti, Si, Mn, S, <strong>and</strong> P”, Metall. Mater. Trans. B, 26B, 467–484 (1995) (<strong>Phase</strong> Relations,<br />

Thermodyn., Calculation, Review, Theory, 85)<br />

[1995Per] Perrier, Ch., Vincent, H., Chaudouet, P., Chenevier, B., Madar, R., “Preparation <strong>and</strong> Crystal Structure<br />

of a New Family of Transition Metal Phospho-Silicides”, Mater. Res. Bull., 30(3), 357–364 (1995) (Crys.<br />

Structure, Experimental, 10)<br />

[1997Ued] Ueda, S., Morita, K., Sano, N., “Thermodynamics of Phosphorus in Molten Si-Fe <strong>and</strong> Si-Mn <strong>Alloy</strong>s”,<br />

Metall. Mater. Trans. B, 28(6), 1151–1155 (1997) (Thermodyn., Experimental, 15)<br />

[1997Vav] Vavilova, V.V., Kovneristyi, Y.K., “Preparation <strong>and</strong> Thermal Stability of Fe-P-M (M = Mo, V, Nb, Mn,<br />

Si) Amorphous <strong>Alloy</strong>s”, Inorg. Mater. (Engl. Trans.), 33(3), 275–281 (1997), translated from Neorg.<br />

Mater., 33(3), 333–339 (1997) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Experimental, Electr.<br />

Prop., Kinetics, Magn. Prop., 15)<br />

[1998Vav] Vavilova, V.V., Kovneristyi, Yu.K., Palii, N.A., “Correlation between the Annealing-induced<br />

Embrittlement of Fe-P-M (M = V, Mn, Si) Amorphous <strong>Alloy</strong>s <strong>and</strong> the Content of α-Fe Precipitates”,<br />

Inorg. Mater. (Engl. Trans.), 34(6), 566–570 (1998), translated from Neorg. Mater., 34(6), 692–696<br />

(1998) (Crys. Structure, Morphology, <strong>Phase</strong> Relations, Experimental, Electr. Prop., Mechan. Prop., 17)<br />

[1999Vav] Vavilova, V.V., Baldokhin, Y.V., “Mössbauer Study of Rapidly Quenched Fe-P-E <strong>Alloy</strong>s (E = V, Nb, Mo,<br />

Mn, Si)”, Russ. Metall. (Engl. Transl.), (1), 122–132 (1999) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Thermodyn., Experimental, Review, Kinetics, Magn. Prop., Mechan. Prop., 20)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_25<br />

ß Springer 2009


22 25<br />

Fe–P–Si<br />

[2000Vav1] Vavilova, V.V., Baldokhin, Y.V., Kovneristyi, Yu.K., Matveev, V.M., “Fe-P-M (M = Si, Mn, V) <strong>Alloy</strong>s:<br />

Viscosity in the Liquid State <strong>and</strong> Tendency to Amorphization”, Inorg. Mater. (Engl. Trans.), 36(7),<br />

703–708 (2000), translated from Neorg. Mater., 36(7), 845–851 (2000) (Morphology, Thermodyn.,<br />

Calculation, Experimental, Kinetics, Phys. Prop., 13)<br />

[2000Vav2] Vavilova, V.V., Palii, N.A., Kovneristyi, Yu.K., Timofeev, V.N., “Nanocrystalline Fe-P-Si <strong>Alloy</strong>s”, Inorg.<br />

Mater. (Engl. Trans.), 36(8), 783–787 (2000), translated from Neorg. Mater., 36(8), 945–949 (2000)<br />

(Morphology, Experimental, Kinetics) as quoted by [2003Bal]<br />

[2002Ito] Ito, M., Nagai, H., Oda, E., Katsuyama, S., Majima, K., “Effects of P Doping on the Thermoelectric<br />

Properties of β-FeSi 2”, J. Appl. Phys., 91(4), 2138–2142 (2002) (Crys. Structure, Morphology, Calculation,<br />

Experimental, Electr. Prop., 19)<br />

[2002Per] Perrot, P., Batista, S., Xing, X., “Fe-P (Iron-Phosphorus)”, MSIT Binary Evaluation Program, in MSIT<br />

Workplace, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document<br />

ID: 20.16107.1.20, (2002) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment,<br />

Phys. Prop., #, 23)<br />

[2002Tan] Tani, J.-i., Kido, H., “Geometrical <strong>and</strong> Electronic Structures of β-FeSi 1.875X 0.125 (X = B, Al, N or P)”, Jpn.<br />

J. Appl. Phys., 41(11A), 6426–6429 (2002) (Crys. Structure, Calculation, Electronic Structure, 21)<br />

[2003Bal] Baldokhin, Yu.V., Vavilova, V.V., Kovneristyi, Yu.K., Kolotyrkin, P.Ya., Palii, N.A., Solomatin, A.S.,<br />

“Mössbauer Study of Nanoscale Crystallization in Amorphous Fe-P-Si <strong>Alloy</strong>s During Annealing”,<br />

Inorg. Mater. (Engl. Trans.), 39(5), 479–484 (2003), translated from Neorg. Mater., 39(5), 576–582<br />

(2003) (Crys. Structure, Morphology, Experimental, Electr. Prop., Kinetics, Magn. Prop., Mechan.<br />

Prop., 8)<br />

[2004Vav] Vavilova, V.V., Ievlev, V.M., Isaenko, A.P., Kovneristyi, Y.K., Palii, N.A., Timofeev, V.N., “Effect of<br />

Thermal Annealing <strong>and</strong> Pulsed Photon Processing on the Relaxation <strong>and</strong> Crystallization of<br />

Amorphous Fe-P-Si <strong>Alloy</strong>s”, Inorg. Mater., 40(2), 152–160 (2004) (Morphology, Experimental, Mechan.<br />

Prop.) cited from abstract<br />

[2006Jan] Janovec, J., Pokluda, J., Jenko, M., Lejcek, P., Vlach, B., Hornikov, J., “Influence of Phosphorus on<br />

Energy of Intergranular Fracture in Fe-Si-P <strong>Alloy</strong>s”, Surf. Interface Anal., 38(4), 401–405 (2006)<br />

(Morphology, Experimental, Mechan. Prop.) cited from abstract<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_25 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Sulphur – Titanium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Nataliya Bochvar, Lazar Rokhlin<br />

Introduction<br />

The presence of sulphur in iron <strong>and</strong> steel leads commonly to decrease of strength, ductility <strong>and</strong><br />

corrosion resistance. The steels containing sulphur incline to cracking at high temperatures of<br />

hot working. Therefore, the sulphur content in commercial steels is strictly limited in<br />

steelmaking processes. Titanium additions to the steel melts result in precipitation of disperse<br />

spherical complex sulphides which are modificators of cast structure <strong>and</strong> decrease the sulphur<br />

danger. For successful control this process, the Fe-S-Ti phase diagram is of a great importance.<br />

There is a number of reports on the ternary sulphides in the Fe-S-Ti system. The ternary<br />

compound Ti2FeS4 was reported by [1968Plo1, 1968Plo2, 1973Mur1, 1973Mur3], who determined<br />

its crystal structure <strong>and</strong> lattice parameters. The ternary compound TiFe 2S 4 was studied<br />

by [1973Mur2]. [1970Dan, 1974Dan] reported two ternary compounds Ti 4FeS 8 <strong>and</strong> Ti 4Fe 3S 8,<br />

<strong>and</strong> their crystal structures. There are few reports about the phase equilibria in the Fe-S-Ti<br />

system. The liquidus surface <strong>and</strong> a number of the vertical sections in the region Fe-FeS-TiS-<br />

TiFe 2 were constructed by [1948Vog]. <strong>Phase</strong> equilibria at 600, 950 <strong>and</strong> 1300˚C were studied by<br />

[1957Hah], [1963Kan] <strong>and</strong> [1968Swi], respectively.<br />

The effect of Ti on the solubility <strong>and</strong> activity of S in liquid Fe at 1550 to 1640˚C was<br />

determined by [1966Sch, 1969Sch, 1973Buz, 1977Eji1, 1977Eji2, 1985Don, 1987Don].<br />

In the review on the Fe-S-Ti phase diagram of [1988Rag], the liquidus surface <strong>and</strong> reaction<br />

scheme are presented based on data of [1948Vog].<br />

[1995Bou] optimized the thermodynamic data for liquid alloys of iron containing Ti, S<br />

<strong>and</strong> other elements.<br />

The list of the experimental works on the Fe-S-Ti phase diagram is presented in Table 1.<br />

Binary systems<br />

The Fe-S binary system is accepted after [Mas2] supplemented by [1982Kub1]. The Fe-Ti<br />

binary system is accepted after [1982Kub2]. The S-Ti binary system is accepted after [Mas2]<br />

supplemented by [1986Mur].<br />

Solid <strong>Phase</strong>s<br />

Fe–S–Ti 26<br />

1<br />

Four ternary compounds found in the Fe-S-Ti system are given in Table 2. These are τ 1,<br />

Ti 2FeS 4; τ 2,TiFe 2S 4; τ 3,Ti 4FeS 8; τ 4,Ti 4Fe 3S 8 [1968Plo1, 1970Dan, 1973Mur1, 1973Mur2,<br />

1973Mur3, 1974Dan]. All the ternary compounds were established by preparation in the<br />

direct synthesis from the elements of stoichiometric ratio by heating up to temperatures 900<br />

or 1000˚C. The character of formation, the melting temperatures <strong>and</strong> the homogeneous ranges<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


2 26<br />

Fe–S–Ti<br />

of these compounds were not studied. The certain connection between crystal structures of the<br />

ternary phases τ 1, τ 3 <strong>and</strong> τ 4 was noted [1974Dan].<br />

The binary FeS <strong>and</strong> TiS compounds dissolve some Ti <strong>and</strong> Fe, respectively. There is<br />

discrepancy in values of solubility. According to [1934Kle], the compounds FeS <strong>and</strong> TiS<br />

form continuous solid solution, whereas [1948Vog, 1963Kan, 1976Mal] established the<br />

limited solution between these compounds. According to [1948Vog], the maximum solubility<br />

of Ti in FeS is about 30 mass% whereas [1963Kan] determined these solubility to be about 7<br />

mass%. Absence of the continuous solid solution of FeS <strong>and</strong> TiS was confirmed by [1957Hah,<br />

1970Kur] with extension of the limited FeS-base solid solution similar to that reported by<br />

[1948Vog]. On the contrary, solubility Fe in TiS was estimated about 22 mass% according to<br />

[1963Kan] <strong>and</strong> about 10 mass% according to [1948Vog]. Along with them, further investigations<br />

are desirable in order to avoid these discrepancies.<br />

Continuous solid solution between FeS <strong>and</strong> TiS can be obtained under high pressure.<br />

Thus, [1991Mak] synthesized the alloys along FeS-TiS section at temperatures 2127 to 2227˚C<br />

under pressure about 70 kbar followed by quenching down to 577˚C. Using X-ray analysis,<br />

[1991Mak] established existence of the solid solution Ti 1–xFe xS at 0.2 ≤ x ≤ 1.0 with the NiAs<br />

type structure. The lattice parameter a decreased from 345.9 to 334.7 pm <strong>and</strong> the lattice<br />

parameter c increased from 589.1 to 628.9 pm if the alloy composition changed from FeS to<br />

Ti 0.8Fe 0.2S.<br />

Quasibinary <strong>Systems</strong><br />

[1948Vog] <strong>and</strong> [1963Kan] presented the section FeS-TiS as quasibinary system. However, this<br />

section can be recognized as the quasibinary one only in limits from the FeS side up to ~ 50<br />

mass% Ti because TiS forms from liquid by the peritectic reaction L + Ti 8S 9 Ð TiS at ~1780˚<br />

C. FeS <strong>and</strong> TiS interact by invariant peritectic reaction at the temperature 1540˚C [1948Vog]<br />

or ~1370˚C [1963Kan]. The peritectic temperature 1540˚C by [1948Vog] should be assumed<br />

to be more reliable because of more experiments used. Figure 1 shows the FeS-TiS partial<br />

quasibinary section taking into account [1948Vog].<br />

According to [1948Vog] the TiFe2-TiS section is the quasibinary one. This, however, can be<br />

accepted only below ~ 55 mass% Ti. This section is characterized by existence of the liquid<br />

miscibility gap, monotectic <strong>and</strong> eutectic invariant reactions. The reaction temperatures were<br />

not indicated. Moreover, [1948Vog] showed two maxima (monotectic <strong>and</strong> eutectic points) on<br />

the double saturation lines in the Fe-corner. These points are located very close to the Fe-TiS<br />

section [1948Vog]. In opinion of [1988Rag], close location of the monotectic <strong>and</strong> eutectic<br />

points on the double saturation lines to the Fe-TiS section seems to suggest the section to be<br />

quasibinary one. The temperatures of the monotectic <strong>and</strong> eutectic points are 1500˚C <strong>and</strong><br />

~1440˚C, respectively. These values are taken from the vertical sections [1948Vog].<br />

Invariant Equilibria<br />

Five four-phase <strong>and</strong> four three-phase invariant equilibria were established for the Fe-FeS-<br />

TiS-TiFe 2 region of the Fe-S-Ti system by [1948Vog]. They are shown in the reaction<br />

scheme (Fig. 2) assumed, in general, after the review [1988Rag]. According to [1948Vog],<br />

temperatures of the points U1, U2, E1 are between 1390 <strong>and</strong> 1400˚C for U1, U2, <strong>and</strong> 1300˚C<br />

DOI: 10.1007/978-3-540-70890-2_26 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


for E 1.In[1988Rag] these temperatures were corrected to meet the accepted binary systems<br />

<strong>and</strong> taken as ~ 1360, ~1350, ~1280˚C, respectively. The temperature of U 3,p 2max,e 1max,e 2max<br />

points were taken as 1000, 1570, 1500, 1440˚C in this assessment from vertical section<br />

[1948Vog]. The temperatures of points e 3min,e 5max,U 4 were taken by [1988Rag] speculatively.<br />

Liquidus Surface<br />

There is only one article by [1948Vog] in which the liquidus surface in the Fe-FeS-TiS-TiFe 2<br />

region of the Fe-S-Ti system was described. [1948Vog] established existence of the miscibility<br />

gap in liquid state extending from Fe-corner to the TiFe 2-TiS section. Two liquids, L 1<br />

(metallic) <strong>and</strong> L 2 (sulphide) participate in invariant reactions e 1max, e 2max <strong>and</strong> U 2. There is<br />

one minimum point (c 2) on the line bounding the miscibility gap at the composition about<br />

77.2 mass% Fe, 21.2 mass% S, 1.6 mass% Ti. It is reasonable to suppose also the existence of<br />

the maximum point c1 on the line bounding the miscibility gap out of the studied area of the<br />

phase diagram (in the direction of the Ti corner from the section TiS-TiFe2 (Fig. 3). The<br />

liquidus surface is shown in Fig. 3 according to [1948Vog] evaluated in mass%. The liquidus<br />

surface includes the miscibility gap <strong>and</strong> six regions of primary crystallization: (δFe,αFe), (γFe),<br />

FeS, TiS, Ti 8S 9 <strong>and</strong> TiFe 2.<br />

Isothermal Sections<br />

Fe–S–Ti 26<br />

3<br />

The isothermal section at 600˚C was studied by [1957Hah] in the FeS-TiS2-TiS region. The<br />

one-phase ranges of the NiAs <strong>and</strong> CdI 2 type structures are shown approximately. The<br />

isothermal section at 950˚C was constructed by [1963Kan] in the limits of the Fe-FeS-TiS-<br />

TiFe 2 region. [1963Kan] drew the tie lines in the two-phase areas joining (δFe,αFe) or (γFe)<br />

with two sulphides FeS <strong>and</strong> TiS. However, there is considerable disagreement in solubility<br />

limits of Ti <strong>and</strong> Fe in corresponding sulphides that was discussed earlier. This section <strong>and</strong> the<br />

section at 600˚C are not shown in this assessment.<br />

The isothermal section at 1300˚C was constructed by [1968Swi] in Fe corner of the Fe-S-Ti<br />

phase diagram. Figure 4 shows this isothermal section with the tie lines in two-phase area<br />

joining (γFe) with the sulphide TiS at various partial pressure of sulphur. Positions of the three<br />

upper tie lines were drawn based on data obtained for the high sulphur partial pressure.<br />

Positions of the two lower tie lines were drawn based on one or two data points only <strong>and</strong>,<br />

therefore, should be regarded as approximate. The phase boundary between (γFe) <strong>and</strong><br />

sulphide TiS was established from the solubility measurements in the range from 0.1 to<br />

0.4 mass% Ti. The Fe contents in the sulphide TiS was not determined by [1968Swi] because<br />

the experimental data yielded only the sulphur to titanium ratio in the sulphide TiS <strong>and</strong> did<br />

not give the iron contents.<br />

The isotherm of solubility of S <strong>and</strong> Ti in the Fe rich liquid phase at 1600˚C is shown in<br />

Fig. 5 according to the calculation made by [1995Bou] using the experimental data [1973Buz,<br />

1987Don]. The existence of the minimum solubility on the curve may be explained by<br />

decrease of the sulphur activity resulting from the Ti presence.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


4 26<br />

Fe–S–Ti<br />

Temperature – Composition Sections<br />

Seven vertical sections of the Fe-S-Ti phase diagram in limits of the Fe-FeS-TiS-TiFe 2 region<br />

were constructed by [1948Vog]. Two of them are reproduced in Figs. 6 <strong>and</strong> 7 with some<br />

corrections to meet the accepted binary phase diagrams. In accordance with this, temperatures<br />

of the four-phase invariant equilibria U1, U2, E1 are given in the reaction scheme (Fig. 2).<br />

Thermodynamics<br />

The activity coefficient of sulphur was determined by [1966Sch, 1969Ban, 1969Sch, 1973Buz,<br />

1974Sig, 1977Eji1, 1977Eji2, 1985Don, 1987Don]. Titanium decreases the activity coefficient<br />

of sulphur in both liquid <strong>and</strong> solid iron. The first-order interaction coefficients in liquid iron<br />

at 1600˚C are eS Ti = –0.082 [1966Sch, 1969Sch, 1973Buz], –0.072 [1974Sig], –0.18 [1977Eji1,<br />

1977Eji2], –0.2 [1985Don, 1987Don]. According to [1969Ban] eS Ti = –0.072 at 1550˚C. The<br />

discrepancies in the reported activity coefficients could be caused by the different methods<br />

used in the experiments.<br />

[2001Sud] determined thermodynamic properties of the Fe-S melts containing different<br />

d- <strong>and</strong> f- metals (in particular, Ti) by the calorimetric method. The partial mole enthalpies of<br />

the melts were established <strong>and</strong> taken into account at the desulphurization of steels.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

[1973Mur2] reported the results of the magnetization <strong>and</strong> Mössbauer effect measurements on<br />

TiFe 2S compound. The temperature dependence of magnetization was constructed for various<br />

magnetic fields up to 18 kOe between 2 <strong>and</strong> 340 K. Mössbauer spectra were determined at 291,<br />

276 <strong>and</strong> 80 K. Magnetic transition temperature was determined at 285 K.<br />

[1973Mur3, 1968Plo2] constructed the temperature dependence of electric resistivity of<br />

Ti2FeS4. The Ti2FeS4 resistivity measured on single crystal sample [1973Mur3] was similar to<br />

the results obtained by [1968Plo2] on polycrystalline samples. However, the kink on the<br />

resistivity curve at Neel temperature of Ti 2FeS 4 was not observed in the [1968Plo2] results.<br />

Based on the X-ray investigation of quenched samples [1968Plo1] showed the absence of the<br />

temperature-dependent order-disorder transition in this compound. Unlike [1968Plo1], in<br />

[1973Mur1] the transition from vacancy-order state to vacancy-disorder state was observed at<br />

720 K during magnetic measurements of the Ti 2FeS 4 sample at the temperature between liquid<br />

nitrogen temperature <strong>and</strong> 1273 K. The sample showed antiferromagnetism with the Neel<br />

temperature at 138 K. This discrepancy of [1968Plo1, 1968Plo2] <strong>and</strong> [1973Mur1, 1973Mur3]<br />

results may be explained by the difference of heat treatments of the samples during preparations.<br />

[1974Dan] measured electric <strong>and</strong> magnetic properties of the TiFe xS 2 alloys at x = 0.25,<br />

0.33, 0.40, 0.50, 0.75 in the temperature range from 7 to 400 K. Measured alloys showed a<br />

competition between ferromagnetism <strong>and</strong> antiferromagnetism.<br />

The temperature dependence of magnetization <strong>and</strong> magnetic susceptibility of the alloys<br />

along the FeS-Ti 0.8Fe 0.2S section were established by [1991Mak]. The experiments were<br />

conducted under high pressure. [1991Mak] determined the temperatures of the magnetic<br />

phase transitions in these alloys <strong>and</strong> constructed the magnetic phase diagram of the FeS-TiS<br />

solid solution.<br />

DOI: 10.1007/978-3-540-70890-2_26 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


[2004Kim, 2005Nam] measured Mössbauer spectra of the Ti 0.025Fe 0.975S alloy at various<br />

temperatures between liquid nitrogen temperature <strong>and</strong> 600 K. The Neel temperature, crystallographic<br />

phase transition temperature <strong>and</strong> the Morin transition temperature were determined.<br />

Miscellaneous<br />

Fe–S–Ti 26<br />

5<br />

[1965Sch] investigated a possibility of the sulphide formation in Fe-S-Ti system at 1600˚C.<br />

They discovered that the sulphide TiS was formed only at the lower than 1600˚C temperature<br />

during crystallization of the Fe-rich liquid phase.<br />

[1976Mal] investigated formation <strong>and</strong> nature of the sulphide phase in Fe-S-Ti <strong>and</strong><br />

C-Fe-S-Ti systems. [1976Mal] showed that the titanium sulphide eutectic was formed between<br />

the branches of the austenite dendrites during the solidification of Fe-S-Ti alloys with low<br />

S <strong>and</strong> Ti contents. With increasing concentrations of Ti <strong>and</strong> S the amount of sulphide eutectic<br />

increased <strong>and</strong> at approximately 0.5 mass% S <strong>and</strong> 2.5 mass% Ti the alloy possessed a purely<br />

eutectic structure. The titanium sulphide eutectic was formed in C-Fe-S-Ti alloys even at low<br />

Ti content together with a titanium carbide eutectic.<br />

Also, the mechanism of the titanium sulphides formation around the branches of the<br />

austenite dendrites in the Fe-S-Ti alloys during crystallization was studied by [1981Sam], who<br />

gave the mathematical description of this process.<br />

Using an electron microprobe analyzer, [1968Ska] studied the effect of Ti additions on the<br />

morphology, size <strong>and</strong> mode of precipitation of sulphides in pure iron with high sulphur<br />

content.<br />

In the review [1968Hul] the transition-element compounds with the structure of various<br />

types (pyrite, marcasite, CdI 2, NiAs <strong>and</strong> others) were discussed.<br />

[1995Bou] presented a database of thermochemical parameters for liquid iron-base alloys<br />

containing Ti, S <strong>and</strong> other elements. Expressions for the interaction parameters of the solutes<br />

<strong>and</strong> the Gibbs energies of formation of the carbides, nitrides <strong>and</strong> sulphides of titanium were<br />

simultaneously optimized. It was shown that the resulting thermochemical database reproduced<br />

the experimental data satisfactorily.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


6 26<br />

Fe–S–Ti<br />

. Table 1<br />

Investigations of the Fe-S-Ti <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1934Kle] <strong>Alloy</strong>s were prepared by melting of FeS<br />

with 1, 5, 10, 20, 44% TiS 2 at different<br />

temperature from 1360 to 1630˚C.<br />

Chemical, thermal <strong>and</strong> microstructure<br />

analyses<br />

[1948Vog] Krupp WW Fe, Ti (95%), pure S were<br />

melted in alumina crucible in Ar. The<br />

thermal analysis, optical microscopy,<br />

chemical analysis of the separated layers,<br />

X-ray analysis<br />

[1957Hah] The direct synthesis of elements. 900 to<br />

1000˚C for 48 hour, then 600˚C for more<br />

week. X-ray analysis<br />

[1963Kan] Electrolytic isolation of sulphides from<br />

ternary alloys. Chemical <strong>and</strong> X-ray<br />

analyses<br />

[1965Sch] <strong>Alloy</strong>s were prepared in induction furnace<br />

in argon atmosphere. Chemical <strong>and</strong><br />

metallographic analyses<br />

[1966Sch] <strong>Alloy</strong>s were prepared in induction furnace<br />

in argon atmosphere at 1600˚C. Chemical<br />

analysis, thermodynamic<br />

[1968Plo1] Synthesis of stoichiometric ratio Ti<br />

(99.99%), Fe (99.99%), powder S<br />

(99.999%) in evacuated silica tube at 600,<br />

800 <strong>and</strong> 1000˚C during one week.<br />

Quenching from 1300˚C into ice water,<br />

then annealing at 800, 1000˚C <strong>and</strong> slowcooled<br />

at the rate of 10 K·h –1 . X-ray<br />

measurement.<br />

[1968Swi] Flat plates (0.03 by 2 by 4) from<br />

specimens of Fe-Ti alloys made in<br />

induction furnace were equilibrated at<br />

1300˚C in resistance furnace in H 2S-H 2<br />

mixture. Chemical analysis, electron<br />

microprobe.<br />

[1969Ban] Electrolytic Fe, pure Ti <strong>and</strong> pure iron<br />

sulphide. Alumina crucibles, resistance<br />

furnace, exposed to a fixed sulphur<br />

potential gas for 4 to 12 hours at 1550˚C,<br />

quenching. Gravimetrical <strong>and</strong> chemical<br />

analyses, calculation, thermodynamic.<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

1000 to 1600˚C The partial FeS-TiS<br />

section from 0 to 40 mass% TiS<br />

At the temperatures from 1500 to 800˚C<br />

in Fe-FeS-TiS-TiFe 2 composition range.<br />

Liquidus surface <strong>and</strong> vertical sections.<br />

Invariant equilibria.<br />

<strong>Phase</strong> relations at 600˚C in the FeS-TiS 2-<br />

TiS composition range.<br />

950˚C, Fe-rich alloys with S from 0 to<br />

40 mass% <strong>and</strong> Ti from 0 to 60 mass%. The<br />

isothermal section at 950˚C.<br />

1600˚C, Fe alloys with 0.6 to 4.3 mass% Ti<br />

<strong>and</strong> 0.1 mass% S<br />

Solubility of Ti <strong>and</strong> S in Fe liquid at<br />

1600˚C, activity coefficient of S in Fe<br />

liquid<br />

<strong>Ternary</strong> compound Ti 2FeS 4. Crystal<br />

structure <strong>and</strong> order-disorder transition.<br />

Fe-Ti alloys with 0.12, 0.24, 0.38,<br />

0.54 mass% Ti <strong>and</strong> 0 to 0.08 mass% S. The<br />

temperature range from 1150 to 1300˚C.<br />

Solubility of S in Fe-Ti alloys at 1300˚C<br />

1550˚C, the effect Ti on the activity<br />

coefficient of S in liquid iron<br />

DOI: 10.1007/978-3-540-70890-2_26 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1969Sch] <strong>Alloy</strong>s were prepared in induction furnace<br />

in argon atmosphere at 1600˚C. Chemical<br />

analysis, thermodynamic<br />

[1970Dan] Synthesis of elements with TiS2 in silica<br />

tubes at 900˚C for 5 h. X-ray analysis<br />

[1973Buz] Electron-probe analysis <strong>and</strong> X-ray<br />

diffraction, thermodynamic.<br />

[1973Mur1] Direct reaction of Fe (99.99%), Ti (99.99%),<br />

powder S (99.999%) in an evacuated silica<br />

tube at 500˚C for 1 week, then at 900˚C<br />

for 1 week. Chemical <strong>and</strong> X-ray analyses,<br />

magnetic measurements.<br />

[1973Mur2] Direct reaction of highly pure elements in<br />

an evacuated silica tube at 750˚C for<br />

2 weeks. Chemical <strong>and</strong> X-ray analyses,<br />

magnetic measurements on torsion<br />

balance magnetometer.<br />

[1973Mur3] Single crystal of Ti 2FeS 4 was prepared in<br />

sealed evacuated tube from powder<br />

sample with 10 –6 MmHg, Cl 2 gas as a<br />

growth agency. X-ray diffraction,<br />

measurement of electric resistivity.<br />

[1974Dan] Synthesis of elements with TiS2 in silica<br />

tubes at 900˚C for 5 h <strong>and</strong> 1000˚C for 10<br />

h X-ray analysis, electric <strong>and</strong> magnetic<br />

measurements<br />

[1976Mal] <strong>Alloy</strong>s were prepared in vacuum electric<br />

furnace in alundum crucibles from<br />

carbonyl Fe, metallic Ti <strong>and</strong> elemental S.<br />

X-ray microanalyser, microprobe <strong>and</strong><br />

microstructure analyses.<br />

[1977Eji1,<br />

1977Eji2]<br />

<strong>Alloy</strong>s were prepared by melting Fe-S in<br />

induction furnace with addition of Ti<br />

under argon. Thermodynamic properties<br />

[1987Don] High purity Fe (99.99%) <strong>and</strong> Ti (99.7%)<br />

<strong>and</strong> iron sulphide (powder). High<br />

frequency induction furnace, argon gas.<br />

Stabilization at 1640˚C for 10 min <strong>and</strong><br />

quenching. Stabilization at 1560˚C for 10<br />

min <strong>and</strong> quenching. Optical pyrometer,<br />

chemical analysis, energy dispersive<br />

spectroscopy, thermodynamic.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–S–Ti 26<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

Solubility of Ti <strong>and</strong> S in Fe liquid at<br />

1600˚C, activity coefficient of S in<br />

Fe liquid<br />

<strong>Ternary</strong> compounds Ti 4FeS 8 <strong>and</strong> Ti 4Fe 3S 8.<br />

Crystal structure <strong>and</strong> lattice parameters<br />

Solubility of Ti <strong>and</strong> S in Fe liquid <strong>and</strong><br />

activity coefficient of S in liquid Fe at<br />

1600˚C.<br />

<strong>Ternary</strong> compound Ti 2FeS 4. Crystal<br />

structure <strong>and</strong> lattice parameters.<br />

<strong>Ternary</strong> compound TiFe 2S 4. Crystal<br />

structure <strong>and</strong> lattice parameters.<br />

Single crystal of Ti 2FeS 4. Lattice<br />

parameters.<br />

<strong>Alloy</strong>s along Fe xTiS 2 at x = 0.25, 0.5, 0.75<br />

(ternary compounds Ti4FeS8, Ti2FeS4 <strong>and</strong><br />

Ti 4Fe 3S 8). Crystal structure <strong>and</strong> lattice<br />

parameters.<br />

Cast alloys in Fe-corner, S varied from<br />

0.009 to 0.1 mass% <strong>and</strong> Ti from 0.012 to<br />

0.53 mass%. The effect of Ti <strong>and</strong> S<br />

contents on the sulphide formations.<br />

1600˚C, solubility S <strong>and</strong> Ti in Fe liquid,<br />

interaction parameters, activity<br />

coefficient<br />

7<br />

Series of liquid Fe-Ti-S alloys in<br />

temperature range of 1560 to 1640˚C.<br />

The TiS solubility product <strong>and</strong> sulphurtitanium<br />

interaction parameter at 1600˚C.<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


8 26<br />

Fe–S–Ti<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[2004Kim] <strong>Alloy</strong>s were prepared by direct reaction of<br />

the elements (of high purity, better than<br />

99.9%) in evacuated <strong>and</strong> sealed quartz<br />

tubes at 1000˚C for 7 days followed by<br />

quenching. X-ray diffraction, Mössbauer<br />

measurements.<br />

[2005Nam] <strong>Alloy</strong>s were prepared by direct reaction of<br />

the elements (of high purity, better than<br />

99.995%) in evacuated quartz ampoules<br />

at 600˚C for 1 day, then at 1000˚C for 3<br />

days followed by quenching. X-ray<br />

diffraction, Mössbauer measurements.<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

<strong>Alloy</strong> FeS with 1.25 at.% Ti (Ti 0.025Fe 0.975S).<br />

Crystal structure <strong>and</strong> lattice parameters at<br />

room temperature<br />

<strong>Alloy</strong> FeS with 1.25 at.% Ti (Ti0.025Fe0.975S).<br />

Crystal structure <strong>and</strong> lattice parameters at<br />

room temperature<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

δα, (δFe,αFe) cI2 (δFe) <strong>and</strong> (αFe) merges <strong>and</strong> dissolves 9.8 at.% Ti at<br />

Im3m<br />

W<br />

1290˚C in Fe-Ti system [1982Kub2]<br />

(δFe) dissolves ~0.24 at.% S at 1365˚C<br />

1538 - 1394 [Mas2]<br />

a = 293.15 [Mas2]<br />

a = 293.78 at 1480˚C [V-C2]<br />

(αFe) dissolves 0.033 at.% S at 1365˚C [Mas2] <strong>and</strong> 3.08 at.<br />

< 912<br />

% Ti at 900˚C<br />

[1982Kub2]<br />

a = 286.65 at 25˚C [Mas2]<br />

(γFe) cF4 dissolves 0.09 at.% S at 1365˚C [Mas2] <strong>and</strong> 0.8 at.%<br />

1394 - 912 Fm3m<br />

Ti at 1120˚C [1982Kub2]<br />

Cu a = 364.67 at 915˚C [Mas2]<br />

a = 366.00 at 1167˚C [V-C2]<br />

(βS) mP48 a = 1102 100 at.% S [Mas2]<br />

115.22 - 95.9 P21/a b = 1096<br />

βS c =1090<br />

β = 96.7˚<br />

DOI: 10.1007/978-3-540-70890-2_26 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(αS) oF128 100 at.% S<br />

< 95.5 Fddd a = 1046.4 at 25˚C [Mas2]<br />

αS b = 1286.60<br />

c = 2448.60<br />

(βTi) cI2 dissolves 0.01 at.% S at 1212˚C [Mas2] <strong>and</strong> 22 at.%<br />

1670 - 882 Im3m<br />

Fe at 1085˚C [1982Kub2]<br />

W a = 330.65 [Mas2]<br />

(αTi) hP2 dissolves 0.02 at.% S at ~885˚C [Mas2] <strong>and</strong><br />

< 882 P63/mmc 0.055 at.% Fe at 590˚C [1982Kub2]<br />

Mg a = 295.06<br />

c = 468.35<br />

at 25˚C [Mas2]<br />

γFeS hP4 50 to 55 at.% S<br />

1188 - 315 P63/mmc [Mas2]<br />

NiAs dissolves about 27 at.% Ti along FeS- TiS section<br />

[1948Vog]<br />

a = 344.36 ± 5<br />

c = 587.59 ± 0.05<br />

[V-C2]<br />

βFeS hP24 50 to ~52 at.% S [Mas2], troilite<br />

315 -< 138 P62c a = 599.8 ± 1.1 [V-C2]<br />

βFeS c = 1171 ± 1<br />

a = 596.9 ± 0.2 quenching from 1000˚C, for Ti0.025Fe0.975S c = 1169 ± 5 [2004Kim, 2005Nam]<br />

αFeS hP6 50 to ~52 at.% S [Mas2]<br />

< 138 P63/mmc a = 345.59 ± 0.05 [V-C2]<br />

αFeS c = 577.89 ± 0.05<br />

βFeS2 cP12 ~66.7 at.% S [Mas2], pyrite<br />

743 - 444.6 Pa3<br />

βFeS2 a = 541.8 ± 0.2 [V-C2]<br />

αFeS2 oP6 ~66.7 at.% S [Mas2], marcasite<br />

< 444.6 Pnnm a = 444.31 ± 0.09 [V-C2]<br />

αFeS2 b = 542.15 ± 0.09<br />

c = 338.71 ± 0.06<br />

TiFe2 hP12 25.8 to 34.4 at.% Ti at 1200˚C<br />

< 1427 P63/mmc [1982Kub2]<br />

MgZn2 a = 478.5 ± 0.2<br />

c = 779.9 ± 0.3<br />

[V-C2]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–S–Ti 26<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


10 26<br />

Fe–S–Ti<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

TiFe cP2 49.8 to 51.8 at.% Ti at 1080˚C<br />

< 1317 Pm3m [1982Kub2]<br />

ClCs a = 297.89 ± 0.03 [V-C2]<br />

Ti6S h** ~14 at.% S [Mas2]<br />

< 885 - a = 296.7 [1986Mur]<br />

- c = 1450<br />

Ti3S t** 25 at.% S [Mas2]<br />

< 1305 - a = 997.8 [1986Mur]<br />

- c = 490<br />

Ti2S oP 31 to 35 at.% S [Mas2]<br />

< 1410 36 a = 1406 [V-C2]<br />

Pnnm b = 1135<br />

Ta2P c = 332<br />

TiS, (Ti1+xS) hP2 46 to 49.7 at.% S [Mas2]<br />

≲ 1780 - 935 P6m2 dissolves about 8.8 at.% Fe along TiS- FeS section<br />

CW<br />

[1948Vog]<br />

a = 327.2<br />

c = 643.8<br />

[1986Mur]<br />

TiS hP4 ~49.7 at.% S [Mas2]<br />

< 935 P63/mmc a = 329.6 [V-C2]<br />

NiAs c = 639.8<br />

Ti8S9 hR18 ~52.6 at.% S [Mas2]<br />

≲ 1975 R3m a = 342.3 [1986Mur]<br />

- c = 2646<br />

Ti8S10 hP18 ~55.6 at.% S [Mas2]<br />

≲ 1850 P63/mmc a = 343.9 [1986Mur]<br />

- c = 2893<br />

Ti16S21 hR37.1 ~56.6 at.% S [Mas2]<br />

R3m a = 344.1 [1986Mur]<br />

- c = 6048<br />

Ti2.67S4 hP6.8 57.9 to 61.4 at.% S [Mas2]<br />

P63mc a = 343.85 [1986Mur]<br />

- c = 1143.22<br />

DOI: 10.1007/978-3-540-70890-2_26 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–S–Ti 26<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(4H) 2 mC40.14 Superlattice structure based on Ti2.67S4 Cc 59.8 to 60.3 at.% S [Mas2]<br />

- a = 594.395<br />

b = 1029.51<br />

c = 2285.83<br />

[1986Mur]<br />

(4H) 3 mC59.8 Superlattice structure based on Ti2.67S4 Cc [Mas2]<br />

- a = 1030<br />

b = 592<br />

c = 3490<br />

[1986Mur]<br />

Ti7S12 hR19.1 ~62.8 at.% S [Mas2]<br />

R3m a = 342.0 [1986Mur]<br />

Ti7S12 c = 3432.6<br />

TiS2 hP3 64.4 to 66.7 at.% S [Mas2]<br />

P3m1 a = 340.73 [1986Mur]<br />

CdI2 c = 569.53<br />

TiS3 mP8 ~75 at.% S [Mas2]<br />

< 632 P21/m a = 499 [1986Mur]<br />

- b = 338<br />

c = 877.84<br />

β = 97.324˚<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


12 26<br />

Fe–S–Ti<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

* τ1,Ti2FeS4 mC14 a = 592.7 slowly cooling [1973Mur1]<br />

C2/m b = 342.8<br />

Cr3S4 c = 1145.8<br />

β = 90.1˚<br />

a = 592.8<br />

b = 342.2<br />

c = 1149.1<br />

β = 90.0˚<br />

quenching from 400˚C [1973Mur1]<br />

a = 592.7<br />

b = 342.0<br />

c = 1147.9<br />

β = 90.0˚<br />

quenching from 600˚C [1973Mur1]<br />

a = 592.2<br />

b = 342.6<br />

c = 1148.2<br />

β = 90.0˚<br />

quenching from 1000˚C [1973Mur1]<br />

a = 592.6<br />

b = 342.8<br />

c = 1145.7<br />

β = 90.1˚<br />

single crystal [1973Mur3]<br />

a = 592.9<br />

b = 342.6<br />

c = 1146<br />

β = 90.1˚<br />

quenching from 1000˚C [1968Plo1]<br />

a = 595<br />

b = 341.7<br />

c = 1153<br />

β = 90.2˚<br />

[1974Dan]<br />

* τ2, TiFe2S4 mC14 a = 598 annealing at 750˚C [1973Mur2]<br />

C2/m b = 343<br />

Cr3S4 c = 1116<br />

β = 91.7˚<br />

* τ3,Ti4FeS8 mC52 [V-C2]<br />

C2/m a = 1181 [1970Dan, 1974Dan]<br />

Ti4FeS8 b = 683<br />

c = 1140<br />

β = 90.4˚<br />

* τ4, Ti4Fe3S8 mC120 [V-C2]<br />

C2/m a = 1184 [1970Dan, 1974Dan]<br />

- b = 685<br />

c = 2320<br />

β = 90.3˚<br />

DOI: 10.1007/978-3-540-70890-2_26 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-S-Ti. Partial quasibinary FeS-TiS section<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–S–Ti 26<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


14 26<br />

. Fig. 2<br />

Fe-S-Ti. Partial reaction scheme<br />

Fe–S–Ti<br />

DOI: 10.1007/978-3-540-70890-2_26 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-S-Ti. Liquidus surface projection in the Fe-FeS-TiS-TiFe 2 region<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–S–Ti 26<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


16 26<br />

Fe–S–Ti<br />

. Fig. 4<br />

Fe-S-Ti. Partial isothermal section at 1300˚C<br />

DOI: 10.1007/978-3-540-70890-2_26 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-S-Ti. Solubility S <strong>and</strong> Ti in liquid Fe at 1600˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–S–Ti 26<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


18 26<br />

Fe–S–Ti<br />

. Fig. 6<br />

Fe-S-Ti. Partial vertical section from the binary 94Fe-6S towards the binary 90Ti-10Fe (mass%)<br />

alloys<br />

DOI: 10.1007/978-3-540-70890-2_26 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–S–Ti 26<br />

. Fig. 7<br />

Fe-S-Ti. Partial vertical section from Ti-corner towards the binary 70Fe-30S (mass%)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

19<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


20 26<br />

Fe–S–Ti<br />

References<br />

[1934Kle] Kleffer, J., “The Metallurgy of Titanium Sulphide in the Haglund Process” (in German), Metall Erz,<br />

3(14), 307-320 (1934) (Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, 59)<br />

[1948Vog] Vogel, R., Kasten, G.-W., “The Iron-Sulphur-Titanium <strong>Phase</strong> Diagram” (in German), Arch. Eisenhuettenwes.,<br />

19, 65-71 (1948) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 4)<br />

[1957Hah] Hahn, H., Harder, B., Brockmueller, W., “<strong>Ternary</strong> Chalcogenides. X. The Reaction of Ti Sulphides with<br />

Sulphides of Divalent Transition Metals” (in German), Z. Anorg. Allg. Chem., 288(5-6), 260-268 (1957)<br />

(Crys. Structure, Experimental, <strong>Phase</strong> Relations, 8)<br />

[1963Kan] Kaneko, H., Nishizawa, T., Tamaki, K., “Study on <strong>Phase</strong> Diagram of Sulfides in Steel” (in Japanese),<br />

Nippon Kinzoku Gakkai Shi, 27(7), 312-318 (1963) (<strong>Phase</strong> Diagram, Experimental, <strong>Phase</strong> Relations,<br />

*, 23)<br />

[1965Sch] Schindlerova, V., Buzek, Z., “The Experimental Investigation of the Possible Formation of Sulphides in<br />

<strong>Systems</strong> of Fe-S-Al, Fe-S-Ti <strong>and</strong> Fe-S-Zr at 1600˚C” (in Czech), Sb. Ved. Pr. Vys. Sk. Banske Ostrave,<br />

Rada Hutn., 11(3), 443-447 (1965) (Experimental, Morphology, <strong>Phase</strong> Relations, 11)<br />

[1966Sch] Schindlerova, V., Buzec, Z., “Effect of Aluminum Titanium, Manganese, Zirconium, <strong>and</strong> Cerium on<br />

the Solubility <strong>and</strong> Activity of Sulphur in Molten Iron at 1600˚C” (in Czech), Hutn. Listy, 21(3),<br />

169-175 (1966) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 14)<br />

[1968Hul] Hulliger, F., “Crystal Chemistry of Chalcogenides <strong>and</strong> Pnictides of the Transition Elements”, Struc.<br />

Bonding, 4, 83-229 (1968) (Crys. Structure, Review, 532)<br />

[1968Plo1] Plovnick, R.H., Vlasse, M., Wold, A., “Preparation <strong>and</strong> Structural Properties of Some <strong>Ternary</strong><br />

Chalcogenides of Titanium”, Inorg. Chem., 7(1), 127-129 (1968) (Crys. Structure, Experimental, 9)<br />

[1968Plo2] Plovnick, R.H., Perloff, D.S., Vlasse, M., Wold, A., “Electrical <strong>and</strong> Structural Properties of Some<br />

<strong>Ternary</strong> Chalcogenides of Titanium”, J. Phys. Chem. Solids, 29, 1935-1940 (1968) (Crys. Structure,<br />

Electr. Prop., Experimental, 8)<br />

[1968Ska] Skala, J., Riman, R., “The Influence of Certain Elements (Al, Mn, Cr <strong>and</strong> Ti) on the Chemical<br />

Composition of Iron Sulphides” (in Czech), Sb. Ved. Pr. Vys. Sk. Banske Ostrave, Rada Hutn., 14(3),<br />

115-122 (1968) (Crys. Structure, Morphology, Experimental, 2)<br />

[1968Swi] Swisher, J.H., “Sulfur Solubility <strong>and</strong> Internal Sulfidation of Iron-Titanium <strong>Alloy</strong>s”, Trans. Met. Soc.<br />

AIME, 242, 2433-2439 (1968) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., #, 13)<br />

[1969Ban] Ban-ya, S., Chipman, J., “Sulphur in Liquid Iron <strong>Alloy</strong>s: II – Effect of <strong>Alloy</strong>s Elements”, Trans. AIME,<br />

245(1), 133-143 (1969) (Experimental, Thermodyn., 18)<br />

[1969Sch] Schindlerova, V., Buzek, Z., “The Effect of Al, Ti, Mn, Zr <strong>and</strong> Ce on the Solubility <strong>and</strong> Activity of S in<br />

Molten Fe at 1600˚C” (in German), Freiberger Forschungshefte, 117B, 43-58 (1969) (Experimental,<br />

<strong>Phase</strong> Relations, Thermodyn., *, 14)<br />

[1970Dan] Danot, M., Rouxel, J., “M xTiS 2 <strong>Systems</strong> (M = Alkali Metal or Transition Metal of the First Period x =<br />

0 to 1); MTi 4S 8 <strong>and</strong> M 3Ti 4S 6 (M = Fe, Co, Ni) Superstructures” (in French), Compt. Rend. Acad. Sci.<br />

Paris, Ser. C, 271, 998-1001 (1970) (Crys. Structure, Experimental, 7)<br />

[1970Kur] Kurihara, J., “Synthetic Products in the Ti-S <strong>and</strong> Fe-Ti-S <strong>Systems</strong>” (in Japanese), Denki Kagaku, 38<br />

(11), 842-848 (1970) (Crys. Structure, Experimental) as quoted by [1988Rag]<br />

[1973Buz] Buzek, Z., “Effect of <strong>Alloy</strong>ing Elements on the Solubility <strong>and</strong> Activity of Oxygen <strong>and</strong> Sulphur in Liquid<br />

Iron at 1600˚C”, “Metall. Chem. - Appl. Ferrous Metall.”, Int. Symp., Sheffield, July 1971, Iron Steel Inst,<br />

London, 173-177 (1973) (Crys. Structure, Experimental, *, 8)<br />

[1973Mur1] Muranaka, S., “Order-Disorder Transition of Vacancies in FeTi 2S 4”, Mater. Res. Bull., 8, 679-686 (1973)<br />

(Crys. Structure, Experimental, Magn. Prop., 3)<br />

[1973Mur2] Muranaka, S., “Magnetic Properties of Fe 2TiS 4”, J. Phys. Soc. Jpn., 35, 1553 (1973) (Experimental,<br />

Magn. Prop., 3)<br />

[1973Mur3] Muranaka, S., Takada, T., “Growth <strong>and</strong> Electrical Properties of FeMX 4 (M = Ti, V; X = S, Se) Single<br />

Crystals.”, Bull. Inst. Chem. Res., Kyoto Univ., 51(5), 287-294 (1973) (Crys. Structure, Electr. Prop.,<br />

Experimental, 10)<br />

[1974Dan] Danot, M., Rouxel, J., Gorochov, O., “Electrical, Magnetic <strong>and</strong> Structural Properties of the <strong>Phase</strong><br />

M xTiS 2 (M = Fe, Co, Ni)” (in French), Mater. Res. Bull., 9, 1383-1392 (1974) (Experimental, Electr.<br />

Prop., Magn. Prop., *, 24)<br />

[1974Sig] Sigworth, G.K., Elliott, J.F., “The Thermodynamics of Liquid Dilute Iron <strong>Alloy</strong>s”, Met. Sci., 8, 298-310<br />

(1974) (Review, Thermodyn., 249)<br />

DOI: 10.1007/978-3-540-70890-2_26 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–S–Ti 26<br />

21<br />

[1976Mal] Malinochka, Ya.N., Balakina, N.A., Shmelev, Yu.S., “The Sulphide <strong>Phase</strong>s in Fe-Ti-S <strong>and</strong> Fe-C-Ti-S<br />

<strong>Alloy</strong>s”, Russ. Metall., (6), 169-174 (1976), translated from Izv. Akad. Nauk SSSR, Met., 6, 212-216<br />

(1976) (Experimental, Kinetics, 15)<br />

[1977Eji1] Ejima, A., Suzuki, K., Harada, N., Sanbongi, K., “Sulphur Equilibria in Molten Fe-La-S, Fe-Ti-S, <strong>and</strong><br />

Fe-Zr-S <strong>Systems</strong>” (in Japanese), Tetsu to Hagane, 63(6), 943-952 (1977) (Experimental, <strong>Phase</strong> Relations,<br />

Thermodyn., 22)<br />

[1977Eji2] Ejima, A., Suzuki, K., Harada, N., Sanbongi, K., “Sulphur Equilibria in Molten Fe-La-S, Fe-Ti-S, <strong>and</strong><br />

Fe-Zr-S <strong>Systems</strong>”, Trans. Iron Steel Inst. Jpn., 17(6), 349-358 (1977) (Experimental, Morphology,<br />

Thermodyn., 30)<br />

[1981Sam] Samoylovich, Yu.A., Bryksin, V.M., “Rhytmic Growth of Dendritic Branches in Fe-Ti-S Melts”, Russ.<br />

Metall., (5), 170-173 (1981), translated from Izv. Akad. Nauk SSSR, Met., (5), 218-220 (1981) (Experimental,<br />

<strong>Phase</strong> Relations, 10)<br />

[1982Kub1] Kubaschewski, O., “Iron-Sulphur” in “Iron Binary <strong>Phase</strong> <strong>Diagrams</strong>”, Springer-Verlag Berlin/Heidelberg,<br />

<strong>and</strong> Verlag Stahluesen GmbH, Düsseldorf, Germany, 125-128 (1982) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,<br />

Crys. Structure, Thermodyn., Review, 20)<br />

[1982Kub2] Kubaschewski, O., “Iron-Titanium” in “Iron Binary <strong>Phase</strong> <strong>Diagrams</strong>”, Springer-Verlag Berlin/Heidelberg,<br />

<strong>and</strong> Verlag Stahluesen GmbH, Düsseldorf, Germany, 152-156 (1982) (<strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Crys. Structure, Thermodyn., Review, 26)<br />

[1986Mur] Murray, J.L., “The S-Ti (Sulphur-Titanium) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 7(2), 156-163 (1986)<br />

(Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 57)<br />

[1985Don] Donahue, F.M.III, Pehlke, R.D., “Equilibrium between Sulfur <strong>and</strong> Titanium in Liquid Iron”, J. Met., 37<br />

(11), A96-A96 (1985) (Experimental, Thermodyn., Abstract, 0)<br />

[1987Don] Donahue, F.M.III, Pehlke, R.D., “Equilibrium between Sulfur <strong>and</strong> Titanium in Liquid Iron”, Metall.<br />

Trans. B, 18(B), 681-685 (1987) (Experimental, Thermodyn., *, 14)<br />

[1988Rag] Raghavan, V., “The Fe-S-Ti (Iron-Sulphur-Titanium) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Indian Inst. Metal., Calcutta, 2, 299-306 (1988) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Review, *, #, 22)<br />

[1991Mak] Makovetskii, G.I., Yanushkevich, K.I., “Structure <strong>and</strong> Magnetic Properties of Solid Solutions of Iron<br />

