19.09.2012 Views

SEMICONDUCTOR - Grieder Bauteile

SEMICONDUCTOR - Grieder Bauteile

SEMICONDUCTOR - Grieder Bauteile

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MOTOROLA<br />

<strong>SEMICONDUCTOR</strong><br />

APPLICATION NOTE<br />

������ �������������� ��� � ��� �������<br />

��������� �������� ����� �����<br />

Prepared by: Wayne Chavez<br />

Discrete Applications Engineering<br />

In low voltage motor drives, it is common practice to use<br />

complementary MOSFET half-bridges to simplify the gate<br />

drive design. However, the P-channel FET within the<br />

half-bridge usually has a higher on resistance or is larger<br />

and more expensive than the N-channel FET. The alternative<br />

solution is to design in an N-channel half-bridge. The<br />

N-channel half-bridge uses silicon more efficiently, while<br />

minimizing conduction losses and power device expense.<br />

The tradeoff to take advantge of N-channel devices is found<br />

in increased gate drive design complexity. Minimizing the<br />

gate drive complexity in a brushed DC motor drive with an<br />

INTRODUCTION<br />

Figure 1. N-channel, H-bridge Motor Drive (DEVB151)<br />

Order this document<br />

by AN1319/D<br />

������<br />

all N-channel H-bridge is the focus of this note. In addition,<br />

design considerations, diode snap and shoot-through current<br />

are discussed and circuit solutions are given.<br />

The result of the design is evaluation board DEVB151<br />

shown in Figure 1. DEVB151 features an MPM3017<br />

N-channel, H-bridge and circuitry designed to interface<br />

power devices within the MPM3017 to microprocessor<br />

outputs. The board drives 24-volt to 48-volt motors and can<br />

handle 8 amps of continuous motor current. A detailed<br />

description of the evaluation board is presented within this<br />

Application Note.<br />

© MOTOROLA INC., 1992 AN1319


DESIGN CONSIDERATIONS<br />

High-side Gate Drive Voltage<br />

Using N-channel half-bridges requires circuitry that<br />

produces voltage above the motor voltage rail and turns the<br />

upper transistors on. One method of accomplishing this task<br />

is to use a charge pump. The charge pump shown in Figure<br />

2 provides a constant voltage greater than 12 volts above<br />

the motor rail at all motor speeds, unlike the capacitor<br />

bootstrap approach, and is less expensive than a transformer<br />

isolated gate drive.<br />

C7<br />

330 pF<br />

R28<br />

10 kΩ<br />

U3<br />

MC34151<br />

Î<br />

Î<br />

C10<br />

.1μF<br />

D11<br />

1N5819<br />

D10<br />

1N5819<br />

Figure 2. Charge Pump<br />

C9<br />

1 μF<br />

+B<br />

Motor Supply<br />

Voltage<br />

Ï<br />

Ï<br />

+B + Boost<br />

An oscillator, two capacitors and two diodes are all the<br />

components necessary to build a charge pump. The inverter,<br />

MC34151, is configured as an oscillator with C7 and R28<br />

determining the frequency. The charge pump action is as<br />

follows. C10 charges up to the rail voltage minus a diode<br />

drop when the IC’s output is low. When the IC’s output swings<br />

high, C10 dumps charge into C9. The cycle is continuously<br />

+5V<br />

R15 R16<br />

750 Ω<br />

10 Ω<br />

Q2<br />

MPSA06<br />

+B + Boost<br />

Q1<br />

MPSA56<br />

U4<br />

MDC1000A<br />

Figure 3. High-side Gate Drive<br />

repeated. In steady state, the voltage across C9 is the<br />

voltage swing of the IC’s output minus two diode drops. This<br />

voltage is in series with the rail voltage, B+, and the sum<br />

is sufficient to drive the high-side FETs.<br />

Voltage losses in the charge pump are from the diode<br />

forward drops and the IC’s output voltage swing. To minimize<br />

the diode voltage drops, Schottky diodes are implemented.<br />

The loss in the IC’s output voltage swing is dependent on<br />

the level of current the charge pump is asked to support.<br />

For example, if the charge pump is to support 50 mA, the<br />

IC’s output swing diminishes by approximately 2 V. This is<br />

of particular concern when operating from a voltage source<br />

less than 15 V. Gate drive voltage is compromised when<br />

