04.06.2016 Views

Yao und Conrad - 1999 - Thermodynamics of methane production in different

Yao und Conrad - 1999 - Thermodynamics of methane production in different

Yao und Conrad - 1999 - Thermodynamics of methane production in different

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PERGAMON<br />

Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473<br />

<strong>Thermodynamics</strong> <strong>of</strong> <strong>methane</strong> <strong>production</strong> <strong>in</strong> di€erent rice paddy<br />

soils from Ch<strong>in</strong>a, the Philipp<strong>in</strong>es and Italy<br />

Heng <strong>Yao</strong>, Ralf <strong>Conrad</strong> *<br />

Max-Planck-Institut fuÈr terrestrische Mikrobiologie, Karl-von-Frisch-Str., D-35043 Marburg, Germany<br />

Received for publication 7 October 1998<br />

Abstract<br />

Methane <strong>production</strong> was measured <strong>in</strong> anoxic slurries <strong>of</strong> rice ®eld soils that were collected from 16 di€erent sites <strong>in</strong> Ch<strong>in</strong>a, the<br />

Philipp<strong>in</strong>es and Italy. The follow<strong>in</strong>g general pattern was observed. Methane started to <strong>in</strong>crease exponentially right from the<br />

beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> anoxic <strong>in</strong>cubation at positive redox potentials (360±510 mV). The concentrations <strong>of</strong> H 2 and acetate dur<strong>in</strong>g this ®rst<br />

phase allowed exergonic methanogenesis with Gibbs free energies <strong>of</strong>


464<br />

H. <strong>Yao</strong>, R. <strong>Conrad</strong> / Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473<br />

(Fetzer and <strong>Conrad</strong>, 1993). Roy et al. (1997) observed<br />

that Italian rice ®eld soil immediately started to produce<br />

trace amounts <strong>of</strong> CH 4 after the soil was ¯ooded.<br />

Inhibition experiments suggested that this early CH 4<br />

was produced by H 2 /CO 2 -utiliz<strong>in</strong>g methanogens<br />

which apparently were not <strong>in</strong>hibited either by the<br />

high redox potential or by the presence <strong>of</strong> <strong>in</strong>organic<br />

oxidants such as Fe(III) and sulfate at this early<br />

stage <strong>of</strong> ¯ood<strong>in</strong>g.<br />

To better <strong>und</strong>erstand the cha<strong>in</strong> <strong>of</strong> events that ®nally<br />

leads to vigorous CH 4 <strong>production</strong>, we <strong>in</strong>vestigated 16<br />

di€erent rice ®eld soils which were <strong>in</strong>cubated as anoxic<br />

slurries. We measured the concentrations <strong>of</strong> reactants<br />

and products <strong>of</strong> the H 2 and acetate-dependent methanogenesis<br />

and calculated the thermodynamic conditions<br />

for these reactions after onset <strong>of</strong> anoxic<br />

conditions.<br />

2. Materials and methods<br />

Soil samples were obta<strong>in</strong>ed <strong>in</strong> autumn or w<strong>in</strong>ter, 3±4<br />

months after rice harvest. The soil was broken <strong>in</strong>to<br />

lumps <strong>of</strong> 3±4 cm dia, air dried and stored <strong>in</strong> darkness<br />

at 48C until experiments were performed. The soils<br />

have been described by <strong>Yao</strong> et al. (1998). The ma<strong>in</strong><br />

characteristics are given <strong>in</strong> Table 1. The aerobic storage<br />

<strong>of</strong> dried soil has been shown to have no signi®cant<br />

e€ect on soil <strong>methane</strong> <strong>production</strong> capacity<br />

(Mayer and <strong>Conrad</strong>, 1990). For experiments, soil<br />

samples were pulverized and passed through sta<strong>in</strong>less<br />

steel sieves to obta<strong>in</strong> soil particles between 0.1 and<br />

1 mm dia. Ten grams <strong>of</strong> soil and 10 ml <strong>of</strong> distilled<br />

water were put <strong>in</strong>to a 120-ml serum bottle. The distilled<br />

water was previously bubbled with N 2 for 30 m<strong>in</strong><br />

to drive out all dissolved O 2 . The serum bottles were<br />

closed with butyl rubber stoppers and the headspace<br />

was ¯ushed with N 2 at a rate <strong>of</strong> 300 ml m<strong>in</strong> 1 for at<br />

least 20 m<strong>in</strong>. The <strong>in</strong>cubation temperature was<br />

3020.38C. All measurements were carried out <strong>in</strong> triplicate.<br />

One set <strong>of</strong> bottles (n = 3) was used to follow the<br />

partial pressures <strong>of</strong> CH 4 , CO 2 and H 2 . Gas samples<br />

were taken from the headspace <strong>of</strong> the bottles, after vigorous<br />

shak<strong>in</strong>g by hand for about 30 s, us<strong>in</strong>g a gastight<br />

pressure-lock syr<strong>in</strong>ge which had been ¯ushed<br />

with N 2 before each sampl<strong>in</strong>g. Analysis <strong>of</strong> CH 4 and<br />

CO 2 was performed on a Shimadzu GC 8A gc<br />

equipped with an FID and a catalytic converter<br />

(Chrompack, nickat methanizer). The separation column<br />

was a 80-cm long Porapak Q 60±80 mesh column<br />

operated at a temperature <strong>of</strong> 508C. Analysis <strong>of</strong> H 2 was<br />

performed on a Trace Analytical RGD2 HgO±Hg<br />

vapor conversion detector. Hydrogen was separated<br />

from other gases us<strong>in</strong>g a molecular sieve 5A column<br />

(80±100 mesh, 70 cm length) at 608C (<strong>Conrad</strong> et al.,<br />

1987).<br />

Another set <strong>of</strong> bottles (n = 3) with soil slurries was<br />

used for determ<strong>in</strong>ation <strong>of</strong> dissolved compo<strong>und</strong>s. The<br />

soil slurries were repeatedly sampled (1±2 ml) by a<br />

syr<strong>in</strong>ge, after heavy shak<strong>in</strong>g <strong>of</strong> the bottles by hand.<br />

