29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

736 Chapter 10 Infinite Sequences and Series<br />

q 2<br />

q( q 1)(ln n) q( q 1)<br />

lim lim 0; otherwise, we apply L'Hopital's Rule again. Since q is finite,<br />

2 p r 2 p r 2 q<br />

n ( p r) n n ( p r) n (ln n)<br />

there is a positive integer k such that q k 0 k q 0. Thus, after k applications of L'Hopital's Rule we<br />

q k<br />

q( q 1) ( q k 1)(ln n) q( q 1) ( q k 1)<br />

obtain lim lim 0. Since the limit is 0 in every case, by Limit<br />

k p r k p r k q<br />

n ( p r) n n ( p r) n (ln n)<br />

(ln n)<br />

Comparison Test, the series<br />

p<br />

n<br />

n 1<br />

q<br />

converges.<br />

62. Let q and p 1. If q 0, then<br />

with 1 , which is a divergent<br />

p<br />

n<br />

n 2<br />

p -series. Then<br />

q<br />

(ln n) 1 ,<br />

p<br />

p<br />

n n<br />

n 2 n 2<br />

(ln n)<br />

q<br />

n<br />

p<br />

p<br />

with 1<br />

n<br />

p (ln n)<br />

, where 0 p r 1. lim lim lim n<br />

r<br />

n 2 n<br />

n 1/ n n n n (ln n)<br />

1<br />

( r p) n ( )<br />

obtain lim r p r p n<br />

lim r p<br />

.<br />

q 1 1<br />

q 1<br />

n ( q)(ln n)<br />

n ( q)(ln n)<br />

n<br />

which is a divergent p-series. If q 0, compare<br />

q<br />

lim lim (ln n ) . If q 0 q 0, compare<br />

n 1/ n n<br />

(ln n)<br />

q<br />

q r p<br />

r p r q<br />

If q 1 0 q 1 0 and<br />

since r p 0. Apply L'Hopital's to<br />

r p q 1<br />

( r p) n (ln n)<br />

lim ,<br />

n<br />

( q)<br />

2 r p 1 2 r p<br />

( r p) n ( r p)<br />

n<br />

otherwise, we apply L'Hopital's Rule again to obtain lim lim . If<br />

q 2 1<br />

q 2<br />

n ( q)( q 1)(ln n)<br />

n ( q)( q 1)(ln n)<br />

2 r p 2 r p q 2<br />

q 2<br />

( ) ( ) (ln )<br />

q 2 0 q 2 0 and lim r p n lim r p n n<br />

( )( 1)(ln )<br />

( q)( q 1)<br />

, otherwise, we apply<br />

n q q n n<br />

L'Hopital's Rule again. Since q is finite, there is a positive integer k such that q k 0 q k 0. Thus,<br />

k r p<br />

( r p)<br />

n<br />

after k applications of L'Hopital's Rule we obtain lim<br />

q k<br />

n ( q)( q 1) ( q k 1)(ln n)<br />

( r p) (ln )<br />

lim k n r p n<br />

q k<br />

. Since the limit is if q 0 or if q 0 and p 1, by Limit comparison test,<br />

n<br />

( q)( q 1) ( q k 1)<br />

the series<br />

q<br />

(ln n)<br />

n 1<br />

p r<br />

n<br />

which is a divergent<br />

diverges. Finally if q 0 and p 1 then<br />

p -series. For n 3,<br />

Comparison Test. Thus, if q and p 1, the series<br />

q<br />

(ln n) (ln n)<br />

. Compare with 1,<br />

p<br />

n<br />

n<br />

n<br />

n 2 n 2<br />

n 2<br />

(ln )<br />

ln n 1 (ln n q n<br />

) 1 q<br />

1 .<br />

n n<br />

Thus<br />

q<br />

(ln n)<br />

diverges by<br />

n<br />

n 2<br />

q<br />

(ln n)<br />

n 1<br />

p r<br />

n<br />

n<br />

diverges.<br />

q<br />

63. Since 0 dn<br />

9 for all n and the geometric series<br />

n<br />

9<br />

110 n<br />

converges to 1,<br />

n<br />

dn<br />

1 10 n<br />

converges.<br />

64. Since<br />

n<br />

a n converges, a n 0 as n . Thus for all n greater than some N we have 0<br />

1<br />

a n and<br />

2<br />

thus 0 sin an<br />

a n.<br />

Thus<br />

n<br />

sin a n converges by Theorem 10.<br />

1<br />

65. Converges by Exercise 61 with q 3 and p 4.<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!