operating from a supply voltage of less than 15 volts which<br />

results in increased power dissipation.<br />

High-side Gate Drive<br />

Now that boost voltage is available for the high-side FETs,<br />

a means of switching this voltage to the gate is needed.<br />

Together the MDC1000A and a switched current source,<br />

shown in Figure 3, accomplish this requirement.<br />

The MDC1000A, a MOS turn-off device (MTO), is very<br />

useful in the high-side FET applications. It discharges the<br />

gate-to-source capacitance quickly and contains a zener<br />

clamp for gate protection. To charge the gate-to-source<br />

capacitance, the MTO passes current to the gate of the FET.<br />

When the gate-to-source voltage reaches the zener clamp<br />

voltage, the current is shunted through the zener. When the<br />

current source is turned off, a resistor internal to the MTO<br />

pulls down on the anode of the series diode. After the anode<br />

voltage falls approximately one diode drop, the internal SCR<br />

fires, discharging the gate-to-source capacitance. The series<br />

gate resistor, R19, limits the rate of discharge of the gate<br />

and therefore determines the turn-off time. It will be shown<br />

MOTOROLA AN1319<br />

2<br />

R19<br />

33 Ω<br />

+B<br />

Motor Supply<br />

Voltage<br />

U1<br />

R10<br />

3.3 kΩ<br />

74HC00 +M<br />

Positive Motor<br />

Output<br />

Î<br />

ÏÏ<br />

Ï<br />

ÏÏ<br />

ÏÏ


AN1319<br />

U2<br />

MC34151<br />

R22<br />

240 Ω<br />

later that this resistor also plays a key role in solving the<br />

dynamic issues of the motor drive.<br />

The current source used with the MTO consists of a PNP<br />

transistor, Q1, and resistors R15 and R16. The FET turn-on<br />

time is determined by the sourced current. The reference<br />

current is the collector current of the level shifting transistor,<br />

Q2, and is set by resistor R10. The reference current is<br />

established when the NAND gate output is logic 0. The<br />

reference current, though small, must be supported by the<br />

charge pump.<br />

Low-side Gate Drive<br />

The low-side gate drive design, as shown in Figure 4, is<br />

relatively simple compared to the high side. The MC34151,<br />

used before as an oscillator in the charge pump, is an<br />

integrated circuit specifically designed to drive the gate of<br />

a power MOSFET. The input to this device can be a 5 volt<br />

logic level signal like that of a microcontroller. The MC34151<br />

is capable of sourcing and sinking approximately 1.5<br />

amperes. Therefore, to limit the current into the gate and<br />

control the turn-on time, a resistor, R22, is needed between<br />

the IC and FET. An additional resistor, R23, in series with<br />

PWM<br />

Rgs<br />

Rg<br />

+B<br />

Motor Supply<br />

Voltage<br />

Q1<br />

Q2<br />

Figure 5. Simplified Half-Bridge<br />

+B<br />

R23 D8<br />

D7<br />

33 Ω 1N4148<br />

R21<br />

1N4148<br />

.01 Ω<br />

+<br />

Motor<br />

_<br />

Figure 4. Low-side Gate Drive<br />

Motor Supply<br />

Voltage<br />

+M<br />

Positive Motor<br />

Output<br />

a diode, D8, is placed in parallel with R22 to implement a<br />

faster turn-off time. The need for separate turn-on and turn-off<br />

times will become clear when the dynamic characteristics are<br />

explained.<br />

Dynamic Issues<br />

In addition to static gate drive designs, more difficult<br />

dynamic design challenges must be addressed. These<br />

issues include diode snap and shoot-through current. A<br />

description of these issues and solutions follows.<br />

A pulse width modulated motor drive is usually a<br />

continuous mode clamped inductive load – i.e. – current<br />

continually flows through the inductance. Referring to the<br />

simplified half-bridge circuit of Figure 5, current through the<br />

motor ramps up when Q2 is on and freewheels through Q1’s<br />

internal diode when Q2 is switched off.<br />

When Q2 turns on again, the stored charge within Q1’s<br />

diode must be cleared. The resulting drain current of Q2 is<br />

shown in the turn-on waveform of Figure 6.<br />

The first current peak in Figure 6 shows up as current<br />