The pH and E h <strong>of</strong> the soil slurries were measured<br />

with a pH-meter and a Pt-electrode (Wissenschaftlich-<br />

Technische WerkstaÈ tten GmbH, PH-539). E h read<strong>in</strong>gs<br />

were corrected by a reference electrode (210 mV). Iron<br />

was measured by tak<strong>in</strong>g subsamples <strong>of</strong> 300 ml which<br />

were then added to 5 ml <strong>of</strong> 0.5 N HCl and kept for<br />

more than 2 h at room temperature. For Fe(II) determ<strong>in</strong>ation,<br />

50±100 ml <strong>of</strong> the HCl suspension was added<br />

to 1 ml Ferroz<strong>in</strong> solution (0.1% w/w Ferroz<strong>in</strong> <strong>in</strong><br />

Table 1<br />

Characteristics <strong>of</strong> the soils <strong>in</strong>clud<strong>in</strong>g the amounts <strong>of</strong> reducible <strong>in</strong>organic electron acceptors<br />

Soil Orig<strong>in</strong> Initial<br />

pH<br />

Initial<br />

E h<br />

Organic<br />

carbon (%)<br />

Total<br />

nitrogen (%)<br />

Nitrate<br />

(mmol g dw 1 )<br />

Fe(III)<br />

(mmol g dw 1 )<br />

Sulfate<br />

(mmol g dw 1 )<br />

1 Zhenjiang 7.7 460 1.04 0.07 0.16 146 0.85<br />

2 Changchun 6.0 510 1.68 0.14 0 170 0.48<br />

3 Guangzhou 5.1 340 1.85 0.13 0 89 0.84<br />

4 Beiyuan 7.4 360 1.34 0.09 1.41 87 5.18<br />

5 Jurong 6.3 460 1.15 0.10 0 196 1.16<br />

6 Shenyaong 6.7 450 1.35 0.07 0.01 163 1.00<br />

7 Q<strong>in</strong>ghe 7.6 390 0.95 0.08 0.54 76 0.51<br />

8 Buggalon 5.9 465 1.97 0.16 0.01 153 1.20<br />

9 Luisiana 5.1 455 1.65 0.16 0.02 420 1.11<br />

10 Maahas 6.2 460 2.14 0.17 0 311 1.73<br />

11 Pila 6.8 400 2.62 0.30 1.66 202 1.16<br />

12 Gapan 6.0 505 1.51 0.12 0.01 277 0.37<br />

13 Urdaneta 6.7 430 1.07 0.07 0.32 153 0.28<br />

14 Maligaya 5.8 480 1.39 0.11 0 205 1.54<br />

15 Pavia 6.1 440 0.81 0.07 0.45 86 0.45<br />

16 Vercelli 6.0 480 1.55 0.14 3.69 166 2.07


H. <strong>Yao</strong>, R. <strong>Conrad</strong> / Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473 465<br />

Fig. 1. Accumulation <strong>of</strong> CH 4 and change <strong>of</strong> H 2 and acetate dur<strong>in</strong>g anoxic <strong>in</strong>cubation <strong>of</strong> 16 di€erent rice ®eld soils from di€erent regions. The arrow <strong>in</strong>dicates the time when 80% <strong>of</strong> the available<br />

Fe(III) was converted to Fe(II) and sulfate was reduced to concentrations


466<br />

H. <strong>Yao</strong>, R. <strong>Conrad</strong> / Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473<br />

50 mM N-2-hydroxyl-ethylpiperaz<strong>in</strong>-N 0 -2-ethane sulfonate,<br />

pH 7), mixed and centrifuged at 14,000 rpm for<br />

5 m<strong>in</strong>. The supernatant was measured <strong>in</strong> a spectrophotometer<br />

(Hitachi U-1100 photometer) at 562 nm.<br />

Nitrate, nitrite and sulfate were determ<strong>in</strong>ed after centrifugation<br />

<strong>of</strong> aliquots <strong>of</strong> the soil slurries and ®ltration<br />

through a 0.2-mm membrane ®lter (Sartorius, M<strong>in</strong>isart<br />

RC15). Part <strong>of</strong> the ®ltrate was stored frozen (208C)<br />

for fatty acid analysis. Total sulfate (absorbed and dissolved<br />

sulfate) was determ<strong>in</strong>ed after 12 h extraction at<br />

room temperature us<strong>in</strong>g 5 ml phosphate mixture<br />

(15 mM Ca(H 2 PO 4 ) 2 and 8 mM H 3 PO 4 ) (Nelson,<br />

1982). Nitrate, nitrite and sulfate were analyzed <strong>in</strong> a<br />

Sykam ion chromatographic system conta<strong>in</strong><strong>in</strong>g a<br />

Sykam (LCA, A09) column and a conductivity detector<br />

serially connected to a UV detector at 218 nm<br />

(Bak et al., 1991). Na 2 CO 3 /NaHCO 3 (3 mM/1.5 mM)<br />

was used as the eluent. Dissolved acetate was<br />

measured us<strong>in</strong>g a Sykam HPLC system equipped<br />

with an Am<strong>in</strong>ex HPX-87G ion exclusion column and<br />

Fig. 2. Logarithmic plot <strong>of</strong> the <strong>in</strong>crease <strong>of</strong> CH 4 dur<strong>in</strong>g anoxic <strong>in</strong>cubation <strong>of</strong> 16 di€erent rice ®eld soils.