Sulphide-Titanium Sulphide System” (in Russian), Fiz. Tverd. Tela, 33(11), 3280-3283 (1991) (Experimental,<br />

<strong>Phase</strong> Relations, Magn. Prop., 8)<br />

[1995Bou] Bouchard, D., Bale, C.W., “Simultaneous Optimization of Thermochemical Data for Liquid Iron<br />

<strong>Alloy</strong>s Containing C, N, Ti, Si, Mn, S, <strong>and</strong> P”, Metall. Mater. Trans. B, 26B, 467-484 (1995) (<strong>Phase</strong><br />

Relations, Theory, Thermodyn., #, 85)<br />

[2001Sud] Sudavtsova, V.S., Sharkina, N.O., Kudin, V.G., “Thermodynamic Properties of the Liquid Melts in the<br />

Fe-S <strong>and</strong> Fe-S-Metals <strong>Systems</strong>”, Russ. J. Phys. Chem., 75(7), 1061-1064 (2001), translated from Zh. Fiz.<br />

Khim., 75(7), 1178-1181 (2001) (Thermodyn., Experimental, 13)<br />

[2004Kim] Kim, E.C., “<strong>Crystallographic</strong> <strong>and</strong> Magnetic Properties of Iron Sulfides Doped with 3d Transition<br />

Metals”, J. Mater. Sci. Letter., 19, 693-694 (2000) (Crys. Structure, Magn. Prop., Experimental, 8)<br />

[2005Nam] Nam, H.D., Kim, E.C., Han, J.S., “Mössbauer Study of Iron Sulfides Doped with 3d-Transition Metals”,<br />

Solid State Commun., 135(5), 327-329 (2005) (Crys. Structure, Magn. Prop., Experimental, 8)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_26<br />

ß Springer 2009


Iron – Silicon – Titanium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Wei Xiong, Yong Du, Chao Zhang<br />

Introduction<br />

The major contributions to the determination of the phase equilibria in the Fe-Si-Ti system<br />

are due to [1938Vog, 1956Ben, 1966Mar, 2003Loe]. The phase equilibria of the Fe-Si-Ti<br />

system were first investigated by [1938Vog], whose work was briefly reviewed by [1949Jae].<br />

A liquidus projection was constructed in the Fe-TiFe 2-τ 2-FeSi region [1938Vog]. [1956Ben]<br />

(<strong>and</strong> apparently [1954Ben]) determined the austenitic phase transformation temperature to<br />

establish the limit of the austenitic iron region in the Fe-Si-Ti system. The isothermal section<br />

at 800˚C previously constructed by [1966Mar] was recently modified by [2003Loe], who also<br />

presented isothermal sections at 1150 <strong>and</strong> 1000˚C.<br />

So far, seven stable ternary compounds were reported: τ 1 (TiFeSi 2)[1966Mar, 1967Mar,<br />

1968Mar, 1982Ste, 1982Yar, 1990Ang, 2005Sai], τ 2 (TiFeSi) [1938Vog, 1965Mar, 1966Fre,<br />

1966Mar, 1967Far, 1967Mar, 1968Mar, 1970Jei, 2003Loe, 2005Sai], τ 3 (TiFe 4Si 3)[1966Mar,<br />

1974Ste, 2003Loe], τ 4 (TiFe 7Si 2)[2003Loe], τ 5 (Ti 46Fe 10Si 44) [1966Mar], τ 6 (Ti 45Fe 15Si 40)<br />

[1966Mar], <strong>and</strong> τ 7 [1993Jud, 1997Boe]. Further work is needed to determine the crystallographic<br />

data of τ 5 <strong>and</strong> τ 6. In addition, four metastable ternary phases, TiFe 2Si [1970Jac,<br />

1972Jac, 1977Nic1, 1977Nic2], Ti 2Fe 1–xSi x (0.03


2 27<br />

Fe–Si–Ti<br />

parameters for the λ Ti(Fe 1–xSi x) 2 phase with x value of 0, 0.074, 0.255, <strong>and</strong> 0.375, respectively.<br />

Recently, using X-ray diffraction, optical microscopy <strong>and</strong> first principles calculations,<br />

[2007Yan] performed a systematic crystallographic investigation on the λ phase with x value<br />

of 0.25 <strong>and</strong> revealed that Si substitution for λ stabilizes the ternary Laves C14 phase with<br />

respect to the corresponding binary Laves phases. The first principles calculations by<br />

[2007Yan] showed that the λ Ti(Fe0.75Si0.25)2 phase is a very weak ferromagnet.<br />

The solubility of Fe in Ti5Si3 is about 4 at.% [1966Mar], <strong>and</strong> that of Ti in α1 is about 6.25<br />

at.% [1977Nic2]. These measured solubilities [1966Mar, 1977Nic2] were confirmed in the<br />

work of [2003Loe].<br />

[1966Mar] first reported the τ 1 phase with an orthorhombic unit cell, <strong>and</strong> measured a<br />

density of 4.69 g·cm –3 . Employing single crystal X-ray diffraction, a comprehensive crystallographic<br />

study on τ 1 was carried out by [1982Ste], who predicted the density of τ 1 with a value<br />

of 5.078 g·cm –3 .<br />

The τ2 ternary compound found by [1938Vog], was firstly considered to have a hexagonal<br />

structure by [1966Mar, 1968Mar], but later corrected to be orthorhombic by [1970Jei],<br />

but often showing pseudohexagonal twinning. [1970Jei] determined the complete crystal<br />

structure of τ 2.[1966Mar] measured a density of 5.57 g·cm –3 for τ 2, while [1967Far] reported<br />

a lower experimental value of 5.46 g·cm –3 together with the measured melting point at<br />

1760 ± 20˚C for a single-phase τ 2 sample. Additionally, in the work of [1966Fre], τ 2 was<br />

observed to be resistant against oxidation in air up to 400˚C but oxidizing rapidly at much<br />

higher temperatures.<br />

In the work of [2005Sai], the Curie temperatures <strong>and</strong> saturation magnetizations of τ1 <strong>and</strong><br />

τ2 were studied using a vibrating sample magnetometer. The τ1 phase showed a low saturation<br />

magnetization of 1.72·10 3 T <strong>and</strong> a Curie temperature of 644˚C. The τ 2 phase exhibits a<br />

saturation magnetization of 3.77·10 2 T <strong>and</strong> a Curie temperature of 455˚C.<br />

[1966Mar] found that the τ 3 phase has a similar crystal structure as TiCo 4Si 3. This was<br />

later confirmed by [1974Ste], who reported for the τ 3 phase a hexagonal unit cell, which<br />

was confirmed by [2003Loe]. It is worthy to mention that the phase τ 3 found at 800˚C by<br />

[1966Mar] was observed by [2003Loe] at the higher temperatures 1000 <strong>and</strong> 1150˚C only, but<br />

not at 800˚C. This may be because of insufficient annealing after leaving the temperature range<br />

of stability, either by [1966Mar] orby[2003Loe]. Thus, some experiment to clarify the<br />

temperature range of stability of τ 3 is desirable.<br />

By X-ray diffraction, [2003Loe] found a new phase, τ 4, at 1150˚C, <strong>and</strong> determined it to be<br />

isotypic to αMn with a mean lattice parameter of 883.7 pm.<br />

<strong>Phase</strong>s τ 5 <strong>and</strong> τ 6 were reported by [1966Mar] in the experimental isothermal section at<br />

800˚C, but their crystal structures are still unknown.<br />

[1997Boe] prepared a "ternary intermetallic phase" Ti 25Fe 60Si 15 by sintering powdermixtures<br />

of the pure elements. The reported mass ratios of the elemental powders correspond<br />

to a formula Ti25Fe56Si19. [2003Loe] at 1150˚C found this composition to be inside the<br />

homogeneity range of the Laves phase λ Ti(Fe 1–xSi x) 2. Also [1997Boe] assumed the C14<br />

Laves phase structure for this phase, thus it must not be treated as an extra ternary phase.<br />

For the composition investigated [1997Boe] determined a melting temperature of 1470˚C <strong>and</strong><br />

a Curie temperature of 212 ± 5˚C.<br />

A metastable TiFe 2Si phase in a Fe-7Si-1.75Ti (at.%) alloy was reported by [1970Jac,<br />

1972Jac, 1977Nic1, 1977Nic2], appearing as finely dispersed particles inside the λ phase. The<br />

TiFe2Si phase with the L21 structure is a metastable extension of the D03 (Fe3Si) phase with<br />

one of the two different Fe positions occupied by Ti.<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


[1992Man] found a commensurate phase in a melt-spun Ti 2Fe 1–xSi x (0.03 < x < 0.06)<br />

alloy, which is a metastable CsCl type phase with the lattice parameter close to 298 pm. A bcc<br />

metastable phase was found in the rapidly solidified Fe-4Si-68Ti (at.%) alloy by [1997Tiw],<br />

while [1997Tiw, 2003Man] reported an icosahedral phase in the rapidly solidified Fe-6Si-68Ti<br />

(at.%) alloy. The orientational relationship of the bcc phase with the icosahedral phase has<br />

been discussed by [1997Tiw].<br />

Invariant Equilibria<br />

Table 3 lists the experimentally observed invariant equilibria by [1938Vog, 1978Hao].<br />

The liquid compositions are estimated from the liquidus drawing in [1987Rag] <strong>and</strong> should<br />

be considered as tentative only.<br />

Based on the results of [1938Vog], a reaction scheme (Fig. 1) for the Fe rich alloys was<br />

given by [1987Rag]. [1978Hao] identified a eutectic reaction with the temperature of 1210˚C<br />

<strong>and</strong> the composition of Fe-4.3Si-9.5Ti (mass%). Regarding the impure Ti used by [1938Vog]<br />

this eutectic may be identical to E 1 in Figs. 1, 2 <strong>and</strong> Table 3.<br />

Liquidus Surface<br />

The only study of the liquidus surface of the Fe-Si-Ti system is that of [1938Vog]. Although the<br />

Ti for alloy preparation was only 95% purity, <strong>and</strong> the melting losses were nearly 20 mass%,<br />

the experimental data of [1938Vog] still can provide a basis for underst<strong>and</strong>ing the solidification<br />

behavior of the Fe rich alloys of this system. In consequence, the liquidus surface in the<br />

Fe-TiFe 2-τ 2-FeSi region, which was constructed by [1938Vog] <strong>and</strong> modified by [1987Rag], is<br />

shown in Fig. 2.<br />

Isothermal Sections<br />

Fe–Si–Ti 27<br />

3<br />

[1956Ben] presented boundaries of the (αFe) range against the (αFe) + (γFe) two-phase field<br />

at seven different temperatures (1100, 1060, 1055, 1032, 1012, 980 <strong>and</strong> 960˚C). However, this<br />

figure is apparently problematic. Both phases, (αFe) <strong>and</strong> (γFe) are dilute <strong>and</strong> Henry’s law is<br />

still approximately valid at the compositions inside this figure. That means, that the kink-like<br />

changes of curvatures of the lines drawn by [1956Ben] are not realistic. They seem to be<br />

artifacts due to limits of the accuracy of the measurements <strong>and</strong> due to incompatibilities<br />

between the ends of the lines in the accepted binary Fe-Ti system <strong>and</strong> the ternary measurements.<br />

Figure 3 shows the boundaries presented by [1956Ben] modified in the present work in<br />

order to be consistent with Henry’s law.<br />

[2003Loe] measured the partial isothermal sections with less than 35 at.% Si at 1150, 1000,<br />

<strong>and</strong> 800˚C, which are shown in Figs. 4 to 6, respectively. The isothermal section at 800˚C<br />

(Fig. 6) is merged with the Si rich part reported by [1966Mar] <strong>and</strong> modified to reduce<br />

artificially large homogeneity ranges of the phases.<br />

All three isothermal sections are corrected slightly in order to agree with the accepted<br />

binary phase diagrams <strong>and</strong> to remove some violations of the Schreinmaker rule.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_27<br />

ß Springer 2009


4 27<br />

Fe–Si–Ti<br />

Temperature – Composition Sections<br />

Seven of the eight measured vertical sections at Fe rich corner by [1938Vog] are in question,<br />

not only due to the high weight losses during the melting but also because phase relationships<br />

at 1150 <strong>and</strong> 1000˚C are inconsistent with those measured by [2003Loe]. Since the phase<br />

relationships for the vertical section from Fe94.8Si5.2 to Ti31Fe67.31Si3.69 (mass%) agree with<br />

those reported by [2003Loe], this section is presented in Fig. 7.<br />

Thermodynamics<br />

In the work of [2007Yan], the enthalpy of formation of Ti(Fe 0.75Si 0.25) 2 measured by an<br />

isoperibolic calorimeter is –55.9 ± 1.6 kJ·mol –1 of atoms, which agrees well with the value of<br />

–52.6 kJ·mol –1 of atoms derived by a first principles calculation.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

The investigations of Fe-Si-Ti materials properties are summarized in Table 4. Magnetic<br />

properties of the ternary phases are described in the section Solid <strong>Phase</strong>s.<br />

[1978Hao] reported that the eutectic in the Fe rich corner of the Fe-Si-Ti system could be<br />

suitable for development of materials for directionally solidified turbine blades operating up<br />

to 1150˚C, since its good oxidation resistance <strong>and</strong> attractive low specific gravity could meet<br />

several important criteria associated with the manufacture of the turbine blades.<br />

[1997Boe] reported that the powder-metallurgically produced Laves phase with the<br />

composition TiFeSi is a promising high temperature material. It has high strength <strong>and</strong><br />

brittleness at room temperature <strong>and</strong> a good corrosion resistance against neutral <strong>and</strong> acidic<br />

aqueous solutions.<br />

[2001Ito] investigated the effect of Ti doping on the thermoelectric performance of hotpressed<br />

FeSi2(h), <strong>and</strong> did not find a significant influence on the thermoelectric properties.<br />

[2004Kim] investigated the as quenched amorphous Ti78Fe15Si7 alloy with a large supercooled<br />

liquid region (61 K). The tensile fracture strength for this amorphous alloy was 1318<br />

MPa <strong>and</strong> increased up to 1876 MPa for a volume fraction of 15% primary (βTi) phase.<br />

The work of [2003Loe, 2004Loe] found that the Fe-Si-Ti alloys could be strengthened by<br />

precipitation of the stable Laves phase λ, which is a hard <strong>and</strong> brittle intermetallic phase. The<br />

yield stress as well as the brittle-to-ductile transition temperature increases with the Ti content<br />

[2003Loe, 2004Loe]. Furthermore, [2004Loe] pointed out that a beneficial oxidation behavior<br />

is expected for ternary Fe-Si-Ti alloys with moderate Si <strong>and</strong> Ti contents.<br />

Miscellaneous<br />

Figure 8 shows the lattice parameter <strong>and</strong> unit cell volume of the λ phase versus Si content<br />

measured by [1966Mar, 1968Mar], who annealed the alloys at 800˚C for 3 months. The<br />

average magnetization <strong>and</strong> lattice parameter of the Ti xFe 2–xSi alloys (0 ≤⊊ x ≤⊊ 0.7) by<br />

[1977Nic1] are shown in Figs. 9 <strong>and</strong> 10, respectively. In the work of [1990Ang], Ti prefers to<br />

concentrate in τ1 during the precipitation when the overall Fe composition (in mass%) of the<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


synthetic alloys is much higher than that of Ti. Figure 11 shows the thermomagnetic curves of<br />

the τ 1 <strong>and</strong> τ 2 phases measured by [2005Sai]. In the work of [2005Ste], some general rules for<br />

the occurrence of the different Laves phase polytypes are derived from a study of experimental<br />

phase diagram of Fe-Si-Ti system. The study showed that the solubility of Si added to the Laves<br />

phase λ cannot simply be explained by size effects.<br />

. Table 1<br />

Investigations of the Fe-Si-Ti <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

[1938Vog] Thermal analysis, metallography Liquidus projection in the Fe-TiFe2 τ2-FeSi region<br />

[1956Ben] Dilatation measurement The austenitic iron region<br />

[1963Bar] X-ray diffraction λ, Ti(Fe1–xSix) 2 (x = 0, 0.074, 0.255,<br />

0.375)<br />

[1965Mar,<br />

1966Fre]<br />

X-ray diffraction τ2 [1966Mar] X-ray single crystal diffraction analysis,<br />

microstructural analysis<br />

[1967Far] X-ray diffraction, metallography, thermal<br />

analysis, density measurement.<br />

[1967Mar,<br />

1968Mar]<br />

X-ray diffraction, microstructural analysis τ1 <strong>and</strong> τ2<br />

[1970Jac] Electron microscopy, X-ray diffraction,<br />

electron probe microscopy<br />

[1970Jei] Metallography, single crystal X-ray diffraction τ 2<br />

Isothermal section at 800˚C, τ 1, τ 2, τ 3,<br />

τ 5, τ 6, the solubility of Fe in Ti 5Si 3<br />

Reaction temperature, melting<br />

temperature <strong>and</strong> density of τ 2<br />

TiFe 2Si<br />

[1972Jac] Transmission electron microscopy TiFe2Si [1974Ste] Single crystal X-ray diffraction τ3 [1977Nic1,<br />

1977Nic2]<br />

Vibrating sample magnetometry, X-ray<br />

diffraction<br />

The magnetization <strong>and</strong> lattice<br />

parameter of TiFe 2Si<br />

[1978Hao] Differential thermal analysis, energy dispersive The eutectic temperature of the Fe-<br />

X-ray analysis<br />

4.3Si-9.5Ti (mass%) alloy<br />

[1982Ste,<br />

1982Yar]<br />

Single crystal X-ray diffraction τ1 [1992Man] X-ray diffraction, transmission electron<br />

microscopy, energy dispersive X-ray analysis<br />

[1997Boe] Specific magnetization measurement,<br />

calorimeter <strong>and</strong> high temperature dilatometer<br />

[1997Tiw,<br />

2003Man]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

X-ray diffraction, transmission electron<br />

microscopy<br />

MSIT 1<br />

Fe–Si–Ti 27<br />

Ti 2Fe 1–xSi x (0.03


6 27<br />

Fe–Si–Ti<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[2003Loe] X-ray diffraction, differential thermal analysis,<br />

metallography, electron microscopy<br />

[2005Sai] X-ray diffraction, scanning electron<br />

microscopy, vibrating sample magnetometer<br />

[2007Yan] X-ray diffraction, optical microscopy, first<br />

principles calculation, isoperibolic calorimetry<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

τ 2, τ 3, τ 4, isothermal sections at 800,<br />

1000, 1150˚C<br />

Curie temperatures <strong>and</strong> saturation<br />

magnetization of τ 1 <strong>and</strong> τ 2<br />

Crystal structure <strong>and</strong> enthalpy of<br />

formation of λ, Ti(Fe 1–xSi x) 2 (x = 0.25)<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(βTi) cI2 a = 330.65 at 900˚C [Mas2]<br />

1670 - 882 Im3m<br />

W<br />

(αTi) hP2 a = 295.06 at 25˚C [Mas2]<br />

< 882 P63/mmc Mg<br />

c = 468.35<br />

(γFe) cF4 a = 364.67 pure Fe at 915˚C [V-C2, Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

(αδFe) cI2<br />

(δFe) Im3m a = 293.15 pure Fe at 1390˚C [V-C2, Mas2]<br />

1538 - 1394 W<br />

(αFe)<br />

< 912<br />

a = 286.65 pure Fe at 25˚C [Mas2]<br />

(αSi) cF8 a = 543.06 at 25˚C [Mas2]<br />

< 1414 Fd3m<br />

C (diamond)<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

λ, Ti(Fe1–xSix) 2 hP12 Laves C14 phase<br />

P63/mmc 0 ≤ x ≤ 0.375 [1963Bar]<br />

MgZn2 a = 479.0<br />

c = 781.1<br />

at x =0[V-C2]<br />

TiFe2 a = 478.9 at x = 0.074<br />

< 1427 c = 779.6<br />

a = 479.7<br />

c = 775.7<br />

at x = 0.255<br />

a = 480.3<br />

c = 772.5<br />

at x = 0.375<br />

a = 478.0<br />

c = 765.2<br />

[1977Nic2]<br />

a = 480.45 ± 0.034 at x = 0.25 [2007Yan]<br />

c = 776.86 ± 0.08<br />

a = 479.7 ± 0.2 at 800˚C, 41.0 - 67.0 at.% Fe, 0 - 27.5 at.% Si,<br />

c = 773.8 ± 0.9 24.3 - 35.6 at.% Ti<br />

at 1000˚C, 24.5 - 72.3 at.% Fe, 0 - 26.3 at.% Si,<br />

23.1 - 39.6 at.% Ti<br />

at 1150˚C, 40.8 - 72.3 at.% Fe, 0 - 27.1 at.% Si,<br />

22.4 - 44.9 at.% Ti [2003Loe]<br />

TiFe cP2 [Mas2]<br />

< 1317 Pm3m a = 297.6 [V-C2]<br />

CsCl a = 298.1 ± 0.1 at 800˚C, 46.6 - 50.3 at.% Fe, 0 - 18.4 at.% Si,<br />

49.7 - 52.2 at.% Ti<br />

at 1000˚C, 46.6 - 50.3 at.% Fe, 0 - 1.3 at.% Si,<br />

49.7 - 52.8 at.% Ti<br />

at 1150˚C, 0 - 1.7 at.% Si [2003Loe]<br />

TiSi2 oF24 [Mas2]<br />

< 1500 Fddd a = 826.71 [V-C2]<br />

TiSi2 b = 480.00<br />

c = 855.05<br />

TiSi oP8 [Mas2]<br />

< 1570 Pmm2 or<br />

Pnma<br />

a = 654.4 [V-C2]<br />

b = 363.8<br />

FeB c = 499.7<br />

Ti5Si4 tP36 [Mas2]<br />

< 1920 P41212 a = 670.2 [V-C2]<br />

Zr5Si4 c = 1217.4<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–Ti 27<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_27<br />

ß Springer 2009


8 27<br />

Fe–Si–Ti<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

Ti5Si3 hP16 [Mas2]<br />

< 2130 P63/mcm a = 746.10 ± 0.3 [V-C2]<br />

Mn5Si3 c = 515.08 ± 0.1<br />

at 800˚C, 0 - 3.1 at.% Fe, 35.8 - 38.7 at.% Si,<br />

61.2 -64.2 at.% Ti<br />

at 1000˚C, 0 - 3.9 at.% Fe, 33.3 - 38.8 at.% Si,<br />

61.2 - 64.2 at.% Ti<br />

at 1150˚C, 0 - 1.7 at.% Fe [2003Loe]<br />

Ti3Si tP32 [Mas2]<br />

< 1170 P42/n a = 1019.6 [V-C2]<br />

Ti3P c = 509.7<br />

α1, Fe3Si cF16 D03, 11.0 to 30.0 at.% Si [1982Kub]<br />

≤ 1235 Fm3m a = 565.0 [V-C2]<br />

BiF3 The solubility of Ti in α1 is not less than 6.25<br />

at.% [1977Nic2]<br />

at 800˚C, 64.2-84.8 at.% Fe, 15.2-27.3 at.% Si,<br />

0-10.8 at.% Ti<br />

at 1000˚C, 68.0-81.2 at.% Fe, 0-7.3 at.% Ti at<br />

1150˚C, 0 - 6.2 at.% Ti [2003Loe]<br />

α2, Fe-Si cP2 B2, 10.0 to 22.0 at.% Si [1982Kub]<br />

≤ 1280 Pm3m a = 281 [V-C2]<br />

CsCl at 800˚C 0 - 0.9 at.% Ti<br />

at 1150˚C 0 - 2.1 at.% Ti [2003Loe]<br />

β, Fe2Si hP6 at 1150˚C, 0 - 2.9 at.% Ti [2003Loe]<br />

1212 - 1040 P3m1 ~33.0 to ~34.3 at.% Si [1982Kub]<br />

Fe2Si a = 405.2 ± 0.2<br />

c = 508.55 ± 0.03<br />

[V-C2]<br />

Fe5Si3 hP16 [1982Kub]<br />

1060 - 825 P63/mcm a = 675.9 ± 0.5 [V-C2]<br />

Mn5Si3 c = 472.0 ± 0.5 at 1000˚C 57.0 - 62.5 at.% Fe, 37.1 - 37.5 at.%<br />

Si, 0 - 5.9 at.% Ti<br />

at 1150˚C 56.5 -57.9 at.% Fe, 37.2 - 37.5 at.%<br />

Si, 2.9 - 4.6 at.% Ti [2003Loe]<br />

FeSi cP8 49.6 to 50.8 at.% Si [1982Kub]<br />

< 1410 P213 FeSi<br />

a = 451.7 ± 0.5 [V-C2]<br />

ζα, FeSi2(h) tP3 69.5 to 73.5 at.% Si [1982Kub]<br />

1220 - 937 P4/mmm a = 269.01 [V-C2]<br />

FeSi2 c = 513.4<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Si–Ti 27<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

9<br />

ζβ, FeSi2(r) oC48 66.7 at.% Si [1982Kub]<br />

< 982 Cmca a = 986.3 ± 0.7 [V-C2]<br />

FeSi2 b = 779.1 ± 0.6<br />

c = 783.3 ± 0.6<br />

* τ1, TiFeSi2 oP48 at 800˚C 50 at.% Si, 20-29 at.% Ti<br />

Pbam [1966Mar]<br />

TiMnSi2 a = 861.37 ± 0.08<br />

b = 953.4 ± 0.1<br />

c = 763.96 ± 0.04<br />

[1982Ste]<br />

a = 856.0<br />

b = 953.0<br />

c = 764.0<br />

[1966Mar, 1967Mar, 1968Mar]<br />

a = 858.7 ± 0.3 [1982Yar]<br />

b = 947.9 ± 0.5<br />

c = 762.6 ± 0.2<br />

Curie temperature is 644˚C [2005Sai]<br />

* τ2, TiFeSi oI36 at 1150˚C 30.2 to 37.3 at.% Fe, 32.7 to<br />

< 1760 ± 20 Ima2<br />

33.0 at.% Si, 30.0 to 37.0 at.% Ti<br />

TiFeSi<br />

[2003Loe]<br />

at 1000˚C 30.3 to 35.3 at.% Fe, 32.3 to 37.2<br />

at.% Si, 29.9 to 37.2 at.% Ti [2003Loe]<br />

a = 699.7 ± 0.2 at 800˚C 30.3 to 35.7 at.% Fe, 32.6 to 32.8 at.%<br />

b = 1083.0 ± 0.5 Si, 31.6 to 37.0 at.% Ti [2003Loe]<br />

c = 628.7 ± 0.2<br />

a = 699.9 ± 0.4<br />

b = 1073.0 ± 0.6<br />

[1970Jei]<br />

c = 628.8 ± 0.6 [2003Loe]<br />

Curie temperature is 455˚C [2005Sai]<br />

* τ3, TiFe4Si3 hP168 [1966Mar]<br />

> 800 P6/mmm a = 1720.6<br />

c = 798.1<br />

[1974Ste]<br />

a = 1708.9<br />

c = 797.1<br />

[2003Loe]<br />

* τ4, TiFe7Si2 cI58 at 1150˚C 67.4 to 68.4 at.% Fe, 20.9 to 21.7<br />

1233 - ~1000 I43m<br />

at.% Si, 10.7 to 10.9 at.% Ti;<br />

αMn at 1000˚C 68.9-69.0 at.% Fe, 19.8 to 20.0 at.%<br />

Si, 11.1 to 11.2 at.% Ti [2003Loe]<br />

a = 883.7 [2003Loe]<br />

* τ5,Ti46Fe10Si44 - - [1966Mar]<br />

* τ6,Ti45Fe15Si40 - - [1966Mar]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_27<br />

ß Springer 2009


10 27<br />

Fe–Si–Ti<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

TiFe2Si (m) cF16 Metastable extension of the D03 α1 phase,<br />

Fm3m<br />

Fe3Si a = 570.9 [1977Nic2]<br />

Ti68Fe28Si4 (m) c* a = 1130.0 [1997Tiw], metastable bcc phase<br />

Ti68Fe26Si6 (m) - - [1997Tiw, 2003Man], metastable icosahedral<br />

phase<br />

Ti2Fe1–xSix (m) cP2 a = 298.0 0.03


. Table 4<br />

Investigations of the Fe-Si-Ti Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1978Hao] Oxidation measurement water<br />

displacement method<br />

[1997Boe] Archimedes technique, hardness <strong>and</strong><br />

fracture toughness measurement,<br />

indentation crack length method,<br />

ultrasonic measurement,<br />

potentiodynamic measurement<br />

[2001Ito] Ordinary DC method <strong>and</strong> laser flash<br />

thermal constant analyzer<br />

[2003Loe,<br />

2004Loe]<br />

Vickers hardness <strong>and</strong> microhardness<br />

testing, uniaxial compression, weighting,<br />

four-point bending test<br />

Fe–Si–Ti 27<br />

oxidation resistance, density<br />

Density, mechanical properties of τ 7 (up to<br />

600˚C). The elastic constants, Young’s<br />

modulus, Shear modulus, <strong>and</strong> Poisson’s<br />

ratio, corrosion resistance of τ 7 against<br />

neutral <strong>and</strong> acidic aqueous solutions<br />

The electrical resistivity, thermoelectric<br />

power, <strong>and</strong> thermal conductivity from<br />

room temperature to 900˚C<br />

Hardness, yield stress, oxidation<br />

resistance, ductility <strong>and</strong> brittle-to-ductile<br />

transition temperature<br />

[2004Kim] Tensile testing Tensile fracture strength of the<br />

amorphous alloy Ti 78Fe 15Si 7<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_27<br />

ß Springer 2009


12 27<br />

Fe–Si–Ti<br />

. Fig. 1<br />

Fe-Si-Ti. Partial reaction scheme of the Fe corner<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-Si-Ti. Partial liquidus surface projection in the Fe corner<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–Ti 27<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_27<br />

ß Springer 2009


14 27<br />

Fe–Si–Ti<br />

. Fig. 3<br />

Fe-Si-Ti. Joint solubility of both Ti <strong>and</strong> Si in (αFe) at different temperatures<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-Si-Ti. Partial isothermal section at 1150˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–Ti 27<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_27<br />

ß Springer 2009


16 27<br />

Fe–Si–Ti<br />

. Fig. 5<br />

Fe-Si-Ti. Partial isothermal section at 1000˚C<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 6<br />

Fe-Si-Ti. Partial isothermal section at 800˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–Ti 27<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_27<br />

ß Springer 2009


18 27<br />

Fe–Si–Ti<br />

. Fig. 7<br />

Fe-Si-Ti. Vertical section from Fe 94.8Si 5.2 to Ti 31Fe 67.31Si 3.69 (mass%), plotted in at.%<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Si–Ti 27<br />

. Fig. 8<br />

Fe-Si-Ti. Lattice parameters <strong>and</strong> unit cell volume of the λ Ti(Fe 1–xSi x) 2 phase vs Si content<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

19<br />

DOI: 10.1007/978-3-540-70890-2_27<br />

ß Springer 2009


20 27<br />

Fe–Si–Ti<br />

. Fig. 9<br />

Fe-Si-Ti. The average magnetization of the Ti xFe 3–xSi alloys (0≤x≤0.7) vs outer electron<br />

concentration<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Si–Ti 27<br />

21<br />

. Fig. 10<br />

Fe-Si-Ti. The lattice parameter of the Ti xFe 3–xSi alloys (0≤x≤0.7) vs outer electron concentration<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_27<br />

ß Springer 2009


22 27<br />

Fe–Si–Ti<br />

. Fig. 11<br />

Fe-Si-Ti. Thermomagnetic curves of τ 2 <strong>and</strong> τ 1<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–Si–Ti 27<br />

23<br />

[1938Vog] Vogel, R., Schlueter, W., “The Iron Corner of the Iron-Silicon-Titanium System” (in German), Arch.<br />

Eisenhuettenwes., 12(4), 207–212 (1938) (<strong>Phase</strong> Diagram, Experimental, #, *, 10)<br />

[1949Jae] Jaenecke, E., “Fe-Si-Ti” (in German), Kurzgefasstes H<strong>and</strong>buch aller Legierungen, Winter Verlag, Heidelberg,<br />

622–623 (1949) (<strong>Phase</strong> Diagram, Review, 1)<br />

[1954Ben] Bentle, G.G., “γ-loop Studies in the Fe-Si <strong>and</strong> Fe-Si-Ti <strong>Systems</strong>”, Ph.D. Thesis, V<strong>and</strong>erbilt Univ., U.S.A.,<br />

(1954) (<strong>Phase</strong> Diagram, Experimental)<br />

[1956Ben] Bentle, G.G., Fishel, W.P., “γ-Loop Studies in the Fe-Si <strong>and</strong> Fe-Si-Ti <strong>Systems</strong>”, Trans. AIME, 206,<br />

1345–1348 (1956) (<strong>Phase</strong> Diagram, Experimental, #, 5)<br />

[1963Bar] Bardos, A.M., Bardos, D.I., Beck, P.A., “The Effective Atomic Radius of Silicon in <strong>Ternary</strong> Laves <strong>Phase</strong><br />

<strong>Alloy</strong>s”, Trans. Metall. Soc. AIME, 227, 991–993 (1963) (Crys. Structure, Experimental, 12)<br />

[1965Mar] Markiv, V.Y., Voroshilov, Y.V., Gladyshevskii, E.I., “<strong>Ternary</strong> Laves <strong>Phase</strong>s in the <strong>Systems</strong> Ti-Co-Si(Ge)<br />

<strong>and</strong> Zr-Fe-Si(Ge)”, Inorg. Mater., 1(6), 818–821 (1965), translated from Izv. Akad. Nauk SSSR, Neorg.<br />

Mater., 1(6), 890–893 (1965) (Crys. Structure, Experimental, 5)<br />

[1966Fre] Freundlich, W., Farrokhi-Mochai, N., “Two Intermetallic <strong>Ternary</strong> <strong>Phase</strong>s-ZrFeSi <strong>and</strong> TiFeSi” (in<br />

French), Compt. Rend. Acad. Sci. Paris, 262, 1000–1001 (1966) (Crys. Structure, Experimental, 0)<br />

[1966Mar] Markiv, V.Ya., Lysenko, L.A., Gladyshevskii, E.I., “Titanium-Iron-Silicon System”, Russ. J. Inorg. Chem.,<br />

2(11), 1713–1716 (1966), translated from Izv. Akad. Nauk SSSR, Neorg. Mater., 2(11) 1980–1984 (1966)<br />

(Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, #, *, 15)<br />

[1967Far] Farrokhi-Mochai, N., “A Study of the Solid <strong>Phase</strong>s in the Fe-Si-Ti, Fe-Si-Zr, <strong>and</strong> Fe-Si-V <strong>Systems</strong>”<br />

(in French), Rev. Chim. Miner., 4, 1–25 (1967) (Crys. Structure, <strong>Phase</strong> Diagram, Experimental, Phys.<br />

Prop., 0)<br />

[1967Mar] Markiv, V.Y., Gladyshevskii, E.I., Skolozdra, R.V., Kripyakevich, P.I., “<strong>Ternary</strong> Compounds of the RXX 2<br />

Type in the Ti-V(Fe, Co, Ni)-Si <strong>and</strong> Similar <strong>Systems</strong>”, Dop. Akad. Nauk Ukrain. SSR, (A)3, 266–269<br />

(1967) (Crys. Structure, Experimental, 12)<br />

[1968Mar] Markiv, V.Y., Gladyshevskii, E.I., Kripyakevich, P.I., Fedoruk, T.I., Lysenko, L.A., “A Study of the <strong>Phase</strong><br />

Equilibria <strong>and</strong> Crystal Structures of Compounds in the Ti-Fe(Co,Ni)-Si <strong>Systems</strong>” (in Russian), Diagrammy<br />

Sostoyaniya Metallich. Sistem, Nauka, Moscow, 137–145 (1968) (Crys. Structure, <strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Experimental, 29)<br />

[1970Jac] Jack, D.H., “Intermetallic Precipitate in an Fe-Ti-Si <strong>Alloy</strong>”, Met. Sci. J., 4, 22–24 (1970) (Crys. Structure,<br />

Experimental, 6)<br />

[1970Jei] Jeitschko, W., “The Crystal Structure of TiFeSi <strong>and</strong> Related Compounds”, Acta Crystallogr., Sect. B:<br />

Struct. Crystallogr. Crys. Chem., B26, 815–822 (1970) (Crys. Structure, Experimental, 24)<br />

[1972Jac] Jack, D.H., Honeycombe, R.W.K., “Age Hardening of an Fe-Ti-Si <strong>Alloy</strong>”, Acta Metall., 20, 787–796<br />

(1972) (<strong>Phase</strong> Relations, Experimental, Mechan. Prop., 30)<br />

[1974Ste] Steinmetz, J., Albrecht, J.M., Malaman, B., “A New Family of <strong>Ternary</strong> Silicides of the General Formula<br />

TT 4Si 3 (T = Ti, Nb, Ta; T = Fe, Co, Ni)” (in French), Compt. Rend. Acad. Sci. Paris, 279C, 1119–1120<br />

(1974) (Crys. Structure, Experimental, 4)<br />

[1977Nic1] Niculescu, V., Budnick, J.I., “Limits of Solubility, Magnetic Properties <strong>and</strong> Electron Concentration in<br />

Fe 3–xT xSi System”, Solid State Commun., 24(9), 631–634 (1977) (Crys. Structure, Experimental, Theory,<br />

Magn. Prop., 17)<br />

[1977Nic2] Niculescu, V., Burch, T.J., Raj K., Budnick, J.I., “Properties of Heusler-Type Materials Fe 2TiSi <strong>and</strong><br />

FeCo 2Si”, J. Mag. Mag. Mater., 5(1), 60–66 (1977) (Crys. Structure, Experimental, 12)<br />

[1978Hao] Haour, G., Mollard, F., Lux, B., Wright, G., “New Eutectics Based on Fe, Co or Ni”, Z. Metallkd., 69(1),<br />

26–32 (1978) (<strong>Phase</strong> Relations, Experimental, Interface Phenomena, Mechan. Prop., Morphology, Phys.<br />

Prop., 24)<br />

[1982Kub] Kubaschewski, O., “Iron-Silicon” in “Iron - Binary <strong>Phase</strong> <strong>Diagrams</strong>”, Springer Verlag, Berlin, 136–139<br />

(1982) (<strong>Phase</strong> Diagram, Review, #, *, 23)<br />

[1982Ste] Steinmetz, J., Venturini, G., Roques, B., Engel, N., Chabot, B., Parthe, E., “TiMnSi 2 <strong>and</strong> TiFeSi 2 with<br />

New Orthorhombic-Type Structure”, Acta Crystallogr., Sect. B: Struct. Crystallogr. Crys. Chem., B38,<br />

2103–2108 (1982) (Crys. Structure, Experimental, 16)<br />

[1982Yar] Yarmolyuk, Y.P., Sikiritsa, M., Akselrud, L.G., Lysenko, L.A., Gladyshevskii, E.I., “The Crystal Structure<br />

of ZrCrSi 2”, Sov. Phys. Crystallogr., 27(6), 652–653 (1982), translated from Kristallografiya, 27,<br />

1090–1093 (1982) (Crys. Structure, Experimental, 9)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_27<br />

ß Springer 2009


24 27<br />

Fe–Si–Ti<br />

[1987Rag] Raghavan, V., “The Fe-Si-Ti (Iron-Silicon-Titanium) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s”,<br />

Ind. Inst. Techn., Delhi, Vol. 1, 65–72 (1987) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review,<br />

#, *, 14)<br />

[1990Ang] Anglezio, J.C., Servant, C., “Characterization of Metallurgical Grade Silicon”, J. Mater. Res., 5,<br />

1894–1899 (1990) (Crys. Structure, Experimental, 11)<br />

[1992Man] M<strong>and</strong>al, P., M<strong>and</strong>al, R.K., Tiwari, R.S., Srivastava, O.N., “Commensurate Ordering in Rapidly<br />

Solidified Ti-Fe-Si <strong>Alloy</strong>s”, Phys. Rev. B, Condens. Matter, 45(13), 7521–7524 (1992) (Crys. Structure,<br />

Experimental, 19)<br />

[1993Jud] Juda, T. (in German), Thesis, Technical Univ. Dresden (1990) as quoted by [1997Boe]<br />

[1997Boe] Boehm, A., Pischang, K., Kieback, B., “Processing <strong>and</strong> Properties of the New Intermetallic <strong>Phase</strong><br />

Fe 12Ti 5Si 3”, Metall, 51(10), 554–556 (1997) (Crys. Structure, Experimental, Magn. Prop., Phys. Prop., 5)<br />

[1997Tiw] Tiwari, R.S., M<strong>and</strong>al, P., Srivastava, O.N., “Quasicrystalline <strong>and</strong> Related <strong>Phase</strong>s in Titanium Based <strong>Alloy</strong><br />

<strong>Systems</strong>”, Prog. Cryst. Growth Charact., 34, 271–285 (1997) (Crys. Structure, Experimental, 28)<br />

[2001Ito] Ito, M., Nagai, H., Katsuyama, S., Majima, K., “Effects of Ti, Nb <strong>and</strong> Zr Doping on Thermoelectric<br />

Performance of β-FeSi 2”, J. <strong>Alloy</strong>s Compd., 315, 251–258 (2001) (Crys. Structure, Experimental, Electr.<br />

Prop., 18)<br />

[2003Loe] Loeffler, F., “Investigation of the <strong>Ternary</strong> <strong>Systems</strong> Fe-Si-Mg <strong>and</strong> Fe-Si-Ti: <strong>Phase</strong> Equilibria <strong>and</strong> Mechanical<br />

Properties of the <strong>Alloy</strong>s” (in German), Ph.D. Thesis, RWTH Achen, Germany (2003) (Crys. Structure,<br />

Morphology, <strong>Phase</strong> Diagram, Experimental, Mechan. Prop., #, *, 95)<br />

[2003Man] M<strong>and</strong>al, P., “Structural Disorder in Ti-Fe-Si Icosahedral Quasicrystal”, J. <strong>Alloy</strong>s Compd., 361, 96–101<br />

(2003) (Crys. Structure, Morphology, Experimental, 23)<br />

[2004Kim] Kim, K.B., Ko, B.C., Pak, S.J., “Formation of Nanocrystals in Ti 78Fe 15Si 7 Amorphous <strong>Alloy</strong> with a Wide<br />

Supercooled Liquid Region”, Mater. Sci. Eng. A, 366(2), 421–425 (2004) (Crys. Structure, Morphology,<br />

Experimental, Mechan. Prop., 14)<br />

[2004Loe] Loeffler, F., Palm, M., Sauthoff, G., “Iron-Rich Iron-Titanium-Silicon <strong>Alloy</strong>s with Strengthening<br />

Intermetallic Laves <strong>Phase</strong> Precipitates”, Steel Res. Int., 75(11), 766–772 (2004) (<strong>Phase</strong> Relations, Morphology,<br />

Experimental, Mechan. Prop., Phys. Prop., 38)<br />

[2005Sai] Saito, T., Wakabayashi, K., Yamashita, S., Sasabe, M., “Production of Fe-Ti-Si <strong>Alloy</strong>s From the<br />

Ilmenite Ore <strong>and</strong> Their Magnetic Properties”, J. <strong>Alloy</strong>s Compd., 388, 258–261 (2005) (Experimental,<br />

Magn. Prop., 7)<br />

[2005Ste] Stein, F., Palm, M., Sauthoff, G., “Structure <strong>and</strong> Stability of Laves <strong>Phase</strong>s Part II – Structure Type<br />

Variations in Binary <strong>and</strong> <strong>Ternary</strong> <strong>Systems</strong>”, Intermetallics, 13(10), 1056–1074 (2005) (Crys. Structure,<br />

<strong>Phase</strong> Relations, Theory, 249)<br />

[2007Yan] Yan, X.L., Chen, X.Q., Grytsiv, A., Witusiewicz, V.T., Rogl, P., Podloucky, R., Giester, G., “On the<br />

<strong>Ternary</strong> Laves <strong>Phase</strong>s {Sc,Ti} 2M 3Si (M = Cr, Mn, Fe, Co, Ni) with MgZn 2-Type”, J. <strong>Alloy</strong>s Compd., 429,<br />

10–18 (2007) (Cry. Structure, Thermodyn., Calculation, Experimental, Review, Electronic Structure,<br />

Magn. Prop., 53)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_27 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Silicon – Vanadium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Honghui Xu, Yong Du, Weihua Sun, Lijun Zhang<br />

Introduction<br />

Fe–Si–V 28<br />

1<br />

A critical evaluation of the Fe-Si-V system was first performed by [1982Ray], <strong>and</strong> subsequently<br />

abridged in [1988Ray]. The experimental data reviewed by both [1982Ray] <strong>and</strong> [1988Ray]<br />

on this system include: (1) a liquidus projection in the Fe-FeSi-VSi 2-V region by [1940Vog];<br />

(2) the isothermal section at 1000˚C for the entire composition range by [1965Gla] <strong>and</strong> that at<br />

1100˚C for Si poor alloys (up to 40 at.% Si) by [1966Bar]; <strong>and</strong> (3) the homogeneity range of<br />

the Fe-V σ phase into the Fe-V-Si ternary system at 1175˚C by [1960Gup]. Later, the Fe-Si-V<br />

system was partially updated by [1994Rag, 2002Rag]. [1994Rag] presented two partial isothermal<br />

sections in the order-disorder region of Fe rich alloys at 800 <strong>and</strong> 700˚C that had been<br />

originally presented by [1989Koz]. [2002Rag] reproduced a vertical section at 5 at.% V <strong>and</strong><br />

0-25 at.% Si for temperatures between 1200-600˚C that was based on the results of [1994Koz].<br />

The first investigation of the phase equilibria in the Fe-Si-V system was carried out by<br />

[1940Vog], who examined the liquidus surface in the region of Fe-FeSi-VSi 2-V by thermal<br />

analysis, <strong>and</strong> a limited metallographic observation of the solid alloys. 20 g samples were<br />

prepared from Krupp WW iron, silicon (described as “technical”) from Kallbaum <strong>and</strong><br />

ferrovanadium alloys containing 60 <strong>and</strong> 53 mass% V, respectively. No specific details with<br />

regard to purity were given. Some 80 ternary alloys were examined, the compositions of which<br />

lay on composition lines from the silicon corner to the compositions 10, 20, 30, 40, 50 <strong>and</strong> 60<br />

mass% V on the Fe-V axis. The vertical section through FeSi to VSi 2 was also investigated by<br />

[1940Vog]. A ternary compound T (Fe 4V 5Si 4) was reported for the first time, <strong>and</strong> its<br />

incongruent formation was established. [1940Vog] presented the liquidus surface in the region<br />

of Fe-FeSi-VSi 2-V <strong>and</strong> seven vertical sections.<br />

It should be noted that the liquidus projection proposed by [1982Ray] based on [1940Vog]<br />

that had been corrected in accordance with later versions of the binary phase diagrams must be<br />

further modified in order to bring the phase relationships into agreement with the currently<br />

accepted binary phase diagrams, especially with regard to the Si-V system. The V 3Si phase,<br />

which melts congruently according to the currently accepted V-Si phase diagram, was assumed<br />

by [1982Ray] to form through a peritectic reaction of V 5Si 3 +LÐ V 3Si. The V 6Si 5 phase,<br />

which is a stable compound <strong>and</strong> forms through the peritectic reaction V 5Si 3 +LÐ V 6Si 5, was<br />

not indicated on the liquidus surface proposed by [1982Ray].<br />

The first investigation of the solid-state equilibria was carried out by [1960Gup], who<br />

determined the homogeneity range of the σ phase at 1175˚C. The σ phase was found to be<br />

strongly stabilized by Si, <strong>and</strong> the σ homogeneity range increased markedly with increasing<br />

silicon content up to about 4 mass%, after which it decreased with further silicon addition.<br />

[1965Gla] determined the isothermal section of the Fe-Si-V system at 1000˚C over the<br />

entire composition range. The Fe-Si-Valloys were prepared from silicon (99.96% Si), carbonyl<br />

iron (≥99.99% Fe) <strong>and</strong> vanadium (99.62% V). <strong>Alloy</strong> samples in the as cast <strong>and</strong> annealed<br />

condition (annealed at 1000˚C for 100 h, at 1200˚C for 30 h <strong>and</strong> at 800˚C for 500 h) were<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


2 28<br />

Fe–Si–V<br />

examined by metallography <strong>and</strong> X-ray analysis. Three ternary compounds were shown to exist<br />

at 1000˚C. Nevertheless, it should be noted that the V 6Si 5 phase, which is stable at 1000˚C<br />

according to the recently accepted Si-V phase diagram [Mas2], was not present on the<br />

isothermal section at 1000˚C given by [1965Gla]. The VSi 2 phase, which is regarded as<br />

approximately stoichiometric, was shown to have some homogeneity.<br />

[1966Bar] established a partial isothermal section at 1100˚C up to a silicon content of<br />

40 at.% Si. The same three ternary phases were reported to exist at 1100˚C.<br />

The three ternary compounds mentioned above were reported by [1960Gup, 1961Bar,<br />

1961Gla, 1962Gla, 1965Gla, 1966Bar, 1971Sho, 1976Sho]. These phases were given as the<br />

R-, χ-, <strong>and</strong> D- or δ phases. By comparing the composition of D- or δ phase with that of the T<br />

phase proposed by [1940Vog], it would seem that they are one <strong>and</strong> the same. For convenience,<br />

the first reported ternary compound, originally called T by [1940Vog] is designated τ 1 here.<br />

Similarly, the remaining two ternary compounds R <strong>and</strong> χ are referred to as τ 2 <strong>and</strong> τ 3,<br />

respectively.<br />

The influence of V on the order-disorder transitions in the Fe-Si bcc phase <strong>and</strong> the phase<br />

transformation of the Fe rich Fe-Si-V alloys were studied by [1976Nic, 1985Wan, 1988Fuk,<br />

1989Koz, 1990Zha, 1994Koz, 2004Doi, 2004Nis, 2006Doi]. The phase equilibria involving Fe<br />

rich alloys were investigated at 800˚C by [1989Koz, 1994Koz], 700˚C by [1989Koz], <strong>and</strong> 600˚C<br />

by [1994Koz]. [1994Koz] also determined a vertical section at 5 at.% in the temperature range<br />

1200-600˚C, where the (α + α 1) field dominates at lower temperatures <strong>and</strong> the α 2 phase field is<br />

stable only above 1050˚C.<br />

[1974Bur, 1975Pic] measured the site occupancy of V in substituted Fe3Si, using neutron<br />

diffraction studies. [1976Ber, 1977Nic, 1983Bus, 1991Kud, 2003Kaw, 2004Nas, 2004Nis,<br />

2006Cui] studied the crystal structures <strong>and</strong> various physical properties of ternary Fe 3–xV xSi<br />

(0 ≤ x ≤ 1) alloys having the Heusler structure because of their interesting electronic <strong>and</strong><br />

magnetic properties.<br />

[1983Roz] measured the mixing enthalpies <strong>and</strong> component activities of ternary melts at<br />

1627˚C.<br />

Information on the investigation of phase equilibria <strong>and</strong> thermodynamics of the Fe-Si-V<br />

system are summarized in Table 1.<br />

Binary <strong>Systems</strong><br />

The Fe-V binary system is accepted from [Mas2]. The Fe-Si phase diagram is taken from<br />

[1982Kub]. The V-Si phase diagram is taken from [Mas2] but with a slight modification owing<br />

to the work of [2007Zha]. [2007Zha] reinvestigated the stability of V 6Si 5 via a hybrid approach<br />

of Calphad, XRD <strong>and</strong> first principle methods. According to [2007Zha], the decomposition<br />

temperature for the reaction V6Si5 Ð V5Si3 + VSi2 is 460˚C, which is significantly lower than<br />

the temperature of 1160 ± 100˚C recommended in [Mas2]. Figure 1 presents the Si-V phase<br />

diagram from [2007Zha].<br />

Solid <strong>Phase</strong>s<br />

The crystallographic data of the phases in the Fe-Si-V system <strong>and</strong> their temperature ranges of<br />

stability are listed in Table 2.<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Si–V 28<br />

3<br />

Three ternary phases have been found in the system. A fourth compound was mentioned<br />

by [1965Gla], however no information on its composition or crystal structure was given.<br />

The τ 1 ternary phase was established for the first time by [1940Vog], <strong>and</strong> later its existence<br />

was confirmed by [1965Gla, 1966Bar] at 1000 <strong>and</strong> 1100˚C. The τ 1 phase is isostructural<br />

with tetragonal Mn 5Si 2. It exists in a rather wide composition range, from 32 to 45 at.% Fe<br />

at 1100˚C <strong>and</strong> from 30 to 40 at.% Fe at 1000˚C, according to [1966Bar] <strong>and</strong> [1965Gla]. Its<br />

lattice parameters at a composition of Fe44V26Si30 were determined by [1971Sho]. Subsequently,<br />

the structure model for the τ1 phase was refined by [1976Sho] using a full-matrix least<br />

squares analysis <strong>and</strong> diffractometer data from the isotypic Mn 5Si 2 phase.<br />

