10.05.2016 Views

AMSV Newsletter 2015

AMSV Newsletter 2015

AMSV Newsletter 2015

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A 6 b 5 GS/s 4 Interleaved 3 b/Cycle SAR ADC<br />

In ISSCC <strong>2015</strong> & JSSC 2016<br />

Chi-Hang Chan, Yan Zhu, Sai-Weng Sin, Seng-Pan (Ben) U, and Rui Paulo Martins<br />

From Data Conversion and Signal Processing research line<br />

Motivation<br />

Architecture<br />

For 60GHz-band receivers and serial links applications.<br />

The SAR ADC is a well-known energy-efficient architecture<br />

while the speed of SAR ADCs can be further improved<br />

with the comparator interleaving, loop-unrolled<br />

asynchronous loop or the multi-bit per cycle.<br />

The Flash ADC is known as the fastest ADC architecture<br />

but power hungry. By adopting interpolation or calibration,<br />

outstanding energy efficiency can also be accomplished<br />

under advanced technology nodes.<br />

In a standalone flash or SAR architecture, speed and<br />

energy efficiency are still limited due to their inherent<br />

characteristics; therefore, they are often combined with<br />

time interleaving to achieve a breakthrough.<br />

Time interleaving can be a very effective way to increase<br />

the sampling rate of the ADC but it induces extra design<br />

complexity and conversion non-idealities especially with<br />

large numbers of interleaving channels.<br />

V in,P<br />

V in,N<br />

Input<br />

4<br />

En, chX<br />

4×<br />

Channels<br />

Clock<br />

Gen.<br />

Common<br />

Clk<br />

Bootstrap<br />

2<br />

V ref,N/V ref,P<br />

Decoder & BDCO<br />

3b/cycle SAR<br />

Segmentation Logic<br />

8<br />

DAC Array<br />

DAC Array<br />

DAC Array<br />

DAC Array<br />

Dummy Latch<br />

Dynamic<br />

Pre-amp.<br />

interpolation<br />

Latch<br />

Latch<br />

Latch<br />

Latch<br />

Latch<br />

Latch<br />

Latch<br />

Latch<br />

On-Chip Offset Calibration Cal Ctrl.<br />

6<br />

14<br />

6<br />

MUX<br />

Final Output<br />

Codes<br />

The power required for the digital gain and timing corrections<br />

is prohibitive at 6b resolution.<br />

Implementation<br />

Verification<br />

40<br />

30<br />

20<br />

10<br />

0<br />

SNDR/SFDR (dB)50<br />

43.5<br />

30.78<br />

SFDR<br />

SNDR @Nyquist<br />

43.12<br />

30.76<br />

42.95<br />

30.66<br />

1 2 3<br />

#Sample<br />

Sample #2, fs = 5 Gs/s<br />

45<br />

SNDR/SFDR (dB)<br />

40<br />

35<br />

30<br />

25<br />

SFDR<br />

SNDR<br />

20<br />

0 0.5 1.0 1.5 2.0 2.5 3.0<br />

Input Frequency (GHz)<br />

ISSCC’10[1] VLSI’13[5] VLSI’12[6] ISSCC’14[25] A-SSCC’14[26] This work<br />

Architecture Ti-pipelined B-S Flash Flash Ti-SAR Ti-SAR Ti-Multi-bit SAR<br />

Process 40nm 32nm SOI 40nm 28nm UTBB FDSOI 32nm SOI<br />

65nm<br />

Supply voltage (V) 1.1 0.85 1.1 1.0<br />

1.1 1.0 1.2<br />

10<br />

36<br />

5 6<br />

Sampling rate (GS/s) 2.2 5<br />

3<br />

Resolution (bit) 6 6<br />

Power (mW) 2.6 11<br />

SNDRminin Nyq. band (dB) 29.6 33.1<br />

Input cap.(fF) 200 72<br />

FoM@ Nyq.(fJ/conv.-step) 40.0 100.48<br />

Active area (mm 2 ) * 0.03 * 0.02 * 0.021<br />

Calibration<br />

Off-chip Off-chip Off-chip<br />

*without Calibration **with Calibration<br />

6 6<br />

6<br />

6<br />

8.5 32<br />

110 5.5 10.6<br />

30.9 33.8<br />

31.6 30.25 30.13<br />

135 100<br />

N/A<br />

31<br />

59.33 81<br />

98<br />

39 67.37<br />

* 0.009 ** 0.048 * 0.008 (**<br />

0.09)<br />

Off-chip On-chip<br />

On-chip

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!