16.02.2016 Views

from biogenic coalbed gas in Ohio drinking water wells near shale gas extraction

Univ_Cinn_Groundwater_Study_CC_Presentation_2016

Univ_Cinn_Groundwater_Study_CC_Presentation_2016

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Elevated methane levels<br />

<strong>from</strong> <strong>biogenic</strong> <strong>coalbed</strong> <strong>gas</strong> <strong>in</strong> <strong>Ohio</strong> dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong><br />

<strong>wells</strong> <strong>near</strong> <strong>shale</strong> <strong>gas</strong> <strong>extraction</strong><br />

Claire Botner, Amy Townsend-Small, and David Nash<br />

Department of Geology, University of C<strong>in</strong>c<strong>in</strong>nati<br />

Paul Feezel<br />

Carroll Concerned Citizens


Natural Gas<br />

• Recent glut <strong>in</strong> natural<br />

<strong>gas</strong> production <strong>in</strong> U.S.<br />

• Is natural <strong>gas</strong> a bridge<br />

between traditional<br />

fossil fuel sources and<br />

renewable energy?<br />

• Primary component is<br />

methane (CH 4 ) – a<br />

greenhouse <strong>gas</strong> 34x<br />

more powerful than CO 2<br />

warriorpublications.wordpress.com


Coal/Oil-To-Gas Transition<br />

United States Energy Information Adm<strong>in</strong>istration


Conventional vs. Unconventional Drill<strong>in</strong>g


How Frack<strong>in</strong>g<br />

Works<br />

1. Vertical drill<strong>in</strong>g ~3 km +<br />

horizontal drill<strong>in</strong>g up to 1<br />

km<br />

1. Detonation of explosives<br />

<strong>in</strong> well after drill<strong>in</strong>g<br />

1. A mix of <strong>water</strong>, sand,<br />

and chemicals are<br />

pumped at very high<br />

pressure <strong>in</strong>to the well to<br />

release <strong>gas</strong> <strong>from</strong> fissures<br />

Photo credit: Casey White


Potential Pathways of NG Contam<strong>in</strong>ation<br />

Darrah et al., 2014


Methane: Where can you f<strong>in</strong>d it?<br />

• Natural <strong>gas</strong>: ~95% CH 4<br />

• Two ma<strong>in</strong> forms of CH 4<br />

– Thermogenic (created <strong>from</strong> <strong>in</strong>tense heat and<br />

pressure of organic matter deep <strong>in</strong> the Earth;<br />

i.e. natural <strong>gas</strong>, oil)<br />

– Biological (created <strong>from</strong> microbial<br />

methanogensis; i.e. landfills, rum<strong>in</strong>ant<br />

animals, wetlands, rice paddy agriculture)<br />

• Acetate fermentation<br />

• Carbonate Reduction


Stable Isotope Primer<br />

• Isotope: Atom of a specific element that differs <strong>in</strong> the<br />

number of neutrons <strong>in</strong> the nucleus<br />

• Isotopes with an extra neutron have the same chemistry but<br />

are slightly heavier than other atoms of the same element<br />

• Stable isotopes of methane:<br />

• Hydrogen<br />

– Hydrogen-1 (99.98% of all H atoms)<br />

– Hydrogen-2 (deuterium or D) (0.01%)<br />

• Carbon<br />

– Carbon-12 (98.9%)<br />

– Carbon-13 (1.1%)<br />

Carbon-13<br />

Carbon-12


D (‰)<br />

C and H stable isotopes of CH 4<br />

! D (‰ )<br />

0<br />

- 50<br />

- 100<br />

- 150<br />

- 200<br />

- 250<br />

- 300<br />

- 350<br />

cows<br />

oil fi eld<br />

power plant<br />

tra! c<br />

manure biofuel<br />

landfi ll emissions<br />

landfi ll biofuel<br />

- 400<br />

- 70 - 60 - 50 - 40 - 30<br />

! 13 C (‰ )<br />

Townsend-Small et al., 2012


What is the problem?<br />

• Is hydraulic fractur<strong>in</strong>g contribut<strong>in</strong>g to methane found <strong>in</strong><br />

ground<strong>water</strong> resources of the Utica Shale?<br />

• Previous studies (Osborn et al., 2011; Jackson et al.,<br />

2013) found that natural <strong>gas</strong> was present <strong>in</strong><br />

ground<strong>water</strong> resources after the onset of frack<strong>in</strong>g <strong>in</strong> the<br />