There is good agreement in the studies of the composition <strong>and</strong> crystal structure of the τ 2<br />

phase, which has the rhombohedral structure, <strong>and</strong> it may be described in terms of a hexagonal<br />

unit cell. The crystal structure of the τ 2 phase was determined by [1961Bar] at the composition<br />

of Fe 41V 37Si 22, <strong>and</strong> by [1965Gla] at the composition of Fe 2V 2Si. The extent of the homogeneity<br />

range of the τ 2 phase changes <strong>and</strong> shifts as the temperature decreases. At 1000˚C the phase<br />

contains more Si <strong>and</strong> less Fe than at 1100˚C [1965Gla, 1966Bar]. No information is available<br />

concerning the formation of the τ2 phase.<br />

[1961Gla, 1965Gla, 1966Kim, 1967Far] made contributions to the determination of the<br />

crystal structure of the τ 3 phase, Fe 5V 3Si 2, which was established for the first time by<br />

[1961Gla]. There is good agreement over its composition <strong>and</strong> crystal structure. The τ 3 phase<br />

has the αMn type structure <strong>and</strong> exists in a rather wide composition range, from 33 to 47 at.%<br />

Fe at 1100˚C <strong>and</strong> from 32 to 44 at.% Fe at 1000˚C, according to [1966Bar] <strong>and</strong> [1965Gla]. The<br />

τ 3 phase <strong>and</strong> the above-mentioned τ 2 phase were observed by [1965Gla] in as-cast alloys<br />

quenched after melting in a resistance furnace, <strong>and</strong> also in arc-melted specimens. Therefore,<br />

crystallization of both of these phases from the liquid is not improbable.<br />

[1967Far] reported the existence of the ternary phases Fe 0.175VSi <strong>and</strong> Fe 3VSi as well as<br />

Fe 2V 2Si (τ 2) <strong>and</strong> Fe 5V 3Si 2 (τ 3). The Fe 3VSi which has a structure similar to αMn <strong>and</strong> a<br />

composition coinciding with that of the τ 2 phase, is ferromagnetic with a Curie point at<br />

318˚C. The Fe 0.175VSi phase is very likely to be the solid solution of Fe in V 6Si 5, as its atomic<br />

silicon content is approximately equal to that of the stable V 6Si 5 phase in the Si-V binary<br />

system.<br />

[1984Sin] reported a ternary phase at 400˚C around the composition of Fe50V25Si25 with<br />

an orthorhombic structure <strong>and</strong> lattice parameters a = 751.7, b = 721.4, c = 691.7. At higher<br />

temperatures (1000 <strong>and</strong> 1100˚C), this phase is not stable because of the existence of the solid<br />

solution of V in Fe 3Si in this composition range. For the same composition (Fe 2VSi),<br />

[1995Kaw] reported the αMn structure type at 300 K (designated here as τ 4), which exhibits<br />

a tetragonal deformation at low temperatures. Subsequently, [1998Kaw] suggested that Fe 2VSi<br />

phase has a tetragonally distorted Heusler structure below 120 K, with an antiferromagnetic<br />

ordering. [2006Nas] reported that Fe 2VSi, which has the Heusler structure (L2 1) at room<br />

temperature, takes on the αMn structure (A2) above 1100˚C. A single-phase Fe2VSi alloy with<br />

a αMn structure type was produced by [2006Nas] using the single-roller melt-spinning<br />

technique under a purified argon atmosphere. When the sample was annealed at 800˚C, its<br />

structure transformed into the Heusler structure (L2 1). When annealed again at 1100˚C <strong>and</strong><br />

quenched into ice, the structure of the sample almost returned to the αMn structure. This<br />

structural transformation is unusual because the high temperature phase takes more<br />

complex structure than the low temperature phase [2006Nas]. By means of neutron diffraction<br />

study <strong>and</strong> Rietveld analysis with the RIETAN 2000 program, [2006Nas] refined the<br />

structural parameters of the αMn structured Fe2VSi phase including the site occupancy.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


4 28<br />

Fe–Si–V<br />

Further investigations are required in the area of the existence of the τ 4 phase in relation to the<br />

phase equilibria with other phases in the region. According to [1965Gla], the solubility of V in<br />

Fe 5Si 3, FeSi <strong>and</strong> FeSi 2 at 1000 ˚C was measured to be about 37, 14 <strong>and</strong> 2 at.% V, respectively;<br />

<strong>and</strong> that of Fe in V 3Si <strong>and</strong> V 5Si 3 about 22 <strong>and</strong> 13 at.% Fe, respectively. At 1100 ˚C, according to<br />

[1966Bar], the solubility of Fe in V 5Si 3 was determined to be about 22 at.% Fe. Though Fe 5Si 3<br />

is not stable at 1100 ˚C in the Fe-Si binary system, the phase that was denoted as N2 by<br />

[1966Bar] <strong>and</strong> off the Fe-Si binary side is very likely to be the V-stabilized Fe5Si3 phase because<br />

it had a composition range corresponding to part of the composition range of the (Fe,V) 5Si 3<br />

solid solution at 1000˚C given by [1965Gla].<br />

Quasibinary <strong>Systems</strong><br />

The quasibinary system FeSi-VSi2 reported by [1940Vog] is shown in Fig. 2.<br />

The FeSi2-VSi2 section is also likely to be quasibinary by taking into account the congruent<br />

melting of the binary compounds <strong>and</strong> the existence of the FeSi-VSi 2 quasibinary section<br />

making it impossible for the appearance of alternative equilibria.<br />

Invariant Equilibria<br />

Five four-phase <strong>and</strong> two three-phase invariant equilibria involving the liquid phase have been<br />

detected experimentally [1940Vog] for the Fe-FeSi-VSi2-V region. Later, these experimental<br />

results were reinterpreted by [1982Ray] owing to the publication of revised versions of the<br />

binary Fe-Si <strong>and</strong> Si-V phase diagrams. In the present evaluation, it is necessary for more<br />

invariant reactions to be added in order to account for six binary silicides, instead of the three<br />

(FeSi, VSi 2 <strong>and</strong> V 2Si) known at the time of [1940Vog]. Also, the extensions of their composition<br />

ranges have been taken into account. It is reasonable to replace the reaction V from<br />

[1940Vog] (FeSi + α 1 Ð L+τ 1) by two reactions U 6 (L + FeSi Ð Fe 2Si + τ 1) <strong>and</strong> U 7 (L + τ 1 Ð<br />

Fe2Si + α1) (Table 3). This interpretation correlates better with the experimental data of<br />

[1940Vog]; namely the monovariant curve L Ð FeSi + α falls monotonously to the binary<br />

eutectic (1195˚C in [1940Vog]) on the Fe-Si side.<br />

A monovariant e 10(max) should result from the probable quasibinary section FeSi 2-VSi 2,<br />

as mentioned above. Taking into account the two three-phase invariant reactions (e 5(max)<br />

<strong>and</strong> e 10(max)), two four-phase ternary eutectic reactions should be assumed, E 1 <strong>and</strong> E 2.<br />

The reaction scheme proposed in the present evaluation is shown in Fig. 3. The invariant<br />

equilibria are listed in Table 3 showing the origin of the reactions.<br />

Liquidus Surface<br />

Only one experimental study of the liquidus surface [1940Vog] is available. It was reported for<br />

the Fe-FeSi-VSi 2-V region. It was amended later by [1982Ray]. Further amendments have been<br />

made in this evaluation as the currently accepted Si-V phase diagram shows essential differences<br />

with the older versions used by [1940Vog] <strong>and</strong> [1982Ray]. Figure 4 presents the<br />

amended liquidus projection based on the experimental data of [1940Vog], reinterpreted by<br />

[1982Ray] <strong>and</strong> modified in the present evaluation to ensure agreement with the accepted<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


inary diagrams. New fields of primary crystallization are added tentatively for the regions not<br />

considered in [1940Vog]. The location <strong>and</strong> the temperatures of the invariant points established<br />

by [1940Vog] are retained in the present evaluation (P 1,U 5,p 2(max), e 5(max)). The<br />

locations of the monovariant curves are also taken from [1940Vog]. The monovariant lines<br />

after [1940Vog] are shown in Fig. 4 by thick solid lines. The monovariant lines added here are<br />

shown by thick dashed lines.<br />

Isothermal Sections<br />

Fe–Si–V 28<br />

5<br />

The isothermal sections at 1100 <strong>and</strong> 1000˚C have been constructed from the results of<br />

experimental investigations undertaken by [1966Bar] <strong>and</strong> [1965Gla], respectively.<br />

According to [1966Bar], τ 1 <strong>and</strong> τ 2 both enter into equilibrium with the ordered Fe 3Si<br />

phase, whereas this does not appear in the diagram presented by [1965Gla]. Consequently, no<br />

equilibrium between τ1 <strong>and</strong> τ2 was possible in the diagram of [1966Bar].<br />

There are also some other differences between the two isothermal sections given by<br />

[1965Gla] <strong>and</strong> [1966Bar]. [1965Gla] indicated that the V 3Si phase extended into the ternary<br />

system with approximately constant silicon content, whereas [1966Bar] suggested that the<br />

phase extends with approximately constant vanadium content. [1986Kan] confirmed the<br />

conclusions of the review of [1982Ray] relating to the solubility limit of Fe in V 3Si <strong>and</strong><br />

the variation in lattice parameter. The results of [1965Gla] on the shape of the V 3Si phase<br />

field seem to be more reliable. Although the temperature difference is not large, the solubility<br />

of Fe in V3Si at 1100˚C was considerably lower than at 1000˚C. It should be noted that the<br />

solubility of Fe in V5Si3 <strong>and</strong> the homogeneity ranges of the three ternary phases τ1, τ2 <strong>and</strong> τ3<br />

reported by [1966Bar] for 1100˚C are visibly larger than those at 1000˚C given by [1965Gla].<br />

The phase denoted as N 2 by [1966Bar] has a composition range corresponding to part of<br />

the composition range of the (Fe,V) 5Si 3 solid solution at 1000˚C given by [1965Gla]. This may<br />

be an indication that Fe 5Si 3 is stabilized by the addition of V, so that a ternary phase with the<br />

same structure as Fe 5Si 3 may exist at higher temperatures than in the Fe-Si binary system.<br />

Besides, it should be mentioned that the Fe 2Si phase, which is stable at 1100˚C, was missing in<br />

the presented isothermal section.<br />

Figures 5 <strong>and</strong> 6 show the isothermal sections at 1100 <strong>and</strong> 1000˚C, respectively, which are<br />

due mainly to [1966Bar] <strong>and</strong> [1965Gla]. Slight corrections have been made in order to bring<br />

the phase relationships into agreement with the currently accepted binary phase diagrams. The<br />

Fe 2Si phase missing in [1966Bar] is added to Fig. 5. For Si contents above 40 at.%, tentative<br />

equilibria are shown similar to those given for 1000˚C. The V 6Si 5 phase missing in [1965Gla]is<br />

added to Fig. 6. The VSi 2 phase is treated as a line compound. The stability ranges of the α, α 1,<br />

α 2 phases are modified in Figs. 5 <strong>and</strong> 6 to be in agreement with the data of [1994Koz].<br />

Figures 7 to 9 show partial isothermal sections at 800, 700 <strong>and</strong> 600˚C as determined by<br />

[1989Koz, 1994Koz]. The isothermal section at 600˚C [1994Koz] is very similar to that at 700˚<br />

C[1989Koz], showing a wide α + α 1 two-phase field. It was reported by [1989Koz] that the<br />

extent of the α 2 +α 1 two-phase field decreases markedly on increasing the temperature from<br />

700 to 800˚C. Using the Bragg-Williams-Gorsky model, [1994Koz] calculated isothermal<br />

sections at 800 <strong>and</strong> 600˚C, taking into account the atomic <strong>and</strong> magnetic interaction energies<br />

up to the second nearest neighbor. The calculated sections are in good agreement with<br />

experiment [1994Koz].<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


6 28<br />

Fe–Si–V<br />

Temperature – Composition Sections<br />

Seven vertical sections through the Si corner were constructed by [1940Vog] based on their<br />

own experimental data. They clearly demonstrate the peritectic formation of the ternary<br />

compound τ 1 <strong>and</strong> a maximum on the liquidus surface of the V 5Si 3 phase. Nevertheless, they<br />

cannot be accepted in the present evaluation because the interpretation of phase equilibria was<br />

based on older versions of the binary phase diagrams that have since been superseded, <strong>and</strong><br />

moreover, they are not in accordance with two isothermal sections reported later by [1966Bar]<br />

<strong>and</strong> [1965Gla].<br />

Figure 10 shows the vertical section determined by [1994Koz] for silicon contents between<br />

0-25at.% at 5 at.% V. The results of [1988Fuk, 1989Koz, 1990Zha, 1994Koz] show that the<br />

addition of vanadium reduces the stability of the α 2 phase, narrowing its homogeneity range<br />

until it disappears at 1040˚C (α /(α + α 1)) <strong>and</strong> at 1050˚C ((α 1 + α 2)/α 1) at a V content of<br />

5 at.%.<br />

Thermodynamics<br />

[1983Roz] measured the mixing enthalpies <strong>and</strong> component activities in ternary melts at<br />

1627˚C. The Fe-Si-V alloy melts show a negative deviation from Raoult’s law.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

<strong>Ternary</strong> Fe 3–xV xSi (0 ⊊ x ⊊ 1) alloys with the Heusler structure (L2 1) show very interesting<br />

electronic <strong>and</strong> magnetic properties. These properties were studied by [1976Nic, 1976Ber,<br />

1977Nic, 2003Kaw, 2004Nas, 2006Cui]. Using X-ray, magnetization <strong>and</strong> spin-echo NMR<br />

techniques, [1976Nic] measured the changes in atomic ordering, their effect on local moment<br />

<strong>and</strong> internal field distributions in the Fe 3–xV xSi (0 ⊊ x ⊊ 1) alloys. [1976Ber] measured the<br />

magnetic properties <strong>and</strong> superconductivity of Fe3–xVxSi. The role of the outer electrons on<br />

solubility limits <strong>and</strong> bulk magnetic properties of Fe3–xVxSi alloys was investigated by<br />

[1977Nic]. [2003Kaw] measured thermoelectric properties, such as the thermal diffusivity,<br />

electrical resistivity, <strong>and</strong> Seebeck coefficient in the temperature range from 300 to 1073 K, of<br />

Fe 3–xV xSi (0 ⊊ x ⊊ 1) alloys. [2004Nas] measured the Seebeck coefficient, electrical resistivity,<br />

<strong>and</strong> magnetization of Fe 3–xV xSi alloys with 0.6 ≤ x ≤ 1 <strong>and</strong> compared the results with those of<br />

Fe 3xV xAl. The electronic structures of Fe 3–xV xSi in the concentration range between x = 0 <strong>and</strong><br />

x = 1 were studied by [2006Cui] using photoemission spectroscopy (PES).<br />

[1978Hao] determined the eutectic temperature <strong>and</strong> composition as well as the oxidation<br />

resistance of the alloys Fe63V30Si7 <strong>and</strong> Fe65V29Si6 (in mass%).<br />

[1983Bus] studied the magneto-optical properties of the Fe 2VSi compound annealed at<br />

800˚C for 10 d. Using X-ray diffraction, [1995Kaw] <strong>and</strong> [1998Kaw] measured the tetragonal<br />

deformation of Fe 2VSi at low temperatures [1995Kaw], <strong>and</strong> the thermal expansion of Fe 2VSi<br />

compounds below room temperature [1998Kaw]. [2004Nis] investigated the magnetic properties<br />

of Fe 2VSi by means of NMR experiments using 51 V for two samples that had been<br />

quenched after annealing at 800 <strong>and</strong> 900˚C, respectively.<br />

Information on the investigation of the materials properties are listed in Table 4.<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Miscellaneous<br />

Figure 11 shows the variation of the lattice parameter a <strong>and</strong> superconducting transition<br />

temperatures in V 3–xFe xSi alloys as a function of iron content [1978Soz].<br />

. Table 1<br />

Investigations of the Fe-Si-V <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/ Experimental Technique<br />

[1940Vog] Thermal analysis, X-ray analysis <strong>and</strong><br />

metallography<br />

Temperature/ Composition/ <strong>Phase</strong> Range<br />

Studied<br />

Fe-FeSi-VSi 2-V region, from liquidus to<br />

1100˚C<br />

[1960Gup] X-ray analysis Around the σ phase at 1175˚C<br />

[1961Gla] X-ray analysis Fe5V3Si2 [1961Bar] X-ray analysis Fe 41V 37Si 22<br />

[1962Gla] X-ray analysis Fe2V2Si (τ2), Fe5V3Si2 (τ3) [1965Gla] X-ray analysis, metallography 800, 1000, 1200˚C <strong>and</strong> as-cast state, entire<br />

composition range<br />

[1966Bar] Metallography, X-ray analysis, chemical<br />

analysis<br />

< 40 at.% Si, 1100˚C<br />

[1966Kim] X-ray analysis, electrical properties,<br />

magnetic properties, Mössbauer<br />

Fe 50V 30Si 20 at 4, 77 <strong>and</strong> 300 K<br />

[1967Far] X-ray analysis Fe2.5V1.5Si, Fe3VSi [1971Sho] X-ray analysis Fe44V26Si30 Fe–Si–V 28<br />

7<br />

[1974Bur] Neutron diffraction Fe3Si; Site occupation of V in dilutely<br />

substitued Fe3Si [1975Pic] Neutron diffraction Fe2.948V0.052Si alloy; Site occupation of V in<br />

Fe3Si [1976Nic] Neutron diffraction Fe3–xVxSi alloys (0≤ x ≤1.0); changes in the<br />

atomic ordering, their effect on local<br />

moment <strong>and</strong> internal field distributions<br />

[1976Sho] X-ray analysis V26.5Fe44Si29.5 [1978Hao] Thermal analysis, SEM Fe63V30Si7 <strong>and</strong> Fe65V29Si6 alloys (in mass%);<br />

oxidation resistance<br />

[1978Soz] X-ray analysis Solid solution (V,Fe) 3Si, ≤ 10 at.% V<br />

[1983Roz] Measurements of mixing enthalpies <strong>and</strong><br />

activities<br />

The Fe-Si-V alloy melts, at 1267˚C<br />

[1984Sin] X-ray analysis, metallography Fe3Si - V3Si section, 400 <strong>and</strong> 1000˚C;<br />

V50Fe25Si25 ternary phase<br />

[1985Wan] Magnetic properties, X-ray analysis, SEM Fe-6.5Si (mass%) alloy; effect of vanadium<br />

on ordering phase separation in Fe-Si alloy<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


8 28<br />

Fe–Si–V<br />

. Table 1 (continued)<br />

Reference Method/ Experimental Technique<br />

Temperature/ Composition/ <strong>Phase</strong> Range<br />

Studied<br />

[1986Kan] X-ray analysis (Fe,V) 3Si alloys; phase separation of α <strong>and</strong><br />

α1 in (Fe1–xVx) 3 Si alloys<br />

[1988Kum] Thermodynamic calculation Fe rich ternary alloys, at 950, 1050, 1150,<br />

<strong>and</strong> 1250˚C; bcc-fcc equilibrium<br />

[1988Fuk] TEM observation of phase separation with α <strong>and</strong><br />

α1 in Fe-Si-V alloys<br />

[1989Koz] TEM Fe rich Fe-Si-V alloys, 700, 800˚C; phase<br />

separation of α <strong>and</strong> α1 [1990Zha] Thermodynamic calculation α2 (B2) +α1 (D03) two phase field; influence<br />

of V on the order-disorder reactions in the<br />

Fe-Si bcc (α) phase,<br />

[1991Kud] Ab initio calculation of electronic<br />

structures <strong>and</strong> magnetic moments<br />

Fe3–xVxSi [1994Koz] <strong>Phase</strong> separation of α <strong>and</strong> α 1, ordering,<br />

TEM, thermodynamic calculation<br />

Fe rich ternary alloys, 600˚C, 800˚C, 600-<br />

1200˚C<br />

[1995Kaw] X-ray analysis Fe2VSi, at 300 K<br />

[1998Kaw] Thermal expansion, X-ray analysis Fe2VSi, below room temperature, 120 K<br />

[2003Kaw] X-ray analysis, EDX Fe3–xVxSi<br />

[2004Doi] TEM Fe72V13Si15, 1200, 650˚C; aging<br />

precipitation of α1 in α<br />

[2004Nas] X-ray analysis, measurements of Seebeck<br />

coefficient, electrical resistivity, <strong>and</strong><br />

magnetization<br />

Fe3–xVxSi (0.6 ≤ x ≤ 1.0)<br />

[2004Nis] Neutron diffraction, magnetic<br />

susceptibility measurement<br />

[2006Cui] electronic structures, photoemission<br />

spectroscopy (PES)<br />

Fe 2VSi, 800˚C, 900˚C<br />

Fe 3–xV xSi (0 ≤ x ≤ 1.0) annealed at 850˚C for<br />

5 days<br />

[2006Nas] X-ray analysis <strong>and</strong> neutron diffraction Fe2VSi, 800˚C,1100˚C<br />

[2006Doi] TEM Fe70.5V16.2Si13.3, 1200˚C, 650˚C; phase<br />

separation of α <strong>and</strong> α1 DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Si–V 28<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

α, (αδFe,V) cI2<br />

< 1910 Im3m<br />

W<br />

(δFe)<br />

1538 - 1394<br />

a = 293.15 pure Fe at 1390˚C [V-C2, Mas2]<br />

(V)<br />

< 1910<br />

a = 302.4 pure V at 25˚C [Mas2]<br />

(αFe)<br />

< 912<br />

a = 286.65 pure Fe at 25˚C [Mas2]<br />

(γFe) cF4 a = 364.67 pure Fe at 915˚C [V-C2, Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

(αSi) cF8 a = 543.06 T = 25˚C [Mas2, V-C2]<br />

< 1414 Fm3m<br />

C (diamond)<br />

(βSi) (II) tI4 a = 468.6 T = 25˚C, p > 9.624 bar [Mas2, V-C2]<br />

I41/amd βSn<br />

c = 258.5<br />

(γSi) (III) cI16<br />

Im3m<br />

γSi<br />

a = 663.6 T = 25˚C, p > 16.208 bar [Mas2, V-C2]<br />

(δSi) (I) hP4 a = 380 T = 25˚C, p = 16.208-1.013 bar [Mas2, V-C2]<br />

P63/mmc αLa<br />

c = 628<br />

α1,Fe3Si cF16 D03 < 1235 Fm3m a = 565.0 [V-C2]<br />

BiF3 11.0 to 30.0 at.% Si [1982Kub]<br />

α2, Fe-Si cP2 B2<br />

< 1280 Pm3m a = 281 [V-C2]<br />

CsCl 10.0 to 22.0 at.% Si [1982Kub]<br />

β, Fe2Si hP6 a = 405.2 ± 0.2 [V-C2]<br />

1212 - 1040 P3m1<br />

Fe2Si c = 508.55 ± 0.03 19.93 to 21.31 at.% Si [1982Kub]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


10 28<br />

Fe–Si–V<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

η, Fe5Si3 hP16 [1982Kub]<br />

1060 - 825 P63/mmc a = 675.9 ± 0.5 [V-C2]<br />

Mn5Si3 c = 472.0 ± 0.5<br />

ε, FeSi cP8 a = 451.7 ± 0.5 [V-C2]<br />

< 1410 P213 FeSi<br />

49.6 to 50.8 at.% Si [1982Kub]<br />

ζα, FeSi2(h) tP3 a = 269.01 [V-C2]<br />

1220 - 937 P4/mmm<br />

FeSi2 c = 513.4 69.5 to 73.5 at.% Si [1982Kub]<br />

ζβ, FeSi2(r) oC48 [1982Kub]<br />

< 982 Cmca a = 986.3 [V-C2]<br />

FeSi2 b = 779.1<br />

c = 783.3<br />

σ, FeV tP30 a = 896.5 [V-C2]<br />

< 1252 P42/mnm σCrFe<br />

c = 463.3 39.9 to 70.4 at.% Fe [Mas2]<br />

V3Si cP8 a = 472.72 [V-C2]<br />

< 1925 Pm3n<br />

Cr3Si 19 to 25.5 at.% Si [Mas2]<br />

V5Si3 tI32 a = 943 [V-C2]<br />

< 2010 I4/mcm<br />

Si3W5 c = 471<br />

V6Si5 oI44 a = 1596.6 [V-C2, Mas2]<br />

1670 - 1160 Ibam b = 750.1<br />

Ti6Ge5 c = 485.8<br />

VSi2 hP9 a = 457.5 [V-C2]<br />

< 1677 P6222<br />

CrSi2 c = 638.5<br />

* τ1,Fe4V5Si4 tP56 30 to 40 at.% Fe<br />

P41212 a = 888 [1965Gla]<br />

Mn5Si2 c = 867<br />

a = 883.3<br />

[1965Gla]<br />

c = 864.6 [1971Sho] atFe44V26Si30 * τ 2,Fe 2V 2Si hR53 45.5 to 52 at.% Fe<br />

R3 a = 1079.9 [1965Gla]<br />

Co5Cr2Mo3 c = 1924.3 [V-C2]<br />

a = 1079<br />

c = 1924.0 [1961Bar] atFe 41V 37Si 22<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

* τ3,Fe5V3Si2 cI58<br />

I33m<br />

αMn<br />

a = 884.3 [1962Gla, 1965Gla] 32 to 44 at.% Fe<br />

* τ4,Fe2VSi cF16 L21 Heusler structure phase<br />

Fm3m<br />

AlCu2Mn a = 567.4 at 300 K [1995Kaw]<br />

t* a = 568.8 at 10 K [1995Kaw].<br />

- c = 562.3 Transition to the tetragonal structure occurs at<br />

120 K [1998Kaw]<br />

. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe–Si–V 28<br />

Composition (at.%)<br />

Fe Si V<br />

11<br />

Comment<br />

L+V5Si3 Ð τ1 1510 p2 (max) L 38 32 30 [1940Vog]<br />

L+V6Si5 Ð V5Si3 + VSi2 1500 U1 - - - - this work<br />

L+V5Si3 Ð τ1 +V3Si 1450 U2 - - - - this work<br />

L+V3Si Ð α + τ1 1400 U3 L 46.5 12.5 41 [1940Vog]<br />

L+τ1 + α2 Ð α1 1370 P1 L 48 13 39 [1940Vog]<br />

L+α2 + τ1 Ð α1 1350 P2 - - - - this work<br />

L Ð VSi2 + FeSi 1310 e5 (max) - - - - this work<br />

L+V5Si3 Ð VSi2 + τ1 1260 U4 L 27.5 49 23.5 [1940Vog]<br />

L + VSi2 Ð FeSi + τ1 1235 U5 L 60 36 4 [1940Vog]<br />

L + FeSi Ð Fe2Si + τ1 1202 U6 - - - - this work<br />

L+τ1 Ð Fe2Si + α1 1201 U7 L 66 31 3 [1940Vog]<br />

L Ð VSi2 + FeSi2 1200 e10 (max) - - - - this work<br />

L Ð VSi2 + FeSi2 + (Si) 1180 E1 - - - - this work<br />

L Ð VSi2 + FeSi2 + FeSi 1150 E2 - - - - this work<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


12 28<br />

Fe–Si–V<br />

. Table 4<br />

Investigations of the Fe-Si-V Materials Properties<br />

Reference Method/ Experimental Technique Type of Property<br />

[1976Nic] Magnetometer Magnetic properties<br />

[1983Bus] Saturation moment, Polar Kerr rotation Magnetic properties,<br />

optical properties<br />

[1991Kud] Ab initio calculation Magnetic properties<br />

[2003Kaw] Laser flash, measurements of electrical resistivity,<br />

thermoelectric power <strong>and</strong> density<br />

Thermoelectric property<br />

[2004Nis] Measurements of thermoelectric power, magnetization<br />

<strong>and</strong> electrical resistivity<br />

Magnetic <strong>and</strong> electric<br />

properties<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-Si-V. Si-V binary phase diagram<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–V 28<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


14 28<br />

Fe–Si–V<br />

. Fig. 2<br />

Fe-Si-V. Quasibinary system VSi 2-FeSi<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-Si-V: Partial reaction scheme<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–V 28<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


16 28<br />

Fe–Si–V<br />

. Fig. 4<br />

Fe-Si-V. Partial liquidus surface in the Fe-FeSi-VSi 2-V region<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5<br />

Fe-Si-V. Isothermal section at 1100˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–V 28<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


18 28<br />

Fe–Si–V<br />

. Fig. 6<br />

Fe-Si-V. Isothermal section at 1000˚C<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 7<br />

Fe-Si-V. Partial isothermal section at 800˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–V 28<br />

19<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


20 28<br />

Fe–Si–V<br />

. Fig. 8<br />

Fe-Si-V. Partial isothermal section at 700˚C<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 9<br />

Fe-Si-V. Partial isothermal section at 600˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–V 28<br />

21<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


22 28<br />

Fe–Si–V<br />

. Fig. 10<br />

Fe-Si-V. Vertical section at 5 at.% V with the silicon content of 0-25 at.%<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Si–V 28<br />

23<br />

. Fig. 11<br />

Fe-Si-V. Variation of the lattice parameter (1) <strong>and</strong> superconducting transition temperature (2) in<br />

the V 3–xFe xSi alloys with x<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


24 28<br />

Fe–Si–V<br />

References<br />

[1940Vog] Vogel, R., Jentzsch-Uschinski, C., “The Iron-Silicon-Vanadium <strong>Alloy</strong>s” (in German), Arch. Eisenhuettenwes.,<br />

13, 403–408 (1940) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Morphology, Experimental, *, 9)<br />

[1960Gup] Gupta, K.P., Rajan, N.S., Beck, P.A., “Effect of Si <strong>and</strong> Al on the Stability of Certain σ <strong>Phase</strong>s”, Trans.<br />

Met. Soc. AIME, 218, 617–624 (1960) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 18)<br />

[1961Bar] Bardos, D.I., Gupta, K.P., Beck, P.A., “New <strong>Ternary</strong> R <strong>Phase</strong>s with Silicon”, Nature, 192, 744 (1961)<br />

(Crys. Structure, Experimental, 5)<br />

[1961Gla] Gladyshevskii, E.I., Kripyakevich, P.I., Teslyuk, M.Yu., Zarechnyuk, O.S., Kuz’ma, Yu.B., “Crystal<br />

Structures of Some Intermetallic Compounds”, Sov. Phys.-Crystallogr., 6, 207–208 (1961), translated<br />

from Kristallografiya, 6(2), 267 (1960) (Crys. Structure, Experimental, 11)<br />

[1962Gla] Gladyshevskii, E.I., “Crystal Structure of Compounds <strong>and</strong> <strong>Phase</strong> Equilibria in <strong>Ternary</strong> <strong>Systems</strong> of Two<br />

Transition Metals <strong>and</strong> Silicon”, Sov. Powder Metall. Met. Ceram. (Engl. Transl.), 1(4), 262–265 (1962)<br />

(Crys. Structure, Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 17)<br />

[1965Gla] Gladyshevsky, E.I., Shvets, G.N., “<strong>Phase</strong> Equilibrium Diagram of <strong>Ternary</strong> V-Fe-Si <strong>Alloy</strong>s <strong>and</strong> Crystal<br />

Structure of the Compounds”, Russ. Metall., 2, 63–65 (1965), translated from Izv. Akad. Nauk SSSR,<br />

Met., (2), 120–127 (1965) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, *, 2)<br />

[1966Bar] Bardos, D.I., Beck, P.A., “Electron <strong>Phase</strong>s in Certain <strong>Ternary</strong> <strong>Alloy</strong>s of Transition Metals with Silicon”,<br />

Trans. Met. Soc. AIME, 236, 64–69 (1966) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, *, 16)<br />

[1966Kim] Kimball, C.W., Phillips, W.C., Nevitt, M.V., Preston, R.S., “Magnetic Hyperfine Interactions <strong>and</strong><br />

Electric Quadrupolar Coupling in <strong>Alloy</strong>s of Iron with the α-Manganese Structure”, Phys. Rev., 146(2),<br />

375–378 (1966) (Crys. Structure, Electr. Prop., Magn. Prop., Experimental, 18)<br />

[1967Far] Farrokhi-Mochai, N., “A Study of the Solid <strong>Phase</strong>s in the Fe-Si-Ti, Fe-Si-Zr, <strong>and</strong> Fe-Si-V <strong>Systems</strong>” (in<br />

French), Rev. Chim. Miner., 4, 1–15 (1967) (Crys. Structure, <strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, Experimental,<br />

23)<br />

[1971Sho] Shoemaker, C.B., Shoemaker, D.P., “On Structures of Transition-Metal <strong>Phase</strong>s with Approximately<br />

30 at.% Si”, Metall. Trans., 2, 2296–2299 (1971) (Crys. Structure, Experimental, 11)<br />

[1974Bur] Burch, T.J., Litrenta, T., Budnick, J.I., “Hyperfine Studies of Site Occupation in <strong>Ternary</strong> <strong>Systems</strong>”, Phys.<br />

Rev. Letters, 33(7), 421–424 (1974) (Crys. Structure, Experimental, 12)<br />

[1975Pic] Pickart, S., Litrenta, T., Burch, T., Budnick, J.I., “Site Preference of Dilute Transition Metal Solutes in<br />

Fe3Si”, Phys. Lett. A, 53A(4), 321–323 (1975) (Crys. Structure, Experimental, 4)<br />

[1976Ber] Bergner, R.L., Rao, V.U.S., Sanker, S.G., “Superconducting <strong>and</strong> Magnetic Properties of V 3–xFe xSi <strong>and</strong><br />

V 3–xMn xSi”, AIP Conf. Proc., 29, 325–326 (1976) (Experimental, Magn. Prop., Supercond., 4)<br />

[1976Nic] Niculescu, V., Raj, K., Budnick, J.I., Burch, T.J., Hines, W.A., Menotti, A.H., “Relating Structural,<br />

Magnetisation <strong>and</strong> Hyperfine Field Studies to a Local Environment Model in Fe 3–xV xSi <strong>and</strong><br />

Fe 3–xMn xSi”, Phys. Rev. B, 14(9), 4160 (1976) (Crys. Structure, Magn. Prop., Experimental, 26)<br />

[1976Sho] Shoemaker, C.B., Shoemaker, D.P., “The Crystal Structure of Mn 5Si 2 <strong>and</strong> the D phase (V-Fe-Si)”, Acta<br />

Crystallogr., Sect. B: Struct. Crystallogr. Crys. Chem., B32(7), 2306–2313 (1976) (Crys. Structure,<br />

Experimental, 24)<br />

[1977Nic] Niculescu, V., Budnick, J.I., “Limits of Solubility, Magnetic Properties <strong>and</strong> Electron Concentration in<br />

Fe 3–xTi xSi System”, Solid State Commun., 24(9), 631–634 (1977) (Crys. Structure, Experimental, <strong>Phase</strong><br />

Relations, Magn. Prop., 17)<br />

[1978Hao] Haour, G., Mollard, F., Lux, B., Wright, G., “New Eutectics Based on Fe, Co or Ni”, Z. Metallkd., 69(1),<br />

26–32 (1978) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 24)<br />

[1978Soz] Sozontova, G.N., Shtolts, A.K., Geld, P.V., Medvedev, A.I., “Superconducting Solid Solutions of<br />

(V,Fe) 3Si, (V,Fe) 3Ge <strong>and</strong> (V,Fe) 3Ga”, Russ. Metall., (2), 172–174 (1978), translated from Izv. Akad. Nauk<br />

SSSR, Met., (2), 217–219 (1978) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 5)<br />

[1982Kub] Kubaschewski, O., “Iron-Silicon” in “Iron - Binary <strong>Phase</strong> <strong>Diagrams</strong>”, Springer Verlag, Berlin, 136–139<br />

(1982) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, #, *, 23)<br />

[1982Ray] Raynor, G.V., Rivlin, V.G., “8: Critical Evaluation of Constitution of Iron-Silicon-Vanadium System”,<br />

Int. Met. Rev., 27(5), 289–306 (1982) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 32)<br />

[1983Bus] Buschow, K.H.J., van Engen, P.G., Jongebreur, R., “Magneto-Optical Properties of Metallic<br />

Ferromagnetic Materials”, J. Magn. Magn. Mater., 38, 1–22 (1983) (Experimental, Magn. Prop., Optical<br />

Prop., 23)<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Si–V 28<br />

25<br />

[1983Roz] Rozhikhina, I.D., Tolstoguzov, N.V., “Practical Use of Data on the Heat of the Dissolution of Fe-V-Si<br />

Molten <strong>Alloy</strong>s”, Izv. V.U.Z. Chern. Metall., (4), 12–15(1983) (Experimental, Thermodyn., 4)<br />

[1984Sin] Singh, M., Bhan, S., “Structural Studies on V 3Si-Fe 3Si System”, Cryst. Res. Technol., 19(9), K81–K83<br />

(1984) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Crys. Structure)<br />

[1985Wan] Wang, S., “Effect of Vanadium on Ordering <strong>Phase</strong> Separation in Fe-Si <strong>Alloy</strong>”, Acta Metall. Sin., 21(6),<br />

427–37 (1985) (<strong>Phase</strong> Relations, Experimental, Crys. Structure, Magn. Prop., 21)<br />

[1986Kan] Kanematsu, K., “Stability of Crystal Structure of (Fe,V) 3M <strong>and</strong> (Fe,Ni) 3M (M = Si, Ge, Sn) <strong>and</strong> Its<br />

Analysis Based on Rigaid B<strong>and</strong> Model”, Trans. Jpn. Inst. Met., 27(4), 225–234 (1986) (Crys. Structure,<br />

Experimental, 13)<br />

[1988Fuk] Fukaya, M., Kozakai, T., Miyazaki, T., “<strong>Phase</strong> Separation in Fe-Si-V <strong>and</strong> Fe-Si-Co Ordered <strong>Alloy</strong>s” (in<br />

Japanese), Nippon Kinzoku Gakkai-Si, 52(4), 369–374, (1988) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, 26)<br />

[1988Kum] Kumar, K.C.H., Raghavan, V., “BCC-FCC Equilibrium in <strong>Ternary</strong> Iron <strong>Alloy</strong>s”, J. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>,<br />

4(1), 53–71 (1988) (Experimental, <strong>Phase</strong> Relations, Thermodyn., 27)<br />

[1988Ray] Raynor, G.V., Rivlin, V.G., “Fe-Si-V” in “<strong>Phase</strong> Equilibria in Iron <strong>Ternary</strong> <strong>Alloy</strong>s”, Inst. Metals, London,<br />

452–466 (1988) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Crys. Structure, Review, 11)<br />

[1989Koz] Kozakai, T., Zhao, P.Z., Miyazaki, T., “<strong>Phase</strong> Separations in Fe rich Fe-base <strong>Ternary</strong> Ordering <strong>Alloy</strong><br />

<strong>Systems</strong>”, Met. Abstr. Light Metals <strong>and</strong> <strong>Alloy</strong>s, 23, 32–33 (1989/1990) (Crys. Structure, Experimental,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 0)<br />

[1990Zha] Zhao, P.Z., Kozaki, T., Miyazaki, T., “Analysis of Ordering <strong>and</strong> <strong>Phase</strong> Separation in <strong>Alloy</strong>s of the <strong>Ternary</strong><br />

System Fe-Si-V with bcc Structure based on the Model of Bragg-Williams-Gorsky”, J. Jpn. Inst. Met.,<br />

54(2), 139–145 (1990) (Crys. Structure, <strong>Phase</strong> Relations, Calculation, 27)<br />

[1991Kud] Kudrnovsky, J., Christensen, N.E., Andersen, O.K., “Electronic-Structures <strong>and</strong> Magnetic-Moments of<br />

Fe 3+ySi 1–y <strong>and</strong> Fe 3–xV xSi <strong>Alloy</strong>s with D0 3-Derived Structure”, Phys. Rev. B, 43(7), 5924–5933 (1991)<br />

(Crys. Structure, Electronic Structures, Magn. Prop., Calculation, 33)<br />

[1994Koz] Kozakai, T., Miyazaki, T., “Experimental <strong>and</strong> Theoretical Investigations on <strong>Phase</strong> <strong>Diagrams</strong> of Fe Base<br />

<strong>Ternary</strong> Ordering <strong>Alloy</strong>s”, ISIJ Int., 34(5), 373–383 (1994) (<strong>Phase</strong> Diagram, Experimental, Calculation,<br />

<strong>Phase</strong> Relations, 18)<br />

[1994Rag] Raghavan, V., “Fe-Si-V (Iron-Silicon-Vanadium)”, J. <strong>Phase</strong> Equilib., 15(6), 633–634 (1994) (<strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Review, 8)<br />

[1995Kaw] Kawakami, M., Nishizaki, S., Fujita, T., “Tetragonal Deformation in Fe 2VSi at Low Temperatures”,<br />

J. Phys. Soc. Jpn., 64(11), 4081–4083 (1995) (Crys. Structure, Experimental, 6)<br />

[1998Kaw] Kawakami, M., Uchimura, T., “Crystal Structure Transformation in Fe 2VSi <strong>and</strong> Its Substituted Compounds”,<br />

J. Phys. Soc. Jpn., 67(8), 2758–2760 (1998) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 7)<br />

[2002Rag] Raghavan, V., “Fe-Si-V (Iron-Silicon-Vanadium)”, J. <strong>Phase</strong> Equilib., 23(5), 447 (2002) (<strong>Phase</strong> Relations,<br />

Review, 6)<br />

[2003Kaw] Kawaharada, Y., Uneda, H., Kurosaki, K., Yamanaka, S., “Thermoelectric Properties of Fe-V-Si<br />

Heusler Type Compounds”, J. <strong>Alloy</strong>s Compd., 359, 216–220 (2003) (Crys. Structure, Phys. Prop.,<br />

Experimental, 21)<br />

[2004Doi] Doi, M., Sakai, D., Koyama, T., Kozakai, T., Moritani, T., “TEM Observations of the Precipitation of A2<br />

Particles in DO 3 Precipitates in Fe-Si-V <strong>Alloy</strong> System”, Trans Tech Publications. Materials Science Forum,<br />

449–452(1), 529–532 (2004) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 9)<br />

[2004Nas] Nashima, O., Kanomata, T., Yamaguchi, Y., Abe, S., Harada, T., Suzuki, T., Nishihara, H., Koyama, K.,<br />

Shishido, T., Watanabe, K., Kaneko, T., “Magnetic <strong>and</strong> Electrical Properties of Fe 3–xV xSi”, J. <strong>Alloy</strong>s<br />

Compd., 383(1-2), 298–301 (2004) (Crys. Structure, Electr. Prop., Magn. Prop., Experimental, 12)<br />

[2004Nis] Nishihara, H., Ono, K., Neumann, K.U., Ziebeck, K.R.A., Kanomata, K., “NMR of 51 V in a<br />

Heusler <strong>Alloy</strong> Fe 2VSi”, J. <strong>Alloy</strong>s Compd., 383(1-2), 302–307 (2004) (Magn. Prop., Crys. Structure,<br />

Experimental, 11)<br />

[2006Cui] Cui, Y.T., Kimura, A., Miyamoto, K., Sakamoto, K., Xie, T., Qiao, S., Nakatake, M., Shimada, K.,<br />

Taniguchi, M., Fujimori, S.-I., Saitoh, Y., Kobayashi, K., Kanomata, T., Nashima, O., “Electronic<br />

Structures of Fe 3–xV xSi Probed by Photoemission Spectroscopy”, Phys. Status Solidi A, 203(11),<br />

2765–2768 (2006) (Crys. Structure, Electronic Structure, Experimental, 5)<br />

[2006Doi] Doi, M., Moritani, T., Kozakai, T., Wakano, M., “Transmission Electron Microscopy Observations of<br />

the <strong>Phase</strong> Separation of D0 3 Precipitates in an Elastically Constrained Fe-Si-V <strong>Alloy</strong>”, ISIJ Int., 46(1),<br />

155–160 (2006) (Morphology, <strong>Phase</strong> Relations, Experimental, 22)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_28<br />

ß Springer 2009


26 28<br />

Fe–Si–V<br />

[2006Nas] Nashima, O., Yamaguchi, Y., Higashi, H., Goto, T., Kaneko, T., Sasamori, S., Kimura, H., Kobayashi, K.,<br />

Kainuma, R., Ishida, K., Kanomata, T., “Unusual Complex High Temperature Structure of Fe 2VSi”,<br />

J. <strong>Alloy</strong>s Compd., 417(1-2), 150–154 (2006) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 8)<br />

[2007Zha] Zhang, C., Wang, J., Du, Y., Zhang W.J., “An Investigation on the Thermodynamic Stability of V 6Si 5”,<br />

J. Mater. Sci., 42(16), 7046–7048 (2008) (<strong>Phase</strong> Diagram, Experimental, Thermodyn., Calculation, 20)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_28 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Silicon – Zirconium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Yong Du, Wei Xiong, Weiwei Zhang, Hailin Chen, Weihua Sun<br />

Introduction<br />

The only contribution to the measurement of the Fe-Si-Zr phase diagram is the work by<br />

[1971Lis], who determined the isothermal section at 800˚C using 110 alloys. The existence of<br />

six ternary compounds is reported: τ 1, ZrFeSi [1963Spi, 1965Mar, 1966Fre, 1967Far, 1969Jei,<br />

1969Yar, 1971Lis], τ 2,Zr 2Fe 3Si [1965Mar, 1969Tes, 1971Lis, 1978Mit], τ 3,Zr 4Fe 4Si 7 [1967Far,<br />

1969Jei, 1971Lis, 1996Eve], τ 4, ZrFe 2Si 2 [1967Vor, 1971Lis], τ 5,Zr 6Fe 16Si 7 [1971Lis, 1984Cha],<br />

<strong>and</strong> τ 6,Zr 3Fe 5Si 12 [1974Lys]. The previously reported stoichiometry of ZrFeSi 2 [1967Far] for<br />

τ 3 was corrected to be Zr 4Fe 4Si 7 by [1996Eve]. So far, there is no information on the melting<br />

behavior of these phases. [1978Hao] identified one eutectic in Fe rich side of the Fe-Si-Zr<br />

system. But the phases participating in the eutectic reaction are not specified [1978Hao].<br />

In the literature, there are two pieces of experimental information on the thermodynamic<br />

properties of Fe-Si-Zr melts. One is the enthalpy of dissolution for Zr in FeSi melt at 1597˚C<br />

[1989Sud1], the other is enthalpies of mixing for the Fe-Si-Zr melt at 1627˚C below 40 at.% Zr<br />

[1989Sud2]. Information on phase relations, crystal structures <strong>and</strong> thermodynamics is summarized<br />

in Table 1.<br />

Further work is necessary to measure the phase relationships over wide composition <strong>and</strong><br />

temperature ranges, especially the phase equilibria involving liquid.<br />

Binary <strong>Systems</strong><br />

The binary Fe-Si <strong>and</strong> Si-Zr systems are accepted from [Mas2]. [2002Ste] redetermined the<br />

whole Fe-Zr phase diagram by means of differential thermal analysis (DTA), X-ray diffraction<br />

(XRD), electron probe microanalysis (EPMA), <strong>and</strong> metallography. This newly established<br />

phase diagram is adopted in the present work.<br />

Solid <strong>Phase</strong>s<br />

Fe–Si–Zr 29<br />

1<br />

The crystallographic data of the phases in the Fe-Si-Zr system <strong>and</strong> their temperature ranges of<br />

stability are listed in Table 2. Five ternary compounds (τ 1, τ 3, τ 4, τ 5 <strong>and</strong> τ 6) are treated as the<br />

stoichiometric ones due to the lack of experiments. The homogeneity range of the τ 2 phase at<br />

800˚C given in Table 2 is estimated from the isothermal section drawing in [1971Lis] <strong>and</strong><br />

should be considered as tentative only. The τ 1 phase was first reported by [1963Spi], who<br />

annealed alloys at 1100˚C for 3 d in argon-filled fused silica capsules. This phase is characterized<br />

by a rather restricted range of homogeneity around the composition ZrFeSi [1963Spi].<br />

The existence of τ 1 is confirmed by subsequent investigators [1965Mar, 1966Fre, 1967Far,<br />

1969Jei, 1969Yar, 1971Lis] using XRD technique. The decomposition temperature of this<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_29<br />

ß Springer 2009


2 29<br />

Fe–Si–Zr<br />

ternary phase is determined to be about 1800˚C [1967Far]. [1969Jei] is responsible for the<br />

determination of its space group using XRD.<br />

Using XRD method, four groups of authors [1965Mar, 1969Tes, 1971Lis, 1978Mit] contributed<br />

to the crystal structure determination of the τ 2 phase. The lattice parameters calculated<br />

by them are consistent with each other within the estimated experimental errors.<br />

The τ3 phase was first reported by [1967Far] <strong>and</strong> its existence was confirmed by [1969Jei,<br />

1971Lis, 1996Eve]. This phase shows a large homogeneity range with an excess of Fe or a<br />

deficiency of Si, <strong>and</strong> melts at a temperature of above 2000˚C [1967Far]. Subsequently, the<br />

space group of this phase was determined by [1969Jei] <strong>and</strong> its stoichiometry was reported to<br />

be Zr 4Fe 4Si 7 [1996Eve].<br />

[1967Vor] published the crystal structure data for τ 4 without giving experimental details.<br />

The occurrence of this compound was confirrmed by [1971Lis] using both XRD <strong>and</strong> optical<br />

microscopy.<br />

Using XRD method, [1971Lis, 1984Cha] reported the existence of τ5. Another ternary<br />

compound τ6 was found by [1974Lys] employing XRD technique. The crystallographic data<br />

for τ 5 was established [1971Lis]. For τ 6, however, no crystal structure data are available.<br />

Zr 2Fe <strong>and</strong> Zr 2Si were found to form a continuous series of solid solution at 800˚C by<br />

[1971Lis], who also reported that the solid solubility of Si in ZrFe 2 is about 5 at.%, <strong>and</strong> that of<br />

Fe in ZrSi 2 about 5 at.%. For the other binary compounds, negligible solid solubilities of the<br />

third element were observed [1971Lis]. [1985Tro, 1987Bla] reported the lattice parameters for<br />

the (Zr 1–xSi x)Fe 2 with x = 0.2 <strong>and</strong> 0.5, respectively.<br />

According to [1985Tro] <strong>and</strong> [1987Bla], the measured solid solubilities of Si in α, ZrFe2 are<br />

16.7 (in the temperature range of 800-1500˚C) <strong>and</strong> 6.7 at.% (in the temperature range of 900-<br />

1200˚C), respectively. These authors did not give the specified temperature which corresponds<br />

to the measured solubility.<br />

Based on the literature data, [1981Kot] analyzed the crystal structures <strong>and</strong> compositions of<br />

the ternary compounds formed in the systems R-M-Si (R = Ce, Hf, Ti, Sc, Y, Zr <strong>and</strong> M = Fe,<br />

Co, Cu, Ni, Mn) in view of electronegativities <strong>and</strong> the atomic radii of the components. They<br />

reported that Sc indicates the similar behavior with Zr <strong>and</strong> Hf when the ternary compound<br />

formation with Si <strong>and</strong> M is taken into account. This feature found by [1981Kot] can be used<br />

for the investigation of the other systems.<br />

Invariant Equilibria<br />

Based on differential thermal analysis <strong>and</strong> optical microstructure observations of two alloys,<br />

[1978Hao] identified one eutectic with the eutectic temperature of 1310˚C <strong>and</strong> the eutectic<br />

composition of about 77.9Fe-7.9Si-14.2Zr (mass%). Mentioning (δFe) phase participating in<br />

the eutectic reaction, [1978Hao] did not identify the remaining two solid phases associated<br />

with the eutectic reaction. Based on the information on the invariant equilibria in Fe-rich side<br />

of the Fe-Zr <strong>and</strong> Fe-Si systems, the remaining two solid phases could be (γFe) <strong>and</strong> β, ZrFe 2.<br />

This invariant equilibrium is given in Table 3.<br />

Isothermal Sections<br />

Figure 1 presents the experimental isothermal section at 800˚C based on [1971Lis]. The<br />

solubility of Si in the Fe2Zr phase was shown by [1971Lis] in the direction of the Si-Zr binary<br />

DOI: 10.1007/978-3-540-70890-2_29 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


axis that is in contradiction with [1985Tro] <strong>and</strong> [1987Bla]. Therefore in Fig. 1 the shape of the<br />

