Centrifugal Pumps Design and Application 2nd ed - Val S. Lobanoff, Robert R. Ross (Butterworth-Heinemann, 1992)

24.01.2016 Views

Index 575 Shaft design, 333-343 inducers, 189 deflection, 340-342 NPSHR—influence on, 90 dynamics, 203-204 stable operating window, 90-92 failure, 483-484 System analysis, 3-10 fatigue analysis, 336-339 differential head, 3 key stress, 343 liquid characteristics, 7 torsional stress, 334 NPSHA, 4 Slurry pumps, 226-245 pump construction, 8 abrasivity, 226, 232-234 pump speed, 6 bearings, 237 curve shape, 4 casing design, 234-236 specific gravity, 7 drivers, 240, 243 viscosity, 7 erosion wear rate, 226-227 impeller design, 236 materials, 228, 230-234 performance-slurry corrections, T 244-245 pump types, 232-233 TAEH (total available exhaust sealing, 237-238, 240 head), 249 selection factors, 228 Theoretical head, 179-180 specific gravity, 228-229 Torsional analysis, 462-469 specific speed range, 232 Torsional stress, 334 sump design, 240 TREH (total required exhaust wear plate, 236-237 head), 249 Specific gravity Two-phase flow, 271 horsepower—influence on, 8 pressure—influence on, 7 slurry mixture, 228-229 Specific speed U definition, 11 efficiency—influence on, Unbalance, 426, 457-461 15-18 high speed pumps, 181-183 hydraulic turbines, 249-250 metric conversion, 12 V nomograph, 14-16 slurry pumps, 232 Vanes vertical pumps, 113-114 area between, 39, 41 Static head, 179-180 discharge angle, 29-30, 41-42 Submersible pumps, 115-116 hydraulic turbine, 257 Suction specific speed inlet angle, 37 definition, 11-12 layout, 37-39 high speed pumps, 186 number, 29-30, 42, 236

576 Centrifugal Pumps: Design and Application Vanes (continued) critical speed evaluation, 451 pump out, 236 critical speed map, 443-445 thickness, 40, 236 flashing, 430-432 Velocity head, 179-180 impact tests, 472-477 Vertical pumps, 113-138 instabilities, 440-441, 484-486 barrel-mounted, 120-122, 128 liquid noise, 423 boiler feed, 130 measurement techniques, bowl assembly, 131-133 471-474 can-mounted, 120-122, 128 mechanical noise, 423 column assembly, 134-135 misalignment, 426-427 condensate, 129 piping, 428 condensor cooling, 126 pulsations, 150, 433-436, cooling tower, 127 481-483 cryogenic, 130-131 rotor stability analysis, flood control, 127 461-462 head assembly, 135-136 heater drain, 129 rotor dynamic analysis, 441-456 loading, 131 seal effects, 448-451 pipeline booster, 131 shaft failure, 483-484 process, 129 torsional analysis, 462-469 specific speed range, 113 transients, 429 submersible motor drive, troubleshooting, 474-491 115-116 turbulence, 432-433 transfer, 127-128 unbalance, 426, 457-461 vibration, 136-138 vertical pumps, 136-138 well pumps, 114, 122-124 vibration levels, 457, 459-461 wet pit pumps, 116, 125 Vibration and noise acoustic frequency, 150-155 ^^L NPSHR-mfluence on, 103, acoustic resonance, 436-440 *Vi acoustic velocity of liquids, oil, 526-527, 536 486-491 performance—influence on, 7 bearing housing resonance, Volute 474-477 area, 33, 184 bearing stiffness and damping, chipping, 143-144 445-448 circular, 56 bearings, 428-429 collector, 192-194 blade passing frequency, concentric, 235 150-155, 474-475 concentric—semi, 235 causes of vibration, 424-441 cutwater diameter, 36 cavitation, 430-432 design, 50-64 critical speed analysis, diffusion angle, 50 442-443, 477-481 diffusion area ratio, 180

Index 575<br />

Shaft design, 333-343 inducers, 189<br />

deflection, 340-342 NPSHR—influence on, 90<br />

dynamics, 203-204 stable operating window, 90-92<br />

failure, 483-484 System analysis, 3-10<br />

fatigue analysis, 336-339 differential head, 3<br />

key stress, 343 liquid characteristics, 7<br />

torsional stress, 334 NPSHA, 4<br />

Slurry pumps, 226-245 pump construction, 8<br />

abrasivity, 226, 232-234 pump spe<strong>ed</strong>, 6<br />

bearings, 237 curve shape, 4<br />

casing design, 234-236 specific gravity, 7<br />

drivers, 240, 243 viscosity, 7<br />

erosion wear rate, 226-227<br />

impeller design, 236<br />

materials, 228, 230-234<br />

performance-slurry corrections, T<br />

244-245<br />

pump types, 232-233<br />

TAEH (total available exhaust<br />

sealing, 237-238, 240 head), 249<br />

selection factors, 228 Theoretical head, 179-180<br />

specific gravity, 228-229 Torsional analysis, 462-469<br />

specific spe<strong>ed</strong> range, 232 Torsional stress, 334<br />

sump design, 240<br />

TREH (total requir<strong>ed</strong> exhaust<br />

wear plate, 236-237 head), 249<br />

Specific gravity Two-phase flow, 271<br />

horsepower—influence on, 8<br />

pressure—influence on, 7<br />

slurry mixture, 228-229<br />

Specific spe<strong>ed</strong><br />

U<br />

definition, 11<br />

efficiency—influence on, Unbalance, 426, 457-461<br />

15-18<br />

high spe<strong>ed</strong> pumps, 181-183<br />

hydraulic turbines, 249-250<br />

metric conversion, 12<br />

V<br />

nomograph, 14-16<br />

slurry pumps, 232<br />

Vanes<br />

vertical pumps, 113-114 area between, 39, 41<br />

Static head, 179-180 discharge angle, 29-30, 41-42<br />

Submersible pumps, 115-116 hydraulic turbine, 257<br />

Suction specific spe<strong>ed</strong> inlet angle, 37<br />

definition, 11-12 layout, 37-39<br />

high spe<strong>ed</strong> pumps, 186 number, 29-30, 42, 236

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!