H. <strong>Yao</strong>, R. <strong>Conrad</strong> / Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473 467<br />

a refractive <strong>in</strong>dex detector (Erma, CR Inc, ERC-<br />

7512) (KrumboÈ ck and <strong>Conrad</strong>, 1991).<br />

Production rates <strong>of</strong> CO 2 and CH 4 were determ<strong>in</strong>ed<br />

by l<strong>in</strong>ear regression <strong>of</strong> the partial pressures <strong>in</strong> the<br />

headspace aga<strong>in</strong>st time for the appropriate phases <strong>of</strong><br />

<strong>in</strong>cubation. Gibbs free energies (DG) were calculated<br />

from the actual concentrations <strong>of</strong> reactants and products<br />

as described before (<strong>Conrad</strong> et al., 1986; Peters<br />

and <strong>Conrad</strong>, 1996) us<strong>in</strong>g the follow<strong>in</strong>g reactions:<br />

4H 2 …g†‡CO 2 …g† 4CH 4 …g†‡2H 2 O…l†<br />

DG 0 …308C† ˆ128:7 kJ<br />

CH 3 COO …aq†‡H ‡ …aq† 4CO 2 …g†‡CH 4 …g†<br />

DG 0 …308C† ˆ77:3 kJ:<br />

The standard Gibbs free energies (DG 0 ) were calculated<br />

from the standard Gibbs free energies <strong>of</strong> formation<br />

<strong>of</strong> the reactants and products which are<br />

tabulated <strong>in</strong> Thauer et al. (1977), and then corrected<br />

to a temperature <strong>of</strong> 308C us<strong>in</strong>g the Van 't Ho€<br />

equation and tabulated values <strong>of</strong> the standard enthalpies<br />

<strong>of</strong> formation (Lange, 1979).<br />

3. Results<br />

When slurries <strong>of</strong> rice ®eld soils were <strong>in</strong>cubated<br />

<strong>und</strong>er anoxic conditions, H 2 partial pressures immediately<br />

started to <strong>in</strong>crease and reached relatively high<br />

values, <strong>in</strong> some soils >150 Pa, with<strong>in</strong> 3±5 d (Fig. 1).<br />

Acetate usually behaved similarly, but the pattern was<br />

not as uniform as that <strong>of</strong> H 2 (Fig. 1). In some soils<br />

highest acetate concentrations were reached at a later<br />

time, usually aro<strong>und</strong> d 10±20, form<strong>in</strong>g a further maximum.<br />

Accumulation <strong>of</strong> CH 4 (assessed on a l<strong>in</strong>ear<br />

scale) started at di€erent times depend<strong>in</strong>g on the soil<br />

tested (Fig. 1). In some soils, l<strong>in</strong>ear CH 4 <strong>production</strong><br />

became apparent as early as 2±3 d after the beg<strong>in</strong>n<strong>in</strong>g<br />

<strong>of</strong> <strong>in</strong>cubation (soil no. 3, 8, 11 and 15), whereas <strong>in</strong><br />

other soils (no. 13 and 14) more than 40 d passed. In<br />

many but not all cases, the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> CH 4 accumulation<br />

approximately co<strong>in</strong>cided with the end <strong>of</strong> sulfate<br />

and iron reduction (Fig. 1). Eventually, CH 4 <strong>production</strong><br />

became constant and H 2 partial pressures and<br />

acetate concentrations reached a constant value <strong>in</strong>dicat<strong>in</strong>g<br />

steady state conditions.<br />

Plott<strong>in</strong>g CH 4 accumulation on a logarithmic scale,<br />

however, revealed a di€erent picture dur<strong>in</strong>g the early<br />

phase <strong>of</strong> CH 4 <strong>production</strong> (Fig. 2). At this scale it<br />

became obvious that CH 4 <strong>production</strong> started right at<br />

the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> anoxic <strong>in</strong>cubation <strong>in</strong> all soils exam<strong>in</strong>ed.<br />

In ®ve soils (no. 3, 8, 11, 15 and 16) this early<br />

CH 4 <strong>production</strong> steadily cont<strong>in</strong>ued until the end <strong>of</strong> <strong>in</strong>cubation<br />

and also became apparent on a l<strong>in</strong>ear scale<br />

after a few days (Fig. 1). In all the other soils, however,<br />

the early CH 4 <strong>production</strong> came to a halt 3 d later<br />

(Fig. 2). At this time, the CH 4 partial pressure was still<br />

low (about 10±100 Pa), s<strong>in</strong>ce only little CH 4 (about<br />

Table 2<br />

End <strong>of</strong> the halt phase <strong>of</strong> CH 4 <strong>production</strong> and <strong>of</strong> the phases <strong>of</strong> reduction <strong>of</strong> sulfate and iron together with the Gibbs free energies <strong>of</strong> H 2 /CO 2 -<br />

dependent methanogenesis and rates <strong>of</strong> total CH 4 <strong>production</strong><br />

End <strong>of</strong> (d) DG (kJ mol 1 CH 4 ) CH 4 <strong>production</strong> (mmol g<br />

dw 1 d 1 )<br />

soil halt phase sulfate<br />

reduction<br />

(70 5.8 30.5 ± ± ±<br />

14 36 70 35 3 24.5 28.8 0.14 0.15<br />

15 0 6 12 27.9 ± 29.8 0.72 0.13<br />

16 0 14 14 22.4 ± 28.0 0.43 0.18<br />

± = not applicable, s<strong>in</strong>ce either no halt phase or no steady state was observed.


468<br />

H. <strong>Yao</strong>, R. <strong>Conrad</strong> / Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473<br />

0.04±0.42 mmol g dw 1 soil) had been produced. The<br />

length <strong>of</strong> the halt <strong>of</strong> CH 4 <strong>production</strong> di€ered among<br />

the di€erent soils and lasted until d 9±36, <strong>in</strong> soil No. 13<br />

for even longer (Table 2). The end <strong>of</strong> the halt phase<br />

<strong>of</strong>ten, but not always, co<strong>in</strong>cided with the end <strong>of</strong> iron<br />

reduction (Table 2). Iron reduction was usually ®nished<br />

later than sulfate reduction except <strong>in</strong> two soils<br />

(No. 4 and 14).<br />

The halt phase was characterized by an <strong>in</strong>crease <strong>of</strong><br />

the Gibbs free energies <strong>of</strong> H 2 /CO 2 -dependent methanogenesis<br />

(DG H2 ) to values > 20 kJ mol 1 CH 4 (Fig. 3;<br />

Tables 2 and 3). In those soils (No. 3, 8, 11, 15 and<br />

16) which exhibited no halt phase the DG-values<br />

stayed at values more negative than 19 to 28 mol 1<br />

CH 4 . The DG-values dur<strong>in</strong>g the later stages <strong>of</strong> CH 4<br />

