08.12.2012 Views

A European Code-of-Practice for Strain-Controlled ... - TMF-Workshop

A European Code-of-Practice for Strain-Controlled ... - TMF-Workshop

A European Code-of-Practice for Strain-Controlled ... - TMF-Workshop

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

A <strong>European</strong> <strong>Code</strong>-<strong>of</strong>-<strong>Practice</strong> <strong>for</strong><br />

<strong>Strain</strong>-<strong>Controlled</strong> Thermo-Mechanical Fatigue Testing<br />

Peter Hähner, JRC Institute <strong>for</strong> Energy, Petten, (NL)<br />

Claudia Rinaldi, and Valerio Bicego, CESI, Milan (I)<br />

Ernst Affeldt, MTU Aero Engines, München (D)<br />

Henrik Andersson, KIMAB, Stockholm (S)<br />

Tilmann Beck, University <strong>of</strong> Karlsruhe (D)<br />

Thomas Brendel, MTU Aero Engines, München (D)<br />

Hellmuth Klingelhöffer, BAM, Berlin (D)<br />

Alain Köster, Ecole Nationale Superieure des Mines de Paris (F)<br />

Hans-Joachim Kühn, BAM, Berlin (D)<br />

Malcolm Loveday, NPL, Teddington (UK)<br />

Massimo Marchionni, CNR-IENI, Milan (I)<br />

Catherine Rae, University <strong>of</strong> Cambridge (UK)


survey<br />

WP1 1 st draft<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

WP6: Drafting <strong>of</strong> CoP<br />

prel. CoP val.CoP<br />

WP2 WP3 WP4 WP5<br />

Material Pre-normative R&D Validation tests Statist. analysis<br />

2002 2003 2004 2005<br />

WP7<br />

Dissemination


Table <strong>of</strong> Contents <strong>of</strong> CoP<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

1- INTRODUCTION<br />

1.1 SCOPE AND USE<br />

1.2 DEFINITIONS AND DESCRIPTION OF TERMS<br />

1. 3 NORMATIVE REFERENCES<br />

2- EXPERIMENTAL: Set-up and specimens<br />

2.1 APPARATUS<br />

2.2 SPECIMENS<br />

3- TEST PREPARATORY ISSUES<br />

3.1 EVALUATION OF E MODULUS<br />

3.2 OPTIMISATION OF TEMPERATURE CONTROL LOOP<br />

3.3 THERMAL STRAIN MEASUREMENT<br />

3.4 ZERO STRESS TEST<br />

4- TEST EXECUTION<br />

4.1 TEST START<br />

4.2 TEST STOP AND RESTART<br />

4.3 TEST MONITORING<br />

4.4 TERMINATION OF TEST<br />

5- ANALYSIS AND REPORTING<br />

5.1 ANALYSIS OF RECORDED DATA<br />

5.2 REPORTING OF TEST METHODS<br />

5.3 REPORTING OF RESULTS<br />

Acknowledgements<br />

References<br />

Annex A Specimens (In<strong>for</strong>mative)<br />

Annex B Relevant material properties and experimental characteristics (In<strong>for</strong>mative)<br />

Annex C Representative <strong>TMF</strong> cycles frequently used (In<strong>for</strong>mative)<br />

Annex D Measurement scatter and uncertainties (In<strong>for</strong>mative)


Mechanical strain %<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

E<br />

M<br />

A<br />

D<br />

45° 90°<br />

N<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Definition <strong>of</strong> <strong>TMF</strong> cycles<br />

H L<br />

P<br />

F<br />

300 400 500 600 700 800 900 1000<br />

Temperature °C<br />

Mech. strain vs. temperature <strong>for</strong> typical <strong>TMF</strong> cycles<br />

with R = �1<br />

I<br />

O<br />

G<br />

C<br />

B<br />

T = T 0 + �T F(�t)<br />

� m = � m,0 + �� F(�t ��)<br />

F(x) = F(x + 2�), � x<br />

0 < � < 180° means that<br />

� lags behind T


tubular<br />

solid cyclindrical<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Examples <strong>of</strong> specimens used in the<br />

“inner-circle” validation round robin<br />

flat


Spot-welding <strong>of</strong> TCs<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Dynamic T measurement and control<br />

