08.12.2012 Views

Effects of rock climbing on plant communities on exposed limestone ...

Effects of rock climbing on plant communities on exposed limestone ...

Effects of rock climbing on plant communities on exposed limestone ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rock Climbing <strong>on</strong> Plant Communities <strong>on</strong> Exposed Limest<strong>on</strong>e Cliffs in the Swiss<br />

Jura Mountains<br />

Author(s): Hans-Peter Rusterholz, Stefan W. Muller, Bruno Baur<br />

Source: Applied Vegetati<strong>on</strong> Science, Vol. 7, No. 1 (May, 2004), pp. 35-40<br />

Published by: Blackwell Publishing<br />

Stable URL: http://www.jstor.org/stable/1478965<br />

Accessed: 10/04/2010 16:46<br />

Your use <str<strong>on</strong>g>of</str<strong>on</strong>g> the JSTOR archive indicates your acceptance <str<strong>on</strong>g>of</str<strong>on</strong>g> JSTOR's Terms and C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Use, available at<br />

http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Use provides, in part, that unless<br />

you have obtained prior permissi<strong>on</strong>, you may not download an entire issue <str<strong>on</strong>g>of</str<strong>on</strong>g> a journal or multiple copies <str<strong>on</strong>g>of</str<strong>on</strong>g> articles, and you<br />

may use c<strong>on</strong>tent in the JSTOR archive <strong>on</strong>ly for your pers<strong>on</strong>al, n<strong>on</strong>-commercial use.<br />

Please c<strong>on</strong>tact the publisher regarding any further use <str<strong>on</strong>g>of</str<strong>on</strong>g> this work. Publisher c<strong>on</strong>tact informati<strong>on</strong> may be obtained at<br />

http://www.jstor.org/acti<strong>on</strong>/showPublisher?publisherCode=black.<br />

Each copy <str<strong>on</strong>g>of</str<strong>on</strong>g> any part <str<strong>on</strong>g>of</str<strong>on</strong>g> a JSTOR transmissi<strong>on</strong> must c<strong>on</strong>tain the same copyright notice that appears <strong>on</strong> the screen or printed<br />

page <str<strong>on</strong>g>of</str<strong>on</strong>g> such transmissi<strong>on</strong>.<br />

JSTOR is a not-for-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it service that helps scholars, researchers, and students discover, use, and build up<strong>on</strong> a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tent in a trusted digital archive. We use informati<strong>on</strong> technology and tools to increase productivity and facilitate new forms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> scholarship. For more informati<strong>on</strong> about JSTOR, please c<strong>on</strong>tact support@jstor.org.<br />

http://www.jstor.org<br />

Blackwell Publishing is collaborating with JSTOR to digitize, preserve and extend access to Applied<br />

Vegetati<strong>on</strong> Science.


Applied Vegetati<strong>on</strong> Science 7: 35-40, 2004<br />

? IAVS; Opulus Press Uppsala.<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> <strong>plant</strong> <strong>communities</strong><br />

<strong>on</strong> <strong>exposed</strong> limest<strong>on</strong>e cliffs in the Swiss Jura mountains<br />

Rusterholz, Hans-Peterl*; Miiller, Stefan W.2 & Baur, Bruno3<br />

1Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Integrative Biology, Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Basel, St. Johanns-Vorstadt 10,<br />

CH-4056 Basel, Switzerland; 2stefan.mueller@unibas.ch; 3bruno.baur@unibas.ch;<br />

*Corresp<strong>on</strong>ding author; Fax +41612670832; E-mail hans-peter.rusterholz@unibas.ch<br />

Abstract. Exposed cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Swiss Jura mountains harbour<br />

a highly diverse flora with many rare and endangered <strong>plant</strong><br />

species. Many cliffs are frequently visited by <str<strong>on</strong>g>rock</str<strong>on</strong>g> climbers.<br />

We examined the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> vascular <strong>plant</strong>s<br />

in the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> four cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue (NW Switzerland)<br />

by comparing the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climbed and unclimbed<br />

areas. In climbed areas <strong>plant</strong> cover and species density were<br />

reduced. Similarly, the density <str<strong>on</strong>g>of</str<strong>on</strong>g> forbs and shrubs decreased,<br />

whereas the density <str<strong>on</strong>g>of</str<strong>on</strong>g> ferns tended to increase. In additi<strong>on</strong>,<br />

<str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> caused a significant shift in <strong>plant</strong> species compositi<strong>on</strong><br />

and altered the proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> different <strong>plant</strong> life<br />

forms. Rock <str<strong>on</strong>g>climbing</str<strong>on</strong>g> can be a threat to sensitive <strong>plant</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

limest<strong>on</strong>e cliff community.<br />

Keywords: Disturbance; Switzerland; Vascular <strong>plant</strong>s.<br />

Nomenclature: Binz & Heitz (1990).<br />

Introducti<strong>on</strong><br />

The cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Jura mountains in NW Switzerland<br />

support unique and diverse <strong>plant</strong> <strong>communities</strong> (Zoller<br />

1989). Vascular <strong>plant</strong>s with low edaphic and water<br />

demands such as Draba aizoides and Sedum acre occur<br />

in minute soil patches in ledges and cracks <strong>on</strong> the cliffs<br />

(Wilmanns 1993). Lichens, ferns and mosses c<strong>on</strong>stitute<br />

a main comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>rock</str<strong>on</strong>g> face vegetati<strong>on</strong> (Oberdorfer<br />

1992). In c<strong>on</strong>trast to the large <str<strong>on</strong>g>rock</str<strong>on</strong>g>y areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the Alps,<br />

the cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Jura mountains are small and isolated<br />

and mostly surrounded by forest. A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong>s<br />

growing <strong>on</strong> these cliffs are inter- or postglacial relics<br />

currently with a mediterranean or arctic-alpine distributi<strong>on</strong><br />

