15.06.2016 Views

n.z nyawo

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Biotechnology in the<br />

Making<br />

Plant Technology


Science in Action, a<br />

breath away from<br />

victory<br />

A scientist who is only a<br />

scientist is not a scientist -<br />

unknown<br />

Who AM I<br />

About Me<br />

Student: Nosisa Zuziwe Nyawo<br />

Full Time - Contact<br />

Postgraduate<br />

BSc Hons. Biological Science<br />

Contact Me<br />

Phone: 079 593 9030<br />

Email: 213523195@stu.ukzn.ac.za<br />

Web: www.ukzn.ac.za<br />

UNIVERSITY OF<br />

KWAZULU-NATAL<br />

UNIVERSITY OF KWAZULU-NATAL<br />

Office: John Bews<br />

Block C, Room 108<br />

School of Life Sciences


Therefore there has been an advancement in<br />

various ways for culturing plant cells and<br />

tissues. Indeed such capabilities have<br />

contributed a lot in culturing of commercial<br />

and pharmaceutical rare plants and their<br />

associated chemicals.<br />

Tissue Culture<br />

One of the fascinating and controversial fields in our<br />

days is Biotechnology. This concept developed in the<br />

1970 after the development of genetic engineering<br />

where scientists has been allowed to modify the<br />

genetic material from a living cells. The manipulation<br />

of the DNA molecules from plants, animals and many<br />

more organisms is so called genetic engineering<br />

Every cell has a DNA (double stranded molecule that<br />

stored genetic information). Genes are passed from<br />

parents to offspring but now scientists use the<br />

Biotechnology concepts to culture cells.<br />

The fact that secondary metabolites has<br />

previously been produced even via laboratory.<br />

Most plants undergo both primary and secondary<br />

metabolism. Primary metabolites are directly used<br />

for growth and development while secondary<br />

metabolites are the end products of the primary<br />

metabolites.<br />

Secondary metabolites are produced by the plant<br />

mature cells for different purposes e.g. defense.<br />

This is the process whereby an explant (small pieces of<br />

living tissue is isolated from an organisms and grown<br />

aseptically in the nutrients media with the controlled<br />

conditions. In vitro cultivation of plants is a necessary<br />

step in a large amount of experiments:<br />

Micropropagation, creation of virus free plants, and<br />

genetic transformation and the most obtained results<br />

from an invitro is the cell proliferation of the explant<br />

into a mass of relatively undifferentiated tissues called<br />

callus which lots of clustered cells. Most plants<br />

undergo both primary and secondary metabolism.<br />

Primary metabolites are directly used


Different types of cell differentiation<br />

Hormones: The mostly used media is Murashige and Skoog,<br />

1962. Its contain hormones like cytokinin, auxin, and etc.


Plant biotechnology is now used in our daily<br />

basis. Tissue culture and in vitro is now used to<br />

produce secondary metabolites.


Major secondary metabolites


Culture types<br />

• The use of plant cell cultures has overcome<br />

several inconveniences for the production of<br />

these secondary metabolites in purpose of<br />

novel medicine.<br />

• Most of the research efforts that use<br />

differentiated cultures instead of cell<br />

suspension cultures have focused on<br />

transformed (hairy) roots. Agrobacterium<br />

rhizogenes causes hairy root disease in plants.


Callus<br />

This term refers to a<br />

mass of undifferentiated<br />

cells induced by<br />

hormone treatment.


Hairy Roots<br />

• For mass production of high value secondary<br />

metabolites (Agrobacterium rhizogenes). It is the new<br />

route for large scale secondary metabolite production<br />

because of their fast and growth, genetic and<br />

biochemical stability.


Transformation with Agrobacterium rhizogenes


Suspension Culture


The very first secondary metabolite products cultured<br />

• Cantharanthus roseus: Production of Shikonin


Shikonin used for:<br />

• Antimicrobial Insecticidal Antitumor Cancer<br />

• This pigment is found in the family Boraginaceae that includes<br />

Lithospermum, Arnebia, Alkanna, Anchusa, Echium and Onosma.<br />

• The growing demand for plant-based natural products has made this<br />

group of compounds one of the enthralling targets for their in<br />

vitro production.


Different methods of increasing the levels of<br />

shikonin in plant cells such as:<br />

• Selection of cell lines: selection of high<br />

producing cells<br />

• Optimization of culture conditions:<br />

controlled environment<br />

• Elicitation: collection of requirements<br />

• Genetic transformation<br />

• Metabolic engineering<br />

• It was produced in in-vitro<br />

using: successful<br />

pharmaceuticals<br />

• Shikonin produced from<br />

1980,s and used as a<br />

cosmetic and as a cancer<br />

treatment.