Use <strong>of</strong> ribbon TCs<br />

Stability <strong>of</strong> T pr<strong>of</strong>ile


Definitions<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Comparison <strong>of</strong> tolerances and recommendations (1)<br />

issue <strong>TMF</strong>-Standard<br />

CoP<br />

Definition <strong>of</strong> �<br />

phase angle<br />

m lags behind,<br />

if � > 0<br />

Start point <strong>of</strong> at �m = 0 (R�0) or<br />

first <strong>TMF</strong> cycle T = Tmin (R>0),<br />

always increasing T;<br />

gradual increase <strong>of</strong><br />

�� m not <strong>for</strong>eseen<br />

ISO 12111.1 ASTM E 2368 - 04<br />

No definition �m at �m = 0 (R�0) or<br />

�<br />

lags behind,<br />

if � > 0<br />

m = min| �m| (R>0),<br />

always same<br />

at �m = 0 (R�0) or<br />

�<br />

direction;<br />

gradual cyclic<br />

increase <strong>of</strong> ��m <strong>for</strong><br />

large strain<br />

amplitude tests or in<br />

case <strong>of</strong> serrated<br />

yielding<br />

m = min| �m| (R>0),<br />

always same<br />

direction<br />

gradual cyclic<br />

increase <strong>of</strong> ��m <strong>for</strong><br />

large strain<br />

amplitude tests or in<br />

case <strong>of</strong> serrated<br />

yielding


Apparatus & Specimens<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Comparison <strong>of</strong> tolerances and recommendations (2)<br />

issue <strong>TMF</strong>-Standard<br />

CoP<br />

ISO 12111.1 ASTM E 2368 - 04<br />

Extensometry ISO 9513 Class 1 ISO 9513 Class 1 E83 Class B-2<br />

(<strong>for</strong> l0 < 15mm (<strong>for</strong> l0 < 15mm<br />

Class 0.5 recomm.) Class 0.5 recomm.)<br />

Alignment: 5% <strong>of</strong> mech. <strong>Strain</strong> 5% <strong>of</strong> both max. E 606 (LCF):<br />

max. allowable range<br />

AND min. mech. 5% <strong>of</strong> min. mech.<br />

bending<br />

strain<br />

strain range<br />

Dynamic T Detailed<br />

Direct contact: Direct contact:<br />

measurement recommendations binding, pressure, binding, pressure,<br />

and control on appropr. methods spot welding spot welding<br />

<strong>of</strong> fixing;<br />

outside GL; outside GL;<br />

No pyrometry Pyrometry Pyrometry<br />

Humidity <strong>of</strong> air Not an issue Not an issue Control <strong>of</strong> rel. air<br />

humidity strongly<br />

recommended<br />

(extensometry)<br />

Specimen Detailed geometries Detailed geometries<br />

geometries and machining<br />

tolerances<br />

recommended <strong>for</strong><br />

and machining<br />

tolerances<br />

recommended <strong>for</strong><br />

�� Solid cylindrical,<br />

�� tubular,<br />

�� flat specimens<br />

�� Solid<br />

Examples <strong>for</strong><br />

��Solid cylindrical,<br />

��Tubular specimens<br />

Tubular<br />

specimens<br />

5 < o.d. / w.t. < 10<br />

cylindrical,<br />

�� tubular,<br />

�� flat specimens<br />

10 < o.d. / w.t. < 30<br />

Tubular specimens<br />

preferred<br />

No recommendation


Max. Allowable Tolerances<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Comparison <strong>of</strong> tolerances and recommendations (3a)<br />

issue <strong>TMF</strong>-Standard<br />

CoP<br />

Max.<br />

The greater <strong>of</strong><br />

temperature ± 5°C or<br />

deviation ����T [°C]<br />

throughout test at<br />

center <strong>of</strong> GL<br />

Max.<br />

The greater <strong>of</strong><br />

temperature<br />

gradients<br />

within GL<br />

�� ± 10°C or<br />

����T [°C]<br />

(axial)<br />

�� ± 5°C or<br />

����T [°C]<br />

(radial, &<br />

circumferential)<br />

�� ± 7°C<br />

(transverse<br />

gradient in flat<br />

specimens)<br />

ISO 12111.1 ASTM E 2368 - 04<br />

± 2°C<br />

throughout test as<br />

indicated by control<br />

sensor<br />

The greater <strong>of</strong><br />

± 5°C or<br />

± 1.5% Tmax [°C]<br />

(axial, radial, &<br />

circumferential)<br />

± 2°C<br />

throughout test as<br />

indicated by control<br />

sensor<br />

The greater <strong>of</strong><br />

± 3K or<br />

± 1% Tmax [K]<br />

(axial)


