08.12.2012 Views

Specialist Group on Use of Macrophytes in Water Pollution ... - IWA

Specialist Group on Use of Macrophytes in Water Pollution ... - IWA

Specialist Group on Use of Macrophytes in Water Pollution ... - IWA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

flow regime, hydraulic retenti<strong>on</strong> time), soil matrix, vegetati<strong>on</strong> type and density, and<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s such as temperature, oxygen regime, and solar irradiati<strong>on</strong>.<br />

Estrogens are relatively hydrophobic compounds (log Kow 2.81-4.67), thus <strong>on</strong>e <strong>of</strong> the<br />

mechanisms by which they can be removed is sorpti<strong>on</strong> to hydrophobic surfaces (e.g., organic<br />

rich soils; White et al., 2006; Matamoros and Bay<strong>on</strong>a, 2008). Similar to other organic<br />

compounds, estrogens are also exploited and degraded by microorganisms (e.g., Matamoros<br />

and Bay<strong>on</strong>a, 2008; Imfeld et al., 2009). Another possible mechanism for estrogen breakdown<br />

is photo-degradati<strong>on</strong>; however this is relevant <strong>on</strong>ly to surface flow wetlands, particularly<br />

shallow and clear <strong>on</strong>es (White et al., 2006). The low vapor pressure <strong>of</strong> estrogens makes<br />

evaporati<strong>on</strong> a less probable mechanism for remov<strong>in</strong>g them <strong>in</strong> wetlands (Ingerslev and<br />

Hall<strong>in</strong>g-Sørensen, 2003).<br />

Evidence for estrogen removal <strong>in</strong> wetland systems<br />

Elim<strong>in</strong>ati<strong>on</strong> <strong>of</strong> estrogenic compounds from wastewater is expressed either by decrease <strong>in</strong><br />

c<strong>on</strong>centrati<strong>on</strong> or by decl<strong>in</strong>e <strong>in</strong> estrogenic activity (estrogenicity). Here we present the data for<br />

different types <strong>of</strong> c<strong>on</strong>structed wetlands, <strong>in</strong> order <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g rate <strong>of</strong> attenuati<strong>on</strong>.<br />

Surface flow wetlands (SF)<br />

Data <strong>on</strong> removal efficiency <strong>of</strong> estrogens or estrogenicity <strong>in</strong> surface-flow wetlands are<br />

c<strong>on</strong>flict<strong>in</strong>g. Some reports c<strong>on</strong>tend that there is no or little attenuati<strong>on</strong> <strong>of</strong> estrogens, while<br />

others report measurable removal. Insignificant removal <strong>of</strong> estrogenic activity was<br />

dem<strong>on</strong>strated for example <strong>in</strong> the Prado wetland (Riverside, California; Xie et al., 2004)<br />

treat<strong>in</strong>g the water <strong>of</strong> the Santa Ana River that receives tertiary-treated effluent (Bachand and<br />

Horne, 2000). The river water was discharged <strong>in</strong>to 50 shallow SF p<strong>on</strong>ds (average depth 0.75<br />

to 0.92m) with average discharge <strong>of</strong> 3.6m 3 /s, and hydraulic retenti<strong>on</strong> time (HRT) <strong>of</strong> 6 days.<br />

No difference <strong>in</strong> esterogenicity (<strong>in</strong> vivo ra<strong>in</strong>bow trout vitellogen<strong>in</strong> expressi<strong>on</strong> and <strong>in</strong> vitro<br />

yeast estrogen screen<strong>in</strong>g assays) was found between river water enter<strong>in</strong>g and leav<strong>in</strong>g the<br />

Prado wetland. Persistence <strong>of</strong> estrogenic compounds (E2, E1; maximum c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> 4<br />

and 12 ng/l, respectively) was also found <strong>in</strong> shallow <strong>in</strong>terc<strong>on</strong>nected eng<strong>in</strong>eered p<strong>on</strong>ds<br />

receiv<strong>in</strong>g municipal sec<strong>on</strong>dary effluent with an HRT <strong>of</strong> 6-7 days (Kolodziej et al., 2003). In a<br />

study <strong>in</strong> Ill<strong>in</strong>ois, Peters<strong>on</strong> and Lann<strong>in</strong>g (2009) reported the failure <strong>of</strong> an SF system (3<br />

c<strong>on</strong>secutive cells, 6X15X1.2m, each with a variety <strong>of</strong> emergent and float<strong>in</strong>g macrophytes),<br />

receiv<strong>in</strong>g sec<strong>on</strong>dary municipal effluent (ca. 11.4 m 3 /day; 4 days mean HRT), to significantly<br />

remove E2 and E1 (mean <strong>in</strong>fluent c<strong>on</strong>centrati<strong>on</strong> 32.8-55.5 and 73.6-74.8 ng/l, respectively).<br />

The authors found <strong>on</strong>ly poor removal <strong>of</strong> E2 (13%) and failure to remove E1 <strong>in</strong> a similar<br />

surface flow system that had <strong>on</strong>ly float<strong>in</strong>g aquatic plants (duckweed and algae). Difference <strong>in</strong><br />

the removal <strong>of</strong> E2 by the above SF systems was attributed to different plant compositi<strong>on</strong>. We<br />

exam<strong>in</strong>ed removal <strong>of</strong> E2 and E1 <strong>in</strong> an hybrid wetland <strong>in</strong> Israel where an SF p<strong>on</strong>d (25m 2 ,<br />

depth – 0.55m, a variety <strong>of</strong> emergent and submerged macrophytes; discharge 12m 3 /day;<br />

calculated HRT – ca 15 hrs) provided f<strong>in</strong>al treatment (Milste<strong>in</strong> et al., <strong>in</strong> preparati<strong>on</strong>). We too<br />

found no significant removal <strong>of</strong> E2 (<strong>in</strong>fluent c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> E2 2.7ng/l; E1 was below<br />

detecti<strong>on</strong> limit <strong>of</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!