07.12.2012 Views

Background Paper on Sources and Occurrence of Bisphenol A ...

Background Paper on Sources and Occurrence of Bisphenol A ...

Background Paper on Sources and Occurrence of Bisphenol A ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Food <strong>and</strong> Agriculture<br />

Organizati<strong>on</strong> <strong>of</strong> the<br />

United Nati<strong>on</strong>s<br />

<str<strong>on</strong>g>Background</str<strong>on</strong>g> <str<strong>on</strong>g>Paper</str<strong>on</strong>g> <strong>on</strong><br />

WHO/HSE/FOS/11.1<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> <strong>Bisphenol</strong> A Relevant for<br />

Exposure <strong>of</strong> C<strong>on</strong>sumers<br />

FAO/WHO Expert Meeting <strong>on</strong> <strong>Bisphenol</strong> A (BPA)<br />

Ottawa, Canada, 2–5 November 2010<br />

Prepared by<br />

Dr Allan B. Bailey<br />

United States Food <strong>and</strong> Drug Administrati<strong>on</strong>,<br />

College Park, Maryl<strong>and</strong>, USA<br />

<strong>and</strong><br />

Dr Eddo J. Hoekstra<br />

Joint Research Centre <strong>of</strong> the European Commissi<strong>on</strong>,<br />

Ispra, Italy<br />

Note to readers:<br />

The first draft <strong>of</strong> this paper was prepared by the named authors, <strong>and</strong> the paper<br />

was then revised following discussi<strong>on</strong>s at the November 2010 meeting.


© World Health Organizati<strong>on</strong> 2011<br />

All rights reserved. Publicati<strong>on</strong>s <strong>of</strong> the World Health Organizati<strong>on</strong> are available <strong>on</strong> the WHO web site<br />

(www.who.int) or can be purchased from WHO Press, World Health Organizati<strong>on</strong>, 20 Avenue Appia,<br />

1211 Geneva 27, Switzerl<strong>and</strong> (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail:<br />

bookorders@who.int). Requests for permissi<strong>on</strong> to reproduce or translate WHO publicati<strong>on</strong>s – whether<br />

for sale or for n<strong>on</strong>commercial distributi<strong>on</strong> – should be addressed to WHO Press through the WHO web<br />

site (http://www.who.int/about/licensing/copyright_form/en/index.html).<br />

The designati<strong>on</strong>s employed <strong>and</strong> the presentati<strong>on</strong> <strong>of</strong> the material in this publicati<strong>on</strong> do not imply the<br />

expressi<strong>on</strong> <strong>of</strong> any opini<strong>on</strong> whatsoever <strong>on</strong> the part <strong>of</strong> the World Health Organizati<strong>on</strong> c<strong>on</strong>cerning the legal<br />

status <strong>of</strong> any country, territory, city or area or <strong>of</strong> its authorities, or c<strong>on</strong>cerning the delimitati<strong>on</strong> <strong>of</strong> its<br />

fr<strong>on</strong>tiers or boundaries. Dotted lines <strong>on</strong> maps represent approximate border lines for which there may<br />

not yet be full agreement.<br />

The menti<strong>on</strong> <strong>of</strong> specific companies or <strong>of</strong> certain manufacturers’ products does not imply that they are<br />

endorsed or recommended by the World Health Organizati<strong>on</strong> in preference to others <strong>of</strong> a similar nature<br />

that are not menti<strong>on</strong>ed. Errors <strong>and</strong> omissi<strong>on</strong>s excepted, the names <strong>of</strong> proprietary products are<br />

distinguished by initial capital letters.<br />

All reas<strong>on</strong>able precauti<strong>on</strong>s have been taken by the World Health Organizati<strong>on</strong> to verify the informati<strong>on</strong><br />

c<strong>on</strong>tained in this publicati<strong>on</strong>. However, the published material is being distributed without warranty <strong>of</strong><br />

any kind, either expressed or implied. The resp<strong>on</strong>sibility for the interpretati<strong>on</strong> <strong>and</strong> use <strong>of</strong> the material<br />

lies with the reader. In no event shall the World Health Organizati<strong>on</strong> be liable for damages arising from<br />

its use.<br />

1


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

CONTENTS<br />

1. <strong>Sources</strong> <strong>and</strong> uses <strong>of</strong> BPA..................................................................................................................................2<br />

1.1 Polycarb<strong>on</strong>ate resins ..............................................................................................................................3<br />

1.2 Epoxy resins ..........................................................................................................................................3<br />

1.2.1 Surface coatings..........................................................................................................................4<br />

1.2.2 Food <strong>and</strong> beverage cans..............................................................................................................4<br />

1.3 Polyvinyl chloride <strong>and</strong> thermal paper....................................................................................................5<br />

1.4 Others (including flame retardants) .......................................................................................................5<br />

2. Levels <strong>and</strong> patterns from oral exposure............................................................................................................6<br />

2.1 Food surveys (by age group) .................................................................................................................6<br />

2.1.1 Infant formula <strong>and</strong> breast milk (age 0–6 m<strong>on</strong>ths) .......................................................................6<br />

2.1.2 Baby <strong>and</strong> toddler food (age 6–12 m<strong>on</strong>ths)..................................................................................9<br />

2.1.3 Food for young children (age 1–3 years) ..................................................................................10<br />

2.1.4 Adult food (age >1 year)...........................................................................................................11<br />

2.1.5 Tap water <strong>and</strong> mineral water.....................................................................................................17<br />

2.2 Food c<strong>on</strong>tact material testing...............................................................................................................17<br />

2.2.1 Polycarb<strong>on</strong>ate............................................................................................................................19<br />

2.2.2 Epoxy resins..............................................................................................................................46<br />

2.2.3 <str<strong>on</strong>g>Paper</str<strong>on</strong>g> <strong>and</strong> paperboard................................................................................................................48<br />

2.2.4 Polyvinyl chloride.....................................................................................................................51<br />

2.3 Other sources <strong>of</strong> oral exposure ............................................................................................................52<br />

2.3.1 Dental materials ........................................................................................................................52<br />

2.3.2 Other oral exposure sources for children ..................................................................................54<br />

3. Levels <strong>and</strong> patterns from other exposure routes .............................................................................................56<br />

3.1 Air........................................................................................................................................................56<br />

3.2 Dermal c<strong>on</strong>tact.....................................................................................................................................57<br />

4. Effects <strong>of</strong> processing ......................................................................................................................................58<br />

5. C<strong>on</strong>clusi<strong>on</strong>s <strong>and</strong> recommendati<strong>on</strong>s ................................................................................................................59<br />

References .............................................................................................................................................................62<br />

The Expert Meeting c<strong>on</strong>sidered bisphenol A (BPA) c<strong>on</strong>centrati<strong>on</strong>s in food from food surveys <strong>and</strong> from<br />

migrati<strong>on</strong> studies from food c<strong>on</strong>tact materials. Free BPA levels were no more than 11 µg/l in canned liquid<br />

infant formula as c<strong>on</strong>sumed <strong>and</strong> no more than 1 µg/l in powdered infant formula as c<strong>on</strong>sumed. In toddler food,<br />

BPA c<strong>on</strong>centrati<strong>on</strong>s were approximately 1 µg/kg <strong>on</strong> average. Total BPA levels were below 8 µg/l in breast milk.<br />

For adult foods, 30 studies representing about 1000 samples from several countries were available, <strong>and</strong> the data<br />

were segregated according to food type. The occurrence data that were deemed to be valid for use in the<br />

exposure assessment were tabulated. For adult foods, average c<strong>on</strong>centrati<strong>on</strong>s ranged from 10 to 70 µg/kg in<br />

solid canned food <strong>and</strong> from 1 to 23 µg/l in liquid canned food. For the migrati<strong>on</strong> <strong>of</strong> BPA from polycarb<strong>on</strong>ate,<br />

worst-case realistic uses were defined, <strong>and</strong> a maximum migrati<strong>on</strong> <strong>of</strong> 15 µg/l was selected for use in the exposure<br />

assessment.<br />

1. SOURCES AND USES OF BPA<br />

<strong>Bisphenol</strong> A (BPA) is a m<strong>on</strong>omer used primarily in the producti<strong>on</strong> <strong>of</strong> polycarb<strong>on</strong>ate (PC)<br />

resins <strong>and</strong> epoxy resins, with “other” uses that include flame retardants, unsaturated polyester<br />

resins, polysulf<strong>on</strong>e (PS) resins <strong>and</strong> polyetherimides (PEIs) (CEH, 2010). The world<br />

c<strong>on</strong>sumpti<strong>on</strong> <strong>of</strong> BPA in 2009 by end use was as follows: PC resins, 2768 kt; epoxy resins,<br />

1093 kt; <strong>and</strong> “other”, 180 kt. Thus, over 95% <strong>of</strong> the world c<strong>on</strong>sumpti<strong>on</strong> <strong>of</strong> BPA in 2009 was<br />

for PC resins <strong>and</strong> epoxy resins.<br />

The major world producers <strong>of</strong> BPA as <strong>of</strong> mid-2010 included Bayer (23% share in the<br />

Americas, Europe <strong>and</strong> Asia), Mitsui <strong>and</strong> Nan Ya Plastics (9% <strong>and</strong> 8% shares, respectively, in<br />

2


3<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Asia) <strong>and</strong> SABIC, Dow <strong>and</strong> Hexi<strong>on</strong> (16.2%, 7.3% <strong>and</strong> 5.6% shares, respectively, in the<br />

Americas <strong>and</strong> Europe).<br />

Two grades <strong>of</strong> BPA are sold in the marketplace. PC grade c<strong>on</strong>tains a maximum <strong>of</strong> 0.2% 2,4isopropylidenediphenol,<br />

whereas epoxy grade may c<strong>on</strong>tain up to 5–7% <strong>of</strong> the 2,4-isomer.<br />

However, in commercial practice, the epoxy grade is reported to be the same purity as the PC<br />

grade. Producers in Japan <strong>and</strong> Western Europe <strong>and</strong> some producers in the United States <strong>of</strong><br />

America (USA) use PC-grade BPA to manufacture epoxy resins.<br />

1.1 Polycarb<strong>on</strong>ate resins<br />

The largest market for BPA is PC resins, accounting for about 75% <strong>of</strong> the dem<strong>and</strong> in 2009 in<br />

both the USA <strong>and</strong> Western Europe (CEH, 2008). The world c<strong>on</strong>sumpti<strong>on</strong> <strong>of</strong> PC resins in<br />

2007 by end use was as follows: electrical/electr<strong>on</strong>ic, 617 kt; optical media, 500.5 kt; glazing<br />

<strong>and</strong> sheet, 469 kt; transportati<strong>on</strong>, 322 kt; <strong>and</strong> “other”, including packaging, 426.5 kt.<br />

The major world producers <strong>of</strong> PC resins in 2008 were as follows (% <strong>of</strong> world capacity):<br />

Bayer (30%), SABIC (27%), Teijin (11%), Dow Chemical (9%) <strong>and</strong> Mitsubishi Companies<br />

(which includes Mitsubishi Chemical, Mitsubishi Gas Chemical <strong>and</strong> Mitsubishi Engineering<br />

Plastics; 8%).<br />

The c<strong>on</strong>sumpti<strong>on</strong> by end use for 2009 in the USA was as follows (% share): optical media<br />

(19%), building <strong>and</strong> c<strong>on</strong>structi<strong>on</strong> (18%), transportati<strong>on</strong> (16%), appliances <strong>and</strong><br />

computers/business equipment (15%), medical (10%) <strong>and</strong> “other”, including packaging<br />

(22%).<br />

In the USA, packaging applicati<strong>on</strong>s c<strong>on</strong>sumed 21 kt <strong>of</strong> PC in 2007 (4% share), which is<br />

projected to increase to 25 kt in 2012. Large returnable, refillable water bottles (primarily 19litre,<br />

but also 11- <strong>and</strong> 23-litre) currently account for the majority <strong>of</strong> PC used in packaging<br />

applicati<strong>on</strong>s, c<strong>on</strong>suming 10 kt <strong>of</strong> PC per year. Additi<strong>on</strong>al products included in this category<br />

are food service items such as sports bottles, baby bottles, pitchers, tumblers, home food<br />

c<strong>on</strong>tainers <strong>and</strong> flatware.<br />

1.2 Epoxy resins<br />

The sec<strong>on</strong>d largest end use for BPA is epoxy resins, accounting for about 22% <strong>of</strong> dem<strong>and</strong> in<br />

2009 in both the USA <strong>and</strong> Western Europe. Epoxy resins c<strong>on</strong>tain <strong>on</strong>e or more epoxide (or<br />

oxirane) groups that are further cured by reacti<strong>on</strong> with a curing agent or hardener, typically<br />

an amine (CEH, 2007a).<br />

Epoxy resins based <strong>on</strong> BPA <strong>and</strong> epichlorohydrin, also known as c<strong>on</strong>venti<strong>on</strong>al or BPA<br />

diglycidyl ether (referred to as BADGE or DGEBPA) epoxy resins, account for 90–95% <strong>of</strong><br />

producti<strong>on</strong> in the USA. Although c<strong>on</strong>venti<strong>on</strong>al epoxies comprise the majority <strong>of</strong> epoxy resin<br />

c<strong>on</strong>sumpti<strong>on</strong>, four other types <strong>of</strong> basic epoxies are <strong>of</strong> commercial importance: brominated<br />

resins, novolac resins, cycloaliphatic resins <strong>and</strong> phenoxy resins.<br />

By varying the ratio <strong>of</strong> epichlorohydrin to BPA, as well as the operating c<strong>on</strong>diti<strong>on</strong>s,<br />

c<strong>on</strong>venti<strong>on</strong>al epoxy resins <strong>of</strong> low, medium <strong>and</strong> high molecular weight can be produced, with<br />

molecular weights ranging from as low as 350 (liquid epoxies) to as high as 8000 (solid<br />

epoxies). Liquid resins c<strong>on</strong>sist <strong>of</strong> 80–90% BADGE, with the remaining 10–20% composed <strong>of</strong>


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

higher molecular weight oligomers. The comm<strong>on</strong> process for the manufacture <strong>of</strong><br />

(c<strong>on</strong>venti<strong>on</strong>al) solid epoxy resin is the so-called advancement or fusi<strong>on</strong> process. In the<br />

presence <strong>of</strong> a catalyst, liquid epoxy is reacted with BPA <strong>and</strong> is “advanced” to a higher<br />

molecular weight resin.<br />

The c<strong>on</strong>sumpti<strong>on</strong> <strong>of</strong> epoxy coatings by end use for 2007 in the USA was as follows (%<br />

share): protective (or surface) coatings (48%), b<strong>on</strong>ding <strong>and</strong> adhesives (14%), flooring, paving<br />

<strong>and</strong> c<strong>on</strong>structi<strong>on</strong> (8%), composites (9%), electrical <strong>and</strong> electr<strong>on</strong>ic laminates (6%), embedding<br />

<strong>and</strong> tooling (4%), vinyl ester resins (4%) <strong>and</strong> other (16%).<br />

1.2.1 Surface coatings<br />

Surface coatings accounted for about 50% <strong>of</strong> all epoxy resin c<strong>on</strong>sumpti<strong>on</strong> in 2009 in the<br />

USA. The c<strong>on</strong>sumpti<strong>on</strong> <strong>of</strong> epoxy surface coatings by end use in 2006 in the USA was as<br />

follows (% share): powder (25%), c<strong>on</strong>tainers <strong>and</strong> closures (14%), industrial maintenance <strong>and</strong><br />

marine finishes (29%), automotive primers (13%), machinery <strong>and</strong> equipment (4%) <strong>and</strong><br />

furniture <strong>and</strong> appliances (17%).<br />

Solid BADGE low molecular weight resins are the most comm<strong>on</strong> type <strong>of</strong> epoxy resin used in<br />

surface coatings. The general types <strong>of</strong> epoxy surface coatings include solvent-borne,<br />

waterborne, powder coatings, radiati<strong>on</strong>-curable <strong>and</strong> epoxy esters. Solvent-borne coatings are<br />

typically used for food can interiors, whereas waterborne coatings are used in beverage can<br />

interiors (CEH, 2007b).<br />

Solvent-borne coatings, either <strong>on</strong>e-comp<strong>on</strong>ent systems that are heat cured or two-comp<strong>on</strong>ent<br />

systems that cure at ambient temperature, account for about 40% <strong>of</strong> epoxy coating dem<strong>and</strong> in<br />

the USA. Solvent c<strong>on</strong>centrati<strong>on</strong> is typically more than 40% by volume. One-comp<strong>on</strong>ent<br />

systems c<strong>on</strong>sist <strong>of</strong> a combinati<strong>on</strong> <strong>of</strong> epoxy resin <strong>and</strong> co-reactant that can crosslink at elevated<br />

(baking) temperatures. These systems are used for food c<strong>on</strong>tainer interiors <strong>and</strong> coil <strong>and</strong> wire<br />

coatings. Two-comp<strong>on</strong>ent systems are composed <strong>of</strong> a curing agent <strong>and</strong> an epoxy resin that<br />

are mixed prior to use. Two-comp<strong>on</strong>ent systems are used in maintenance <strong>and</strong> marine<br />

coatings, tank <strong>and</strong> pipe coatings, <strong>and</strong> aircraft primers.<br />

Waterborne coatings, which account for 25–30% <strong>of</strong> epoxy coating dem<strong>and</strong> in the USA, are<br />

mostly used in beer <strong>and</strong> beverage can interior coatings <strong>and</strong> automotive electrodepositi<strong>on</strong><br />

primers. Waterborne epoxy systems c<strong>on</strong>tain 15–20 solids (volume per volume), a water<br />

c<strong>on</strong>tent <strong>of</strong> 75–85% <strong>and</strong> an organic c<strong>on</strong>tent <strong>of</strong> 1–5%.<br />

Usually, basic resin producers sell liquid epoxy resin to large coatings producers such as<br />

PPG, Valspar, BASF <strong>and</strong> ICI, which advance the resin to make it suitable for coatings.<br />

1.2.2 Food <strong>and</strong> beverage cans<br />

Both solvent-borne <strong>and</strong> waterborne epoxies are applied by spraying into the interiors <strong>of</strong> food<br />

<strong>and</strong> beverage cans. Nearly all beverage cans produced today are <strong>of</strong> the two-piece aluminium<br />

type, coated with waterborne epoxies <strong>on</strong> the interior <strong>and</strong>/or can end. Coating weights <strong>on</strong> 355<br />

ml beer cans are in the range <strong>of</strong> 100–120 mg, whereas s<strong>of</strong>t drink cans c<strong>on</strong>tain 150–170 mg.<br />

S<strong>of</strong>t drink cans require higher coating weights than beer cans because <strong>of</strong> the higher<br />

corrosiveness <strong>of</strong> the liquid. Thin coatings are also applied to the can exteriors for protecti<strong>on</strong><br />

<strong>and</strong> decorati<strong>on</strong>.<br />

4


5<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Most food cans produced today are <strong>of</strong> the three-piece metal type. Epoxy-phenolics, with 40–<br />

50% <strong>of</strong> the market, are used mainly as sheet or spray coatings for the interiors, bottoms <strong>and</strong><br />

filler ends <strong>of</strong> cans c<strong>on</strong>taining potentially corrosive substances, such as vegetables, pie fillings<br />

<strong>and</strong> seafood.<br />

According to CEH (2007b), the major supplier <strong>of</strong> interior beverage can coatings is ICI-<br />

Glidden, which has 75–80% <strong>of</strong> the market. Akzo Nobel acquired ICI in early 2008. The other<br />

major supplier is Valspar. The major producers <strong>of</strong> coatings for food cans in the USA are PPG<br />

<strong>and</strong> Valspar.<br />

1.3 Polyvinyl chloride <strong>and</strong> thermal paper<br />

According to CEH (2010), other uses <strong>of</strong> BPA in Japan include the producti<strong>on</strong> <strong>of</strong> flame<br />

retardants, t<strong>on</strong>er base resins, thermal paper developers, phenoxy resins, unsaturated polyester<br />

resins, polyester elastomers, antioxidants <strong>and</strong> polyvinyl chloride (PVC) stabilizers. Am<strong>on</strong>g<br />

these applicati<strong>on</strong>s, flame retardants, namely tetrabromobisphenol A (TBBPA), c<strong>on</strong>sumed<br />

most <strong>of</strong> the volume categorized as “other”. No specific menti<strong>on</strong> <strong>of</strong> the use <strong>of</strong> BPA in thermal<br />

papers or PVC in the USA or Europe was c<strong>on</strong>tained in CEH (2010).<br />