<strong>production</strong>, when steady state for <strong>production</strong> and consumption<br />

<strong>of</strong> methanogenic substrates was reached,<br />

generally showed DG-values more negative than 20<br />

kJ mol 1 CH 4 (Table 2), on the average a value <strong>of</strong><br />

26.221.8 kJ mol 1 CH 4 (Table 3).<br />

The DG-values <strong>of</strong> acetate-dependent methanogenesis<br />

(DG AC ) dur<strong>in</strong>g the steady state were similar among the<br />

di€erent soils (Table 3). The DG AC -values were highest<br />

(least exergonic) dur<strong>in</strong>g the steady state; at earlier<br />

stages <strong>of</strong> the anoxic <strong>in</strong>cubations, DG AC was even more<br />

negative (data not shown).<br />

Fig. 3. Temporal change <strong>of</strong> the Gibbs free energy (DG) <strong>of</strong>H 2 -dependent methanogenesis dur<strong>in</strong>g anoxic <strong>in</strong>cubation <strong>of</strong> 16 di€erent rice ®eld soils.


H. <strong>Yao</strong>, R. <strong>Conrad</strong> / Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473 469<br />

Table 3<br />

Gibbs free energies (DG; kJ mol 1 CH 4 )<strong>of</strong>H 2 /CO 2 -dependent and acetate-dependent methanogenesis dur<strong>in</strong>g di€erent phases<br />

<strong>of</strong> <strong>in</strong>cubation averaged for the di€erent soils<br />

Methanogenic substrate; phase Average 295% con®dence limit Range<br />

H 2 /CO 2 ; beg<strong>in</strong> <strong>of</strong> halt phase 26.2 7.30 38.8 to 10.5<br />

H 2 /CO 2 ; least negative DG 9.0 3.75 15.3 to 1.2<br />

H 2 /CO 2 ; end <strong>of</strong> halt phase 21.5 4.44 31.1 to 13.2<br />

H 2 /CO 2 ; steady state phase 26.2 1.76 29.9 to 20.4<br />

Acetate; steady state phase 28.8 1.67 34.9 to 26.2<br />

The end <strong>of</strong> the halt phase did not exactly co<strong>in</strong>cide<br />

with the end <strong>of</strong> iron reduction, i.e. the time when <strong>in</strong>organic<br />

electron acceptors were depleted. Sometimes the<br />

halt phase ended earlier, sometimes later. The period<br />

dur<strong>in</strong>g which the end <strong>of</strong> iron reduction lagged beh<strong>in</strong>d<br />

the end <strong>of</strong> the halt phase positively correlated with the<br />

maximum rate <strong>of</strong> CH 4 <strong>production</strong> but not with the<br />

amount <strong>of</strong> reducible iron (Fig. 4). The maximum rate<br />

<strong>of</strong> CH 4 <strong>production</strong> itself correlated only weakly<br />

(r = 0.276; p>0.05) with the amount <strong>of</strong> reducible<br />

iron, but correlated well with the ratio <strong>of</strong> total nitrogen<br />

divided by reducible iron (r = 0.724; p < 0.01)<br />

(for details see <strong>Yao</strong> et al., 1998).<br />

4. Discussion<br />

Our results con®rm and extend the observation by<br />

Roy et al. (1997) that CH 4 <strong>production</strong> <strong>in</strong> rice ®eld<br />

soils starts right after establishment <strong>of</strong> anoxic conditions,<br />

even though oxidants such as ferric iron or<br />

sulfate have not yet been reduced and the redox potential<br />

is still high. All rice ®eld soils that were tested<br />

showed this <strong>in</strong>itial CH 4 <strong>production</strong> that became visible<br />

on an exponential scale. By contrast, such an <strong>in</strong>itial<br />

CH 4 <strong>production</strong> was not observed <strong>in</strong> upland soils (forest,<br />

agricultural, savanna and desert soil) that had no<br />

history <strong>of</strong> CH 4 <strong>production</strong> (Peters and <strong>Conrad</strong>, 1996).<br />

In these upland soils, exponential CH 4 <strong>production</strong><br />

started later than <strong>in</strong> the rice ®eld soils, when most <strong>of</strong><br />

the sulfate and Fe(III) had been reduced. The reason<br />

for the di€erent behavior is most probably the <strong>in</strong>itial<br />

population size <strong>of</strong> the methanogenic bacteria which is<br />

very small (<strong>of</strong>ten


470<br />

H. <strong>Yao</strong>, R. <strong>Conrad</strong> / Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473<br />

et al., 1993; Joulian et al., 1996; Ueki et al., 1997) so<br />

that the population is high right at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong><br />

¯ood<strong>in</strong>g and does not need to further <strong>in</strong>crease dur<strong>in</strong>g<br />

submergence. Indeed, methanogenic populations stay<br />

virtually constant dur<strong>in</strong>g the season (SchuÈ tz et al.,<br />

1989; Asakawa and Hayano, 1995). Thus, the methanogens<br />

have only to change from the dormant <strong>in</strong>to the<br />

active state. In the upland soils, on the other hand, the<br />

methanogenic populations start at very low numbers<br />

and have to grow to allow vigorous CH 4 <strong>production</strong>.<br />

Indeed, numbers <strong>of</strong> methanogens <strong>in</strong> these soils<br />

<strong>in</strong>creased as soon as CH 4 <strong>production</strong> started (Peters<br />

and <strong>Conrad</strong>, 1996).<br />

A prerequisite for the early CH 4 <strong>production</strong> seems<br />

to be a suciently high H 2 partial pressure that corresponds<br />

to Gibbs free energies <strong>of</strong> H 2 -dependent methanogenesis<br />

<strong>of</strong> less than approximately 23 kJ mol 1<br />

CH 4 . These conditions were given <strong>in</strong> all <strong>of</strong> the rice<br />

®eld soils tested right at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> anoxic<br />

<strong>in</strong>cubation, even <strong>in</strong> soil no. 13 <strong>in</strong> which later on no<br />