(Walter & Straka 1970). Similarly, the vegetati<strong>on</strong> at<br />

the base <str<strong>on</strong>g>of</str<strong>on</strong>g> the cliffs c<strong>on</strong>tains relics such as Ilex aquifolium<br />

from postglacial warm periods. The south <strong>exposed</strong> slopes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Jura mountains are covered by xerothermic Quercetalia<br />

pubescenti-petraeae (oak wood), which col<strong>on</strong>ized<br />

the regi<strong>on</strong> from refuges in S France and the Balkans<br />

(Ellenberg 1986) and by slow growing Fagus (beech)<br />

wood with translucent canopies and highly diverse ground<br />

vegetati<strong>on</strong> (Moor 1972). The high species richness and<br />

large number <str<strong>on</strong>g>of</str<strong>on</strong>g> rare <strong>plant</strong> species, the rarity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

habitat type and the historical peculiarity give the <str<strong>on</strong>g>rock</str<strong>on</strong>g><br />

cliffs a high c<strong>on</strong>servati<strong>on</strong> value (Keller & Hartmann<br />

1986; Egl<str<strong>on</strong>g>of</str<strong>on</strong>g>f 1991; Wassmer 1998; Knecht unpubl.).<br />

Rock <str<strong>on</strong>g>climbing</str<strong>on</strong>g> enjoys increasingly popularity, particularly<br />

in mountain areas at low altitudes, where the<br />

sport can be performed all year round (Hanemann 2000).<br />

More than 2000 <str<strong>on</strong>g>climbing</str<strong>on</strong>g> routes with fixed protecti<strong>on</strong><br />

bolts have been installed <strong>on</strong> 48 <str<strong>on</strong>g>rock</str<strong>on</strong>g> cliffs in the Basel<br />

regi<strong>on</strong> (Andrey et al. 1997). Ca. 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>climbing</str<strong>on</strong>g><br />

routes were opened between 1985 and 1999. The large<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climbers, however, locally leads to serious<br />

envir<strong>on</strong>mental disturbance. In adjacent southern Germany,<br />

<str<strong>on</strong>g>climbing</str<strong>on</strong>g> has been restricted at many sites due to<br />

severe c<strong>on</strong>flicts with nature c<strong>on</strong>servati<strong>on</strong>. As a result a<br />

further increase in <str<strong>on</strong>g>climbing</str<strong>on</strong>g> activities has been observed<br />

in the Jura mountains <str<strong>on</strong>g>of</str<strong>on</strong>g> northwestern Switzerland.<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> recreati<strong>on</strong>al activities <strong>on</strong> <strong>plant</strong> <strong>communities</strong><br />

are attracting more and more attenti<strong>on</strong> (Liddle 1997).<br />

However, little informati<strong>on</strong> is available about the impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> cliff <strong>plant</strong> <strong>communities</strong>. In the<br />

upper Danube valley in Germany severe disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vegetati<strong>on</strong> <strong>on</strong> limest<strong>on</strong>e cliffs due to <str<strong>on</strong>g>climbing</str<strong>on</strong>g> has been<br />

recorded (Herter 1993, 1996). Damage included (1)<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> cover; (2) extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species sensitive<br />

to disturbance and <str<strong>on</strong>g>of</str<strong>on</strong>g> specialists adapted to these<br />

extreme habitats; (3) clearing <str<strong>on</strong>g>of</str<strong>on</strong>g> soil from crevices; (4)<br />

erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cliff edge and face; (5) increase in ruderal<br />

species. Rock <str<strong>on</strong>g>climbing</str<strong>on</strong>g> also led to skewed size and age<br />

distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Solidago sciaphila (Nuzzo 1995) and<br />

Thuja occidentalis (Kelly & Lars<strong>on</strong> 1997). On <strong>exposed</strong><br />

dolomitic cliffs in NW Illinois, <str<strong>on</strong>g>climbing</str<strong>on</strong>g> reduced lichen<br />

cover and species richness by 50% (Nuzzo 1996). Other<br />

studies showing reduced <strong>plant</strong> diversity and altered<br />

community structure include Farris (1998), Camp &<br />

Knight (1998), Lars<strong>on</strong> et al. (2000) and McMillan &<br />

Lars<strong>on</strong> 2002). The removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong>s and soil may also<br />

alter the abiotic c<strong>on</strong>diti<strong>on</strong>s for the remaining <strong>plant</strong>s <strong>on</strong><br />

the cliff.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to examine the impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> <strong>plant</strong> cover, diversity and compositi<strong>on</strong><br />

<strong>on</strong> limest<strong>on</strong>e cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue in the northern<br />

Swiss Jura mountains.<br />

35


3 6 RUSTERHOLz, H.-P. ET AL.<br />

Material and Methods<br />

Study site<br />

The present study was carried out in the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue near Waldenburg (cant<strong>on</strong> Basel-<br />

Landschaft) in the northern Swiss Jura mountains (30<br />

km SE <str<strong>on</strong>g>of</str<strong>on</strong>g> Basel). The cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue mainly<br />

c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> Jurassic coral chalk (Bitterli-Brunner 1987).<br />

The <strong>plant</strong> community investigated <strong>on</strong> the cliffs is the<br />

Potentillo-Hieracietum associati<strong>on</strong> (Richard 1972).<br />

The Gerstelflue is a popular recreati<strong>on</strong>al <str<strong>on</strong>g>climbing</str<strong>on</strong>g><br />

area. Rock <str<strong>on</strong>g>climbing</str<strong>on</strong>g> has occurred in the area for ca. 40 yr<br />

(Andrey et al. 1997). At present, there are 67 graded<br />

routes distributed over 12 cliffs (Andrey et al. 1997).<br />

The <str<strong>on</strong>g>climbing</str<strong>on</strong>g> routes are situated within a horiz<strong>on</strong>tal<br />

distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 650 m at altitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> 775-1018 m a.s.l. Over<br />

the past five years, a moderate number <str<strong>on</strong>g>of</str<strong>on</strong>g> climbers have<br />

used the routes mainly for exercising alpine <str<strong>on</strong>g>climbing</str<strong>on</strong>g><br />

techniques (P. Muiller pers. comm.).<br />

Methods<br />

We examined the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> the<br />

vegetati<strong>on</strong> in the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> four different cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Gerstelflue (referred to as A-D). The cliffs were situated<br />