Cantharanthus roseus (madagascar periwickle): Found shikonin as a lipstick pigment


Although it is expensive<br />

to produce secondary<br />

metabolites using<br />

tissue culture and it’s<br />

never been used since<br />

it requires >200g of<br />

leaves to produce a<br />

yield of 1g of alkaloid.<br />

BUT<br />

After Shikonin, many<br />

research followed to<br />

produce different<br />

products that can be<br />

used as a<br />

pharmaceutical used<br />

and as novel medicines.


In 2010,<br />

• Used both suspension and hairy roots cultures<br />

using the plant Rauvolfia serpentina, they also<br />

used Plant hybridization techniques (process of<br />

combining different varieties or species of<br />

plants to create a hybrid)


Callus and cell suspension culture of Rauvolfia serpentine: production secondary<br />

metabolites


Alkaloids: nitrogen containing base that are currently in clinical<br />

Anti-neoplastic agents’ vinblastine and vincristine<br />

Analgesics morphine and codeine<br />

Anti-hypertensives ajmalicine<br />

Serpentine anti-arrhythmic ajmaline


Hairy roots culture of<br />

Rauwolfia serpentina


The hairy root culture of Rauwolfia serpentina (above) obtained by transformation with<br />

Agrobacterium rhizogenes Produces indole alkaloids; it is capable of synthesizing 20<br />

indole alkaloids, including 6 novel compounds.


The previous study of the fast-growing hairy root of Catharanthus roseus<br />

has been selected for screening of indole alkaloid production. Ajmalicine,<br />

serpentine, catharanthine and vindoline were identified by High<br />

Performance Liquid Chromatography (HPLC) in intact roots of all clones.<br />

Other large scale production secondary metabolites products in liters


In 2004, indole alkaloid<br />

ajmalicine and serpentine<br />

were produced using using<br />

Murashige and Skoog<br />

medium (MS) from the<br />

mutant, Catharanthus<br />

roseus plant. Cytokinin<br />

increased the production of<br />

ajmalicine, serpentine and<br />

reserpine (high blood<br />

pressure).<br />

Above: Cartharanthus pusillus<br />

and Below: Catharanthus roseus<br />

produced Ajmalicine


Higher producer cell line in biotechnology is important<br />

for the targeted substance to be more viable


Plant name Active ingredient Culture medium and plant growth regulator(s) Culture type Reference (s)<br />

Aconitum heterophyllum Aconites MS + 2,4-D + Kin Hairy root Giri et al., 1997<br />

Adhatoda vasica Vasine MS + BAP + IAA Shoot culture Shalaka and Sandhya, 2009<br />

Agastache rugosa Rosmarinic acid MS + 2,4-D + Kin + 3% sucrose Hairy root Lee et al., 2007<br />

Agave amaniensis Saponins MS + Kinetin Callus Andrijany et al., 1999<br />

Ajuga reptans Phytoecdysteroids Hairy root Matsumoto and Tanaka, 1991<br />

Aloe saponaria Glucosides MS + 2,4-D + Kinetin Suspension Yagi et al., 1983<br />

Ambrosia tenuifolia Altamisine MS + Kinetin Callus Goleniowski and Trippi, 1999<br />

Ammi majus Umbelliferone MS + BAP Shootlet Krolicka et al., 2006<br />

Ammi visnaga Furanocoumarin MS + IAA + GA3 Suspension Kaul and Staba, 1967<br />

Amsonia elliptica Indole alkaloids Hairy root Sauerwein et al., 1991<br />

Anchusa officinalis Rosmarinic acid B 5 + 2,4-D Suspension De-Eknamkul and Ellis, 1985<br />

Angelica gigas Deoursin MS (Liq.) + 2,4-D + GA3 Hairy root Xu et al., 2008<br />

Anisodus luridus Tropane alkaloids MS + 2,4-D + BA Hairy root Jobanovic et al., 1991<br />

Ammi majus Triterpenoid MS + 2,4-D + BA Suspension Staniszewska et al., 2003<br />

Arachys hypogaea Resveratol G5 + 2,4-D + Kin. Hairy root Kim et al., 2008<br />

Armoracia laphthifolia Fisicoccin MS + IAA Hairy root Babakov et al., 1995<br />

Artemisia absinthum Essential oil MS + NAA + BAP Hairy root Nin et al., 1997<br />