BPA is also reportedly used as an antioxidant in plasticizers, primarily for PVC, <strong>and</strong> as a<br />

polymerizati<strong>on</strong> inhibitor in PVC. However, the literature c<strong>on</strong>tains very little useful<br />

informati<strong>on</strong> <strong>on</strong> actual use in food c<strong>on</strong>tact articles.<br />

Thermal printing is a comm<strong>on</strong>ly employed printing method typically used in point <strong>of</strong> sale<br />

receipts, such as fast food restaurants, retailers, grocery stores, gas stati<strong>on</strong>s, post <strong>of</strong>fices <strong>and</strong><br />

automated teller machines. In the direct thermal printing process, a printed image is produced<br />

by selectively heating specific areas <strong>of</strong> the coated thermal paper as it is passed over a thermal<br />

print head. The coating undergoes a colour change in the areas where it is heated, producing<br />

an image. Thermal paper c<strong>on</strong>sists <strong>of</strong> a very smooth paper with a thin coating <strong>of</strong> a leuco dye<br />

<strong>and</strong> a phenol developer such as BPA. This leuco dye, a dye whose molecules can acquire two<br />

forms, changes colour under the applicati<strong>on</strong> <strong>of</strong> heat, pressure or laser light <strong>and</strong> is then able to<br />

reflect light (Biedermann, Tschudin & Grob, 2010; Mendum et al., 2010).<br />

1.4 Others (including flame retardants)<br />

Approximately 5% <strong>of</strong> worldwide BPA c<strong>on</strong>sumpti<strong>on</strong> went into various specialty applicati<strong>on</strong>s.<br />

BPA is used in the producti<strong>on</strong> <strong>of</strong> two flame retardants, TBBPA <strong>and</strong> BPA bis(diphenyl<br />

phosphate) (CEH, 2010).<br />

TBBPA is used to impart flame resistance to epoxy resins used in printed circuit boards, PC,<br />

acryl<strong>on</strong>itrile-butadiene-styrene (ABS) resins <strong>and</strong>, to a lesser extent, unsaturated polyester<br />

resins <strong>and</strong> other engineering thermoplastics. TBBPA is also used as an intermediate in the<br />

producti<strong>on</strong> <strong>of</strong> other flame retardants, such as brominated epoxy oligomers <strong>and</strong> brominated<br />

carb<strong>on</strong>ate oligomers. BPA bis(diphenyl phosphate) is used as a flame retardant in<br />

polyphenylene oxide <strong>and</strong> PC/ABS blends.<br />

BPA is also used in the producti<strong>on</strong> <strong>of</strong> polyarylates <strong>and</strong> PEIs. PEIs compete with engineering<br />

resins, such as PS <strong>and</strong> PC resins, for applicati<strong>on</strong>s in transportati<strong>on</strong>, aerospace <strong>and</strong> electr<strong>on</strong>ics.<br />

PEIs coextruded with PC are used in microwave cookware.


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Polyarylates compete with traditi<strong>on</strong>ally less expensive engineering plastics for applicati<strong>on</strong>s in<br />

the automotive, electr<strong>on</strong>ics, aircraft <strong>and</strong> packaging industries. High cost, poor chemical<br />

resistance <strong>and</strong> a tendency to yellow have prevented polyarylates from gaining wider<br />

acceptance.<br />

PS resins, made from the c<strong>on</strong>densati<strong>on</strong> <strong>of</strong> the disodium salt <strong>of</strong> BPA with 4,4-dichlorodiphenyl<br />

sulf<strong>on</strong>e, are noted for their thermal stability, toughness, transparency <strong>and</strong> resistance<br />

to degradati<strong>on</strong> by moisture. They are used in electrical comp<strong>on</strong>ents, appliances, transportati<strong>on</strong>,<br />

medical equipment, pumps, valves <strong>and</strong> pipes.<br />

In unsaturated polyester resins, the substituti<strong>on</strong> <strong>of</strong> BPA for propylene glycol imparts<br />

chemical resistance to the product. Outlets for chemical-resistant resins are mainly in pipes<br />

<strong>and</strong> tanks. Only a small percentage <strong>of</strong> unsaturated polyester resins produced are the BPAtype.<br />

2. LEVELS AND PATTERNS FROM ORAL EXPOSURE<br />

Oral exposure from food is generally c<strong>on</strong>sidered the major source <strong>of</strong> BPA exposure for all<br />

age groups for n<strong>on</strong>-occupati<strong>on</strong>ally exposed individuals. Some additi<strong>on</strong>al oral exposure to<br />

BPA may result from the use <strong>of</strong> BPA-c<strong>on</strong>taining resins in dentistry.<br />

Several recent reviews <strong>and</strong> assessments have summarized BPA c<strong>on</strong>centrati<strong>on</strong>s in food <strong>and</strong><br />

food simulants as a result <strong>of</strong> migrati<strong>on</strong> from food c<strong>on</strong>tact materials (EFSA, 2006; Kang,<br />

K<strong>on</strong>do & Katayama, 2006; V<strong>and</strong>enberg et al., 2007; Chapin et al., 2008; Envir<strong>on</strong>ment<br />

Canada & Health Canada, 2008). As discussed above, the major use <strong>of</strong> BPA in food c<strong>on</strong>tact<br />

articles is in epoxy-based coatings for food <strong>and</strong> beverage cans <strong>and</strong> PC resins for food service<br />

items such sports bottles, baby bottles, pitchers, tumblers, home food c<strong>on</strong>tainers <strong>and</strong> flatware.<br />

2.1 Food surveys (by age group)<br />

By far the majority <strong>of</strong> studies <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s reported from food surveys were from<br />

testing <strong>of</strong> food <strong>and</strong> beverages packaged in epoxy-coated cans <strong>and</strong>, to a minor extent, glass<br />

c<strong>on</strong>tainers with lids.<br />

As an infant matures to a toddler, teenager <strong>and</strong> eventually an adult, the food that is c<strong>on</strong>sumed<br />

changes from breast milk <strong>and</strong>/or formula to toddler food <strong>and</strong> eventually to adult food. In the<br />

present c<strong>on</strong>text, the foods c<strong>on</strong>sumed by children <strong>and</strong> teenagers fall into the class <strong>of</strong> “adult”<br />

foods <strong>and</strong> thus are not significantly different from those c<strong>on</strong>sumed by adults. BPA<br />

c<strong>on</strong>centrati<strong>on</strong>s in infant formula <strong>and</strong> breast milk, baby/toddler food <strong>and</strong> adult food are<br />

described below. (A discussi<strong>on</strong> <strong>of</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in breast milk is included for<br />

completeness.)<br />

2.1.1 Infant formula <strong>and</strong> breast milk (age 0–6 m<strong>on</strong>ths)<br />

Infant formula comes in two forms (liquid <strong>and</strong> powder) <strong>and</strong> three main types <strong>of</strong> packaging<br />

(glass, metal <strong>and</strong> plastic). Liquid infant formula, both ready-to-feed (RTF) <strong>and</strong> c<strong>on</strong>centrate, is<br />

sold primarily in metal <strong>and</strong> plastic c<strong>on</strong>tainers. Powdered infant formula is available in<br />

composite c<strong>on</strong>tainers, composed <strong>of</strong> paper <strong>and</strong> aluminium foil, in additi<strong>on</strong> to plastic<br />

c<strong>on</strong>tainers. Metal c<strong>on</strong>tainers are coated with BPA epoxies, whereas composite c<strong>on</strong>tainers<br />

6


7<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

may c<strong>on</strong>tain BPA epoxies <strong>on</strong> the bottom <strong>of</strong> the c<strong>on</strong>tainer or in the s<strong>of</strong>t foil seal that is<br />

intended to be discarded <strong>on</strong> first opening.<br />

Goods<strong>on</strong>, Summerfield & Cooper (2002) sampled four liquid formula products from easy-toopen,<br />

three-piece cans obtained in the United Kingdom <strong>and</strong> France. The detecti<strong>on</strong> limit was<br />

2 µg/kg, <strong>and</strong> no BPA was detected.<br />

Biles, McNeal & Begley (1997) reported <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in 14 infant formula<br />

products in cans (c<strong>on</strong>centrates) collected in the Washingt<strong>on</strong>, DC, area in the USA. BPA<br />

c<strong>on</strong>centrati<strong>on</strong>s ranged from 0.1 to 13.2 µg/kg, with an average <strong>of</strong> 5 µg/kg. The average “as<br />

c<strong>on</strong>sumed” was 2.6 µg/kg.<br />

Cao et al. (2008) reported BPA c<strong>on</strong>centrati<strong>on</strong>s in 21 liquid infant formula products in cans (3<br />

RTF <strong>and</strong> 18 c<strong>on</strong>centrates) collected in Ottawa, Canada, in 2007. BPA c<strong>on</strong>centrati<strong>on</strong>s ranged<br />

from 2.3 to 10.2 µg/kg (average <strong>of</strong> 5.1 µg/kg). Omitting the RTF samples, the average <strong>of</strong> the<br />

c<strong>on</strong>centrates was 5.2 µg/kg (“as c<strong>on</strong>sumed” average <strong>of</strong> 2.6 µg/kg).<br />

Cao, Corriveau & Popovic (2009b) subsequently reported <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in these<br />

same products after storage at room temperature for 10 m<strong>on</strong>ths. The authors reported<br />

additi<strong>on</strong>al BPA migrati<strong>on</strong> for 9 <strong>of</strong> the 21 products, with increases ranging from 30% to<br />

100%. BPA c<strong>on</strong>centrati<strong>on</strong>s in the milk-based formula products analysed in 2008 (mean <strong>of</strong> 6.8<br />

µg/kg) were reported to be significantly higher than those analysed in 2007 (mean <strong>of</strong> 5.0<br />

µg/kg), whereas the BPA c<strong>on</strong>centrati<strong>on</strong>s in the soya-based formula products were not<br />

significantly different in 2008 (mean <strong>of</strong> 5.3 µg/kg) <strong>and</strong> 2007 (mean <strong>of</strong> 5.8 µg/kg).<br />

Kuo & Ding (2004) reported <strong>on</strong> the analysis <strong>of</strong> six infant formula <strong>and</strong> milk products (both<br />

powdered, presumably in composite cans) available in Taiwan, China. BPA c<strong>on</strong>centrati<strong>on</strong>s<br />

ranged from not detected (ND) at 1 µg/kg (lactose-free formula) to 113 µg/kg (milk). The<br />

samples c<strong>on</strong>sisted <strong>of</strong> two infant formulas (lactose-free, ND; soya-based, 45 µg/kg) <strong>and</strong> four<br />

powdered milks (three normal, 44, 113 <strong>and</strong> 57 µg/kg; <strong>on</strong>e hypoallergenic, 57 µg/kg). Using a<br />

rec<strong>on</strong>stituti<strong>on</strong> ratio <strong>of</strong> 135 g/l, BPA levels in formula “as c<strong>on</strong>sumed” were approximately<br />

0.3–0.4 µg/kg.<br />

EWG (2007) reported <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in six infant formula products in cans<br />

(c<strong>on</strong>centrates) representing two br<strong>and</strong>s collected in the Washingt<strong>on</strong>, DC, area <strong>of</strong> the USA.<br />

BPA c<strong>on</strong>centrati<strong>on</strong>s ranged from ND (


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

The c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> BPA in infant formula from cans (as c<strong>on</strong>sumed) are summarized in<br />

Table 1.<br />

Table 1. Free BPA in infant formula from cans (as c<strong>on</strong>sumed)<br />

Reference Formula type Locati<strong>on</strong> C<strong>on</strong>centrati<strong>on</strong> range,<br />

mean (µg/kg)<br />

Goods<strong>on</strong>,<br />

Summerfield &<br />

Cooper (2002)<br />

Biles, McNeal &<br />

Begley (1997)<br />

Liquid United Kingdom,<br />

France<br />

Liquid<br />

c<strong>on</strong>centrate<br />

Cao et al. (2008) Liquid RTF <strong>and</strong><br />

c<strong>on</strong>centrate<br />

8<br />

No. <strong>of</strong><br />

samples<br />


9<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

immunosorbent assay (ELISA). The mean BPA c<strong>on</strong>centrati<strong>on</strong> was 3.4 µg/kg, with a range <strong>of</strong><br />

1–7 µg/kg.<br />

Sun et al. (2004) reported <strong>on</strong> the analysis <strong>of</strong> free BPA in 23 human breast milk samples<br />

collected in Japan by high-performance liquid chromatography (HPLC) with fluorescence<br />

detecti<strong>on</strong> (FD). The mean BPA c<strong>on</strong>centrati<strong>on</strong> was 0.61 µg/kg, with a range <strong>of</strong> 0.28–0.97<br />

µg/kg.<br />

Otaka, Yasuhara & Morita (2003) reported <strong>on</strong> the analysis <strong>of</strong> free BPA in three human breast<br />

milk samples collected in Japan. The method c<strong>on</strong>sisted <strong>of</strong> base digesti<strong>on</strong>, extracti<strong>on</strong> <strong>and</strong><br />

cleanup, derivatizati<strong>on</strong> <strong>and</strong> analysis by gas chromatography–mass spectrometry (GC-MS).<br />

The highest free BPA c<strong>on</strong>centrati<strong>on</strong> was 0.70 µg/kg.<br />

Yi, Kim & Yang (2010) evaluated two methods, LC with t<strong>and</strong>em mass spectrometry<br />

(MS/MS) <strong>and</strong> HPLC-FD, for the determinati<strong>on</strong> <strong>of</strong> BPA (free <strong>and</strong> c<strong>on</strong>jugated) in 100 human<br />

breast milk samples collected in the Republic <strong>of</strong> Korea. They noted that while the detecti<strong>on</strong><br />

range was broader in the HPLC-FD method, the BPA levels were lower than those for the<br />

LC-MS/MS method. They c<strong>on</strong>cluded that differences in BPA levels between the two<br />

methods may arise from overestimati<strong>on</strong> with the LC-MS/MS method in low-BPA samples<br />

<strong>and</strong> some poor resoluti<strong>on</strong>s with the HPLC-FD method in high-BPA samples.<br />

2.1.2 Baby <strong>and</strong> toddler food (age 6–12 m<strong>on</strong>ths)<br />

In the USA, toddler foods are primarily packaged in glass c<strong>on</strong>tainers (2–6 dry ounces; 57–<br />

170 g) capped with polymer-coated metal closures or, alternatively, small plastic c<strong>on</strong>tainers<br />

(~2.5 ounces; 71 g). The metal closures <strong>on</strong> the glass c<strong>on</strong>tainers employ a PVC gasket that<br />

c<strong>on</strong>tacts both the metal lid <strong>and</strong> glass rim, thus forming a seal. The metal lid c<strong>on</strong>tains a “metal<br />

primer” coating, which does not directly c<strong>on</strong>tact the food, but may c<strong>on</strong>tain trace amounts <strong>of</strong><br />

BPA.<br />

Few studies are available <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in baby <strong>and</strong> toddler food. Thoms<strong>on</strong> &<br />

Grounds (2005) reported <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in infant vegetables (four types, <strong>on</strong>e each)<br />

<strong>and</strong> desserts (three types, <strong>on</strong>e each) available in Australia <strong>and</strong> packaged in glass with metal<br />

closures. They reported c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> BPA below the limit <strong>of</strong> detecti<strong>on</strong> <strong>of</strong> 10 µg/kg in all<br />

samples (Table 4).<br />

Table 4. BPA in infant food from closures<br />

Reference Medium C<strong>on</strong>centrati<strong>on</strong> range (µg/kg) No. <strong>of</strong> samples<br />

Thoms<strong>on</strong> & Grounds (2005)<br />

Cao et al. (2009)<br />

LOQ, limit <strong>of</strong> quantificati<strong>on</strong><br />

Desserts


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

jars with metal lids <strong>and</strong> purchased in Ottawa, Canada. The average MDL was reported as<br />

0.18 µg/kg for a 5 g sample. The authors made the following observati<strong>on</strong>s <strong>and</strong> c<strong>on</strong>clusi<strong>on</strong>s:<br />

• The presence <strong>of</strong> BPA could not be c<strong>on</strong>firmed <strong>and</strong> quantified in 23 <strong>of</strong> the 122 products as<br />

a result <strong>of</strong> interference from sample matrices.<br />

• For the other 99 products, the average BPA c<strong>on</strong>centrati<strong>on</strong> was 1.1 µg/kg, with about 70%<br />

<strong>of</strong> the products with BPA c<strong>on</strong>centrati<strong>on</strong>s below 1 µg/kg <strong>and</strong> about 15% <strong>of</strong> the products<br />

with BPA c<strong>on</strong>centrati<strong>on</strong>s less than the MDL.<br />

• Across all br<strong>and</strong>s, the average BPA c<strong>on</strong>centrati<strong>on</strong>s in fruit products (0.6 µg/kg, 26<br />

products) <strong>and</strong> desserts (0.38 µg/kg, 9 samples) were lower than those in mixed dishes (1.1<br />

µg/kg, 25 samples) <strong>and</strong> vegetables (1.2 µg/kg, 39 samples).<br />

• One br<strong>and</strong>’s average BPA c<strong>on</strong>centrati<strong>on</strong> (3.9 µg/kg) was higher than the average<br />

c<strong>on</strong>centrati<strong>on</strong>s for the other br<strong>and</strong>s (0.54–1.1 µg/kg). The highest BPA c<strong>on</strong>centrati<strong>on</strong> for<br />

all samples was 7.2 µg/kg (Table 4).<br />

2.1.3 Food for young children (age 1–3 years)<br />

As noted above, the foods c<strong>on</strong>sumed by children, including those from 1 to 3 years <strong>of</strong> age,<br />

may include toddler food (discussed above) as well as “adult” foods. Wils<strong>on</strong> et al. (2003)<br />

reported <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in prepared food served to nine children at home <strong>and</strong> at<br />

child-care centres in North Carolina, USA. BPA c<strong>on</strong>centrati<strong>on</strong>s ranged from less than 0.001<br />

to 1.16 µg/kg in liquid food <strong>and</strong> from 0.172 to 4.19 µg/kg in solid food.<br />

In a larger study in two cities in the USA, Wils<strong>on</strong> et al. (2007) took duplicate plate samples <strong>of</strong><br />

the solid <strong>and</strong> liquid food served to children during a 48-hour sampling period in North<br />

Carolina <strong>and</strong> Ohio, USA. At home, the adult caregiver provided the same amount <strong>of</strong> the same<br />

food <strong>and</strong> beverages, excluding drinking-water, c<strong>on</strong>sumed by their child over the sampling<br />

period. The teachers provided duplicate servings <strong>of</strong> food <strong>and</strong> beverages c<strong>on</strong>sumed by the<br />

participating children while at day care. Because all children in a given classroom were<br />

served the same food <strong>on</strong> the same day, <strong>on</strong>ly <strong>on</strong>e duplicate sample was provided for each<br />

classroom <strong>on</strong> a given day. If a child brought his/her food from home, the home caregiver was<br />

asked to provide a duplicate sample <strong>of</strong> that food. Composite solid <strong>and</strong> liquid food samples<br />

were collected separately in 2-litre glass c<strong>on</strong>tainers. These c<strong>on</strong>tainers were placed in provided<br />

coolers with blue ice until they were picked up by field staff. BPA in food was determined by<br />

GC-MS, with an estimated MDL <strong>of</strong> 0.3 ng/ml liquid food <strong>and</strong> 0.8 ng/g solid food. The BPA<br />

c<strong>on</strong>centrati<strong>on</strong>s measured in the liquid <strong>and</strong> solid children’s food are shown in Table 5.<br />

Table 5. BPA in children’s food<br />

Reference Medium C<strong>on</strong>centrati<strong>on</strong> range<br />

(µg/kg)<br />

Wils<strong>on</strong> et al.<br />

(2007)<br />

NC, North Carolina; OH, Ohio<br />

Solid food NC:


2.1.4 Adult food (age >1 year)<br />

(a) Canned food<br />

11<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Several publicati<strong>on</strong>s were identified <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in a variety <strong>of</strong> canned foods <strong>and</strong><br />

beverages originating from several different countries. The publicati<strong>on</strong>s <strong>and</strong> pertinent data,<br />

including number <strong>of</strong> samples analysed, average, st<strong>and</strong>ard deviati<strong>on</strong> (SD) <strong>and</strong> range <strong>of</strong> the<br />

BPA c<strong>on</strong>centrati<strong>on</strong>s, <strong>and</strong> per cent detects, are summarized in Table 6. Table 6 c<strong>on</strong>tains no<br />

canned formula or baby food. The statistics were generated using all <strong>of</strong> the available data <strong>and</strong><br />

assuming half the reported detecti<strong>on</strong> limit for each study.<br />

Table 6. Summary <strong>of</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in canned food<br />

Reference Country <strong>of</strong><br />

origin<br />

Bendito et al.<br />

(2009)<br />

Braunrath et al.<br />

(2005)<br />

Brot<strong>on</strong>s et al.<br />

(1995)<br />

Cao, Corriveau<br />

& Popovic<br />

(2009a)<br />

Cao, Corriveau<br />

& Popovic<br />

(2010b)<br />

Cao, Corriveau<br />

& Popovic<br />

(2010a)<br />

C<strong>on</strong>sumers<br />

Uni<strong>on</strong> (2009)<br />

Average ± SD<br />

(µg/kg)<br />

LOD/LOQ<br />

(µg/kg)<br />

Range<br />

(µg/kg)<br />

% detects No. <strong>of</strong><br />

samples<br />

Spain 73.5 ± 54.8 7.1


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 6 (c<strong>on</strong>tinued)<br />

Reference Country <strong>of</strong><br />

origin<br />

Horie et al.<br />

(1999)<br />

Imanaka et al.<br />

(2001)<br />

Kang & K<strong>on</strong>do<br />

(2003)<br />

Kataoka, Ise &<br />

Narimatsu<br />

(2002)<br />

Kawamura,<br />

Sano &<br />

Yamada (1999)<br />

Maragou et al.<br />

(2006)<br />

Munguia-Lopez<br />

et al. (2005)<br />

Podlipna &<br />

Cichna-Markl<br />

(2007)<br />

Poustka et al.<br />

(2007)<br />

Rastkari et al.<br />

(2010)<br />

Sajiki et al.<br />

(2007)<br />

Shao et al.<br />

(2007)<br />

Sun et al.<br />

(2006)<br />

Thoms<strong>on</strong> &<br />

Grounds (2005)<br />

Vinas et al.<br />

(2010)<br />

Y<strong>on</strong>ekubo,<br />

Hayakawa &<br />

Sajiki (2008)<br />

Average ± SD<br />

(µg/kg)<br />

12<br />

LOD/LOQ<br />

(µg/kg)<br />

Range<br />

(µg/kg)<br />

% detects No. <strong>of</strong><br />

samples<br />

Unknown 30.5 ± 56.7 0.5–2 ND–212.1 53 47<br />

China, Greece,<br />

Japan, New<br />

Zeal<strong>and</strong>,<br />

South Africa,<br />

USA<br />

52 ± 116.5 0.5–1 ND–602 95 28<br />

Japan 95.0 ± 101.5 1–3 30–212 100 3<br />

Japan


Table 6 (c<strong>on</strong>tinued)<br />

Reference Country <strong>of</strong><br />

origin<br />

Yoshida et al.<br />

(2001)<br />

China,<br />

Ind<strong>on</strong>esia,<br />

Japan, USA<br />

Average ± SD<br />

(µg/kg)<br />

13<br />

LOD/LOQ<br />

(µg/kg)<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Range<br />

(µg/kg)<br />

% detects No. <strong>of</strong><br />

samples<br />

15.8 ± 23.7 5–10 ND–95.3 29 28<br />

LOD, limit <strong>of</strong> detecti<strong>on</strong>; LOQ, limit <strong>of</strong> quantificati<strong>on</strong>; ND, not detected; SD, st<strong>and</strong>ard deviati<strong>on</strong><br />

a Averaged data provided. No LOD/LOQ given.<br />

Total N = 983<br />

The publicati<strong>on</strong> details, including individual sample identities, country <strong>of</strong> origin <strong>and</strong> BPA<br />

c<strong>on</strong>centrati<strong>on</strong>s, were tabulated <strong>and</strong> further categorized according to food classes, including<br />

food types such as fruits, vegetables, grains, meats, drinks <strong>and</strong> desserts. Table 7 gives the<br />

average, st<strong>and</strong>ard deviati<strong>on</strong> <strong>and</strong> range <strong>of</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s, as well as the total number <strong>of</strong><br />

samples.<br />

Table 7. Summary <strong>of</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in canned food by food class<br />

Food class Average ± SD (µg/kg) No. <strong>of</strong> samples<br />

Fruits 9.8 ± 21.8 70<br />

Vegetables 32.4 ± 81.1 305<br />

Grains 42.7 ± 71.3 22<br />

Meat (no soups or seafood) 69.6 ± 125.1 70<br />

Soups 49.1 ± 67.0 66<br />

Seafood 26.6 ± 33.6 166<br />

Desserts 26.7 ± 55.3 11<br />

Drinks—carb<strong>on</strong>ated (cola, beer,<br />

soda, t<strong>on</strong>ic)<br />

Drinks—n<strong>on</strong>-carb<strong>on</strong>ated (tea,<br />

c<strong>of</strong>fee, any other)<br />

1.0 ± 1.5 128<br />

23.2 ± 50.3 131<br />

Overall 26.8 ± 63.7 983<br />

SD, st<strong>and</strong>ard deviati<strong>on</strong><br />

The recent opini<strong>on</strong> <strong>of</strong> the French Food Safety Agency (AFSSA, 2010) <strong>on</strong> BPA used two<br />

sources <strong>of</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in foods <strong>and</strong> beverages for the exposures analysis. One data<br />

set was obtained from French trade associati<strong>on</strong>s (referred to as the French data, n = 319), <strong>and</strong><br />

the sec<strong>on</strong>d set was abstracted from the European literature (referred to as the European<br />

literature data, n = 181).<br />

For the French data, AFSSA (2010) obtained BPA c<strong>on</strong>taminati<strong>on</strong> data from the following<br />

sources:<br />

••<br />

••<br />

••<br />

••<br />

••<br />

French Nati<strong>on</strong>al Associati<strong>on</strong> <strong>of</strong> Food Industries (ANIA), n = 5, limit <strong>of</strong> quantificati<strong>on</strong><br />

(LOQ) = 0.1 µg/kg;<br />

French Associati<strong>on</strong> <strong>of</strong> Food-Processing Companies (ADEPALE), n = 66, limit <strong>of</strong><br />

detecti<strong>on</strong> (LOD) = 2 µg/kg;<br />

French S<strong>of</strong>t Drink Associati<strong>on</strong> (SNBR), n = 144, LOQ = 0.5–2 µg/kg;<br />

UFC-Que Choisir C<strong>on</strong>sumers’ Associati<strong>on</strong> (May 2010), n = 67, LOQ = 0.5–10 µg/kg;<br />

French Brewers’ Associati<strong>on</strong>, n = 5, LOD = 10 µg/kg;


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

••<br />

••<br />

French Nati<strong>on</strong>al Trade Associati<strong>on</strong> for Fruit Juices <strong>and</strong> Nectars (UNIJUS), n = 9, LOQ =<br />

0.1–10 µg/kg;<br />

L’Alliance 7, n = 23, LOD = 0.1 µg/kg, LOQ = 10 µg/kg.<br />

AFSSA (2010) noted that sometimes the <strong>on</strong>ly informati<strong>on</strong> <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in food<br />

that was available was below the LOD or LOQ. About 4% <strong>of</strong> the values were reported as<br />

n<strong>on</strong>-detected, whereas almost 60% were not quantified. The LOD <strong>and</strong> LOQ values varied<br />

according to the analysis from 0.1 to 10 µg/kg. The raw data were not c<strong>on</strong>tained in the<br />

AFSSA (2010) opini<strong>on</strong>.<br />

Overall, BPA c<strong>on</strong>centrati<strong>on</strong>s varied from the LOD or LOQ to 128 µg/kg for the highest value<br />

in a canned mixed food dish. About 4.4% <strong>of</strong> values were not detected, <strong>and</strong> 58.6% were not<br />

quantified. AFSSA (2010) c<strong>on</strong>cluded that the maximum values varied between the various<br />

food categories as follows: 17 µg/kg for canned beverages <strong>and</strong> s<strong>of</strong>t drinks, 39 µg/kg for<br />

canned cooked pasta such as ravioli, 80 µg/kg for canned fish, 93 µg/kg for canned<br />

vegetables <strong>and</strong> 128 µg/kg for canned cooked dishes such as cassoulet.<br />

For the European literature data, the BPA c<strong>on</strong>centrati<strong>on</strong>s were taken from Braunrath et al.<br />

(2005), Brenn-Struckh<strong>of</strong>ova & Cichna-Markl (2006), Casajuana & Lacorte (2004) <strong>and</strong> the<br />

United Kingdom Food St<strong>and</strong>ards Agency (FSA). The FSA data (dated 2001) appear not to be<br />

published <strong>and</strong> are not included in Table 7.<br />

AFSSA (2010) further categorized both data sets according to food groups as shown in Table<br />

8. For the n<strong>on</strong>-detects, the statistics were determined in two ways:<br />

1) LOD <strong>and</strong> LOQ values set equal to zero. (The resulting statistics were used for their “low<br />

exposure estimate”.)<br />

2) LOD <strong>and</strong> LOQ set according to the values given above. (The resulting statistics were<br />

used for their “high exposure estimate”.)<br />

The statistics that AFSSA (2010) used for the “low” <strong>and</strong> “high” exposure estimates for the<br />

French <strong>and</strong> European data are shown in Table 8.<br />

Table 8. Summary <strong>of</strong> samples used in AFSSA (2010) analysis a<br />

Food group<br />

Water heated in baby<br />

bottles<br />

French data (µg/kg) European literature data (µg/kg)<br />

N Average ± SD<br />

(low; high)<br />

36 0.5 ± 0.8; 0.8 ±<br />

0.6<br />

Baby food 23 2 ± 3.8; 6.4 ±<br />

4.7<br />

14<br />

Range (low;<br />

high)<br />

0–3.4; 0.5–<br />

3.4<br />

0–15.8; 0.1–<br />

15.8<br />

N Average ± SD<br />

(low; high)<br />

— — —<br />

— — —<br />

Powdered milk 3 0 ± 0; 10 ± 0 0–0; 10–10 8 0.1 ± 0.1; 1.6 ±<br />

0.18<br />

Meat products — — — 12 128.3 ± 155.7;<br />

128.3 ± 155.7<br />

Canned fish 30 18.1 ± 19.7;<br />

19.2 ± 18.9<br />

Canned vegetables 32 26.4 ± 18.2;<br />

26.7 ± 17.8<br />

0–80.0; 2.0–<br />

80.0<br />

0–93.4; 7.0–<br />

93.4<br />

— — —<br />

— — —<br />

Range (low;<br />

high)<br />

0–0.3; 0.3–<br />

2.0<br />

16.0–420.0;<br />

16.0–420.0


Table 8 (c<strong>on</strong>tinued)<br />

Food group<br />

15<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

French data (µg/kg) European literature data (µg/kg)<br />

N Average ± SD<br />

(low; high)<br />

Range (low;<br />

high)<br />

N Average ± SD<br />

(low; high)<br />

Canned pulses — — 15 25.5 ± 8.4;<br />

25.5 ± 8.4<br />

Bottled water 8 0.3 ± 0.7; 0.5 ±<br />

0.7<br />

N<strong>on</strong>-alcoholic beverages,<br />

s<strong>of</strong>t drinks <strong>and</strong> colas<br />

156 0.5 ± 2.1; 1.8 ±<br />

2.1<br />

0–2.0; 0.1–<br />

2.0<br />

0–17.3; 0.5–<br />

17.3<br />

— — —<br />

— — —<br />

Soups 1 77.6; 77.6 77.6 32 13.1 ± 12.5;<br />

14.0 ± 11.6<br />

Desserts 1 29.0; 29.0 29.0 8 18.6 ± 12.4;<br />

18.9 ± 12.0<br />

Canned mashed & cooked<br />

fruits<br />

Sauces 6 13.4 ± 6.7;<br />

13.4 ± 6.7<br />

1 13.0; 13.0 13.0 19 13.8 ± 11.3;<br />

13.8 ± 11.3<br />

2.4–21.0;<br />

2.4–21.0<br />

— — —<br />

Milk — — — 8 1.5 ± 0.7; 1.5 ±<br />

0.7<br />

C<strong>on</strong>densed milk — — — 2 12.5 ± 2.1;<br />

12.5 ± 2.1<br />

Wine — — — 59 0.4 ± 0.4; 0.5 ±<br />

0.4<br />

Beer & cider 6 0 ± 0; 8.5 ± 3.7 0–0; 1.0–10.0 11 0.5 ± 0.8; 2.3 ±<br />

1.6<br />

Mixed food dishes 6 86.5 ± 40.1;<br />

86.5 ± 40.1<br />

Cooked pasta 10 30.1 ± 6.9;<br />

30.1 ± 6.9<br />

35.0–128.0;<br />

35.0–128.0<br />

21.0–39.0;<br />

21.0–39.0<br />

— — —<br />

7 15.4 ± 17.0;<br />

16.7 ± 15.8<br />

Total samples 319 — — 181 — —<br />

Range (low;<br />

high)<br />

9.0–35.0;<br />

9.0–35.0<br />

0–37.6; 2.0–<br />

37.6<br />

0–29.7; 2.0–<br />

29.7<br />

5.0–38.0;<br />

5.0–38.0<br />

1.0–2.6;<br />

1.0–2.6<br />

11.0–14.0;<br />

11.0–14.0<br />

0–2.1; 0.1–<br />

2.1<br />

0–1.5; 1.5–<br />

7.0<br />

0–41.0; 2.0–<br />

41.0<br />

a “Low” means that the statistics were derived with LOD <strong>and</strong> LOQ values set equal to zero. “High” means that<br />

LOD <strong>and</strong> LOQ were set according to the values given.<br />

The Ministry <strong>of</strong> Health, Labour <strong>and</strong> Welfare <strong>of</strong> Japan (MHLW, 2010) c<strong>on</strong>ducted two<br />

surveys, in 2008 <strong>and</strong> 2009, to measure BPA migrati<strong>on</strong> from PC food c<strong>on</strong>tainers (discussed<br />

below) <strong>and</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in canned foods. The 2008 fiscal year survey included<br />

canned foods analysed using GC-MS/MS with an LOD <strong>of</strong> 1 ng/g food <strong>and</strong> an LOQ in the<br />

range <strong>of</strong> 3–5 ng/g food, depending <strong>on</strong> the canned food matrix. The 2009 survey included<br />

canned foods <strong>and</strong> beverages, retort pouch foods (including drinks) <strong>and</strong> foods for infants <strong>and</strong><br />

young children (i.e. infant powdered formula <strong>and</strong> baby foods). The 2009 analyses were<br />

c<strong>on</strong>ducted using LC-MS/MS with a method LOD <strong>of</strong> 0.044 ng/ml (signal-to-noise ratio<br />

[S/N] = 3) <strong>and</strong> an LOQ <strong>of</strong> 0.44 ng/ml (S/N = 10). In both the 2008 <strong>and</strong> 2009 analyses, actual<br />

LOQs varied depending <strong>on</strong> the matrix, as described below.<br />

For canned food in both 2008 <strong>and</strong> 2009, MHLW (2010) investigated a total <strong>of</strong> 278 samples:<br />

106 seafood; 69 vegetables; 54 sauces, soup <strong>and</strong> other cooked foods; 29 meat; <strong>and</strong> 20 fruits.<br />

BPA was not detected in the canned fruits at an LOQ <strong>of</strong> 5 µg/kg. Of the other 258 foods, 21<br />

had BPA c<strong>on</strong>centrati<strong>on</strong>s greater than 50 µg/kg, 237 (92%) had c<strong>on</strong>centrati<strong>on</strong>s less than 50<br />

µg/kg <strong>and</strong> 120 had n<strong>on</strong>-detectable BPA c<strong>on</strong>centrati<strong>on</strong>s. The highest values were 460 µg/kg,


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

detected in canned meat (2008), <strong>and</strong> 440 µg/kg, in canned cooked food (2009). With regard<br />

to the types <strong>of</strong> canned foods (e.g. canned soup, canned meat), the highest detected values<br />

were 240 µg/kg (2008) <strong>and</strong> 440 µg/kg (2009) in canned soup <strong>and</strong> 460 µg/kg (2008) <strong>and</strong> 26<br />

µg/kg (2009) in canned meat.<br />

For 2009, retort pouch foods (including drinks) <strong>and</strong> foods for infants <strong>and</strong> young children (i.e.<br />

infant powdered formula <strong>and</strong> baby foods) were included. Eighty retort pouches were tested,<br />

including those for curry, pasta <strong>and</strong> seas<strong>on</strong>ing sauces. The c<strong>on</strong>structi<strong>on</strong> <strong>of</strong> the pouches was<br />

not discussed in the report. BPA was detected in <strong>on</strong>ly two curry sauces at levels below 33<br />

µg/kg. The LOQ was reported as 5 µg/kg. Twenty samples <strong>of</strong> powdered formula (10 cans <strong>and</strong><br />

10 plastic) were analysed, in additi<strong>on</strong> to 30 samples <strong>of</strong> baby foods (12 pouches, 8 steel cups,<br />

5 glass <strong>and</strong> 5 dry). BPA c<strong>on</strong>centrati<strong>on</strong>s were not detected at an LOQ <strong>of</strong> 5 µg/kg (powdered<br />

formula) <strong>and</strong> 0.7 µg/kg (baby foods).<br />

For beverages in 2009, MHLW (2010) investigated 42 beverages, including 20 canned<br />

c<strong>of</strong>fee, 10 canned tea, 10 canned juice <strong>and</strong> carb<strong>on</strong>ated beverages, <strong>and</strong> 2 drink-type canned<br />

soups. An LOQ was set at 1 µg/kg for beverages <strong>and</strong> 5 µg/kg for drink-type canned soups.<br />

BPA was detected in 10 <strong>of</strong> the 20 c<strong>of</strong>fee samples at c<strong>on</strong>centrati<strong>on</strong>s ranging from 1 to 4 µg/kg<br />

<strong>and</strong> in 2 <strong>of</strong> the 10 tea samples at c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> 1 <strong>and</strong> 7 µg/kg. No BPA was detected from<br />

10 canned juice/carb<strong>on</strong>ated drinks or two canned soups.<br />

An unpublished study from China (J. Xiao, B. Shao & Y.N. Wu, Chinese Center for Disease<br />

C<strong>on</strong>trol <strong>and</strong> Preventi<strong>on</strong>, unpublished data, 2010) reported <strong>on</strong> the analysis <strong>of</strong> 30 canned foods<br />

(number <strong>of</strong> samples), including corn (1), mushrooms (3), corn shoot (1), green beans (1),<br />

ketchup (1), Chinese cabbage (1), bamboo shoots (1), fried t<strong>of</strong>u (1), beef (2), pork (2), lunch<br />

meat (3), sauces (3) <strong>and</strong> fish (10). The analysis was c<strong>on</strong>ducted using LC-MS/MS, but no<br />

additi<strong>on</strong>al informati<strong>on</strong> was reported <strong>on</strong> the method. BPA c<strong>on</strong>centrati<strong>on</strong>s were all below 0.3<br />

µg/kg.<br />

Schecter et al. (2010) recently reported <strong>on</strong> the analysis <strong>of</strong> 105 foods collected in Dallas,<br />

Texas, USA, including fresh <strong>and</strong> canned foods, foods sold in plastic packaging <strong>and</strong> pet foods<br />

in cans <strong>and</strong> plastic packaging. BPA was determined by extracti<strong>on</strong>, derivatizati<strong>on</strong> <strong>and</strong> analysis<br />

by GC-MS with isotopic diluti<strong>on</strong>. BPA was detected in 63 <strong>of</strong> 105 samples, including fresh<br />

turkey, canned green beans <strong>and</strong> canned infant formula. Ninety-three <strong>of</strong> these samples were<br />

triplicates, which had similar detected levels. Detected levels ranged from 0.23 to 65 µg/kg.<br />