150 - 320 m apart, partly interspaced by forest. At each<br />

cliff, we chose a site with established <str<strong>on</strong>g>climbing</str<strong>on</strong>g> routes<br />

(climbed area) and an unclimbed area (undisturbed c<strong>on</strong>trol<br />

area) in its close neighbourhood <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

following criteria: (1) the climbed and unclimbed areas<br />

have the same exposure (southeast) and are situated<br />

within a horiz<strong>on</strong>tal distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 - 50 m; (2) the climbed<br />

and the unclimbed area receive the same insolati<strong>on</strong>; (3)<br />

the areas do not differ in type and structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>rock</str<strong>on</strong>g><br />

surface and (4) the c<strong>on</strong>trol areas show no obvious sign<br />

(fixed protecti<strong>on</strong> bolts) <str<strong>on</strong>g>of</str<strong>on</strong>g> recent <str<strong>on</strong>g>climbing</str<strong>on</strong>g> activity.<br />

The <strong>plant</strong> survey was c<strong>on</strong>ducted using horiz<strong>on</strong>tal<br />

transects at three different heights <strong>on</strong> the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the cliff faces (at 0 - 1.0 m, 1.1 - 2.0 m and 2.1 - 3.0 m<br />

measured from the cliff base). On each transect, 3 - 5<br />

sampling plots <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 m2 were established. Table 1 presents<br />

Table 1. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-m2 sampling plots at different heights<br />

in the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> climbed (cl) and unclimbed (uncl) areas<br />

<strong>on</strong> four limest<strong>on</strong>e cliffs (A-D) <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue. Figures in<br />

brackets indicate the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>tal transects (m).<br />

Height <str<strong>on</strong>g>of</str<strong>on</strong>g> the transect<br />

0 - 1.0 m 1.1 - 2.0 m 2.1 - 3.0 m<br />

Cliff Cl Uncl Cl Uncl Cl Uncl<br />

A 5 (15) 5 (15) 4 (8) 5 (15) 3 (8) 5 (15)<br />

B 3 (8) 3 (7.5) 4 (10) 4(10) 4(10) 4 (7.5)<br />

C 4 (8) 4 (10) 4 (10) 4(10) 4 (10) 4 (8)<br />

D 3 (8) 3 (8) 3 (10) 3 (8) 3 (10) 4 (10)<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> sampling plots for each transect and their<br />

length. Transect length (7.5 m - 15 m) was determined<br />

by the homogeneity and structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>rock</str<strong>on</strong>g> face. The<br />

horiz<strong>on</strong>tal distance between single sampling plots ranged<br />

from 2 to 6 m. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 44 sampling plots in climbed<br />

areas and <str<strong>on</strong>g>of</str<strong>on</strong>g> 48 sampling plots in unclimbed areas were<br />

examined. The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> each <strong>plant</strong> species was<br />

recorded in each sampling plot at three occasi<strong>on</strong>s (in<br />

May, July and September 2001). Plant cover was visually<br />

estimated using the Domin-Kraijina scale (Mueller-<br />

Dombois & Ellenberg 1974). We also visually estimated<br />

the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> area covered by litter and <str<strong>on</strong>g>rock</str<strong>on</strong>g><br />

in each sampling plot.<br />

To relate the <strong>plant</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the investigated areas to<br />

abiotic envir<strong>on</strong>mental factors, we used the indicator<br />

scores <str<strong>on</strong>g>of</str<strong>on</strong>g> Landolt (1977) including light, temperature,<br />

humus, soil nutrients and soil moisture. Mean indicator<br />

values were calculated both <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> presence/<br />

absence data and <strong>on</strong> the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> individual <strong>plant</strong><br />

species for each sampling plot (J<strong>on</strong>gman et al. 1995).<br />

Plant species were assigned to different functi<strong>on</strong>al types<br />

using the criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> Grime (1979).<br />

Species lists and data <strong>on</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong>s recorded<br />

in climbed and unclimbed areas at different heights <strong>on</strong><br />

the four limest<strong>on</strong>e cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelfluh are available<br />

at http://www.unibas.ch/dib/nlu/res/cliffs/gerstel.pdf<br />

Data analysis<br />

ANOVAs were used to examine the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g><br />

<str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> the cover <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong>s, litter and <str<strong>on</strong>g>rock</str<strong>on</strong>g>s and <strong>on</strong><br />

species richness (number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> species) and diversity<br />

(Shann<strong>on</strong>-Wiener diversity index) as well as <strong>on</strong> species<br />

density (m-2) <str<strong>on</strong>g>of</str<strong>on</strong>g> ferns, graminoids, forbs, shrubs and<br />

trees and the mean indicator values <str<strong>on</strong>g>of</str<strong>on</strong>g> Landolt (1977).<br />

Prior to the analyses all data were log or square roottransformed.<br />

The ANOVA model included the factors<br />

cliff, treatment (climbed vs unclimbed) and height at the<br />

cliff face. First an overall comparis<strong>on</strong> between climbed<br />

and unclimbed areas was made using a two-way ANOVA<br />

(factors treatment and cliff). According to the design,<br />

'cliff' was used as fixed factor and treatment was nested<br />

within cliff. In a sec<strong>on</strong>d step, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g><br />

<strong>on</strong> various parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong> was analysed<br />

separately for each cliff face height.<br />

To examine whether species richness differs independently<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals recorded, we<br />

used ANCOVA with treatment and cliff as factors and<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals as covariate. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> changes in the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

<strong>plant</strong> life forms was evaluated using c<strong>on</strong>tingency analysis<br />

separately for each cliff face height.<br />

Detrended Corresp<strong>on</strong>dence Analysis (DCA) was used<br />

to examine whether the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> species