CH 4 was produced for more than 70 d. The early CH 4<br />

<strong>production</strong> generally came to a halt when the Gibbs<br />

free energy had <strong>in</strong>creased beyond a certa<strong>in</strong> value (only<br />

one exception, see below). On the average, the early<br />

CH 4 <strong>production</strong> came to a halt when the DG values<br />

had <strong>in</strong>creased to > 26 kJ mol 1 CH 4 , and CH 4<br />

<strong>production</strong> resumed when it had decreased aga<strong>in</strong> to<br />


H. <strong>Yao</strong>, R. <strong>Conrad</strong> / Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473 471<br />

always permissive, substrate concentration is not a<br />

likely signal; acetate concentration was never limit<strong>in</strong>g<br />

<strong>in</strong> a thermodynamic sense. However, it may have been<br />

limit<strong>in</strong>g for the k<strong>in</strong>etics <strong>of</strong> the resident methanogens.<br />

The k<strong>in</strong>etic acetate threshold concentrations are much<br />

higher for Methanosarc<strong>in</strong>a-type (190±1180 mM) than<br />

Methanosaeta-type (7±69 mM) methanogens (Jetten<br />

et al., 1990). The K m values for acetate are also higher<br />

(Jetten et al., 1990). Clone libraries <strong>of</strong> extracted DNA<br />

and bacterial counts show that both types are common<br />

<strong>in</strong> Italian rice ®eld soil (Groûkopf et al., 1998).<br />

Acetate concentrations were generally sucient for<br />

acetate utilization by Methanosaeta, but may not have<br />

been sucient for Methanosarc<strong>in</strong>a. Methanosaeta is a<br />

rather elusive microbe which needs prolonged <strong>in</strong>cubation<br />

to grow up <strong>in</strong> culture. Thus, 55±64 weeks were<br />

needed for most probable number cultures from<br />

Italian rice ®eld soil <strong>in</strong> which ®nally acetate-utiliz<strong>in</strong>g<br />

Methanosaeta were detected <strong>in</strong> numbers <strong>of</strong> 10 6 gdw 1<br />

soil, whereas earlier enumerations never detected this<br />

species (Groûkopf et al., 1998). However, we are presently<br />

not sure whether Methanosaeta was suciently<br />

numerous <strong>in</strong> the soils right from the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong><br />

<strong>in</strong>cubation and what k<strong>in</strong>d <strong>of</strong> conditions other than<br />

sucient acetate are required for expression <strong>of</strong> acetotrophic<br />

methanogenesis.<br />

In conclusion, we have demonstrated that CH 4 <strong>production</strong><br />

<strong>in</strong> rice ®eld soils starts almost right after onset<br />

<strong>of</strong> anoxia. Hence, we refute previous claims that redox<br />

potentials <strong>of</strong> less than 150 mV are required by the<br />

methanogens for <strong>in</strong>itiation <strong>of</strong> CH 4 <strong>production</strong> <strong>in</strong> soils<br />

(see Introduction). However, this early CH 4 <strong>production</strong><br />

came <strong>in</strong> most soils to a halt as soon as reduction<br />

<strong>of</strong> sulfate and Fe(III) started and did not<br />

resume before these reduction processes were ®nished<br />

and the redox potential had decreased accord<strong>in</strong>gly.<br />

Hence, the redox potential may be an <strong>in</strong>dicator for the<br />

onset <strong>of</strong> the late CH 4 <strong>production</strong> and thus may expla<strong>in</strong><br />

why CH 4 ¯uxes from wetland rice ®elds are <strong>of</strong>ten<br />

negatively correlated with the redox potentials that are<br />

measured <strong>in</strong> the soil (Neue and Roger, 1993; Mishra et<br />

al., 1997; Yagi, 1997). However, such a correlation is<br />

no pro<strong>of</strong> for a mechanistic relationship. In fact, some<br />

soils did not exhibit a temporary halt dur<strong>in</strong>g the phase<br />

when sulfate and Fe(III) were reduced and cont<strong>in</strong>ued<br />

CH 4 <strong>production</strong> until the end <strong>of</strong> <strong>in</strong>cubation. These<br />

soils (No. 3, 8, 11, 15 and 16) also exhibited relatively<br />

high maximum CH 4 <strong>production</strong> rates and exhibited<br />

them relatively soon after start <strong>of</strong> the <strong>in</strong>cubation <strong>in</strong>dicat<strong>in</strong>g<br />

that the supply with substrates was not limit<strong>in</strong>g<br />

for the methanogens. More research is necessary to<br />

characterize the turnover <strong>of</strong> organic matter, acetate<br />

and H 2 <strong>in</strong> context to sulfate reduction, iron reduction<br />

and CH 4 <strong>production</strong> dur<strong>in</strong>g these phases.<br />

Neue and Sass (1994) dist<strong>in</strong>guished four di€erent<br />

patterns <strong>of</strong> CH 4 <strong>production</strong> observed <strong>in</strong> various rice<br />

®eld soils and illustrated them by logarithmic plots <strong>of</strong><br />

accumulated CH 4 . Interest<strong>in</strong>gly, these four classes <strong>of</strong><br />

soil followed similar patterns as we show <strong>in</strong> the present<br />

study. All soil classes exhibited an immediate CH 4 <strong>production</strong><br />

which was visible on a logarithmic scale. After<br />

this early CH 4 <strong>production</strong> class I soils required a long<br />

time for resumption <strong>of</strong> CH 4 <strong>production</strong> similar to soil<br />

No. 13 <strong>in</strong> our study. Class II soils exhibited a pronounced<br />

halt phase <strong>in</strong> between the early CH 4 <strong>production</strong><br />

and the ®nal steady state, such as soil No. 1,<br />

2, 4, 5, 6, 7, 9, 10, 12 and 14. Class III and IV soils<br />

exhibited cont<strong>in</strong>uous CH 4 <strong>production</strong> right from the<br />

beg<strong>in</strong>n<strong>in</strong>g throughout the <strong>in</strong>cubation, such as soil No.<br />