The authors claimed that the observed levels were not associated with the type <strong>of</strong> food or<br />

packaging, but did vary with pH.<br />

Food St<strong>and</strong>ards Australia New Zeal<strong>and</strong> (FSANZ, 2011) commissi<strong>on</strong>ed an analytical survey<br />

to determine BPA c<strong>on</strong>centrati<strong>on</strong>s in a range <strong>of</strong> foods <strong>and</strong> beverages available in the<br />

Australian market <strong>and</strong> packaged in plastic or cans. The method was GC-MS using isotopic<br />

diluti<strong>on</strong> calibrati<strong>on</strong> with a recovery st<strong>and</strong>ard. The LOQs were 0.3, 0.6 <strong>and</strong> 3 µg/kg, according<br />

to the food matrix. In the survey, 70 foods <strong>and</strong> beverages in a variety <strong>of</strong> packaging materials<br />

were analysed, including (number <strong>of</strong> samples) infant formula (14 powdered, 1 liquid), infant<br />

food (2 canned, 8 glass jar with lid), beverages (2 canned, 4 plastic, 12 glass, 3 aseptic) <strong>and</strong><br />

adult foods (7 canned, 18 plastic c<strong>on</strong>tainers <strong>and</strong> film, 4 glass). The beverages included water,<br />

milk, juice, wine <strong>and</strong> beer, whereas the foods included vegetables, oils, peanut butter, yogurt,<br />

prepared meals <strong>and</strong> frozen items. BPA was identified in 31% <strong>of</strong> the samples at c<strong>on</strong>centrati<strong>on</strong>s<br />

above the LOQ, ranging from 1 to 290 µg/kg. The highest detected levels were in two infant<br />

16


17<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

dairy desserts (100 <strong>and</strong> 290 µg/kg) <strong>and</strong> canned tuna (92 µg/kg). FSANZ (2011) c<strong>on</strong>cluded<br />

that the results <strong>of</strong> this survey showed that a limited number <strong>of</strong> samples c<strong>on</strong>tained BPA.<br />

(b) N<strong>on</strong>-canned food (age > 1 year)<br />

Analyses <strong>of</strong> BPA in n<strong>on</strong>-canned food items are limited.<br />

Basheer, Lee & Tan (2004) reported <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in seafood purchased in<br />

Singapore. Mean BPA c<strong>on</strong>centrati<strong>on</strong>s were as follows (n = 5): prawns (3.3 µg/kg), crabs<br />

(213.1 µg/kg), blood cockle (56.5 µg/kg), white clam (27.4 µg/kg), squid (118.9 µg/kg) <strong>and</strong><br />

carangid fish (


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 9. BPA in tap water <strong>and</strong> bottled water<br />

Reference Country Tap/bottle C<strong>on</strong>centrati<strong>on</strong> range<br />

(mean) (µg/l)<br />

Amiridou & Voutsa<br />

(2011)<br />

Greece<br />

PET bottles 0.004–0.008<br />

(0.0046)<br />

18.5-litre PC<br />

carboys<br />

Biles et al. (1997) USA 18.5-litre PC<br />

carboys<br />

18<br />

No. <strong>of</strong> samples<br />

0.11–0.17 1<br />

0. 1–4.7 (1.8) 6<br />

Boyd et al. (2003) Canada, USA Tap water


2.2.1 Polycarb<strong>on</strong>ate<br />

19<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

BPA can leach from PC into liquid foods because <strong>of</strong> two different processes: 1) diffusi<strong>on</strong> <strong>of</strong><br />

residual BPA present in PC after the manufacturing process <strong>and</strong> 2) hydrolysis <strong>of</strong> the polymer<br />

catalysed by hydroxide in c<strong>on</strong>tact with aqueous food <strong>and</strong> simulants (Ehlert, Beumer & Groot,<br />

2008; Mercea, 2009). For dry foods, diffusi<strong>on</strong> is the <strong>on</strong>ly relevant process. Release <strong>of</strong> BPA<br />

from PC c<strong>on</strong>tainers into food depends <strong>on</strong> the c<strong>on</strong>tact time, temperature <strong>and</strong> type <strong>of</strong> food.<br />

Food simulants are <strong>of</strong>ten used in release studies to represent the different types <strong>of</strong> food; for<br />

example, 50% ethanol in water is used as a simulant for milk, <strong>and</strong> 3% acetic acid in water is<br />

used as a simulant for fruit juice.<br />

A review <strong>of</strong> the scientific literature <strong>and</strong> recent informati<strong>on</strong> from some European Uni<strong>on</strong> (EU)<br />

Nati<strong>on</strong>al Reference Laboratories <strong>on</strong> food c<strong>on</strong>tact materials show that there are relatively few<br />

studies <strong>on</strong> the release <strong>of</strong> BPA from PC into real food matrices. Tables 10–14 show data <strong>on</strong><br />

the migrati<strong>on</strong> <strong>of</strong> BPA into food <strong>and</strong> various food simulants (adapted from Hoekstra &<br />

Sim<strong>on</strong>eau, 2010). Within a given table, the data are ordered according to 1) food or food<br />

simulant <strong>and</strong> 2) c<strong>on</strong>tact time–temperature c<strong>on</strong>diti<strong>on</strong>s. The analysis <strong>of</strong> migrati<strong>on</strong> is d<strong>on</strong>e<br />

mainly by HPLC-FD (this is not menti<strong>on</strong>ed in the tables). Other analytical techniques are<br />

indicated.<br />

BPA was not detected in fruit juice (ECB, 2003), milk formula (Mountfort et al., 1997;<br />

EURL-FCM, 2009) or soup (Japan Food Chemical Research Foundati<strong>on</strong>, 1998) that had been<br />

in c<strong>on</strong>tact with PC articles. It must be menti<strong>on</strong>ed that results for low levels <strong>of</strong> release depend<br />

<strong>on</strong> the LOD <strong>of</strong> BPA in food matrices (typically in the range <strong>of</strong> 0.01–0.03 mg/kg). Instead,<br />

evidence <strong>of</strong> BPA release comes from the much larger number <strong>of</strong> studies that were c<strong>on</strong>ducted<br />

using PC articles, mostly baby bottles, tested with food simulants <strong>and</strong> tap water. BPA may be<br />

released substantially into oil-based food simulants at levels up to 1.5 mg/l (Biles et al., 1997;<br />

Howe & Borodinsky, 1998; Japan Food Chemical Research Foundati<strong>on</strong>, 1998; ECB, 2003;<br />

W<strong>on</strong>g, Leo & Seah, 2005).<br />

Biles et al. (1997) showed that the release <strong>of</strong> BPA increases with the ethanol c<strong>on</strong>centrati<strong>on</strong> in<br />

aqueous simulants, from 0.87 to 5.9 mg/l (at 65 °C after 10 days) over the range <strong>of</strong> 8–50%<br />

ethanol. Less extreme time–temperature c<strong>on</strong>diti<strong>on</strong>s resulted in lower release (Howe &<br />

Borodinsky, 1998; Japan Food Chemical Research Foundati<strong>on</strong>, 1998; Kawamura et al., 1998;<br />

ECB, 2003, 2008; W<strong>on</strong>g, Leo & Seah, 2005; EURL-FCM, 2009; VWA, 2008; Kubwabo et<br />

al., 2009).<br />

Most literature studies report a release <strong>of</strong> BPA from PC into 3% acetic acid below the LOD<br />

(Howe & Borodinsky, 1998; Japan Food Chemical Research Foundati<strong>on</strong>, 1998; ECB, 2003;<br />

VWA, 2005, 2008; Maragou et al., 2008; Sim & Jianhua, 2008; EURL-FCM, 2009) <strong>and</strong><br />

some above (D’Antu<strong>on</strong>o et al., 2001; ECB, 2003).<br />

The release <strong>of</strong> BPA from PC baby bottles into dei<strong>on</strong>ized water <strong>and</strong> tap water was studied in<br />

detail by several research groups (see Table 14). The highest BPA c<strong>on</strong>centrati<strong>on</strong> reported was<br />

1 mg/l at 65 °C for 10 days (Biles et al., 1997).<br />

Very few studies reported <strong>on</strong> the release <strong>of</strong> BPA from PC at more than two temperatures.<br />

Biedermann-Brem & Grob (2009) systematically studied the effect <strong>of</strong> temperature <strong>and</strong> pH <strong>on</strong><br />

the release <strong>of</strong> BPA from PC baby bottles into water by heating in a microwave for 5 minutes.<br />

The BPA c<strong>on</strong>centrati<strong>on</strong>s in tap water increased from less than 0.0001 mg/l at 50 °C to 0.0006


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 10. Overview <strong>of</strong> BPA migrati<strong>on</strong> from PC into food <strong>and</strong> other food simulants<br />

References Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong> method LOD (mg/l) Results (mg/l) a<br />

Mountfort (1997)<br />

[cited in ECB, 2003]<br />

Mountfort et al.<br />

(1997)<br />

— 2 h sterilizati<strong>on</strong>, 3× rinsing 0.5 min @ 100 °C +<br />

20 min @ 20 °C<br />

— 2 h sterilizati<strong>on</strong>, 3× rinsing 0.5 min @ 100 °C +<br />

20 min @ 20 °C<br />

EURL-FCM (2009) 11 br<strong>and</strong>s H<strong>and</strong> washed with water<br />

+ domestic detergent,<br />

rinsed with tap water, left<br />

to dry<br />

Bayer AG (1999)<br />

[cited in ECB, 2003]<br />

Japan Food<br />

Chemical Research<br />

Foundati<strong>on</strong> (1998)<br />

Japan Food<br />

Chemical Research<br />

Foundati<strong>on</strong> (1998)<br />

Biedermann-Brem,<br />

Grob & Fjeldal<br />

(2008)<br />

2 h @ 70 °C + 24 h<br />

@ 40 °C<br />

20<br />

Fruit juice 250 ml; microwave<br />

(750 W)<br />

Milk formula 250 ml; microwave<br />

(750 W)<br />

Milk formula Preheated<br />

simulant used<br />

0.03


Table 10 (c<strong>on</strong>tinued)<br />

21<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

References Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong> method LOD (mg/l) Results (mg/l) a<br />

Maia et al.<br />

(2009)<br />

1 br<strong>and</strong><br />

(?)<br />

Rinsing with distilled water <strong>and</strong><br />

sterilizati<strong>on</strong><br />

LOD, limit <strong>of</strong> detecti<strong>on</strong>; LOQ, limit <strong>of</strong> quantificati<strong>on</strong>; S/V, surface to volume ratio<br />

a Numbers in parentheses indicate nth successive migrati<strong>on</strong>.<br />

Source: Adapted from Hoekstra & Sim<strong>on</strong>eau (2011)<br />

1 h @ 120 °C Detergent soluti<strong>on</strong> (10<br />

g/l)<br />

Pieces (S/V =<br />

20/dm); oven;<br />

rinsing <strong>of</strong> pieces<br />

with distilled water<br />

between migrati<strong>on</strong><br />

tests<br />

0.005 0.11 (1)<br />

0.024 (2)<br />

0.030 (3)<br />

0.018 (4)


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 11. Overview <strong>of</strong> BPA migrati<strong>on</strong> from PC into oil or similar simulants<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong> method LOD (mg/l) Results (mg/l)<br />

W<strong>on</strong>g, Leo & Seah (2005) 28 br<strong>and</strong>s Not reported<br />

Howe & Borodinsky (1998) Test piece Not reported<br />

8 h @ 100 °C Corn oil Rim (S/V = 6.45/dm); oven 0.0008


Table 12. Overview <strong>of</strong> BPA migrati<strong>on</strong> from PC into ethanol soluti<strong>on</strong>s<br />

23<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong> method LOD (mg/l) Results (mg/l) a<br />

Biles et al.<br />

(1997)<br />

CSL (2004)<br />

[cited in ECB,<br />

2003]<br />

Howe &<br />

Borodinsky<br />

(1998)<br />

W<strong>on</strong>g, Leo &<br />

Seah (2005)<br />

Sim<strong>on</strong>eau<br />

Roeder &<br />

Anklam (2000)<br />

[cited in ECB,<br />

2003]<br />

W<strong>on</strong>g, Leo &<br />

Seah (2005)<br />

Howe &<br />

Borodinsky<br />

(1998)<br />

Biles et al.<br />

(1997)<br />

1 br<strong>and</strong> Not reported<br />

10 days @ 65 °C 8%<br />

ethanol<br />

30 min @ 100 °C 10%<br />

ethanol<br />

2 br<strong>and</strong>s Sterilizati<strong>on</strong> 1 h @ 70 °C 10%<br />

ethanol<br />

Test piece Not reported 6 h @ 100 °C 10%<br />

ethanol<br />

28 br<strong>and</strong>s Not reported 8 h @ 70 °C<br />

10%<br />

ethanol<br />

1 br<strong>and</strong> Not reported 24 h @ 50 °C 10%<br />

ethanol<br />

28 br<strong>and</strong>s Not reported 3 days @ 70 °C 10%<br />

ethanol<br />

Test piece Not reported 10 days @ 49 °C 10%<br />

ethanol<br />

1 br<strong>and</strong> Not reported 10 days @ 65 °C 10%<br />

ethanol<br />

Test pieces; S/V = ~10/dm;<br />

oven; shaking<br />

Test pieces; S/V = ~120/dm;<br />

oven; shaking<br />

Not reported<br />

~0.87<br />

~2.5 (1)<br />

~0.84 (2)<br />

~0.48 (3)<br />

~0.48 (4)<br />

Not reported Not reported


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 12 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong> method LOD (mg/l) Results (mg/l) a<br />

W<strong>on</strong>g, Leo &<br />

Seah (2005)<br />

D’Antu<strong>on</strong>o et al.<br />

(2001)<br />

Kawamura et al.<br />

(1998)<br />

Japan Food<br />

Chemical<br />

Research<br />

Foundati<strong>on</strong><br />

(1998)<br />

EURL-FCM<br />

(2009)<br />

Kubwabo et al.<br />

(2009)<br />

28 br<strong>and</strong>s Not reported 10 days @ 70 °C 10%<br />

ethanol<br />

4 br<strong>and</strong>s Rinsing with distilled<br />

water 2×<br />

2 rice<br />

bowls<br />

15<br />

tableware<br />

2 h @ 80 °C 15%<br />

ethanol<br />

Not reported 30 min @ 60 °C 20%<br />

ethanol<br />

Not reported 30 min @ 60 °C 20%<br />

ethanol<br />

24<br />

Rim (S/V = 6.45/dm); oven 0.0008 mg/dm 2


Table 12 (c<strong>on</strong>tinued)<br />

25<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong> method LOD (mg/l) Results (mg/l) a<br />

Biles et al.<br />

(1997)<br />

Sim<strong>on</strong>eau,<br />

Roeder &<br />

Anklam (2000)<br />

Biles et al.<br />

(1997)<br />

1 br<strong>and</strong> Not reported 10 days @ 65 °C 50%<br />

ethanol<br />

1 br<strong>and</strong> Not reported 24 h @ 50 °C 95%<br />

ethanol<br />

1 br<strong>and</strong> Not reported 7 days @ 65 °C 95%<br />

ethanol<br />

Test pieces; S/V = ~10/dm;<br />

oven; no shaking<br />

Filled with half volume; water<br />

bath horiz<strong>on</strong>tal shaker at 140<br />

cycles/min<br />

Test pieces; S/V = ~10/dm;<br />

oven; no shaking<br />

Not reported ~5.9<br />

0.01


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 13. Overview <strong>of</strong> BPA migrati<strong>on</strong> from PC into 3% acetic acid<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

EURL-FCM (2009) 7 br<strong>and</strong>s Washing with tap water <strong>and</strong><br />

detergent (pH = 6.7), brushing,<br />

sterilizati<strong>on</strong> for 10 min @ 100 °C<br />

Maragou et al. (2008) 6 br<strong>and</strong>s 12 cycles <strong>of</strong> brushing with<br />

detergent; sterilizati<strong>on</strong> for 10 min<br />

@ 100 °C<br />

30 min @ 100 °C 3% acetic<br />

acid<br />

Filled @ boiling +<br />

45 min @ ambient<br />

26<br />

3% acetic<br />

acid<br />

CSL (2004) 2 br<strong>and</strong>s Sterilizati<strong>on</strong> 1 h @ 70 °C 3% acetic<br />

acid<br />

Maragou et al. (2008) 2 br<strong>and</strong>s<br />

10 cycles <strong>of</strong> machine<br />

dishwashing (60 °C) with<br />

detergent; rinsing with distilled<br />

water; sterilizati<strong>on</strong> for 10 min @<br />

95 °C<br />

4 cycles <strong>of</strong> h<strong>and</strong> dishwashing<br />

with brush <strong>and</strong> detergent; rinsing<br />

with distilled water; sterilizati<strong>on</strong><br />

for 10 min @ 95 °C<br />

1 cycle <strong>of</strong> rinsing with distilled<br />

water<br />

2 h @ 70 °C 3% acetic<br />

acid<br />

EURL-FCM (2009) 5 Not reported 2 h @ 70 °C 3% acetic<br />

acid<br />

Hot filling to<br />

capacity<br />

LOD (mg/l) Results (mg/l) a<br />

0.0001 0.000 28 (1)<br />

0.0012 (2)<br />

0.0058 (3)<br />

120–250 ml 0.0018


Table 13 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

D'Antu<strong>on</strong>o et al.<br />

(2001)<br />

Earls, Clay &<br />

Braybrook (2000)<br />

[cited in ECB, 2003]<br />

11 br<strong>and</strong>s H<strong>and</strong>-washed with water <strong>and</strong><br />

domestic detergent, rinsed with<br />

tap water, left to dry<br />

2 h @ 70 °C + 24 h<br />

@ 40 °C<br />

4 br<strong>and</strong>s Rinsing with distilled water 2× 2 h @ 80 °C 3% acetic<br />

acid<br />

21 new <strong>and</strong><br />

12 used<br />

bottles<br />

Steam sterilizati<strong>on</strong> Filled @ boiling +<br />

24 h @ 5 °C + ??<br />

@ 40 °C<br />

27<br />

3% acetic<br />

acid<br />

VWA (2008) 30 Not reported 24 h @ 40 °C 3% acetic<br />

acid<br />

VWA (2005) 22 Not reported 24 h @ 40 °C 3% acetic<br />

acid<br />

Sim & Jianhua (2008) 2 Not reported 24 h @ 40 °C 3% acetic<br />

acid<br />

EURL-FCM (2009) 10 Not reported 24 h @ 40 °C 3% acetic<br />

acid<br />

Sim<strong>on</strong>eau, Roeder &<br />

Anklam (2000)<br />

1 br<strong>and</strong> Not reported 24 h @ 50 °C 3% acetic<br />

acid<br />

Preheated<br />

simulant used<br />

Not reported;<br />

S/V = 10/dm<br />

100 ml;<br />

refrigerator;<br />

boiling water<br />

bath (40 °C)<br />

European<br />

St<strong>and</strong>ard EN<br />

14350-2<br />

European<br />

St<strong>and</strong>ard EN<br />

14350-2<br />

European<br />

St<strong>and</strong>ard EN<br />

14350-2<br />

European<br />

St<strong>and</strong>ard EN<br />

14350-2<br />

Filled with half<br />

volume; water<br />

bath<br />

horiz<strong>on</strong>tal<br />

shaker at 140<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

LOD (mg/l) Results (mg/l) a<br />

0.03 mg/l<br />

(LOQ)<br />

0.0002<br />

(HPLC-VD)<br />

0.01 (HPLC-<br />

DA)<br />


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 13 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Howe & Borodinsky<br />

(1998)<br />

Japan Food Chemical<br />

Research Foundati<strong>on</strong><br />

(1998)<br />

Test piece Not reported 10 days @ 49 °C 3% acetic<br />

acid<br />

15 tableware Not reported 30 min @ 60°C 4% acetic<br />

acid<br />

28<br />

cycles/min<br />

S/V =<br />

6.45/dm; oven<br />

LOD (mg/l) Results (mg/l) a<br />

0.0008<br />

mg/dm 2<br />

(LOQ)<br />


Table 14. Overview <strong>of</strong> BPA migrati<strong>on</strong> from PC into various types <strong>of</strong> water<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Biedermann-Brem<br />