Marcellus Shale<br />

– Utilization of stable carbon isotope analysis<br />

• Our study aims to measure methane and its sources <strong>in</strong><br />

ground<strong>water</strong> before, dur<strong>in</strong>g, and after the onset of<br />

frack<strong>in</strong>g


Osborn et al., 2011<br />

z<br />

Jackson et al., 2013


Frack<strong>in</strong>g and <strong>water</strong> resources<br />

• Each well takes several million gallons of <strong>water</strong> to<br />

“frack”<br />

– Additives<br />

• Sand<br />

• Acids<br />

• Biocides<br />

• Salts<br />

• Antifreeze<br />

• Corrosion <strong>in</strong>hibitors<br />

– Some specific chemicals are proprietary and drillers<br />

need not disclose their formulas, although many do<br />

voluntarily


Frack<strong>in</strong>g and <strong>water</strong> resources<br />

• After fractur<strong>in</strong>g, <strong>water</strong> is returned to the<br />

surface with additional solutes <strong>from</strong><br />

<strong>in</strong>teractions with the <strong>shale</strong>s<br />

– Salts<br />

– Methane<br />

– Hydrocarbons (benzene, etc.)<br />

– Radioactive materials<br />

• Disposal or reuse


youtube.com<br />

Highly viewed YouTube<br />

video show<strong>in</strong>g dr<strong>in</strong>k<strong>in</strong>g<br />

<strong>water</strong> with high levels of<br />

methane


Study<br />

Area<br />

Permitted<br />

Drill<strong>in</strong>g<br />

Drilled<br />

Produc<strong>in</strong>g


Methods<br />

• Teamed with Carroll<br />

Concerned Citizens to<br />

recruit participants<br />

• Private ground<strong>water</strong> well<br />

sampl<strong>in</strong>g <strong>in</strong> Carroll<br />

County, <strong>Ohio</strong> and<br />

surround<strong>in</strong>g area<br />

– 23 <strong>wells</strong> sampled <strong>from</strong> 2012<br />

to Feb. 2015 three to four<br />

times a year<br />

• 191 samples total<br />

– Larger campaign <strong>in</strong> May<br />

2014


What was measured?<br />

• CH 4 Concentration<br />

• Stable isotope<br />

composition of<br />

methane<br />

– δ 13 C and δD<br />

• pH and Conductivity<br />

– Indicators of frack<strong>in</strong>g<br />

fluid contam<strong>in</strong>ation<br />

• Δ 14 C analysis


University of<br />

C<strong>in</strong>c<strong>in</strong>nati’s Stable<br />

Isotope Facility<br />

Carbon and hydrogen<br />

isotope analysis performed<br />

with an isotope ratio mass<br />

spectrometer


pH<br />

Results<br />

pH vs. Conductivity of Ground<strong>water</strong> Wells <strong>in</strong> Eastern <strong>Ohio</strong><br />

10<br />

9<br />

8<br />

Distance to <strong>near</strong>est active<br />

<strong>gas</strong> well<br />

With<strong>in</strong> 1 km<br />

With<strong>in</strong> 1-2 km<br />

7<br />

With<strong>in</strong> 2-5 km<br />

With<strong>in</strong> 5-10 km<br />

> 10 km<br />

6<br />

5<br />

4<br />

100 1000 10000<br />

Conductivity (μS)


Numer of Wells<br />

60<br />

Dissolved CH 4 Concentration <strong>in</strong> Participant Wells, May 2014<br />

50<br />

48<br />

• Methane data histogram<br />

Total Number of Wells<br />

Sampled: 96<br />

40<br />

30<br />

20<br />

15<br />

10<br />

8<br />

7<br />

10<br />

3<br />

4<br />

0<br />

1<br />

Below 1 μg/L 1 - 10 μg/L 10 - 100 μg/L .1 - 1 mg/L 1 - 5 mg/L 5 - 10 mg/L Above 10 mg/L<br />

Concentration of Dissolved CH 4


Dissolved CH 4 Concentration (mg/L)<br />

Time Series of CH 4 Levels <strong>in</strong> Ground<strong>water</strong> Well “C”<br />

0.06<br />

Ground<strong>water</strong> Well C<br />

0.05<br />

0.04<br />

February 2014:<br />

Natural <strong>gas</strong><br />

well drilled<br />

with<strong>in</strong> 1 km of<br />

<strong>water</strong> well<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