Artemisia annua Artemisinin MS + IAA + Kinetin Hairy root Rao et al., 1998<br />

Artemisia annua Artemisinin MS + NAA + Kinetin Callus Baldi and Dixit, 2008<br />

Aspidosperma ramiflorum Ramiflorin MS + 2,4-D + BAP Callus Olivira et al., 2001<br />

Aspidosperma ramiflorum Ramiflorin alkaloid MS + 2-4,D + BAP + 30 g/l Sucrose Callus Olivira et al., 2001<br />

Astragalus mongholicus Cycloartane saponin MS + 2,4-D + Kin Hairy root Ionkova et al., 1997<br />

Astragalus mongholicus Cycloartane MS + IAA + NAA Hairy root Ionkova et al., 1997<br />

Azadirachta indica Azadirachtin MS + 2,4-D Suspension Sujanya et al., 2008<br />

Azadirachta indica Azadirachtin MS + 2,4-D + Cyanobacterial elicitor Suspension Poornasri Devi et al., 2008<br />

Beeta vulgaris Betalain pigments MS + IAA Hairy root Taya et al., 1992<br />

Brucea javanica Alkaloids MS + 2,4-D + Kinetin Suspension Lie et al., 1990<br />

Brucea javanica Cathin MS + IAA + GA3 Suspension Wagiah et al., 2008<br />

Brugmansia candida Tropane MS + 2,4-D + IAA Hairy root Marconi et al., 2008<br />

Brugmansia candida Tropane alkaloid MS + BA + NAA Hairy root Giulietti et al., 1993<br />

Bupleurum falcatum Saikosaponins B 5 + IBA Root Kusakari et al., 2000<br />

Bupleurum falcatum Saikosaponins LS + 2,4-D Callus Wang and Huang, 1982<br />

Calystegia sepium Cuscohygrine MS + 2,4-D + BA Hairy root Jung and Tepfer, 1987<br />

Camellia chinensis Flavones MS + 2,4-D + NAA Callus Nikolaeva et al., 2009<br />

Camellia sinensis Theamine MS + IBA + Kinetin Suspension Orihara and Furuya, 1990<br />

Campanula medium Polyacetylenes MS + IAA + BA Hairy root Tada et al., 1996<br />

Canavalia ensiformis Canavanine LS + NAA + Picloram Callus Ramirez et al., 1992<br />

Capsicum annum Capsiacin MS + 2,4-D+ GA3 Callus Varindra et al., 2000<br />

Capsicum annum Capsiacin MS + 2,4-D + Kin. Callus Umamaheswari and Lalitha, 2007<br />

Capsicum annuum Capsaicin MS + 2,4-D + Kinetin Suspension Johnson et al., 1990<br />

Table 1: The biotechnology<br />

(tissue culture) and<br />

potential products from<br />

plant in recent years after<br />

the discovery of the first<br />

pigment Shikonin.


Cassia obtusifolia Anthraquinone MS + TDZ + IAA Hairy root Ko et al., 1995<br />

Cassia senna Sennosides MS + NAA + Kin Callus Shrivastava et al., 2006<br />

Catharanthus roseus Indole alkaloids MS + IAA Suspension Moreno et al., 1993<br />

MS + NAA + Kinetin Suspension Zhao et al., 2001<br />

Catharanthus roseus Vincristine MS + 2,4-D + GA3 Suspension Lee-Parsone and Rogce, 2006<br />

Catharanthus roseus Indole alkaloid MS + 2,4-D + GA3 + Vanadium Suspension Tallevi and Dicosmo, 1988<br />

Catharanthus roseus Catharathine MS + 2,4-D + UV-B radiation Suspension Ramani and Jayabaskaran, 2008<br />

Catharanthus trichophyllus Indole alkaloids MS + IAA + GA3 Hairy root Davioud et al., 1989<br />

Cayratia trifoliata Stilbenes MS + IAA + GA3 Suspension Roat and Ramawat, 2009<br />

Centella asiatica Asiaticoside MS + 2,4-D Hairy root Kim et al., 2007<br />

Centella asiatica Asiaticoside Ms + 2,4-D + Kin Callus Kiong et al., 2005<br />

Centella asitica Asiaticoside MS + BAP + IAA Shoot Kim et al., 2004<br />

Centella asitica Asiaticoside MS + 2,4-D Hairy root Paek et al., 1996<br />

Centranthes ruber Valepotriates MS + IAA + Kin Hairy root Granicher et al., 1995<br />

Cephaelis ipecacuanha Alkaloids MS + IAA Root Teshima et al., 1988<br />

Chaenatis douglasei Thiarbrins MS + NAA Hairy root Constabel and Towers, 1988<br />