& Grob (2009)<br />

Bottle Not reported<br />

29<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

LOD<br />

(mg/l)<br />

Results (mg/l) a<br />

1 min @ 100 °C Tap water (pH 7.5; 37°f b ) 200 ml; 0.0005


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Ehlert, Beumer &<br />

Groot (2008)<br />

18 br<strong>and</strong>s Immersi<strong>on</strong> in boiling<br />

water for 5 min;<br />

drying for 3 h<br />

1 min after reaching<br />

100 °C + 8 min @<br />

20 °C<br />

Lim et al. (2009) C<strong>on</strong>tainer Not reported Filled @ 100 °C + 10<br />

min @ 20 °C<br />

O. Zoller, Swiss<br />

Federal Office <strong>of</strong><br />

Public Health,<br />

unpublished data,<br />

2004–2005<br />

20 bottles 15 min sterilizati<strong>on</strong> in<br />

boiling water<br />

20 bottles 15 min sterilizati<strong>on</strong> in<br />

boiling water<br />

20 bottles 15 min sterilizati<strong>on</strong> in<br />

water @ 120 °C<br />

Filled @ boiling + ??<br />

min @ 20 °C until<br />

40 °C<br />

1–2 min @ boiling +<br />

?? min @ 20 °C until<br />

40 °C<br />

1–2 min @ boiling +<br />

?? min @ 20 °C until<br />

40 °C<br />

30<br />

HPLC-grade water 100 ml or<br />

200 ml<br />

(bottles ><br />

200 ml);<br />

washing <strong>of</strong><br />

emptied<br />

bottle 3 × 50<br />

ml water for<br />

15 s +<br />

drying for<br />

3 h between<br />

successive<br />

migrati<strong>on</strong><br />

LOD<br />

(mg/l)<br />

0.0001<br />

(SPE-<br />

GC-MS)<br />

Results (mg/l) a<br />


Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Biedermann-Brem<br />

& Grob (2009)<br />

Bottle Not reported 10 min @ 100 °C<br />

Lim et al. (2009) C<strong>on</strong>tainer Not reported<br />

Takahashi (1998)<br />

[cited in ECB,<br />

2003]<br />

MHLW (2010)<br />

Japan Food<br />

Chemical<br />

Research<br />

Foundati<strong>on</strong> (1998)<br />

Filled @ 100 °C + 20<br />

min @ 20 °C<br />

Filled @ 100 °C + 30<br />

min @ 20 °C<br />

31<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

LOD<br />

(mg/l)<br />

Results (mg/l) a<br />

Tap water (pH 7.7; 35°f) 200 ml; 0.0005 0.0075–0.0011<br />

microwave<br />

Tap water (pH 7.5; 37°f) heating<br />

0.023<br />

Boiled tap water (pH 7.5; 37°f)<br />

Boiled tap water 200 ml 0.001<br />

0.14<br />

0.0018<br />

0.0022<br />

2 bottles Not reported 30 min @ 50 °C Water 200 ml Not 0.000 000 8–<br />

reported 0.000 018<br />

1 mug<br />

4 nursing<br />

bottles<br />

8 drinking<br />

bottles<br />

15 eating<br />

utensils<br />

30 min @ 95 °C<br />

Not reported 30 min @ 60 °C Water Not reported 0.000<br />

044 (LC-<br />

MS)<br />

0.000 056<br />


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Yoshida et al.<br />

(2003)<br />

Kawamura et al.<br />

(1998)<br />

Takahashi (1998)<br />

32<br />

LOD<br />

(mg/l)<br />

4 br<strong>and</strong>s Not reported 30 min @ 95 °C Boiling MilliQ water Not reported 5 × 10 −7<br />

4 bottles Not reported 30 min @ 95 °C Water<br />

100 ml; S/V<br />

= 9.1–12/dm<br />

200 ml; S/V<br />

= 9.2–15<br />

3 mugs 150 ml; S/V<br />

= 8.7/dm<br />

Measuring<br />

cup<br />

2 rice bowls<br />

500 ml; S/V<br />

= 5.6/dm<br />

150 ml; S/V<br />

= 6/dm<br />

(HPLC-<br />

CL)<br />

0.0005<br />

Results (mg/l) a<br />

0.000 008–<br />

0.000 19 (1)<br />

0.000 003–<br />

0.000 052 (2)<br />

0.000 001–<br />

0.000 018 (3)<br />


Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

MHLW (2010)<br />

Chang, Chou &<br />

Lee (2005)<br />

D'Antu<strong>on</strong>o et al.<br />

(2001)<br />

4 nursing<br />

bottles<br />

8 drinking<br />

bottles<br />

15 eating<br />

utensils<br />

33<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

LOD<br />

(mg/l)<br />

(SPME-<br />

GC-MS)<br />

Not reported 30 min @ 95 °C Water Not reported 4.4 ×<br />

10 −5<br />

3 bottles Not reported 30 min @ 95 °C +<br />

cooling to 20 °C<br />

4 br<strong>and</strong>s Rinsing with distilled<br />

water 2×<br />

EURL-FCM (2009) 7 br<strong>and</strong>s Washing with tap<br />

water <strong>and</strong> detergent<br />

(pH = 6.7), brushing,<br />

sterilizati<strong>on</strong> for 10<br />

min @ 100 °C<br />

Lazaro et al.<br />

(2009)<br />

1 br<strong>and</strong> Rinsing with distilled<br />

water 2×<br />

(LC-MS)<br />

MilliQ water 150 ml Not<br />

reported<br />

(SPME-<br />

GC-MS)<br />

30 min @ 100 °C Distilled water Not<br />

reported;<br />

S/V = 10/dm<br />

30 min @ 100 °C Dei<strong>on</strong>ized water Filling to<br />

capacity<br />

30 min @ 100 °C Distilled water 250 ml;<br />

oven?<br />

0.0002<br />

(HPLC-<br />

VD)<br />

Results (mg/l) a<br />

(new)<br />

0.000 001–<br />

0.000 006 5 (old)<br />


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Krishnan et al.<br />

(1993)<br />

Maragou et al.<br />

(2008)<br />

1 br<strong>and</strong> Not reported 30 min @ 120–<br />

125 °C; total cycle<br />

time 75 min<br />

6 br<strong>and</strong>s 5 cycles <strong>of</strong> brushing<br />

with detergent;<br />

sterilizati<strong>on</strong> for 10<br />

min @ 100 °C<br />

Filled @ 100 °C + 45<br />

min @ ambient<br />

34<br />

Distilled water? 250 ml; after<br />

10 use<br />

cycles with<br />

boiling tap<br />

water (10<br />

min),<br />

brushing<br />

<strong>and</strong> rinsing;<br />

oven?<br />

Tap water (pH 6.9; total alkalinity<br />

59 mg/l)<br />

Tap water (pH 7.6; total alkalinity<br />

499 mg/l)<br />

250 ml;<br />

oven?<br />

250 ml;<br />

oven?<br />

Distilled water 500 ml;<br />

autoclave<br />

LOD<br />

(mg/l)<br />

ED)<br />

Not<br />

reported<br />

(RA)<br />

Results (mg/l) a<br />

0.0036<br />

0.0037<br />

0.0091<br />

0.003<br />

MilliQ water 120–250 ml 0.0024 0.0039–0.014 (1)<br />

0.0026–0.013 (2)<br />


Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Biedermann-Brem,<br />

Grob & Fjeldal<br />

(2008)<br />

4 br<strong>and</strong>s Not reported 1 h @ 80 °C Tap water (pH 6)<br />

Lim et al. (2009) C<strong>on</strong>tainer Not reported Filled @ 100 °C + 1<br />

h @ 20 °C<br />

Brede et al. (2003) 12 br<strong>and</strong>s Rinsing with boiling<br />

water; simulati<strong>on</strong> <strong>of</strong><br />

use by dishwashing<br />

at pH 10.5–12<br />

Biedermann-Brem<br />

& Grob (2009)<br />

EURL-FCM (2009)<br />

35<br />

100 ml in<br />

bottle,<br />

c<strong>on</strong>tact with<br />

all surfaces<br />

<strong>of</strong> bottle by<br />

inclined<br />

rotati<strong>on</strong> in<br />

water bath<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

LOD<br />

(mg/l)<br />

Results (mg/l) a<br />

(8)<br />


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Maragou et al.<br />

(2008)<br />

D'Antu<strong>on</strong>o et al.<br />

(2001)<br />

2 br<strong>and</strong>s<br />

sterilizati<strong>on</strong> oven; rinsing<br />

<strong>of</strong> pieces<br />

with distilled<br />

water<br />

between<br />

migrati<strong>on</strong><br />

tests<br />

10 cycles <strong>of</strong> machine<br />

dishwashing (60 °C)<br />

with detergent;<br />

rinsing with distilled<br />

water; sterilizati<strong>on</strong><br />

for 10 min @ 95 °C<br />

4 cycles <strong>of</strong> h<strong>and</strong><br />

dishwashing with<br />

brush <strong>and</strong> detergent;<br />

rinsing with distilled<br />

water; sterilizati<strong>on</strong><br />

for 10 min @ 95 °C<br />

1 cycle <strong>of</strong> rinsing<br />

with distilled water<br />

4 br<strong>and</strong>s Rinsing with distilled<br />

water 2×<br />

Lim et al. (2009) C<strong>on</strong>tainer Not reported Filled @ 100 °C + 2<br />

h @ 20 °C<br />

Biedermann-Brem<br />

& Grob (2009)<br />

36<br />

LOD<br />

(mg/l)<br />

2 h @ 70 °C MilliQ water 120–250 ml 0.0024<br />

2 h @ 80 °C Distilled water Not<br />

reported;<br />

S/V = 10/dm<br />

0.0002<br />

(HPLC-<br />

VD)<br />

Results (mg/l) a<br />

0.024 (2)<br />

0.030 (3)<br />

0.018 (4)<br />


Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Lim et al. (2009) C<strong>on</strong>tainer Not reported Filled @ 100 °C + 3<br />

h @ 20 °C<br />

EURL-FCM (2009) 6 br<strong>and</strong>s Washing with tap<br />

water <strong>and</strong> detergent<br />

(pH 6.7), brushing,<br />

sterilizati<strong>on</strong> 10 min<br />

@ 100 °C<br />

Hanai (1997) [cited<br />

in ECB, 2003]<br />

Howe &<br />

Borodinsky (1998)<br />

Kubwabo et al.<br />

(2009)<br />

Biedermann-Brem<br />

& Grob (2009)<br />

Hanai (1997) [cited<br />

in ECB, 2003]<br />

Earls, Clay &<br />

Braybrook (2000)<br />

37<br />

heating<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

LOD<br />

(mg/l)<br />

Boiled tap water 200 ml 0.001 0.0026<br />

4 h @ 100 °C Dei<strong>on</strong>ized water Filling to<br />

capacity<br />

6 br<strong>and</strong>s Not reported 5 h @ 26 °C Purified water Not reported 0.002<br />

(GC-<br />

MS)<br />

Test piece Not reported 6 h @ 100 °C Water S/V =<br />

6.45/dm;<br />

oven<br />

12 br<strong>and</strong>s Rinsing 3× with<br />

HPLC-grade water<br />

Bottle Not reported Overnight @<br />

ambient<br />

6 br<strong>and</strong>s Not reported Filled @ 95 °C +<br />

overnight @ ambient<br />

21 new <strong>and</strong><br />

12 used<br />

bottles<br />

Steam sterilizati<strong>on</strong> Filled @ boiling + 24<br />

h @ 5 °C + ?? @ 40<br />

°C<br />

Results (mg/l) a<br />

0.0001 0.0061–0.026 (1)<br />

0.0094–0.061 (2)<br />

0.0094–0.059 (3)<br />

0.0008<br />

mg/dm 2<br />

(LOQ)<br />

8 h @ 40 °C HPLC-grade water Oven 4 × 10 −8<br />

Tap water (pH 7.4; 22°f) 200 ml<br />

preboiled<br />

water in<br />

bottle<br />

(GC-<br />

MS/MS)<br />

Purified water Not reported 0.002<br />

(GC-<br />

MS)<br />

Water 100 ml;<br />

refrigerator;<br />

boiling water<br />


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Le et al. (2008) 1 br<strong>and</strong> (new<br />

+ old bottles)<br />

Cao & Corriveau<br />

(2008b)<br />

Envir<strong>on</strong>mental<br />

Defence (2008)<br />

[cited in<br />

Envir<strong>on</strong>ment<br />

Canada & Health<br />

Canada, 2008]<br />

Rinsing with 1 litre <strong>of</strong><br />

distilled water;<br />

brushing with<br />

alkaline detergent;<br />

6 rinses with 1 litre <strong>of</strong><br />

distilled water; 2<br />

rinses with 100 ml<br />

HPLC-grade water;<br />

3 rinses with 100 ml<br />

methanol<br />

Bottle heated to 100<br />

°C + filled @ 22 °C +<br />

24 h @ 22 °C<br />

Filled @ boiling + 24<br />

h @ 22 °C<br />

5 br<strong>and</strong>s Rinsing with water Filled @ boiling + 24<br />

h @ 22 °C<br />

38<br />

LOD<br />

(mg/l)<br />

bath (40 °C) (used)<br />

Results (mg/l) a<br />

24 h @ 22 °C HPLC-grade water 100 ml; 0.000 05 0.000 08–<br />

horiz<strong>on</strong>tal<br />

rotati<strong>on</strong> <strong>of</strong><br />

bottle (S/V =<br />

48/dm)<br />

(ELISA) 0.000 36<br />

Boiling tap water Filled to<br />

maximum<br />

capacity<br />

0.0005<br />

(SPME-<br />

GC-MS)<br />

9 bottles Not reported 24 h @ 20 °C Water Not reported Not<br />

reported<br />

Li et al. (2010) 4 br<strong>and</strong>s Not reported 24 h @ 24 °C MilliQ water 240 ml;<br />

water bath;<br />

aluminium<br />

foil against<br />

photolysis<br />

Tan & Mustafa<br />

(2003)<br />

? br<strong>and</strong>s Rinsing with distilled<br />

water<br />

24 h @ 25 °C Distilled water 100 or 250<br />

ml<br />

7 × 10 −7<br />

(SPE-<br />

GC-MS)<br />

0.001<br />

(GC-<br />

MS)<br />

0.0023–0.0046<br />

(new)<br />

0.000 66 (used)<br />

0.0038–0.0077<br />

(new)<br />

0.0019 (used)<br />

0.0017–0.0041<br />

LOD–0.000 06<br />


Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

VWA (2005) 22 According to<br />

instructi<strong>on</strong>s<br />

Sim & Jianhua<br />

(2008)<br />

Filled @ 80 °C +<br />

24 h @ 25 °C<br />

24 h @ 40 °C Water European<br />

St<strong>and</strong>ard EN<br />

14350-2<br />

2 Not reported 24 h @ 40 °C Water European<br />

St<strong>and</strong>ard EN<br />

14350-2<br />

EURL-FCM (2009) 6 br<strong>and</strong>s Washing with tap<br />

water <strong>and</strong> detergent<br />

(pH 6.7), brushing,<br />

sterilizati<strong>on</strong> 10 min<br />

@ 100 °C<br />

Kubwabo et al.<br />

(2009)<br />

12 br<strong>and</strong>s Rinsing 3× with<br />

HPLC-grade water<br />

24 h @ 40 °C Dei<strong>on</strong>ized water European<br />

St<strong>and</strong>ard EN<br />

14350-2<br />

39<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

LOD<br />

(mg/l)<br />

Results (mg/l) a<br />

(used)<br />

LOD–0.000 13<br />

mg/dm 2 (new)<br />

0.000 011–<br />

0.0026 mg/dm 2<br />

(used)<br />

0.0025


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Kubwabo et al.<br />

(2009)<br />

Cao & Corriveau<br />

(2008a)<br />

Envir<strong>on</strong>mental<br />

Defence (2008)<br />

[cited in<br />

Envir<strong>on</strong>ment<br />

Canada & Health<br />

Canada, 2008]<br />

12 br<strong>and</strong>s Rinsing 3× with<br />

HPLC-grade water<br />

3 baby<br />

bottles; 2<br />

reusable<br />

water bottles<br />

Rinsing with boiling<br />

water<br />

Filled @ boiling + 24<br />

h @ 60 °C<br />

Filled @ boiling + 24<br />

h @ 70 °C<br />

40<br />

water bath<br />

horiz<strong>on</strong>tal<br />

shaker at<br />

140<br />

cycles/min<br />

LOD<br />

(mg/l)<br />

HPLC-grade water Oven 4 × 10 −8<br />

(GC-<br />

MS/MS)<br />

Tap water (pH ~7) In oven 0.0005<br />

(SPME-<br />

GC-MS)<br />

9 bottles Not reported 24 h @ 80 °C Water Not reported Not<br />

reported<br />

Li et al. (2010) 4 br<strong>and</strong>s Not reported<br />

2 days @ 40 °C<br />

Results (mg/l) a<br />

0.0018 (range<br />

0.0005–0.0065)<br />

0.032–0.055<br />

0.0043–0.0083<br />

2 h @ 100 °C + 24 h MilliQ water 240 ml; 7 × 10 0.000 034–<br />

@ 24 °C<br />

water bath;<br />

0.0045<br />

2 days @ 24 °C<br />

aluminium<br />

foil against<br />

photolysis<br />

0.000 001 9–<br />

0.000 084 (1)<br />


Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Cao & Corriveau<br />

(2008a)<br />

3 baby<br />

bottles; 2<br />

reusable<br />

water bottles<br />

Le et al. (2008) 1 br<strong>and</strong> (new<br />

+ old bottles)<br />

Cao & Corriveau<br />

(2008a)<br />

3 baby<br />

bottles; 2<br />

reusable<br />

water bottles<br />

Le et al. (2008) 1 br<strong>and</strong> (new<br />

+ old bottles)<br />

Rinsing with boiling<br />

water<br />

Rinsing with 1 litre <strong>of</strong><br />

distilled water;<br />

brushing with<br />

alkaline detergent;<br />

6 rinses with 1 litre <strong>of</strong><br />

distilled water; 2<br />

rinses with 100 ml<br />

HPLC-grade water;<br />

3 rinses with 100 ml<br />

methanol<br />

Rinsing with boiling<br />

water<br />

Rinsing with 1 litre <strong>of</strong><br />

distilled water;<br />

brushing with<br />

alkaline detergent; 6<br />

rinses with 1 litre <strong>of</strong><br />

distilled water; 2<br />

rinses with 100 ml<br />

HPLC-grade water;<br />

Filled @ boiling + 2<br />

days @ 70 °C<br />

41<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

LOD<br />

(mg/l)<br />

Tap water (pH ~7) In oven 0.0005<br />

(SPME-<br />

GC-MS)<br />

3 days @ 22 °C HPLC-grade water 100 ml <strong>and</strong><br />

horiz<strong>on</strong>tal<br />

rotati<strong>on</strong> <strong>of</strong><br />

bottle (S/V =<br />

48/dm)<br />

Filled @ boiling + 3<br />

days @ 70 °C<br />

0.000 05<br />

(ELISA)<br />

Tap water (pH ~7) In oven 0.0005<br />

(SPME-<br />

GC-MS)<br />

5 days @ 22 °C HPLC-grade water 100 ml <strong>and</strong><br />

horiz<strong>on</strong>tal<br />

rotati<strong>on</strong> <strong>of</strong><br />

bottle (S/V =<br />

48/dm)<br />

0.000 05<br />

(ELISA)<br />

Results (mg/l) a<br />

0.000 038–<br />

0.000 25 (2)<br />

0.000 001–<br />

0.000 16 (3)<br />

0.061–0.10<br />

0.000 25–<br />

0.000 79<br />

0.099–0.21<br />

0.000 28–<br />

0.000 72


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

Cao & Corriveau<br />

(2008a)<br />

3 baby<br />

bottles; 2<br />

reusable<br />

water bottles<br />

Le et al. (2008) 1 br<strong>and</strong> (new<br />

+ old bottles)<br />

Mountfort (1997);<br />

Mountfort et al.<br />

(1997)<br />

Kubwabo et al.<br />

(2009)<br />

Howe &<br />

Borodinsky (1998)<br />

3 rinses with 100 ml<br />

methanol<br />

Rinsing with boiling<br />

water<br />

Rinsing with 1 litre <strong>of</strong><br />

distilled water;<br />

brushing with<br />

alkaline detergent;<br />

6 rinses with 1 litre <strong>of</strong><br />

distilled water; 2<br />

rinses with 100 ml<br />

HPLC-grade water;<br />

3 rinses with 100 ml<br />

methanol<br />

24 br<strong>and</strong>s 2 h sterilizati<strong>on</strong>, 3×<br />

rinsing<br />

17 br<strong>and</strong>s Rinsing 3× with<br />

HPLC-grade water<br />

Filled @ boiling + 6<br />

days @ 70 °C<br />

42<br />

LOD<br />

(mg/l)<br />

Tap water (pH ~7) In oven 0.0005<br />

(SPME-<br />

GC-MS)<br />

7 days @ 22 °C HPLC-grade water 100 ml <strong>and</strong><br />

horiz<strong>on</strong>tal<br />

rotati<strong>on</strong> <strong>of</strong><br />

bottle (S/V =<br />

48/dm)<br />

10 days @ 40 °C Distilled water 250 ml;<br />

microwave<br />

(750 W)<br />

0.000 05<br />

(ELISA)<br />

Results (mg/l) a<br />

0.22–0.52<br />

0.03


Table 14 (c<strong>on</strong>tinued)<br />

Reference Samples Pretreatment Time/temperature Simulant Migrati<strong>on</strong><br />

method<br />

5 gall<strong>on</strong><br />

carboy (~19<br />

litres)<br />

43<br />

oven<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

LOD<br />

(mg/l)<br />

Results (mg/l) a<br />

Not reported 21 days @ ambient No shaking 0.0001–0.0002<br />

Mercea (2009) 8 bottles Not reported 54 days @ 54 °C Dei<strong>on</strong>ized water Not<br />

reported;<br />

heating in<br />

oven<br />

Biles et al. (1997) 5 gall<strong>on</strong><br />

carboy (~19<br />

litres)<br />

Szymanski,<br />

Rykowska &<br />

Wasiak (2006)<br />

MHLW (2010) 12 PC tanks<br />

<strong>of</strong> 12 litres<br />

Not reported<br />

3 bottles No Ambient during<br />

storage<br />

Not reported Ambient during<br />

storage<br />

0.001 0.10–0.15<br />

84 days @ ambient Water No shaking Not 0.0004–0.0005<br />

273 days @ ambient<br />

reported<br />

0.0046–0.0047<br />

Mineral water Not reported Not<br />

reported<br />

Water Not reported 4.4 ×<br />

10 −5<br />

0.000 40–<br />

0.000 52<br />


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

mg/l at boiling temperature, whereas the c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> BPA in boiled tap water (pH <strong>of</strong><br />

about 9.5) increased from less than 0.002 mg/l at 50 °C to 0.033 mg/l at boiling temperature.<br />