Fe 2Zr phase is modified to present the Si solubility in the direction of the Fe-Si binary axis. The<br />

phase borders at the binary sides reported by [1971Lis] are amended slightly in Fig. 1 in order<br />

to bring them into agreement with the accepted binary phase diagrams [Mas2, 2002Ste].<br />

Thermodynamics<br />

[1989Sud1] measured the enthalpy of dissolution of Zr in FeSi melt at 1597˚C by means of<br />

drop calorimetry. These data are reproduced in Table 4 <strong>and</strong> used to derive the partial <strong>and</strong><br />

integral enthalpies of the corresponding compositions by [1989Sud1]. Using a drop calorimetry,<br />

[1989Sud2] determined the enthalpies of mixing for the Fe-Si-Zr melt at 1627˚C below 40<br />

at.% Zr. These experimental results [1989Sud2] are reproduced in Fig. 2. Preliminary thermodynamic<br />

calculation of the Fe-Si-Zr system was performed by [1995Gue], who also measured<br />

the solubility of Fe in ZrSi2 at 800˚C. In the modeling of [1995Gue], ternary compounds were<br />

not considered.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

[1978Hao] reported that although the eutectic in the Fe rich corner of the Fe-Si-Zr system<br />

could be suitable for development as materials for directionally solidified turbine blades<br />

operating up to 1150˚C, its oxidation resistance should be enhanced in order to meet several<br />

important criteria associated with the manufacture of the turbine blades. Oxidation tests<br />

indicated a rapid attack of the primary silicide phase, starting only after about 20 min of<br />

exposure [1978Hao]. The effects of Zr substitution on thermoelectric power, electrical resistivity,<br />

thermal conductivity, Seebeck coefficient, <strong>and</strong> phase transformation of thermoelectric<br />

materials β-FeSi 2 are investigated by [2001Ito, 2002Ito]. It was found that Zr substitution is<br />

quite effective for enhancing the thermoelectric performance of β-FeSi 2.<br />

The influence of Si addition on the structure (including short-range order) <strong>and</strong> stability<br />

of amorphous Fe-Si-Zr alloys was investigated by [1988Bie] using X-ray diffraction <strong>and</strong><br />

Mössbauer spectroscopy <strong>and</strong> by [1991Mic] employing Mössbauer spectroscopy <strong>and</strong> magnetization<br />

measurement. Mössbauer spectroscopy was also utilized to investigate the effect of Si<br />

addition on the mean values of the hyperfine magnetic field for the compounds Zr(Fe 1–xSi x) 2<br />

with x ≤ 0.17 [1990Das, 1992Sar].<br />

Using a metallographic microscope, [1985Tro] measured the microhardness of<br />

Zr 0.8Si 2Fe 0.2. Following the same technique, [1987Bla] determined the microhardness for<br />

several alloys (Zr xSi 1–x)Fe 2 (x = 0.9, 0.8, 0.7, 0.6, 0.5). It was found [1987Bla] that the<br />

microhardness decreases with increasing Si content. The measured microhardness along the<br />

vertical section ZrFe2 - SiFe2 is presented in Fig. 3 [1987Bla].<br />

Table 5 lists some investigations of the materials properties of the Fe-Si-Zr system.<br />

Miscellaneous<br />

Fe–Si–Zr 29<br />

3<br />

Figure 4 shows lattice parameter variation of the Zr 2(Fe,Si) 1 phase versus Si content measured<br />

by [1971Lis], who annealed the alloys at 800˚C for 500 h. The measured lattice parameters<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_29<br />

ß Springer 2009


4 29<br />

Fe–Si–Zr<br />

along the vertical section ZrFe 2 - SiFe 2 are presented in Fig. 5 [1987Bla]. A linear dependence<br />

of the lattice parameters measured for the ZrFe 2-Zr 0.5Si 0.5Fe 2 system means that 50% Zr in<br />

ZrFe 2 can be substituted by Si (16.7 at.% Si) according to [1987Bla]. This experimental<br />

observation seems to be in contradiction with the work of [1971Lis], who reported that the<br />

solubility of Si in ZrFe 2 is 5 at.% at 800˚C. In the work due to [1987Bla], temperature of<br />

annealing was given in the range of 800-1500˚C. Therefore, if the annealing temperature was<br />

higher than 800˚C, the results from [1987Bla] could be interpreted in a way that the solubility<br />

of Si increases with temperature. The same solid solution was investigated by [1985Tro] with<br />

annealing temperature 900-1200˚C, <strong>and</strong> 20% of Zr was found to be substituted by Si (6.7 at.%<br />

Si). This value (6.7 at.% Si) is between the solubility value obtained by [1971Lis] (5 at.% Si)<br />

<strong>and</strong> by [1987Bla] (16.7 at.% Si). This implies that the temperature of annealing in the work of<br />

[1987Bla] is higher than that in [1985Tro] <strong>and</strong> thus confirms the idea that the solubility of Si<br />

increases with temperature.<br />

. Table 1<br />

Investigations of the Fe-Si-Zr <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference<br />

Method/Experimental<br />

Technique Temperature/Composition/<strong>Phase</strong> Range Studied<br />

[1963Spi] X-ray diffracrion (XRD) formation, crystal structure of τ1, (ZrFeSi)<br />

[1965Mar] XRD formations, crystal structures of τ1, <strong>and</strong> τ2 (Zr2Fe3Si) [1966Fre] XRD formation, crystal structure of τ1 [1967Far] XRD formations, crystal structures of τ1, <strong>and</strong> τ3 (Zr4Fe4Si7) [1967Vor] XRD formation, crystal structure of τ4 (ZrFe2Si2) [1969Jei] XRD formations, crystal structures of τ1 <strong>and</strong> τ3<br />

[1969Yar] XRD formation, crystal structure of τ 1<br />

[1971Lis] XRD, optical misroscopy<br />

(OM)<br />

[1978Hao] Differential thermal<br />

analysis (DTA), OM<br />

formation, crystal structures of τ 1, τ 2 (Zr 2Fe 3Si), τ 3, τ 4, τ 5<br />

(Zr 6Fe 16Si 7) <strong>and</strong> τ 6 (Zr 3Fe 5Si 72); isothermal section at<br />

800˚C<br />

data on reaction L Ð(δFe) + (γFe) +Zr 6Fe 23<br />

[1978Mit] XRD, OM formation, crystal structure τ 2<br />

[1984Cha] XRD formation, crystal structure of τ 5<br />

[1985Tro] XRD lattice parameter of Zr0.8Si2Fe0.2 in the temperature<br />

range of 900 to 1200˚C<br />

[1987Bla] XRD lattice parameter of Zr0.8Si2Fe0.2 in the temperature<br />

range of 800 to 1500˚C<br />

[1989Sud1] Drop calorimetry enthalpy of dissolution of Zr in FeSi melt at 1597˚C<br />

[1989Sud2] Drop calorimetry enthalpies of mixing for the Fe-Si-Zr melt at 1627˚C<br />

below 40 at.% Zr<br />

DOI: 10.1007/978-3-540-70890-2_29 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference<br />

Method/Experimental<br />

Technique Temperature/Composition/<strong>Phase</strong> Range Studied<br />

[1995Gue] CALPHAD, electron probe<br />

microanalysis (EPMA)<br />

Approximate calculation of phase equilibria without<br />

including any ternary compounds; experimental<br />

solubility of Fe in ZrSi 2 at 800˚C<br />

[1996Eve] XRD formation, crystal structure of τ 3<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Si–Zr 29<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

α, (αδFe) cI2<br />

< 1910 Im3m<br />

(δFe)<br />

1538 - 1394<br />

W a = 293.15 pure Fe at 1390˚C [V-C2, Mas2]<br />

(αFe)<br />

< 912<br />

a = 286.65 pure Fe at 25˚C [Mas2]<br />

(γFe) cF4 a = 366.60 [V-C2]<br />

1394 - 912 Fm3m<br />

Cu<br />

a = 364.67 [Mas2]<br />

(Si) cF8 a = 543.06 at 25˚C [Mas2]<br />

< 1414 Fd3m<br />

C (diamond)<br />

a = 542.86 [V-C2]<br />

(βZr) cI2 a = 360.90 [Mas2]<br />

1855 - 863 Im3m<br />

W<br />

a = 356.8 [V-C2]<br />

(αZr) hP2 a = 323.16 at 25˚C [Mas2]<br />

< 863 P63/mmc c = 514.75<br />

Mg a = 323.2<br />

c = 514.7<br />

[V-C2]<br />

α1,Fe3Si cF16 D03 < 1235 Fm3m a = 565 [V-C2]<br />

BiF3 11.0 to 30.0 at.% Si [Mas2]<br />

α2, Fe-Si cP2 B2<br />

≲ 1280 Pm3m 10.0 to 22.0 at.% Si [Mas2]<br />

CsCl a = 281 [V-C2]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

5<br />

DOI: 10.1007/978-3-540-70890-2_29<br />

ß Springer 2009


6 29<br />

Fe–Si–Zr<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

β, Fe2Si hP6 33.0 to 34.3 at.% Si [Mas2]<br />

1212 - 1040 P3m1 a = 405.2 ± 0.2 [V-C2]<br />

Fe2Si c = 508.55 ± 0.03<br />

η, Fe5Si3 hP16 37.5 at.% Si [Mas2]<br />

1060 - 825 P63/mcm a = 675.9 ± 0.5 [V-C2]<br />

Mn5Si3 c = 472.0 ± 0.5<br />

ε, FeSi cP8 49.6 to 50.8 at.% Si [Mas2]<br />

< 1410 P213 FeSi<br />

a = 451.7 ± 0.5 [V-C2]<br />

ζα, FeSi2(h) tP3 69.5 to 73.5 at.% Si [Mas2]<br />

1220 - 937 P4/mmm a = 269.01 [V-C2]<br />

FeSi2 c = 513.4<br />

ζβ, FeSi2(r) oC48 a = 986.3 ± 0.7 [V-C2]<br />

< 982 Cmca b = 779.1 ± 0.6 66.7 at.% Si [Mas2]<br />

FeSi2 c = 783.3 ± 0.6<br />

Zr3Fe oC16 a = 332 24.6 to 25.2 at.% Fe [2002Ste]<br />

≤ 851 Cmcm b = 1100<br />

Re3B c = 882<br />

α, ZrFe2 cF24 a = 702 to 709 27.5 to 34.4 at.% Zr [2002Ste]<br />

< 1673 Fd3m<br />

MgCu2 C15 structure<br />

(Zr1–xSix)Fe2 a = 702.5 x = 0.2 [1985Tro]<br />

a = 694.3 x = 0.5 [1987Bla]<br />

β, ZrFe2 hP24 a = 495 73 to 73.5 at.% Fe [2002Ste]<br />

1345 - 1240 P63/mmc MgNi2 c = 1614 C36 structure<br />

ZrSi2 oC12 a = 372.1 [V-C2]<br />

< 1620 Cmcm b = 1468<br />

ZrSi2 c = 368.3<br />

β, ZrSi oC8 - [Mas2]<br />

2210 - 1460 Cmcm<br />

CrB<br />

α, ZrSi oP8 a = 699.5 [V-C2]<br />

< 1460 Pnma b = 378.6<br />

FeB c = 529.6<br />

β, Zr5Si4 2250 - 1860<br />

- - [Mas2]<br />

DOI: 10.1007/978-3-540-70890-2_29 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Si–Zr 29<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

α, Zr5Si4 tP36 a = 712.25 [V-C2]<br />

< 1860 P41212 Zr5Si4 c = 1300.0<br />

Zr3Si2 tP10 a = 708.2 [V-C2]<br />

< 2215 P4/mbm<br />

Si2U3 c = 371.5<br />

Zr5Si3 hP16 a = 788.6 [V-C2]<br />

2180 - 1745 P63/mcm Mn5Si3 c = 555.8<br />

Zr3Si tP32 a = 1101 [V-C2]<br />

< 1650 P42/n Ti3P c = 545<br />

Zr2FexSi1–x tI12<br />

I4/mcm<br />

Zr2Fe CuAl2 a = 638.0 at x =1[2002Ste]<br />

951 - 780 c = 560.0 66.7 to 67.2 at.% Zr [2002Ste]<br />

C16 structure<br />

Zr2Si a = 660.9 at x =0[V-C2]<br />

< 1925 c = 529.8<br />

* τ1, ZrFeSi oP12 a = 640.50 Pearson symbol [V-C2]<br />

≲ 1800 Pnma b = 393.50 Space group [1969Jei]<br />

TiNiSi c = 719.90 Lattice parameter [1969Jei]<br />

Decomposition temperature [1967Far]<br />

* τ2, Zr2Fe3Si hP12 Pearson symbol [V-C2]<br />

P63/mmc At 800˚C, from 45 to 51.5 at.% Fe, from 15.5 to<br />

MgZn2 20.65 at.% Si, from 32.95 to 34.36 at.% Zr<br />

[1971Lis].<br />

a = 498.90<br />

c = 811.00<br />

[1965Mar]<br />

a = 498.50<br />

c = 809.60<br />

[1978Mit]<br />

* τ3,Zr4Fe4Si7 tI60 Space group [1969Jei]; Pearson symbol [V-C2]<br />

< above 2000 I4/mmm<br />

Zr4Co4Ge7 Stoichiometry [1996Eve]<br />

a = 1298.0<br />

c = 510.00<br />

[1967Far]<br />

a = 1305.6<br />

c = 509.00<br />

[1969Jei]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_29<br />

ß Springer 2009


8 29<br />

Fe–Si–Zr<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

* τ 4, ZrFe 2Si 2 tP10 a = 375.00 [1967Vor]<br />

I4/mmm c = 966.00 Pearson symbol [V-C2]<br />

Al 2Ga 2Ge<br />

* τ 5,<br />

Zr 6Fe 16Si 7<br />

* τ6,<br />

Zr 3Fe 5Si 72<br />

. Table 3<br />

Invariant Equilibria<br />

cF116 a = 1153.0 [1971Lis]<br />

Fm3m<br />

Mg6Cu16Si7 a = 1168.0 [1984Cha]<br />

- - [1974Lys]<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

Si Zr<br />

L Ð(δFe) + (γFe) + β,ZrFe 2 1310 E L 76.15 15.35 8.5<br />

. Table 4<br />

Thermodynamic Data of Reaction or Transformation<br />

Reaction or Transformation<br />

Zr(25˚C)+ L (n = ∞, FeSi at 1597˚C) ⇒<br />

L(x Zr, 1597˚C)<br />

Temperature<br />

[˚C]<br />

Quantity, per mole<br />

of atoms<br />

[kJ, mol, K] Comments<br />

1597˚C ΔH = –15.3 ± 0.3 (xZr<br />

= 0.05)<br />

ΔH = –24.7 ± 0.5 (xZr = 0.10)<br />

ΔH = –35.0 ± 0.8 (xZr = 0.15)<br />

ΔH = –49.0 ± 1.0 (xZr = 0.20)<br />

Drop calorimetry<br />

[1989Sud1]<br />

DOI: 10.1007/978-3-540-70890-2_29 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 5<br />

Investigations of the Fe-Si-Zr Materials Properties<br />

Reference Method/Experimental Technique Type of Property<br />

[1978Hao] The specimen were oxidized isothermally at<br />

1150˚C in slowly flowing oxygen under<br />

1.33·10 4 Pa pressure in a thermobalance.<br />

Density was measured using water<br />

displacement method.<br />

[1985Tro] A PMT-3 metallographic microscope was<br />

used to determine the microhardness under<br />

a load of 100 or 200 g.<br />

[1987Bla] A PMT-3 metallographic microscope was<br />

used to determine the microhardness under<br />

a load of 100 g.<br />

oxidation resistance, density<br />

microhardness<br />

microhardness<br />

[1992Sar] Mössbauer spectroscopy mean value of the hyperfine magnetic<br />

field, isomer shift, <strong>and</strong> quadrupole<br />

splitting<br />

[2001Ito,<br />

2002Ito]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

dc method in a flowing argon gas using<br />

computer-controlled equipment, laser flash<br />

thermal constant analyzer TC-7000.<br />

MSIT 1<br />

Fe–Si–Zr 29<br />

thermoelectric power, electrical<br />

resistivity, thermal conductivity,<br />

Seebeck coefficient were measured<br />

from room temperature to 900˚C<br />

[2001Ito] or to 827˚C [2002Ito]<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_29<br />

ß Springer 2009


10 29<br />

Fe–Si–Zr<br />

. Fig. 1<br />

Fe-Si-Zr. Isothermal section at 800˚C<br />

DOI: 10.1007/978-3-540-70890-2_29 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-Si-Zr. Isolines of the enthalpy of mixing (kJ·mol –1 ) of liquid at 1627˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–Zr 29<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_29<br />

ß Springer 2009


12 29<br />

Fe–Si–Zr<br />

. Fig. 3<br />

Fe-Si-Zr. Microhardness along the vertical section ZrFe 2 - SiFe 2<br />

DOI: 10.1007/978-3-540-70890-2_29 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-Si-Zr. Lattice parameters of the Zr 2Fe xSi 1–x vs Si content<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Si–Zr 29<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_29<br />

ß Springer 2009


14 29<br />

Fe–Si–Zr<br />

. Fig. 5<br />

Fe-Si-Zr. Lattice parameter along the vertical section ZrFe 2 - SiFe 2<br />

DOI: 10.1007/978-3-540-70890-2_29 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–Si–Zr 29<br />

15<br />

[1963Spi] Spiegel, F.X., Bardos, D., Beck, P.A., “<strong>Ternary</strong> G <strong>and</strong> E Silicides <strong>and</strong> Germanides of Transition<br />

Elements”, Trans. Metall. Soc. AIME, 227, 575–579 (1963) (Crys. Structure, Experimental, 13)<br />

[1965Mar] Markiv, V.Ya., Voroshilov, Yu.V., Gladyshevskii, E.I., “<strong>Ternary</strong> Laves <strong>Phase</strong>s in the <strong>Systems</strong> Ti-Co-Si(Ge)<br />

<strong>and</strong> Zr-Fe-Si(Ge)”, Inorg. Mater., 1(6), 818–821 (1965), translated from Izv. Akad. Nauk SSSR, Neorg.<br />

Mater., 1(6), 890–893 (1965) (Crys. Structure, Experimental, 5)<br />

[1966Fre] Freundlich, W., Farrokhi-Mochai, N., “Two Intermetallic <strong>Ternary</strong> <strong>Phase</strong>s- ZrFeSi <strong>and</strong> TiFeSi” (in<br />

French), Compt. Rend. Acad. Sci. Paris, 262C, 1000–1001 (1966) (Crys. Structure, Experimental, 0)<br />

[1967Far] Farrokhi-Mochai, N., “A Study of the Solid <strong>Phase</strong>s in the Fe-Si-Ti, Fe-Si-Zr, <strong>and</strong> Fe-Si-V <strong>Systems</strong>” (in<br />

French), Rev. Chim. Miner., 4, 1–25 (1967) (Crys. Structure, Experimental, <strong>Phase</strong> Relations, 23)<br />

[1967Vor] Voroshilov, Yu.V., Markiv, V.Ya., Gladyshevskii, E.I., “The Zirconium-Nickel-Silicon System”,<br />

(in Russian), Izv. Akad. Nauk SSSR, Neorg. Mater., 3(8) 1404–1408 (1967) (Crys. Structure, Experimental,<br />

28)<br />

[1969Jei] Jeitschko, W., Jordan, A,G., Beck, P.A., “V <strong>and</strong> E <strong>Phase</strong>s in <strong>Ternary</strong> <strong>Systems</strong> with Transition Metals <strong>and</strong><br />

Silicon or Germanium”, Trans. Met. Soc. AIME, 245, 335–339 (1969) (Crys. Structure, Experimental, 27)<br />

[1969Tes] Teslyuk, M.Yu., “Intermetallic Compounds with Structure of Laves <strong>Phase</strong>s” (in Russian), in “Intermetallic<br />

Compounds with Structure of Laves <strong>Phase</strong>s”, Nauka, Moscow, 1–136 (1969) (Crys. Structure, <strong>Phase</strong><br />

Diagram, Review, Theory)<br />

[1969Yar] Yarmolyuk, Y.P., Markiv, V.Y., Hladyshevsky, E.I., “Compounds with the TiNiSi Structure in the<br />

<strong>Systems</strong> of Two Transition Metals <strong>and</strong> Either Si or Ge”, Vestn. L’vov. Univ. Khim., 11, 14–17 (1969)<br />

(Crys. Structure, Experimental, 5)<br />

[1971Lis] Lisenko, L.A., Ban, Z., Gladisevskii, E.I., “Investigation of the System Zr-Fe-Si”, Croat. Chem. Acta., 43,<br />

113–118 (1971) (Crys. Structure, <strong>Phase</strong> Diagram, Experimental, #, *, 20)<br />

[1974Lys] Lysenko, L.A., Ban, Z., Yarmolyuk, Ya.P., Gladisevskii, E.I., “Reaction of Zr with Fe-Group Transition<br />

Metals <strong>and</strong> Si” in “Struktura Faz. Faz. Prevrashcheniya i Diagrammy Sostoyaniya Metal. Sistem”, Nauka,<br />

Moscow, 21–25 (1974) (Crys. Structure, Review, 20)<br />

[1978Hao] Haour, G., Mollard, F., Lux, B., Wright, G., “New Eutectics Based on Fe, Co or Ni”, Z. Metallkd., 69(1),<br />

26–32 (1978) (Experimental, Mechan. Prop., Interface Phenomena, <strong>Phase</strong> Relations, Phys. Prop., 24)<br />

[1978Mit] Mittal, R.C., Si, S.K., Gupta, K.P., “Si-Stabilised C14 Laves <strong>Phase</strong>s in the Transaction Metal <strong>Systems</strong>”,<br />

J. Less-Common Met., 60, 75–82 (1978) (Crys. Structure, Experimental, 12)<br />

[1981Kot] Kotur, B.Ya., Bodak, O.I., “Characteristics of the Reaction of Sc with Si <strong>and</strong> Transition Metals of Period<br />

IV”, Inorg. Mater., 17(2), 185–188 (1981), translated from Izv. Akad. Nauk SSSR, Neorg. Mater., 17(2),<br />

265–268 (1981) (<strong>Phase</strong> Diagram, Review, Theory, 27)<br />

[1984Cha] Chaudouet, P., Lambert, B., Madar, R., Fruchart, R., “Existence of a G-type <strong>Phase</strong> in the Fe-Zr-Si<br />

System“ (in French), Ann. Chim. Fr., 9(2), 119–121 (1984) (Crys. Structure, Experimental, 8)<br />

[1985Tro] Trojko, R., Blazina, Z., “Metal-Metalloid Exchange in Some Friauf-Laves <strong>Phase</strong>s Containing Two<br />

Transition Metals”, J. Less-Common Met., 106, 293–300 (1985) (Crys. Structure, Experimental, 13)<br />

[1987Bla] Blazina, Z., Trojko, R., “On Friauf-Laves <strong>Phase</strong>s in the Zr 1–xAl xT 2,Zr 1–xSi xT 2 <strong>and</strong> Zr 1–xTi xT 2 (T = Mn,<br />

Fe, Co) <strong>Systems</strong>”, J. Less-Common Met., 133(2), 277–286 (1987) (Crys. Structure, Mechan. Prop.,<br />

Experimental, 10)<br />

[1988Bie] Biegel, W., Krebs, H.U., Michaelsen, C., Freyhardt, H.C., “Structure Analyses of Amorphous Melt-Spun<br />

Fe-Zr-(B,Si) <strong>Alloy</strong>s <strong>and</strong> Mechanically <strong>Alloy</strong>ed Fe-Zr Powders”, Mater. Sci. Eng., 97, 59–62 (1988) (Crys.<br />

Structure, Experimental, 9)<br />

[1989Sud1] Sudavtsova, V.S., Zelenina, L.N., Sharkina, N.O., “Reaction in the System FeSi-Nb(Zr)”, Inorg. Mater.,<br />

25(9), 1330–1331 (1989), translated from Izv. Akad. Nauk SSSR, Neorg. Mater., 25(9), 1569–1570 (1989)<br />

(Experimental, Thermodyn., 2)<br />

[1989Sud2] Sudavtsova, V.S, “Termochemical Properties of Liquid Fe-Zr-Si <strong>Alloy</strong>s”, Russ. Metall., 4, 39–40 (1989),<br />

translated from Izv. Akad. Nauk SSR. Metall., 4, 46–47 (1989) (Experimental, Thermodyn., 5)<br />

[1990Das] Dasilva, C.M., Dacunha, J.B.M., Livi, F.P., Gomes, A.A., “Ferromagnetic Laves <strong>Phase</strong> Intermetallics<br />

Doped with SP Impurities - A Mössbauer Study of Zr(Fe 1–xSi x) 2”, Hyperfine Interactions, 62(3), 199–206<br />

(1990) (Magn. Prop., Experimental, 21)<br />

[1991Mic] Michaelsen, C., Schultz, L., “Structural Study of Amorphous Zr-Fe-B <strong>and</strong> Zr-Fe-Si <strong>Alloy</strong>s by 57 Fe-<br />

Mössbauer <strong>and</strong> Magnetization Measurements”, Acta Metall. Mater., 39(5) 987–994 (1991) (Magn. Prop.,<br />

Experimental, 36)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_29<br />

ß Springer 2009


16 29<br />

Fe–Si–Zr<br />

[1992Sar] Sarzynski, J., Budzynski, M., Wasiewicz, R., Wiertel, M., “The Influence of Silicon on Hyperfine<br />

Magnetic Fields in Zr(Fe 1–xSi x) 2 measured for x ≤ 0.17 by Mössbauer Spectroscopy”, J. Phys.: Condens.<br />

Mater., 4, 6473–6478 (1992)<br />

[1995Gue] Gueneau, C., Servant, C., Ansara, I., “Experimental <strong>and</strong> Thermodynamic Assessments of Substitutions<br />

in the AlFeSi, FeMnSi, FeSiZr <strong>and</strong> AlCaFeSi <strong>Systems</strong>”, Appl. Thermodyn. Synth. Process. Mater., Proc.<br />

Symp., 1994 (Pub.1995), Nash, P., Sudman, B. (Eds.), The Mineral. Metal. Mater. Soc., 303–317 (1995)<br />

(Assessment, Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations,Thermodyn., 19)<br />

[1996Eve] Evers, Ch.B.H., Jeitschko, W., “Crystal Structure of Tetrazirconium Tetrairon Heptasilicide, Zr 4Fe 4Si 7”,<br />

Z. Kristallogr., 211, 119 (1996) (Crys. Structure, Experimental, 2)<br />

[2001Ito] Ito, M., Nagai, H., Katsuyama, S., Majima, K., “Effects of Ti, Nb <strong>and</strong> Zr Doping on Thermoelectric<br />

Performace of β-FeSi 2”, J. <strong>Alloy</strong>s Compd., 315, 251–258 (2001) (Electr. Prop., Experimental, 18)<br />

[2002Ito] Ito, M., Nagai, H., Tahata, T., Katsuyama, S., Majima, K., “Effects of Zr Substitution on <strong>Phase</strong><br />

Transformation <strong>and</strong> Thermoelectric Properties of β-FeSi 2”, J. Appl. Phys., 92(6), 3217–3222 (2002)<br />

(Electr. Prop., Experimental, Transport Phenomena, 21)<br />

[2002Ste] Stein, F., Sauthoff, G., Palm, M., “Experimental Determination of Intermetallic <strong>Phase</strong>s, <strong>Phase</strong><br />

Equilibria, <strong>and</strong> Invariant Reaction Temperatures in the Fe-Zr System”, J. <strong>Phase</strong> Equilib., 23(6), 480–494<br />

(2002) (<strong>Phase</strong> Diagram, Crys. Structure, Experimental, #, *, 88)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_29 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Samarium – Titanium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Natalia Kol’chugina<br />

Introduction<br />

The Fe-Sm-Ti system is of interest from the practical viewpoint since the Sm(FeTi) 12 (the τ 1<br />

ternary phase) compound was found to be a possible c<strong>and</strong>idate for permanent-magnet<br />

materials. The high anisotropy field of the (the τ 1 phase with the SmTiFe 11 stoichiometry, its<br />

rather high Curie temperature, <strong>and</strong> reasonable magnetization have determined the necessity of<br />

basic underst<strong>and</strong>ing of the phase relations in the Fe-Sm-Ti system, in particular, in the range<br />

of Fe rich alloys.<br />

Earlier investigations into the Fe-Sm-Ti system [1988Oha], [1988Sin], [1988Yan], <strong>and</strong><br />

[1989Zha] are related to the preparation <strong>and</strong> study of the τ1 ternary phase. The Fe rich corner<br />

of the system was studied in [1990Jan] (at 900˚C), [1990Kat], [1991Kim] (at 800 <strong>and</strong> 1000˚C),<br />

[1991Nei] (at 1000˚C), [1992Rei] (equilibria between 1000 <strong>and</strong> 800˚C), [1994Iva] <strong>and</strong><br />

[1995Iva] (a phase close to the phase denoted subsequently 3:29 (τ 2), <strong>and</strong> [1997Liu] (at<br />

600˚C).<br />

The distinctive feature of the most of studies is the use of melt spinning, mechanical<br />

alloying, cathodic sputtering, powder metallurgy procedures as preparation techniques (thus,<br />

many investigators dealt with both nonequilibrium states <strong>and</strong> metastable phases) <strong>and</strong> magnetic<br />

measurements as procedures, which allow one to find <strong>and</strong> identify phases along with the<br />

investigation of their magnetic properties.<br />

A review [2000Rag], which summarizes the investigations of the phase equilibria in the<br />

Fe-Sm-Ti system, is available.<br />

A review [1995Cad] considers advances in iron based permanent-magnet materials;<br />

Fe-Sm-Ti compositions are among them.<br />

In a number of works, hydrogenation <strong>and</strong> nitrogenation (with the formation of hydrides<br />

<strong>and</strong> nitrides, respectively) techniques are used as procedures that allow the magnetic properties<br />

of Fe-Sm-Ti alloys <strong>and</strong> compounds to be changed <strong>and</strong> improved.<br />

Investigations of the Fe-Sm-Ti phase relations, structure identifications are given in<br />

Table 1.<br />

Binary <strong>Systems</strong><br />

Fe–Sm–Ti 30<br />

1<br />

The Fe-Ti binary phase diagram is taken from the critical assessment of [1987Mur]. The<br />

homogeneity ranges of the TiFe <strong>and</strong> TiFe2 phases <strong>and</strong> solubilities of Ti in (γFe) <strong>and</strong> Fe in (αTi)<br />

are reported using numerous experimental data.<br />

The Fe-Sm binary phase diagram is taken from [Mas2]. The maximum solubility of iron<br />

in (βSm) at the eutectic temperature is shown to be < 0.54 at.% [1982Kub].<br />

The phase diagram of the Sm-Ti binary system is taken from [1991Rei], it is shown<br />

in Fig. 1.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


2 30<br />

Fe–Sm–Ti<br />

Solid <strong>Phase</strong>s<br />

There are four ternary phases identified in the system. They are designated in the literature as<br />

1:12 (τ 1), 1:11 (τ 3), 3:29 (τ 2), <strong>and</strong> 5:17 (τ 4). The crystallographic data of the Fe-Sm-Ti phases<br />

are listed in Table 2.<br />

It should be noted that the phases were obtained by both conventional arc <strong>and</strong> induction<br />

melting (in as-cast <strong>and</strong> annealed alloys) <strong>and</strong> rapid quenching (mechanical alloying) followed<br />

by annealing.<br />

The τ 1 phase is formed peritectically from (αFe) <strong>and</strong> liquid at 1300˚C [1992Rei]. Earlier,<br />

[1990Jan] reported that the τ 1 phase does not undergo decomposition down to 700˚C. At<br />

1000˚C, τ 1 ranges from SmTi 0.7Fe 11.3 to SmTi 1.1Fe 10.9 [1992Rei]. [1997Liu] did not find the<br />

compound at 600˚C. However, the phase may be crystallized from the amorphous phase of the<br />

Sm 8.3Ti 8.3Fe 83.4 composition upon annealing at 660˚C [1990Wec]. At 900˚C, τ 1 is in equilibrium<br />

with TiFe2 <strong>and</strong> Sm(Ti,Fe)2 [1992Rei].<br />

The Sm(Ti,Fe)8.5 phase that subsequently was identified as the τ2 phase is stable above<br />

1000˚C <strong>and</strong> is not found at 800˚C [1994Iva] <strong>and</strong> below. The τ 2 phase is formed upon vacuum<br />

annealing at 1100˚C for 24 h followed by rapid water quenching. The Ti content, which is<br />

needed to stabilize the τ 2 phase may vary from 5.0 to 6.5 in the Sm 10Ti xFe 100–x compositions<br />

[1995Yan2]. According to [2000Iva], the τ 2 phase may be obtained by annealing of the mixture<br />

Sm 2(Ti,Fe) 17 + τ 1 at 1150˚C for 4 h or at 1000˚C for 48 h. According to [2006Sun], the<br />

structural relationship τ 2 Ð Sm 2Fe 17 + τ 1 is valid. In [1991Rei, 1992Rei], this phase is given as<br />

Sm(Ti,Fe)9; it disappears at 800˚C. For this phase, [1991Rei] gives the TbCu7 type structure<br />

<strong>and</strong> the Curie temperature TC = 209˚C that is close to TC = 200˚C given by [1990Jan] for Sm<br />

(Ti,Fe) 7, T C = 197˚C given by [1994Iva] for Sm(Ti,Fe) 8.5, <strong>and</strong> T C = 213˚C <strong>and</strong> 212˚C given by<br />

[1995Yan2] <strong>and</strong> [1996Koy] for Sm 3(Ti,Fe) 29, respectively. According to [1991Rei], the τ 2 phase<br />

is formed by a peritectic reaction at 1240˚C <strong>and</strong> subsequently takes part in the formation of<br />

the τ 3 phase.<br />

It is likely that a metastable phase with the TbCu 7 structure (space group P6/mmm) that is<br />

discussed in a number of works (since it exhibits interesting magnetic properties) is similar to<br />

the τ2 phase. The phase with the TbCu7 structure was obtained in the SmxTi8Fe92–x (6≤x≤15)<br />

compositions annealed at 600 to 700˚C [1990Din]. At x = 8, 10, 15 at.% Sm, a = 489 pm,<br />

c = 424 pm; at 10, 15 at.% Sm, the phase becomes dominant. According to [1990Jan], as-cast<br />

Sm 7.7Ti 4.6Fe 87.7 contains Sm(Ti,Fe) 7 phase. The TbCu 7 type structure was found in<br />

Sm 10Ti xFe 90–x (x = 4.5 <strong>and</strong> 6) compositions; for x = 4.5, a = 493.5 pm, c = 420.5 pm <strong>and</strong><br />

for x =6,a = 493.5 pm, c = 422.2 pm [1994Wan]. However, [1994Yan] reported that<br />

Sm 20Ti 9Fe 71 annealed at 810˚C <strong>and</strong> Sm 26Ti 9Fe 65 annealed at 810 <strong>and</strong> 900˚C contain (along<br />

with other phases) SmTiFe 6 (metastable with a cubic structure, a = 802.3 nm) phase. In<br />

[1995Xia], ribbons with the composition corresponding to τ1 annealed above 740˚C exhibit<br />

the transformation Sm(Ti,Fe)7 (TbCu7 type structure, metastable) Ð SmTiFe11 (ThMn12<br />

type structure). According to [1995Yan1], in SmTi xFe 7+x (x = 0.2-1.5) melt-spun ribbon,<br />

Sm(Ti,Fe) 7 formed is stable even after annealing at 650-750˚C; however, the hexagonal<br />

Sm(Fe,Mo) 7 type structure with a = 492.2 pm <strong>and</strong> c = 424.5 pm, volume of unit cell<br />

8906.2 ·10 3 pm 3 is reported.<br />

The τ 3 (with the stoichiometry SmTi 1.5Fe 9.5) phase is found near the tie line (Sm 2Fe 17 -<br />

TiFe 2) in the isothermal section at 900˚C [1990Jan]. In [1991Kim], τ 3 was not found at 800˚C.<br />

τ3 is formed peritectically, is found in the isothermal section at 1000˚C [1992Rei], <strong>and</strong> is stable<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


down to 600˚C [1992Rei], [1997Liu]. According to [1991Rei], the τ3 phase is formed by a<br />

peritectic reaction at 1100˚C.<br />

The τ4 phase is found in [1991Sta] (its X-ray diffraction pattern is analogous to the<br />

Nd5Fe17 phase) <strong>and</strong> for Sm26TiyFe74–y in the composition range y = 1-17 [1997Yan] in samples<br />

annealed at 810 <strong>and</strong> 870˚C, i.e., it is stable at these temperatures. However, the τ4 phase was not<br />

identified at 800˚C in [1991Kim]. The lattice parameters first are reported in [1994Yan].<br />

According to [1991Rei], the τ4 phase is formed by a peritectic reaction at 900˚C.<br />

Sm2(Fe,Ti)17 is a solid solution of Ti in Sm2Fe17. According to [1990Kat], the Sm2Fe17<br />

phase with the Th2Zn17 type structure incorporates a small amount of Ti atoms; in this case,<br />

Sm2(Fe,Ti) 17 (with the rhombohedral Th2Zn17 type structure, a = 856.0 pm, c = 1247 pm) is<br />

found in Smx(Fe0.875Ti0.125) 100–x (x = 10, 15, 20, 25) compositions. [1990Jan] gives the<br />

solubility of Ti in Sm2Fe17 up to 3 at.%. According to [1991Nei], 2.59 at.% Ti are present<br />

in Sm2Fe17. The maximum solubility of Ti in Sm2Fe17 at 1000˚C was found to be 3.7 at.%; at<br />

800˚C, Sm2Fe17 shows a small homogeneity range <strong>and</strong> dissolves up to 3.5 at.% Ti [1992Rei]. At<br />

600˚C, Sm2Fe17 shows a homogeneity range of about 1 at.% Sm <strong>and</strong> dissolves up to 3.1 at.% Ti<br />

[1997Liu]. The dependence of the lattice parameter of the solid solution on the Ti content<br />

is considered in [1998Pao] for Sm2TixFe17–x (x = 0-0.85) <strong>and</strong> in [2000Pao] for Sm2TixFe17–x (x = 0, 0.4, 0.75) (these compositions cover the aforementioned ranges of solubility of Ti<br />

in Sm2Fe17). [2000Shc] reported the increase in the lattice parameter for the Sm2(TixFe1–x) 17<br />

(x = 0.02, 0.03, 0.04) compositions (with the Th2Zn17 type structures) up to x = 0.06;<br />

the existence of the high-temperature modification with the Th2Ni17 type structure is discussed.<br />

The existence of the Sm2(TixFe1–x) 17 solid solution up to x = 0.04 is discussed in<br />

[2004Zha].<br />

The Sm2(Ti,Fe)17 phase in the form of low- (Th2Zn17 type) <strong>and</strong> high- (Th2Ni17 type,<br />

a = 851 pm, c = 838 pm) temperature modifications was found in Sm(TixFe1–x) y,(x = 0.04-<br />

0.065, y = 8.0-9.0) [1995Iva].<br />

The Ti-containing SmFe2 in the form of Sm(Ti,Fe) 2 with the Cu2Mg type structure with<br />

a = 742.7 pm in <strong>and</strong> a = 741.5 pm is reported in [1990Kat] <strong>and</strong> [1994Yan], respectively. In<br />

[1997Liu], the solubility range of Ti in SmFe2 is up to 4.7 at.%. The content is higher than the<br />

value ( 1 at.%) determined from the isothermal section at 800˚C [1992Rei]. [1997Liu]<br />

deduces that the Ti content in SmFe2 will be reduced as the annealing temperature decreases.<br />

However, [2006Sun] indicates that, when ingots Sm2Ti1Fe16 are quickly cooled along the<br />

cooling direction, the Sm-rich phase is not Sm(Ti,Fe) 2 but SmFe2. For the SmFe3 phase in the Fe-Sm-Ti system, the Sm solubility range is from 24.0 to 26.8<br />

at.% <strong>and</strong> the maximum solubility of Ti is up to 4.1 at.% [1997Liu], which essentially agrees<br />

with the result of [1990Jan] who gives 5 at.% solubility in the isothermal section at 900˚C.<br />

The amount of Sm dissolving in TiFe2 is about 0.6 at.% [1997Liu].<br />

Invariant Equilibria<br />

Fe–Sm–Ti 30<br />

3<br />

The data on the invariant equilibria are available in a partial reaction scheme given in Fig. 2 in<br />

accordance with [1991Rei]. The τ 2 phase is included in the scheme instead of the Sm(Ti,Fe) 9<br />

phase. The eutectic temperature in the Fe-Ti binary system was corrected in accordance with<br />

the accepted phase diagram.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


4 30<br />

Fe–Sm–Ti<br />

Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

A partial liquidus projection is given in Fig. 3. It is available in [1992Rei] <strong>and</strong> [1991Rei] (where<br />

the liquidus surface was constructed experimentally based on EDX <strong>and</strong> thermal analyses <strong>and</strong><br />

metallographic data) <strong>and</strong> corresponds to the Fe-Sm-TiFe 2 field. The Sm(Ti,Fe) 9 phase<br />

reported by the author is denoted here as τ2 phase (Sm3(Ti,Fe)29).<br />

Isothermal Sections<br />

Isothermal sections of the Fe-Sm-Ti system were studied in [1990Jan] (at 900˚C), [1991Kim]<br />

(at 800 <strong>and</strong> 1000˚C), [1991Nei] (at 1000˚C), [1992Rei] (at 800 <strong>and</strong> 1000˚C), <strong>and</strong> [1997Liu] (at<br />

600˚C). All these works show good agreement. The isothermal sections at 1000 <strong>and</strong> 800˚C are<br />

shown in Figs. 4 <strong>and</strong> 5 from [1992Rei]. The Sm(Fe,Ti)9 phase of [1992Rei] is denoted here<br />

as τ2, Sm3(Ti,Fe)29. The character of the phase relations at 1000˚C continues down to at least<br />

900˚C [1990Jan], [1992Rei]. Figure 6 presents the isothermal section at 600˚C from [1997Liu].<br />

The homogeneity ranges of the binary phases SmFe 3 <strong>and</strong> SmFe 2 along the binary axis are ruled<br />

out since they disagree with the accepted binary diagram Fe-Sm.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Three compounds τ1, τ2, <strong>and</strong> τ4 (among four ternary phases formed in the Fe-Sm-Ti system)<br />

are magnetic phases; τ 3 is a nonmagnetic phase. Their properties <strong>and</strong> properties of alloys with<br />

close compositions are given in Table 3.<br />

The magnetic properties of the metastable phase with the TbCu 7 type structure <strong>and</strong><br />

magnetic properties of Sm 2(Ti,Fe) 17 (that is a solid solution of Ti in the Sm 2Fe 17 compound)<br />

are also considered in Table 3.<br />

The effect of hydrogenation <strong>and</strong> nitrogenation on the magnetic properties of ternary<br />

phases also is considered in Table 3 in spite of the fact that these compositions are quaternary.<br />

These procedures allow the Curie temperature to be increased <strong>and</strong> the magnetocrystalline<br />

anisotropy type, saturation magnetization, coercivity to be changed. The effect of other<br />

alloying additions (B, C, Si, metals) is also discussed.<br />

The possibility of preparation of magnets based on the Fe-Sm-Ti system is discussed in<br />

[1992Rei]. The authors conclude that the preparation of Fe-Sm-Ti-based sintered magnets is<br />

restricted by phase relations in the system.<br />

Miscellaneous<br />

Mössbauer spectra of amorphous compositions close to τ 1 <strong>and</strong> annealed (at 650, 700, 800,<br />

850˚C) Sm 10Ti 8Fe 82 alloys are given in [1990Din]; [1991Qia] performed Mössbauer spectroscopy<br />

for the melt-spun Sm 20Ti 10Fe 70. NMR spectroscopy for τ 1 was performed in [1996Kap].<br />

An enthalpy change during crystallization (in Ar) of melt-spun Sm 0.17Fe 0.83 <strong>and</strong><br />

(Sm 0.17Fe 0.83) 94Ti 3C 3 ribbon alloys was estimated in [1999Shi] based on DTA data; these<br />

were found to be –28.1 J·g –1 <strong>and</strong> 36.4 J·g –1 , respectively. These values are normalized to the<br />

mass of the entire sample (crystalline <strong>and</strong> amorphous fractions) <strong>and</strong> not to the amount of<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


material actually transforming. Therefore, this value is directly related to the amount of<br />

amorphous fraction in each sample. The higher value for (Sm 0.17Fe 0.83) 94Ti 3C 3 indicates<br />

that the Ti <strong>and</strong> C additions increase the amorphous phase content (i.e., improve the glass<br />

formability) as well as its stability that follows from the higher crystallization temperature of<br />

the alloy (596˚C) as compared to that of Sm 0.17Fe 0.83 (570˚C). The enthalpy change during<br />

crystallization (in Ar) of melt-spun (Sm 0.11Fe 0.89) 94Ti 3C 3 ribbon is –6.8 J·g –1 . The enthalpy<br />

changes determined upon crystallization in N2 are lower.<br />

. Table 1<br />

Investigations of the Fe-Sm-Ti <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1988Oha] TEM, EMPA, X-ray diffraction /<br />

magnetization measurements<br />

[1988Sin] Arc melting, melt spinning, annealing (at<br />

700˚C) / DSC, X-ray diffraction, EDXA,<br />

TEM, magnetic measurements<br />

(thermomagnetic analysis, hysteresis loop<br />

measurements)<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

Compositions 7.14 (7.32) at.% Sm-7.14<br />

(7.55) at.% Ti-85.72 (85.13) at.% Fe / τ 1<br />

phase.<br />

Ribbon Sm 8Ti 8Fe 84 annealed at 700˚C<br />

contains a phase with the ThMn 12 type<br />

structure.<br />

[1988Yan] Arc melting / magnetic measurements SmTiFe x with x = 8-11 has the tetragonal<br />

ThMn 12 type structure.<br />

[1989Zha] R.f. (radio frequency) induction melting,<br />

annealing, hydrogenation / X-ray<br />

diffraction, thermomagnetic analysis,<br />

magnetic measurements<br />

[1990Coc] Melt spinning, annealing (at 540, 800˚C) /<br />

X-ray diffraction, DTA, magnetic<br />

measurements<br />

[1990Din] Melt spinning, annealing (at 600, 650, 700,<br />

750, 800, 850, <strong>and</strong> 900˚C) / X-ray<br />

diffraction, SEM, EDAX, Mössbauer<br />

spectroscopy, magnetization<br />

measurements<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sm–Ti 30<br />

τ 1 (SmTiFe 11); lattice parameters<br />

5<br />

Ribbons Sm 17Ti 8 Fe 75 annealed at 540 <strong>and</strong><br />

800˚C / off-stoichiometric phase with the<br />

ThMn 12 type structure.<br />

Sm xTi 8Fe 92–x (6≤x≤15).<br />

The compositions with x = 8, 10, 15<br />

annealed at 600-700˚C exhibit the<br />

presence of the TbCu 7 structure<br />

(metastable), that is a dominant phase at<br />

x = 10, 15 at.% Sm.<br />

Ribbons with x = 6, 8 annealed at 800˚C<br />

<strong>and</strong> above have the ThMn 12 type<br />

structure; ribbons with x = 10, 15 have a<br />

cubic structure.<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


6 30<br />

Fe–Sm–Ti<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1990Jan] 99.9%Sm, 99%Fe, 99.9%Ti (mass%) Arc<br />

melting, annealing (at 900˚C for 72 h),<br />

quenching in water/ X-ray diffraction<br />

metallography, electron probe analysis,<br />

magnetic <strong>and</strong> thermomagnetic analyses.<br />

[1990Kat] Sm 99.5%, Fe 99.9%, 99.9 mass% purity<br />

Induction melting, annealing (1000˚C, 1 h<br />

+ 750˚C, 63 h), water quenching / DTA,<br />

X-ray diffraction, metallography<br />

Melt spinning, annealing (between 725<br />

<strong>and</strong> 900˚C for 15-60 min) / magnetic<br />

measurements<br />

[1990Sch2] Mechanical alloying, annealing (at 800˚C),<br />

hot pressing (at 725˚C), induction melting<br />

+ rapid quenching, annealing (at 700-<br />

850˚C) /X-ray diffraction, magnetic<br />

measurements<br />

[1991Cad] Sputtering / X-ray diffraction, magnetic<br />

measurements<br />

[1991Kim] 99.9% Sm, 99.7%, Ti, 99.98% Fe; Melting &<br />

casting, annealing (at 800 <strong>and</strong> 1000˚C),<br />

melt spinning + annealing (at 800˚C)/<br />

optical microscopy, SEM, X-ray diffraction,<br />

magnetic measurements<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

Isothermal section at 900˚C/<br />

compositions Sm 7.7Ti xFe 92.3–x (x = 2.8, 4.6,<br />

7.7, 9.2, 18.5).<br />

τ1 does decompose down to 700˚C but it<br />

is restricted by the coexistence of<br />

Sm 2Fe 17 <strong>and</strong> TiFe 2.<br />

A new τ3 (SmTi1.5Fe9.5).<br />

As-cast Sm 7.7Ti 4.6Fe 87.7 contains the Sm<br />

(Ti,Fe) 7 phase.<br />

Section Smx(Ti0.125Fe0.875)100–x (x = 10, 15,<br />

20, 25); samples contain Sm 2(Ti,Fe) 17, Sm<br />

(Ti,Fe) 2, TiFe 2 Samples with x = 15, 20, 25<br />

annealed at 750˚C contain Sm 2Fe 17+Sm<br />

(Ti,Fe) 2; at 855˚C: a peritectic<br />

decomposition of Sm(Ti,Fe) 2; with x = 10,<br />

15, 20, 25, a peritectic decomposition of<br />

Sm 2(Ti,Fe,) 17 into the liquid <strong>and</strong> τ 1 phase<br />

at 1260˚C is observed.<br />

After annealing at 1000˚C for 1 h, τ 1 is not<br />

observed.<br />

Sm 20Ti 10–xFe 70+x (x = –2, 0, 2); asquenched<br />

(at low cooling rates) ribbons<br />

contain the τ 1 phase.<br />

In annealed (at 800˚C) ribbons, a phase of<br />

the Sm 20Ti 10Fe 70 composition is present.<br />

Sm xTi 10Fe 90–x (x = 16, 18, 20, 22) annealed<br />

at 800˚C exhibits the presence of a new<br />

phase of the Sm 20Ti 10Fe 70 composition.<br />

In sputtered <strong>and</strong> subsequently<br />

crystallized films, τ 1 (SmTi 0.5Fe 11.5) phase<br />

is found.<br />

Isothermal sections at 800 <strong>and</strong> 1000˚C;<br />

Sm xTi yFe 100–x–y (3.8


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1991Nei] 99.9% Sm, 99.7% Ti, 99.98% Fe Arc<br />

melting, annealing (at 1000˚C for 3<br />

weeks), water quenching/optical<br />

metallography, microhardness<br />

measurements, SEM, EDAX, X-ray<br />

diffraction, magnetic measurements<br />

[1991Sta] Cathodic sputtering or mechanical<br />

alloying<br />

[1992Rei] Sm > 99.5 mass%, Ti > 99.5 mass%, Fe ><br />

99.9 mass%, 5-fold arc melting, annealing<br />

at 1000˚C for 7 d, at 900˚C for 14 d, <strong>and</strong> at<br />

800˚C for 45 d, water quenching / optical<br />

metallography, EDX, thermal <strong>and</strong><br />

thermomagnetic analysis<br />

[1994Iva] Sm - 99.8%, Ti - 99.95%, Fe - 99.98%.<br />

Induction melting, annealing at 1150-<br />

900˚C / X-ray diffraction, magnetic<br />

measurements<br />

[1994Wan] Arc melting, annealing (at 1200˚C for<br />

24 h), high-energy milling, annealing at<br />

600-900˚C / X-ray diffraction,<br />

thermomagnetic analysis<br />

[1994Yan] Mechanical alloying, annealing (at 600-<br />

900˚C for 5 min to 2 h) / X-ray diffraction,<br />

TEM, SEM, EDAX, magnetic<br />

measurements<br />

[1995Iva] Sm - 99.8%, Fe - 99.98%, Ti - 99.95%<br />

Induction melting, annealing at 900-<br />

1250˚C / X-ray diffraction, magnetic<br />

measurements<br />

[1995Xia] Induction melting, melt spinning,<br />

annealing at 580-880˚C for 5 min / X-ray<br />

diffraction, DTA, magnetic measurements<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sm–Ti 30<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