- EFFECTS OF ROCK CLIMBING ON PLANT COMMUNITIES ON EXPOSED LIMESTONE CLIFFS IN THE SWISS JURA - 37<br />

Table 2. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> various variables <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>plant</strong> community in the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> four limest<strong>on</strong>e cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Gerstelflue. Mean values ? S.E. are shown; n indicates the total number <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-m2 sampling plots.<br />

Variable Climbed area Unclimbed area ANOVA<br />

(n = 44) (n = 48) F1,3 P<br />

Plant cover (%) 16.3 ? 1.8 21.8 ? 2.0 36.19 0.009<br />

Litter cover (%) 6.0 ? 1.1 3.3 ? 0.7 13.03 0.037<br />

Rock cover (%) 78.0 ? 2.5 74.6 ? 2.4 12.91 0.036<br />

Species density 6.4 ? 0.5 12.3 ? 0.6 18.05 0.024<br />

Species diversity (H) 1.3 ? 0.1 1.8 ? 0.1 8.18 0.064<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> specimens <str<strong>on</strong>g>of</str<strong>on</strong>g> different life forms/m2<br />

Ferns 0.6 ? 0.2 0.2 ? 0.1 0.86 0.422<br />

Graminoids 27.8 ? 3.7 39.6 ? 4.0 2.49 0.221<br />

Forbs 8.3 ? 1.2 24.2 ? 1.7 29.15 0.012<br />

Shrubs 11.1 ? 2.5 18.8 ? 2.0 12.43 0.039<br />

Trees 0.7 ? 0.3 2.1 ? 0.8 2.59 0.210<br />

Landolt indicator values (abundance-based)<br />

Light (L)<br />

Temperature (T)<br />

Humus (H)<br />

Soil nutrients (N)<br />

Soil humidity (F)<br />

3.95 ? 0.02<br />

3.15 ? 0.02<br />

2.81 ? 0.01<br />

2.02 ? 0.01<br />

1.72 ? 0.04<br />

4.07 ? 0.01<br />

3.17 ? 0.02<br />

2.78 ? 0.01<br />

2.03 ? 0.02<br />

1.71 ? 0.03<br />

4.87<br />

0.03<br />

0.48<br />

0.80<br />

0.30<br />

0.114<br />

0.822<br />

0.537<br />

0.438<br />

0.624<br />

differed between climbed and unclimbed areas (Hill &<br />

Gauch 1980). Prior to ordinati<strong>on</strong>, species that were less<br />

frequent than the median frequency were down-weighted<br />

in relati<strong>on</strong> to their frequencies (Eilertsen et al. 1990).<br />

Statistical analyses were c<strong>on</strong>ducted using SAS versi<strong>on</strong><br />

8.02. The multivariate analysis (DCA) was performed<br />

using CAP versi<strong>on</strong> 1.3 (PISCES C<strong>on</strong>servati<strong>on</strong> LTD).<br />

Results<br />

In total 6091 individual <strong>plant</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 44 species were<br />

recorded in the 92 sampling plots (1921 individuals<br />

from 32 species in the four climbed areas and 4170<br />

individuals from 44 species in the unclimbed areas).<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> the ANOVA yielded to reduced <strong>plant</strong><br />

cover, but increased cover by litter and <str<strong>on</strong>g>rock</str<strong>on</strong>g> in climbed<br />

compared to unclimbed areas (Table 2). Furthermore, in<br />

climbed areas species density and species diversity were<br />

reduced by 50% and 30%, respectively. The density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forbs and shrubs were reduced by 66% and 41%, respectively,<br />

in climbed areas (Table 2). In c<strong>on</strong>trast, the density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ferns tended to increase in climbed areas (Table<br />

2). However, climbed and unclimbed areas did not<br />

differ in any <str<strong>on</strong>g>of</str<strong>on</strong>g> Landolt's (1977) indicator values, corroborating<br />

that both areas provided similar c<strong>on</strong>diti<strong>on</strong>s<br />

(Table 2). Results <str<strong>on</strong>g>of</str<strong>on</strong>g> three-way ANOVAs showed significant<br />

am<strong>on</strong>g-cliff effects <strong>on</strong> <strong>plant</strong> cover =<br />

(F3,80 7.01;<br />

p = 0.001) and diversity (F3,80 = 2.74; p = 0.048) and a<br />

marginally n<strong>on</strong>-significant effect <strong>on</strong> species density (F3,80<br />

= 2.69; p = 0.052).<br />

The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different functi<strong>on</strong>al types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>plant</strong>s - sensu Grime (1979) - did not differ between<br />

climbed and unclimbed areas (c<strong>on</strong>tingency test; X2 =<br />

0.32; df= 2; p = 0.86).<br />

Plant species richness was lower at heights <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.1 - 3<br />

m in climbed than in unclimbed areas (Table 3).<br />

In general, <strong>plant</strong> cover in climbed areas was lower<br />

than in unclimbed areas. This finding is mainly a result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a significantly reduced <strong>plant</strong> cover in climbed areas at<br />

heights <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.1-3 m from the cliff base (Fig. la). At<br />

heights <str<strong>on</strong>g>of</str<strong>on</strong>g> 0-1 m, <strong>plant</strong> cover did not differ significantly<br />

between climbed and unclimbed areas. In unclimbed<br />

areas compared to climbed areas, species density was<br />

higher at all three heights (Fig. lb) and species diversity<br />

(H') was higher at heights <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.1-3 m (Fig. Ic).<br />

The proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> different <strong>plant</strong> life forms differed<br />

between climbed and unclimbed areas at all heights<br />

examined (all p-values < 0.001; Fig. 2). The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different <strong>plant</strong> life forms to <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> varied am<strong>on</strong>g<br />

heights <str<strong>on</strong>g>of</str<strong>on</strong>g> the cliff face (Fig. 2).<br />

For a given number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> individuals species richness<br />

was significantly lower in climbed than in unclimbed<br />

areas, as indicated by the different intercepts <str<strong>on</strong>g>of</str<strong>on</strong>g> the regressi<strong>on</strong><br />

