09.12.2012 Views

Concrete mathematics : a foundation for computer science

Concrete mathematics : a foundation for computer science

Concrete mathematics : a foundation for computer science

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

168 BINOMIAL COEFFICIENTS<br />

Equation (5.21) holds primarily because of cancellation between m!‘s in<br />

the factorial representations of (A) and (T) . If all variables are integers and<br />

r 3 m 3 k 3 0, we have<br />

>( ><br />

r m<br />

=--<br />

T! m!<br />

m k m!(r-m)! k!(m-k)!<br />

r.I<br />

=k!<br />

(m- k)! (r-m)!<br />

= -- r! (?.--I! = (;)(;;“k>.<br />

k!(r-k)! (m-k)!(r-m)!<br />

That was easy. Furthermore, if m < k or k < 0, both sides of (5.21) are Yeah, right.<br />

zero; so the identity holds <strong>for</strong> all integers m and k. Finally, the polynomial<br />

argument extends its validity to all real r.<br />

A binomial coefficient 1:;) = r!/(r - k)! k! can be written in the <strong>for</strong>m<br />

(a + b)!/a! b! after a suitab1.e renaming of variables. Similarly, the quantity<br />

in the middle of the derivation above, r!/k! (m - k)! (r - m)!, can be written<br />

in the <strong>for</strong>m (a + b + ~)!/a! b! c!. This is a “trinomial coefficient :’ which arises<br />

in the “trinomial theorem” :<br />

(a+b+c)!<br />

(x+y+z)n = t a! b! c!<br />

O$a,b,c<br />

“Excogitavi autem<br />

olim mirabilem<br />

regulam pro numeris<br />

coefficientibus<br />

potestatum, non<br />

So (A) (T) is really a trinomial coefficient in disguise. Trinomial coefficients<br />

pop up occasionally in applications, and we can conveniently write them as<br />

tanturn a bhomio<br />

x + y , sed et a<br />

trinomio x + y + 2,<br />

(a + b + c)!<br />

imo a polynomio<br />

quocunque, ut data<br />

(aaTE,Tc) = a!b!<br />

potentia gradus<br />

cujuscunque v.<br />

in order to emphasize the symmetry present.<br />

Binomial and trinomial coefficients generalize to multinomial coefi-<br />

gr. decimi, et<br />

potentia in ejus<br />

valore comprehensa,<br />

bents, which are always expressible as products of binomial coefficients: ut x5y3z2, possim<br />

statim assignare<br />

al + a2 + . . . + a,<br />

al,a2,...,a, ><br />

_= (al +az+...+a,)!<br />

al ! ar! . . . a,!<br />

numerum coefficientem,<br />

quem<br />

habere debet, sine<br />

==<br />

a1 + a2 + . . . + a,<br />

a2 + . . . + a, > “’ (““h,‘am) .<br />

ulla Tabula jam<br />

calculata<br />

--G.,V~~ibni~[~()fJ/<br />

There<strong>for</strong>e, when we run across such a beastie, our standard techniques apply.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!