3, 8, 11, 15 and 16. However, Neue and Sass (1994)<br />

did not provide an <strong>in</strong>terpretation for these di€erent<br />

CH 4 <strong>production</strong> patterns. Our results show that the<br />

patterns can be expla<strong>in</strong>ed by the energetics <strong>of</strong> H 2 -<br />

dependent methanogenesis which are limited by competition<br />

for H 2 when sulfate and/or iron reduction is<br />

tak<strong>in</strong>g place.<br />

Acknowledgements<br />

We thank H.U. Neue and R. Wassmann, X. Zhang,<br />

G.X. Chen, J. Yang, X.Y. Shen and W.Z. Song, and<br />

S. Russo for provid<strong>in</strong>g soil samples from Philipp<strong>in</strong>e,<br />

Ch<strong>in</strong>ese and Italian rice ®elds, respectively. We thank<br />

S. Rater<strong>in</strong>g, U. JaÈ ckel, S. Schnell for their help dur<strong>in</strong>g<br />

the measurement <strong>of</strong> iron content and other soil characteristics,<br />

P. Janssen, V. Peters, A. Bollman, T. Henckel<br />

for provid<strong>in</strong>g technical <strong>in</strong>structions, T. W<strong>in</strong>d, D.<br />

KluÈ ber for the valuable discussion, and J. Knecht, G.<br />

Kutsch for CHN analysis. HY was supported by a fellowship<br />

<strong>of</strong> the Alexander-von-Humboldt fo<strong>und</strong>ation.<br />

This study is a contribution to the German BMBF<br />

program `Klimaschwerpunkt Spurensto€-KreislaÈ ufe'.<br />

References<br />

Achtnich, C., Bak, F., <strong>Conrad</strong>, R., 1995. Competition for electron<br />

donors among nitrate reducers, ferric iron reducers, sulfate reducers<br />

and methanogens <strong>in</strong> anoxic paddy soil. Biology and Fertility<br />

<strong>of</strong> Soils 19, 65±72.<br />

Asakawa, S., Hayano, K., 1995. Populations <strong>of</strong> methanogenic bacteria<br />

<strong>in</strong> paddy ®eld soil <strong>und</strong>er double cropp<strong>in</strong>g conditions (rice±<br />

wheat). Biology and Fertility <strong>of</strong> Soils 20, 113±117.<br />

Bak, F., Sche€, G., Jansen, K.H., 1991. A rapid and sensitive ion<br />

chromatographic technique for the determ<strong>in</strong>ation <strong>of</strong> sulfate and<br />

sulfate reduction rates <strong>in</strong> freshwater lake sediments. FEMS<br />

Microbiology Ecology 85, 23±30.<br />

Ch<strong>in</strong>, K.J., <strong>Conrad</strong>, R., 1995. Intermediary metabolism <strong>in</strong> methanogenic<br />

paddy soil and the <strong>in</strong>¯uence <strong>of</strong> temperature. FEMS<br />

Microbiology Ecology 18, 85±102.<br />

<strong>Conrad</strong>, R., Sch<strong>in</strong>k, B., Phelps, T.J., 1986. <strong>Thermodynamics</strong> <strong>of</strong> H 2 -<br />

produc<strong>in</strong>g and H 2 -consum<strong>in</strong>g metabolic reactions <strong>in</strong> diverse<br />

methanogenic environments <strong>und</strong>er <strong>in</strong> situ conditions. FEMS<br />

Microbiology Ecology 38, 353±360.


472<br />

H. <strong>Yao</strong>, R. <strong>Conrad</strong> / Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473<br />

<strong>Conrad</strong>, R., SchuÈ tz, H., Babbel, M., 1987. Temperature limitation <strong>of</strong><br />

hydrogen turnover and methanogenesis <strong>in</strong> anoxic paddy soil.<br />

FEMS Microbiology Ecology 45, 281±289.<br />

<strong>Conrad</strong>, R., Wetter, B., 1990. In¯uence <strong>of</strong> temperature on energetics<br />

<strong>of</strong> hydrogen metabolism <strong>in</strong> homoacetogenic, methanogenic and<br />

other anaerobic bacteria. Archives <strong>of</strong> Microbiology 155, 94±98.<br />

Cord-Ruwisch, R., Seitz, H.J., <strong>Conrad</strong>, R., 1988. The capacity <strong>of</strong><br />

hydrogenotrophic anaerobic bacteria to compete for traces <strong>of</strong><br />

hydrogen depends on the redox potential <strong>of</strong> the term<strong>in</strong>al electron<br />

acceptor. Archives <strong>of</strong> Microbiology 149, 350±357.<br />

Fetzer, S., <strong>Conrad</strong>, R., 1993. E€ect <strong>of</strong> redox potential on methanogenesis<br />

by Methanosarc<strong>in</strong>a barkeri. Archives <strong>of</strong> Microbiology 160,<br />

108±113.<br />

Fetzer, S., Bak, F., <strong>Conrad</strong>, R., 1993. Sensitivity <strong>of</strong> methanogenic<br />

bacteria from paddy soil to oxygen and desiccation. FEMS<br />

Microbiology Ecology 12, 107±115.<br />

Garcia, J.-L., Raimbault, M., Jacq, V., R<strong>in</strong>audo, G., Roger, P.,<br />

1974. Activite s microbiennes dans les sols de rizieÁ res du Se ne gal:<br />

relations avec les caracte ristiques physico-chimiques et <strong>in</strong>¯uence de<br />

la rhizospeÁ re. Revue d'Ecologie et de Biologie du Sol 2, 169±185.<br />

Gaunt, J.L., Neue, H.U., Bragais, J., Grant, I.F., Giller, K.E., 1997.<br />

Soil characteristics that regulate soil reduction and <strong>methane</strong> <strong>production</strong><br />

<strong>in</strong> wetland rice soils. Soil Science Society <strong>of</strong> America<br />

Journal 61, 1526±1531.<br />

Groûkopf, R., Janssen, P.H., Liesack, W., 1998. Diversity and structure<br />

<strong>of</strong> the methanogenic community <strong>in</strong> anoxic rice paddy soil<br />

microcosms as exam<strong>in</strong>ed by cultivation and direct 16S rRNA gene<br />

sequence retrieval. Applied and Environmental Microbiology 64,<br />

960±969.<br />

Hickey, R.F., Switzenbaum, M.S., 1991. <strong>Thermodynamics</strong> <strong>of</strong> volatile<br />

fatty acid accumulation <strong>in</strong> anaerobic digesters subject to <strong>in</strong>creases<br />