(ANCOVA; F1,82 = 14.14; p = 0.001; Fig. 3).<br />

Furthermore, no significant interacti<strong>on</strong>s between number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> individuals and treatment (climbed vs unclimbed<br />

area; F1,82<br />

= 0.30; p = 0.58) and between number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong><br />

individuals and cliffs =<br />

(F3,82 0.89; p = 0.45) were found.<br />

Table 3. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> species recorded at different heights<br />

in climbed and unclimbed areas at the base <str<strong>on</strong>g>of</str<strong>on</strong>g> four limest<strong>on</strong>e<br />

cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong>s are given in parentheses<br />

and number <str<strong>on</strong>g>of</str<strong>on</strong>g> sampling plots in brackets.<br />

Height <str<strong>on</strong>g>of</str<strong>on</strong>g> Climbed Unclimbed ANOVA<br />

transect (m) area area F,3 P<br />

0.0- 1.0 30 (950) [15] 39 (1366) [15] 6.97 0.077<br />

1.1 - 2.0 25 (428) [15] 43 (1508) [16] 49.23 0.005<br />

2.1-3.0 23 (518) [14] 40 (1284) [17] 21.96 0.019<br />

Total 32 (1896) [44] 44 (4170) [48] 28.19 0.013


38 RUSTERHOLZ, H.-P. ET AL.<br />

1A<br />

-20<br />

2A-A<br />

0 10 20 3O<br />

Tot <strong>plant</strong> cover (%)<br />

0 5 t0 I5<br />

02--3.0 ./<br />

0<br />

1 1 - 20 ;<br />

Number<str<strong>on</strong>g>of</str<strong>on</strong>g> species/ri<br />

7<br />

00 05 10 15 20 2.5<br />

Species divers ity (H')<br />

Fig. 1. A. Plant cover (%); B. Species density<br />

(m-2)"<br />

C.<br />

Shann<strong>on</strong>-Wiener index, H', at different heights <str<strong>on</strong>g>of</str<strong>on</strong>g> climbed<br />

(hatched bars) and unclimbed areas (open bars) <str<strong>on</strong>g>of</str<strong>on</strong>g> four limest<strong>on</strong>e<br />

cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue. Mean values ?i: S.E. are shown.<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> sampling plots in climbed/unclimbed areas were<br />

15/15 (0 - 1.0 m); 15/16(1.1 -2.0 in); 14/17 (2.1 - 3.0 in). * =<br />

p < 0.05; ** = p < 0.01.<br />

The DCA resulted in a separati<strong>on</strong> by <strong>plant</strong> species<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climbed and unclimbed areas (Fig. 4).<br />

The eigenvalue <str<strong>on</strong>g>of</str<strong>on</strong>g> axis 1 (0.229) showed a significant<br />

separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climbed and unclimbed areas (y2 =<br />

5.33;<br />

df<br />

-1; p = 0.021).<br />

. ... : h:rubs I:<br />

2.1-3,0 Unclimbed<br />

--- -<br />

Tree eForbs Ferms<br />

SShrubs O<br />

Gramirnoids<br />

-117<br />

"<br />

Climbed<br />

Unciimb?d t6<br />

0 20 40 60 80 100<br />

Proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> life forms ()<br />

Fig. 2. Proporti<strong>on</strong>s (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> different <strong>plant</strong> life forms occurring<br />

at different heights in climbed and unclimbed areas <strong>on</strong> four<br />

limest<strong>on</strong>e cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue. Figures indicate the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> i-m2 sampling plots.<br />

14<br />

1,O<br />

01.0 U 1. i5 g 2.o<br />

oo<br />

0 - S"<br />

'<br />

0..<br />

0.0<br />

.<br />

a<br />

"<br />

00<br />

oO<br />

0.5 10<br />

5 20 2<br />

log(number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> individuals)<br />

Fig. 3. Relati<strong>on</strong>ship between number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> individuals<br />

and number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> species (both log-transformed) in climbed<br />

(m : 44 1-m2 plots) and unclimbed (o: 48 l-m2 plots) areS s<strong>on</strong><br />

four limest<strong>on</strong>e cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue. For a given number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>plant</strong> individuals species richness was lower in climbed than in<br />

unclimbed areas. Solid line illustrates regressi<strong>on</strong> line for<br />

climbed areas and dashed line represents unclimbed areas.<br />

Discussi<strong>on</strong><br />

The present study shows that <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> affected<br />

the cliff <strong>plant</strong> community at the Gerstelflue in the Swiss<br />

Jura mountains. A significant decrease in <strong>plant</strong> cover and<br />

species density and a shift in the community structure<br />

were recorded in climbed areas. Similar <str<strong>on</strong>g>climbing</str<strong>on</strong>g> related<br />

changes in vegetati<strong>on</strong> have been reported in other studies<br />

(Herter 1993, 1996; Nuzzo 1995; Camp & Knight 1998;<br />

Farris 1998; Kelly & Lars<strong>on</strong> 1997; McMillan & Lars<strong>on</strong><br />

2002).<br />

In our study, the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> <strong>plant</strong>s<br />

was differently pr<strong>on</strong>ounced at different heights <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cliff face. In the 1-m wide horiz<strong>on</strong>tal strip at the cliff<br />

100<br />

I D c<br />

60<br />

B<br />

pB<br />

0 C<br />

0<br />

0 20 40 60 80 100<br />

Axis i<br />

Fig. 4. DCA diagram showing the <strong>plant</strong> species compositi<strong>on</strong><br />

in climbed (m) and unclimbed areas (0) in the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

four limest<strong>on</strong>e cliffs (A-D) <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue. Axis 1 separates<br />

by P = 0.02; eigenvalue is 0.229.<br />

D


- EFFECTS OF ROCK CLIMBING ON PLANT COMMUNITIES ON EXPOSED LIMESTONE CLIFFS IN THE SWISS JURA - 39<br />

base, <strong>plant</strong> cover was not significantly affected by <str<strong>on</strong>g>climbing</str<strong>on</strong>g>.<br />