Biedermann-Brem, Grob & Fjeldal (2008) showed that a higher pH clearly increases the<br />

release <strong>of</strong> BPA <strong>and</strong> is independent from other physical c<strong>on</strong>siderati<strong>on</strong>s such as exposure time,<br />

temperature <strong>and</strong> heating mode (microwave/thermal oven). This has special relevance if <strong>on</strong>e<br />

c<strong>on</strong>siders that some food preparati<strong>on</strong> processes may cause the pH to increase above 8, which<br />

is normally the highest value for food. An example is boiling tap water in a pan or microwave<br />

for several minutes, during which carb<strong>on</strong> dioxide can be released, c<strong>on</strong>sequently increasing<br />

the pH.<br />

Biedermann-Brem & Grob (2009) <strong>and</strong> Mercea (2009) also showed that the mineral c<strong>on</strong>tent <strong>of</strong><br />

the simulant may influence BPA release. However, they failed to show clear evidence that the<br />

effect was really caused by the mineral compositi<strong>on</strong> <strong>and</strong> not by the pH.<br />

Maia et al. (2010) <strong>and</strong> Sajiki & Y<strong>on</strong>ekubo (2004) reported <strong>on</strong> the aminolysis <strong>of</strong> PC by some<br />

amines at 121 °C for 1 hour <strong>and</strong> 37 °C as a functi<strong>on</strong> <strong>of</strong> time, respectively. The release was<br />

significantly higher compared with sodium hydroxide soluti<strong>on</strong>s at similar pH <strong>of</strong> 10–11.<br />

Aminolysis was not detected at 25 °C for 5 days. If <strong>on</strong>e corrects the release data for a realistic<br />

surface to volume ratio <strong>of</strong> a baby bottle <strong>of</strong> about 8/dm <strong>and</strong> uses a 30-minute c<strong>on</strong>tact time, <strong>on</strong>e<br />

can calculate BPA c<strong>on</strong>centrati<strong>on</strong>s below 0.01 mg/l from the glycine <strong>and</strong> methi<strong>on</strong>ine data <strong>of</strong><br />

Sajiki & Y<strong>on</strong>ekubo (2004). These are lower than the reported LODs for milk (see above) for<br />

c<strong>on</strong>tact at 100 °C for 0.5 minute in a microwave oven <strong>and</strong> a cooling-down period <strong>of</strong> 20<br />

minutes <strong>and</strong> for c<strong>on</strong>tact at 70 °C for 2 hours followed by 40 °C for 24 hours. 1,4-<br />

Diaminobutane, 1,3-cyclohexanebis(methylamine), trimethylamine <strong>and</strong> 1,3-xylylenediamine<br />

caused much higher releases <strong>of</strong> BPA at 121 °C for 1 hour, as calculated from the data <strong>of</strong><br />

Sajiki & Y<strong>on</strong>ekubo (2004). It is evident that aminolysis <strong>of</strong> PC by a few amines is possible;<br />

however, the levels <strong>of</strong> these amines in milk may not be relevant for release <strong>of</strong> BPA.<br />

Some scientists studied the difference in BPA releases from new <strong>and</strong> used PC baby bottles<br />

<strong>and</strong> came to c<strong>on</strong>tradictory c<strong>on</strong>clusi<strong>on</strong>s (Tan & Mustafa, 2003; Le et al., 2008; Mercea, 2009).<br />

Furthermore, the authors did not report whether the used bottles were <strong>of</strong> the same producti<strong>on</strong><br />

lot as the new <strong>on</strong>es, so their experiments cannot be taken as c<strong>on</strong>clusive <strong>on</strong> whether the release<br />

<strong>of</strong> BPA would decrease or increase with age <strong>of</strong> the bottle.<br />

Repeated testing with the same bottles clearly dem<strong>on</strong>strated that the release decreased or at<br />

least remained c<strong>on</strong>stant during successive release experiments with water (Kawamura et al.,<br />

1998; Sun et al., 2000; Yoshida et al., 2003; Ehlert, Beumer & Groot, 2008; Maragou et al.,<br />

2008; EURL-FCM, 2009; Lazaro et al., 2009; Maia et al., 2009). The same observati<strong>on</strong> was<br />

made with 10% aqueous ethanol (Biles et al., 1997; ECB, 2008). One EU Member State<br />

laboratory (EURL-FCM, 2009) observed an increase in the release <strong>of</strong> BPA into 3% acetic<br />

acid during successive experiments at 100 °C for 30 minutes.<br />

Washing the bottles also induces chemical ageing <strong>of</strong> the internal surface, but experimental<br />

results <strong>on</strong> this topic are not homogeneous. Both Biedermann-Brem, Grob & Fjeldal (2008)<br />

<strong>and</strong> Mercea (2009) observed that the bottles released lower amounts <strong>of</strong> BPA into aqueous<br />

food simulants after washing. In c<strong>on</strong>trast, Brede et al. (2003) observed an increase in BPA<br />

levels with washing. To explain the discrepancies, it has been speculated that the pH <strong>of</strong> the<br />

detergent soluti<strong>on</strong> could be crucial, but the rinsing after washing before drying the bottle may<br />

44


45<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

also have an effect. Manual brushing for cleaning the bottles does not increase the amount <strong>of</strong><br />

BPA released (Maragou et al., 2008).<br />

C<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s affecting the release <strong>of</strong> BPA from PC are as follows:<br />

• Release <strong>of</strong> BPA from PC into aqueous liquids is caused by diffusi<strong>on</strong> <strong>and</strong> hydrolysis <strong>of</strong> the<br />

PC, catalysed by hydroxide.<br />

• Main parameters affecting the release <strong>of</strong> BPA are c<strong>on</strong>tact time, temperature <strong>and</strong> pH <strong>of</strong> the<br />

food simulant, all having a positive correlati<strong>on</strong>.<br />

• Dissoluti<strong>on</strong> <strong>of</strong> scale during boiling <strong>of</strong> water in the PC bottle may raise the c<strong>on</strong>centrati<strong>on</strong><br />

<strong>of</strong> BPA due to the rise in the pH.<br />

• Brushing <strong>of</strong> the bottle does not seem to increase the release <strong>of</strong> BPA.<br />

• The effect <strong>of</strong> ageing is difficult to estimate, as studies suggesting this effect were not<br />

based <strong>on</strong> experiments with new <strong>and</strong> used bottles <strong>of</strong> the same producti<strong>on</strong> lot.<br />

• Residual alkaline detergent remaining <strong>on</strong> the surface <strong>of</strong> the baby bottle after dishwashing<br />

may increase the release <strong>of</strong> BPA.<br />

• Some food preparati<strong>on</strong> processes increase the pH above the normal pH <strong>of</strong> food, causing<br />

an increase <strong>of</strong> the release <strong>of</strong> BPA.<br />

• The possible effect <strong>of</strong> the mineral compositi<strong>on</strong> <strong>of</strong> the aqueous food simulant <strong>on</strong> the<br />

release <strong>of</strong> BPA is not clear to date.<br />

As part <strong>of</strong> the Japanese survey discussed above, MHLW (2010) also reported <strong>on</strong> BPA<br />

migrati<strong>on</strong> from a total <strong>of</strong> 68 PC articles as follows (number <strong>of</strong> samples): nursing bottles (4),<br />

drinking bottles (8), eating c<strong>on</strong>tainers (41), eating utensils (15) <strong>and</strong> teethers (5). The articles<br />

were filled with water (volume not given) or, for the eating utensils <strong>and</strong> teethers, covered<br />

with water at 2 ml/cm 2 . The testing c<strong>on</strong>diti<strong>on</strong>s included water at 60 ºC for 30 minutes <strong>and</strong><br />

95 ºC for 30 minutes. The LOD was reported as 0.044 µg/l, <strong>and</strong> the LDL was reported as 0.5<br />

µg/l. BPA was not detected in the nursing bottles at both temperatures. BPA was detected in<br />

the extract from <strong>on</strong>e <strong>of</strong> eight drinking bottles at 60 ºC (at 50 µg/l) <strong>and</strong> four <strong>of</strong> eight bottles at<br />

95 ºC (range <strong>of</strong> 1.3–80 µg/l). BPA was detected in extracts from 5 <strong>of</strong> 41 c<strong>on</strong>tainers at 60 ºC<br />

(0.6–2.1 µg/l) <strong>and</strong> 8 <strong>of</strong> 41 c<strong>on</strong>tainers at 95 ºC (0.5–5.5 µg/l). BPA was detected in extracts<br />

from 2 <strong>of</strong> 15 utensils at 60 ºC (0.6–1.7 µg/l) <strong>and</strong> 7 <strong>of</strong> 15 utensils at 95 ºC (0.6–5.7 µg/l). BPA<br />

was detected in extracts from three <strong>of</strong> five teethers at 60 ºC (0.5–0.9 µg/l) <strong>and</strong> four <strong>of</strong> five<br />

teethers at 95 ºC (0.9–2.3 µg/l). This is difficult to interpret, as the migrati<strong>on</strong> values were<br />

expressed relative to the extracts <strong>and</strong> the volume was not specified. A rati<strong>on</strong>ale for the high<br />

BPA levels from the <strong>on</strong>e drinking bottle was not provided.<br />

The unpublished study from China discussed above (J. Xiao, B. Shao & Y.N. Wu, Chinese<br />

Center for Disease C<strong>on</strong>trol <strong>and</strong> Preventi<strong>on</strong>, unpublished data, 2010) also reported <strong>on</strong> the<br />

analysis <strong>of</strong> 15 plastic articles, including plastic boxes, infant bottles <strong>and</strong> water cups, collected<br />

from supermarkets in Beijing. The articles were c<strong>on</strong>structed from PC, PS or polypropylene<br />

(PP). The articles were tested using 65% ethanol at 60 ºC for 3 hours. The analysis was<br />

c<strong>on</strong>ducted using LC-MS/MS, but no additi<strong>on</strong>al informati<strong>on</strong> was reported <strong>on</strong> the method. BPA<br />

was detected in extracts from 13 <strong>of</strong> the 15 samples at c<strong>on</strong>centrati<strong>on</strong>s ranging from 0.13 to<br />

0.99 mg/kg. The migrati<strong>on</strong> values were expressed relative to the extracts, <strong>and</strong> the volumes<br />

were not specified. We note that the BPA c<strong>on</strong>centrati<strong>on</strong>s for the PC articles were not<br />

significantly different from those for the n<strong>on</strong>-PC articles. This was not discussed in the<br />

report.


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

2.2.2 Epoxy resins<br />

A few studies are available <strong>on</strong> BPA migrati<strong>on</strong> from epoxy coatings into “other foods” <strong>and</strong><br />

simulants, in additi<strong>on</strong> to studies attempting to elucidate the effects <strong>of</strong> can c<strong>on</strong>tents, processing<br />

time <strong>and</strong> temperature, storage time <strong>and</strong> temperature, <strong>and</strong> even can damage.<br />

(a) “Other foods” <strong>and</strong> simulants<br />

Larroque, Brun & Blaise (1989) evaluated BPA migrati<strong>on</strong> from wine vats coated with epoxy<br />

resins. In <strong>on</strong>e study, migrati<strong>on</strong> <strong>of</strong> BPA up to 160 mg/kg resin into wine simulants was<br />

reported after 4 years from resins applied to glass. In another study, BPA migrati<strong>on</strong> <strong>of</strong> 0.7–<br />

1.8 mg/kg resin into wine simulants was reported after 3 years from resins applied to an<br />

aluminium support, whereas BPA migrati<strong>on</strong> <strong>of</strong> 113 mg/kg resin after 1 year was reported<br />

from resins applied to a glass support. The authors suggested a BPA migrati<strong>on</strong> <strong>of</strong> 100 mg/kg<br />

resin with a 1500-litre vat lined with 10 kg resin, corresp<strong>on</strong>ding to a BPA c<strong>on</strong>centrati<strong>on</strong> in<br />

the wine <strong>of</strong> 650 µg/l. EFSA (2006) noted that the highest migrati<strong>on</strong> values appeared to be<br />

from degraded resins. They c<strong>on</strong>cluded that the high migrati<strong>on</strong> values could be attributed to<br />

resin deteriorati<strong>on</strong> with time.<br />

Brenn-Struckh<strong>of</strong>ova & Cichna-Markl (2006) reported <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in wine<br />

available in Austria. The wines were from vats (steel, wood <strong>and</strong> plastic), glass bottles <strong>and</strong><br />

cart<strong>on</strong>s, with storage times ranging from 0.25 to 11 m<strong>on</strong>ths. In 13 <strong>of</strong> the 59 wine samples, the<br />

BPA c<strong>on</strong>centrati<strong>on</strong> was below the LOQ <strong>of</strong> 0.2 µg/l. In seven samples, BPA c<strong>on</strong>centrati<strong>on</strong>s<br />

ranged from 0.2 to 0.5 µg/l. The mean BPA c<strong>on</strong>centrati<strong>on</strong> for all wine samples above the<br />

LOQ was 0.58 µg/l. The highest BPA c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> 2.1 µg/l was reported for <strong>on</strong>e sample<br />

stored for 10.5 m<strong>on</strong>ths in a steel vat. EFSA (2006) c<strong>on</strong>cluded that no specific scenario is<br />

needed to account for BPA migrati<strong>on</strong> into wine.<br />

Bae, Je<strong>on</strong>g & Lee (2002) studied BPA migrati<strong>on</strong> into water from three different epoxyphenolic<br />

resins. BPA c<strong>on</strong>centrati<strong>on</strong>s in water ranged from 0.1 to 1734 µg/m 2 <strong>of</strong> coatings.<br />

BPA leaching was shown to increase with an increase in water temperature.<br />

Kang & K<strong>on</strong>do (2002b) analysed 26 canned pet food samples (15 cat food <strong>and</strong> 11 dog food)<br />

available in Japan. BPA c<strong>on</strong>centrati<strong>on</strong>s ranged from 13 to 136 µg/kg in cat food <strong>and</strong> from 11<br />

to 206 µg/kg in dog food.<br />

(b) Can processing & storage<br />

Goods<strong>on</strong> et al. (2004) investigated the effects <strong>of</strong> different storage c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> can damage<br />

<strong>on</strong> the migrati<strong>on</strong> <strong>of</strong> BPA into foods. Empty coated cans were filled with four foods (soup,<br />

minced beef, evaporated milk <strong>and</strong> carrots) <strong>and</strong> a food simulant (10% ethanol), sealed,<br />

thermally processed, then stored at three different temperatures (5 ºC, 20 ºC <strong>and</strong> 40 ºC) for up<br />

to 9 m<strong>on</strong>ths. Fifty per cent <strong>of</strong> the cans were dented. The authors reported that 1) most <strong>of</strong> the<br />

BPA migrati<strong>on</strong> (80–100% total) occurred during can processing, 2) there was no increase in<br />

BPA levels with extended storage or can damage <strong>and</strong> 3) there was no noticeable difference in<br />

BPA migrati<strong>on</strong> into the foods <strong>and</strong> simulant.<br />

Kang & K<strong>on</strong>do (2002a) also investigated BPA migrati<strong>on</strong> from prepared decaffeinated <strong>and</strong><br />

n<strong>on</strong>-decaffeinated instant c<strong>of</strong>fee heated in coated cans (121 ºC for 30 minutes). BPA<br />

migrati<strong>on</strong> into water (no decaffeinated or n<strong>on</strong>-decaffeinated instant c<strong>of</strong>fee) ranged from 9 to<br />

46


47<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

31 ng/ml (average 14.1 ng/ml), whereas BPA migrati<strong>on</strong> from decaffeinated instant c<strong>of</strong>fee<br />

ranged from 33 to 107 ng/ml (average 66.2 ng/ml), <strong>and</strong> that from n<strong>on</strong>-decaffeinated instant<br />

c<strong>of</strong>fee ranged from 50 to 134 ng/ml (average 84.0 ng/ml). The authors c<strong>on</strong>cluded that BPA<br />

migrati<strong>on</strong> increased with the increasing caffeine c<strong>on</strong>tent <strong>of</strong> the soluti<strong>on</strong>s.<br />

Kang, Kito & K<strong>on</strong>do (2003) also studied BPA migrati<strong>on</strong> from identical coated cans as a<br />

functi<strong>on</strong> <strong>of</strong> c<strong>on</strong>tainer c<strong>on</strong>tents (water, glucose, sodium chloride <strong>and</strong> vegetable oil), heating<br />

time <strong>and</strong>/or temperature. Cans c<strong>on</strong>taining 5–20% glucose soluti<strong>on</strong>, 1–10% sodium chloride<br />

soluti<strong>on</strong> <strong>and</strong> vegetable oils (corn, olive <strong>and</strong> soya bean oil) were heated at 121 ºC for 30<br />

minutes. Cans c<strong>on</strong>taining <strong>on</strong>ly water (c<strong>on</strong>trols) were heated at 105 ºC for 30 minutes <strong>and</strong> at<br />