<strong>in</strong> hydraulic and organic load<strong>in</strong>g. Research Journal Water<br />

Pollution Control Federation 63, 141±144.<br />

Jetten, M.S.M., Stams, A.J.M., Zehnder, A.J.B., 1990. Acetate<br />

threshold and acetate activat<strong>in</strong>g enzymes <strong>in</strong> methanogenic bacteria.<br />

FEMS Microbiology Ecology 73, 339±344.<br />

Joulian, C., Ollivier, B., Neue, H.U., Roger, P.A., 1996.<br />

Microbiological aspects <strong>of</strong> <strong>methane</strong> emission by a rice®eld soil<br />

from the Camargue (France). 1. Methanogenesis and related<br />

micro¯ora. European Journal <strong>of</strong> Soil Biology 32, 61±70.<br />

KluÈ ber, H.D., <strong>Conrad</strong>, R., 1998. E€ects <strong>of</strong> nitrate, nitrite, NO and<br />

N 2 O on methanogenesis and other redox processes <strong>in</strong> anoxic rice<br />

®eld soil. FEMS Microbiology Ecology 25, 301±318.<br />

Kral, T.A., Br<strong>in</strong>k, K.M., Miller, S.L., McKay, C.P., 1998. Hydrogen<br />

consumption by methanogens on the early Earth. Orig<strong>in</strong>s <strong>of</strong> Life<br />

and Evolution <strong>of</strong> the Biosphere 28, 311±319.<br />

KrumboÈ ck, M., <strong>Conrad</strong>, R., 1991. Metabolism <strong>of</strong> position-labelled<br />

glucose <strong>in</strong> anoxic methanogenic paddy soil and lake sediment.<br />

FEMS Microbiology Ecology 85, 247±256.<br />

Lange, N.A., 1979. Handbook <strong>of</strong> Chemistry. McGraw-Hill, New<br />

York.<br />

Lovley, D.R., Goodw<strong>in</strong>, S., 1988. Hydrogen concentrations as an <strong>in</strong>dicator<br />

<strong>of</strong> the predom<strong>in</strong>ant term<strong>in</strong>al electron-accept<strong>in</strong>g reactions <strong>in</strong><br />

aquatic sediments. Geochimica et Cosmochimica Acta 52, 2993±<br />

3003.<br />

Masscheleyn, P.H., DeLaune, R.D., Patrick, W.H., 1993. Methane<br />

and nitrous oxide emissions from laboratory measurements <strong>of</strong> rice<br />

soil suspension: e€ect <strong>of</strong> soil oxidation±reduction status.<br />

Chemosphere 26, 251±260.<br />

Mayer, H.P., <strong>Conrad</strong>, R., 1990. Factors <strong>in</strong>¯uenc<strong>in</strong>g the population<br />

<strong>of</strong> methanogenic bacteria and the <strong>in</strong>itiation <strong>of</strong> <strong>methane</strong> <strong>production</strong><br />

upon ¯ood<strong>in</strong>g <strong>of</strong> paddy soil. FEMS Microbiology Ecology 73,<br />

103±112.<br />

M<strong>in</strong>, H., Zhao, Y.H., Chen, M.C., Zhao, Y., 1997. Methanogens <strong>in</strong><br />

paddy rice soil. Nutrient Cycl<strong>in</strong>g <strong>in</strong> Agroecosystems 49, 163±169.<br />

Mishra, S., Rath, A.K., Adhya, T.K., Rao, V.R., Sethunathan, N.,<br />

1997. E€ect <strong>of</strong> cont<strong>in</strong>uous and alternate water regimes on <strong>methane</strong><br />

e‚ux from rice <strong>und</strong>er greenhouse conditions. Biology and Fertility<br />

<strong>of</strong> Soils 24, 399±405.<br />

Nelson, R.E., 1982. Carbonate and gypsum. In: Page, A.L., Miller,<br />

R.H., Keeney, D.R. (Eds.), Methods <strong>of</strong> Soil Analysis: Chemical<br />

and Microbiological Properties. American Society <strong>of</strong> Agronomy,<br />

Madison, pp. 181±196.<br />

Neue, H.U., Bloom, P.R., 1989. Nutrient k<strong>in</strong>etics and availability <strong>in</strong><br />

¯ooded rice soils. In: IRRI (Ed.), Progress <strong>in</strong> Irrigated Rice. The<br />

International Rice Research Institute, Los Banos, pp. 173±190.<br />

Neue, H.U. and Roger, P.A., 1993. Rice agriculture: factors controll<strong>in</strong>g<br />

emissions. In: Khalil, M.A.K. (Ed.), Atmospheric Methane:<br />

Sources, S<strong>in</strong>ks and Role <strong>in</strong> Global Change. Spr<strong>in</strong>ger, Berl<strong>in</strong>, pp.<br />

254±298.<br />

Neue, H.-U., Sass, R.L., 1994. Trace gas emissions from rice ®elds.<br />

In: Pr<strong>in</strong>n, R.G. (Ed.), Global Atmospheric-Biospheric Chemistry.<br />

Plenum, New York, pp. 119±147.<br />

Patrick Jr., W.H., Reddy, C.N., 1978. Chemical changes <strong>in</strong> rice soils.<br />

In: IRRI (Ed.), Soils and Rice. International Rice Research<br />

Institute, Los Banos, pp. 361±379.<br />

Peters, V., <strong>Conrad</strong>, R., 1996. Sequential reduction processes and <strong>in</strong>itiation<br />

<strong>of</strong> CH 4 <strong>production</strong> upon ¯ood<strong>in</strong>g <strong>of</strong> oxic upland soils. Soil<br />

Biology & Biochemistry 28, 371±382.<br />

Ponnamperuma, F.N., 1981. Some aspects <strong>of</strong> the physical chemistry<br />

