09.12.2012 Views

Concrete mathematics : a foundation for computer science

Concrete mathematics : a foundation for computer science

Concrete mathematics : a foundation for computer science

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

214 BINOMIAL COEFFICIENTS<br />

Now sin( x + y ) = sin x cos y + cos x sin y ; so this ratio of sines is<br />

cos 2n7t sin 2~<br />

cos n7t sin c7r<br />

= (-qn(2 + O(e)) ,<br />

by the methods of Chapter 9. There<strong>for</strong>e, by (5.86), we have<br />

(-n-4! = 2(-l),r(2n) = ,(-,),P-l)! n Vn)!<br />

!‘_mo (-2n - 2e)!<br />

r(n) (n-l)! = (-‘) 7’<br />

as desired.<br />

Let’s complete our survey by restating the other identities we’ve seen so<br />

far in this chapter, clothing them in hypergeometric garb. The triple-binomial<br />

sum in (5.29) can be written<br />

F<br />

1 --a-2n, 1 -b-211, -2n ,<br />

a, b 1)<br />

(2n)! (a+b+2n-2)”<br />

= (-l)nn!- ak’,‘i ’ integer n 3 0.<br />

When this one is generalized to complex numbers, it is called Dixon’s <strong>for</strong>mula:<br />

F<br />

a, b, c = (c/2)! (c-a)*(c-b)*<br />

1 fc-a, 1 fc-b , c! (c-a-b)* ’<br />

fla+Rb < 1 +Rc/2.<br />

b6)<br />

One of the most general <strong>for</strong>mulas we’ve encountered is the triple-binomial<br />

sum (5.28), which yields Saalschiitz’s identity:<br />

F<br />

a, b, --n = (c-a)K(c-b)”<br />

c, afb-c-n+1 c”(c-a-b)K<br />

(a - c)n (b - c)E<br />

= (-c)s(a+b-c)n’<br />

integer n 3 0.<br />

This <strong>for</strong>mula gives the value at z = 1 of the general hypergeometric series<br />

with three upper parameters and two lower parameters, provided that one<br />

of the upper parameters is a nonpositive integer and that bl + bz = al +<br />

a2 + a3 + 1. (If the sum of the lower parameters exceeds the sum of the<br />

upper parameters by 2 instead of by 1, the <strong>for</strong>mula of exercise 25 can be used<br />

to express F(al , a2, as; bl , b2; 1) in terms of two hypergeometrics that satisfy<br />

Saalschiitz’s identity.)<br />

Our hard-won identity in Problem 8 of Section 5.2 reduces to<br />

1 x+1, n+l, -n<br />

---F 1 = (-‘)nX”X-n=l.<br />

1+x ( 1, x+2 1)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!