from the rail to ground, bypassing the motor. This current has<br />

two components. The first is the expected reverse recovery<br />

VDS<br />

Icont<br />

ID<br />

ta<br />

tb<br />

Figure 6. Turn-on Wave Form<br />

MOTOROLA<br />

3


current of the internal diode of Q1. The second is dv/dt<br />

generated shoot-through current.<br />

Reverse recovery characteristics of the freewheeling<br />

diode are at the root of the system design challenges.<br />

Referring to Figure 6, FET intrinsic diode reverse recovery<br />

tends to be fairly snappy; tb is much shorter than ta. It follows<br />

that di/dt during tb is greater than during ta, and if<br />

unmanageably high, invites unpredictable behavior and<br />

unwanted voltage spikes. In addition, VDS falls very rapidly<br />

during tb. Referring to Figure 5, the dv/dt created during tb<br />

couples through to the gate-to-drain capacitance of the upper<br />

FET. A current proportional to dv/dt and CDG flows through<br />

the top FET gate impedance, develops a gate-to-source<br />

voltage, and turns the FET on. The result is current from the<br />

supply to ground through the half-bridge called shoot-through<br />

current.<br />

Shoot-through and reverse-recovery current bypass the<br />

motor and therefore only contribute to power dissipation.<br />

Other unwanted side effects consist of EMI and unpredictable<br />

gate drive performance from high di/dts acting upon lead and<br />

stray PCB trace inductance. However, control of diode snap<br />

and shoot-through current is accomplished by employing a<br />

gate drive impedance strategy.<br />

The gate-to-source impedance of the upper FET as<br />

shown in Figure 5, controls the voltage developed across<br />

3.25”<br />

MPM3017 MOTOR DRIVE<br />

DEVB151 REV A<br />

CON2<br />

D5<br />

PWR<br />

A BOT<br />

A TOP<br />

B TOP<br />

B BOT<br />

C1<br />

A CS<br />

J1<br />

B CS<br />

CS GND<br />

GND<br />

GND<br />

R1<br />

R2<br />

R3<br />

D1<br />

R4<br />

D2<br />

R5<br />

R6<br />

R7<br />

U1<br />

R8<br />

R9<br />

D3<br />

R10<br />

D4<br />

R11<br />

R12<br />

R13<br />

MOTOROLA DISCRETE<br />

APPLICATIONS<br />

Q4 Q2<br />

R14<br />

R15<br />

R18<br />

C6<br />

Q3 Q1<br />

R16<br />

C2<br />

U4<br />

C7<br />

C4<br />

M1<br />

R19<br />

R20<br />

R22<br />

D8<br />

R23<br />

R17<br />

D6<br />

D7<br />

C8<br />

gate to source during tb and therefore controls the<br />

shoot-through current. A low impedance will obviously<br />

minimize shoot-through current, but there exists a value that<br />

lets an optimal portion of shoot-through current pass. This<br />

impedance can be adjusted until the turn-on waveform<br />

appears to be critically damped. The FET is conducting as<br />

the diode is snapping. If the total current is dominated by<br />

the FET condition, the sharp snap of the diode is hidden.<br />

The net effect is a softer recovery characteristic.<br />

The turn-on gate impedance of the bottom pulse width<br />

modulated FET of Figure 5 also plays a key role in softening<br />

the reverse recovery characteristic. This impedance sets the<br />

positive di/dt during ta. The stored charge in the freewheeling<br />

diode is a function of applied di/dt and as ta becomes shorter,<br />

the diode snaps more severely. This implies that the turnon<br />

gate impedance must be set to a value that will create<br />

a manageable positive di/dt and enable the strategy<br />

undertaken to control diode snap.<br />

An increase in power dissipation is sacrificed for a more<br />

desirable turn-on waveform. Considering the problems that<br />

arise with unmanageable di/dts, such as EMI, voltage spikes,<br />

possible oscillation at turn-on, and possibly a large amount<br />

of power dissipation, the trade-off is to the designer’s<br />

advantage.<br />

MOTOROLA AN1319<br />

4<br />

5.2”<br />

C3<br />

U5<br />

C5<br />

R24<br />

D9<br />

R25<br />

U3<br />

R21<br />

C11<br />

C9<br />

Figure 7. Component Layout<br />

D10<br />

D11<br />

U3<br />

C15<br />

C12<br />

C10<br />

+<br />

R27<br />

R26<br />

R28<br />