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Comparison <strong>of</strong> tolerances and recommendations (3b)<br />

issue <strong>TMF</strong>-Standard<br />

CoP<br />

Max.<br />

thermal strain<br />

hysteresis<br />

5% ��th Max.<br />

No mention, as not a<br />

mechanical directly controlled<br />

strain deviation variable<br />

Max.<br />

between<br />

phase angle ±2° at Tmax and<br />

deviation ±5° at Tmin<br />

Max.<br />

stress during<br />

zero-stress test<br />

| � |max < 5% ���and ��� < ±2% ��<br />

ISO 12111.1 ASTM E 2368 - 04<br />

2.5% max( � th)<br />

? definition ?<br />

2% �� m<br />

±5° ±5°<br />

< 2% <strong>of</strong> max.<br />

tensile or<br />

compressive stress<br />

anticipated<br />

5% �� th<br />

2% �� m<br />

“Insignificant” as<br />

compared to tensile<br />

or compressive<br />

stresses anticipated


<strong>TMF</strong> <strong>Practice</strong> Recommendations<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Comparison <strong>of</strong> tolerances and recommendations (4)<br />

issue <strong>TMF</strong>-Standard<br />

CoP<br />

Young’s Static and pseudo-<br />

modulus E dynamic methods<br />

measurement described <strong>for</strong> the<br />

determination <strong>of</strong><br />

E(T) be<strong>for</strong>e each<br />

series <strong>of</strong> tests<br />

Young’s Verification <strong>of</strong><br />

modulus <strong>TMF</strong> system<br />

verification recommended by<br />

measuring the Emod<br />

at<br />

RT, Tmin, Tmax and<br />

one intermed. T<br />

be<strong>for</strong>e each test:<br />

< ± 5% deviation<br />

from reference<br />

value<br />

Thermal strain Single-valued T<br />

compensation based NOT<br />

recommended<br />

Thermal pre- extra water cooling<br />

cycling at specimen ends<br />

recommended<br />

(cf. T control<br />

outside GL)<br />

ISO 12111.1 ASTM E 2368 - 04<br />

Static method<br />

described <strong>for</strong> the<br />

determination <strong>of</strong><br />

E(T) be<strong>for</strong>e each<br />

series <strong>of</strong> tests<br />

Verification <strong>of</strong><br />

extensometry<br />

recommended by<br />

measuring the Emod<br />

at RT be<strong>for</strong>e<br />

each test<br />

Static method<br />

described <strong>for</strong> the<br />

determination <strong>of</strong><br />

E(T) be<strong>for</strong>e each<br />

series <strong>of</strong> tests<br />

No recommendation<br />

T based preferred T based or t based<br />

Usually 3 – 4 precycles<br />

to dynamic T<br />

equilibrium


Other <strong>Practice</strong>s<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Comparison <strong>of</strong> tolerances and recommendations (5)<br />

issue <strong>TMF</strong>-Standard<br />

CoP<br />

Test<br />

Programmed stop:<br />

interruption<br />

Restart like<br />

procedure<br />

new test;<br />

Unexpected stop:<br />

Restart only<br />

if last cycle<br />

has been<br />

recorded<br />

Failure criteria<br />

associated with<br />

<strong>for</strong>ce drop<br />

Nf, x:<br />

�� or �max decrease<br />

by x% below<br />

sloping tangent line<br />

to previous<br />

inflection point<br />

ISO 12111.1 ASTM E 2368 - 04<br />

Programmed stop<br />

described<br />

5 – 50% peak<br />

tensile <strong>for</strong>ce drop<br />

from stabilized<br />

value or projected<br />

straight line<br />

Programmed stop<br />

described<br />

5 – 50% <strong>for</strong>ce drop<br />

from previously<br />

recorded peak <strong>for</strong>ce


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Conclusions<br />

<strong>TMF</strong>-Standard CoP on strain-controlled <strong>TMF</strong><br />

contains the “essence” <strong>of</strong> 4 years work <strong>of</strong> 20 <strong>European</strong> laboratories<br />