Isothermal section at 1000˚C for the<br />

compositions around τ 1.<br />

A “Sm(Ti,Fe) 9” phase of the<br />

Sm 10.44Ti 5.55Fe 84.01 composition is found.<br />

A phase with the hexagonal Nd 5Fe 17 type<br />

structure<br />

Projection of the liquidus surface.<br />

Equilibria between 1000 <strong>and</strong> 800˚C. τ 1 is<br />

in equilibrium with (αFe), TiFe 2, <strong>and</strong> a Sm<br />

(Ti,Fe) 9 phase similar to Sm(Ti,Fe) 7.<br />

Sm(Ti xFe 1–x) y (0.03≤x≤0.08 <strong>and</strong> 7.0≤≤9.0)<br />

compositions quenched from 1150 <strong>and</strong><br />

1000˚C exhibit the presence of a new<br />

phase Sm(Ti 0.065Fe 0.935) 8.5 with an<br />

orthorhombic structure.<br />

The TbCu 7 type structure is found in<br />

Sm 10Ti xFe 90–x (x = 4.5 <strong>and</strong> 6)<br />

compositions.<br />

Compositions Sm xTi 9Fe 91–x (x = 15-30)<br />

<strong>and</strong> Sm 26Ti yFe 74–y (y = 0-17) are studied.<br />

τ 4 is found.<br />

Sm 20Ti 9Fe 71 annealed at 810˚C comprises<br />

(Sm,Ti) 2Fe (?) + SmTiFe 6 (metastable,<br />

cubic) + τ 4 (hcp), + Sm(Ti,Fe) 2.<br />

Sm 26Ti 9Fe 65 annealed at 810 <strong>and</strong> 900˚C<br />

exhibits the presence of analogous<br />

phases <strong>and</strong> (Sm,Ti)2Fe17 (?)<br />

Sm(Ti xFe 1–x) y (0.04≤x≤0.07 <strong>and</strong> 8.0≤y≤9.0)<br />

annealed at 1150-1250˚C contains the Sm<br />

(Ti,Fe)8.5 phase.<br />

Ribbons corresponding to the τ 1 phase<br />

composition annealed above 740˚C<br />

exhibit the transformation Sm(Ti,Fe) 7<br />

(TbCu 7 type structure (metastable) Ð τ 1<br />

(ThMn12 type structure).<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


8 30<br />

Fe–Sm–Ti<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1995Yan1] Induction (repeated) melting, melt<br />

spinning, annealing at 650 to 750˚C /<br />

X-ray diffraction, SEM, TEM, EMPA, EDX,<br />

thermomagnetic analysis, magnetic<br />

measurements<br />

[1995Yan2] All components at least 99.9% purity,<br />

twice arc melting, annealing at 1000-<br />

1200˚C for 10-60 h, quenching in air or<br />

water/X-ray diffraction, thermomagnetic<br />

analysis, magnetic measurements<br />

[1996Has] R.f. (radio frequency) melting, arc melting,<br />

powder metallurgical process, annealing<br />

at 600-1150˚C for 2-100 h / X-ray<br />

diffraction, SEM/EDX, electron beam<br />

diffraction, magnetic measurements<br />

[1997Liu] 99.95 at.% Sm, 99.9 at.% Fe, 99.5 at.% Ti<br />

Diffusion triple technique, annealing at<br />

600˚C for 500 h, quenching in icy salt<br />

water/electron microprobe analysis<br />

[1997Yan] Mechanical alloying, annealing at 750-<br />

870˚C for 30 min / X-ray diffraction,<br />

magnetic measurements<br />

[2000Iva] Induction melting, annealing at 1150˚C<br />

for 4 h or 1000˚C for 48 h / X-ray<br />

diffraction<br />

[2000Shc] Induction melting, annealing at 900-<br />

1450˚C, quenching in water / X-ray<br />

diffraction, magnetic measurements<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

In SmTi xFe 7+x (x = 0.2-1.5) melt-spun<br />

ribbon, Sm(Ti,Fe) 7 formed is stable even<br />

after annealing. The phase has the<br />

hexagonal Sm(Mo,Fe)7 type structure.<br />

In Sm 10Ti xFe 85 (x = 4.2, 4.4, 4.6, 4.8, 5.0,<br />

6.0, 6.5) annealed at from 1000 to 1200˚C,<br />

quenched in water, the τ 2 compound<br />

(Sm 3(Fe 0.933Ti 0.067) 29 stoichiometry)<br />

(monoclinic Nd3(Ti,Fe)29 type structure is<br />

found.<br />

In alloys Sm xTi yFe 100–x–y (x = 6.9-1.17 <strong>and</strong><br />

y = 0-9.7), a nonstoichiometric compound<br />

R 2(Ti,Fe) 17+δ (δ = 1.0-4.0) with a hexagonal<br />

structure (space group P62m) exists<br />

between Sm 2(Ti,Fe) 17 <strong>and</strong> τ 1.<br />

Isothermal section at 600˚C<br />

(compositions (0.08-33.70 at.%) Sm -<br />

(2.75-85.20 at.%) Ti - (95.98-14.66 at.%)<br />

Fe). Detected phase regions:<br />

SmFe 2+TiFe 2+(αSm); TiFe 2+TiFe+(αSm);<br />

TiFe+(βTi)+(αSm); SmFe 3+SmFe 2+TiFe 2;<br />

Sm 2Fe 17+TiFe 2+αFe; SmFe 3+TiFe 2+(αFe);<br />

SmFe 3+Sm 2Fe 17+τ 3;Sm 2Fe 17+TiFe 2+τ 3;<br />

(αSm)+(αTi)+(βTi). Stoichiometry of τ 3<br />

from SmTi1.2Fe9.8 to SmTi1.4Fe9.6<br />

Sm 26Ti yFe 74–y with y = 0, 1, 13, 17<br />

annealed at 840˚C <strong>and</strong> with y =3<br />

annealed at 870˚C contain the mixture of<br />

phases TiFe 2, SmFe 2,Sm 2(Ti,Fe) 17, τ 4<br />

Virtually complete solid state<br />

transformation of the Sm2(Ti,Fe)17+τ1<br />

mixture into τ 2.<br />

Sm 2(Ti xFe 1–x) 17 (x≤0.06) with x = 0.02,<br />

annealed at 1200-1250˚C is a mixture of<br />

Th 2Zn 17 <strong>and</strong> Th 2Ni 17 structures; annealed<br />

at 1200˚C with x = 0.03 <strong>and</strong> 0.04, both<br />

structures are observed; after annealing<br />

at 1250˚C, only the Th 2Ni 17 type structure.<br />

Monotonic increase in the lattice<br />

parameters is observed up to x = 0.04.<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[2004Zha] Arc melting, annealing (at 1100˚C for<br />

24 h) / X-ray diffraction, scanning electron<br />

microscopy, magnetic measurements<br />

[2006Sun] Arc melting, annealing (at 1000˚C for<br />

48 h), water quenching, HDDR process /<br />

X-ray diffraction, scanning electron<br />

microscopy, magnetic measurements<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–Sm–Ti 30<br />

Temperature/Composition/<strong>Phase</strong><br />

Range Studied<br />

In Sm 2(Ti xFe 1–x) 17 (x = 0, 0.02, 0.04, 0.06,<br />

0.08, 0.1) annealed at 1100˚C with<br />

x = 0-0.04 Sm 2(Ti,Fe) 17 (Th 2Zn 17 type<br />

structure) is found; with x = 0.06, - τ 2<br />

(monoclinic, Nd 3(Ti,Fe) 29 type structure;<br />

with x = 0.08-0.1 - τ 1 (ThMn 12 type<br />

structure); with x = 0.08, τ1 coexists with<br />

τ 2 <strong>and</strong> Sm(Ti,Fe) 2<br />

As-cast Sm 2Ti 1Fe 16 consists of τ 2 (the<br />

main phase) <strong>and</strong> secondary phases τ1, τ3,<br />

Sm(Ti,Fe) 2, αFe(Ti) phases; the annealed<br />

alloy consists of τ 2, τ 1, τ 3, <strong>and</strong> a few Sm<br />

rich phases (that depending on the<br />

cooling direction may be SmFe 2 rather<br />

than Sm(Ti,Fe) 2).<br />

Structural relationship τ 2 Ð Sm 2Fe 17 + τ 1<br />

is valid.<br />

The τ 3 phase (SmTi 1.5Fe 9.5)<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(δSm) hP4 a = 361.8 at 25˚C, 4.0 GPa [Mas2]<br />

P63/mmc αLa<br />

c = 1166<br />

(γSm) cI2 - [Mas2]<br />

1074 - 922 Im3m<br />

W<br />

(βSm) hP2 a = 366.30 [Mas2]<br />

922 - 734 P63/mmc Mg<br />

c = 584.48<br />

(αSm) hR9 a = 362.90 at 25˚C [Mas2]<br />

< 734 R3m<br />

αSm<br />

c = 2620.7<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


10 30<br />

Fe–Sm–Ti<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(ωTi) hP3 a = 462.5 at 25˚C, HP → 1 atm [Mas2]<br />

P6/mmm<br />

ωTi<br />

c = 281.3<br />

(βTi) cI2 a = 330.65 [Mas2]<br />

1670 - 882 Im3m<br />

W<br />

(αTi) hP2 a = 295.06 at 25˚C [Mas2]<br />

< 882 P63/mmc Mg<br />

c = 468.35<br />

(αδFe) cI2<br />

Im3m<br />

(δFe)<br />

1538 - 1394<br />

W a = 293.15 at 1390˚C [V-C2, Mas2]<br />

(αFe)<br />

< 912<br />

a = 286.65 at 25˚C [Mas2]<br />

(γFe) cF4 a = 364.67 at 915˚C [V-C2, Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

Sm2Fe17 hR57 [Mas2]<br />

< 1280 R3m a = 857.0 [V-C2]<br />

Th2Zn17 c = 1244.0<br />

SmFe3 hR36 [Mas2]<br />

< 1010 R3m a = 518.7 [V-C2]<br />

NbB3 c = 2491.0<br />

SmFe2 cF24 (C15) [Mas2]<br />

< 900 Fd3m<br />

Cu2Mg a = 741.6 [V-C2]<br />

TiFe2 hP12 64.5-72.4 at.% Fe [1987Mur]<br />

< 1427 P63/mmc a = 477.7 at 64.6 at.% Fe<br />

MgZn2 c=780.7<br />

a = 478.1<br />

c=779.5<br />

at 71.4 at.% Fe<br />

TiFe cP2 a = 297.8 ± 0.2 at 50 at.%<br />

< 1317 Pm3m 47.5-50.3 at.% Fe at 1317˚C<br />

CsCl<br />

[1987Mur]<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

* τ1, Sm(Ti,Fe) 12<br />

(SmTiFe11 stoichiometry)<br />

1300 - 700<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

tI26 a = 856 for compositions 7.14 (7.32) at.%<br />

I4/mmm c = 479<br />

ThMn 12<br />

Fe–Sm–Ti 30<br />

Sm-7.14 (7.55) at.% Ti-85.72 (85.13)<br />

at.% Fe [1988Oha]<br />

a = 858 in Sm8Fe84Ti8 annealed at 700˚C<br />

c = 479<br />

or<br />

a = 854<br />

c = 477<br />

[1988Sin]<br />

a = 853.4 for SmTiFe11 c = 477.6 V = 347.832·10 6 pm 3 [1989Zha]<br />

a = 855.7 for SmTiFe11 b = 480.0 V = 351.4·10 6 pm 3 [1991Yan]<br />

a = 854<br />

c = 478<br />

for SmTiFe11 [1996Kim]<br />

a = 856.8 for SmTiFe11 c = 479.8 V = 352·10 6 pm 3 [1998Isn]<br />

a = 843.8 SmFe11.5Ti05 crystallized in<br />

c = 480.5 sputtered films [1991Cad]<br />

a = 856.3 for Sm(Fe0.917Ti0.082) 12<br />

c = 480.2 V = 352·10 6 pm 3 [1996Koy]<br />

V = 351.1·10 6 pm 3<br />

a = 856.0<br />

c = 479.2<br />

[2001Nik]<br />

* τ2,Sm3(Ti,Fe) 29 mP* a = 1065 annealing at 1000-1200˚C,<br />

1240 - 900 P21/c b = 858 quenching from high<br />

Nd3(Fe,Ti) 29<br />

c = 972 temperatures, for<br />

β = 96.98˚ Sm3(Ti0.067Fe0.933) 29 [1995Yan2]<br />

a = 1063 Sm3(Ti0.06Fe0.94) 29 stoichiometry<br />

b = 857 V = 881·10 6 pm 3<br />

c = 974<br />

β = 97˚<br />

[1996Koy]<br />

a = 1061<br />

b = 856<br />

c = 970<br />

β = 96.9˚<br />

[2000Iva]<br />

a superstructure based on a = 972 1150-1250˚C / Sm(Tix Fe1–x) y<br />

the CaCu5 type structure b = 856 (0.04≤x≤0.07 <strong>and</strong> 8.0≤y≤9.0) / Sm<br />

with a monoclinic cell c = 1063<br />

β = 96˚50’<br />

(Ti,Fe) 8.5 [1995Iva]<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


12 30<br />

Fe–Sm–Ti<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

* τ3, Sm(Ti,Fe) 11 tP24 a = 825.3 SmFe9.5Ti1.5 [1990Jan]<br />

1100 - 600 P4/mbm<br />

CeMn6Ni5 or<br />

c = 482.5<br />

t*<br />

Sm(Ti,Fe)11<br />

[2006Sun]<br />

* τ4,Sm5(Ti,Fe) 17 hP264 a = 2017.2 in SmxFe91–xTi9 (x = 15-30) <strong>and</strong><br />

870 - 800 P6 3/mcm c = 1237.4<br />

Nd5Fe17<br />

. Table 3<br />

Investigations of the Fe-Sm-Ti Materials Properties<br />

Sm 26Fe 74–yTi y (y = 0-18) annealed<br />

at 810 to 870˚C [1994Yan]<br />

Reference Method / Experimental Technique Type of Property<br />

[1987Had] Thermomagnetic analysis / vibratingsample<br />

magnetometer<br />

[1988Oha] Magnetization measurements in<br />

magnetic field applied parallel <strong>and</strong><br />

perpendicular to the c axis<br />

[1988Sin] Thermomagnetic analysis / vibratingsample<br />

magnetometer<br />

[1988Yan] cited from abstract (no experimental<br />

details are available)<br />

[1989Had] cited from abstract (no experimental<br />

details are available)<br />

For as-cast, melt-spun, crystallized<br />

ribbons, aligned powders, <strong>and</strong> sintered<br />

magnets Sm xTi zFe y (3≤x≤15, 78≤y≤87,<br />

3≤z≤13), hysteresis loops are measured;<br />

the maximum anisotropy field is more<br />

than 18 kOe (14.328 kA·m –1 ).<br />

Room temperature coercive force<br />

(0.2-2.5 kOe (0.159 -1.99 kA·m –1 )) <strong>and</strong><br />

hysteresis loops determined for as-cast<br />

materials, melt-spun ribbons, aligned<br />

powders, <strong>and</strong> sintered magnets are given<br />

Magnetization curve for τ 1; c axis is the<br />

easy axis of magnetization.<br />

Room-temperature coercivity of meltspun<br />

ribbons Sm 8Ti 8Fe 84 crystallized with<br />

the formation of τ 1 is 2 kOe<br />

(1.592 kA·m –1 ).<br />

τ 1 exhibits unusual uniaxial<br />

magnetocrystalline anisotropy, c-axis is<br />

the easy magnetization direction, T C =<br />

337˚C.<br />

The τ 1 phase coercivity is 7.7 kOe<br />

(6.13 kA·m –1 ).<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1989Str] Thermomagnetic measurements For Fe-Sm-Ti compositions (with the<br />

ThMn 12 type structure) alloyed with B <strong>and</strong><br />

Si+Al, the possible coercive force is<br />

> 6.5 kOe (5.174 kA·m –1 ).<br />

[1989Zha] Faraday balance, vibrating sample<br />

magnetometer<br />

Increase in the Curie temperature <strong>and</strong><br />

anisotropy field for τ 1 by hydrogenation:<br />

T C from 311 to 354˚C <strong>and</strong> anisotropy field<br />

H A from 140 (111.44) to 170 kOe<br />

(135.32 kA·m –1 ).<br />

[1990Din] Vibriting sample magnetometer The magnetization of Sm 10Ti 8Fe 82<br />

annealed at 600-700˚C containing the<br />

metastable phase with the TbCu 7<br />

structure is 110 Am 2 ·kg –1 .<br />

[1990Jan] Thermomagnetic analysis, magnetization<br />

measurements<br />

Fe–Sm–Ti 30<br />

13<br />

Curie temperature of Sm(Ti,Fe) 7 is 200˚C;<br />

T C of τ 1 is 305˚C. τ 3 has no magnetic<br />

moment.<br />

Magnetization curves for Sm7.7Ti9.2Fe83.1<br />

are given.<br />

[1990Kat] Vibriting sample magnetometer Magnetization (vs melt-spinning<br />

parameters), hysteresis loop, coercivity (vs<br />

annealing temperature of melt-spun<br />

ribbons), remanence for Sm20Ti10Fe70 quenched from 1400˚C + annealed at<br />

800˚C for 15 min are given; iHc= 44.5 kOe<br />

(35.422 kA·m –1 ).<br />

For Sm25Ti9.4Fe65.6 annealed at 850˚C,<br />

iHc= 58 kOe (46.168 kA·m -1 ), Br = 2.4 kG.<br />

[1990Sch1] magnetic hysteresis loop measurements For Sm20Ti10Fe70 mechanically alloyed<br />

<strong>and</strong> sintered at 725˚C for 30 min, Hc =<br />

50.3 kOe (40.04 kA·m –1 ), Br = 3.0 kG,<br />

(BH) max = 2.2 MG Oe (17.5 kJ·m –3 ), TC =<br />

380˚C.<br />

For Sm10Ti10Fe80-based compositions, the<br />

effect of B, Mo, Co, V, Si, Ga additions is<br />

discussed.<br />

[1990Sch2] Vibrating-sample magnetometer Demagnetization curves <strong>and</strong> Br vs<br />

composition for SmxTi10Fe90–x (x = 16-22)<br />

mechanically alloyed (or rapidly<br />

quenched) <strong>and</strong> annealed at 800˚C for 30<br />

min (or hot pressed) are given. TC = 380˚<br />

C, Hc = 50.3 kOe (40.038 kA·m –1 ), Br = 3.0<br />

kG, Ms = 6-7 kG, (BH) max = 2.2 MG Oe (17.5<br />

kJ·m –3 ); temperature dependence of<br />

coercivity is given.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


14 30<br />

Fe–Sm–Ti<br />

. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1990Wan] Thermomagnetic analysis / vibratingsample<br />

magnetometer<br />

For Sm 8Ti 9Fe 83 ribbons annealed at 800˚<br />

C, iH c = 5.6 kOe (4.46 kA·m –1 ), M s = 806 G.<br />

V-containing compositions have the<br />

higher H c, decrease in H c for Nb-, Mo-, Wcontaining<br />

compositions, increase in Hc<br />

by Zr (small content) <strong>and</strong> Ga additions are<br />

observed; all the additions decrease M s.<br />

Preparation of sintered magnets is<br />

discussed, measured hysteresis loop<br />

shows H c = 2 kOe (1.592 kA·m –1 ).<br />

[1990Wec] Vibrating-sample magnetometer For Sm8.3Ti8.3Fe83.4 <strong>and</strong> Sm7.7Ti15.4Fe76.9<br />

crystallized ribbons, iH c = 3.4 kA·cm –1<br />

[1991Kim] Ac-susceptibility, measurements /<br />

Vibrating-sample magnetometer<br />

[1991Sta] Cathodic sputtering or mechanical<br />

alloying<br />

(0.034 kA·m –1 ).<br />

iH c = 40 (0.40) <strong>and</strong> 33 kA·cm –1 (0.33<br />

kA·m –1 ) is observed for a new phase<br />

found in Sm 20Ti 10Fe 70 mechanically<br />

alloyed (followed by solid-state reaction<br />

at 725˚C) <strong>and</strong> rapidly quenched followed<br />

by annealing at 800˚C), respectively; T C =<br />

380˚C.<br />

Improving properties (coercivity) <strong>and</strong><br />

increase in T C by Zr <strong>and</strong> Co additions;<br />

decrease in the anisotropy field, change<br />

of the anisotropy type from axial to planar<br />

are observed.<br />

Magnetization, isocoercivity lines of Fe-<br />

Sm-Ti (around τ 1) melt-spun samples are<br />

given.<br />

SmFe 9Ti 2 (τ 3) is non-magnetic or weakly<br />

magnetic.<br />

The possibility to synthesize a<br />

magnetically hard phase in Fe-Sm-Ti<br />

compositions is shown; the phase has the<br />

hexagonal Nd 5Fe 17 type structure.<br />

[1991Yan] Extracting-sample magnetometer Nitrogenation of τ1 at 500˚C for 2 h<br />

changes the c-axis plane anisotropy to<br />

basal-plane one.<br />

[1991Wec] Rapid solidification The high coercivity more than 40 kA·cm –1<br />

[1994Iva] Vibrating-sample magnetometer, acsusceptibility<br />

measurements<br />

(0.40 kA·m –1 ) can be reached for Fe-Sm-Ti<br />

compositions with the Sm 5(Ti,Fe) 17 phase<br />

(named A 2).<br />

Magnetization curves, specific<br />

magnetization vs temperature for Sm(Ti,<br />

Fe) 8.5 are given; it is highly anisotropic<br />

ferromagnet with T C = 197˚C.<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1994Wan] Vibrating-sample magnetometer,<br />

extracting-sample magnetometer<br />

[1994Yan] Pulsed magnetometer, ac-susceptibility<br />

measurements<br />

Thermomagnetic analysis for<br />

Sm 10Ti 4.5Fe 85.5 is performed.<br />

Nitrogenation increases the Curie<br />

temperature; magnetization curves,<br />

hysteresis loop, dependence of the Curie<br />

temperature of nitrides on the annealing<br />

temperature are given.<br />

Ac-susceptibility, Curie temperature,<br />

magnetization curves, coercive force,<br />

remanence, energy product for<br />

SmxTi9Fe91–x mechanical alloyed,<br />

annealed at 810-840˚C for 30 min are<br />

given.<br />

T C = 160-180˚C.<br />

At x = 26, room-temperature iH c = 69.09<br />

kOe (54.995 kA·m –1 ) (annealing at 840˚C<br />

for 50 min); the high coercivity is due to<br />

the Sm 5(Ti,Fe) 17 phase.<br />

At x = 15, 4πM r =2.98 kG, (BH) max = 2.228<br />

MG Oe (17.735 kJ·m –3 ).<br />

[1995Cad] review, no experimental details given A SmFe 5 phase stabilized by Ti has iH c =<br />

6.2 kOe (4.935 kA·m –1 ), (BH) max = 5.4 MG<br />

Oe (42.984 kJ·m –3 ), T C = 400˚C.<br />

Crystal phase connections <strong>and</strong><br />

transformations between 2:17, 1:12, 1:7<br />

structures that are derivatives from the<br />

CaCu5 structure, magnetization <strong>and</strong><br />

anisotropy consideration are discussed.<br />

[1995Iva] Ac-susceptibility measurements /<br />

vibrating sample magnetometer<br />

[1995Xia] Pulsed magnetometer, ac-susceptibility<br />

measurements<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sm–Ti 30<br />

15<br />

Room temperature magnetization curves<br />

for Sm(Ti0.065Fe0.935)8.5 <strong>and</strong> Sm2(Ti,Fe)17<br />

are given.<br />

For τ 1 ribbons melt-spun <strong>and</strong> annealed,<br />

ac-susceptibility vs temperature <strong>and</strong><br />

coercivity vs annealing temperature are<br />

given.<br />

The coercivity iH c = 5.8 kOe (4.62 kA·m –1 )<br />

is reached for ribbons quenched at 30 m/<br />

s + annealed at 820˚C.<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


16 30<br />

Fe–Sm–Ti<br />

. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1995Yan1] Thermomagnetic analysis / vibratingsample<br />

magnetometer<br />

[1995Yan2] Magnetically aligned powder,<br />

thermomagnetic analysis / extracting<br />

sample magnetometer, SQUID, high-field<br />

installation<br />

Curie temperature, hysteresis loops,<br />

coercive force, remanence, energy<br />

product are given for SmTi xFe 7+x (x = 0.2-<br />

2) (repeated induction melting, melt<br />

spinning, annealing at 650-750˚C):<br />

at x = 1.5, iH c = 5 kOe (3.98 kA·m –1 ),<br />

(BH) max = 3.4 MG Oe (27.064 kJ·m –3 );<br />

at x = 0.4-1.0, Br = 6-8 kG; at x = 0.8,<br />

(BH) max = 4.0 MG Oe (31.84 kJ·m –3 ); at<br />

x = 1.0, T C = 304˚C.<br />

Curie temperature, magnetization,<br />

saturation magnetization, anisotropy field<br />

are given for Sm 3(Fe 0.933Ti 0.067) 29:<br />

T C = 213˚C, M s = 119 Am 2 ·kg –1 , uniaxial<br />

anisotropy, H a = 3.4 T, first-order<br />

magnetization process (FOMP).<br />

Nitrogenation to 5.0 N per formula unit<br />

(powder 15 μm size) at N 2 pressure 1 atm,<br />

500-600˚C for 2 h results in increase in<br />

both the Curie temperature to 477˚C, M s<br />

= 140 Am 2 ·kg –1 , uniaxial anisotropy Ha =<br />

12.8 T; μ 0iH c = 0.83 T, (BH) max = 105 kJ·m –3<br />

at 293 K<br />

[1996Has] Magnetization measurements Saturation magnetization, Curie<br />

temperature (no values are available) for<br />

Sm xTi yFe 100–x–y (x = 6.9-1.17 <strong>and</strong> y = 0-9.7)<br />

for R 2Ti,Fe) 17+δ (δ = 1.0-4.0)<br />

nonstoichiometric compound are given.<br />

[1996Kim] Thermomagnetic analysis / vibratingsample<br />

magnetometer, SQUID, /<br />

computer calculations<br />

For τ 1, magnetization vs temperature,<br />

anisotropy constants K 1 = 9.2 MJ·m –3 ,K 2 =<br />

0.40 MJ·m –3 , anisotropy field μ 0H A = 19.8<br />

T, T C = 314˚C, c-axis magnetization<br />

direction are given. Substitution of other<br />

rare-earth metals for Sm decreases<br />

substantially the anisotropy field.<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1996Koy] Thermomagnetic analysis / vibratingsample<br />

magnetometer<br />

[1997Yan] Pulsed magnetometer, ac-susceptibility<br />

measurements<br />

[1998Isn] Thermomagnetic analysis / High Field<br />

Magnet Facility<br />

[1998Pao] Thermomagnetic analysis / Singular point<br />

detection technique<br />

[1998Ter] Thermomagnetic analysis / vibratingsample<br />

magnetometer, torque<br />

magnetometer<br />

[1999Hu] Thermomagnetic analysis / vibratingsample<br />

magnetometer, extractingsample<br />

magnetometer<br />

Fe–Sm–Ti 30<br />

For Sm 3(Fe 0.94Ti 0.06) 29, magnetization<br />

(FOMP), anisotropy field, Curie<br />

temperature are M s = 98.3-103 Am 2 ·kg –1 ,<br />

μ 0H A =4T,T C = 212˚C.<br />

Schematic diagram of the formation of τ 2<br />

structure from CaCu 5 structure is given.<br />

The use of hydrogenation (cooling to<br />

room temperature in hydrogen<br />

atmosphere after heating to 500˚C) <strong>and</strong><br />

nitrogenation (at 475-500˚C for 10-24 h at<br />

0.1-1 MPa) results in the increase in the<br />

lattice parameters, T C.<br />

For Sm 26Ti yFe 74–y, with y =0,1,3,17,<br />

temperature dependences of acsusceptibility,<br />

demagnetization curves<br />

are given.<br />

17<br />

For τ 1, Curie temperature magnetization<br />

curves are given: M s = 17.5 μ B/f.u,<br />

anisotropy constants K 1 = 3.9 MJ·m –3 ,<br />

K 2 = 0.1 MJ·m –3 ; hydrogenation to about<br />

1 H per f.u., (initial thermal activation <strong>and</strong><br />

20 bar H 2 pressure) results in the increase<br />

in the lattice parameters, Curie<br />

temperature, saturation magnetization.<br />

For Sm 2Ti xFe 17–x (x = 0-0.85), Curie<br />

temperature increases with increasing Ti<br />

content, anisotropy constant <strong>and</strong><br />

anisotropy field decrease; compositional<br />

dependence of lattice parameters on Ti<br />

content is shown.<br />

Compositional dependences of the Curie<br />

temperature, saturation magnetization,<br />

<strong>and</strong> anisotropy constants are given.<br />

Effect of Co substitution for Fe on the<br />

parameters is discussed.<br />

Compositions Sm10Fe85.5Ti4.5 <strong>and</strong><br />

Sm 10Fe 84Ti 6 (with TbCu 7 type structure)<br />

are discussed.<br />

Nitrogenation (at 450˚C for 2 h) increases<br />

the lattice parameters, Curie temperature<br />

<strong>and</strong> saturation magnetization.<br />

[1999Shi] X-ray diffraction, DTA, TEM Compositions Sm-Fe-Ti-C <strong>and</strong> effect of C<br />

<strong>and</strong> Ti on the glassy stability are<br />

discussed.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


18 30<br />

Fe–Sm–Ti<br />

. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[2000Pao] Thermomagnetic analysis / Singular point<br />

detection technique<br />

[2000Shc] Extraction magnetometer, SQUID,<br />

ac-susceptibility measurements<br />

For Sm 2Ti xFe 17–x (x = 0, 0.4, 0.75)<br />

anisotropy constant, anisotropy field (that<br />

decreases with increasing x) are given, the<br />

Sm contribution to the anisotropy is<br />

analyzed.<br />

For Sm 2(Ti xFe 1–x) 17 (x = 0.02, 0.03, 0.04),<br />

magnetization curves <strong>and</strong> ac<br />

susceptibility vs temperature for samples<br />

with different (Th 2Zn 17 <strong>and</strong> Th 2Ni 17)<br />

structures, Curie temperature,<br />

magnetization curves, anisotropy<br />

constants; increase in T C up to x = 0.04 are<br />

discussed. The type of structure affects<br />

the magnetic properties. For both<br />

structure types, the easy magnetization<br />

direction lies in the basal plane.<br />

Nitrogenation (at 450-500˚C for 4-12 h)<br />

allows one to obtain highly anisotropic<br />

uniaxial ferromagnets.<br />

[2004Zha] Ac-susceptibility / pulsed magnetometer For Sm 2(Ti xFe 1–x) 17 (x = 0.0, 0.02, 0.04,<br />

0.06, 0.08, 0.1), the Curie temperature,<br />

temperature dependence of acsusceptibility<br />

is given:<br />

x =0,TC = 125˚C; x = 0.02, TC = 139˚C; x =<br />

0.04, T C = 174˚C; x = 0.06, τ 2, T C = 210˚C; x<br />

= 0.08 <strong>and</strong> 0.1, τ 1, T C = 314˚C.<br />

Hydrogenation at 300˚C <strong>and</strong> 800˚C, 1 atm<br />

for 1 h <strong>and</strong> nitrogenation at 500˚C for 3h,<br />

1 atm increase the Curie temperature. iH c,<br />

B r, (BH) max of hydrides <strong>and</strong> nitrides,<br />

hysteresis loops of nitrides are given.<br />

[2001Che]<br />

[2001Wan]<br />

Theoretical estimation Stabilization of the τ 1 compound<br />

structure by different transition metals<br />

(T = Ti, V, Cr, Co, Sc, Mn); calculated lattice<br />

parameters are given.<br />

[2001Nik] Pendulum <strong>and</strong> torque magnetometer For τ 1, T C = 325˚C, σ s = 18.5 μ 0/f.u.,<br />

H A = 102 kOe (81.192 kA·m –1 ).<br />

Transformation of the magnetic structure<br />

of τ 1 upon hydrogenation <strong>and</strong><br />

nitrogenation is discussed.<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[2002Sko] Extraction magnetometer, a pulsed field<br />

facility<br />

Fe–Sm–Ti 30<br />

Anisotropy constants of τ 1 <strong>and</strong> effect of<br />

hydrogenation on the constants are<br />

discussed.<br />

19<br />

[2006Sun] Vibrating sample magnetometer For Sm 2Fe 16Ti 1, hydrogenation at 800˚C<br />

for 2 h at 0.12 MPa <strong>and</strong> nitrogenation at<br />

500˚C for different time at 0.13 MPa,<br />

effect of the lattice parameters, coercivity,<br />

magnetization, remanence.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


20 30<br />

Fe–Sm–Ti<br />

. Fig. 1<br />

Fe-Sm-Ti. The Sm-Ti binary phase diagram<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-Sm-Ti. Reaction scheme<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sm–Ti 30<br />

21<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


22 30<br />

Fe–Sm–Ti<br />

. Fig. 3<br />

Fe-Sm-Ti. Partial liquidus surface projection<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-Sm-Ti. Isothermal section at 1000˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sm–Ti 30<br />

23<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


24 30<br />

Fe–Sm–Ti<br />

. Fig. 5<br />

Fe-Sm-Ti. Isothermal section at 800˚C<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 6<br />

Fe-Sm-Ti. Isothermal section at 600˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sm–Ti 30<br />

25<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


26 30<br />

Fe–Sm–Ti<br />

References<br />

[1982Kub] Kubaschewski, O., Iron Binary <strong>Phase</strong> <strong>Diagrams</strong>, Springer Verlag, Berlin, Verlag Stahleisen, Düsseldorf,<br />

152–156 (1982) (<strong>Phase</strong> Diagram, Review, 26)<br />

[1987Had] Hadjipanayis, G.C., Aly, S.H., Cheng, S.-F., “Hard Magnetic Properties of R-Fe-Ti”, Appl. Phys. Lett., 51<br />

(24), 2048–2050 (1987) (Crys. Structure, Magn. Prop., Experimental, 7)<br />

[1987Mur] Murray, J.L., “The Fe-Ti (Iron-Titanium) System”, <strong>Phase</strong> <strong>Diagrams</strong> of Binary Titanium <strong>Alloy</strong>s, ASM<br />

Inter., Metal Park, Ohio, Murray, J.L. (Ed.), 99–111 (1987) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Thermodyn., 112)<br />

[1988Oha] Ohashi, K., Tawara, Y., Osugi, R., “Identification of the Intermetallic Compound Consisting of Sm, Ti,<br />

Fe”, J. Less-Comm. Met., 139, L1–L5 (1988) (Crys. Structure, Magn. Prop., Experimental, 2)<br />

[1988Sin] Singleton, E.W., Strzeszewski, J., Hadjipanayis, G.C., “Magnetic <strong>and</strong> Structural Properties of Melt-Spun<br />

Rare-Earth Transition-Metal Intermetallics with ThMn 12 Structure”, J. Appl. Phys., 64(10), 5717–5719<br />

(Crys. Structure, Magn. Prop., Experimental, 9)<br />

[1988Yan] Yang, Y.-C., Kong, L.-S., Cheng, B.-P., “Structural <strong>and</strong> Magnetic Properties of Sm(Ti,Fe) 12 Intermetallic<br />

Compounds”, Acta Phys. Sin., 37(9), 1534–1539 (1988) (Crys. Structure, Magn. Prop., Experimental, 5)<br />

cited from abstract<br />

[1989Had] Hadjipanayis, G.S., “A Search for New <strong>Phase</strong>s <strong>and</strong> Processing Techniques for Permanent Magnet<br />

Development”, Mater. Sci. Eng. B, B3(4), 431–434 (1989) (Magn. Prop., Experimental, 19) cited from<br />

abstract<br />

[1989Str] Strzeszewski, J., Wang, Y.Z., Singleton, E.W., Hadjipanayis, G.C., “High Coercivity in Sm(FeT) 12 Type<br />

Magnets”, IEEE Trans. Magn., 25(5), 3309–3311 (1989) (Crys. Structure, Magn. Prop., Experimental, 10)<br />

cited from abstract<br />

[1989Zha] Zhang, L.Y., Wallace, W.E., “Structural <strong>and</strong> Magnetic Properties of RTiFe 11 <strong>and</strong> their Hydrides (R = Y,<br />

Sm)”, J. Less-Comm. Met., 149, 371–376 (1989) (Crys. Structure, Magn. Prop., Experimental, 16)<br />

[1990Coc] Cochet-Muchy, D., Paidassi, “Rapidly Quenched Hard Magnetic <strong>Alloy</strong>s with ThMn 12 Structure”, J.<br />

Magn. Magn. Mater., 83, 249–250 (1990) (Crys. Structure, Magn. Prop., Experimental, 7)<br />

[1990Din] Ding, J., Rosenberg, M., “<strong>Phase</strong> Analysis By X-ray <strong>and</strong> Moessbauer Spectroscopy of Melt-Spun <strong>and</strong><br />

Subsequently Annealed Sm-(Fe, Co or Ni)-Ti”, J. Less-Comm. Met., 166, 303–311 (1990) (Crys.<br />

Structure, Experimental, 13)<br />

[1990Jan] Jang, T.S., Stadelmaier, H.H., “<strong>Phase</strong> Equilibria <strong>and</strong> Magnetic Properties of Iron-Rich Fe-Nd-Ti <strong>and</strong> Fe-<br />

Sm-Ti <strong>Alloy</strong>s”, J. Appl. Phys., 67(9), 4957–4959 (1990) (Crys. Structure, <strong>Phase</strong> Relations, <strong>Phase</strong> Diagram,<br />

Magn., Prop., Experimental, *, 15)<br />

[1990Kat] Katter, M., Wecker, J., Schultz, L., Groessinger, R., “Preparation of Highly Coercive Sm-Fe-Ti by Rapid<br />

Quenching”, Appl. Phys. Lett., 56(14), 1377–1379 (1990) (Crys. Structure, <strong>Phase</strong> Relations, Magn. Prop.,<br />

Experimental, *, 7)<br />

[1990Sch1] Schultz, L., Schnitzke, K., Wecker, J., “Magnetic Hardering of Sm-Fe-Mo, Sm-Fe-V <strong>and</strong> Sm-Fe-Ti<br />

Magnets”, J. Magn. Magn. Mater., 83, 254–256 (1990) (Magn. Prop., Experimental, 10)<br />

[1990Sch2] Schnitzke, K., Schultz, L., Wecker, J., Katter, M., “Sm-Fe-Ti Magnets with Room-Temperature<br />

Coercivities above 50 kOe”, Appl. Phys. Lett., 56(6), 587–589 (1990) (Magn. Prop., Experimental, 16)<br />

[1990Wan] Wang, Y., Hadjipanayis, G.C., Kim, A., Liu, N.C., Sellmyer, D.J., “Magnetic <strong>and</strong> Structural Studies in<br />

Sm-Fe-Ti Magnets”, J. Appl. Phys., 67(9), 4954–4956 (1990) (Crys. Structure, Magn. Prop., Experimental,<br />

9)<br />

[1990Wec] Wecker, J., Katter, K., Schnitzke, K., Schultz, L., “Magnetic Hardening of Sm-Fe-Ti <strong>Alloy</strong>s”, J. Appl.<br />

Phys., 67(9), 4951–4953 (1990) (Magn., Prop., Experimental, 15)<br />

[1991Cad] Cadieu, F.J., Hegde, H., Navarathna, A., Rani, R., Chen, K., “High-Energy Product ThMn 12 Sm-Fe-T<br />

<strong>and</strong> Sm-Fe Permanent Magnets Synthesized as Oriented Sputtered Films”, Appl. Phys. Lett., 59(7),<br />

875–877 (1991) (Crys. Structure, Magn. Prop., Experimental, 14)<br />

[1991Kim] Kim, Y.B., Sugimoto, S., Okada, M., Homma, M., “<strong>Phase</strong> Relations of the Sm-Fe-Ti System Around the<br />

Compound SmFe 11Ti”, J. <strong>Alloy</strong>s Compd., 176(2), 215–224 (1991) (Crys. Structure, <strong>Phase</strong> Relations,<br />

<strong>Phase</strong> Diagram, Magn. Prop., Experimental, #, *, 12)<br />

[1991Nei] Neiva, A.C., Messell, F.P., Grieb, B., Henig, E.-Th., Petzow, G., “<strong>Phase</strong> Equilibria Around SmFe 11Ti<br />

at 1000˚C”, J. Less-Common Met., 170(2), 293–299 (1991) (Assessment, Crys. Structure, <strong>Phase</strong> Diagram,<br />

#, *, 23)<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Sm–Ti 30<br />

27<br />

[1991Qia] Qian, X.R., Chen, M.X., Chen, L., Jin, H.J., Chen, L.J., Xu, G.Q., “Moessbauer Study of Melt-Spun<br />

Sm 20Fe 70Ti 10 <strong>Alloy</strong>”, Hyperfine Interactions, 69, 585–588 (1991) (Crys. Structure, Experimental, 6)<br />

[1991Rei] Reinsch, B., (in German), Constitution of the Fe-Sm-Ti System, Diploma, Uni. Stuttgart, 86 pp. (1991)<br />

(Crys. Structure, Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 43)<br />

[1991Sta] Stadelmaier, H.H., Schneider, G., Henig, E.-T., Ellner, M., “Magnetic Fe 17R 5 in the Fe-Nd <strong>and</strong> Fe(-Ti)-<br />

Sm <strong>Systems</strong>, <strong>and</strong> Other <strong>Phase</strong>s in Fe-Nd”, Mater. Lett., 10(7-8), 303–309 (1991) (Crys. Structure,<br />

Experimental, 30) cited from abstract<br />

[1991Wec] Wecker, J., Katter, M., Schultz, L., “High Coercivity in Sm-Fe-Ti <strong>Alloy</strong>s by Rapid Solidification”, Mater.<br />

Sci. Eng. A, A133, 147–150 (1991) (Magn. Prop., Experimental, 17) cited from abstract<br />

[1991Yan] Yang, Y.-C., Zhang, X.-D., Kong, L.S., Pan, Q., Ge, S.-L., “Magnetocrystalline Anisotropy of RTiFe 11N x<br />

Compounds”, Appl. Phys. Lett., 58(18), 2042–2044 (1991) (Crys. Structure, Magn. Prop., Experimental,<br />

4)<br />

[1992Rei] Reinsch, B., Grieb, B., Henig, E.-T., Petzow, G., “<strong>Phase</strong> Relations in the System Sm-Fe-Ti <strong>and</strong> the<br />

Consequences for the Production of Permanent Magnets”, IEEE Trans. Magn., 28(5), 2832–2834 (1992)<br />

(<strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, Experimental, *, 13)<br />

[1994Iva] Ivanova, G.V., Makarova, G.M., Sherbakova, E.V., Belozerov, E.V., Ermolenko, A.S., “Structure <strong>and</strong><br />

Magnetic Properties of a Novel <strong>Ternary</strong> Compound Sm(Fe, Ti) 8.5”, Phys. Met. Metallogr., 78(2), 162–166<br />

(1994), translated from Fiz. Met. Metalloved., 78(2), 60–65 (1994) (Crys. Structure, Magn. Prop.,<br />

Experimental, *, 5)<br />

[1994Wan] Wang, K.-Y., Wang, Y.-Z., Hu, B.-P., Lai, W.-Y., “Magnetic Properties of Sm-Fe-Ti <strong>and</strong> its Nitrides with<br />

TbCu 7 Structure”, Physica B, 203, 54–58, (1994) (Crys. Structure, Magn. Prop., Experimental, 14)<br />

[1994Yan] Yang, J., Wang, Q., Sun, X.-K., Zeng, G., Chen, M., Liu, W., Zhao, X., Zhao, T., Zhang, Z., “The<br />

Structure <strong>and</strong> Magnetic Hardening in Mechanically <strong>Alloy</strong>ed Sm-Fe-Ti <strong>Systems</strong>”, J. Magn. Magn. Mater.,<br />

132, 197–206 (1994) (Crys. Structure, Magn. Prop., Experimental, 14)<br />

[1995Cad] Cadieu, F.J., “Recent Advances in Pseudobinary Iron Based Permanent Magnets”, Int. Mater. Rev., 40(4),<br />

137–148 (1995) (Crys. Structure, Magn. Prop., Review, 52)<br />

[1995Iva] Ivanova, G.V., Makarova, G.M., Sherbakova, E.V., Belozerov, E.V., “The Formation of Z-<strong>Phase</strong> Sm(Fe,<br />

Ti) 8.5”, J. <strong>Alloy</strong>s Compd., 224, 29–32 (1995) (Crys. Structure, Magn. Prop., Experimental, *, 10)<br />

[1995Xia] Xiao, Q.-F., Sun, X.-K., Geng, D.-Y., Liu, W., Zhang, Z.-D., Chuang, Y.-C., “Structure <strong>and</strong> Magnetic<br />

Properties of Rapidly Quenched Sm-Fe-Ti <strong>Alloy</strong>s”, J. Magn. Magn. Mater., 140–144, 1093–1094 (1995)<br />

(Crys. Structure, Magn. Prop., Experimental, 6)<br />

[1995Yan1] Yang, C.J., Park, E.B., Choi, S.D., “Magnetic Hardening of Rapidly Solidified SmFe 7+xM x (0.8≤x≤1.5,<br />

M = Mo, V, Ti) Compounds”, Mater. Lett., 24, 347–354 (1995) (Crys. Structure, Magn. Prop., Experimental,<br />

15)<br />

[1995Yan2] Yang, F., Nasunjilegal, B., Wang, J., Zhu, J., Qin, W., Tang, N., Zhao, R., Hu, B., Wang, Y., Li, H.,<br />

“Formation <strong>and</strong> Magnetic Properties of Sm 3(Fe, Ti) 29N y Compounds”, J. Phys.: Condens. Matter, 7,<br />

1679–1688 (1995) (Crys. Structure, Magn. Prop., Experimental, 21)<br />

[1996Has] Hasebe, A., Otsuki, E., “Crystal Structure <strong>and</strong> Magnetic Properties of R 2(Fe, M) 17+δ”, Mater. Trans., JIM,<br />

37(4), 870–877 (1996) (Crys. Structure, <strong>Phase</strong> Relations, Experimental, 12)<br />

[1996Kap] Kapusta, C., Figiel, H., Lord, J.S., Tomka, G.J., Riedi, P.C., Buschow, K.H.J., Kou, X.C., Wiesinger, G.,<br />

“NMR Study of SmTM 12–xM x (TM = Fe, Co, M = Ti, Mo)”, J. Magn. Magn. Mater., 157/158, 109–110<br />

(1996) (Crys. Structure, Experimental, 7)<br />

[1996Kim] Kim, H.T., Kim, Y.B., Kim, C.S., Kim, T.K., Jin, H., “Magnetocrystalline Anisotropy of (Sm 0.5Re 0.5)<br />

Fe 11Ti Compounds (Re = Ce, Pr, Nd, Sm, Gd, <strong>and</strong> Tb”, J. Magn. Magn. Mater., 152, 387–390 (1996)<br />

(Crys. Structure, Magn. Prop., Experimental, 7)<br />

[1996Koy] Koyama, K., Fujii, H., Suzuki, S., “Magnetic Properties of Interstitially Modified Compounds Sm 3(Fe,<br />

M) 29Z x (M = Ti, V, Cr, <strong>and</strong> Z = H or N)”, J. Magn. Magn. Mater., 161, 118–126 (1996) (Crys. Structure,<br />

Magn. Prop., Experimental, 38)<br />

[1997Liu] Liu, Z, Jin, Z., “Determination of <strong>Phase</strong> Equilibria in the Sm-Fe-Ti System at 600˚C”, Z. Metallkd., 88<br />

(2), 174–177 (1997) (<strong>Phase</strong> Relations, Diagram, Crys. Structure, Experimental, Review, #, *, 9)<br />

[1997Yan] Yang, J., Wang, Q., Sun, X., “The Structures <strong>and</strong> Magnetic Properties of Mechanically <strong>Alloy</strong>ed Sm-Fe-T<br />

(T = Ti, Ti+V, V) <strong>Systems</strong>”, J. Magn. Magn. Mater., 166, 216–222 (1997) (Crys. Structure, Magn. Prop.,<br />

Experimental, 11)<br />

[1998Isn] Isnard, O., Miraglia, S., Guillot, M., Fruchart, D., “Hydrogen Effects on the Magnetic Properties of<br />

RFe 11Ti Compounds”, J. <strong>Alloy</strong>s Compd., 275–277, 637–641 (1998) (Crys. Structure, Magn. Prop.,<br />

Experimental, 15)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_30<br />

ß Springer 2009


28 30<br />

Fe–Sm–Ti<br />

[1998Pao] Paoluzi, A., Pareti, L., “Magnetocrystalline Anisotropy of Fe <strong>and</strong> Sm Sublattices in Sm 2Fe 17: Effects of Ti<br />

Substitution for Fe”, J. Magn. Magn. Mater., 189, 89–95 (1998) (Crys. Structure, Magn. Prop., Experimental,<br />

27)<br />

[1998Ter] Tereshina, I.S., Nikitin, S.A., Ivanova, T.I., Skokov, K.P., “Rare-Earth <strong>and</strong> Transition Metal Sublattice<br />

Contribution to Magnetization <strong>and</strong> Magnetic Anisotropy of R(TM, Ti) 12 Single Crystals”, J. <strong>Alloy</strong>s<br />

Compd., 275–277, 625–628 (1998) (Crys. Structure, Magn. Prop., Experimental, 14)<br />

[1999Hu] Hu, J., Wang, K., Wang, Y., Hu, B., Wang, Z., “Volume Expansion <strong>and</strong> Curie Temperature Enhancement<br />

in Rare-Iron Based Nitrides with TbCu 7 Structure”, J. <strong>Alloy</strong>s Compd., 292, 233–235 (1999) (Crys.<br />

Structure, Magn. Prop., Experimental, 9)<br />

[1999Shi] Shield, J.E., “<strong>Phase</strong> Formation <strong>and</strong> Crystallization Behavior of Melt Spun Sm-Fe-Based <strong>Alloy</strong>s”, J. <strong>Alloy</strong>s<br />

Compd., 291, 222–228 (1999) (Crys. Structure, Thermodyn., Experimental, 7)<br />

[2000Iva] Ivanova, G.V., Makarova, G.M., Sherbakova, E.V., Teitel, E.I., “Mechanism of the Y 2(Fe, V) 17 → EY 3(Fe,<br />

V) 29 <strong>Phase</strong> Transformation”, Phys. Met. Metallogr., 89(5), 501–507 (2000), translated from Fiz. Met.<br />

Metalloved., 89(5), 82–87 (2000) (Crys. Structure, Magn. Prop., <strong>Phase</strong> Relations, Experimental, *, 14)<br />

[2000Pao] Paoluzi, A., Albertini, F., Pareti, L., “Comparison Among the Second-Order Anisotropy Constants of<br />

RE (Pr, Nd, Sm) <strong>and</strong> Fe Sublattices in the RE 2Fe 17 Rhombohedral Structure. Effects of Ti Substitution<br />

for Fe”, J. Magn. Magn. Mater., 212, 183–188 (2000) (Calculation, Magn. Prop., Experimental, 12)<br />

[2000Rag] Raghavan, V., “Fe-Sm-Ti (Iron-Samarium-Titanium)”, J. <strong>Phase</strong> Equilib., 21(5), 464–466 (2000) (Crys.<br />

Structure, <strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, Review, #, *, 15)<br />

[2000Shc] Shcherbakova, Ye.V., Ivanova, G.V., Mushnikov, N.V., Gervasieva, I.V., “Magnetic Properties of Sm 2(Fe,<br />

Ti) 17 Compounds <strong>and</strong> their Nitrides with Th 2Zn 17 <strong>and</strong> Th 2Ni 17 Structures”, J. <strong>Alloy</strong>s Compd., 308, 15–20<br />

(2000) (Crys. Structure, Magn. Prop., Experimental, 16)<br />

[2001Che] Chen, N.-X., Hao, S.-Q., Wu, Y., Shen, J., “<strong>Phase</strong> Stability <strong>and</strong> Site Preference of Sm(Fe,T) 12”, J. Magn.<br />

Magn. Mater., 233, 169–180 (2001) (Calculation, Crys. Structure, Magn. Prop., Experimental, 19)<br />

[2001Nik] Nikitin, S.A., Tereshina, I.S., Verbetsky, V.N., Salamova, A.A., “Transformations of Magnetic <strong>Phase</strong><br />

Diagram as a Result of Insertion of Hydrogen <strong>and</strong> Nitrogen Atoms in Crystalline Lattice of RFe 11Ti<br />

Compounds”, J. <strong>Alloy</strong>s Compd., 316, 46–50 (2001) (Crys. Structure, Magn. Prop., Experimental, 14)<br />