D12<br />

D13<br />

Q6<br />

U6<br />

POWER I/O<br />

+B<br />

+M<br />

–M<br />

GND<br />

CON3<br />

Q5<br />

C13<br />

C14


AN1319<br />

MOTOROLA<br />

5<br />

A BOT<br />

B TOP<br />

B BOT<br />

C9<br />

330 pF<br />

R28<br />

10 kΩ<br />

CON1<br />

A TOP<br />

2<br />

1<br />

3<br />

4<br />

U3<br />

MC34151<br />

2<br />

4<br />

R8<br />

10 kΩ<br />

R12<br />

10 kΩ<br />

R2<br />

10 kΩ<br />

VDD<br />

6<br />

3<br />

C10<br />

1μ<br />

F<br />

7<br />

5<br />

R9<br />

1 kΩ<br />

D3<br />

4.7 V<br />

R11<br />

1 k Ω<br />

R3<br />

1 kΩ<br />

R6 R5<br />

10 k Ω 1 k Ω<br />

C1<br />

.01μ<br />

F<br />

D1<br />

4.7 V<br />

+5 V<br />

+5 V<br />

13<br />

12<br />

C12<br />

.1 μ F<br />

D12<br />

19 V<br />

1<br />

2<br />

4<br />

5<br />

D4<br />

4.7 V<br />

10<br />

9<br />

D2<br />

4.7 V<br />

U1<br />

74HC00<br />

U1<br />

U1<br />

U1<br />

D11<br />

1N5819<br />

D10<br />

1N5819<br />

14<br />

3<br />

11<br />

8<br />

+5 V<br />

6<br />

2<br />

U2<br />

7<br />

MC34151<br />

C11<br />

1μ<br />

F<br />

R14<br />

750 Ω<br />

R16<br />

10 Ω<br />

C6<br />

.01μ<br />

F<br />

R15<br />

750 Ω<br />

R10<br />

3.3 k Ω<br />

R17<br />

10 Ω<br />

Q3<br />

MPSA56<br />

C7 1<br />

.01μ<br />

F<br />

2<br />

6<br />

R4<br />

3.3 k Ω<br />

7<br />

4 5<br />

3<br />

VDD<br />

2<br />

C8<br />

.1μ<br />

F<br />

Q1<br />

MPSA56<br />

1 3<br />

3<br />

Q4<br />

MPSA06<br />

1<br />

3<br />

2<br />

C4<br />

100 pF<br />

3<br />

Q2<br />

MPSA06<br />

1<br />

R25<br />

33 Ω<br />

D7<br />

1N4148<br />

R24<br />

240 Ω<br />

C5<br />

100 pF<br />

2<br />

D6<br />

1N4148<br />

D9<br />

1N4148<br />

U4<br />

MDC1000A<br />

2<br />

1<br />

2<br />

1<br />

R22<br />

240 Ω<br />

R23<br />

33 Ω<br />

3<br />

U5<br />

MDC1000A<br />

1<br />

R13<br />

360 Ω<br />

+5 V<br />

Figure 8. MPM3017 Motor Drive Schematic<br />

D8<br />

1N4148<br />

D5<br />

R19<br />

33 Ω<br />

C2<br />

1 μ<br />

F<br />

3<br />

1<br />

C14<br />

1μ<br />

F<br />

R20<br />

33Ω<br />

OUT<br />

5<br />

2<br />

R18<br />

.01Ω<br />

6<br />

4<br />

4<br />

1<br />

U6<br />

MC78L05<br />

GROUND<br />

2<br />

MPM3017<br />

IN<br />

3<br />

8<br />

10<br />

C13<br />

1μ F<br />

6<br />

9<br />

9<br />

11<br />

VDD<br />

R21<br />

.01Ω<br />

+<br />

C3<br />

1 μ F<br />

3 2<br />

1<br />

D13<br />

17 V<br />

1<br />

2<br />

3<br />

C15<br />

390μ<br />

F<br />

R1<br />

1 k Ω<br />

R7<br />

1 kΩ<br />

Q5<br />

TIP29B<br />

Q6<br />

MPSW06<br />

R26<br />

4.8 kΩ<br />

R27<br />

4.8 k Ω<br />

1<br />

2<br />

3<br />

4<br />

1<br />

2<br />

3<br />

4<br />

5<br />

+ B<br />

CON3<br />

+B<br />

+M<br />

–M<br />

GND<br />

CON2<br />

A CS<br />

B CS<br />

CS GND<br />

GND<br />

GND


Table 1. Parts List<br />

ÁÁÁ<br />

Designators ÁÁÁÁ<br />

Description<br />

ÁÁÁ<br />

C1,C6,C7 ÁÁÁÁÁÁÁÁÁ<br />

3 .01 μF Ceramic ÁÁÁÁ<br />

Cap 100 ÁÁÁÁÁÁÁ<br />

V<br />

ÁÁÁÁÁÁ<br />

Manufacturer Part Number<br />

ÁÁÁÁÁÁÁÁÁQuantityÁÁÁÁÁÁÁÁÁ<br />

RatingÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁ<br />

C2,C3,C10,C11,C13,C14 ÁÁÁÁÁÁÁÁÁ<br />

6 1 μF Ceramic ÁÁÁÁ<br />

Cap 100 ÁÁÁÁÁÁÁ<br />

V<br />

ÁÁÁ<br />

C4,C5 ÁÁÁÁÁÁÁÁÁ<br />

2 100 pF Ceramic ÁÁÁÁ<br />

Cap 100 ÁÁÁÁÁÁÁ<br />

V<br />

ÁÁÁ<br />

C6,C8,C12 2 ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ<br />

.1 μF Ceramic Cap 100 V<br />

C9<br />

1 330 pF Ceramic Cap<br />

100 V<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

C15<br />

CON1,CON3<br />

CON2<br />

1<br />

1<br />

390 μF Electrolytic Cap<br />

4 Terminal Connector<br />

ÁÁÁÁÁÁÁÁÁ<br />

1 5 Terminal Connector<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁ<br />

D1,D2,D3,D4<br />

D5<br />

MOTOROLA AN1319<br />

6<br />

100 V<br />

Sprague<br />

80D391P100HA2<br />

ÁÁÁÁÁÁÁÁÁ<br />

4 4.7 V Zener<br />

500 mW ÁÁÁÁÁÁÁ<br />

Motorola 1N5230B<br />

ÁÁÁÁÁÁÁÁÁ<br />

1 LED (RED)<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁ<br />

D6,D7,D8,D9 ÁÁÁ Diode<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁ<br />