121 ºC for 15, 30 <strong>and</strong> 60 minutes, respectively. The cans c<strong>on</strong>taining water exhibited a noted<br />

increase (about 4 times) <strong>on</strong> increasing the temperature to 121 ºC. When the cans were heated<br />

at 121 ºC, the presence <strong>of</strong> 1–10% sodium chloride, 5–20% glucose <strong>and</strong> vegetable oils greatly<br />

increased the migrati<strong>on</strong> <strong>of</strong> BPA from the cans in comparis<strong>on</strong> with the water c<strong>on</strong>trols. The<br />

authors c<strong>on</strong>cluded that 1) temperature was more important than heating time <strong>on</strong> BPA<br />

migrati<strong>on</strong> <strong>and</strong> 2) the presence <strong>of</strong> 1–10% sodium chloride or vegetable oils greatly increased<br />

the migrati<strong>on</strong> <strong>of</strong> BPA from the cans.<br />

Kawamura et al. (2001) reported <strong>on</strong> BPA migrati<strong>on</strong> from four cans (three with BPA epoxies<br />

in the ends or side seams, <strong>on</strong>e with BPA in interior body) into various simulants <strong>and</strong> under<br />

various test c<strong>on</strong>diti<strong>on</strong>s. No BPA migrati<strong>on</strong> was observed into water at 60 ºC <strong>and</strong> 95 ºC for 30<br />

minutes, into 20% ethanol at 60 ºC for 30 minutes or into n-heptane at 25 ºC for 60 minutes.<br />

However, BPA levels in water ranged from 35 to 124 ng/ml when cans were heated at 120 ºC<br />

for 30 minutes (water was the <strong>on</strong>ly simulant tested at this temperature). The authors<br />

c<strong>on</strong>cluded that BPA migrati<strong>on</strong> requires heating to temperatures above 105 ºC.<br />

Munguia-Lopez & Soto-Valdez (2001) studied the effects <strong>of</strong> heat processing <strong>and</strong> storage time<br />

(up to 70 days) <strong>on</strong> BPA migrati<strong>on</strong> from coatings <strong>of</strong> two cans (jalapeno pepper <strong>and</strong> tuna) into<br />

distilled water (i.e. aqueous food simulant) under various processing c<strong>on</strong>diti<strong>on</strong>s. For tuna<br />

cans, BPA levels (µg/kg) were as follows (days at 25 ºC):


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

at 160 days. The highest BPA level found in jalapeno peppers cans, surveyed from three<br />

supermarkets, was 5.6 µg/kg.<br />

In the sec<strong>on</strong>d follow-up study, Munguia-Lopez et al. (2005) studied the effect <strong>of</strong> heat<br />

processing, storage time <strong>and</strong> temperature <strong>on</strong> BPA migrati<strong>on</strong> from organosol, epoxy <strong>and</strong><br />

combinati<strong>on</strong> can coatings into sunflower oil (i.e. fatty food simulant) <strong>and</strong> tuna. For the<br />

organosol coating, BPA levels ranged from 403.6 to 646.5 µg/kg in sunflower oil following<br />

heat processing (121 ºC for 90 minutes) <strong>and</strong> storage at 25 ºC for up to 160 days. For the<br />

epoxy coating, BPA levels ranged from 11.3 to 138.4 µg/kg in sunflower oil following heat<br />

processing (111 ºC for 135 minutes) <strong>and</strong> storage at 25 ºC over 1 year. For the combinati<strong>on</strong><br />

coatings, BPA levels were below the LOQ (10.0 µg/kg) in sunflower oil following heat<br />

processing (121 °C for 50 minutes) <strong>and</strong> storage at 25 ºC for up to 1 year. Migrati<strong>on</strong> <strong>of</strong> BPA to<br />

tuna ranged from less than 7.1 to 105.4 µg/kg during l<strong>on</strong>g-term storage at 25 ºC. BPA levels<br />

in tuna cans purchased from three local supermarkets ranged from less than 7.1 to 102.7<br />

µg/kg. The authors c<strong>on</strong>cluded that the highest BPA migrati<strong>on</strong> levels were found following<br />

heat processing at temperatures as high as 121 ºC <strong>and</strong> at times as l<strong>on</strong>g as 90 minutes.<br />

Takao et al. (2002) studied nine different food cans packed with water <strong>and</strong> processed at 80 ºC<br />

or 100 ºC for 30 minutes. The food cans c<strong>on</strong>tained epoxies <strong>on</strong> the body <strong>and</strong>/or seams. Low<br />

BPA levels were detected in water from all unheated cans, with BPA levels less than 5 µg/l<br />

for all cans <strong>and</strong> both temperatures, except for <strong>on</strong>e (32 µg/l). The authors c<strong>on</strong>cluded that<br />

reducing the thermal processing temperature to 80 ºC could reduce the BPA c<strong>on</strong>centrati<strong>on</strong> by<br />

up to two thirds. The can that recorded the highest BPA c<strong>on</strong>centrati<strong>on</strong> in water after heating<br />

was found to have epoxies <strong>on</strong> all comp<strong>on</strong>ents (lid, bottom <strong>and</strong> body).<br />

As part <strong>of</strong> the Japanese survey discussed above, MHLW (2010) also studied the migrati<strong>on</strong> <strong>of</strong><br />

BPA from 25 empty cans coated with various epoxies (nine cans), vinyl (six cans), C enamel<br />

(four cans) or an unidentified laminate (three cans) or uncoated (three cans) that were filled<br />

with water, sealed <strong>and</strong> processed at 95 ºC <strong>and</strong> 121 °C for 30 minutes. The LOD was reported<br />

as 0.044 ng/ml, <strong>and</strong> the LOQ was reported as 1 ng/ml. BPA was not detected in water from<br />

the three laminates, but it was detected in water from 15 <strong>of</strong> the 22 remaining samples,<br />

including those not manufactured from materials c<strong>on</strong>taining BPA, at c<strong>on</strong>centrati<strong>on</strong>s ranging<br />

from less than 1 to 6 ng/ml. A rati<strong>on</strong>ale for this observati<strong>on</strong> was not given in the report.<br />

2.2.3 <str<strong>on</strong>g>Paper</str<strong>on</strong>g> <strong>and</strong> paperboard<br />

There are few studies reporting <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in food packaged or packed in paper<br />

<strong>and</strong> paperboard c<strong>on</strong>tainers, in additi<strong>on</strong> to a few studies evaluating BPA in wastewaters from<br />

paper recycling processes <strong>and</strong> BPA levels in thermal paper. The results <strong>of</strong> these studies are<br />

summarized in Table 15.<br />

(a) Food packaged in paper <strong>and</strong> board<br />

Vinggaard et al. (2000) reported <strong>on</strong> the analysis <strong>of</strong> 20 different br<strong>and</strong>s <strong>of</strong> kitchen paper<br />

towels, 9 made from recycled paper <strong>and</strong> 11 from virgin paper, obtained in Denmark. Ethanol<br />

extracts from paper towels made with virgin paper c<strong>on</strong>tained no or negligible c<strong>on</strong>centrati<strong>on</strong>s<br />

<strong>of</strong> BPA less than the LOD <strong>of</strong> 0.2 mg/kg. In c<strong>on</strong>trast, paper towels made from recycled paper<br />

had BPA levels ranging from 0.6 to 24 mg/kg paper.<br />

48


Table 15. Summary <strong>of</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in paper/board <strong>and</strong> process water<br />

49<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Reference Medium Locati<strong>on</strong> C<strong>on</strong>centrati<strong>on</strong> Samples<br />

Vinggaard et al.<br />

(2000)<br />

<str<strong>on</strong>g>Paper</str<strong>on</strong>g> towels Denmark


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

half <strong>of</strong> the board samples at levels ranging from 0.05 to 1817 µg/kg. BPA was present, but<br />

less frequent <strong>and</strong> abundant, in the paper samples. BPA was detected in 40% <strong>of</strong> the paper<br />

samples examined, at levels ranging from 0.08 to 188 µg/kg paper.<br />

Sajiki et al. (2007) evaluated BPA levels in foods sold in Japanese markets. BPA<br />

c<strong>on</strong>centrati<strong>on</strong>s ranged from 0 to 1 µg/kg for 16 foods in paper c<strong>on</strong>tainers, compared with 0–<br />

842 µg/kg for 48 canned foods <strong>and</strong> 0–14 µg/kg for 23 foods in plastic c<strong>on</strong>tainers.<br />

(b) Process water<br />

Fukazawa et al. (2001) reported <strong>on</strong> BPA in the effluents from eight papermaking plants in<br />

Shizuoka, Japan. BPA levels in the final effluents ranged from 8 to 370 µg/l for the eight<br />

plants.<br />

In a follow-up study, Fukazawa et al. (2002) reported BPA in the effluents from 20 pulping<br />

processes for waste paper c<strong>on</strong>taining thermal paper <strong>and</strong>/or other printed paper in Shizuoka,<br />

Japan. BPA was detected in the effluent from all plants at levels ranging from 0.2 to 370 µg/l<br />

(average <strong>of</strong> 59 µg/l). BPA levels were 0.2 <strong>and</strong> 0.4 µg/l at two plants using <strong>on</strong>ly virgin pulp.<br />

In another study, Terasaki et al. (2007) detected eight phenolics (<strong>on</strong>e <strong>of</strong> which was BPA) in<br />

paper recycling process water from a papermaking plant in Japan. The water samples were<br />

obtained from the effluent <strong>of</strong> the process <strong>and</strong> downstream areas. The detected levels for all<br />

eight phenolics were up to 270 µg/l <strong>and</strong> 230 µg/g in water samples <strong>and</strong> sediment samples,<br />

respectively, obtained from both the outfall <strong>of</strong> the paper recycling process water <strong>and</strong> its<br />

downstream areas.<br />

Furhacker, Scharf & Weber (2000) m<strong>on</strong>itored the BPA levels in industrial, household <strong>and</strong><br />

municipal influents, as well as the treatment effluent <strong>of</strong> a wastewater plant, in a town in<br />

Lower Austria. The industrial point sources showed a maximum BPA level <strong>of</strong> 72 µg/l for the<br />

paper plant, with BPA levels in the influents <strong>of</strong> a wood <strong>and</strong> metal company <strong>and</strong> a chemical<br />

company in the range <strong>of</strong> 35–50 µg/l.<br />

Latorre et al. (2007) examined the efficiency <strong>of</strong> several laboratory-scale treatments (aerobic,<br />

anaerobic <strong>and</strong> oz<strong>on</strong>e, or combinati<strong>on</strong>s) using two packaging board mill whitewaters in Spain.<br />

BPA levels in the water ranged from 13 to 1253 mg/l for mill A <strong>and</strong> from 101 to 429 mg/l for<br />

mill B.<br />

Rigol et al. (2002) reported BPA levels ranging from 54 to 110 µg/l in process water<br />

collected at various points in a papermaking plant in Spain.<br />

Lee & Peart (2000) reported <strong>on</strong> a large-scale study <strong>on</strong> BPA in Canadian municipal <strong>and</strong><br />

industrial wastewater <strong>and</strong> sludge. About 200 samples were collected, including those from 31<br />

sewage treatment plants <strong>and</strong> 15 pulp <strong>and</strong> paper mills across Canada, as well as 13 industrial<br />

facilities in the Tor<strong>on</strong>to area. BPA was detected in all 72 sewage samples, with<br />

c<strong>on</strong>centrati<strong>on</strong>s ranging from 0.080 to 4.98 µg/l (median 0.329 µg/l) for the influent <strong>and</strong> from<br />

0.010 to 1.08 µg/l (median 0.136 µg/l) for the effluent. The median reducti<strong>on</strong> rate was 68%.<br />

Levels <strong>of</strong> BPA accumulati<strong>on</strong> in sewage sludge, for the 50 samples tested, ranged from 0.033<br />

to 36.7 µg/l, <strong>on</strong> a dry weight basis.<br />

50


51<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

A wide range <strong>of</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s, from 0.23 to 149.2 µg/l, was observed for the<br />

wastewater collected from selected industrial facilities in the Tor<strong>on</strong>to area. Whereas<br />

relatively high BPA levels were found in some <strong>of</strong> the primary treated effluent collected from<br />

the deinking mills, BPA c<strong>on</strong>centrati<strong>on</strong>s in the sec<strong>on</strong>dary treated effluent <strong>of</strong> all pulp <strong>and</strong> paper<br />

mills were low, with a range from less than 0.005 to 0.406 µg/l. Except for the samples<br />

derived from a few deinking mills, BPA c<strong>on</strong>taminati<strong>on</strong> in pulp <strong>and</strong> paper mill sludge was<br />

either low or undetected (Lee & Peart, 2000).<br />

(c) Thermal paper<br />

More recently, a few studies have appeared <strong>on</strong> the direct analysis <strong>of</strong> thermal paper for BPA<br />

c<strong>on</strong>centrati<strong>on</strong>s.<br />

Biedermann, Tschudin & Grob (2010) reported <strong>on</strong> the analysis <strong>of</strong> 13 thermal printing papers,<br />

c<strong>on</strong>sisting <strong>of</strong> receipts from various shops <strong>and</strong> chromatographic recorders, obtained in<br />

Switzerl<strong>and</strong>. Eleven <strong>of</strong> the 13 thermal printing papers c<strong>on</strong>tained BPA at levels <strong>of</strong> 8–17 mg/g.<br />

The investigators reported that <strong>on</strong> dermal c<strong>on</strong>tact for 5 sec<strong>on</strong>ds, roughly 1 µg BPA (0.2–6<br />

µg) was transferred to the forefinger <strong>and</strong> the middle finger <strong>of</strong> dry skin, <strong>and</strong> about 10 times<br />

more if the fingers were wet or greasy.<br />

EWG (2010) reported <strong>on</strong> the analysis <strong>of</strong> 36 printed receipts collected from fast food<br />

restaurants, large retailers, grocery stores, gas stati<strong>on</strong>s <strong>and</strong> post <strong>of</strong>fices in seven states <strong>of</strong> the<br />

USA <strong>and</strong> Washingt<strong>on</strong>, DC. They reported that 40% <strong>of</strong> the receipts c<strong>on</strong>tained 0.8–3% BPA <strong>on</strong><br />

a weight basis.<br />

Mendum et al. (2010) recently reported <strong>on</strong> the analysis <strong>of</strong> 10 blank cash register receipts<br />

obtained from businesses in suburban Bost<strong>on</strong>, Massachusetts, USA. BPA was not detected in<br />

2 <strong>of</strong> the 10 receipts (LOD <strong>of</strong> 0.09%), was detected at a level <strong>of</strong> 0.30% in 1 <strong>of</strong> 10 receipts <strong>and</strong><br />

was detected at levels ranging from 0.83% to 1.7% in 7 <strong>of</strong> 10 receipts. A level <strong>of</strong> 1.7%<br />

equates to about 19 mg for a 30 cm l<strong>on</strong>g receipt.<br />

2.2.4 Polyvinyl chloride<br />

There are very few studies reporting <strong>on</strong> BPA migrati<strong>on</strong> from plasticized PVC into food or<br />

food simulants.<br />

Lopez-Cervantes & Paseiro-Losada (2003) investigated seven br<strong>and</strong>s <strong>of</strong> stretch film,<br />

including five based <strong>on</strong> PVC <strong>and</strong> two based <strong>on</strong> polyethylene, purchased locally but marketed<br />

internati<strong>on</strong>ally in Spain. The BPA c<strong>on</strong>tent <strong>of</strong> three <strong>of</strong> the five PVC films ranged from 40 to<br />

100 mg/kg; BPA was not detected in <strong>on</strong>e film <strong>and</strong> was present at a c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> 500<br />

mg/kg in another film. Migrati<strong>on</strong> studies into water, 3% acetic acid <strong>and</strong> olive oil at 40 ºC for<br />

10 days resulted in BPA c<strong>on</strong>centrati<strong>on</strong>s ranging from 3 to 31 µg/dm 2 , with the highest values<br />

reported for olive oil. The highest value for all samples was for migrati<strong>on</strong> from the film<br />

c<strong>on</strong>taining BPA at 500 mg/kg into olive oil.<br />

Yamamoto & Yasuhara (2000) examined BPA migrati<strong>on</strong> from nine PVC hoses to water after<br />

24 hours at room temperature. BPA was detected in all water samples, at levels ranging from<br />

4.0 to 1730 µg/l (LOD ~0.03 µg/l). BPA migrati<strong>on</strong> as a functi<strong>on</strong> <strong>of</strong> time was determined for<br />

<strong>on</strong>e PVC hose, with BPA migrati<strong>on</strong> levels ranging from 8.7 to 558 µg/l from 0 to 24 hours.


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

2.3 Other sources <strong>of</strong> oral exposure<br />

The other sources <strong>of</strong> oral exposure include the use <strong>of</strong> BPA-based epoxies in dentistry, as well<br />

as BPA present in dust. (BPA in air will be discussed in secti<strong>on</strong> 3.1 below.)<br />

2.3.1 Dental materials<br />

Dental materials manufactured from BPA-derived m<strong>on</strong>omers include composite resins <strong>and</strong><br />

dental sealants. Several recent reviews <strong>and</strong> assessments have summarized BPA<br />

c<strong>on</strong>centrati<strong>on</strong>s as a result <strong>of</strong> dental sealants <strong>and</strong> composites (V<strong>and</strong>enberg et al., 2007; Chapin<br />

et al., 2008; Envir<strong>on</strong>ment Canada & Health Canada, 2008). BPA is not used directly in dental<br />

materials, but BPA glycidyl methacrylate <strong>and</strong> other acrylate-based derivatives <strong>of</strong> BPA are<br />

used <strong>and</strong> may degrade into related species.<br />

Leaching from dental materials can occur from residual m<strong>on</strong>omer <strong>on</strong> the surface <strong>of</strong> the<br />

restorati<strong>on</strong>, polymer hydrolysis <strong>and</strong> polymer particulate produced by abrasi<strong>on</strong>. A number <strong>of</strong><br />

investigators have shown that placement <strong>of</strong> composite resin restorati<strong>on</strong>s <strong>and</strong> sealants can<br />

result in acute, transient exposures to BPA (Fung et al., 2000; Sasaki et al., 2005; Joskow et<br />

al., 2006).<br />

Olea et al. (1996) applied a total <strong>of</strong> approximately 50 mg <strong>of</strong> sealant to 12 molars in 18<br />

patients. Total saliva was collected c<strong>on</strong>tinuously for 1 hour before <strong>and</strong> 1 hour after the<br />

applicati<strong>on</strong> procedure. After the treatment, all samples were found to c<strong>on</strong>tain variable<br />

amounts <strong>of</strong> BPA, ranging from 3.3 to 30.0 µg/ml saliva. In c<strong>on</strong>trast, Lewis et al. (1999)<br />

evaluated some <strong>of</strong> the same commercial sealants <strong>and</strong> reported no detectable levels <strong>of</strong> BPA in<br />

saliva.<br />

Arenholt-Bindslev et al. (1999) applied 38 mg <strong>of</strong> fissure sealant to four molars in eight<br />

patients <strong>and</strong> found detectable levels <strong>of</strong> BPA in small saliva samples taken immediately after<br />

placement <strong>of</strong> the sealant. However, no BPA was detected in samples collected at 1 hour or 24<br />

hours after sealant applicati<strong>on</strong>.<br />

Pulgar et al. (2000) studied the eluti<strong>on</strong> <strong>of</strong> biphenolic comp<strong>on</strong>ents from seven composites <strong>and</strong><br />

<strong>on</strong>e sealant, both polymerized <strong>and</strong> unpolymerized, into water as a functi<strong>on</strong> <strong>of</strong> pH. They<br />

reported BPA in the media in all samples, with higher levels observed for the unpolymerized<br />

samples <strong>and</strong> at higher pH. The highest BPA levels for the polymerized samples were 0.86<br />

µg/mg resin (pH 7) <strong>and</strong> 1.2 µg/mg resin (pH 12).<br />

Schafer et al. (2000) reported the proliferative effects <strong>of</strong> BPA in cells with high levels <strong>of</strong><br />

estrogen receptors. They did not detect BPA in American-made sealants.<br />

Fung et al. (2000) collected saliva following the applicati<strong>on</strong> <strong>of</strong> 8 mg (applied to <strong>on</strong>e surface)<br />

<strong>and</strong> 32 mg (8 mg applied to four surfaces) <strong>of</strong> a dental sealant to a group <strong>of</strong> 18 <strong>and</strong> 22 adults,<br />

respectively. BPA c<strong>on</strong>centrati<strong>on</strong>s in saliva ranged from 5.8 to 105.6 µg/kg (LOD <strong>of</strong> 5 µg/kg)<br />

at 1 hour <strong>and</strong> 3 hours following treatment, but BPA was not detected immediately after<br />

treatment or at other time intervals (24 hours, 72 hours <strong>and</strong> 120 hours) post-treatment.<br />