<strong>of</strong> paddy soils. In: S<strong>in</strong>ica Academia (Ed.), Proceed<strong>in</strong>gs <strong>of</strong><br />

Symposium on Paddy Soil. Science Press-Spr<strong>in</strong>ger, Beij<strong>in</strong>g, Berl<strong>in</strong>,<br />

pp. 59±94.<br />

Pr<strong>in</strong>n, R.G., 1994. Global atmospheric±biospheric chemistry. In:<br />

Pr<strong>in</strong>n, R.G. (Ed.), Global Atmospheric±Biospheric Chemistry.<br />

Plenum, New York, pp. 1±18.<br />

Rothfuss, F., <strong>Conrad</strong>, R., 1993. <strong>Thermodynamics</strong> <strong>of</strong> methanogenic<br />

<strong>in</strong>termediary metabolism <strong>in</strong> littoral sediment <strong>of</strong> Lake Constance.<br />

FEMS Microbiology Ecology 12, 265±276.<br />

Roy, R., KluÈ ber, H.D., <strong>Conrad</strong>, R., 1997. Early <strong>in</strong>itiation <strong>of</strong><br />

<strong>methane</strong> <strong>production</strong> <strong>in</strong> anoxic rice soil despite the presence <strong>of</strong> oxidants.<br />

FEMS Microbiology Ecology 24, 311±320.<br />

Sch<strong>in</strong>k, B., 1992. Syntrophism among prokaryotes. In: Balows, A.,<br />

TruÈ per, H.G., Dwork<strong>in</strong>, M., Harder, W., Schleifer, K.H. (Eds.),<br />

The Prokaryotes, Vol. 1. Spr<strong>in</strong>ger, New York, pp. 276±299.<br />

Schulz, S., <strong>Conrad</strong>, R., 1996. In¯uence <strong>of</strong> temperature on pathways<br />

to <strong>methane</strong> <strong>production</strong> <strong>in</strong> the permanently cold pr<strong>of</strong><strong>und</strong>al sediment<br />

<strong>of</strong> Lake Constance. FEMS Microbiology Ecology 20, 1±14.<br />

SchuÈ tz, H., Seiler, W., <strong>Conrad</strong>, R., 1989. Processes <strong>in</strong>volved <strong>in</strong> formation<br />

and emission <strong>of</strong> <strong>methane</strong> <strong>in</strong> rice paddies. Biogeochemistry<br />

7, 33±53.<br />

Seitz, H.J., Sch<strong>in</strong>k, B., Pfennig, N., <strong>Conrad</strong>, R., 1990. Energetics <strong>of</strong><br />

syntrophic ethanol oxidation <strong>in</strong> de®ned chemostat cocultures. 1.<br />

Energy requirement for H 2 <strong>production</strong> and H 2 oxidation. Archives<br />

<strong>of</strong> Microbiology 155, 82±88.<br />

Smith, D.P., McCarty, P.L., 1989. Energetic and rate e€ects on<br />

methanogenesis <strong>of</strong> ethanol and propionate <strong>in</strong> perturbed CSTRs.<br />

Biotechnology and Bioeng<strong>in</strong>eer<strong>in</strong>g 34, 39±54.<br />

Takai, Y., 1961. Reduction and microbial metabolism <strong>in</strong> paddy soils<br />

(3). Nogyo Gijutsu (Agricultural Technology) 16, 122±126 (<strong>in</strong><br />

Japanese).<br />

Thauer, R.K., Morris, J.G. (1984) Metabolism <strong>of</strong> chemotrophic<br />

anaerobes: old views and new aspects. In: Kelly, D.P., Carr, N.G.<br />

(Eds.), The Microbe 1984, Part II, Prokaryotes and Eukaryotes.<br />

Cambridge University Press, Cambridge, pp. 123±168.<br />

Thauer, R.K., Jungermann, K., Decker, K., 1977. Energy conservation<br />

<strong>in</strong> chemotrophic anaerobic bacteria. Bacteriological Reviews<br />

41, 100±180.<br />

Ueki, A., Ono, K., Tsuchiya, A., Ueki, K., 1997. Survival <strong>of</strong> methanogens<br />

<strong>in</strong> air-dried paddy ®eld soil and their heat tolerance. Water<br />

Science and Technology 36, 517±522.<br />

Wang, Z.P., DeLaune, R.D., Masscheleyn, P.H., Patrick, W.H.,<br />

1993. Soil redox and pH e€ects on <strong>methane</strong> <strong>production</strong> <strong>in</strong> a


H. <strong>Yao</strong>, R. <strong>Conrad</strong> / Soil Biology and Biochemistry 31 (<strong>1999</strong>) 463±473 473<br />

¯ooded rice soil. Soil Science Society <strong>of</strong> America Journal 57, 382±<br />

385.<br />

Watanabe, I., 1984. Anaerobic decomposition <strong>of</strong> organic matter <strong>in</strong><br />

¯ooded rice soils. In: IRRI (Ed.), Organic Matter and Rice.<br />

Institute International Rice Research, Los Banos, pp. 237±238.<br />

Yagi, K., 1997. Methane emissions from paddy ®elds. The Bullet<strong>in</strong> <strong>of</strong><br />

the National Institute <strong>of</strong> Agro-Environmental Sciences 14, 96±210.<br />

<strong>Yao</strong>, H., <strong>Conrad</strong>, R., Wassmann, R., Neue, H.U., 1998. E€ect <strong>of</strong><br />

soil characteristics on sequential reduction and <strong>methane</strong> <strong>production</strong><br />

<strong>in</strong> sixteen rice paddy soils from Ch<strong>in</strong>a, the Philipp<strong>in</strong>es,<br />

and Italy. Biogeochemistry, (<strong>in</strong> press).<br />

Zehnder, A.J.B., Stumm, W., 1988. Geochemistry and biogeochemistry<br />

<strong>of</strong> anaerobic habitats. In: Zehnder, A.J.B. (Ed.), Biology <strong>of</strong><br />

Anaerobic Microorganisms. Wiley, New York, pp. 1±38.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!