Motorola<br />

ÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

1N4148<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

D10,D11<br />

D12<br />

D13<br />

GI<br />

MV57124A<br />

ÁÁÁÁÁÁÁÁÁ<br />

4<br />

ÁÁÁÁÁÁÁÁÁ<br />

2 Diode Schottky<br />

1 A,40 VÁÁÁÁÁÁÁ Motorola 1N5819<br />

ÁÁÁÁÁÁÁÁÁ<br />

1 19 V Zener<br />

500 mWÁÁÁÁÁÁÁ Motorola 1N5249B<br />

1 17 V Zener<br />

500 mWÁÁÁÁÁÁÁ<br />

Motorola 1N5247B<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

M1<br />

Q1,Q3<br />

1 N-ch H-Bridge<br />

60 V/25 AÁÁÁÁÁÁÁ<br />

Motorola MPM3017<br />

ÁÁÁÁÁÁÁÁÁ<br />

2 PNP Transistor ÁÁÁÁÁÁÁÁÁ<br />

80 ÁÁÁÁÁÁÁ<br />

V Motorola MPSA56<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

Q2,Q4<br />

2 NPN Transistor ÁÁÁÁÁÁÁÁÁ<br />

80 ÁÁÁÁÁÁÁ<br />

V Motorola MPSA06<br />

ÁÁÁ<br />

Q5 ÁÁÁÁÁÁÁÁÁ<br />

1 NPN ÁÁÁÁ<br />

Transistor 80 WÁÁÁÁÁÁÁ<br />

V/2 ÁÁÁÁÁÁ<br />

Motorola TIP29B<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

Q6 ÁÁÁÁÁÁÁÁÁ<br />

1 NPN ÁÁÁÁ<br />

Transistor 80 WÁÁÁÁÁÁÁ<br />

V/1 ÁÁÁÁÁÁ<br />

Motorola MPSW06<br />

ÁÁÁ<br />

R1,R3,R5,R7,R9,R11 ÁÁÁÁÁÁÁÁÁ<br />

6 1 kΩ ÁÁÁÁ<br />

Resistor .25 ÁÁÁÁÁÁÁ<br />

W<br />

ÁÁÁ<br />

R2,R6,R8,R12,R28 ÁÁÁÁÁÁÁÁÁ<br />

5 10 kΩ ÁÁÁÁ<br />

Resistor .25 ÁÁÁÁÁÁÁ<br />

W<br />

ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

R4,R10 ÁÁÁÁÁÁÁÁÁ<br />

2 3.3 kΩ ÁÁÁÁ<br />

Resistor .25 ÁÁÁÁÁÁÁ<br />

W<br />

ÁÁÁ<br />

R13 ÁÁÁÁÁÁÁÁÁ<br />

1 360 Ω ÁÁÁÁ<br />

Resistor .25 ÁÁÁÁÁÁÁ<br />

W<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

R14,R15 ÁÁÁÁÁÁÁÁÁ<br />

2 750 Ω ÁÁÁÁ<br />

Resistor .25 ÁÁÁÁÁÁÁ<br />

W<br />

ÁÁÁ<br />

R16,R17 2 10 Ω Resistor ÁÁÁÁ .25 W ÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