has been validated by ~ 120 <strong>TMF</strong> tests (OOP and IP)<br />

comprises a lot <strong>of</strong> in<strong>for</strong>mative material and practical recommendations<br />

has contributed to improving & harmonizing the partners’ in-house <strong>TMF</strong> practices<br />

provides technical underpinning to the ISO standard<br />

is disseminated to all interested parties<br />

Dissemination<br />

Original plan to run own CWA abandoned<br />

CoP to be published as a EUR Report<br />

To be distributed to all workshop participants


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

ANNEX C (In<strong>for</strong>mative) Exemplary compilation <strong>of</strong> relevant material properties and experimental characteristics<br />

Material properties <strong>of</strong> Nimonic90 1<br />

Property Symbol Unit Indicative<br />

value<br />

Mechanical properties<br />

Density � g/cm 3<br />

8.2<br />

Yield stress at Tmax � y MPa 440 @ 850°C<br />

Young’s modulus <strong>of</strong> elasticity E GPa 150<br />

Poisson ratio � 1 0.3<br />

Thermal properties<br />

Gibbs free enthalpy <strong>of</strong> plastic de<strong>for</strong>mation Gpl eV 1.9 ???<br />

Gibbs free enthalpy <strong>of</strong> oxidation (800 – 1000°C) Gox eV 1.1<br />

Specific heat cp J / kg °C 650<br />

Thermal conductivity � W / m °C 24<br />

Lin. coefficient <strong>of</strong> thermal expansion (400 – 850°C) � 10-6 °C �1 15<br />

Electrical conductivity<br />

Electromagnetic properties<br />

�<br />

( ��<br />

m) �1<br />

Magnetic permeability � 1 1.1<br />

0.76


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Characteristics <strong>of</strong> experimental setup and <strong>TMF</strong> conditions<br />

Parameter Symbol Unit Indicative<br />

value<br />

Specimen radius r mm 3<br />

Frequency <strong>of</strong> induction heating �ind kHz 200<br />

Heating/cooling rate T � °C / s 5<br />

Minimum temperature Tmin °C 400<br />

Maximum temperature Tmax °C 850<br />

Quantity<br />

Derived quantities<br />

Symbol Formula Unit Indic.<br />

value<br />

Skin effect penetration depth <strong>of</strong> power<br />

density<br />

d (4���0��)�1/2 mm 0.61<br />

Characteristic temperature <strong>of</strong> plastic de<strong>for</strong>m. Tc,pl Gpl/kB °C 22000<br />

Characteristic temperature <strong>of</strong> oxidation Tc,ox Gox/kB °C 12500<br />

Thermal relaxation time � ( � cp/ � )r 2 s 2.0<br />

Radial temperature gradient 1. T’ ( � cp/ � )rT � °C/mm 3.3<br />

Radial stress deviation �� (E/(1-�)) � T’r MPa 31<br />

Characteristic temperature deviation � T 0.1 T2 max / Tc,ox °C 10


WP3: Pre-normative R&D<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Task 1: Pre-cycling, start, interrupt, restart procedures<br />

Task 2: Dynamic T measurement and control<br />

Task 3: Thermal strain comp., deviations from nominal T<br />

Task 4: T gradient effects in 3 sample geometries<br />

(solid cylindrical, hollow cyl., solid rectangular)<br />

Task 5: Deviations from nominal phase angle


WP4: Validation Tests:<br />

1.) symmetrical triangular OOP<br />

R � = - 1, � = 180°<br />

T min = 400°C, T max = 850°C<br />

tcycle = 180s � dT/dt = � 5K/s<br />

��m = 0.8% � Nf � 1000<br />

2.) symmetrical triangular IP<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

mech. strain [%]<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

400 500 600 700 800 900<br />

R� = - 1, � = 0°<br />

temperature [°C]<br />

Tmin = 400°C, Tmax = 850°C used by<br />

tcycle = 180s � dT/dt = � 5K/s “inner circle” and<br />

��m = 0.6% � Nf � 1000 “outer circle” round robin participants


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

From these data various dimensionless parameters derive, which can be used to estimate the<br />

lower bounds <strong>of</strong> systematic errors induced by the experimental set-up and the thermo-mechanical<br />

fatigue conditions imposed, and to assess the influences <strong>of</strong> the various parameters affecting those<br />

errors.<br />

The induction heating <strong>of</strong> the above set-up causes a skin effect with very limited direct<br />

bulk heating, as the ratio <strong>of</strong> the penetration depth to the specimen radius<br />

d<br />

r<br />

�<br />

1 1<br />

�<br />

4���<br />

�� r<br />

0<br />

20%<br />

amounts to some 20 percent only. Accordingly, the specimen bulk is heated by heat<br />

conduction with finite thermal relaxation time �� 2s, causing a temperature difference �T � 10°C between inside and outside temperature.<br />