However, the reduced <strong>plant</strong> species richness in the<br />

climbed areas also indicate human disturbance at this<br />

height.<br />

In c<strong>on</strong>trast to the cliff base, <strong>plant</strong> cover and species<br />

diversity were significantly reduced in climbed areas at<br />

a cliff height <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.1 - 3.0 m. This could partly be explained<br />

by the fact that during the installati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

<str<strong>on</strong>g>climbing</str<strong>on</strong>g> route part <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong> is removed to<br />

create additi<strong>on</strong>al hand and foot holds (Nuzzo 1995;<br />

Kelly & Lars<strong>on</strong> 1997). Furthermore, the frequent use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the same <str<strong>on</strong>g>climbing</str<strong>on</strong>g> route may damage the remaining<br />

<strong>plant</strong>s growing in crevices and cracks. The larger proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bare <str<strong>on</strong>g>rock</str<strong>on</strong>g> in climbed areas might also be a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

frequent <str<strong>on</strong>g>climbing</str<strong>on</strong>g> activities. Herter (1996) reported that<br />

handholds including crevices and cracks c<strong>on</strong>tained significantly<br />

fewer <strong>plant</strong> species in cliffs with frequent<br />

<str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> than in corresp<strong>on</strong>ding c<strong>on</strong>trol areas.<br />

C<strong>on</strong>trasting results c<strong>on</strong>cerning changes in the abundances<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> grasses have been reported. Farris (1998) and<br />

McMillan & Lars<strong>on</strong> (2002) found an increase in grass<br />

abundance, while Nuzzo (1995) and Camp & Knight<br />

(1998) reported a decrease in grass abundance due to<br />

<str<strong>on</strong>g>climbing</str<strong>on</strong>g> activities. Available evidence suggests that the<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> grasses increases at low <str<strong>on</strong>g>climbing</str<strong>on</strong>g> intensity,<br />

but decreases at very high <str<strong>on</strong>g>climbing</str<strong>on</strong>g> intensity.<br />

Species-specific differences in the sensitivity to human<br />

disturbance might be the main reas<strong>on</strong> for the observed<br />

shift in species compositi<strong>on</strong>. Plant species which are<br />

tolerant to human disturbance can successfully survive<br />

and reproduce irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> whereas sensitive<br />

species, including many forbs, show a reduced<br />

fitness or even disappear from cliffs (Parikesit et al.<br />

1995). The lack <str<strong>on</strong>g>of</str<strong>on</strong>g> trampling-tolerant species, such as<br />

Poa annua and Plantago major, as well as the relatively<br />

slight decrease in <strong>plant</strong> cover at the cliff base <str<strong>on</strong>g>of</str<strong>on</strong>g> climbed<br />

areas indicate that the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> at the<br />

particular height at the investigated cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gerstelflue<br />

is less pr<strong>on</strong>ounced than reported from cliffs in the<br />

Danube valley (Herter 1993, 1996), the Niagara Escarpment<br />

(McMillan & Lars<strong>on</strong> 2002) and other limest<strong>on</strong>e<br />

cliffs in the northern Jura mountains (e.g. Schartenflue,<br />

Tiifleten, Pelzmtihlital; S. Miller unpubl.).<br />

Grime (1979) and Lars<strong>on</strong> et al. (1989) hypothesized<br />

that cliff <strong>plant</strong> <strong>communities</strong> are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a few<br />

species tolerant to envir<strong>on</strong>mental variability but intolerant<br />

to disturbance. The reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> species to<br />

human disturbance is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten related to life form (Cole<br />

1995a, b). In the present study, however, the changes in<br />

species compositi<strong>on</strong> due to disturbances cannot be attributed<br />

to differences in <strong>plant</strong> life forms. Plant species<br />

with identical life form differed in their resp<strong>on</strong>se to <str<strong>on</strong>g>rock</str<strong>on</strong>g><br />

<str<strong>on</strong>g>climbing</str<strong>on</strong>g>. For example, the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the dwarf shrub<br />

Teucrium chamaedrys increased in climbed areas,<br />

whereas the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the dwarf shrub T. m<strong>on</strong>tanum<br />

decreased. Further examples include the perennial rosette<br />

<strong>plant</strong>s Campanula rotundifolia and Hieracium humile,<br />

which both occurred at higher abundance in climbed<br />

areas, whereas the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Leucanthemum adustum<br />

was reduced in climbed areas. A possible explanati<strong>on</strong> for<br />

these c<strong>on</strong>trasting findings could be species-specific differences<br />

in the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> the reproductive phase. In<br />

additi<strong>on</strong>, the finding that climbed and unclimbed areas<br />

did not differ in the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> functi<strong>on</strong>al types<br />

is not surprising as the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> dwelling <strong>plant</strong>s<br />

are stress-tolerant (sensu Grime 1979).<br />

Cliff vegetati<strong>on</strong> can also be affected by natural disturbances.<br />

In some areas, natural defoliati<strong>on</strong> can have a<br />

significant impact <strong>on</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>plant</strong> cover (Ursic et<br />

al. 1997). Dougan & Associates (1995) reported that<br />

defoliati<strong>on</strong>, erosi<strong>on</strong> and soil loss at the cliff faces are<br />

primarily a result <str<strong>on</strong>g>of</str<strong>on</strong>g> natural disturbances. Shading by<br />

trees is another influence <strong>on</strong> the species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cliff <strong>plant</strong> <strong>communities</strong>. However, we found that the<br />

mean indicator values <str<strong>on</strong>g>of</str<strong>on</strong>g> Landolt (1977) for light, temperature<br />

and soil nutrients did not differ between climbed<br />

and unclimbed areas, indicating that <strong>plant</strong>s were <strong>exposed</strong><br />

to similar envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s in both types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> area. Alternatively, these envir<strong>on</strong>mental variables are<br />

not the key factors for the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> cliff <strong>plant</strong>s.<br />