Chrysanthemum<br />

Pyrithrins MS + 2.4-D + Kinetin Callus Rajasekaran et al., 1991<br />

cinerariaefolium<br />

MS + Kinetin Suspension Kuch et al., 1985<br />

Cinchona ledgeriana Quinine MS + 2,4-D Hairy root Hamill et al., 1989<br />

B 5 + 2,4-D Suspension Schripsema et al., 1999<br />

Citrus sp. Caffeine MS + 2,4-D + Kinetin Callus Waller et al., 1983<br />

Coffea arabica Forskolin MS + IAA + Kin Hairy root Sasaki et al., 1998<br />

Coleus forskohlii Corydaline MS + IAA + 3% sucrose Embryo Hiraoka et al., 2004<br />

Corydalis ambigua Corydaline MS + IAA + GA3 Shoot Rueffer et al., 1994<br />

Corydalis cava Alkaloids MS + 2,4-D + Kinetin Callus Iwasa and Takao, 1982<br />

Corydalis ophiocarpa Corydalin MS + 2,4-D + BAP Callus Taha et al., 2008<br />

Corydylis terminalis Berberin MS + 2,4-D + BAP Callus Khan et al., 2008<br />

Coscinium fenustratum Berberine MS + IAA +BAP Callus Nair et al., 1992<br />

Coscinium fenustratum Berberine MS + 2,4-D + GA3 Suspension Narasimhan and Nair, 2004<br />

Coscinium fenustratum Flavonoid MS + 2,4-D + NAA + BAP Callus Maharik et al., 2009<br />

Crataegus sinaica Plaunotol MS + NAA + BA Callus Morimoto and Murai, 1989<br />

Croton sublyratus Anthraquinones LS + NAA + Kinetin Suspension Dornenburg and Knorr, 1996<br />

Cryptolepis buchanani Essential oil MS + IAA + GA3 Shoot Quiala et al., 2006<br />

Cymbopogon citratus Hyocyamine MS + IAA Hairy root Hilton and Rhodes, 1993<br />

Digitalis purpurea Cardioactive glycosides MS + 2,4-D + BA Hairy root Saito et al., 1990<br />

Diocorea doryophora Diogenin MS + 2,4-D + BA Suspension Huang et al., 1993<br />

Drosera rotundifolia 7-Methyljuglone MS + BAP + NAA Shoot culture Hohtola et al., 2005<br />

Duboisia leichhardtti Scopalamine MS + 2,4-D + BA Hairy root Muranaka et al., 1992<br />

Echinacea purpurea Alkamides MS + 2,4-D Hairy root Trysteen et al., 1991<br />

Eleutherococcus senticosus Eleuthrosides MS + 2,4-D Suspension Shohael et al., 2007<br />

Ephedra sp. L-Ephedrine MS + Kinetin + 2,4-D Suspension O’Dowd et al., 1993<br />

Eriobotrya japonica Triterpenes LS + NAA + BA Callus Taniguchi et al., 2002<br />

Fabiana imbricata Rutin MS + NAA + 2,4-D Callus and<br />

Schmeda-Hirschmann et al., 2004<br />

Suspenson<br />

Fagopyrum esculentum Flavonol MS + IAA + GA3 Hairy root Trotin et al., 1993<br />

Fagopyrum esculentum Rutin MS + NAA Hairy root Lee et al., 2007<br />

Frangula alnus Anthraquinones WPM + IAA + BAP Callus Kovacevic and Grabisic, 2005<br />

Fritillaria unibracteata Alkaloids MS + 2,4-D + Kin Multiple shoot Gao et al., 2004<br />

Gentiana macrophylla Glucoside MS + IAA + Kin Hairy root Tiwari et al., 2007<br />

Gentiana sp. Glucosides B 5 + Kinetin Callus Skrzypczak et al., 1993


Biotechnology on biology<br />

Shikonin: Anti-cancer<br />

Ajmalicine: Heart attack<br />

Quinine: Malaria prevention<br />

Serpentine and reserpine : (Blood pressure)<br />

Berberiney still depend : anti-inflammatory and anti-diabetic and reduce glucose production in the liver.<br />

Ginsenosides Panax ginseng in 1997: traditional Chinese medicine


It is difficult to extracts compounds without using media:<br />

Biotechnology sometimes is disadvantageous but its<br />

most cases its:<br />

MacQeen, H. 1998. Biotechnology puts the squeeze on plants. New Science 14, 50-54.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!