[2001Wan] Wang, Y., Shen, J., Chen, N.X., Wang, J.L., “Theoretical Investigation on Site Preference of Foreign<br />

Atoms in Rare-Earth Intermetallics”, J. <strong>Alloy</strong>s Compd., 319, 62–73 (2001) (Crys. Structure, Magn. Prop.,<br />

Calculation, Theory, 33)<br />

[2002Sko] Skourski, Y., Tereshina, I., Wirth, S., Drulis, H., Mattern, N., Eckert, D., Nikitin, S., Mueller, K.-H.,<br />

“Magnetocrystalline Anisotropy of SmFe 11–xCo xTiH y”, IEEE Trans. Magn., 38(5), 2931–2933 (2002)<br />

(Crys. Structure, Magn. Prop., Experimental, 8)<br />

[2004Zha] Zhao, X., Zhang, Z., Sun, X.K., Liu, W., Guo, Z., Xiao, Q., Geng, D., “Structural <strong>and</strong> Magnetic<br />

Properties of Sm 2(Fe 1–xTi x) 17 (x = 0-0.1) <strong>Alloy</strong>s Prepared by Hydrogenation Processes <strong>and</strong> Their<br />

Nitrides”, J. Magn. Magn. Mater., 208, 231–238 (2004) (Crys. Structure, Magn. Prop., Experimental, 17)<br />

[2006Sun] Sun, J.B., Cui, C.-X., Zhang, Y., Wang, R., Li, L., Yang, W., Liu, Y.-L., “Structural <strong>and</strong> Nitrogenation of<br />

Sm 2Fe 16Ti 1 <strong>Alloy</strong> Prepared by HDDR Process”, Mater. Chem. Phys., 97, 116–120 (2006) (Crys. Structure,<br />

Magn. Prop., Experimental, 19)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

DOI: 10.1007/978-3-540-70890-2_30 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Iron – Tin – Zirconium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Shuhong Liu, Yong Du, Honghui Xu, Baiyun Huang<br />

Introduction<br />

Fe–Sn–Zr 31<br />

1<br />

The ternary system Fe-Sn-Zr system was investigated by [1960Tan, 1968Kud, 1990Kor,<br />

2000Nie, 2001Nie, 2006Nie]. Literature data up to 1990 were reviewed by [1992Rag]. The<br />

phase relations in the Zr rich corner up to βZrFe 2 <strong>and</strong> Zr 4Sn have been determined by<br />

[1960Tan] using X-ray diffraction (XRD) <strong>and</strong> metallography in the temperature range between<br />

700 <strong>and</strong> 1100˚C. The alloys were prepared from high purity materials by nonconsumable<br />

electrode arc melting techniques under an inert atmosphere. Heat treatments were carried<br />

out in Vycor bulbs either evacuated or under a partial pressure of argon. A ternary phase θ<br />

with the composition range of Zr-(11.6-13.1) Fe-19.1Sn (in at.%) was found by [1960Tan].<br />

Subsequently, the investigators [1990Kwo2, 1999Zav, 2007Cos] determined its crystal structure.<br />

They verified that θ is a Zr 6Al 2Co type compound of hexagonal structure, with a very<br />

narrow homogeneity range <strong>and</strong> a formula of Zr 6Sn 2Fe. [1968Kud] analyzed the Zr rich region<br />

of the Fe-Sn-Zr system through microstructure studies <strong>and</strong> measurements of hardness <strong>and</strong><br />

microhardness. Nevertheless, [1968Kud] did not report the presence of the θ phase. By means<br />

of XRD, electron microscope <strong>and</strong> the X-ray phase microanalyzer of the “Cameca” system,<br />

[1990Kor] gave a phase diagram for the ternary system in the concentration region of<br />

Zr-βZrFe2-Zr5Sn3 <strong>and</strong> the temperature range from 500 to 1600˚C. The investigation by<br />

[1990Kor] confirmed the existence of the ternary compound θ reported by [1960Tan]. As<br />

many as 15 alloys were melted by [1990Kor] from zirconium iodide (erroneously given as<br />

9.6%), high purity tin (99.9 mass%) <strong>and</strong> Armco iron in an arc furnace under an argon<br />

atmosphere using an inconsumable tungsten electrode, with preliminary melting of Zr as a<br />

getter. Subsequently, a critical review for the Fe-Sn-Zr system was performed by [1992Rag],<br />

who mainly evaluated the works of [1960Tan], [1968Kud], <strong>and</strong> [1990Kor]. [1992Rag] presented<br />

two ‘tentative’ isothermal sections (700 <strong>and</strong> 1100˚C) based on the reaction scheme from<br />

[1990Kor], with no details of the Zr rich region. [2000Nie, 2001Nie] analyzed the region of the<br />

phase diagram located near the composition of a master alloy of Zircaloy-4 [1990Ale,<br />

2007Ahm], <strong>and</strong> found two new ternary compounds (N phase <strong>and</strong> X phase) in the central<br />

region of the Fe-Sn-Zr Gibbs triangle. [2006Nie] investigated the reported phases <strong>and</strong> their<br />

equilibrium relationships at 800 <strong>and</strong> 900˚C in an extended area of the Gibbs triangle, by<br />

different complementary techniques: quantitative analysis with electron-probe microanalysis<br />

(EPMA), qualitative analysis with electron scanning microscopy <strong>and</strong> X-ray energy dispersive<br />

spectrometry (EDS), XRD <strong>and</strong> metallographic examination. The starting materials used for<br />

the preparation of the alloys were: Zr (99.9%-600 ppm wt. Fe-200 ppm wt. O), Sn (99.999<br />

mass%) <strong>and</strong> Fe (99.95 mass%). [2006Nie] confirmed the existence of the formerly reported θ-,<br />

N- <strong>and</strong> X phases, <strong>and</strong> suggested that the θ- <strong>and</strong> X phases have extended single phase regions.<br />

The Zr 4Sn <strong>and</strong> Zr 5Sn 3 phases show low solubility of Fe, <strong>and</strong> the Zr 2Fe <strong>and</strong> Zr 3Fe phases show<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_31<br />

ß Springer 2009


2 31<br />

Fe–Sn–Zr<br />

low solubility of Sn. A very ‘sluggish’ behavior in the nucleation <strong>and</strong> growth processes of Zr 4Sn<br />

was verified. Information on phase relations, structures <strong>and</strong> thermodynamics is summarized<br />

in Table 1.<br />

Binary <strong>Systems</strong><br />

The Fe-Sn phase diagram is accepted from [1996Kum]. The Fe-Zr phase diagram is taken from<br />

[2002Ste], who experimentally redetermined the Fe-Zr phase diagram over the whole composition<br />

range. The Sn-Zr phase diagram in Fig. 1 is accepted from [1990Kwo1], who constructed<br />

the phase diagram from their own experimental investigations of the Zr 5Sn 3-Zr 5Sn 4<br />

region <strong>and</strong> for the other regions used evaluated diagram of [1983Abr].<br />

Solid <strong>Phase</strong>s<br />

Table 2 summarizes the crystal structure data for all phases in the ternary Fe-Sn-Zr system.<br />

A ternary compound θ was first identified by [1960Tan]. [1990Kwo2, 1999Zav, 2007Cos]<br />

investigated the crystal structure of the θ compound by XRD. [1990Kor, 2006Nie] confirmed<br />

the existence of the θ compound <strong>and</strong> suggested that the θ phase has an extended homogeneity<br />

region. Another compound with the same structure as the θ phase was reported by [1998Mel]<br />

as Zr6Fe1.5+xSn1.5–x.[2000Nie, 2001Nie] observed two more ternary compounds: N phase <strong>and</strong><br />

X phase at 800˚C <strong>and</strong> 900˚C by scanning electron microscopy observation (SEM), XRD <strong>and</strong><br />

EPMA. [2000Nie] found that the composition of the N phase at 800˚C was: 35.5±0.3 Fe - 36.6<br />

±0.6 Sn - 27.9±0.4 Zr (at.%). At 900˚C, the resulting composition of the compound N was<br />

practically the same. The XRD results by [2006Nie] indicated that some of the peaks that<br />

would correspond to the N phase are located in 2θ equal to 42.3˚, 43.3˚, 44.8˚, 45.8˚, 46.4˚,<br />

47.8˚ <strong>and</strong> 48.7˚. On the other h<strong>and</strong>, the main peaks that would correspond to the X phase are<br />

in 2θ equal to 36.6˚, 38.6˚, 39.8˚, 40.8˚, 42.4˚, 43.8˚, 44.3˚, 45.3˚, <strong>and</strong> 47.3˚. [2000Maz] for the<br />

first time has obtained <strong>and</strong> investigated the crystal structure <strong>and</strong> magnetic properties of the<br />

RFe6Sn6 compounds by means of microprobe analysis, 57 Fe Mössbauer spectroscopy <strong>and</strong><br />

neutron diffraction technique. A slight under-stoichiometry in Zr content was found<br />

corresponding to about 20% of empty Zr sites in the lattice.<br />

Quasibinary <strong>Systems</strong><br />

According to [1990Kor], a quasibinary eutectic reaction L Ðaffl βZrFe2 +Zr5Sn3 occurred at<br />

about 1525˚C, but no diagram has been given. However, considering the accepted Sn-Zr phase<br />

diagram, this section can not be quasibinary because below the critical temperature of the<br />

miscibility in Zr 5Sn 3 the tie lines are not lying in the section plane.<br />

Invariant Equilibria<br />

Invariant reactions in the region of Zr-βZrFe2-Zr5Sn3 have been reported by [1960Tan,<br />

1968Kud, 1990Kor, 2006Nie]. Their main discrepancy is that the existence of the Zr rich<br />

DOI: 10.1007/978-3-540-70890-2_31 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


compounds Zr 2Fe <strong>and</strong> Zr 3Fe was not recognized by [1960Tan, 1968Kud]. In addition, the<br />

results of [1990Kor] show that the θ phase is in equilibrium with Zr 4Sn, being in disagreement<br />

with those [1960Tan]. [1990Kor] presented a reaction scheme based on their own experimental<br />

results <strong>and</strong> those of the earlier investigations. This scheme is shown in Fig. 2 with minor<br />

modifications in the temperatures for some reactions, compared with the experimental data<br />

after [1990Kor]. The transition reactions U 3 <strong>and</strong> U 4 <strong>and</strong> the ternary eutectic reaction E 1 were<br />

first proposed by [1960Tan] <strong>and</strong> confirmed by [1990Kor]. The ternary peritectic reaction P1<br />

was proposed by [1990Kor] for the formation of the ternary compound θ. The remaining<br />

reactions are essentially those deduced by [1990Kor].<br />

Liquidus Surface<br />

No liquidus surface has been reported for this system. According to the reported invariant<br />

reactions with the participation of liquid [1960Tan, 1990Kor], a schematic liquidus projection<br />

in the region of Zr-βZrFe2-Zr5Sn3 was proposed by [1992Rag]. However in this projection the<br />

position of the liquid phase taking part in the P reaction has been shown incorrectly. It was<br />

located inside the triangle formed by three solid phases. This is corrected in Fig. 3 in the<br />

present evaluation to ensure that the θ phase is located inside the triangle L-Zr 5Sn 3-βZrFe 2.<br />

Also the curvature <strong>and</strong> the b<strong>and</strong> of the monovariant lines have been drawn to eliminate<br />

violations of the Konovalov rule.<br />

Isothermal Sections<br />

Fe–Sn–Zr 31<br />

3<br />

[1968Kud] determined the isothermal sections at 1000, 900 <strong>and</strong> 700˚C. Their results do not<br />

indicate the existence of the ternary compound θ in contradiction to the earlier <strong>and</strong> later<br />

works. Five isothermal sections in the Zr-Zr 5Sn 3-ZrFe 2 subsystem at 1100, 1000, 900, 800 <strong>and</strong><br />

700˚C were constructed by [1957Tan, 1960Tan, 1962Tan]. Using the starting materials of the<br />

purity of 99.95 mass% Fe, 99.997 mass% Sn <strong>and</strong> 99.98 mass% Zr, [1960Tan] melted about 170<br />

alloys in an arc furnace under a helium or argon atmosphere. The alloys were annealed at the<br />

above-mentioned temperatures for durations varying from 5 min to 500 h <strong>and</strong> water<br />

quenched. X-ray powder diffraction <strong>and</strong> metallographic techniques were used to study the<br />

phase equilibria. The isothermal section at 1100˚C by [1960Tan] is redrawn in Fig. 4, where the<br />

range of the θ phase is accepted from [2006Nie] because the annealing time of the samples in<br />

the later was longer <strong>and</strong> EPMA has been used in the measurements.<br />

The isothermal sections at 900˚C <strong>and</strong> 800˚C in the region Zr-Sn-βZrFe 2 determined by<br />

[2006Nie] are shown in Figs. 5a, 5b <strong>and</strong> Figs. 6a, 6b, respectively. According to [2006Nie], the<br />

Zr5Sn4 phase was observed in both as-cast <strong>and</strong> annealed alloys in the part around the phase,<br />

which is in agreement with the accepted Sn-Zr binary data [1990Kwo1]. The compound<br />

ZrFe 6Sn 6, investigated by [2000Maz], is also shown in both Figs. 5a, 5b <strong>and</strong> Fig. 6a, 6b, because<br />

it is studied in the samples annealed at 850˚C for 3 weeks. This temperature is obviously very<br />

close to the solidus, compared with the sections at 800, 900˚C <strong>and</strong> the Fe-Sn binary system.<br />

Therefore, it can be considered as a thermodynamically stable phase in both isothermal<br />

sections.<br />

Based on the reaction scheme of [1990Kor], a tentative isothermal section at 700˚C has<br />

been constructed in the review of [1992Rag] <strong>and</strong> is reproduced in Fig. 7, but the range of the<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_31<br />

ß Springer 2009


4 31<br />

Fe–Sn–Zr<br />

θ phase is shown the same as that at 800˚C (Fig. 6a). The section shows the existence of the<br />

binary compound Zr 3Fe <strong>and</strong> the equilibrium between θ <strong>and</strong> SnZr 4. These assumed equilibria<br />

are different from the experimental section at 700˚C by [1960Tan].<br />

Temperature – Composition Sections<br />

[1960Tan, 1990Kor] presented vertical sections with the constant Zr contents of 90 mass% <strong>and</strong><br />

90 at.%, respectively. Compared with the accepted binary systems, neither of the vertical<br />

sections is accepted, since [1960Tan] interpreted their results based on a Fe-Zr phase diagram<br />

with a single intermetallic compound βZrFe 2, <strong>and</strong> [1990Kor] on a Fe-Zr diagram contradicting<br />

to the presently accepted diagram from [2002Ste]. Moreover, the phase relationships in<br />

both vertical sections do not agree with the accepted isothermal sections at 800˚C <strong>and</strong> 900˚C.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

The Zr based alloys possess three main characteristics: good mechanical properties, low cross<br />

section of neutron absorption <strong>and</strong> good resistance to corrosion. They have gained an extended<br />

application in the nuclear industry. They are used mainly as cladding <strong>and</strong> structure material in<br />

light <strong>and</strong> heavy water nuclear reactors. One alloy type frequently employed in the nuclear field<br />

is Zircaloy-4 [1990Ale, 2006Nie], with the chemical composition Zr-(1.2-1.7) Sn-(0.18-0.24)<br />

Fe-(0.07-0.13) Cr-(0.14 max.)O (at.%). In the process of manufacturing, Sn is added by means<br />

of a master alloy of Fe-Sn-Zr, with a high content of Sn in its composition (usually a<br />

composition close to 10Fe-70Sn-20Zr (at.%)).<br />

Zr alloys are also used as a c<strong>and</strong>idate material for the experimental fusion device. In order<br />

to establish the experimental fusion device, it becomes necessary to raise the thermal stability<br />

<strong>and</strong> reduce the erosion of the inner surface of the first wall of the blanket material. Electron<br />

beam (EB) surface melting of Zircaloy-4, containing SiC, can be carried out to improve the<br />

surface melting temperature, thermal stability <strong>and</strong> erosion resistance [2007Ahm].<br />

Two ternary compounds of the ternary system present particular properties. Zr6FeSn2<br />

reveals a large hydrogen storage capacity so that it can be used as hydrogen storage or getter<br />

material [1999Zav]. HfFe 6Ge 6 type ZrFe 6Sn 6 compound induces a local magnetic disorder due<br />

to the slight under-stoichiometry in Zr element [2000Maz, 2001Maz]. Information on the<br />

investigations of materials properties is summarized in Table 3.<br />

. Table 1<br />

Investigations of the Fe-Sn-Zr <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

Temperature/Composition/<br />

<strong>Phase</strong> Range Studied<br />

[1960Tan] X-ray analysis, metallography the Zr-rich corner up to βZrFe 2<br />

<strong>and</strong> Zr 4Sn, 700˚C to 1100˚C<br />

[1968Kud] Microstructure studies <strong>and</strong> measurements of<br />

hardness <strong>and</strong> micro-hardness<br />

the Zr-rich region, 1000, 900,<br />

700˚C<br />

DOI: 10.1007/978-3-540-70890-2_31 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1990Kor] X-ray analysis, electron microscope <strong>and</strong> X-ray phase<br />

microanalyzer of the “Cameca” system<br />

Temperature/Composition/<br />

<strong>Phase</strong> Range Studied<br />

the Zr-Zr 5Sn 3-βZrFe 2 region,<br />

500 to 1600˚C<br />

[1990Kwo1] X-ray analysis, SEM-EDX method Zr4Sn, Zr5Sn3,Zr5Sn3-Zr5Sn4 regions, as cast, 800-1700˚C<br />

[1990Kwo2] X-ray analysis crystal structure of the<br />

Zr6FeSn2 (θ phase)<br />

[1998Mel] X-ray analysis, Korringa-Kohm-Rostoker (KKR)<br />

method with the coherent potential approximation<br />

(CPA)<br />

crystal structure of the<br />

Zr 6Fe 1.5+xSn 1.5–x<br />

[1999Zav] X-ray analysis, full profile (Rietveld) refinement crystal structure of the<br />

Zr6FeSn2 (θ phase)<br />

[2000Maz] Microprobe analysis, neutron diffraction technique<br />

<strong>and</strong> 57 Fe Mössbauer measurements<br />

ZrFe6Sn6, 850˚C<br />

[2000Nie] SEM, XRD, EPMA, EDX 10Fe-70Sn-20Zr (in at.%); 800,<br />

900˚C<br />

[2001Nie] SEM, XRD, EPMA, EDX X phase<br />

[2006Nie] EPMA, EDX, X-ray analysis <strong>and</strong> metallographic<br />

studies<br />

Zr-βZrFe 2-Sn region, 800,<br />

900˚C<br />

[2007Cos] X-ray analysis Zr 6Sn 2Fe (θ phase)<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–Sn–Zr 31<br />

Lattice<br />

Parameters [pm] Comments/References<br />

(αδFe) cI2<br />

Im3m<br />

W<br />

a = 293.15<br />

(δFe)<br />

1538 - 1394<br />

a = 286.65 at 1390˚C [Mas2, V-C2]<br />

(αFe)<br />

< 912<br />

at 25˚C [Mas2, V-C2]<br />

(γFe) cF24 a = 364.67 at 915˚C [Mas2, V-C2]<br />

1394 - 912 Fm3m<br />

Cu<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

5<br />

DOI: 10.1007/978-3-540-70890-2_31<br />

ß Springer 2009


6 31<br />

Fe–Sn–Zr<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters [pm] Comments/References<br />

(βSn) tI4 a = 583.18 25˚C [Mas2]<br />

232 - 13 I41/amd<br />

βSn<br />

c = 318.18<br />

(αSn) cF8 a = 648.92 [Mas2]<br />


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Fe–Sn–Zr 31<br />

Lattice<br />

Parameters [pm] Comments/References<br />

7<br />

Zr5Sn3+x a solid solution with a gradually changing<br />

1988 - 1500<br />

structure<br />

0


8 31<br />

Fe–Sn–Zr<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson Symbol/<br />

Space Group/<br />

Prototype<br />

Lattice<br />

Parameters [pm] Comments/References<br />

* θ, Zr6Sn2Fe hP9 a = 796.75 ± 0.06 [1990Kwo2]<br />

P6m2 c = 348.63 ± 0.05<br />

Zr6Al2Co a = 795.3 ± 0.2<br />

c = 350.2 ± 0.3<br />

[1999Zav]<br />

a = 799.4<br />

c = 346.5<br />

[2007Cos]<br />

a = 799.3 ± 0.3 at x = 0.15 [1998Mel]<br />

Zr6Fe1.5+xSn1.5–x c = 346.7 ± 0.2<br />

*N - - [2000Nie, 2001Nie, 2006Nie]<br />

*X - - [2000Nie, 2001Nie, 2006Nie]<br />

* ZrFe6Sn6 hP13 a = 532.4 ± 0.1 [2000Maz]<br />

P6/mmm<br />

HfFe6Ge6 c = 887.0 ± 0.2<br />

. Table 3<br />

Investigations of the Fe-Sn-Zr Materials Properties<br />

Reference Method/Experimental Technique Type of Property<br />

[1990Ale] Mass spectrometry Thermodynamic activities of Sn in<br />

Zircaloy-4<br />

[1999Zav] Measurements of the crystal structure <strong>and</strong><br />

thermal behavior of the hydrides <strong>and</strong> the<br />

hydrogen storage capacity of Zr6FeSn2 Hydrogenation of Zr6FeSn2 [2001Maz] Susceptibility <strong>and</strong> magnetization measurements Magnetic properties of the RFe 6Sn 6<br />

[2007Ahm] Electron beam surface melting technique, SEM,<br />

EDS, microhardness measurements<br />

Surface melting temperature,<br />

thermal stability <strong>and</strong> erosion<br />

resistance<br />

DOI: 10.1007/978-3-540-70890-2_31 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-Sn-Zr. The Sn-Zr binary system<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sn–Zr 31<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_31<br />

ß Springer 2009


10 31<br />

Fe–Sn–Zr<br />

. Fig. 2<br />

Fe-Sn-Zr. Partial reaction scheme for the βZrFe 2-Sn-Zr 5Sn 3 region<br />

DOI: 10.1007/978-3-540-70890-2_31 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-Sn-Zr. Schematic partial liquidus surface projection<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sn–Zr 31<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_31<br />

ß Springer 2009


12 31<br />

Fe–Sn–Zr<br />

. Fig. 4<br />

Fe-Sn-Zr. Partial isothermal section at 1100˚C<br />

DOI: 10.1007/978-3-540-70890-2_31 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 5a<br />

Fe-Sn-Zr. Partial isothermal section at 900˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sn–Zr 31<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_31<br />

ß Springer 2009


14 31<br />

Fe–Sn–Zr<br />

. Fig. 5b<br />

Fe-Sn-Zr. Partial isothermal section at 900˚C. Details of the Zr rich region<br />

DOI: 10.1007/978-3-540-70890-2_31 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 6a<br />

Fe-Sn-Zr. Partial isothermal section at 800˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sn–Zr 31<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_31<br />

ß Springer 2009


16 31<br />

Fe–Sn–Zr<br />

. Fig. 6b<br />

Fe-Sn-Zr. Partial isothermal section at 800˚C. Details of the Zr rich region<br />

DOI: 10.1007/978-3-540-70890-2_31 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 7<br />

Fe-Sn-Zr. Partial isothermal section at 700˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Sn–Zr 31<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_31<br />

ß Springer 2009


18 31<br />

Fe–Sn–Zr<br />

References<br />

[1957Tan] Tanner, L.E; Levinson, D.W., “The System Zr-Fe-Sn”, U.S. At. Energy Comm. Publ., ARF-2068, (1957)<br />

as quoted by [1992Rag]<br />

[1960Tan] Tanner, L.E., Levinson, D.W., “The System Zr-Fe-Sn”, Trans. ASM, 52, 1115–1136 (1960) (Experimental,<br />

Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., 11)<br />

[1962Tan] Tanner, L.E., Levinson, D.W., “Structures in the Zr-Fe-Sn System”, U.S. At. Energy Comm. Publ., T1D-<br />

7625, (1962) as quoted by [1992Rag]<br />

[1968Kud] Kudryatsev, D.L., Tregubov, I.A., “The Zr corner of the <strong>Phase</strong> Diagram <strong>and</strong> Properties of <strong>Alloy</strong>s in the<br />

Zr-Fe-Sn System”, Fiz.-Khim. Splavov Tsirkoniya, 133 (1968) as quoted by [1992Rag]<br />

[1983Abr] Abriata, J.P., Bolcich, J.C., Ari, D., “The Sn-Zr(Tin-Zirconium) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>,<br />

4(2), 147–154 (1983) (Crys. Structure, <strong>Phase</strong> Diagram, Review, Thermodyn., 38)<br />

[1990Kor] Korotkova, N.V., “The Zirconium Corner of the <strong>Phase</strong> Diagram Zr-Sn-Fe”, Russ. Metall., 5, 201–208<br />

(1990), translated from Izv. Akad. Nauk SSSR, Met., 5, 206-213 (1990) (Experimental, <strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, 6)<br />

[1990Kwo1] Kwon, Y.-U., Corbett, J.D., “The Zirconium-Tin System, with Particular Attention to the Zr 5Sn 3-<br />

Zr 5Sn 4 Region <strong>and</strong> Zr 4Sn”, Chem. Matter., 2(1), 27–33 (1990) (Experimental, Crys. Structure, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, 31)<br />

[1990Kwo2] Kwon, Y.-U; Sevov, S.C., Corbett, J.D., “Substituted W 5Si 3- <strong>and</strong> Zr 6Al 2Co Type <strong>Phase</strong> Formed in the<br />

Zirconium-Antimony <strong>and</strong> Zirconium-tin <strong>Systems</strong> with Iron Group Metals”, Chem. Matter., 2(5),<br />

550–556 (1990) (Crys. Structure, Morphology, 75)<br />

[1990Ale] Alex<strong>and</strong>er, C.A., Ogden, J.S., “Thermodynamic Activities in Zircaloy-4 by Mass-Spectrometry”, J. Nucl.<br />

Mater., 175(3), 197–202 (1990) (Experimental, 9)<br />

[1991Ard] Ardisson, J.D., Mansur, R.A., da Silva, E.G., “A Study of Structural <strong>and</strong> Electronic Properties of the<br />

<strong>Alloy</strong> <strong>Systems</strong> (Zr 1–xTi x) 2Fe <strong>and</strong> (Zr 1–xTi x) 3Fe in the Range 0 ≤ x ≤ 0.2”, Scripta Metall. Mater., 25(6),<br />

1327–1331 (1991) (Crys. Structure, Experimental, Electronic Structure, Magn. Prop., 6) cited from<br />

abstract<br />

[1992Rag] Raghavan, V., “The Fe-Sn-Zr (Iron-Tin-Zirconium) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron <strong>Alloy</strong>s”,<br />

Indian Inst. Metals, Calcutta, Vol. 6B, 1199–1204 (1992) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Review, 6)<br />

[1996Kum] Kumar, K.C. Hari, Wollants, P., Delaey, L., “Thermodynamic Evaluation of Fe-Sn <strong>Phase</strong> Diagram”,<br />

Calphad, 20(2), 139–149 (1996) (Assessment, <strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, Thermodyn., 55)<br />

[1998Mel] Melnyk, G.A., Fruchart, D., Romaka, L.P., Stadnyk, Ju.V., Skolozdra, V., Tobola, J., “Crystal Structure of<br />

New M’ 6M’’ 1.5+xX 1.5–x Compounds (M’= Zr, Hf; M’’= Fe, Co, Ni; X = Sn, Sb) <strong>and</strong> Electronic Structure<br />

of Zr 6Co 1.65Sn 1.35”, J. <strong>Alloy</strong>s Compd., 267, L1-L3 (1998) (Crys. Structure, Electronic Structure, Experimental,<br />

6)<br />

[1999Zav] Zavaliy, I.Yu., Pecharsky, V.K., Miler, G.J., Akselrud, L.G., “Hydrogenation of Zr 6MeX 2 Intermetallic<br />

Compounds (Me=Fe, Co, Ni; X=Al, Ga, Sn): <strong>Crystallographic</strong> <strong>and</strong> Theoretical Analysis”, J. <strong>Alloy</strong>s<br />

Compd., 283, 106–116 (1999) (Crys. Structure, Experimental, 31)<br />

[2000Maz] Mazet, T., Malaman, B., “Local Chemical <strong>and</strong> Magnetic Disorder within the HfFe 6Ge 6 Type RFe 6Sn 6<br />

Compounds (R = Sc, Tm, Lu <strong>and</strong> Zr)”, J. Magn. Magn. Mater., 219, 33–40 (2000) (Crys. Structure,<br />

Experimental, Magn. Prop., 18)<br />

[2000Nie] Nieva, N., Arias, D., “A New <strong>Ternary</strong> Compound in the Zr-Sn-Fe System”, J. Nucl. Mater., 277, 120–122<br />

(2000) (Crys. Structure, Experimental, <strong>Phase</strong> Relations, 5)<br />

[2001Maz] Mazet, T., Malaman, B., “Macroscopic Magnetic Properties of the HfFe 6Ge 6 Type RFe 6X 6 (X = Ge or<br />

Sn) Compounds Involving a Non-Magnetic R Metal”, J. <strong>Alloy</strong>s Compd., 325, 67–72 (2001) (Experimental,<br />

Magn. Prop., 28)<br />

[2001Nie] Nieva, N., Arias D., presented at CALPHAD XXX, York, Engl<strong>and</strong> (2001)<br />

[2002Ste] Stein, F., Sauthoff, G., Palm, M., “Experimental Determination of Intermetallic <strong>Phase</strong>s, <strong>Phase</strong><br />

Equilibria, <strong>and</strong> Invariant Reaction Temperatures in the Fe-Zr System”, J. <strong>Phase</strong> Equilib., 23(6), 480–494<br />

(2002) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 88)<br />

[2006Nie] Nieva, N., Arias, D., “Experimental Partial <strong>Phase</strong> Diagram of the Zr-Sn-Fe System”, J. Nucl. Mater., 359<br />

(1-2), 29–40 (2006) (Experimental, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, #, 22)<br />

DOI: 10.1007/978-3-540-70890-2_31 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Sn–Zr 31<br />

19<br />

[2007Ahm] Ahmad, M., Akhter, J.I., Ali, G., Akhtar, M., Choudhry, M.A., “Erratum to (Characterization of<br />

Electron Beam Modified Surface of Zircaloy-4) {J. <strong>Alloy</strong>s Compd., 426 (2006) 176-179}”, J. <strong>Alloy</strong>s<br />

Compd., 428(1-2), 362 (2007) (Experimental, Morphology, 1)<br />

[2007Cos] Costa, B.F.O., Greneche, J.M., Fruchart, D., Alberto, H.V., Skryabina, N.E., Romaka, L.P., Stadnyk, Yu.<br />

V., “Structural Analysis <strong>and</strong> 57 Fe Mössbauer Spectrometry of Zr 6FeSn 2 <strong>and</strong> Related Compounds”,<br />

J. <strong>Alloy</strong>s Compd., 438(1-2), 88–91 (2007) (Crys. Structure, Electronic Structure, Experimental, 11)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_31<br />

ß Springer 2009


Iron – Titanium – Vanadium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Lesley Cornish, Andy Watson<br />

Introduction<br />

The Fe-Ti-V system is important for steels, both Ti <strong>and</strong> V forming very stable carbides, <strong>and</strong><br />

thus suppressing the stability of cementite. Both Ti-carbides <strong>and</strong> V-carbides are useful in<br />

controlling grain size. Both Ti <strong>and</strong> V can also form nitrides <strong>and</strong> carbonitrides, which can pin<br />

grain boundaries, <strong>and</strong> hence produce steels with a finer grain size. The control of grain size is<br />

vital in production, especially rolling, <strong>and</strong> knowledge of the effects of additions to steels is vital<br />

for improved quality <strong>and</strong> productivity. Vanadium is beneficial in promoting fine, mainly<br />

nitride, precipitates which give dispersion strengthening. The Laves phase is also formed,<br />

<strong>and</strong> depending on morphology, these can be detrimental to mechanical properties. Some<br />

vanadium alloys, such as V-5Fe-3Ti, show potential as structural materials for fision power<br />

plants because of their resistance to swelling after neutron irradiation. Both the TiFe 2 Laves<br />

phase <strong>and</strong> (βTi,V) have been identified as having potential hydrogenation capability, <strong>and</strong> work<br />

is ongoing to characterize <strong>and</strong> enhance this. It has been postulated that alloys based on the<br />

Laves phase could have potential as neutron radiation shielding applications.<br />

Although there are experimental data for the system, they are fairly limited, <strong>and</strong> mostly<br />

confined to the Fe rich compositions, <strong>and</strong> the purity of Fe in the earlier work was 99 mass%.<br />

The Fe rich corner was studied by [1954Luc] using samples prepared from Armco iron ( 99%<br />

purity), sponge titanium <strong>and</strong> high (although unspecified) purity vanadium.<br />

[1993Rag] cites thermodynamic calculation of (γFe)/((γFe)+(αFe)) <strong>and</strong> ((γFe)+(αFe))/<br />

(αFe) phase boundaries at 950˚C, 1050˚C, 1150˚C <strong>and</strong> 1250˚C undertaken by [1988Kum]; they<br />

were found to be linear.<br />

The system has been reviewed by [1987Rag1, 1987Rag2, 1993Rag]. The experimental work<br />

is summarized in Table 1.<br />

There are a number of references that seem to be by the same authors although the name of<br />

the primary author has been spelled in different ways. These are [1959Cin, 1960Tsi, 1961Cin,<br />

1961Chi].<br />

Binary <strong>Systems</strong><br />

Fe–Ti–V 32<br />

1<br />

The Fe-Ti binary system is accepted from [Mas2].<br />

The Fe-V system has been assessed by [1991Hua]. Although [2006Oka] reported recent<br />

experimental work by [2005Ust] who used XRD <strong>and</strong> electron microscopy to investigate the<br />

extent of the sigma phase in the binary Fe-V system, this is not accepted here. The suggestion<br />

was that the sigma phase decomposes below about 650˚C accompanied by phase separation of<br />

the bcc phase. The phase diagram shown by [2005Ust] shows a narrow strip of single-phase<br />

bcc between the sigma phase <strong>and</strong> the region of phase separation. As pointed out by [2006Oka],<br />

this feature of the phase diagram would seem to be unlikely, the sigma phase most probably<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_32<br />

ß Springer 2009


2 32<br />

Fe–Ti–V<br />

decomposing eutectoidally to give Fe rich <strong>and</strong> V rich bcc phases, as in the Cr-Fe system. As this<br />

aspect of the phase diagram is uncertain, it has been ignored in the present work.<br />

The Ti-V phase diagram as shown in [Mas2], exhibits a stable miscibility gap with a critical<br />

temperature of 850˚C <strong>and</strong> a monotectoid reaction taking place at 675˚C. Earlier assessments of<br />

this system (e.g. [1981Mur]) do not show this miscibility gap, which is based on experimental<br />

work by [1981Nak]. However, experimental studies by [1989Wei] would seem to suggest that<br />

the miscibility gap is indeed metastable. Later, the system was assessed by [1998Sau] showing<br />

the low temperature equilibria of the system expressed as a simple two-phase (αFe) + (αTi)<br />

region. It is this version of the phase diagram that is accepted here.<br />

Solid <strong>Phase</strong>s<br />

Table 2 shows details of stability ranges <strong>and</strong> crystallography of the solid phases. [1960Tsi]<br />

reported the possible presence of a ternary phase in the system, but this was subsequently<br />

confirmed as contiguous with the binary λ,TiFe 2 phase [1987Pri, 1987Rag1]. [1954Sto] was<br />

the only other work to report on the presence of a ternary phase occurring in the system; at 14<br />

at.% (14 mass%) V; 28 at.% (31 mass%) Fe. Since only commercial purity Ti was used in the<br />

preparation of the samples <strong>and</strong> no other workers have reported this phase, it is generally<br />

ignored [1987Rag1, 1987Rag2]. [1987Pri] showed that the solubility of V in FeTi is small,<br />

whereas up to 30 at.% V dissolves in λ (TiFe 2) at 1200˚C. The Laves phase is of type C14, with<br />

12 atoms per unit cell [1958Ell].<br />

Quasibinary <strong>Systems</strong><br />

In a pair of articles, [1959Cin, 1960Tsi] presented quasibinary sections for TiFe-V<strong>and</strong> TiFe 2-V.<br />

A combination of hardness measurement, thermal analysis, XRD <strong>and</strong> metallography were<br />

used to determine the phase diagrams. [1987Rag1, 1987Rag2] queried the quasibinary nature<br />

of these sections as the melting points of the TiFe <strong>and</strong> TiFe2 end members are given as<br />

considerably higher than shown in the accepted Fe-Ti binary system [Mas2]. The large<br />

terminal solubilities of V in the compounds would make the three phase equilibria between<br />

the compounds, α(V) <strong>and</strong> <strong>and</strong> liquid in each quasibinary system unlikely to occur at a<br />

single temperature. Moreover, the TiFe compound melts incongruently making it impossible<br />

for the TiFe-V section to be quasibinary. For these reasons, these sections have not been<br />

reproduced here.<br />

Invariant Equilibria<br />

[1961Chi] reported a solid state reaction, FeTi + (βTi,V) Ð (αTi) + λ. Using the limited<br />

experimental data available, [1987Rag1, 1987Rag2] postulated a reaction scheme using their<br />

own tentative liquidus, <strong>and</strong> assumed that the solid state transition reaction from [1961Chi]<br />

occurred at a temperature just below 590˚C, Table 3. They also assumed the presence of a<br />

ternary eutectic reaction, but there has been no experimental evidence of this. The reaction<br />

scheme from [1987Rag1] is reproduced in Fig. 1.<br />

DOI: 10.1007/978-3-540-70890-2_32 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Liquidus, Solidus <strong>and</strong> Solvus Surfaces<br />

No experimental study of the liquidus surface has been undertaken, although [1987Rag1,<br />

1987Rag2] drew a tentative liquidus projection using the adjoining binary phase diagrams <strong>and</strong><br />

the two vertical sections of [1959Cin, 1960Tsi]. This is shown in Fig. 2 with amendments to the<br />

isotherms in order to maintain consistency with the accepted binary phase diagrams. It is<br />

speculated that there is a ternary eutectic reaction occurring at about 1350˚C, <strong>and</strong> each of the<br />

monovariant lines exhibits a maximum. Alternatively, a liquidus projection can be predicted<br />

by thermodynamic calculation by combining the thermodynamic descriptions of the three<br />

binary systems [1998Ran, 1991Hua, 1998Sau]. The resulting liquidus (Fig. 3) shows a transition<br />

reaction taking place at 1164˚C. However, it must be stressed that there is no experimental<br />

justification for either of these liquidus surfaces.<br />

Isothermal Sections<br />

Fe–Ti–V 32<br />

3<br />

[1961Chi] argon-arc melted 99% Fe <strong>and</strong> V, <strong>and</strong> sponge Ti (99.67%) to produce alloys at 93<br />

compositions along sections at a number of different Fe:Ti ratios. The starting materials <strong>and</strong><br />

their impurities were: vanadium powder (0.9% O <strong>and</strong> 0.09% N), Armco iron (0.11% Al,<br />

0.34% Si, 0.22% Mn <strong>and</strong> a trace of C), <strong>and</strong> TG-O titanium (0.04% Fe, 0.04% Mg, 0.03% Si,<br />

0.03% Cl, 0.05% C, 0.02% N, 0.11% O <strong>and</strong> 0.006% H). The resulting alloys were annealed at<br />

1000˚C for 48 h or 800˚C for 248 h before quenching into water, <strong>and</strong> resulted in the<br />

construction of partial isothermal sections for Fe-V-TiFe for 1000 <strong>and</strong> 800˚C. A partial section<br />

for 25˚C showing a much restricted solubility of (βTi,V) was produced by [1961Cin]. In each<br />

of these works [1961Chi, 1961Cin], two Laves phases were reported; the binary λ,TiFe 2 phase<br />

<strong>and</strong> a distinct ternary phase of roughly equiatomic stoichiometry, denoted as γ in the article;<br />

although their experimental work was concentrated on Ti-rich alloys. However, [1984Ere]<br />

postulated that these two Laves phase fields were contiguous, <strong>and</strong> [1987Pri] undertook<br />

experiments to verify this. Using iodide titanium, type VNM-1 vanadium <strong>and</strong> carbonyl<br />

iron, [1987Pri] prepared samples along vertical sections at 33.3 at.% Ti <strong>and</strong> 50 at.% Ti by<br />

arc-melting under argon using an oxygen getter. The weight losses after melting were less than<br />

1 mass%. Using metallography, XRD <strong>and</strong> local X-ray spectral <strong>and</strong> hardness techniques,<br />

investigations of alloys annealed at 1000 <strong>and</strong> 1200˚C (for between 50-110 h) lying at compositions<br />

along the TiFe 2-V section indicated that the binary Laves phase can dissolve V up to<br />

between 30 <strong>and</strong> 33 at% suggesting that the composition of the ternary Laves phase as given by<br />

[1961Chi] coincides with the solubility limit of V in the binary λ,TiFe 2 Laves phase. A plot of<br />

lattice parameter against V content along the TiFe 2-V section shows a steady increase on<br />

adding the larger atom, <strong>and</strong> thus V can replace both Ti <strong>and</strong> Fe atoms, at least to some extent, as<br />

had been demonstrated earlier by [1958Ell]. In this work, it was shown that slightly more than<br />

half the Fe atoms in TiFe2 can be substituted by V. It is interesting to note that the composition<br />

limit of the λ phase with respect to V lies at the edge of the partial section investigated by<br />

[1961Chi], which goes some way to explaining their erroneous conclusion regarding the<br />

presence of a ternary phase. Through XRD studies of as-cast ternary alloys, [1997Miy] also<br />

confirmed that Vegard’s law was obeyed as V atoms were dissolved into the binary λ phase.<br />

Taking this phase extension into account, <strong>and</strong> extrapolating from the binary data, as well as<br />

assuming a nominal solubility of 1 at.% Ti in the σ phase (FeV), [1987Rag1, 1987Rag2]<br />

extended the partial isothermal sections to cover the whole composition range, <strong>and</strong> these form<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_32<br />

ß Springer 2009


4 32<br />

Fe–Ti–V<br />

the basis of Figs. 4 to 6. Although a diagram produced by [1997Miy] suggested that the range<br />

of the λ phase was actually greater, this is not reflected in Figs. 4 to 6 as no further details were<br />

given.<br />

Temperature – Composition Sections<br />

The (γFe)-loop in the ternary system was studied by [1954Luc] using dilatometry. 23 alloys<br />

with compositions ranging between 0-1.12 mass% Ti <strong>and</strong> 0.11-1.34 mass% V were heated over<br />

the (γFe) to (αFe) transformation at a heating rate between 2 <strong>and</strong> 3˚C per minute. In some of<br />

the samples (especially Fe-V), the furnace temperature was held constant, even for several<br />

hours, until no further transformation occurred. Sudden changes in slope of the heating curve<br />

were taken as the beginning <strong>and</strong> the end of the transformation, indicating the phase boundary<br />

between the α/α+γ/γ phase regions. In the same work, they report on a study of the γ-loop in<br />

the Fe-V system, but they indicate a minimum in the phase boundaries, which have since been<br />

discounted by other researchers. [1987Rag1] noted that previous work on the Fe-Ti system<br />

was found to disagree with the later versions of the phase diagram [Mas2], <strong>and</strong> so [1954Luc]is<br />

considered to be unreliable. For this reason, the ternary work is not discussed further here.<br />

The FeTi-V vertical section was studied by [1960Tsi]. 22 alloys of mass of 20 g were used<br />

for thermal analysis studies using a contact method to determine incipient melting, i.e. onset<br />

of melting, for determination of the solidus (the liquidus was not determined). Metallography<br />

was used to study samples in the as-cast, annealed (under vacuum, 800˚C for 100 h, 600˚C for<br />

200 h, or 550˚C for 1000 h, then furnace-cooled) <strong>and</strong> quenched states. Four groups of water<br />

quenched alloys were studied: heat treated at 1200˚C for 6 h, 1000˚C for 48 h, 800˚C for 200 h<br />

or 600˚C for 548 h. Powder XRD with vanadium radiation was used to investigate the phase<br />

assemblages in annealed samples. [1961Chi] determined vertical sections for TiFe-V <strong>and</strong><br />

TiFe 2-V, which they maintain were quasibinary; this is dealt with above. However, owing to<br />

errors in the melting points of the TiFe <strong>and</strong> TiFe 2 indicated on the sections they have not been<br />

considered here. A vertical section was determined by [1961Chi] for the 84Ti16Fe-V. This is<br />

not shown here as it includes equilibria with a ternary compound, which they denote as γ, that<br />

has since been correctly identified as the limiting composition of the extension of the binary<br />

TiFe 2 compound into the ternary system.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Hardness measurements across the TiFe 2-V section showed a maximum of above 800H V,<br />

corresponding to the maximum extent of the λ phase [1959Cin], i.e. the maximum V content<br />

of the phase. A study by [1960Tsi] of the hardness across the TiFe-V section showed the<br />

maximum hardness being obtained for their ‘ternary’ γ phase at about 750H V, without any<br />

apparent effect due to the phase composition. However, the consistency between the hardness<br />

measurements of the binary λ phase <strong>and</strong> the apparent ternary γ phase was explained by<br />

[1984Ere], <strong>and</strong> confirmed by [1987Pri], in that the two phases are actually contiguous.<br />

In a study involving different steel additions, [2004Li] showed the beneficial affects of both<br />

Ti <strong>and</strong> V additions in controlling the grain size, <strong>and</strong> the increased solution temperature of<br />

carbonitrides in the austenite matrix. However, the amount of Ti addition is limited because it<br />

DOI: 10.1007/978-3-540-70890-2_32 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


forms nitrides in austenite, <strong>and</strong> this reduces the V<strong>and</strong> N available for subsequent precipitation<br />

in ferrite; both effects which can lead to a reduction in yield strength.<br />

The swelling behavior after neutron irradiation was investigated using TEM by [1998Fuk].<br />

The alloys were made from high purity components (99.9% V, 99.999% Fe <strong>and</strong> 99.99% Ti), arc<br />

melted under argon. TEM foils were prepared from rolled sheet (0.25mm), annealed at 1100˚C<br />

for 2 h, <strong>and</strong> irradiated at 380˚C, 519˚C <strong>and</strong> 615˚C up to a neutron fluence of 1.6 · 10 26 n·m –2 .<br />

The void growth rate was found to be linearly dependent on Fe content, but Ti additions<br />

reduced this effect, <strong>and</strong> increasing the Ti additions caused precipitation of titanium oxide<br />

precipitates.<br />

[1997Miy] studied the effect of phase structure in the selection of Fe-Ti-V alloys for<br />

hydrogenation. Confirming the phases before hydrogenation studies, [1997Miy] prepared<br />

samples by arc melting of “high purity” components under argon, then pulverizing the ingots<br />

to obtain powders with average particle size of less than 100 μm. X-ray diffraction was<br />

undertaken using CuK α radiation with a carbon monochromator.<br />

The TiFe2 Laves phase was identified as having the potential as a hydrogenation material<br />

owing the suitability of its component atoms for the hydrogenation reaction, <strong>and</strong> it was<br />

thought that this could be increased by the addition of V. However, experimental results from<br />

a number of alloys showed that the initial hydrogenation of Fe-Ti-V alloys was less than for<br />

rare earth metals, which are usually employed commercially. Maximum hydrogen storage<br />

occurred at a composition of TiFeV 0.7 at 60˚C. Further work on this topic was undertaken by<br />

[1999Ver], in an experimental study of the reaction of Fe-Ti-Valloys with hydrogen. [1999Ver]<br />

also predicted that the alloys could have potential for neutron radiation shielding materials.<br />

Another potentially useful phase for hydrogen storage is the bcc vanadium phase. Here<br />

(βTi,V), on absorbing hydrogen, becomes VH or V2H <strong>and</strong> then VH2. While the first phases are<br />

stable, the last phase undergoes hydrogen desorption <strong>and</strong> absorption processes at around<br />

room temperature, <strong>and</strong> so shows potential for hydrogen storage. This was the rationale for<br />

[2004Ito] to undertake comparative work on Valloys with various additions, including Fe <strong>and</strong><br />

Ti, up to 1 mol. [1995Sin] evaluated the performance of the V 0.85-Fe 0.05-Ti 0.15 alloy manufactured<br />

by a powder route (from 99.99% pure components) for hydrogen storage, <strong>and</strong> found<br />

that good hydrogen absorption <strong>and</strong> desorption occurred at room temperature.<br />

The Laves phase, λ,TiFe2, is antiferromagnetic with a Néel temperature of about 12˚C.<br />

Using magnetization <strong>and</strong> V-NMR spin-echo spectra, [2003Yam] demonstrated that V additions<br />

cause a change to ferromagnetism at (0.15 < x < 0.4). The predicted magnetic phase<br />

diagram for Ti(Fe 1-xV x) 2 was derived <strong>and</strong> regions of paramagnetism, antiferromagnetism <strong>and</strong><br />

ferromagnetism were shown. The transformations were deduced to be due to the changes in<br />

lattice parameter <strong>and</strong> d-electron number density.<br />

Details relating to properties studied <strong>and</strong> techniques employed are listed in Table 4.<br />

Miscellaneous<br />

Fe–Ti–V 32<br />

5<br />

Nuclear magnetic resonance (NMR) experiments were undertaken by [1967Mas] on(βTi,V)<br />

in the Ti-V <strong>and</strong> Fe-V binary systems, using arc melted samples made from V of 99.8% purity<br />

<strong>and</strong> Ti <strong>and</strong> V of 99.9% purity. Nuclear spin-lattice relaxation times, T 1, were measured,<br />

together with the low temperature specific heats, <strong>and</strong> it was found that the T 1T product<br />

(T = temperature) was strongly dependent on composition. The relaxation behavior was<br />

correlated with the low temperature specific heat.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_32<br />

ß Springer 2009


6 32<br />

Fe–Ti–V<br />

[2002Boz] undertook calculations for a number of phases, including TiFe, to calculate the<br />

site preferences of a number of alloying additions, including V, using the Bozzolo-Ferrante-<br />

Smith (BFS) calculation method, but as yet, there are no experimental data with which to<br />

compare these results.<br />

. Table 1<br />

Investigations of the Fe-Ti-V System <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method / Experimental Technique<br />

Temperature / Composition / <strong>Phase</strong><br />

Range Studied<br />

[1954Luc] Dilatometry, chemical analysis Prior annealing at 950˚C to 1000˚C for 1 or<br />

2 h; experiments at 970 - 1120˚C; 0-<br />

1.12 mass% Ti <strong>and</strong> 0.11-1.34 mass% V;<br />

(γFe)-loop<br />

[1959Cin] Metallography, thermal analysis, hardness 20 - 1700˚C; across TiFe2-V section<br />

[1960Tsi] Metallography, XRD, thermal analysis,<br />

hardness<br />

20 - 1900˚C; across TiFe-V section<br />

[1961Chi] Metallography, XRD, differential thermal<br />

analysis using a Kurnakov pyrometer,<br />

manufacture via a TiFe master alloy<br />

800˚C <strong>and</strong> 1000˚C; partial diagram from Ti<br />

up to TiFe<br />

[1961Cin] Metallography, XRD Ambient T; partial diagram from Ti up to<br />

TiFe<br />

[1967Mas] Heat pulse method for heat capacities 5-20 K; up to 84 at.% Ti in V, <strong>and</strong> up to<br />

30 at.% Fe in V; (βTi,V)<br />

[1987Pri] Metallography, XRD, local X-ray<br />

spectroscopy <strong>and</strong> hardness<br />

1000 <strong>and</strong> 1200˚C; 33.3 <strong>and</strong> 50 at.% Ti<br />

isoconcentrate lines; λ phase<br />

[1995Sin] XRD 700-900˚C; V 0.85-Fe 0.05-Ti 0.15<br />

[1997Miy] XRD Unspecified; wide range of alloys;<br />

homogeneity range of λ<br />

DOI: 10.1007/978-3-540-70890-2_32 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Ti–V 32<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