R18,R21<br />

R19,R20,R23,R25<br />

2<br />

4<br />

.01 Ω Resistor<br />

33 Ω Resistor<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

R22,R24<br />

R26,R27<br />

2<br />

240 Ω Resistor<br />

ÁÁÁÁÁÁÁÁÁ<br />

2 4.8k Ω Resistor<br />

2.25 W<br />

Mills<br />

MRP-2-NI<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

U1<br />

U2,U3<br />

U4,U5<br />

ÁÁÁÁÁÁÁÁÁ<br />

1 Quad 2 input NAND<br />

ÁÁÁÁÁÁÁÁÁ<br />

2 MOSFET Driver<br />

ÁÁÁÁÁÁÁÁÁ<br />

2 MOS Turn-off Device<br />

.25 W<br />

.25 W<br />

1 W ÁÁÁÁÁÁÁ<br />

Motorola MC74HC00AN<br />

Motorola<br />

Motorola<br />

MC34151P<br />

MDC1000A<br />

ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

U6<br />

ÁÁÁÁÁÁÁÁÁ<br />

1 3-pin Voltage Regulator<br />

Motorola<br />

MC78L05ACP<br />

ÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ ÁÁÁ<br />

ÁÁÁ ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁÁÁ<br />

ÁÁÁÁÁÁ


Additional decoupling capacitors across each half-bridge<br />

provide high frequency current for reverse recovery. Any<br />

sharp voltage spikes created during reverse recovery are<br />

smoothed out and kept from propagating to the other<br />

half-bridge creating unwanted noise. These decoupling<br />

capacitors should be physically placed as close to the<br />

half-bridge as possible.<br />

The PCB layout is also a very important design<br />

consideration. Care must be taken to minimize the source<br />

inductance and any stray inductance in the high current<br />

paths. This is done by keeping the high current traces as<br />

wide and as short as possible. Another rule to follow is that<br />

the low current ground traces or trace should tie to the high<br />

current trace at one central grounding point. Typically the<br />

sources of the power transistors are used as the grounding<br />

point. If using current sense resistors, the leads terminating<br />

to ground must be the central grounding point.<br />

The dynamic design challenges are solved simply by<br />

employing a gate drive impedance strategy. The different<br />

gate impedances in Figures 2 and 3 are optimized to control<br />

the turn-on di/dt, shoot-through current and diode snap.<br />

Faster turn-off of the bottom FETs minimizes turn-off<br />

switching losses.<br />

AN1319<br />

BOARD DESCRIPTION<br />

Evaluation board DEVB151 was designed to be an<br />

electronic building block that interfaces a microcontroller to<br />

a motor. This board translates HCMOS logic signals, like<br />

those from a microprocessor or microcontroller, to motor<br />

turning power. DEVB151 can drive a brushed DC motor in<br />

both directions or drive one phase of a stepper motor. Four<br />

inputs to the board control the gates of H-Bridge configured<br />

FETs. The outputs of the board include + and – terminals<br />

for the motor and current-sense terminals for each<br />

half-bridge. A single voltage power source is all that is<br />

required to operate the board. A silk-screen plot and a full<br />

schematic are shown in Figures 7 and 8, respectively. The<br />

board content is listed in Table 1.<br />

All control inputs and current sense outputs are on the<br />

left side of the board. Inputs A TOP, A BOT, B TOP, and B<br />

BOT each correspond to a similarly labeled power FET and<br />

have positive logic. For example, when B TOP is logic 1 its<br />

corresponding transistor is on. To prevent an accidental<br />

simultaneous conduction of either half-bridge (A TOP=A<br />

BOT=1 or B TOP=B BOT=1), protection circuitry was added<br />

Table 2. Electrical Characteristics<br />

to the design. Cross-coupled NAND gates disable the bottom<br />

transistor when the top transistor is on. This protection<br />

scheme has another advantage. Inputs A BOT and B BOT<br />