The cliff-top vegetati<strong>on</strong> can be c<strong>on</strong>sidered as a source<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> propagules which is essential for the (re-) establishment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cliff vegetati<strong>on</strong>. Changes in the cliff-top vegetati<strong>on</strong><br />

due to human trampling can modify the amount and<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> propagules and, therefore, indirectly<br />

influence the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cliff face vegetati<strong>on</strong>. In<br />

the present study, traces <str<strong>on</strong>g>of</str<strong>on</strong>g> human activity were found<br />

<strong>on</strong> the top <str<strong>on</strong>g>of</str<strong>on</strong>g> three <str<strong>on</strong>g>of</str<strong>on</strong>g> the four cliffs examined. However,<br />

species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cliff top vegetati<strong>on</strong> did not<br />

differ am<strong>on</strong>g the cliffs (H.-P. Rusterholz unpubl.).<br />

Our results support other studies <strong>on</strong> changes in <strong>plant</strong><br />

populati<strong>on</strong>s and <strong>communities</strong> due to <str<strong>on</strong>g>climbing</str<strong>on</strong>g> activities<br />

(Nuzzo 1996; Farris 1998; Herter 1996; Camp & Knight<br />

1998; McMillan & Lars<strong>on</strong> 2002). To preserve the threatened<br />

cliff <strong>plant</strong> <strong>communities</strong> in the Swiss Jura mountains,<br />

management plans need to be developed and<br />

implemented. Closure or c<strong>on</strong>trolled access to frequently<br />

climbed areas would stop additi<strong>on</strong>al species loss and<br />

changes in cliff <strong>plant</strong> <strong>communities</strong>. This aim could be<br />

reached by closing parking lots or parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the trail<br />

systems because the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> activities usually<br />

occur in their close neighbourhoods. However,<br />

closure <str<strong>on</strong>g>of</str<strong>on</strong>g> areas with heavy recreati<strong>on</strong>al use is not the<br />

best soluti<strong>on</strong>, because visitors tend to resp<strong>on</strong>d to such<br />

closure by moving into undisturbed habitats.<br />

A m<strong>on</strong>itoring program <str<strong>on</strong>g>of</str<strong>on</strong>g> the populati<strong>on</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

selected indicator <strong>plant</strong>s in climbed and unclimbed cliffs<br />

could provide a basis for future management plans.


40 RUSTERHOLz, H.-P. ET AL.<br />

Furthermore, user-friendly informati<strong>on</strong> <strong>on</strong> the potential<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> recreati<strong>on</strong>al activities <strong>on</strong> the local biodiversity<br />

should be provided. Recreati<strong>on</strong>ists accept management<br />

plans when they are aware <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological reas<strong>on</strong>s behind<br />

the restricti<strong>on</strong>s.<br />

Acknowledgements. We thank the foresters in charge Beat<br />

Feigenwinter and Roger Maurer for their support and Anette<br />

Baur, Jirg Pfadenhauer, Lars Frdberg, Jirg Sticklin and three<br />

an<strong>on</strong>ymous referees for c<strong>on</strong>structive comments <strong>on</strong> the manu-<br />

script. Financial support was received from the 'Mensch-<br />

Gesellschaft-Umwelt' Foundati<strong>on</strong> at Basel University and the<br />

Schnyder-Steimer Foundati<strong>on</strong>, ZUrich.<br />

References<br />

Andrey, P., Tscharner, N. & Lusier, A. 1997. Fluebible, Kletterfiihrer<br />

Basler Jura. Dynamo-Producti<strong>on</strong>s, Binningen, CH.<br />

Binz, A. & Heitz, C. 1990. Schul- und Exkursi<strong>on</strong>sflorafiir die<br />

Schweiz. Schwabe, Basel, CH.<br />

Bitterli-Brunner, P. 1987. Geologischer Fiihrer der Regi<strong>on</strong><br />

Basel. Birkhauser Verlag, Basel, CH.<br />

Camp, R.J. & Knight, R.L. 1998. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong><br />

cliff <strong>plant</strong> <strong>communities</strong> at Joshua Tree Nati<strong>on</strong>al Park,<br />

California. C<strong>on</strong>serv. Biol. 12: 1302-1306.<br />

Cole, D.N. 1995a. Experimental trampling <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>. I.<br />

Relati<strong>on</strong>ship between trampling intensity and vegetati<strong>on</strong><br />

resp<strong>on</strong>se. J. Appl. Ecol. 32: 203-214.<br />

Cole, D.N. 1995b. Experimental trampling <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>. II.<br />

Predictors <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance and resilience. J. Appl. Ecol. 32:<br />

215-224.<br />

Dougan & Associates 1995. Life science inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mazinaw<br />

<str<strong>on</strong>g>rock</str<strong>on</strong>g> cliff face, B<strong>on</strong> Echo Provincial Park, Tor<strong>on</strong>to.<br />

Final Report, Ministery <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources, Tor<strong>on</strong>to, CA.<br />

Egl<str<strong>on</strong>g>of</str<strong>on</strong>g>f, F. 1991. Dauer und Wandel der Lagernflora.<br />

Vierteljahresschr. Nat.forsch. Ges. Ziir. 136: 207-270.<br />

Eilertsen, O., Okland, R.H., Okland, T. & Pedersen, 0. 1990.<br />

Data manipulati<strong>on</strong> and gradient length estimati<strong>on</strong> in DCA<br />

ordinati<strong>on</strong>. J. Veg. Sci. 1: 261-270.<br />

Ellenberg, H. 1986. Vegetati<strong>on</strong> Mitteleuropas mit den Alpen.<br />

Ulmer, Stuttgart, DE.<br />

Farris, M.A. 1998. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> the vegetati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> three Minnesota cliff systems. Can. J. Bot. 76:<br />

1981-1990.<br />

Grime, J.P. 1979. Plant strategies and vegetati<strong>on</strong> processes.<br />

Wiley, New York, NY, US.<br />

Hanemann, B. 2000. Cooperati<strong>on</strong> in the European mountains.<br />

Vol 3: The sustainable management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> areas in<br />