Dec-12 Apr-13 Aug-13 Dec-13 Apr-14 Aug-14 Dec-14<br />

Date


Dissolved Methane Concentration (mg/L CH 4 )<br />

Dissolved CH 4 Concentration vs. δ 13 C CH 4 of Ground<strong>water</strong> Wells<br />

Biogenic<br />

Thermogenic<br />

30.0<br />

Distance to <strong>near</strong>est<br />

active <strong>gas</strong> well<br />

25.0<br />

20.0<br />

Isotope figures<br />

Jackson et<br />

al. (2013)<br />

Ground<strong>water</strong><br />

Samples<br />

0 - 1 km 1 - 2 km<br />

2 - 5 km 5 - 10 km<br />

> 10 km<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

-95.0 -90.0 -85.0 -80.0 -75.0 -70.0 -65.0 -60.0 -55.0 -50.0 -45.0 -40.0 -35.0 -30.0<br />

δ 13 C CH 4 (‰ VPDB)


δ 13 C-CH 4 (‰ VDPD)<br />

δ 13 C-CH 4 vs. δ 2 H-CH 4 of Ground<strong>water</strong> Samples and Previously Reported<br />

Appalachian Natural Gases<br />

-90.0<br />

Dissolved CH 4<br />

-80.0<br />

< 1 mg/L<br />

1 - 5 mg/L<br />

5 - 10 mg/L<br />

-70.0<br />

> 10 mg/L<br />

NG Appalachia (Jenden et al. 1993)<br />

-60.0<br />

CBM Appalachia (Laughrey and<br />

Baldassare 1998)<br />

-50.0<br />

-40.0<br />

-30.0<br />

-350 -300 -250 -200 -150 -100 -50 0<br />

δ 2 H-CH 4 (‰ VSMOW)


odnr.gov


Radiocarbon Primer<br />

• Sun 14 N to 14 C 14 CO 2 Plants Animals<br />

• “Modern” carbon: conta<strong>in</strong>s measureable 14 C<br />

• Positive Δ 14 C values<br />

• Methane orig<strong>in</strong>at<strong>in</strong>g <strong>from</strong> bacteria<br />

• “Dead” carbon: undetectable levels of 14 C<br />

• Reach<strong>in</strong>g close to -1000 ‰<br />

• Coalbed CH 4<br />

Carbo<br />

n


D 14 C - CH 4 (‰)<br />

Δ 14 C vs. δ 13 C of various CH 4 sources<br />

200<br />

0<br />

-200<br />

-400<br />

Natural <strong>gas</strong><br />

Anaerobic organic matter<br />

respiration<br />

Carbonate reduction <strong>in</strong> coal<br />

beds<br />

Ground<strong>water</strong> Samples<br />

-600<br />

-800<br />

-1000<br />

-1200<br />

-80 -70 -60 -50 -40 -30 -20<br />

13 C - CH 4 (‰)<br />

Figure credit: Amy<br />

Townsend-Small


Conclusions<br />

• Some <strong>water</strong> <strong>wells</strong> conta<strong>in</strong> very high levels of<br />

CH 4<br />

– Explosive range ~10 – 24 mg/L CH 4<br />

• δ 13 C values <strong>in</strong>dicate that CH 4 found <strong>in</strong><br />

ground<strong>water</strong> has biological orig<strong>in</strong>s<br />

• Ground<strong>water</strong> contam<strong>in</strong>ation <strong>from</strong> frack<strong>in</strong>g has<br />

happened, but it isn’t the norm<br />

• Normal pH and conductivity values show that<br />

frack<strong>in</strong>g fluid is likely not present <strong>in</strong> sampled<br />

ground<strong>water</strong> resources


Conclusions & Future Work<br />

• Δ 14 C analysis of four select <strong>wells</strong> <strong>in</strong>dicates<br />

high levels of CH 4 can be attributed to<br />

<strong>biogenic</strong> <strong>coalbed</strong> <strong>gas</strong>es <strong>in</strong> at least three of<br />

the <strong>wells</strong><br />

• Further characterization of <strong>coalbed</strong> <strong>gas</strong> <strong>in</strong><br />

eastern <strong>Ohio</strong> ground<strong>water</strong><br />

• Long-term monitor<strong>in</strong>g necessary


Acknowledgements<br />

• Dr. Amy Townsend-Small<br />

• Dr. David Nash<br />

• Paul Feezel, Carroll Concerned Citizens<br />

• Krist<strong>in</strong>e Jimenez<br />

• Deer Creek Foundation<br />

• Alice Weston Foundation


Questions?


Mart<strong>in</strong>i et al. 1998

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!