can be tied together and share the same PWM signal. The<br />

logic of the upper transistors determines which bottom<br />

transistor is pulse width modulated. Resistors and zeners are<br />

additions to the board inputs to deter static damage of the<br />

NAND gates. The NAND inputs are directly compatible with<br />

5 volt HCMOS logic and form a direct interface to<br />

microcontrollers and microprocessors.<br />

The voltages at output terminals A CS and B CS are the<br />

representations of the current through each half-bridge,<br />

respectively. Current is related to the voltage present at<br />

these terminals by a ratio of 100 amps per volt. To incorporate<br />

a single-current sense voltage, jumper J1, can be installed.<br />

This ties the current sense resistors from each half-bridge<br />

together. In this case, the output voltage at A CS or B CS<br />

is related to the current by a ratio of 200 amps per volt. The<br />

voltage representation of the currents at these terminals is<br />

very noisy. To obtain a clean sense voltage, low pass filtering<br />

is recommended before sampling. CS GND terminal is<br />

ground for the current sense outputs. Along with this ground,<br />

two more terminals are labeled ground. One is used for the<br />

ground lead from the microcontroller and the other is<br />

available as an instrument grounding point.<br />

All power connections are on the right side of the board.<br />

Power to the board is brought in on the +B and GND<br />

terminals. The power outputs to the motor are the +M and<br />

– M terminals.<br />

The heart of DEVB151 is the MPM3017. The MPM3017<br />

is made up of four N-channel power MOSFETs which have<br />

an RDS(on) rating of 40 mΩ maximum, a breakdown voltage<br />

of 60 volts and are energy rated. The remainder of operating<br />

specifications are listed in Table 2.<br />

Application of DEVB151 is shown in the diagram of Figure<br />

9. An 8 bit microcontroller, such as the MC68HC11, can be<br />

readily programmed to generate the required signals to<br />

operate this evaluation board. This microcontroller contains<br />

a general purpose timer used to perform the time-intensive<br />

tasks of generating a PWM signal. The cross-coupled NAND<br />

gates at the inputs of DEVB151 allow the use of only one<br />

PWM signal. The direction signals can simply be outputs from<br />

an available parallel port. In Figure 8, two bits of port B are<br />

used as the direction signals, and port A, pin 6 is the output<br />

carrying the PWM signal.<br />

ÁÁÁÁÁ<br />

Characteristic ÁÁÁÁ<br />

Symbol ÁÁÁÁ<br />

Min ÁÁÁÁ<br />

Typ ÁÁÁÁÁ<br />

Max Units<br />

Input ÁÁÁÁÁ<br />

voltage ÁÁÁÁ<br />

+B ÁÁÁÁ<br />

18 ÁÁÁÁÁ<br />

48 Volts<br />

Peak motor ÁÁÁÁÁ<br />

current ÁÁÁÁ<br />

IPK ÁÁÁÁÁ<br />

30 Amps<br />

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

Continuous motor ÁÁÁÁÁ<br />

current ÁÁÁÁ<br />

IC<br />

Minimum logic 1 input ÁÁÁÁÁ<br />

voltage ÁÁÁÁ<br />

VIH<br />

ÁÁÁÁÁ<br />

8 Amps<br />

ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁ<br />

ÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁ<br />

Maximum logic 0 input ÁÁÁÁÁ<br />

voltage ÁÁÁÁ<br />

VIL<br />

Power ÁÁÁÁÁ<br />

dissipation ÁÁÁÁ<br />

PD<br />

ÁÁÁÁ<br />

2.7 Volts<br />

ÁÁÁÁ<br />

2.0 Volts<br />

ÁÁÁÁÁ<br />

7 Watts<br />

ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁ<br />

ÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁÁ<br />

ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁ<br />

ÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ<br />

Sense ÁÁÁÁÁ<br />

voltage ÁÁÁÁ<br />

Vsense<br />

* Additional heat sinking will increase the maximum power dissipation rating.<br />