Europe. IUCN, Gland, CH.<br />

Herter, W. 1993. Gefaihrdung derXerothermvegetati<strong>on</strong> des oberen<br />

D<strong>on</strong>autals - Ursachen und K<strong>on</strong>sequenzen. Landesanstalt<br />

ftr Umweltschutz Baden-Wtirttemberg, Karlsruhe, DE.<br />

Herter, W. 1996. Die Xerothermvegetati<strong>on</strong> des oberen D<strong>on</strong>autales<br />

-<br />

Gefiihrdung der Vegetati<strong>on</strong> durch Mensch und Wild<br />

sowie Schutz- und Erhaltungsvorschliige. Landesanstalt<br />

fir Umweltschutz Baden-Wtirttemberg, Karlsruhe, DE.<br />

Hill, M.O. & Gauch, H.G. Jr. 1980. Detrended corresp<strong>on</strong>dence<br />

analysis: an improved ordinati<strong>on</strong> technique. Vegetatio<br />

42: 47-58.<br />

J<strong>on</strong>gman, R.H.G., ter Braak, C.J.F. & van T<strong>on</strong>geren, O.F.R.<br />

1995. Data analysis in community and landscape ecology.<br />

Cambridge University Press, Cambridge, UK.<br />

Keller, H. & Hartmann, J. 1986. Ausgestorbene, gef'ihrdete<br />

und seltene Farn- und Bltitenpflanzen im Kant<strong>on</strong> Aargau:<br />

Rote Liste Aargau. Mitt. Aargauischen Nat.forsch. Ges.<br />

31: 1-289.<br />

Kelly, P.E. & Lars<strong>on</strong>, D.W. 1997. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong><br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> presettlement eastern white cedar (Thuja<br />

occidentalis) <strong>on</strong> cliffs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Niagara Escarpment, Canada.<br />

C<strong>on</strong>serv.'Biol. 11: 1125-1132.<br />

Landolt, E. 1977. Okologische Zeigerwerte zur Schweizer<br />

Flora. Ver<str<strong>on</strong>g>of</str<strong>on</strong>g>fentl. Geobot. Inst. Eidg. Tech. Hochsch. Stift.<br />

Riibel Ziir. 64: 1-208.<br />

Lars<strong>on</strong>, D.W., Spring, S.H., Matthes-Sears, U. & Bartlett,<br />

R.M. 1989. Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Niagara Escarpment cliff<br />

community. Can. J. Bot. 70: 2731-2742.<br />

Lars<strong>on</strong>, D.W., Matthes, U. & Kelly, P.E. 2000. Cliff ecology.<br />

Pattern and process in cliff ecosystems. Cambridge University<br />

Press, Cambridge, UK.<br />

Liddle, M. 1997. Recreati<strong>on</strong> ecology. The ecological impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> outdoor recreati<strong>on</strong> and ecotourism. Chapman & Hall,<br />

L<strong>on</strong>d<strong>on</strong>, UK.<br />

McMillan, M. & Lars<strong>on</strong>, D.W. 2002. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g><br />

<strong>on</strong> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Niagara escarpment in southern<br />

Ontario, Canada. C<strong>on</strong>serv. Biol. 16: 389-398.<br />

Moor, M. 1972. Versuch einer soziologisch-systematischen<br />

Gliederung des Carici-Fagetum. Vegetatio 24: 31-69.<br />

Miiller-Dombois, D. & Ellenberg H. 1974. Aims and methods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> ecology. Wiley, New York, NY.<br />

Nuzzo, V.A. 1995. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g> <strong>on</strong> cliff goldenrod<br />

(Solidago sciaphila Steele) in northwest Illinois. Am. Midl.<br />

Nat. 133: 229-241.<br />

Nuzzo, V.A. 1996. Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> cliff vegetati<strong>on</strong> <strong>on</strong> <strong>exposed</strong> cliffs<br />

and the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rock</str<strong>on</strong>g> <str<strong>on</strong>g>climbing</str<strong>on</strong>g>. Can. J. Bot. 74: 607-617.<br />

Oberdorfer, E. 1992. Siiddeutsche Pflanzengesellschaften. Vols.<br />

I - IV. Gustav Fischer, Jena, DE.<br />

Parikesit, P., Lars<strong>on</strong>, D.W. & Matthes-Sears, U. 1995. Impacts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> trails <strong>on</strong> cliff-edge forest structure. Can. J. Bot.<br />

73: 943-953.<br />

Richard, J.L. 1972. La v6g6tati<strong>on</strong> des crates rocheuses du Jura.<br />

Ber. Schweiz. Bot. Ges. 82: 68-112.<br />

Ursic, K., Kendel, N.C. & Lars<strong>on</strong>, D.W. 1997. Revegetati<strong>on</strong><br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cliff faces in aband<strong>on</strong>ed limest<strong>on</strong>e quarries.<br />

J. Appl. Ecol. 34: 289-303.<br />

Walter, H. & Straka, H. 1970. Arealkunde. Floristischhistorische<br />

Geobotanik. Ulmer, Stuttgart, DE.<br />

Wassmer, A. 1998. Zur Felsenflora des 6stlichen Kettenjuras.<br />

Grundlagen und Berichte zum Naturschutz. Band 17. Baudepartement,<br />

Sekti<strong>on</strong> Natur und Landschaft, Aargau, CH.<br />

Wilmanns, O. 1993. Oekologische Pflanzensoziologie. 5th.<br />

ed. Quelle & Meyer, Heidelberg, DE.<br />

Zoller, H. 1989. Die Verarmung der Pflanzenwelt. In: Imbeck-<br />

Ldffler, P. (ed.) Natur aktuell. Lagebericht zur Situati<strong>on</strong><br />

im Kant<strong>on</strong> Basel-Landschaft, pp. 146-152. Verlag des<br />

Kant<strong>on</strong>s Basel-Landschaft, Liestal, CH.<br />

Received 10 December 2002;<br />

Accepted 15 June 2003.<br />

Co-ordinating Editor: J. Pfadenhauer.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!