22.09.2016 Views

5128_Ch03_pp098-184

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

170 Chapter 3 Derivatives<br />

Quick Review 3.8 (For help, go to Sections 1.2, 1.5, and 1.6.)<br />

In Exercises 1–5, give the domain and range of the function, and<br />

evaluate the function at x 1.<br />

1. y sin 1 x Domain: [1, 1]; Range: [2, 2] At 1: 2<br />

2. y cos 1 x Domain: [1, 1]; Range: [0, ] At 1: 0<br />

3. y tan 1 x Domain: all reals; Range: (2, 2) At 1: 4<br />

4. y sec 1 x Domain: (∞, 1] [1, ∞); Range: [0, 2) (2, ] At 1: 0<br />

5. y tan tan 1 x Domain: all reals; Range: all reals At 1: 1<br />

In Exercises 6–10, find the inverse of the given function.<br />

6. y 3x 8 f 1 (x) x 8<br />

<br />

3<br />

7. y 3 x 5 f 1 (x) x 3 5<br />

8. y 8 x f 1 (x) 8 x <br />

9. y 3x 2<br />

x<br />

f 1 2<br />

(x) <br />

3 x<br />

10. y arctan x3 f 1 (x) 3 tan x, 2 x 2<br />

Section 3.8 Exercises<br />

29. (a) f(x) 3 sin x and f(x) 0. So f has a differentiable inverse by Theorem 3.<br />

In Exercises 1–8, find the derivative of y with respect to the appropriate<br />

27. (a) Find an equation for the line tangent to the graph of<br />

variable.<br />

y tan x at the point p4, 1. y 2x 2x<br />

1<br />

2 1<br />

1. y cos 1 x 2 1 x<br />

4<br />

2. y cos 1 <br />

1x ⏐x⏐x <br />

2 1 (b) Find an equation for the line tangent to the graph of<br />

2<br />

3. y sin 1 2t 4. y sin 1 1<br />

y tan<br />

1 t<br />

x at the point 1, p4. y 1 2 x 1 2 4 <br />

12 2t <br />

<br />

2t t<br />

2<br />

28. Let f x x 5 2x 3 x 1.<br />

5. y sin 1 3 6<br />

t 2 6. y s1 s 2 cos 1 s 2s2 (a) Find f 1 and f 1. f (1) 3, f(1) 12<br />

tt <br />

4 9<br />

1s 2<br />

2<br />

7. y x sin 1 x 1 x 2 1<br />

(b) Find f 1 3 and f 1 3. f 1 (3) 1, (f 1 1<br />

<br />

)(3) <br />

8. y sin<br />

1<br />

(sin<br />

2x<br />

2x) 2 1 4x<br />

1 2<br />

sin 1 x<br />

29. Let f x cos x 3x.<br />

In Exercises 9–12, a particle moves along the x-axis so that its position<br />

(a) Show that f has a differentiable inverse.<br />

at any time t 0 is given by x(t). Find the velocity at the indi-<br />

(b) Find f 0 and f 0. f(0) 1, f(0) 3<br />

cated value of t.<br />

77<br />

324<br />

(c) Find f 1 1 and f 1 1. f 1 (1) 0, (f 1 )(1) 1<br />

9. x(t) sin 1 t <br />

4 sin1 <br />

4t<br />

3 <br />

30. Group Activity Graph the function f x sin 1 sin x in<br />

the viewing window 2p, 2p by 4, 4. Then answer the<br />

11. x(t) tan 1 t, t 2 15 12. x(t) tan 1 (t 2 ), t 1 1<br />

following questions:<br />

(a) What is the domain of f ?<br />

In Exercises 13–22, find the derivatives of y with respect to the<br />

(b) What is the range of f ?<br />

appropriate variable.<br />

1<br />

(c) At which points is f not differentiable?<br />

13. y sec 1 2s 1 14. y sec 1 5s <br />

⏐s⏐25s 2 1<br />

See page 171.<br />

(d) Sketch a graph of y f x without using NDER or<br />

15. y csc 1 x 2 1, x 0 16. y csc 1 x2<br />

2<br />

<br />

computing the derivative.<br />

17. y sec 1 1 See page 171.<br />

⏐x⏐x <br />

2 4<br />

t , 0 t 1 18. y (e) Find f x algebraically. Can you reconcile your answer<br />

cot1 t<br />

1<br />

<br />

See page 171.<br />

2t(t 1)<br />

with the graph in part (d)?<br />

19. y cot 1 t 1 20. y s 2 1 sec 1 s<br />

31. Group Activity A particle moves along the x-axis so that its<br />

See page 171.<br />

position at any time t 0 is given by x arctan t.<br />

21. y tan 1 x 2 1 csc 1 s⏐s⏐ 1<br />

x, x 1 0, x > 1 <br />

⏐s⏐s <br />

2 1 (a) Prove that the particle is always moving to the right.<br />

(b) Prove that the particle is always decelerating.<br />

22. y cot 1 1 x tan1 x 0, x 0<br />

In Exercises 23–26, find an equation for the tangent to the graph of y<br />

at the indicated point.<br />

y 0.289x 0.470<br />

y 1 x 0.707<br />

23. y sec 1 x, x 2 24. y tan 1 5<br />

x, x 2<br />

25. y sin 1 x <br />

4 , x 3 26. y tan1 (x 2 ), x 1<br />

y 0.378x – 0.286<br />

y x 0.215<br />

(c) What is the limiting position of the particle as t approaches<br />

infinity? 2 <br />

In Exercises 32–34, use the inverse function–inverse cofunction<br />

identities to derive the formula for the derivative of the function.<br />

32. arccosine See page 171. 33. arccotangent See page 171.<br />

34. arccosecant See page 171.<br />

31. (a) v(t) d x 1<br />

dt<br />

1 t 2 which is always positive.<br />

(b) a(t) d v<br />

<br />

dt<br />

(1 <br />

2tt 2 ) 2 which is always negative.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!