10 ÁÁÁÁ<br />

ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ<br />

ÁÁÁÁ<br />

ÁÁÁÁÁ<br />

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ<br />

mV/A<br />

MOTOROLA<br />

7


ÏÏÏÏÏÏÏ<br />

ÏÏÏÏÏÏÏ<br />

ÏÏÏÏÏÏÏ<br />

ÏÏÏÏÏÏÏ<br />

ÏÏÏÏÏÏÏ<br />

MC68HC11<br />

ÏÏÏÏÏÏÏ<br />

ÏÏÏÏÏÏÏ<br />

ÏÏ<br />

PB1 dir ′<br />

Atop<br />

PB0 dir<br />

Btop<br />

PA6<br />

pwm<br />

Abot<br />

CONCLUSIONS<br />

ÏÏÏÏÏÏÏÏÏÏÏ<br />

ÏÏÏÏÏÏÏÏÏÏÏ<br />

ÏÏÏÏÏÏÏÏÏÏÏ<br />

ÏÏÏÏÏÏÏÏÏÏÏ<br />

Bbot<br />

N-channel half-bridges increase performance of motor<br />

drive systems over that of complementary half-bridges.<br />

However, the dynamic issues of the design remain constant<br />

for both topologies. Shoot-through current and diode snap<br />

are managed by relatively simple circuit solutions. These<br />

circuit solutions stem from the optimization of the gate<br />

impedances for separate turn-on and turn-off speeds. The<br />

additional voltage needed to drive the upper half of the<br />

N-channel half-bridges above the motor voltage is derived<br />

from a charge pump.<br />

DEVB151 is more efficiently used if the bottom transistors<br />

are pulse-width modulated rather than the upper transistors.<br />

The top transistors can be pulse-width modulated, however,<br />

due to limitations of the high-side gate drive, top FET turn-on<br />

speed is slower than that of the bottom FETs. The slower<br />

turn-on speed leads to greater switching losses.<br />

Losses in the charge pump circuitry limit the low end<br />

supply voltage to 15 volts, therefore DEVB151 does not<br />

address the 12 volt market. However, implementing a voltage<br />

tripler, a modified charge pump, will allow operation down<br />

to 12 volts.<br />

DEVB151<br />

ÏÏÏÏÏÏÏÏÏÏÏ<br />

ÏÏ<br />

ÏÏ ÏÏÏÏÏÏÏÏÏÏÏ<br />

Figure 9. Application Block Diagram<br />

ÏÏÏÏÏÏÏÏÏÏÏ<br />

ÏÏ ÏÏÏÏ<br />

ÏÏÏÏ ÏÏ<br />

ÏÏÏ ÏÏÏÏ ÏÏ<br />

ÏÏ ÏÏÏ<br />

ÏÏÏ<br />

MOTOROLA AN1319 AN1319/D<br />

◊8 ����������<br />

+B<br />

+M<br />

–M<br />

GND<br />

+<br />

–<br />

Brushed<br />

DC Motor<br />

Looking at DEVB151 as a building block between a<br />

microcontroller and a motor, the board is kept simple and<br />

is protected from accidental misuse. DEVB151 only needs<br />

a single voltage source from which different voltage levels<br />

are supplied to the various internal devices. The<br />

cross-coupled NAND gates prohibit the user from<br />

accidentally destroying the power transistors on the board.<br />

All inputs and outputs are clearly labeled and are fairly<br />

self-explanatory.<br />

REFERENCES<br />

1) Berringer, Ken, “One-Horsepower Off-Line Brushless<br />

Permanent Magnet Motor Drive,” Power Conversion and<br />

Intelligent Motion, June 1990<br />

2) Schultz, Warren, “Interfacing Microcomputers to<br />

Fractional Horsepower Motors,” Motorola Application<br />

Note AN1300<br />

3) Schultz, Warren, “Drive Techniques for High Side<br />

N-Channel MOSFETs,” Power Conversion and Intelligent<br />

Motion, June 1987<br />

4) Motorola Power MOSFET Transistor Data, DL135 Rev<br />

3, 1989<br />

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding<br />

the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and<br />

specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different<br />

applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does<br />

not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in<br />

systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of<br />

the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such<br />

unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless<br />

against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death<br />

associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.<br />

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.<br />

Literature Distribution Centers:<br />

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.<br />

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.<br />

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.<br />

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,<br />

ASIA-PACIFIC: Tai Po, N.T., Hong Kong.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!