α, (δαFe,βTi,V) cI2<br />

(δFe) Im3m a = 293.15 pure Fe at 1390˚C [V-C2, Mas2]<br />

1538 - 1394 W<br />

(αFe) a = 286.65 pure Fe at 25˚C.<br />

< 912 Dissolves 10 at.% Ti at 1289˚C [Mas2]<br />

(βTi) a = 330.65<br />

1670 - 882 pure Ti at 900˚C [Mas].<br />

Dissolves 22 at.% Fe at 1085˚C [Mas2].<br />

(V) a = 302.40<br />

< 1910 [Mas2]<br />

(γFe) cF4 a = 364.67 at 915˚C [V-C2, Mas2].<br />

1394 - 912 Fm3m Dissolves 1.4 at.% V at 1160˚C [1991Hua].<br />

Cu<br />

Dissolves 1.3 at.% V at 1150˚C [1998Ran].<br />

(αTi) hP2 a = 295.06 dissolves 2.7 at.% V at 675˚C [Mas2].<br />

P63/mmc c = 468.35 dissolves 1.6 at.% V at 612˚C.<br />

Mg [1998Sau]<br />

λ, Ti(Fe1–xVx) 2 hP12 a = 488.0 at x = 0.5, [1960Tsi]. Dissolves 30 at.%<br />

P63/mmc MgZn2 c = 796.0 V at 1200˚C [1987Pri].<br />

TiFe2 a = 479.0 at x =0<br />

< 1427 c = 781.1 [V-C2] [Mas2]<br />

TiFe cP2 a = 297.6 [V-C2]<br />

< 1317 Pm3m<br />

CsCl<br />

σ, FeV tP30 a = 886.5 to 901.5 [1987Rag1, 1987Rag2]<br />

P42/mnm σCrFe<br />

c = 460.5 to 464.2<br />

a = 896.5 at V0.5Fe0.5 [V-C2].<br />

c = 463.3 29.6 - 60.1 at.% V [Mas2].<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

7<br />

DOI: 10.1007/978-3-540-70890-2_32<br />

ß Springer 2009


8 32<br />

Fe–Ti–V<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

Metastable / high pressure phases<br />

(εFe) hP2 a = 246.8 at 25˚C, 13 GPa [Mas2]<br />

P63/mmc Mg<br />

c = 396.0<br />

Martensite tI4<br />

I4/mmm<br />

- [Mas2]<br />

α’ cP2<br />

Pm3m<br />

CsCl<br />

- -<br />

. Table 3<br />

Invariant Equilibria<br />

Reaction T [˚C] Type <strong>Phase</strong><br />

Fe<br />

Composition (at.%)<br />

Ti V<br />

L Ð FeTi + λ + α 1350 E1 L 36 38 28<br />

FeTi + (βTi,Fe) Ð (αTi) + λ > 590 U1 - - - -<br />

. Table 4<br />

Investigations of the Fe-Ti-V Materials Properties<br />

Reference<br />

Method / Experimental<br />

Technique Type of Property<br />

[1959Cin] Hardness Hardness<br />

[1960Tsi] Hardness Hardness<br />

[1967Mas] NMR Nuclear spin-lattice relaxation times, specific heat<br />

measurements<br />

[1987Pri] Hardness Hardness<br />

[1995Sin] XRD, hydrogen adsorption <strong>and</strong><br />

desorption<br />

Hydrogenation characteristics<br />

[1997Miy] Hydrogen dissociation pressure Hydrogenation characteristics<br />

[1998Fuk] TEM Swelling behavior on neutron irradiation<br />

[1999Ver] Hydrogen absorption Hydrogenation characteristics<br />

DOI: 10.1007/978-3-540-70890-2_32 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 4 (continued)<br />

Reference<br />

Method / Experimental<br />

Technique Type of Property<br />

[2003Yam] Torsion magnetic balance <strong>and</strong><br />

NMR studies<br />

Fe–Ti–V 32<br />

Magnetic phase diagram of Ti(Fe 1–xV x) 2,Néel<br />

temperature<br />

[2004Ito] Hydrogen absorption Hydrogenation characteristics<br />

[2004Li] TEM <strong>and</strong> tensile <strong>and</strong> charpy tests Mechanical properties in relation to<br />

microstructure<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_32<br />

ß Springer 2009


10 32<br />

Fe–Ti–V<br />

. Fig. 1<br />

Fe-Ti-V: Tentative reaction scheme<br />

DOI: 10.1007/978-3-540-70890-2_32 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 2<br />

Fe-Ti-V. Tentative liquidus surface projection<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–V 32<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_32<br />

ß Springer 2009


12 32<br />

Fe–Ti–V<br />

. Fig. 3<br />

Fe-Ti-V. Calculated liquidus surface projection<br />

DOI: 10.1007/978-3-540-70890-2_32 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 4<br />

Fe-Ti-V. Isothermal section at 25˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–V 32<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_32<br />

ß Springer 2009


14 32<br />

Fe–Ti–V<br />

. Fig. 5<br />

Fe-Ti-V. Isothermal section at 800˚C<br />

DOI: 10.1007/978-3-540-70890-2_32 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 6<br />

Fe-Ti-V. Isothermal section at 1000˚C<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–V 32<br />

15<br />

DOI: 10.1007/978-3-540-70890-2_32<br />

ß Springer 2009


16 32<br />

Fe–Ti–V<br />

References<br />

[1954Luc] Lucas, W.R., Fishel, W.P., “γ Loop Studies in the Iron-Vanadium <strong>and</strong> the Iron-Vanadium-Titanium<br />

<strong>Systems</strong>”, Trans. ASM, 46, 277–291 (1954) (<strong>Phase</strong> Relations, Experimental, 9)<br />

[1954Sto] Stone, L., Margolin, H., “The Ti-V-Fe <strong>and</strong> Ti-Al-Fe <strong>Systems</strong>”, U.S. At. Energy Comm. Pub. AD-43730,<br />

1–72 (1954), Nucl. Sci. Abst., No. 172, 10, 23–24 (1956) as quoted by [1987Rag1, 1987Rag2]<br />

[1958Ell] Elliott, R.P., Rostoker, W., “The Occurrence of Laves-Type <strong>Phase</strong>s Among Transition Elements”, Trans.<br />

ASM, 50, 617–633 (1958) (<strong>Phase</strong> Relations, Calculation, Review, 27)<br />

[1959Cin] Cin-Hua, B., Kornilov, I.I., “<strong>Phase</strong> Diagram of the TiFe 2-V System”, Izv. Akad. Nauk SSSR, Otdel. Tekh.<br />

Nauk, Met. i Toplivo, 6, 110–112 (1959) (in Russian) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental,<br />

Mechan. Prop., Morphology, 6)<br />

[1960Tsi] Tsin-Kua, Bi, Kornilov, I.I., “The <strong>Phase</strong> Diagram of the TiFe-V System”, Russ. J. Inorg. Chem., 5(4),<br />

434–436 (1960) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, 5)<br />

[1961Chi] Ch’ing-hua, Pi, Kornilov, I.I., “Equilibrium Diagram of the Ti-V-TiFe <strong>Ternary</strong> System”, Russ. J. Inorg.<br />

Chem., 6(6), 694–696 (1961) translated from Zh. Neorg. Khim., 6(6), 1351–1354 (1961) (<strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Experimental, 5)<br />

[1961Cin] Cin-Hua, P., Kornilov, I.I., “<strong>Phase</strong> Diagram of the Ti-V-Fe System”, Trudy. Inst. Metall. A.A. Baikova,<br />

Akad. Nauk SSSR, 8, 54–57 (1961) (in Russian) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, 12)<br />

[1967Mas] Masuda, Y., Nishioka, M., Watanabe, N., “Nuclear Magnetic Resonance <strong>and</strong> Specific Heat<br />

Measurements of Transition Metals <strong>and</strong> <strong>Alloy</strong>s - Ti-V-Fe <strong>and</strong> Zr-Nb-Mo <strong>Systems</strong>”, J. Phys. Soc. Jpn.,<br />

22(1), 238– (1967) (Experimental, Magn. Prop., Thermodyn., 33)<br />

[1981Mur] Murray, J.L., “The Ti-V (Titanium-Vanadium) System”, Bull. <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2(1), 48–55 (1981)<br />

(Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, Thermodyn., 80)<br />

[1981Nak] Nakano, O., Sasano, H., Suzuki, T., Kimura, H., (in Japanese), Nippon Kinzoku Gakkaishi, 45, 653–660<br />

(1981) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations) as quoted in [Mas2]<br />

[1984Ere] Eremenko, V.N., Tretiyachenko, L.A., “<strong>Ternary</strong> <strong>Systems</strong> with Titanium <strong>and</strong> Transitions Metals of IV-VIII<br />

Groups of the Periodic Table” (in Russian), Diag. Sost. Mat., Eremenko, V.N. (Ed.), Naukova Dumka,<br />

Kiev, 3–20 (1984) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Review, 63)<br />

[1987Pri] Prima, S.B., Tretiyachencko, L.A., “Area of Homogeniety of Laves <strong>Phase</strong> in the Ti-V-Fe <strong>Ternary</strong> System”,<br />

Powder Metall. Met. Ceram., 5, 414–415 (1987), translated from Poroshk. Metall., 5(293), 76–77 (1987)<br />

(<strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, Experimental, Thermodyn., 3)<br />

[1987Rag1] Raghavan, V., “The Fe-Ti-V (Iron-Titanium-Vanadium) System” in “Equilibria in Iron <strong>Ternary</strong> <strong>Alloy</strong>s”,<br />

Institute of Metals, London, 73–84 (1988) (Review, <strong>Phase</strong> Relations, <strong>Phase</strong> Diagram, #, 10)<br />

[1987Rag2] Raghavan, V., “Section I. The Fe-Ti-V (Iron-Titanium-Vanadium) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of<br />

<strong>Ternary</strong> Iron <strong>Alloy</strong>s”, Ind. Inst. Techn. Delhi, 1, 73–84 (1987) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Review, 10)<br />

[1988Kum] Kumar, K.C. Hari, Raghavan, V., “Fcc-Bcc Equilibrium in <strong>Ternary</strong> Iron <strong>Alloy</strong>s”, J. <strong>Phase</strong> <strong>Diagrams</strong>, 4(1),<br />

53–71 (1988) (Review, <strong>Phase</strong> Relations, Calculation) as quoted by [1993Rag]<br />

[1989Wei] Wei, F., Flower, H.M., “<strong>Phase</strong> Separation Reactions in Ti-50V <strong>Alloy</strong>s”, Mater. Sci. Technol., 5(12),<br />

1172–1177 (1989) (<strong>Phase</strong> Relations, Experimental, 15)<br />

[1991Hua] Huang, W., “A Thermodynamic Evaluation of the Fe-V-C System”, Z. Metallkd., 82(5), 391–401 (1991)<br />

(<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 54)<br />

[1993Rag] Raghavan, V., “Fe-Ti-V (Iron-Titanium-Vanadium)”, J. <strong>Phase</strong> Equilib., 14(5), 632–633 (1993) (<strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, Review, 3)<br />

[1995Sin] Singh, Ar.K., Singh, Aj.K., Srivastava, O.N., “On the Synthesis, Characterisation <strong>and</strong> Hydrogenation<br />

Behaviour of V-Ti-Fe <strong>Alloy</strong>”, Int. J. Hydrogen Energy, 20(8), 647–651 (1995) (Experimental, Phys.<br />

Prop., 3)<br />

[1997Miy] Miyamura, H., Sakai, T., Kuriyama, N., Tanaka, H., Uehara, I., Ishikawa, H., “Hydrogenation <strong>and</strong> <strong>Phase</strong><br />

Structure of Ti-Fe-V <strong>Alloy</strong>s”, J. <strong>Alloy</strong>s Compd., 253–254, 232–234 (1997) (Experimental, Phys. Prop., 6)<br />

[1998Fuk] Fukumoto, K., Kimura, A., Matsui, H., “Swelling Behavior of V-Fe Binary <strong>and</strong> V-Fe-Ti <strong>Ternary</strong> <strong>Alloy</strong>s”,<br />

J. Nucl. Mater., 258–263(2), 1431–1436 (1998) (Crys. Structure, Experimental, Morphology, <strong>Phase</strong><br />

Relations, 8)<br />

[1998Ran] R<strong>and</strong>, M.H., “System Fe-Ti” in “Thermochemical Database for Light Metal <strong>Alloy</strong>s”, Ansara, H., Dinsdale,<br />

A.T., R<strong>and</strong>, M.H., (Eds.), Vol. 2, European Commission, Brussels <strong>and</strong> Luxembourg, 205–207 (1998)<br />

(<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 0)<br />

DOI: 10.1007/978-3-540-70890-2_32 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ti–V 32<br />

17<br />

[1998Sau] Saunders, N., “System Ti-V” in “Thermochemical Database for Light Metal <strong>Alloy</strong>s”, Ansara, H., Dinsdale,<br />

A.T., R<strong>and</strong>, M.H., (Eds.), Vol. 2, European Commission, Brussels <strong>and</strong> Luxembourg, 297–298 (1998)<br />

(<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Thermodyn., Assessment, 0)<br />

[1999Ver] Verbetsky, V.N., Mitrokhin, S.V., Movlaev, E.A., “Synthesis <strong>and</strong> Properties of Multicomponent<br />

Hydrides with High Density”, J. <strong>Alloy</strong>s Compd., 293–295, 421–425 (1999) (Experimental, Phys. Prop., 8)<br />

[2002Boz] Bozzolo, G.H., Noebe, R.D., Amador, C., “Site Occupancy of <strong>Ternary</strong> Additions to B2 <strong>Alloy</strong>s”,<br />

Intermetallics, 10, 149–159 (2002) (Calculation, Crys. Structure, Theory, 27)<br />

[2003Yam] Yamada, Y., Masuda, M., Ishitani, S., Nakamura, T., “Magnetic Properties of C14 Laves <strong>Phase</strong> Ti<br />

(Fe 1–xV x) 2 <strong>and</strong> Ti(Fe 1–xCr x) 2 with x < 0.5”, J. Magn. Mag. Mater., 265, 321–330 (2003) (Experimental,<br />

Phys. Prop., 9)<br />

[2004Ito] Ito, S., Yamashita, D., Komiya, K., Yukawa, H., Morinaga, M., “Compositional Dependence of <strong>Phase</strong><br />

Stability of γ <strong>Phase</strong> Formed in Vanadium <strong>Alloy</strong>s”, J. <strong>Alloy</strong>s Compd., 364(1–2), 137–140 (2004) (Crys.<br />

Structure, Experimental, Interface Phenomena, Kinetics, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 7)<br />

[2004Li] Li, Z., Wilson, J.A., Crowther, D.N., Mitchell, P.S., Craven, A.J., Baker, T.N., “The Effects of Vanadium,<br />

Niobium, Titanium <strong>and</strong> Zirconium on the Microstructure <strong>and</strong> Mechanical Properties of Thin Slab Cast<br />

Steels”, ISIJ Int., 44(6), 1093–1102 (2004) (Crys. Structure, Experimental, Morphology, 35)<br />

[2005Ust] Ustinovshikov, Y., Pushkarev, B., Sapegina, I., “<strong>Phase</strong> Transformations in <strong>Alloy</strong>s of the Fe-V System”,<br />

J. <strong>Alloy</strong>s Compd., 398, 133–138 (2005) (Crys. Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental,<br />

9)<br />

[2006Oka] Okamoto, H., “Fe-V (Iron-Vanadium)”, J. <strong>Phase</strong> Equilib. Diff., 27(5), 542 (2006) (Review, <strong>Phase</strong><br />

Diagram, <strong>Phase</strong> Relations, 3)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_32<br />

ß Springer 2009


Iron – Titanium – Yttrium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Natalia Kol’chugina<br />

Introduction<br />

In searching for new materials for permanent magnets, the Fe-Ti-RE systems, <strong>and</strong>, in particular,<br />

Fe rich rare-earth intermetallic compounds R(Ti,Fe) 12 <strong>and</strong> R 3(Ti,Fe) 29 are of interest.<br />

Thus, the studies of the systems are focused to the compounds. They are promising materials<br />

for powerful (<strong>and</strong> relatively cheap because of the low rare-earth content) permanent magnets<br />

<strong>and</strong>, therefore they have been extensively studied in the last two decades. The aforementioned<br />

compounds have specific features of crystal <strong>and</strong> magnetic structures <strong>and</strong> are convenient<br />

subject for the investigation of fundamental problems in the physics of magnetic phenomena.<br />

RTiFe11 (τ1 phase with R = Y) series is of interest as c<strong>and</strong>idates for high-temperature<br />

permanent magnets owing to the high Curie temperatures, saturation magnetization <strong>and</strong><br />

magnetocrystalline anisotropy. Recently, the study on R 3(Ti,Fe) 29 (τ 2 phase with R =Y)<br />

intermetallics attract more attention due to the discovery of favorable magnetic properties<br />

of Sm 3(Ti,Fe) 29N x. This new family of intermetallic compounds has attracted a special<br />

attention because the introduction of the interstitial atoms H, N <strong>and</strong> C led to remarkable<br />

improvements in their magnetic properties.<br />

The compounds with Y are of practical importance from the fundamental point of view<br />

since Y being non-magnetic, allows the properties of Fe sublattice to be directly isolated.<br />

A number of studies was performed for single-crystal samples to assess properties, namely, the<br />

anisotropy of iron sublattice. Thus, most works done on the Fe-Ti-Y system concern structural<br />

properties of the alloys motivated by research in magnetic properties.<br />

There are only two articles on the phase equilibria in the Fe-Ti-Y system in which the<br />

isothermal sections at 500˚C [1994Lin] <strong>and</strong> 600˚C [1997Liu] were constructed. These works<br />

have been reviewed by [2000Rag, 2001Rag].<br />

In a number of works, hydrogenation <strong>and</strong> nitrogenation (with the formation of hydrides<br />

<strong>and</strong> nitrides, respectively) techniques are used as procedures that allow the magnetic properties<br />

of Fe-Ti-Y alloys <strong>and</strong> compounds to be changed <strong>and</strong> improved.<br />

Investigations of the Fe-Ti-Y phase relations, structure identifications are given in Table 1.<br />

Binary <strong>Systems</strong><br />

Fe–Ti–Y 33<br />

1<br />

The binary Fe-Ti, Fe-Y <strong>and</strong> Ti-Y systems are accepted from [Mas2]. The lattice parameters<br />

were taken from [1987Mur] for the binary Fe-Ti compounds <strong>and</strong> from [1992Zha] for the<br />

binary Fe-Y compounds.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_33<br />

ß Springer 2009


2 33<br />

Fe–Ti–Y<br />

Solid <strong>Phase</strong>s<br />

There are two ternary phases established in the system. They are designated in the literature<br />

as 1:12 (τ 1) <strong>and</strong> 3:29 (τ 2). The crystallographic data of the Fe-Ti-Y phases are listed in Table 2.<br />

Theτ 1 phase exists up to 1200˚C [1994Lin]. It exhibits ferromagnetic ordering at T C =<br />

247˚C <strong>and</strong> uniaxial magnetic anisotropy.<br />

For the τ2 phase, [1994Li] have reported that it crystallizes in the monoclinic symmetry<br />

with alternate staking of Th 2Zn 17 (rhombohedral) <strong>and</strong> ThMn 12 (tetragonal) type segments.<br />

Based on T C <strong>and</strong> magnetization measurements, the authors have supposed that the 3 : 29 type<br />

structure is intermediate between 2 : 17 <strong>and</strong> 1 : 12 type structures. Based on measurements of<br />

magnetic properties, [1996Tel] supposed that the τ 2 phase transforms into the τ 1 <strong>and</strong> Y 2Fe 7<br />

phases with decreasing temperature. In [1997Liu], the τ 2 phase was not found at 600˚C.<br />

According to [2000Kim], the phase is formed at a high temperature, above at least 950˚C.<br />

Thus, the τ2 phase exists within a narrow high-temperature range. The compound is ordered<br />

magnetically at 115˚C.<br />

The existence of another ternary phase (YTi 1.1Fe 8.6) was found in [1993Rev]. The authors<br />

showed that the phase has a defect CeMn 6Ni 5 type structure; however, this phase displays a<br />

substantial deviation from the stoichiometric 1 : 11 composition.<br />

The substitution of Ti for Fe in Y 2Fe 17 (to the formation of the Y 2TiFe 16 stoichiometry)<br />

<strong>and</strong> in YFe 3 (to the formation of the YTi 0.5Fe 2.5 stoichiometry) is considered in [2001Ell] <strong>and</strong><br />

[2006Sor], respectively. According to [1994Lin], the solubility of Ti in Y 2Fe 17 is 1.5 at.%.<br />

Isothermal Sections<br />

Isothermal sections of the Fe-Ti-Y system were studied in [1997Liu] (at 600˚C) <strong>and</strong> [1994Lin]<br />

(at 500˚C). The triangulations at 500 <strong>and</strong> 600˚C are identical. Figure 1 shows the isothermal<br />

section at 600˚C with some corrections according to the accepted binary systems.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

Two compounds τ 1 <strong>and</strong> τ 2 are magnetic phases; their properties <strong>and</strong> properties of alloys with<br />

close compositions are given in Table 3.<br />

Compositions subjected to hydrogenation <strong>and</strong> nitrogenation also indicated in Table 3<br />

since these procedures may be of importance when forming the magnetic properties of<br />

materials based on these compounds.<br />

Miscellaneous<br />

Pure RFe 12 compounds do not exist. The substitution of a Telement (T = transition metal) for<br />

Fe stabilizes the ThMn 12 structure. The stabilizing effect of Ti doping on the formation of the<br />

1:12 phase is considered in [2005Qia]. Calculations <strong>and</strong> simulation of the YTiFe 11 crystal<br />

structure are performed on the basis of interatomic pair potentials (calculated lattice parameters<br />

are given in Table 2); for the YTi4Fe8 stoichiometry, local magnetic moments for Fe <strong>and</strong><br />

Y atoms in different sites were calculated. The site preference of foreign atoms in τ1 <strong>and</strong> τ2 is<br />

DOI: 10.1007/978-3-540-70890-2_33 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


considered in [2000Gir] <strong>and</strong> [2001Wan1], respectively. According to a thermodynamic model<br />

suggested in [2000Gir] <strong>and</strong> calculations [2001Wan1] (performed using the cohesive energy<br />

as a criterion), Ti atoms occupy 8i sites; calculated lattice parameters of τ 1 are also given in<br />

Table 3. For Ti in τ 2,4i <strong>and</strong> 4g sites are preferential [2001Wan1].<br />

Substitution of Co for Fe in τ 1 increases its magnetization <strong>and</strong> T C at the expense of the<br />

anisotropy; the effect of other substations (V, Mo, Ni, Cu) for Fe is considered using a lattice<br />

inversion method <strong>and</strong> acquiring the effective interatomic potentials [2001Wan1].<br />

Interstitial atoms are introduced into the crystals to modify the magnetic properties. An<br />

increase in the saturation magnetization upon hydrogenation results from the volume expansion.<br />

Moreover, the hydrogenation enhances the easy c-axis anisotropy. Hydrogenation<br />

increases the magnetization <strong>and</strong> Curie temperature of τ 1 [2001Ter], [2005Ter].<br />

The insertion of nitrogen (at 500˚C) in τ 1 (to 0.5 N atoms per f.u.) does not change the<br />

tetragonal structure, slightly increases the unit cell volume [1991Yan].<br />

Interstitial modification of τ 2 by H, N, <strong>and</strong> C is reported to increase its magnetization <strong>and</strong><br />

Curie temperature. The nitrogenation of the phase increases the magnetic properties <strong>and</strong><br />

decreases the anisotropy field [2000Kim].<br />

. Table 1<br />

Investigations of the Fe-Ti-Y <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method/Experimental Technique<br />

[1988Moo] Arc melting of at least 99.9% purity<br />

components, annealing at 850˚C for 2-3<br />

weeks / XRD / magnetization<br />

measurements<br />

[1988Moz] Arc melting, annealing at 950˚C for 72 h /<br />

XRD, neutron diffraction, magnetic<br />

measurements<br />

[1988Obb] Levitation melting 99.9% Y, 99.5 Ti <strong>and</strong> Fe,<br />

annealing at 850˚C for 2 weeks / XRD, TGA<br />

[1989Zha] R.f. (radio frequency) induction melting of<br />

99.95% Y, 99.95% Ti, <strong>and</strong> 99.99% Fe,<br />

annealing, / X-ray diffraction,<br />

thermomagnetic analysis, magnetic<br />

measurements, hydrogenation<br />

[1993Rev] Arc melting of 99.9% purity components,<br />

annealing at 1050˚C for 3 weeks, water<br />

quenching/XRD, neutron diffraction,<br />

magnetic measurements, hydrogenation<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–Y 33<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

YTi xFe 12–x with x = 1.2 corresponds to the<br />

correct stoichiometry of the ThMn 12-type<br />

structure, space group I4/mmm; for<br />

YTi 1.2Fe 10.8 the lattice parameters were<br />

determined, TC = 247˚C.<br />

YTiFe 11 <strong>and</strong> YTiFe 10 stoichiometries have<br />

the ThMn 12 type structure.<br />

For YTiFe 10, <strong>and</strong> YTiFe 11 stoichiometries,<br />

the lattice parameters were determined.<br />

3<br />

τ1 (with the YTiFe11 stoichiometry) with<br />

the ThMn 12 type structure was prepared;<br />

the lattice parameters were determined.<br />

YTi 0.5Fe 9.5 (1:12 + 2:17), YTi 2Fe 9 (1:11 +<br />

TiFe2), YTiFe9 (1:12 + 1:11), YTi1.5Fe8 (1:11),<br />

YTi 1.7 Fe 7.5 (1:11 + TiFe 2 + YFe 3), YTi 2Fe 7<br />

(TiFe 2 +Y 6Fe 23 + YFe 3); for YTi 1.1Fe 8.6, a<br />

defect CeMn 6Ni 5 type structure, space<br />

group P4/mbm, a = 820.9 pm,<br />

c = 481.4 pm.<br />

DOI: 10.1007/978-3-540-70890-2_33<br />

ß Springer 2009


4 33<br />

Fe–Ti–Y<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1994Li] Arc melting of ≥99.9% purity<br />

components, annealing at 960˚C for 3<br />

days, water quenching / XRD, SEM, TGA in<br />

the presence of magnetic field,<br />

Mössbauer spectroscopy<br />

[1994Lin] High-frequency induction melting of<br />

99.9% Fe, 99.8 Ti, <strong>and</strong> 99,9% Y, annealing<br />

at 900˚C for 30 days, cooling to 500˚C <strong>and</strong><br />

annealing for 5 days, ice-water quenching<br />

/ XRD of powders annealed at 500˚C for 5<br />

days <strong>and</strong> quenched in liquid nitrogen,<br />

DTA to 1200˚C (for samples annealed at<br />

500 <strong>and</strong> 1050˚C), SEM, EDX<br />

[1996Has] Arc melting of 99.9% purity components,<br />

annealing at 600-1150˚C for 2-100 h (for<br />

different rare-earth metals)<br />

[1996Tel] Induction melting of Y, Ti, <strong>and</strong> Fe of 99.9%<br />

purity, annealing at 900˚C for 2 weeks /<br />

XRD, magnetic measurements<br />

[1996Val] Arc melting, annealing at 1100-1200˚C for<br />

3 days, quenching in water / XRD,<br />

thermomagnetic analysis, magnetic<br />

measurements<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

τ 2 was successfully prepared from the<br />

Y 9Ti 5Fe 86 composition (20% of τ 1 impurity<br />

phase); the lattice parameters were<br />

determined.<br />

Isothermal section at 500˚C. Only one<br />

ternary τ1 phase with the ThMn12-type<br />

structure is observed. Isothermal section<br />

consists of ten single-phase, eighteen<br />

two-phase, <strong>and</strong> nine three-phase regions.<br />

The maximum solubility of Ti in-Fe <strong>and</strong><br />

Y 2Fe 17 at this temperature is 3.0 <strong>and</strong> 1.5<br />

at.%, respectively. The lattice parameters<br />

were determined; the phase is stable to<br />

1200˚C.<br />

A nonstoichiometric compound R 2(M,<br />

Fe) 17+δ (δ = 1.0-4.0) can be formed for<br />

R = Y <strong>and</strong> M = Ti with a hexagonal<br />

structure, space group P62m that exists in<br />

the intermediate region between 2:17<br />

<strong>and</strong> 1:12. The nonstoichiometry of this<br />

compound can be attributed to the<br />

diversity in the atomic orders in the c<br />

planes.<br />

Y 3Ti 1.6Fe 27.4 (single-crystal) powder<br />

(20 μm) with the monoclinic R3(Ti,Fe)29<br />

type structure, space group P2 1/c or A2/m<br />

was prepared. The lattice parameters<br />

were determined. The formation of the<br />

compound can be understood by τ 2 +<br />

Y 2Fe 17 + τ 1 the transformation.<br />

For Y 3TiFe 29–x stoichiometry with x =1<br />

<strong>and</strong> 2 (containing a secondary phase), the<br />

lattice parameter were determined.<br />

DOI: 10.1007/978-3-540-70890-2_33 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[1997Liu] 99.95% ingot Y, 99.9 electrolytic Fe, <strong>and</strong><br />

99.5 industrial grade Ti / diffusion couple<br />

technique (annealing at 600˚C for 500 h)<br />

<strong>and</strong> equilibrium alloying method (arc<br />

melting) + annealing at 600˚C for 500-700<br />

h + quenching into liquid nitrogen /<br />

optical microscopy, EPMA, XRD<br />

[1997Yan] Fourfold arc melting of 99.9% purity<br />

components, annealing at 960˚C for 3<br />

days, water quenching/magnetic<br />

measurements/XRD, magnetic<br />

measurements<br />

[1998And] Induction melting of 99.8% purity Y <strong>and</strong><br />

99.99% purity Fe <strong>and</strong> Ti, remelting in<br />

resistance furnace / XRD dilatometer,<br />

metallography, thermomagnetic analysis<br />

[1999Pao] Threefold arc melting, annealing at 950˚C<br />

for 4 d, water quenching/magnetic<br />

measurements<br />

[1999Sha] Arc melting, annealing at 960-1075˚C,<br />

quenching in ice water/magnetic<br />

measurements, Mössbauer spectroscopy<br />

[2001Ell] Induction melting of > 99% purity<br />

components, annealing at 1150˚C for 20 d<br />

/ XRD, SEM, magnetic measurements<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–Y 33<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

YTi xFe 12–x Isothermal section at 600˚C<br />

(studied compositions (7.2, 22. 73 at.%)<br />

Y - 79, 76.2, 61.2 at.%) Fe – (1.8, 1.8, 3.8 at.<br />

%) Y; coexisting phases Fe 3Y+Fe 23Y 6 +<br />

Fe 2Ti YTiFe 11 +Y 2Fe 17 + -Fe; YFe 2 +-Y+<br />

TiFe 2; Section consists of 11 single-phase,<br />

20 two-phase, <strong>and</strong> 10 three-phase<br />

regions. τ 1 with the YTi 1.2Fe 10.8<br />

stoichiometry is stable at 900˚C, does not<br />

decompose down to 600˚C. τ2 is not<br />

observed at 600˚C.<br />

τ 2 ternary phase with the Nd 3(Ti,Fe) 29 type<br />

structure, A2/m space group. Lattice<br />

parameters were determined for the<br />

Y 3Ti 1.4Fe 27.6 stoichiometry; ρ = 7.22<br />

g·cm –3 . Based on magnetic measurement<br />

data, the decomposition of the phase is<br />

likely to occur at 550-800˚C.<br />

Single-crystal τ 1 phase; temperature<br />

dependence of the lattice parameters was<br />

determined.<br />

3 : 29 monoclinic cell is formed by<br />

alternate stacking of the tetragonal 1 : 12<br />

<strong>and</strong> hexagonal or rhombohedral 2 : 17<br />

units, real composition of the compound<br />

should actually correspond to the<br />

Y 3TiFe 28 stoichiometry.<br />

The τ 2 phase with the Y 3Ti 1.5Fe 27.9<br />

stoichiometry was synthesized <strong>and</strong> the<br />

lattice parameters were determined.<br />

Y2TiFe16 has a hexagonal structure of<br />

Th 2Ni 17 type with the lattice parameters<br />

a = 848.1 pm <strong>and</strong> c = 837.40 pm,<br />

V = 521.62·10 6 pm 3<br />

5<br />

DOI: 10.1007/978-3-540-70890-2_33<br />

ß Springer 2009


6 33<br />

Fe–Ti–Y<br />

. Table 1 (continued)<br />

Reference Method/Experimental Technique<br />

[2000Kim] Arc melting, annealing at 950-1150˚C for<br />

72 h, waster quenching / XRD, magnetic<br />

measurements<br />

[2004Tel] XRD, Mössbauer spectroscopy, magnetic<br />

measurements / nitrogenation<br />

[2006Sor] Arc melting, annealing at 950-1050˚C for<br />

10 d/ XRD, Mössbauer spectroscopy<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong>s<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Temperature/Composition/<strong>Phase</strong> Range<br />

Studied<br />

τ 2 (Y 3(Ti 0.04Fe 0.96) 29 stoichiometry) has the<br />

Nd 3(Ti,Fe) 29 type structure (P2I/c space<br />

group); the sample was not single-phase.<br />

The lattice parameters were determined<br />

for the Y 3Ti 1.6Fe 27.4N 2.6 stoichiometry.<br />

For the YTi 0.5Fe 2.5 stoichiometry, Ti<br />

substitutes for Fe at 6c sites.<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

(ωTi) hP3 a = 462.5 at 25˚C, HP > 1 atm [Mas2]<br />

P6/mmm<br />

ωTi<br />

c = 281.3<br />

(βTi) cI2 a = 330.65 [Mas2]<br />

1670 - 882 Im3m<br />

W<br />

(αTi) hP2 a = 295.06 at 25˚C [Mas2]<br />

< 882 P63/mmc Mg<br />

c = 468.35<br />

(αδFe) cI2<br />

Im3m<br />

(δFe)<br />

1538 - 1394<br />

W a = 293.15 at 1390˚C [V-C2, Mas2]<br />

(αFe)<br />

< 912<br />

a = 286.65 at 25˚C [Mas2]<br />

(γFe) cF4 a = 364.67 at 915˚C [V-C2, Mas2]<br />

1394 - 912 Fm3m<br />

Cu<br />

(βY) cI2 a = 407 [Mas2]<br />

1522 - 1478 Im3m<br />

W<br />

(αY) hP2 a = 364.82 at 25˚C [Mas2]<br />

< 1478 P63/mmc Mg<br />

c = 573.18<br />

DOI: 10.1007/978-3-540-70890-2_33 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Ti–Y 33<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

βY2Fe17 hP38 a = 846.3 [1992Zha]<br />

1400 - ? P63/mmc Th2Ni17 c = 828.2<br />

αY2Fe17 hR57 a = 846.0 [1992Zha]<br />


8 33<br />

Fe–Ti–Y<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

* τ1, Y(Ti,Fe) 12<br />

(YTiFe11 stoichiometry)<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

tI26 a = 850.9 YTi 1.2Fe 10.8<br />

I4/mmm c = 475.7 [1988Moo]<br />

ThMn 12<br />

> 1200 a = 850.93 V = 347.37·10 6 pm 3<br />

c = 479.74 [1988Moz]<br />

a = 852.2 for YTiFe10<br />

c = 479.6 [1988Obb]<br />

a = 851.8 for YTiFe 11<br />

c = 479.7 [1988Obb]<br />

a = 848.6 [1988Yan]<br />

c = 478.4<br />

a = 849.6 V = 345.246·10 6 pm 3<br />

c = 478.3 [1989Zha]<br />

a = 850.3 V = 347·10 6 pm 3<br />

c = 480 [1991Yan]<br />

a = 851.4 [1994Lin]<br />

c = 479.8<br />

a = 847.97 V = 343.08·10 6 pm 3<br />

c = 477.13 [1997Obb]<br />

a = 850.9 V = 346.6·10 6 pm 3<br />

c = 478.3 [1998Nik2], [1999Nik], [2001Nik]<br />

[2001Ter]<br />

a = 864.9 calculated for YTiFe 11<br />

c = 480.5 [2001Wan1]<br />

a = 849.3 to 851.8 V = 344.8-348.1·10 6 pm 3<br />

c = 478.0 to 479.8 for YTi xFe 12-x with x = 0.85-1.30<br />

[2001Wan2]<br />

a = 853.6 calculated for YTiFe 11 [2005Qia]<br />

c = 481.4<br />

DOI: 10.1007/978-3-540-70890-2_33 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

τ 2,Y 3(Ti,Fe) 29 mP* a = 1060.68 for Y 3(Ti xFe 1–x) 29 [1994Li]<br />

950 - 1050 P2 1/c b = 852.24<br />

or c = 969.26<br />

A2/m β = 97.153˚<br />

Nd 3(Fe,Ti) 29<br />

a = 1059.3 for Y 3Ti 1.6Fe 27.4 [1996Tel]<br />

b = 850.2<br />

c = 966.6<br />

β = 97.153˚<br />

a = 1060 for Y 3Ti 1Fe 28 [1996Val]<br />

b = 851<br />

c = 971<br />

β = 97.2˚<br />

a = 1062 for Y 3Ti 2Fe 27 [1996Val]<br />

b = 850<br />

c = 973<br />

β = 97.1˚<br />

a = 1056 for Y 3Ti 1.4Fe 27.6 [1997Yan]<br />

b = 850<br />

c = 968<br />

β = 96.76˚<br />

a = 1058.0 for Y3Ti1.5Fe27.5 [1999Sha]<br />

b = 850.81<br />

c = 967.61<br />

β = 97.052˚<br />

. Table 3<br />

Investigations of the Fe-Ti-Y Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1988Moo] Faraday method For YTi1.2Fe10.8 stoichiometry, TC = 247˚C.<br />

[1988Moz] Thermomagnetic analysis, singular point<br />

detection<br />

[1988Obb] Faraday torque, axial extraction<br />

magnetometer / hydrogenation<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–Y 33<br />

9<br />

YTiFe 11: T C = 245˚C, H a = 37 kOe (29.45<br />

kA·m –1 ); YTiFe 10: T C = 238˚C, H a = 21 kOe<br />

(16.7 kA·m –1 ); temperature dependence<br />

of magnetic anisotropy field is available.<br />

YTiFe 10: T C = 257˚C, YTiFe 11: T C = 262˚C;<br />

Increase in the Curie temperature <strong>and</strong> Fe<br />

moment upon hydrogenation is<br />

observed.<br />

DOI: 10.1007/978-3-540-70890-2_33<br />

ß Springer 2009


10 33<br />

Fe–Ti–Y<br />

. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1988Yan] Neutron diffraction, electron microscopy,<br />

thermomagnetic analysis<br />

[1989Zha] Faraday balance, vibrating-sample<br />

magnetometer<br />

[1992Szy] Bridgman technique / XRD, magnetooptic<br />

polar Kerr effect, Bitter technique<br />

[1993Kou] Ac susceptibility measurements, singular<br />

point technique, high-field<br />

magnetization<br />

[1993Rev] SQUID magnetometer, home-built<br />

magnetometer based on Faraday<br />

method<br />

Y(Ti,Fe) 12 is ferromagnetic at room<br />

temperature with T C = 252˚C; K 1 =<br />

0.908 ·10 7 erg·cm –3<br />

Increase in the Curie temperature <strong>and</strong><br />

anisotropy field for τ 1 by hydrogenation:<br />

T C from 247 to 294˚C <strong>and</strong> anisotropy field<br />

H a from 45 (35.82 kA·m –1 ) to 60 kOe<br />

(47.76 kA·m –1 ) at room temperature <strong>and</strong><br />

increase on the saturation magnetization<br />

as well.<br />

Single-crystal YTi1.2Fe0.8, TC = 251˚C, Ms<br />

= 890 G (0.089 T), domain wall energy<br />

γ th = 7.5 erg·cm –2 .<br />

τ1, temperature dependence of the<br />

anisotropy field, H a = 4.05 T (at 4.2 K) <strong>and</strong><br />

2.23 T (at room temperature).<br />

YTi1.1Fe8.6 is non-magnetic (very low<br />

spontaneous magnetization),<br />

temperature dependence of magnetic<br />

moment (in the presence of 1% of Y6Fe23<br />

impurity is available.<br />

[1994Li] TGA in the presence of magnetic field For τ2, TC = 113˚C; the average Fe<br />

magnetic moment is 1.3 μB. [1996Cou] XRD, TGA Model for prediction of the easy<br />

magnetization direction in the R3(Fe,M) 29<br />

compounds based on the XRD data for<br />

Y3(Ti5.2Fe94.8) 29.<br />

[1996Tel] Pulsed-field magnetometry / singular<br />

point detection, spinning-samplemagnetic-alignment<br />

method<br />

[1996Val] Thermomagnetic analysis, magnetic<br />

measurements<br />

[1997Obb] Neutron diffraction, Mössbauer<br />

spectroscopy / magnetization <strong>and</strong> ac<br />

magnetic susceptibility measurements,<br />

hydrogenation<br />

Temperature dependence of ac<br />

susceptibility, temperature dependence<br />

of the anisotropy field from 4.2 to<br />

T C = 115˚C; EMD is in the monoclinic<br />

(204) plane has an angle of 60˚ to the<br />

c-axis.<br />

For Y 3TiFe 28, T C = 102˚C <strong>and</strong><br />

M s = 51.52 μ B/f.u. For Y 3Ti 2Fe 27, T C =<br />

125˚C, M s = 45.90 μ B/f.u.<br />

Magnetization curves, H a = 5.7 T at 4.2 K<br />

<strong>and</strong> 4.8 T at room temperature. Changes<br />

in the magnetic anisotropy upon<br />

hydrogenation are considered.<br />

DOI: 10.1007/978-3-540-70890-2_33 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1997Yan] Thermomagnetic analysis, vibratingsample<br />

magnetometer<br />

For Y 3Ti 1.4Fe 27.6, the ordering<br />

temperature is 127˚C; the saturation<br />

magnetization at 4.2 K <strong>and</strong> room<br />

temperature is 52.1 <strong>and</strong> 38.0 μ B/f.u.,<br />

respectively. H a = 5.2 T (at 4.2 K).<br />

Temperature dependence of<br />

magnetization, isotherms of<br />

magnetization <strong>and</strong> SPD signal were<br />

measured; saturation magnetization was<br />

also calculated.<br />

[1998And] Thermomagnetic analysis For τ1, spontaneous volume<br />

magnetostriction at 5 K is 9.4 ·10 –3 ;<br />

temperature dependences of linear<br />

magnetostriction strain <strong>and</strong> volume<br />

magnetostriction strain were<br />

determined.<br />

[1998Nik1] XRD / X-ray Laue method/vibratingsample<br />

magnetometer, torque <strong>and</strong><br />

magnetization measurements<br />

[1998Nik2] XRD, Laue X-ray technique / vibratingsample<br />

magnetometer, torsion<br />

magnetometer, magnetization<br />

measurements, hydrogenation<br />

[1999Nik] XRD/ torque <strong>and</strong> pendulum<br />

magnetometer, hydrogenation<br />

[1999Pao] Thermomagnetic analysis, singular point<br />

technique<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–Y 33<br />

Temperature dependences of magnetic<br />

anisotropy constants for τ 1 are<br />

considered; EMD is parallel to the<br />

tetragonal c-axis.<br />

11<br />

For single-crystal τ 1, temperature<br />

dependences of the magnetic anisotropy<br />

constants K 1 <strong>and</strong> K 2, torque curves,<br />

magnetization curves, temperature<br />

dependences of saturation<br />

magnetization, are given;<br />

K 1 = 0.85 · 10 7 erg·cm –3 <strong>and</strong><br />

K 2 = 0.032 · 10 7 erg·cm –3 .<br />

Temperature dependences of saturation<br />

magnetization <strong>and</strong> anisotropy constants<br />

K 1 <strong>and</strong> K 2, torque curves are given; T C =<br />

265˚C, K 1 = 0.85 · 10 7 erg·cm –3 , <strong>and</strong> σ s =<br />

120 emu·g –1 .<br />

For YTi xFe 12–x with 0.8 ≤ x ≤ 1.2, T C =<br />

245˚C. EMD of Y 2Ti xFe 17–x lies in the basal<br />

plane. For Y3(Ti,Fe)29, the {201} direction<br />

being the easy magnetization direction<br />

lies in the a-c plane of the monoclinic<br />

structure; temperature dependence of<br />

the second-order anisotropy constant<br />

was measured.<br />

DOI: 10.1007/978-3-540-70890-2_33<br />

ß Springer 2009


12 33<br />

Fe–Ti–Y<br />

. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[1999Sha] SQUID magnetometer For Y 3Ti 1.5Fe 27.9, T C = 113˚C;<br />

magnetization curves were measured<br />

<strong>and</strong> saturation magnetization was<br />

measured <strong>and</strong> calculated. M s = 178 (5 K)<br />

<strong>and</strong> 138 (at room temperature) emu·g –1 .<br />

[2000Kim] Ac susceptibility measurements,<br />

vibrating-sample magnetometer<br />

[2001Ell] Vibrating-sample magnetometer,<br />

thermomagnetic analysis by Faraday<br />

balance. A new method of<br />

hydrogenation<br />

[2001Kam] Magnetization measurements under<br />

hydrostatic pressure, SQUID<br />

magnetometer<br />

[2001Nik] XRD, Laue X-ray technique/pendulum<br />

<strong>and</strong> torque magnetometer,<br />

hydrogenation, nitrogenation<br />

[2001Ter] XRD/ Mössbauer spectroscopy,<br />

magnetization measurements,<br />

hydrogenation<br />

[2001Wan2] XRD / vibrating-sample magnetometer,<br />

extracting-sample magnetometer,<br />

thermomagnetic analysis<br />

[2002Wan] XRD / thermomagnetic analysis,<br />

vibrating-sample magnetometer, SQUID<br />

magnetometer/thermal expansion<br />

measurements by ‘push-rod’ linear<br />

differential transformer method<br />

For Y 3(Ti 0.04Fe 0.96) 29, easy-cone type<br />

anisotropy, T C = 130˚C, iron<br />

magnetization is 1.87 μB at 4.2 K; σs =<br />

155 Am 2 ·kg –1 ,M s = 52.1 μ B/f.u., H a = 9.0 T.<br />

T C = 127˚C, M s = 105.7 emu·g –1 for<br />

Y2TiFe16.<br />

For τ1, the saturation magnetization up to<br />

9 kbar at 5-300 K was measured.<br />

Single-crystal τ1, Ms = 18.8 (at 4.2 K) <strong>and</strong><br />

16.1 (at room temperature) μ B f.u. –1 , H a =<br />

4 kOe (3.184 kA·m –1 ) (at 4.2 K) <strong>and</strong> 20 kOe<br />

(15.92 kA·m –1 ) (at room temp.).<br />

Single-crystal τ 1,M s = 19.3 μ B f.u. –1 (at 4.2<br />

K); temperature dependence of secondorder<br />

magnetic anisotropy constant, field<br />

dependence of magnetization,<br />

temperature dependence of<br />

spontaneous magnetization were<br />

measured.<br />

For YTi xFe 12–x with x = 0.85, 1.0, 1.1. 1.2,<br />

1.3, EMD is along the c-axis; T C is almost<br />

independent on the Ti content, M s <strong>and</strong><br />

anisotropy field decrease <strong>and</strong> the<br />

lattice parameter increases with<br />

increasing Ti content.<br />

τ 1 exhibits pronounced positive<br />

spontaneous volume magnetostriction<br />

below Curie temperature.<br />

Temperature dependences of the linear<br />

thermal expansion <strong>and</strong> LTE coefficient<br />

were measured.<br />

DOI: 10.1007/978-3-540-70890-2_33 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[2004Tel] Singular point detection / SQUID<br />

magnetometer, nitrogenation<br />

[2005Sko] Optical microscopy, thermomagnetic<br />

analysis, magnetic susceptibility<br />

measurements<br />

[2005Ter] X-ray Laue method / torque <strong>and</strong><br />

capacitance magnetometry,<br />

hydrogenation<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–Y 33<br />

13<br />

Temperature dependences of the<br />

saturation magnetization <strong>and</strong> magnetic<br />

anisotropy constant were determined for<br />

the Y 3Ti 1.6Fe 27.4 stoichiometry <strong>and</strong><br />

Y 3Ti 1.6Fe 27.4N 2.6.<br />

<strong>Alloy</strong>s Y 3TiFe 28, Y 3Ti 2Fe 27, <strong>and</strong> Y 3Ti 3Fe 26<br />

are two-phase; single crystals Y 3Ti 3Fe 33–x<br />

have the tetragonal structure of the<br />

ThMn 12 type. Temperature dependences<br />

of the magnetic susceptibility <strong>and</strong> Curie<br />

temperatures for Y3TixFe29–x <strong>and</strong> Y3Ti3Fex<br />

were measured.<br />

For YTiFe 11–xCo x (0 ≤ x ≤ 3) single crystals,<br />

magnetization <strong>and</strong> torque curves,<br />

temperature <strong>and</strong> compositional<br />

dependences of magnetic anisotropy<br />

constant are given.<br />

DOI: 10.1007/978-3-540-70890-2_33<br />

ß Springer 2009


14 33<br />

Fe–Ti–Y<br />

. Fig. 1<br />

Fe-Ti-Y. Isothermal section at 600˚C<br />

DOI: 10.1007/978-3-540-70890-2_33 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


References<br />

Fe–Ti–Y 33<br />

15<br />

[1987Mur] Murray, J.L., “The Fe-Ti (Iron-Titanium) System” in “<strong>Phase</strong> Diagram of Binary Titanium <strong>Alloy</strong>s”, ASM<br />

Inter., Metal Park, Ohio, Murray, J.L., (Ed.), 99–111 (1987) (Experimental, <strong>Phase</strong> Diagram, <strong>Phase</strong><br />

Relations, Thermodyn., #, 112)<br />

[1988Moo] De Mooij, D.B., Buschow, H.J., “Some Novel <strong>Ternary</strong> ThMn 12-Type Compounds”, J. Less-Common<br />

Met., 136, 207–215 (1988) (Crys. Structure, Experimental, *, 5)<br />

[1988Moz] Moze, O., Pareti, L., Solzi, M., David, W.I.F., “Neutron Diffraction <strong>and</strong> Magnetic Anisotropy Study of<br />

Y-Fe-Ti Intermetallic Compounds”, Solid State Commun., 66(5), 465–469 (1988) (Experimental, Crys.<br />

Structure, Magn. Prop., 10)<br />

[1988Obb] Obbade, S., Miraglia, S., Fruchart, D., Pre, M., L´Heritier, P., Barlet, A., “Structural <strong>and</strong> Magnetic<br />

Properties of the ThMn 12 Type Iron <strong>Alloy</strong>s: Effects of Hydridation”, Compt. Rend. Acad. Sci. Paris, Ser. 2,<br />

307, 889–895 (1988) (Crys. Structure, Magn. Prop., Experimental, 11)<br />

[1988Yan] Yang, Y., Sun, H., Kong, L., Yang, J., Ding, Y., Zhang, B., Ye, C., Jin, L., Zhou, H., “Neutron Diffraction<br />

Study of Y(Ti,Fe) 12”, J. Appl. Phys., 64(10), 5968–5970 (1988) (Experimental, Magn. Prop., 10)<br />

[1989Zha] Zhang, L.Y., Wallace, W.E., “Structural <strong>and</strong> Magnetic Properties of RTiFe 11 <strong>and</strong> their Hydrides (R =Y,<br />

Sm)”, J. Less Common Met., 149, 371–376 (1989) (Experimental, Crys. Structure, Magn. Prop., 16)<br />

[1991Yan] Yan, Y.-C., Zhang, X.-D., Kong, L.-S., Ran, Q., “Magnetocrystalline Anisotropies of RTiFe 11N x<br />

Compounds”, Appl. Phys. Lett., 58(18), 2042–2044 (1991) (Crys. Structure, Experimental, 4)<br />

[1992Szy] Szymczak, R., Zawadzki, J., Manh, D.H., Slepowronski, M., “Domain-Structure in Y(Fe,T)12 (T = Ti,<br />

Cr, Si) Compounds”, J. Magn. Magn. Mater., 104(1), 321–323 (1992) (Experimental, Magn. Prop., 10)<br />

[1992Zha] Zhang, W., Liu, G., Han, K., “The Fe-Y (Iron-Yttrium) System”, J. <strong>Phase</strong> Equilib., 13(3), 304–308<br />

(1992) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, #, Review, 29)<br />

[1993Kou] Kou, X.C., Zhao, T.S., Groessinger, R., Kirchmayr, H.R., Li, X., de Boer, F.R., “Magnetic <strong>Phase</strong>-<br />

Transitions, Magnetocrystalline Anisotropy, <strong>and</strong> Crystal-Field Interactions in the RFe 11Ti Series<br />

(where R = Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, or Tm)”, Phys. Rev. B, 47(6), 3231–3242 (1993)<br />

(Calculation, Experimental, Magn. Prop., 52)<br />

[1993Rev] Revel, R. Tomey, E. Soubeyroux, J.L. Fruchart, D. Jacobs, T.H. Buschow, K.H.J., “Crystal Structure <strong>and</strong><br />

