09.12.2012 Views

Development of a novel mechatronic system for mechanical weed ...

Development of a novel mechatronic system for mechanical weed ...

Development of a novel mechatronic system for mechanical weed ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

List <strong>of</strong> figures<br />

Figure 5.3 Block diagram <strong>of</strong> the VI <strong>for</strong> detection <strong>of</strong> the plant centre position......... 62<br />

Figure 5.4 Dispersion <strong>of</strong> the impulses generated <strong>for</strong> every detected object (10 mm<br />

wood sticks) a) with RGB sensor sampling distance 5 mm b) with laser<br />

sensor sampling distance 5 mm c) with RGB sensor sampling distance<br />

2mm d) with laser sensor sampling distance 2 mm ............................. 64<br />

Figure 5.5 Rotary intra-row hoeing concept ......................................................... 72<br />

Figure 5.6 Design variants <strong>of</strong> the arm holder........................................................ 73<br />

Figure 5.7 Exploded view <strong>of</strong> a one-arm hoeing tool assembly with indicated joints<br />

............................................................................................................ 74<br />

Figure 5.8 Design variants <strong>of</strong> the hoeing tool assembly........................................ 74<br />

Figure 5.9 Kinematics and design <strong>of</strong> the rotary hoe.............................................. 75<br />

Figure 5.10 Trajectory <strong>of</strong> the duckfoot knife under the soil surface with minimum and<br />

maximum hoeing depth ....................................................................... 76<br />

Figure 5.11 Hoeing trajectories <strong>of</strong> the hoeing tool with nine arms in a field with 300<br />

mm intra-row distance between plants (arm length 440 mm, angular<br />

position <strong>of</strong> all arms adjusted to 0°, � - position <strong>of</strong> the plant)................ 79<br />

Figure 5.12 Hoeing trajectories <strong>of</strong> the hoeing tool with nine arms in a field with 200<br />

mm intra-row distance between plants (arm length 520 mm, angular<br />

position <strong>of</strong> all arms adjusted to 0°, � - position <strong>of</strong> the plant)................ 80<br />

Figure 5.13 Hoeing trajectories <strong>of</strong> the hoeing tool with nine arms in a field with 200<br />

mm intra-row distance between plants (arm length 520 mm, angular<br />

position <strong>of</strong> all arms adjusted to fr=17°, mi=0°, re= –17°, � - position <strong>of</strong><br />

the plant)............................................................................................. 81<br />

Figure 5.14 Hoeing trajectories <strong>of</strong> the hoeing tool with nine arms in a field with 200<br />

mm intra-row distance between plants (arm length 440 mm, angular<br />

position <strong>of</strong> all arms adjusted to fr=17°, mi=0°, re= –17°, � - position <strong>of</strong><br />

the plant)............................................................................................. 82<br />

Figure 5.15 The shape and dimensions <strong>of</strong> one duckfoot knife................................ 83<br />

Figure 5.16 Hoeing trajectories <strong>of</strong> the hoeing tool with three arms providing two cuts<br />

between following plants in a field with 200 mm intra-row distance<br />

between plants (arm length 440 mm, angular position <strong>of</strong> all arms<br />

adjusted to duckfoot1=17°, duckfoot2=0°, duckfoot3= –17°, � - position<br />

<strong>of</strong> the plant) ......................................................................................... 84<br />

Figure 5.17 Hoeing trajectories <strong>of</strong> the hoeing tool with four arms providing two cuts<br />

between following plants in a field with 200 mm intra-row distance<br />

between plants (arm length 440 mm, angular position <strong>of</strong> arms adjusted<br />

to: duckfoot1= 20°, duckfoot2= -20°, duckfoot3= 20°, duckfoot4= -20° ,<br />

� - position <strong>of</strong> the plant)...................................................................... 85<br />

Figure 5.18 Results <strong>of</strong> the field experiment providing insight into the size <strong>of</strong> the<br />

torque required <strong>for</strong> undisturbed hoeing with hoeing tool with three arms<br />

in extreme conditions .......................................................................... 88<br />

Figure 5.19 Definition <strong>of</strong> the desired angular position <strong>of</strong> the hoeing tool with three<br />

arms a) when it is in the start position and b) when it is placed exactly<br />

above a crop plant............................................................................... 92<br />

Figure 5.20 Time schedule <strong>of</strong> the VI-s execution during the real time detection <strong>of</strong> the<br />

plant position....................................................................................... 93<br />

Figure 5.21 Definition <strong>of</strong> the required distance between the plant detection unit and<br />

the plane in which the hoeing tool is placed ........................................ 94<br />

Figure 5.22 Algorithm <strong>for</strong> the online control <strong>of</strong> the hoeing tool’s rotational speed ... 98<br />

Figure 5.23 Carrier vehicle <strong>of</strong> the hoeing tool......................................................... 99<br />

136

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!