The relative stress deviation associated with the radial temperature gradient induced by<br />

surface heating and heat conduction to the bulk (lamp furnace or induction heater with<br />

small penetration depth) reads<br />

��<br />

��c<br />

�<br />

� �<br />

y<br />

p<br />

E<br />

( 1��<br />

) �<br />

y<br />

2<br />

r T�<br />

�<br />

7 %<br />

.<br />

On top <strong>of</strong> these systematic errors due to thermal relaxation there will always be<br />

measurement and control uncertainties, which must be kept as low as possible by<br />

appropriate maintenance and calibration <strong>of</strong> the measurement equipment as well as by an<br />

optimization <strong>of</strong> the <strong>TMF</strong> testing techniques. In particular, the relative overall temperature<br />

deviation in the gauge length should not exceed<br />

T<br />

max<br />

�T<br />

� T<br />

min<br />

� �0.<br />

1<br />

T<br />

c, ox<br />

T<br />

2<br />

max<br />

�T�T� max<br />

min<br />

� �2.<br />

2 % ,<br />

if the rate <strong>of</strong> the relevant thermally activated process (here: oxidation) is to be maintained<br />

ithi 10%


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Schematic <strong>of</strong> various coil configurations


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Dynamic T measurement and control:<br />

Major issues in dynamic T control by thermocouples:<br />

Inductive heating & resistive heating:<br />

Radiation heating<br />

Heat transfer coefficient from specimen surface to TC<br />

Heat conduction through TC wire: cold spot<br />

=> appropriate TC attachment is crucial<br />

Reflectivity coefficients <strong>of</strong> TC and specimen<br />

=> appropriate shielding <strong>of</strong> TC<br />

=> Need <strong>for</strong> comprehensive trials using a combination <strong>of</strong> different methods


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Dynamic T measurement and control (cont’d):<br />

1. Temperature control by ribbon TC within GL<br />

(a) (b)<br />

Ribbon type thermocouples, applied to (a) a round specimen with 8 mm<br />

diameter, and (b) a flat specimen 12 mm wide and 4 mm thick


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Dynamic T measurement and control (cont’d)<br />

4. Prevention <strong>of</strong> “cold spot”<br />

Wrapping configuration <strong>of</strong> spot-welded thermocouple


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

TC type R/S K/N<br />

Material Pt-based Ni-based<br />

Thermal contact good poor<br />

Thermal conductivity high low<br />

Error governed by heat conduct. therm. contact<br />

Recommended ribbon or SW<br />

attachment SW wrapping


Stress Range, MPa<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Failure criterion<br />

0 200 400 600 800 1000 1200 1400<br />

N, cycles<br />

Example <strong>of</strong> end <strong>of</strong> life criterion, based on 10% stress range drop below a<br />

sloping tangent line to the saturated portion <strong>of</strong> the curve<br />

Nf10


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Web-enabled Mat-DB - <strong>TMF</strong>-Standard data sets<br />

To get access to <strong>TMF</strong> Standard data and documentation please register on the JRC Petten ODIN<br />

website (https://odin.jrc.nl), register <strong>for</strong> Mat-DB and DoMa and mention under comments that you<br />

request access to the <strong>TMF</strong>-Standard project data sets.<br />

Selection <strong>of</strong> <strong>TMF</strong>-Standard data within the web-enabled Mat-DB data retrieval part


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Selection <strong>of</strong> <strong>TMF</strong> Standard data within the web-enabled Mat-DB data retrieval part


GROWTH Project n° GRD2-2000-30014<br />

<strong>TMF</strong>-Standard<br />

Final Meeting/<strong>Workshop</strong>, 20-23/09/05, Berlin<br />

Graphical output <strong>of</strong> <strong>TMF</strong> Standard data within the web-enabled Mat-DB data retrieval part

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!