Magnetic Properties of the <strong>Ternary</strong> Compound YFe 8.6Ti 1.1 <strong>and</strong> its Hydride”, J. <strong>Alloy</strong>s Compd., 202(1-2),<br />

57–62 (1993) (Crys. Structure, Experimental, Magn. Prop., 8)<br />

[1994Li] Li, H.-S., Courtois, D., Cadogan, J.M., Xu, J.-M., Dou, S.X., “Structural <strong>and</strong> Magnetic Properties of the<br />

Novel <strong>Ternary</strong> Compound Y 3(Fe,Ti) 29”, J. Phys.: Condens. Matter, 6(49), L771–L775 (1994) (Crys.<br />

Structure, Experimental, Magn. Prop., *, 16)<br />

[1994Lin] Lingmin, Z., Junqin, J., Xianji, S., Yinghong, Z., “<strong>Phase</strong> Equilibria in the Y-Ti-Fe System at 500˚C”, Z.<br />

Metallkd., 85(9), 625–627 (1994) (Experimental, <strong>Phase</strong> Diagram, *, #, 15)<br />

[1996Cou] Courtois, D., Li, H.-S., Cadogan, J.M., “Determination of the Easy Magnetisation Direction by X-ray<br />

Diffraction Analysis at Room Temperature in the R 3(Fe,M) 29 Compounds: R=Pr, Nd, Sm, Gd, Tb, Dy<br />

<strong>and</strong> Y; M=Ti <strong>and</strong> V”, Solid State Commun., 98(6), 565–570 (1996) (Crys. Structure, Experimental, 12)<br />

[1996Has] Hasebe, A., Otsuki, E., “Crystal Structure <strong>and</strong> Magnetic Properties of R 2(Fe,M) 17+δ”, Mater. Trans.,<br />

JIM, 37(4), 870–877 (1996) (Crys. Structure, Experimental, 12)<br />

[1996Tel] Tellez-Blanco, J.C., Kou, X.C., Groessiger, R., “Magnetocrystalline Anisotropy of Y 3Fe 27.4Ti 1.6”, J. Magn.<br />

Magn. Mater., 164(1-2), L1–L6 (1996) (Experimental, Magn. Prop., <strong>Phase</strong> Relations, 23)<br />

[1996Val] Valeanu, M., Plugaru, N., Galateanu, A., Burzo, E., Laforest, J., “Magnetic Study of R 3Fe 29–xM x, with<br />

R=Y,Gd <strong>and</strong> M=V,Ti”, J. Magn. Magn. Mater., 157–158, 383–384 (1996) (Crys. Structure, Experimental,<br />

Magn. Prop., 8)<br />

[1997Liu] Liu, Z., Jin, Z., Xia, C., “873 K Isothermal Section of <strong>Phase</strong> Diagram for Y-Fe-Ti <strong>Ternary</strong> System”, Scr.<br />

Mater., 37(8), 1129–1134 (1997) (Experimental, <strong>Phase</strong> Relations, *, #, 7)<br />

[1997Obb] Obbade, S., Fruchart, D., Bououdina, M., Miraglia, S., Souberyroux, J.L., Isnard, O., “About Hydrogen<br />

Insertion in ThMn 12 Type <strong>Alloy</strong>s”, J. <strong>Alloy</strong>s Compd., 253–254, 298–301 (1997) (Crys. Structure, Magn.<br />

Prop., Experimental, 15)<br />

[1997Yan] Yang, F.M., Xiu-Feng, Han, de Boer, F.R., Li, H.S., “Analyses of the Magnetic Properties of Y 3Fe 29–xTi x<br />

<strong>and</strong> Other Associated Compounds”, J. Phys. Condens. Matter, 9, 1339–1346 (1997) (Crys. Structure,<br />

Experimental, Magn. Prop., Calculation, 24)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_33<br />

ß Springer 2009


16 33<br />

Fe–Ti–Y<br />

[1998And] Andreev, A.V., Zadvorkin, S.M., “Thermal Expansion Anomalies <strong>and</strong> Spontaneous Magnetostriction<br />

in RFe 11Ti Single Crystals”, Philos. Mag. B, 77(1), 147–161 (1998) (Crys. Structure, Magn. Prop.,<br />

Experimental, 28)<br />

[1998Nik1] Nikitin, S.A. Ivanova, T.I., Tereshina, I.S., “Effect of Rare-Earth Sublattice on the Magnetic Anisotropy<br />

of RFe 11Ti (R = Y, Sm, Tb) Single Crystals”, Inorg. Mater. (Engl. Trans.), 34(5), 458–461 (1998) (Crys.<br />

Structure, Magn. Prop., Experimental, 12)<br />

[1998Nik2] Nikitin, S.A., Tereshina I.S., Verbetskii, V.N., Salamova, A.A., “Magnetic Anisotropy of YFe 11Ti <strong>and</strong> its<br />

Hydride”, Phys. Solid State, 40(2), 258–262 (1998) (Crys. Structure, Experimental, 20)<br />

[1999Nik] Nikitin, S.A., Tereshina, I.S., Verbetsky, V.N., Salamova, A.A., “Magnetic Anistropy of YFe 11Ti Single<br />

Crystal <strong>and</strong> its Hydride”, Int. J. Hydrogen Energy, 24, 217–219 (1999) (Crys. Structure, Experimental,<br />

Magn. Prop., 10)<br />

[1999Pao] Paoluzi, A., Pareti, L., “Magnetocrystalline Anisotropy in Iron-Rich Rare-Earth Intermetallics.<br />

A Phenomenological Approach for the Comparison of the Overall <strong>and</strong> Fe Sublattice Anisotropies in<br />

RE(FeTi) (12), RE 2(FeTi) (17) <strong>and</strong> RE 3(FeTi) (29) Related Compounds (RE = Y,Sm)”, J. Phys.: Condens.<br />

Matter, 11(29), 5613–5621 (1999) (Calculation, Crys. Structure, Experimental, Magn. Prop., 32)<br />

[1999Sha] Shan, V.R., Mark<strong>and</strong>eyulu, G., Rama Rao, K.V.S., Huang, M.Q., McHenry, M.E., “Study of Structural<br />

<strong>and</strong> Magnetic Properties <strong>and</strong> Exchange Interactions in (Y 1–xGd x) 3Fe 27.5Ti 1.5 {x = 0,0.2, 0.5, 0.8, 1.0}”,<br />

Solid State Commun., 112, 161–166 (1999) (Crys. Structure, Experimental, Magn. Prop., Calculation,<br />

17)<br />

[2000Kim] Kim, H.-T., Kim, T.-K., Kim, M.-J., Song, M.-S., Yang, J.-H., Kim, C.-S., Kim, Y.-B., Xiao, Q.-F., Lui,<br />

W., Zhang, Z.-D., “Structural <strong>and</strong> Intrinsic Magnetic Properties of Y 3(Fe 0.96Ti 0.04) 29 <strong>and</strong> Its Nitride”,<br />

IEEE Trans. Magn., 36, 3339–3341 (2000) (Crys. Structure, Experimental, Magn. Prop., 14)<br />

[2000Gir] Girt, E., Altounian, Z., “Model for Predicting Atomic Substitutions in Intermetallic Compounds”,<br />

J. Appl. Phys., 87(9), 4747–4749 (2000) (Calculation, Crys. Structure, 19)<br />

[2000Rag] Raghavan, V., “Fe-Ti-Y (Iron-Titanium-Yttrium)”, J. <strong>Phase</strong> Equilib., 21(5), 467 (2000) (<strong>Phase</strong> Relations,<br />

Review, #, 3)<br />

[2001Ell] Ellouze, M., l’Heritier, Ph., Cheikh-Rouhou, A., Joubert, J.C., “New Method of Insertion of Hydrogen<br />

of Hydrogen in R 2Fe 16Ti <strong>Alloy</strong>s with R = Y <strong>and</strong> Nd”, J. <strong>Alloy</strong>s Compd., 322, 211–213 (2001) (Crys.<br />

Structure, Experimental, Magn. Prop., 11)<br />

[2001Kam] Kamarad, J., Garcia-L<strong>and</strong>a, B., Mikulina, O., Arnold, Z., Ibarra, M.R., Algarabel, P.A., “Pressure Effects<br />

on Magnetic Properties of R(Fe,M) 12 Single Crystals (R = Rare Earth, M = Ti, Mo)”, J. Magn. Magn.<br />

Mater., 226(2), 1446–1448 (2001) (Experimental, Magn. Prop., 10)<br />

[2001Nik] Nikitin, S.A. Tereshina, I.S. Verbetsky, V.N. Salamova, A.A., “Transformations of Magnetic <strong>Phase</strong><br />

Diagram as a Result of Insertion of Hydrogen <strong>and</strong> Nitrogen Atoms in Crystalline Lattice of RFe 11Ti<br />

Compounds”, J. <strong>Alloy</strong>s Compd., 316, 46–50 (2001) (Crys. Structure, Experimental, Magn. Prop., 14)<br />

[2001Rag] Raghavan, V., “Fe-Ti-Y (Iron-Titanium-Yttrium)”, J. <strong>Phase</strong> Equilib., 22(5), 577 (2001) (<strong>Phase</strong> Relations,<br />

Review, *, 3)<br />

[2001Ter] Tereshina, I.S., Gaczynski, P., Rusakov, V.S., Drulis, H., Nikitin, S.A., Suski, W., Tristan, N.V., Palewski,<br />

T., “Magnetic Anisotropy <strong>and</strong> Moessbauer Effect Studies of YFe 11Ti <strong>and</strong> YFe 11TiH”, J. Phys.: Condens.<br />

Matter, 13(35), 8161–8170 (2001) (Crys. Structure, Experimental, Magn. Prop., 20)<br />

[2001Wan1] Wang, Y., Shen, J., Chen, N.X., Wang, J.L., “Theoretical Investigation on Site Preference of<br />

Foreign Atoms in Rare-Earth Intermetallics”, J. <strong>Alloy</strong>s Compd., 319, 62–73 (2001) (Calculation, Crys.<br />

Structure, 33)<br />

[2001Wan2] Wang, W.Q., Wang, J.L., Tang, N., Fuquan, B., Wu, G.H., Yang, F.M., Jim, H.M., “Structural <strong>and</strong><br />

Magnetic Properties of RCo 12–xTi x (R = Y<strong>and</strong> Sm) amd YFe 12–xTi x Compounds”, J. Phys. D: Appl. Phys.,<br />

34, 307–312 (2001) (Crys. Structure, Experimental, Magn. Prop., 9)<br />

[2002Wan] Wang, J.L., Marquina, C., Garcia-L<strong>and</strong>a, B., Ibarra, I., Yang, F.M., Wu, G.H., “Magnetovolume Effect<br />

in ThMn 12-Type Fe-Rich R(Fe, Nb) 12-Based Compounds”, Physica B, 319(1-4), 73–77 (2002) (Experimental,<br />

Magn. Prop., Phys. Prop., 14)<br />

[2004Tel] Tellez-Blanco, J.S., Groessinger, R., Wiesinger, G., Levitschnig, H., Hilscher, G., “Untrinsic Properties<br />

of Y 3Fe 27.4Ti 1.6 <strong>and</strong> its Interstitial Nitride”, J. Magn. Magn. Mater., 272–276(2), 802–803 (2004)<br />

(Experimental, Magn. Prop., 6)<br />

[2005Qia] Qian, P., Chen, N.-X., Shen, J., “Atomistic Simulation for the <strong>Phase</strong> Stability, Site Preference <strong>and</strong><br />

Thermal Expansion of YFe 12–xT x (T = Ti, V, Cr, Mn, Zr, Nb, Mo,W)”, Solid State Commun., 134(11),<br />

771–776 (2005) (Calculation, Crys. Structure, Electronic Structure, Magn. Prop., 42)<br />

DOI: 10.1007/978-3-540-70890-2_33 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ti–Y 33<br />

17<br />

[2005Sko] Skokov, K., Grushishev, A., Khokholkov, A., Pastushenkov, Yu., Pankratov, N., Ivanova, T., Nikitin, S.,<br />

“Structural <strong>and</strong> Magnetic Properties of R 3Fe (29–x)Ti (x) <strong>Alloy</strong>s <strong>and</strong> R 3Fe (33–x)Ti 3 Single Crystals, R=Y,<br />

Gd, Tb, Dy, Ho, Er”, J. Magn. Magn. Mater., 290–291(1), 647–650 (2005) (Crys. Structure, Experimental,<br />

Magn. Prop., 6)<br />

[2005Ter] Tereshina, E., Telegina, I., Palewski, T., Skokov, K., Tereshina, I., Folcik, L., Drulis, H., “The<br />

Magnetocrystalline Anisotropy in Y(Fe,Co) 11TiH Single Crystals”, J. <strong>Alloy</strong>s Compd., 404–406, 208–211<br />

(2005) (Crys. Structure, Experimental, Magn. Prop., 16)<br />

[2006Sor] Sorescu, M., Diam<strong>and</strong>escu, L., Valeanu, M., “Substitutional Effects in RFe 3 Intermetallics (R=Dy, Sm,<br />

Y)”, Intermetallics, 14(3), 332–335 (2006) (Crys. Structure, Experimental, 9)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_33<br />

ß Springer 2009


Iron – Titanium – Zirconium<br />

Iron <strong>Systems</strong>: <strong>Phase</strong> <strong>Diagrams</strong>, <strong>Crystallographic</strong> <strong>and</strong> Thermodynamic Data<br />

Tamara Velikanova, Kostyantyn Korniyenko<br />

Introduction<br />

<strong>Phase</strong> relationships in the Fe-Ti-Zr ternary system are of great interest, in the first instance,<br />

because this system contains two Laves phases with a component of the iron triad (iron,<br />

cobalt, nickel). Metallides of this type are used as components of heat-resistant alloys <strong>and</strong><br />

austenitic steels owing to their influence on mechanical properties (hardness, tensile strength,<br />

improved plasticity at high temperatures etc). Studies of (Zr 1–xTi x)Fe 2 ternary alloys are of<br />

great technological importance because their magnetic <strong>and</strong> structural properties can be<br />

tailored by changing the zirconium <strong>and</strong> titanium concentration.<br />

Another important aspect is related to applications of alloys based on the intermetallic<br />

compound TiFe with a partial substitution of iron by zirconium with a view to increasing its<br />

potential for use in hydrogen storage <strong>and</strong> purification applications [1988Nag, 1999Sin,<br />

2000Nis]. The Fe-Ti-Zr system is also interesting as it contains titanium <strong>and</strong> a 3d transition<br />

metal forming quasicrystals.<br />

However, information about the constitution of the Fe-Ti-Zr system is incomplete.<br />

Experimental studies of the alloy system have dealt with the temperature-composition section<br />

ZrFe 2-TiFe 2 [1963Pie, 1971Pet, 1973Sve, 1987Bla, 2001Bud, 2003Sur] <strong>and</strong> an isothermal<br />

section at 900˚C [2007Zho]. It should be noted that the reported data for as-cast alloys<br />

[1963Pie, 1987Bla, 2001Bud, 2003Sur] <strong>and</strong> phase equilibria at 900˚C [2007Zho] on the one<br />

h<strong>and</strong> <strong>and</strong> in the ZrFe 2-TiFe 2 section after [1971Pet, 1973Sve] on the other, seem to be in<br />

conflict. The effect of titanium on the stabilization of the body-centered cubic (βZr) phase was<br />

considered in [1982Sil].<br />

Publications devoted to the experimental study of phase relations, crystal structures <strong>and</strong><br />

thermodynamics are listed in Table 1 together with the techniques used. <strong>Alloy</strong>s based on Zr 3Fe<br />

were studied by [1991Ard]. Rapidly quenched alloys containing icosahedral <strong>and</strong> related phases<br />

were studied by [1995Kim, 1998Kim1, 1998Kim2]. The crystal structures of the phases in Fe-<br />

Zr alloys with titanium additions as well as the Zr 0.2Ti 1.3Fe 0.8 alloy are reported in [1982Sil]<br />

<strong>and</strong> [1999Sin], respectively. Results of calculations of site occupancy of the added zirconium in<br />

the TiFe-based alloys are reported by [2002Boz]. Experimental studies of thermodynamic<br />

properties are focused on the determination of the mixing enthalpies of liquid Fe-Ti-Zr alloys<br />

[1999Thi]. A review of the literature concerns information on phase equilibria in the Fe-Ti-Zr<br />

system <strong>and</strong> the crystal structures of the phases [1992Rag].<br />

Binary <strong>Systems</strong><br />

Fe–Ti–Zr 34<br />

1<br />

The Fe-Zr boundary binary system is accepted from [2002Ste]. The Ti-Zr system is accepted<br />

from [1994Kum] (Fig. 1), which is essentially the same as in [Mas2]. The Fe-Ti boundary<br />

system is accepted from [1987Mur, Mas2].<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_34<br />

ß Springer 2009


2 34<br />

Fe–Ti–Zr<br />

Solid <strong>Phase</strong>s<br />

No stable ternary phases have been found in this system. <strong>Crystallographic</strong> data on the solid<br />

phases of the Fe-Ti-Zr system are listed in Table 2.<br />

High mutual solubilities exist between the TiFe 2 (λ 1) <strong>and</strong> ZrFe 2 (λ 2) Laves phases.<br />

[1963Pie] found that as-cast alloys of compositions along with the ZrFe2-TiFe2 section lay<br />

in the two-phase ZrFe2 + TiFe region in the range of compositions from 60 to 80 mol% of<br />

ZrFe 2 (6.7 to 13.3 at.% Ti). The wide TiFe 2 <strong>and</strong> ZrFe 2 solubility ranges at high temperatures<br />

are supported by studies of as-cast alloys [1987Bla, 2001Bud, 2003Sur]. A TiFe 2 solubility in<br />

ZrFe 2 of about 23 mol% (7.7 at.% Ti), close to that found for as-cast alloys, was reported by<br />

[1971Pet] for 900˚C, based on XRD data from alloys annealed for 200 h. These findings have<br />

not been confirmed. A solubility of about 8.1 at.% Zr (corresponding to 25.2 at.% Ti) was<br />

reported by [2007Zho]. They determined an isothermal section for the whole system at 900˚C<br />

using the diffusion-triple technique, employing an annealing time of 1440 h (compared with<br />

200 h as used by [1971Pet]) that was sufficient to allow complete equilibrium being achieved.<br />

Therefore, the data of [2007Zho] for 900˚C are preferable. The solubility of titanium in the<br />

λ 2 phase at 900˚C is approximately 11.3 at.%, according to the data of [2007Zho].<br />

Figure 2 presents the concentration dependences of the lattice parameters of the λ 1 <strong>and</strong> λ 2<br />

Laves phases in the ZrFe 2-TiFe 2 quasibinary system derived by [1963Pie] from studies of ascast<br />

specimens. The a <strong>and</strong> c parameters for the λ 1 phase increase continuously with decreasing<br />

titanium content to 8.3 at.% Ti. The same tendency was reported by [1987Bla]. [2001Bud,<br />

2003Sur] reported the a <strong>and</strong> c lattice parameters for the λ1 phase present in alloys of<br />

composition (Zr1–xTix)Fe2 with x from 0.2 to 1. The reported values agree well with the<br />

data of [1963Pie, 1987Bla], but both Laves phases (λ 1 <strong>and</strong> λ 2) were observed simultaneously in<br />

alloys over a wider composition range as compared with the work of [1963Pie] - from 40 to 80<br />

mol% ZrFe 2 (correspond to the range 6.7 to 20 at.% Ti). This could be due to the partial<br />

decomposition of the λ 1 phase during cooling of the as cast specimens after arc melting.<br />

The solubilities of titanium in Zr 2Fe <strong>and</strong> of zirconium in the TiFe phase at 900˚C were<br />

reported by [2007Zho] as about 26.9 <strong>and</strong> 7.2 at.%, respectively.<br />

A phase with the Ti2Ni type crystal structure was found in rapidly quenched Zr15Ti60Fe25<br />

<strong>and</strong> Zr10Ti65Fe25 alloys by [1995Kim, 1998Kim1, 1998Kim2]. A phase with the same structure<br />

was obtained in a Zr 0.2Ti 1.3Fe 0.8 alloy that had been prepared by induction melting <strong>and</strong><br />

subjected to a hydrogenation treatment [1999Sin]. This phase is denoted in Table 2 as the<br />

τ phase. It should be thermodynamically unstable.<br />

The icosahedral, I (ZrTiFe) <strong>and</strong> 1/1 bcc (labeled as M (ZrTiFe)) approximant phases are<br />

reported by [1995Kim, 1998Kim2]. The icosahedral quasicrystal phase was observed in rapidly<br />

quenched Fe-Ti-Zr ternary alloys with a titanium content between 45 to 70 at.%, zirconium<br />

from 5 to 25 at.% <strong>and</strong> iron from 20 to 30 at.% [1995Kim, 1998Kim1]. TEM studies indicate<br />

the crystal structure of the I phase to be strongly disordered. The quasilattice constant is given<br />

in Table 2.<br />

Studies of melt spun arc melted Zr 15Ti 60Fe 25 <strong>and</strong> Zr 10Ti 65Fe 25 alloys revealed three<br />

metastable ternary phases [1998Kim1]. The Zr 15Ti 60Fe 25 alloy contained the τ phase (Ti 2Ni<br />

type, fcc with a ≈ 1150 pm) <strong>and</strong> an ordered bcc TiFe-based solid solution (CsCl type)<br />

as dominant phases along with small amounts of the I phase. At the same time, in the<br />

Zr 10Ti 65Fe 25 alloy, the I phase was dominant while the τ phase was the secondary<br />

phase. Additionally, the M (ZrTiFe) 1/1 approximant (bcc, a = 1330 pm), the face-centred<br />

DOI: 10.1007/978-3-540-70890-2_34 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


orthorhombic (a = 3200 pm, b = 2660, c = 1040 pm) <strong>and</strong> the λ 1 Laves phase (hcp; a = 515,<br />

c = 837 pm) were found in both of these alloys.<br />

The addition of Ti was found to stabilize a (βZr) solid solution containing 4 at.% Fe<br />

[1982Sil]. This effect was observed during investigations of ternary alloys of composition<br />

Zr 1–xTi xFe 0.04 that had been prepared by arc melting followed by homogenizing for 6 days at<br />

1000˚C before quenching into cold water; even with only a 1 at.% titanium addition. Two<br />

phases, namely the β <strong>and</strong> α2 phases have been identified in all samples containing up to 7 at.%<br />

Ti, while only the β phase was seen in the sample with the Zr0.89Ti0.08Fe0.04 composition <strong>and</strong><br />

for those of higher titanium contents. It was postulated that short-range ordering produced by<br />

the formation of Ti-Fe pairs in the lattice inhibits the β → α 2 transformation on quenching to<br />

room temperature.<br />

The substitutional site preference of ternary alloying additions to B2 compounds (stable at<br />

room temperature <strong>and</strong> with stoichiometry 1:1) was determined by [2002Boz] using the<br />

Bozzolo-Ferrante-Smith (BFS) method. This quantum approximate method was applied, in<br />

particular, to the study of zirconium additions to the TiFe based phase. The energy of<br />

formation per atom in the perfectly ordered B2 TiFe 72-atom cell is –0.7149 eV·atom –1 . The<br />

energy of formation per atom of a 72-atom cell with one Zr (Ti) substitution is –0.6808<br />

eV·atom –1 ; slightly higher than that of the ground state. In the case of Fe rich TiFe alloys,<br />

Zr prefers to occupy Fe sites, with the energy of formation of a 72-atom cell being in this<br />

case –0.5341 eV·atom –1 .<br />

Quasibinary <strong>Systems</strong><br />

Fe–Ti–Zr 34<br />

3<br />

The quasibinary temperature-composition section ZrFe 2-TiFe 2 has been established in the<br />

ternary system [1971Pet]. The section is given in Fig. 3, based on the data of [1963Pie, 1971Pet,<br />

1987Bla, 2007Zho]. The system is of peritectic type with considerable mutual solubility of the<br />

components. Direct experimental evidence of the λ 2 phase boundary at the peritectic temperature<br />

is absent in the work of [1971Pet] but is presumed to be present <strong>and</strong> is indicated in the<br />

diagram. Obviously, the value of Zr solubility in TiFe 2 reported by [1971Pet], namely 16-17<br />

at.% Zr at 900-1470˚C, cannot be considered as reliable because of uncertainty in the<br />

concentration dependence of the lattice periods of the λ1 phase; only one specimen was<br />

prepared in the single-phase region. Moreover, the alloys were not fully equilibrated owing<br />

to the short annealing time employed; as is now clear taking into account the results of<br />

[2007Zho]. The solubility range of the λ 1 phase at 900˚C as given by [1971Pet] is too high in<br />

comparison with the data of [1963Pie] determined for as-cast alloys <strong>and</strong> with the data of<br />

[1987Bla] obtained from annealed (at 800-1500˚C) <strong>and</strong> quenched specimens. In Fig. 3, the<br />

phase boundaries λ 2/λ 2+λ 1 <strong>and</strong> λ 2+λ 1/λ 1 are drawn by taking into account the wide extension<br />

of λ1 <strong>and</strong> λ2 homogeneity ranges at high temperatures deduced by [1963Pie, 1987Bla] (see the<br />

“Solid <strong>Phase</strong>s” section) <strong>and</strong> the reduction in their extensions at 900˚C after [2007Zho]. It can<br />

be seen that the solubilities of the λ 1 <strong>and</strong> λ 2 phases given by [1971Pet] correspond to<br />

temperatures of about 1300˚C <strong>and</strong> the solidus temperature, respectively. Thus, the constitution<br />

of the investigated alloys corresponded to the high-temperature state because the annealing<br />

time was not sufficient. Therefore, the low-temperature solubility data of [1971Pet] cannot<br />

be accepted.<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_34<br />

ß Springer 2009


4 34<br />

Fe–Ti–Zr<br />

Invariant Equilibria<br />

The existence of the three-phase invariant equilibrium L + λ 2 Ð λ 1 of incongruent type follows<br />

from quasibinarity of the ZrFe 2-TiFe 2 section [1971Pet]. Temperature of the above equilibrium<br />

was determined as 1470±10˚C on the basis of differential thermal analysis data. Compositions<br />

of the phases taking part in this reaction are shown in Table 2.<br />

Isothermal Sections<br />

A complete isothermal section for 900˚C was constructed by [2007Zho] who used a diffusiontriple<br />

method with EMPA to study the equilibria. The section is presented in Fig. 4. The tielines<br />

across two-phase fields are drawn with solid lines while the positions of three-phase fields<br />

are marked by dashed lines based on the tendencies of directional changes of the boundary<br />

binary tie-lines.<br />

Thermodynamics<br />

The mixing enthalpies of liquid Fe-Ti-Zr alloys were calculated by [1996Wan] from enthalpy<br />

data for the three boundary binary systems. The enthalpies of mixing of liquid ternary<br />

Fe-Ti-Zr alloys at 1600˚C were obtained using the Hillert-2 interpolation algorithm<br />

[1980Hil] using suitable interpolation geometry.<br />

Enthalpies of mixing of ternary liquid alloys have been presented by [1999Thi]. Measurements<br />

were performed along the ZrFe 2-Ti, TiFe 2-Zr <strong>and</strong> Zr 37Ti 63-Fe sections using a levitation<br />

alloying calorimeter (LAC), as described by [1994Qin]. The experimental data obtained were<br />

in a good agreement with calculations carried out using a regular associate model. Figure 5<br />

shows the mixing enthalpy of liquid Fe-Ti-Zr alloys for 1879˚C in the form of isoenthalpy<br />

curves. The extreme value of the mixing enthalpy, of about –23 kJ·mol –1 , is located in the<br />

Fe-Zr binary system at 45 at.% Zr. The excess heat capacities of liquid Fe-Ti-Zr alloys at 1879˚<br />

C presented in [1999Thi], calculated using the regular associate model, are shown in Fig. 6.<br />

Notes on Materials Properties <strong>and</strong> Applications<br />

The Fe-Ti-Zr <strong>and</strong> related alloys are of great interest for practical applications in modern<br />

technology owing to their valuable electrical, magnetic, optical <strong>and</strong> structural properties.<br />

Moreover, TiFe-based alloys with a partial substitution by iron are promising materials for<br />

the storage <strong>and</strong> purification of hydrogen [1988Nag, 1999Sin, 2000Nis].<br />

The properties of the Fe-Ti-Zr alloys investigated <strong>and</strong> experimental techniques used are<br />

listed in Table 3.<br />

Magnetic property investigations of alloys in the ZrFe 2-TiFe 2 section carried out by<br />

[1963Pie] demonstrated that the TiFe 2-based phase behaves as a strongly paramagnetic<br />

material with a susceptibility that is practically temperature independent, whereas the<br />

ZrFe 2-based phase is ferromagnetic with a Curie temperature of 355˚C. The effective moment<br />

per iron atom, obtained from the observed saturation magnetization at 4 K, is 1.62 μB. The<br />

reduced moment of the iron atoms in both the TiFe2 <strong>and</strong> ZrFe2 phases as compared to that of<br />

DOI: 10.1007/978-3-540-70890-2_34 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


elemental iron was attributed by the authors to a transfer of charge from Ti or Zr to iron. Later,<br />

the magnetic behavior of ZrFe 2-TiFe 2 alloys was studied in more detail by [2001Bud] <strong>and</strong><br />

[2003Sur]. Both the Zr 2Fe <strong>and</strong> Zr 3Fe compounds demonstrated paramagnetic properties at<br />

room temperature [1991Ard].<br />

The hydrogen behavior characteristics of zirconium-substituted TiFe <strong>and</strong> Zr 0.2Ti 1.3Fe 0.8<br />

alloys were studied by [1988Nag, 2000Nis] <strong>and</strong> [1999Sin], respectively. In particular, the<br />

structural <strong>and</strong> microstructural characteristics of the hydrogen storage material Zr0.2Ti1.3Fe0.8<br />

revealed that this alloy is multiphase [1999Sin]. The storage capacity for this material was<br />

found to be about 1.2 mass% at 200˚C <strong>and</strong> the desorption kinetics were found to be two times<br />

higher than the native material, Ti 1.3Fe. The improved activation process <strong>and</strong> faster kinetics<br />

were thought to arise from the presence of a higher density of interfaces <strong>and</strong> volume expansion<br />

induced cracking of (βTi) facilitating hydrogen absorption <strong>and</strong> desorption in the lattice.<br />

It was shown by [1987Bla] that Vickers microhardness values of the λ 1 phase in the ZrFe 2-<br />

TiFe 2 quasibinary system decrease linearly with increasing titanium content, from 13.3 up to<br />

33.3 at.% (Fig. 7).<br />

. Table 1<br />

Investigations of the Fe-Ti-Zr <strong>Phase</strong> Relations, Structures <strong>and</strong> Thermodynamics<br />

Reference Method / Experimental Technique<br />

[1963Pie] Levitation melting, X-ray diffraction (GE XRD-3<br />

diffractometer)<br />

[1971Pet] Arc melting, annealing in evacuated ampoules<br />

with quenching in cold water, differential<br />

thermal analysis, X-ray diffraction, chemical<br />

etching, optical microscopy<br />

[1973Sve] Arc melting, differential thermal analysis, X-ray<br />

diffraction, optical microscopy, microprobe<br />

analysis<br />

[1982Sil] Arc melting, annealing in evacuated ampoules<br />

with quenching in cold water, Mössbauer<br />

spectroscopy, X-ray diffraction<br />

[1987Bla] Arc melting, annealing in vacuum, quenching,<br />

slow cooling, X-ray diffraction (Philips<br />

PW1050diffractometer), optical microscopy<br />

Temperature / Composition /<br />

<strong>Phase</strong> Range Studied<br />

Zr 1–xTi xFe 2,0


6 34<br />

Fe–Ti–Zr<br />

. Table 1 (continued)<br />

Reference Method / Experimental Technique<br />

[1998Kim1]<br />

[1998Kim2]<br />

Arc melting, high speed crystallization, TEM<br />

(JEOL 2000FX transmission electron<br />

microscope), energy-dispersive X-ray<br />

spectrometry, X-ray diffraction, Archimedes<br />

weighing technique, neutron powder<br />

diffraction<br />

[1999Sin] Induction melting, X-ray diffraction (PW-1710<br />

diffractometer), scanning electron microscopy<br />

(SEM)<br />

Temperature / Composition /<br />

<strong>Phase</strong> Range Studied<br />

Zr 15Ti 60Fe 25 (at.%)<br />

Zr0.2Ti1.3Fe0.8<br />

[1999Thi] Levitation alloying calorimetry The ZrFe2-Ti, TiFe2-Zr <strong>and</strong><br />

Zr37Ti63-Fe sections<br />

[2001Bud]<br />

57<br />

Fe Mössbauer spectroscopy, X-ray diffraction The ZrFe2-TiFe2 section<br />

[2003Sur] Arc melting, X-ray diffraction, 57 Fe Mössbauer<br />

spectroscopy, neutron diffraction<br />

[2007Zho] Diffusional welding, annealing, quenching,<br />

EPMA (JX-8800R apparatus)<br />

. Table 2<br />

<strong>Crystallographic</strong> Data of Solid <strong>Phase</strong><br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

The ZrFe 2-TiFe 2 section (0 to 6.7<br />

<strong>and</strong> 23.3 to 33.3 at.% Ti)<br />

900˚C (annealing for 1440 h); the<br />

whole range of compositions<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

β, Zr1–x–yTixFey cI2<br />

Im3m<br />

W<br />

y =0,0 882˚C [Mas2, V-C2]<br />

1670 - 882 dissolves 22 at.% Fe at 1085˚C<br />

[1987Mur, Mas2]<br />

α1,ZrxTiyFe1–x–y x =0,0


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Fe–Ti–Zr 34<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

7<br />

(γFe), cF4 a = 364.68 x =0,y =0,T = 912˚C [V-C2]<br />

ZrxTiyFe1–x–y Fm3m x =0,0


8 34<br />

Fe–Ti–Zr<br />

. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

λ2, (Zr1–xTix)Fe2 cF4 0 < x ≲ 0.339, T = 900˚C [2007Zho]<br />

Fd3m C15 structure<br />

MgCu2 a=706 to 699.5 0 ≤ x ≤ 0.2, in the as-cast alloys [1963Pie]<br />

a=705.4 0.25 ≤ x ≤ 0.37, in the alloys annealed at 900˚C<br />

<strong>and</strong> quenched in cold water [1971Pet]<br />

a=702.7 x = 0.2, together with the λ1 phase [1987Bla]<br />

a=699.2 x = 0.6, together with the λ1 phase [1987Bla]<br />

a=708 to 704 0 ≤ x ≤ 0.4, in the as-cast samples [2001Bud]<br />

x = 0.1, as-cast sample:<br />

a=709.9 T = 397˚C<br />

a=707.7 T = 97˚C<br />

a=705.4 T = 17˚C [2003Sur]<br />

x = 0.15, as-cast sample:<br />

a=708.2 T = 397˚C<br />

a=704.5 T = 127˚C<br />

a=705.0 T = 17˚C [2003Sur]<br />

x = 0.2, as-cast sample:<br />

a=704.5 T = 377˚C<br />

a=704.4 T = 127˚C <strong>and</strong> 17˚C [2003Sur]<br />

βZrFe2 a=702 to 709 27.5 to 34.4 at.% Zr in the binary Zr-Fe system<br />

< 1673<br />

[2002Ste]<br />

a=706.5 at 66.7 at.% Fe [V-C2]<br />

λ3, αZrFe2 hP24 26.5 to 27 at.% Zr [2002Ste]<br />

1345 - 1240 P63/mmc C36 structure<br />

MgNi2 a=495.34 in the alloy Zr25Fe75 (at.%) annealed at 1290˚C<br />

c = 1614.3 for 7.5 h, together with (αFe) <strong>and</strong> Zr6Fe23 phase<br />

[2002Ste]<br />

a=498.8<br />

c = 1632<br />

at 1100˚C [V-C2]<br />

Zr2Fe tI12 66.7 to 67.2 at.% Zr [2002Ste]<br />

951 - 780 I4/mcm C16 structure<br />

CuAl2 a=641<br />

c = 556<br />

in the alloy Zr69Fe31 [1991Ard]<br />

without visible solubility of titanium [1991Ard]<br />

a=637.9<br />

c = 559.4<br />

in the alloy Zr40Fe60 (at.%) annealed at 800˚C for<br />

500 h, together with the βZrFe 2 <strong>and</strong> Zr 3Fe phases<br />

[2002Ste]<br />

dissolves 26.9 at.% Ti at T = 900˚C [2007Zho]<br />

DOI: 10.1007/978-3-540-70890-2_34 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Table 2 (continued)<br />

<strong>Phase</strong>/<br />

Temperature<br />

Range [˚C]<br />

Pearson<br />

Symbol/<br />

Space<br />

Group/<br />

Prototype<br />

Lattice<br />

Parameters<br />

[pm] Comments/References<br />

Zr3Fe oC16 74.8 to 75.4 at.% Zr [2002Ste]<br />

< 851 Cmcm<br />

Re3B without visible solubility of titanium [1991Ard]<br />

a = 332.16 in the alloy Zr60Fe40 (at.%) annealed at 700˚C for<br />

b = 1096.4 1000 h, together with the βZrFe2 phase <strong>and</strong><br />

c = 882.3 traces of the Zr2Fe phase [2002Ste]<br />

a = 333<br />

b = 1095<br />

c = 882<br />

at 75 at.% Zr [1991Ard]<br />

Zr6Fe23 cF116 20.6 to 21.6 at.% Zr; metastable; an oxygen-<br />

Fm3m<br />

stabilized phase [2002Ste]<br />

Th6Mn23 a = 1172 in the alloy Zr30Fe70 (at.%) annealed at 1000˚C<br />

for 200 h, together with the βZrFe2 phase<br />

[2002Ste]<br />

a = 1169 [V-C2]<br />

τ, (Zr xTi 1–x) 2Fe cF96 a ≈ 1150 metastable, in the Zr 15Ti 60Fe 25 <strong>and</strong> Zr 10Ti 65Fe 25<br />

Fd3m<br />

Ti 2Ni<br />

alloys produced by high speed crystallization<br />

[1998Kim1]<br />

M (ZrTiFe) cI146 a = 1330.7 1/1 bcc, approximant, metastable<br />

Im3 Zr11Ti64Fe25 [1995Kim, 1998Kim2]<br />

I (ZrTiFe) c** a = 485 quasicrystal, metastable, composition is closed<br />

to M (ZrTiFe) [1995Kim, 1998Kim2]<br />

. Table 3<br />

Investigations of the Fe-Ti-Zr Materials Properties<br />

Reference Method / Experimental Technique Type of Property<br />

[1963Pie] Faraday method: dynamic measurements<br />

(thermomagnetic analyses, TMA) <strong>and</strong><br />

static measurements<br />

[1987Bla] PMT-3 mechanical tests Microhardness<br />

[1988Nag] Energy dispersive X-ray analysis (EDX),<br />

volumetric method (Sievert’s apparatus<br />

measurements), SEM<br />

Magnetization, magnetic susceptibility,<br />

saturation magnetization at 4 to 650 K,<br />

Curie temperature<br />

Hydriding rate, pressure-composition<br />

isotherms<br />

[1991Ard] Magnetic properties tests Quadrupole splitting, isomer shift<br />

[1999Sin] Volumetric method (Sievert’s apparatus<br />

measurements)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–Zr 34<br />

Hydriding rate, pressure-composition<br />

isotherms<br />

9<br />

DOI: 10.1007/978-3-540-70890-2_34<br />

ß Springer 2009


10 34<br />

Fe–Ti–Zr<br />

. Table 3 (continued)<br />

Reference Method / Experimental Technique Type of Property<br />

[2000Nis] Hydriding using a conventional pressureproof<br />

vessel<br />

[2001Bud]<br />

[2003Sur]<br />

Desorption <strong>and</strong> adsorption isotherms,<br />

pressure-composition isotherms<br />

57 Fe Mössbauer spectroscopy Hyperfine interaction, quadrupole<br />

splitting, isomer shift dependences on<br />

concentration<br />

57 Fe Mössbauer spectroscopy Magnetic structure, hyperfine interaction,<br />

quadrupole splitting, isomer shift<br />

dependences on concentration<br />

DOI: 10.1007/978-3-540-70890-2_34 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 1<br />

Fe-Ti-Zr. The Ti-Zr phase diagram<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–Zr 34<br />

11<br />

DOI: 10.1007/978-3-540-70890-2_34<br />

ß Springer 2009


12 34<br />

Fe–Ti–Zr<br />

. Fig. 2<br />

Fe-Ti-Zr. Lattice parameters of the Laves phases in the quasibinary system ZrFe 2-TiFe 2<br />

DOI: 10.1007/978-3-540-70890-2_34 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


. Fig. 3<br />

Fe-Ti-Zr. Quasibinary system ZrFe 2-TiFe 2<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

Fe–Ti–Zr 34<br />

13<br />

DOI: 10.1007/978-3-540-70890-2_34<br />

ß Springer 2009


14 34<br />

Fe–Ti–Zr<br />

. Fig. 4<br />

Fe-Ti-Zr. Isothermal section at 900˚C<br />

DOI: 10.1007/978-3-540-70890-2_34 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ti–Zr 34<br />

15<br />

. Fig. 5<br />

Fe-Ti-Zr. Mixing enthalpy of liquid Fe-Ti-Zr alloys at 1879˚C. Values denote the mixing enthalpies<br />

in kJ·mol –1<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_34<br />

ß Springer 2009


16 34<br />

Fe–Ti–Zr<br />

. Fig. 6<br />

Fe-Ti-Zr. Excess heat capacity of liquid Fe-Ti-Zr alloys at 1879˚C. Values denote the excess heat<br />

capacities in J·mol –1 ·K –1<br />

DOI: 10.1007/978-3-540-70890-2_34 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ti–Zr 34<br />

. Fig. 7<br />

Fe-Ti-Zr. Vickers microhardness values of the λ 1 phase in the ZrFe 2-TiFe 2 quasibinary system<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

17<br />

DOI: 10.1007/978-3-540-70890-2_34<br />

ß Springer 2009


18 34<br />

Fe–Ti–Zr<br />

References<br />

[1963Pie] Piegger, E., Craig, R.S., “Structural <strong>and</strong> Magnetic Characteristics of TiFe 2-ZrFe 2 <strong>and</strong> ZrCo 2-ZrFe 2<br />

<strong>Alloy</strong>s”, J. Chem. Phys., 39(1), 137–145 (1963) (Crys. Structure, Experimental, Magn. Prop., 15)<br />

[1971Pet] Pet’kov, V.V., Kocherzhinskiy, Yu.A., Markiv, V.Ya., “Investigation of the Polythermal Sections ZrFe2-<br />

TiFe 2 <strong>and</strong> ZrCo 2-TiCo 2” (in Ukrainian), Dop. Akad. Nauk Ukr. RSR, Ser. A, (10), 942–944 (1971) (Crys.<br />

Structure, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, #, 6)<br />

[1973Sve] Svechnikov, V.N., Kocherzhinsky, Yu.A., Markiv, V.Ya., Pet’kov, V.V., “Laves <strong>Phase</strong>s in Transition Metal<br />

<strong>Systems</strong> of the IV-VIII Groups of Periodic System” (in Russian), Akad. Nauk Ukr. SSR, Metallofizika,<br />

46, 35–45 (1973) (<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, Review, #, 74)<br />

[1980Hil] Hillert, M., “Empirical Methods of Predicting <strong>and</strong> Representing Thermodynamic Properties of <strong>Ternary</strong><br />

Solution <strong>Phase</strong>s”, Calphad, 4, 1–12 (1980) (Thermodyn., Calculation) as quoted by [1996Wan]<br />

[1982Sil] da Silva, E.G., Coelho, J.S., Mansur, R.A., “The Effect of Titanium on the Stabilization of the β-Zr (Fe)<br />

<strong>Phase</strong>”, Acta Metall., 30, 1829–1833 (1982) (Crys. Structure, Morphology, <strong>Phase</strong> Relations, Experimental,<br />

*, 8)<br />

[1987Bla] Blazina, Z., Trojko, R., “On Friauf-Laves <strong>Phase</strong>s in the Zr 1–xAl xT 2,Zr 1–xSi xT 2 <strong>and</strong> Zr 1–xTi xT 2 (T = Mn,<br />

Fe, Co) <strong>Systems</strong>”, J. Less-Common Met., 133(2), 277–286 (1987) (Crys. Structure, Morphology, Experimental,<br />

Electronic Structure, Mechan. Prop., 10)<br />

[1987Mur] Murray, J.L., “Fe-Ti” in “<strong>Phase</strong> <strong>Diagrams</strong> of Binary Titanium <strong>Alloy</strong>s”, Springer Verlag, Berlin (1987)<br />

(Crys. Structure, <strong>Phase</strong> Diagram, Review, 117)<br />

[1988Nag] Nagai, H., Kitagaki, K., Shoji, K.-I., “Hydrogen Storage Characteristics of FeTi Containing Zirconium”,<br />

Trans. JIM, 29(6), 494–501 (1988) (Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Experimental, Phys.<br />

Prop., 8)<br />

[1991Ard] Ardisson, J.D., Mansur, R.A., da Silva, E.G., “A Study of Structural <strong>and</strong> Electronic Properties of the<br />

<strong>Alloy</strong> <strong>Systems</strong> (Zr 1–xTi x) 2Fe <strong>and</strong> (Zr 1–xTi x) 3Fe in the Range 0 ≤ x ≤ 0.2”, Scr. Met. Mater., 25(6),<br />

1327–1331 (1991) (Crys. Structure, Experimental, Electronic Structure, Magn. Prop., 6) cited from<br />

abstract<br />

[1992Rag] Raghavan, V., “The Fe-Ti-Zr (Iron-Titanium-Zirconium) System” in “<strong>Phase</strong> <strong>Diagrams</strong> of <strong>Ternary</strong> Iron<br />

<strong>Alloy</strong>s”, Indian Institute of Metals, Calcutta, 6B, 1223–1224 (1992) (Crys. Structure, <strong>Phase</strong> Diagram,<br />

<strong>Phase</strong> Relations, Review, #, 4)<br />

[1994Kum] Kumar, H., Wollants, P., Delaey, L., “Thermodynamic Assessment of the Ti-Zr System <strong>and</strong> Calculation<br />

of the Nb-Ti-Zr <strong>Phase</strong> Diagram”, J. <strong>Alloy</strong>s Compd., 206(1), 121–127 (1994) (<strong>Phase</strong> Diagram, Thermodyn.,<br />

Assessment, Calculation, 32)<br />

[1994Qin] Qin, J., Roesner-Kuhn, M, Schaefers, K., Frohberg, M.G., “Consideration of the Excess Heat Capacity<br />

for the Evaluation of Mixing Enthalpies Measured by Levitation <strong>Alloy</strong>ing Calorimetry”, Z. Metallkd.,<br />

85(10), 692–695 (1994) (Thermodyn., Calculation, Experimental, 12)<br />

[1995Kim] Kim, W.J., Kelton, K.F., “Icosahedral <strong>and</strong> Related <strong>Phase</strong> Formation in Rapidly Quenched Ti-Zr-Fe<br />

<strong>Alloy</strong>s”, Philos. Mag. A, 72(5), 1397–1408 (1995) (Crys. Structure, Morphology, Experimental, 17)<br />

[1996Wan] Wang, H., Lueck, R., “Mixing Enthalpy of Liquid T-Ti-Zr (T = Fe, Co, Ni) <strong>Alloy</strong>s”, J. Non-Cryst. Solids,<br />

205–207, 417–420 (1996) (Thermodyn., Calculation, Experimental, 23)<br />

[1998Kim1] Kim, W.J., Gibbons, P.C., Kelton, K.F., “Icosahedral Quasicrystal Formation in Ti-Zr-Based <strong>Alloy</strong>s <strong>and</strong><br />

a New Classification Technique”, Philos. Mag. A, 78(5), 1111–1124 (1998) (Crys. Structure, Experimental,<br />

Review, 37)<br />

[1998Kim2] Kim, W.J., Gibbons, P.C., Kelton, K.F., Yelon, W.B., “Structural Refinement of 1/1 bcc Approximants to<br />

Quasicrystals: Bergman-Type W (TiZrNi) <strong>and</strong> Mackay - Type M (TiZrFe)”, Phys. Rev. B, 58(5),<br />

2578–2585 (1998) (Crys. Structure, Experimental, 17)<br />

[1999Sin] Singh, B.K., Singh, A.K., P<strong>and</strong>ey, C.S., Srivastava, O.N., “Investigation on Synthesis, Characterization<br />

<strong>and</strong> Hydrogenation Behaviour of Hydrogen Storage Material: Fe 1–xZr xTi 1.3 (x = 0.2)”, Int. J. Hydrogen<br />

Energy, 24(11), 1077–1082 (1999) (Crys. Structure, Morphology, <strong>Phase</strong> Relations, Experimental, Phys.<br />

Prop., 10)<br />

[1999Thi] Thiedemann, U., Roesner-Kuhn, M., Drewes, K., Kuppermann, G., Frohberg, M.G., “Mixing Enthalpy<br />

Measurements of Liquid Ti-Zr, Fe-Ti-Zr <strong>and</strong> Fe-Ni-Zr <strong>Alloy</strong>s”, Steel Res., 70(1), 3–8 (1999) (Thermodyn.,<br />

Calculation, Experimental, 20)<br />

DOI: 10.1007/978-3-540-70890-2_34 L<strong>and</strong>olt‐Börnstein<br />

ß Springer 2009 New Series IV/11D5<br />

MSIT 1


Fe–Ti–Zr 34<br />

19<br />

[2000Nis] Nishimiya, N., Wada, T., Matsumoto, A., Tsutsumi, K., “Hydriding Characteristics of Zirconium-<br />

Substituted FeTi”, J. <strong>Alloy</strong>s Compd., 313, 53–58 (2000) (<strong>Phase</strong> Relations, Thermodyn., Experimental,<br />

Phys. Prop., 13)<br />

[2001Bud] Budzyn’ski, M., Sarzyn’ski, J., Surowiec, Z., Wiertel, M., “Moessbauer <strong>and</strong> X-Ray Diffraction Studies of<br />

Zr 1–xTi xFe 2 Laves <strong>Phase</strong> Compounds”, Acta Phys. Pol. A, 100(5), 717–722 (2001) (Crys. Structure,<br />

Experimental, Magn. Prop., 8)<br />

[2002Boz] Bozzolo, G.H., Noebe, R.D., Amador, C., “Site Occupancy of <strong>Ternary</strong> Additions to B2 <strong>Alloy</strong>s”,<br />

Intermetallics, 10, 149–159 (2002) (Crys. Structure, Calculation, Electronic Structure, 27)<br />

[2002Ste] Stein, F., Sauthoff, G., Palm, M., “Experimental Determination of Intermetallic <strong>Phase</strong>s, <strong>Phase</strong><br />

Equilibria, <strong>and</strong> Invariant Reaction Temperatures in the Fe-Zr System”, J. <strong>Phase</strong> Equilib., 23(6), 480–494<br />

(2002) (Crys. Structure, Morphology, <strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, Assessment, Experimental,<br />

Review, 88)<br />

[2003Sur] Surowiec, Z., Wiertel, M., Beskrovnyi, A.I., Sarzyn’ski, J., Milczarek, J.J., “Investigations of Microscopic<br />

Magnetic Properties of the Pseudo-Binary System (Zr 1–xTi x)Fe 2”, J. Phys.: Condens. Matter, 15(37),<br />

6403–6414 (2003) (Crys. Structure, Experimental, Magn. Prop., 13)<br />

[2007Zho] Zhou, G., Jin, S., Liu, L., Liu, H., Jin, Z., “Determination of Isothermal Section of Fe-Ti-Zr <strong>Ternary</strong><br />

System at 1173 K”, Trans. Nonferrous Met. Soc. China, 17, 963–966 (2007) (Experimental, Morphology,<br />

<strong>Phase</strong> Diagram, <strong>Phase</strong> Relations, 16)<br />

[Mas2] Massalski, T.B. (Ed.), Binary <strong>Alloy</strong> <strong>Phase</strong> <strong>Diagrams</strong>, 2nd edition, ASM International, Metals Park, Ohio<br />

(1990)<br />

[V-C2] Villars, P. <strong>and</strong> Calvert, L.D., Pearson’s H<strong>and</strong>book of <strong>Crystallographic</strong> Data for Intermetallic <strong>Phase</strong>s, 2nd<br />

edition, ASM, Metals Park, Ohio (1991)<br />

L<strong>and</strong>olt‐Börnstein<br />

New Series IV/11D5<br />

MSIT 1<br />

DOI: 10.1007/978-3-540-70890-2_34<br />

ß Springer 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!