Zafra et al. (2002) collected saliva samples from eight patients undergoing dental procedures<br />

<strong>and</strong> found BPA in all specimens at c<strong>on</strong>centrati<strong>on</strong>s ranging from 15.3 to 32.4 ng/ml.<br />

52


53<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Joskow et al. (2006) measured BPA c<strong>on</strong>centrati<strong>on</strong>s in saliva <strong>of</strong> 14 adults before <strong>and</strong> after the<br />

applicati<strong>on</strong> <strong>of</strong> between 39.0 <strong>and</strong> 42.5 mg <strong>of</strong> two dental sealants. Mean BPA c<strong>on</strong>centrati<strong>on</strong>s<br />

before treatment, immediately following treatment <strong>and</strong> 1 hour post-treatment were reported<br />

as 0.22, 0.54 <strong>and</strong> 0.24 ng/ml in the saliva <strong>of</strong> five patients treated with <strong>on</strong>e sealant <strong>and</strong> 0.30,<br />

26.5 <strong>and</strong> 5.12 ng/ml in the saliva <strong>of</strong> nine patients treated with the other sealant.<br />

Sasaki et al. (2005) measured BPA c<strong>on</strong>centrati<strong>on</strong>s in saliva collected from 21 patients before<br />

<strong>and</strong> after dental treatments using nine different commercial composite resins. The resin that<br />

produced the highest mean BPA c<strong>on</strong>centrati<strong>on</strong>s (n = 3) in saliva gave c<strong>on</strong>centrati<strong>on</strong>s ranging<br />

from 60 to 100 ng/ml (post-treatment) <strong>and</strong> from 5 to 19 ng/ml (after gargling). BPA<br />

c<strong>on</strong>centrati<strong>on</strong>s in saliva as a result <strong>of</strong> release from the other composites were as high as 60<br />

ng/ml.<br />

Azarpazhooh & Main (2008) performed a literature search (up to 2007) to investigate the<br />

reported toxicity <strong>of</strong> dental materials, including dental materials manufactured from BPA <strong>and</strong><br />

its derivatives in particular. In total, 377 articles were identified, <strong>of</strong> which 11 original studies<br />

met a set <strong>of</strong> predetermined inclusi<strong>on</strong> criteria. The authors noted that n<strong>on</strong>e <strong>of</strong> the dental<br />

sealants that carried the American Dental Associati<strong>on</strong> seal in 2007 released detectable levels<br />

<strong>of</strong> BPA. Based <strong>on</strong> their review, the authors recommended “that dental providers avoid the<br />

potential for BPA toxicity from the dental sealants by treating the surface layer <strong>of</strong> the sealant<br />

to reduce the possibility <strong>of</strong> unpolymerized BPA remaining <strong>on</strong> the tooth”.<br />

Ortengren (2000) reported <strong>on</strong> the water sorpti<strong>on</strong> <strong>and</strong> solubility <strong>of</strong> six proprietary composite<br />

resin materials <strong>and</strong> found no detectable quantities <strong>of</strong> BPA during the test period.<br />

Hamid & Hume (1997) identified <strong>and</strong> quantified the major (or detectable) comp<strong>on</strong>ents<br />

released from seven commercially available light-cured sealants using 10 extracted third<br />

molars. They found that other BPA derivatives were released, but no BPA.<br />

Schmalz, Preiss & Arenholt-Bindslev (1999) analysed the BPA c<strong>on</strong>tent <strong>of</strong> different fissure<br />

sealant resin m<strong>on</strong>omers <strong>and</strong> their release <strong>of</strong> BPA under hydrolytic c<strong>on</strong>diti<strong>on</strong>s. They found<br />

that no BPA was released under physiological c<strong>on</strong>diti<strong>on</strong>s from fissure sealants based <strong>on</strong> BPA<br />

glycidyl methacrylate if pure base m<strong>on</strong>omers are used.<br />

Koin et al. (2008) studied the degradati<strong>on</strong> <strong>of</strong> dental composites in a simplified overlayer<br />

model in which BPA glycidyl methacrylate was covalently bound to a porous silic<strong>on</strong> oxide<br />

surface. BPA glycidyl methacrylate <strong>and</strong> several degradati<strong>on</strong> products were detected in<br />

distilled water after 2 weeks <strong>of</strong> ageing. BPA was not detected.<br />

Polydorou et al. (2007) evaluated two c<strong>on</strong>venti<strong>on</strong>al resin composite materials (a hybrid <strong>and</strong> a<br />

flowable) after different polymerizati<strong>on</strong> times (0 sec<strong>on</strong>ds, 20 sec<strong>on</strong>ds, 40 sec<strong>on</strong>ds <strong>and</strong> 80<br />

sec<strong>on</strong>ds), a 10-minute wait <strong>and</strong> various storage times in 75% ethanol at room temperature (24<br />

hours, 7 days <strong>and</strong> 28 days). BPA was not detected in the samples.<br />

In a follow-up study, Polydorou et al. (2009) evaluated three different core buildup composite<br />

materials (a chemically cured, a photo-cured <strong>and</strong> a dual-cured) to evaluate the release <strong>of</strong><br />

m<strong>on</strong>omers. The photo-cured samples were polymerized for 40 sec<strong>on</strong>ds, <strong>and</strong> the dual-cured<br />

samples for 20 sec<strong>on</strong>ds. After 10 minutes, the samples were stored in 75% ethanol at room<br />

temperature for 24 hours, 7 days <strong>and</strong> 28 days. BPA levels were as follows: chemical cure


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

(ND at all times), photo-cure (ND, 24 hours; 1.9 µg/ml, 7 days; 6.0 µg/ml, 28 days) <strong>and</strong> dualcure<br />

(5.2 µg/ml, 24 hours; 4.0 µg/ml, 7 days; 6.1 µg/ml, 28 days).<br />

Studies <strong>on</strong> the release <strong>of</strong> BPA from dental materials are summarized in Table 16.<br />

Table 16. Summary <strong>of</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s from dental materials<br />

Reference Medium C<strong>on</strong>centrati<strong>on</strong> Samples (N)<br />

Olea et al. (1996) Sealant in saliva 3.3–30 µg/ml (after 1 h) 18 patients (12<br />

molars)<br />

Arenholt-Bindslev et<br />

al. (1999)<br />

Sealant in saliva


55<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

a 0.76 m 2 area <strong>of</strong> the carpet. The investigators also sampled hard floor surfaces by wiping a<br />

38 cm × 38 cm area if there was no carpet. H<strong>and</strong> wipe samples were taken twice a day for<br />

each child, before lunch <strong>and</strong> before supper. At homes <strong>and</strong> day-care centres having recent<br />

pesticide applicati<strong>on</strong>s, hard floor surface wipe, food preparati<strong>on</strong> surface wipe <strong>and</strong> transferable<br />

residue samples were collected. Masking tape was used to mark <strong>of</strong>f a 38 cm × 38 cm (0.14<br />

m 2 ) area <strong>of</strong> the counter. The sample was collected by wiping this part <strong>of</strong> the counter in <strong>on</strong>e<br />

directi<strong>on</strong>, folding the wipe in half <strong>and</strong> wiping the surface again in the opposite directi<strong>on</strong>, then<br />

returning the wipe to the glass jar. All wipes c<strong>on</strong>sisted <strong>of</strong> a gauze pad, which was pre-cleaned<br />

with dichloromethane, dried <strong>and</strong> wetted with 2 ml <strong>of</strong> 75% isopropanol in distilled water, <strong>and</strong><br />

stored in a glass jar. The transferable residue samples were taken using the polyurethane<br />

foam roller apparatus; a pre-cleaned, dry polyurethane foam sampling cylinder was rolled <strong>on</strong><br />

the indoor floor surface at a rate <strong>of</strong> approximately 10 cm/s for a 2 m distance (1 m up <strong>and</strong><br />

back). This procedure was repeated, using the same polyurethane foam cylinder, at the other<br />

two selected locati<strong>on</strong>s. The c<strong>on</strong>centrati<strong>on</strong>s in dust were found to be in the range from below<br />

the LOD to 710 µg/kg. The medians for the BPA in dust <strong>of</strong> hard floor surface <strong>and</strong> food<br />

preparati<strong>on</strong> surface <strong>and</strong> transferable residues were all in the same range <strong>of</strong> 0.02–0.07 ng/cm 2 .<br />

Interestingly, the median c<strong>on</strong>centrati<strong>on</strong> range <strong>of</strong> BPA <strong>of</strong> h<strong>and</strong> wipes <strong>of</strong> children was observed<br />

to be higher, 0.3–2.8 ng/cm 2 .<br />

Table 17. C<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> BPA in dust, transferable residues <strong>and</strong> children’s skin<br />

Reference Medium C<strong>on</strong>centrati<strong>on</strong> (median) No. <strong>of</strong><br />

samples<br />

Rudel et al. (2003) Dust


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

(b) Pacifiers<br />

The German Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment)<br />

(BfR, 2009a,b) studied the release <strong>of</strong> BPA from pacifiers made <strong>of</strong> silic<strong>on</strong>e <strong>and</strong> latex because<br />

an envir<strong>on</strong>mental organizati<strong>on</strong> had detected a BPA release <strong>of</strong> 10 µg/l (medium not reported).<br />

BfR (2009a,b) stated that it was unclear why BPA was detected in the testing <strong>and</strong> c<strong>on</strong>ducted<br />

their own testing. Eighteen pacifiers representing 70% <strong>of</strong> the German market were tested for<br />

release into an artificial saliva soluti<strong>on</strong>. Seventeen pacifiers released BPA below the LOD <strong>of</strong><br />

0.3 µg/l (= 0.015 µg/pacifier), <strong>and</strong> <strong>on</strong>e pacifier released 4 µg/l (= 0.2 µg/pacifier). BfR<br />

(2009a,b) stated that this equals 1% <strong>of</strong> the maximum allowed release based <strong>on</strong> an infant <strong>of</strong><br />

4.5 kg <strong>and</strong> 12 hours <strong>of</strong> sucking per day.<br />

MHLW (2010) c<strong>on</strong>ducted a study <strong>on</strong> five pacifiers, which were not described in detail. The<br />

tests were performed at 60 °C <strong>and</strong> 95 °C for 30 minutes, but the surface to volume ratio was<br />

not reported. At 60 °C, three out <strong>of</strong> five pacifiers released detectable levels <strong>of</strong> BPA, up to 0.9<br />

µg/l, whereas at 90 °C, four out <strong>of</strong> five pacifiers released detectable levels <strong>of</strong> BPA, up to 2.3<br />

µg/l.<br />

3. LEVELS AND PATTERNS FROM OTHER EXPOSURE ROUTES<br />

Several recent reviews <strong>and</strong> assessments have summarized BPA c<strong>on</strong>centrati<strong>on</strong>s in<br />

envir<strong>on</strong>mental media, including lake waters, ambient <strong>and</strong> indoor air, <strong>and</strong> soil (Kang, K<strong>on</strong>do<br />

& Katayama, 2006; Tsai, 2006; V<strong>and</strong>enberg et al., 2007; v<strong>on</strong> Goetz et al., 2010). Dermal<br />

c<strong>on</strong>tact through dust <strong>and</strong> c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> BPA in papermaking process waters were<br />

discussed above.<br />

3.1 Air<br />

BPA is not likely to occur in the gas phase <strong>of</strong> the atmosphere, as it has a very low vapour<br />

pressure. However, as atmospheric releases <strong>of</strong> some 100 t <strong>of</strong> BPA per year are reported<br />

during producti<strong>on</strong>, an associati<strong>on</strong> <strong>of</strong> BPA with aerosol particles could be possible.<br />

Berkner, Streck & Herrmann (2004) reported <strong>on</strong> sampling from May to November 2001 at<br />

three locati<strong>on</strong>s in north-east Bavaria, Germany. Two sites were situated at about 400 m apart<br />

in the Waldstein mountain range (about 700 m above sea level), <strong>on</strong>e in a spruce forest <strong>and</strong> the<br />

other <strong>on</strong> a clearing. The third site was located near the city <strong>of</strong> Bayreuth. BPA in the gas phase<br />

was adsorbed to XAD-2 resin (2 m 3 /h for 2 weeks), <strong>and</strong> aerosol samples were taken <strong>on</strong> glass<br />

fibre filters (60 m 3 /h for 2 weeks). BPA was not detected in gas-phase samples.<br />

C<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> BPA in aerosol were in the range <strong>of</strong> 5–15 pg/m 3 for the clear area in the<br />

forest, 10–15 pg/m 3 in the forest <strong>and</strong> 10 pg/m 3 in the urban area.<br />

Matsumoto, Adachi & Suzuki (2005) detected BPA in depositi<strong>on</strong> samples in the Tokyo,<br />

Japan, area during 1976–1978. The total depositi<strong>on</strong> was collected by a funnel with a diameter<br />

<strong>of</strong> 30 cm in a bottle c<strong>on</strong>taining a 5% aqueous hydrochloric acid soluti<strong>on</strong> in a residential area<br />

<strong>of</strong> Tokyo during 7–24 days. Total depositi<strong>on</strong> <strong>of</strong> BPA was detected in five out <strong>of</strong> eight<br />

samples in the range <strong>of</strong> 0.04–0.2 µg/m 2 per day.<br />

Kamiura, Tajima & Nakahara (1997) took air samples (<strong>on</strong> a glass fibre filter) in Japan. BPA<br />

c<strong>on</strong>centrati<strong>on</strong>s were found to range from 2.9 to 3.6 ng/m 3 . No informati<strong>on</strong> <strong>on</strong> the sample<br />

56


57<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

locati<strong>on</strong>s or analytical method employed was directly available, as the paper was written in<br />

Japanese. The reported BPA c<strong>on</strong>centrati<strong>on</strong> ranges were much higher than the c<strong>on</strong>centrati<strong>on</strong>s<br />

reported for samples taken at c<strong>on</strong>siderable distances from sources <strong>of</strong> BPA.<br />

Matsumoto, Adachi & Suzuki (2005) collected urban ambient air <strong>on</strong> glass fibre filters using a<br />

high-volume air sampler (79 m 3 /h for 35.8 days) <strong>on</strong> the ro<strong>of</strong> <strong>of</strong> their institute in Osaka, Japan,<br />

during the period between October 2000 <strong>and</strong> March 2001. BPA c<strong>on</strong>centrati<strong>on</strong>s were in the<br />

range <strong>of</strong> 0.01–1.9 ng/m 3 , <strong>and</strong> the average c<strong>on</strong>centrati<strong>on</strong> seemed to increase from autumn to<br />

winter <strong>and</strong> decrease from winter to spring.<br />

Sabatini, Barbieri & Violante (2005) sampled air <strong>on</strong> a glass fibre filter (4 litres per minute for<br />

8 hours) inside an electr<strong>on</strong>ic processing facility (in Italy) that used epoxy resins at high<br />

temperatures. Five pumps were placed simultaneously <strong>on</strong> the top <strong>of</strong> the machinery during a<br />

typical producti<strong>on</strong> cycle, to obtain five replicates. BPA c<strong>on</strong>centrati<strong>on</strong>s were in the range <strong>of</strong><br />

6.7–14 ng/m 3 , with a mean value <strong>of</strong> 8.8 ng/m 3 . Using an 8-hour sampling period with a<br />

pers<strong>on</strong>al air sampling pump (low flow rate <strong>of</strong> 4 litres per minute), the authors c<strong>on</strong>cluded that<br />

all the samples showed measurable c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> BPA that were almost 6 orders <strong>of</strong><br />

magnitude lower than the limit value <strong>of</strong> 5 mg/m 3 for an 8-hour time-weighted average<br />

exposure adopted by Germany.<br />

Inoue et al. (2006) sampled indoor air <strong>on</strong> a glass <strong>and</strong> a solid-phase filter (7 litres per minute<br />

for 24 hours) in private houses <strong>and</strong> companies in Japan. BPA was detected in 18 out <strong>of</strong> 26<br />

samples, with BPA c<strong>on</strong>centrati<strong>on</strong>s in the range from less than 0.1 to 3.6 ng/m 3 .<br />

In additi<strong>on</strong> to the results <strong>on</strong> prepared food <strong>and</strong> dust discussed above, Wils<strong>on</strong> et al. (2007)<br />

sampled indoor <strong>and</strong> outdoor air <strong>on</strong> a glass cartridge c<strong>on</strong>taining a quartz fibre filter followed<br />

by XAD-2 resin (4 litres per minute for 48 hours) in private houses <strong>and</strong> in day-care centres in<br />

North Carolina <strong>and</strong> Ohio, USA. BPA c<strong>on</strong>centrati<strong>on</strong>s in indoor air in private houses were in<br />

the range from below the LOD to 190 ng/m 3 (median 0.98–1.8 ng/m 3 ), whereas<br />

c<strong>on</strong>centrati<strong>on</strong>s in indoor air <strong>of</strong> day-care centres were in the range from below the LOD to 9.0<br />

ng/m 3 (median <strong>of</strong>


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Table 18. BPA in aerosols near the emissi<strong>on</strong> source, in urban <strong>and</strong> rural areas <strong>and</strong> in indoor air<br />

Locati<strong>on</strong> C<strong>on</strong>centrati<strong>on</strong> (median) a<br />

Near emissi<strong>on</strong> source<br />

(ng/m 3 )<br />

58<br />

No. <strong>of</strong><br />

samples<br />

Reference<br />

BPA producti<strong>on</strong> 2100–6100 (4700) 16 He et al. (2009)<br />

Epoxy producti<strong>on</strong> 1600–55 000 (7900) 145 He et al. (2009)<br />

Electr<strong>on</strong>ic industry working with<br />

epoxy resins at high temperatures<br />

Urban area<br />

6.7–14 (7.4) 5 Sabatini, Barbieri &<br />

Violante (2005)<br />

Germany 0.010 2 Berkner, Streck &<br />

Herrmann (2004)<br />

Japan<br />

USA<br />

0.02–1.9 (0.12–1.2)<br />

36 Matsumoto, Adachi &<br />

Suzuki (2005)<br />

0.070–0.93 (0.34) # 7 Fu & Kawamura<br />

(2010)<br />


5. CONCLUSIONS AND RECOMMENDATIONS<br />

59<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

BPA is a m<strong>on</strong>omer used primarily in the producti<strong>on</strong> <strong>of</strong> PC plastics <strong>and</strong> epoxy resins. Over<br />

95% <strong>of</strong> the world c<strong>on</strong>sumpti<strong>on</strong> <strong>of</strong> BPA in 2009 was for these two purposes.<br />

PC applicati<strong>on</strong>s include large returnable, refillable water bottles <strong>and</strong> food service items such<br />

as sports bottles, baby bottles, pitchers, tumblers, home food c<strong>on</strong>tainers <strong>and</strong> flatware. Epoxy<br />

applicati<strong>on</strong>s include protective coatings for the interiors <strong>and</strong> exteriors <strong>of</strong> food <strong>and</strong> beverage<br />

c<strong>on</strong>tainers as well as dental materials. BPA derivatives are used, to a limited extent, as<br />

additives for PVC. BPA is also present in recycled <strong>and</strong> thermal paper.<br />

The Expert Meeting c<strong>on</strong>sidered BPA c<strong>on</strong>centrati<strong>on</strong>s in food from food surveys <strong>and</strong> BPA<br />

migrati<strong>on</strong> from food c<strong>on</strong>tact <strong>and</strong> dental materials. BPA c<strong>on</strong>centrati<strong>on</strong>s in air, dust <strong>and</strong> water<br />

were also c<strong>on</strong>sidered.<br />

The Expert Meeting noted that by far the majority <strong>of</strong> studies <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s reported<br />

from food surveys were from food <strong>and</strong> beverages in epoxy-coated cans <strong>and</strong>, to a minor<br />

extent, glass c<strong>on</strong>tainers with coated metal lids. Similarly, the majority <strong>of</strong> studies <strong>on</strong> BPA<br />

c<strong>on</strong>centrati<strong>on</strong>s in food as a result <strong>of</strong> migrati<strong>on</strong> from food c<strong>on</strong>tact materials involved PC infant<br />

feeding bottles. A few studies <strong>on</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in paper were available.<br />

BPA c<strong>on</strong>centrati<strong>on</strong>s in food from food survey data were broken down by food type <strong>and</strong> age:<br />

infant formula <strong>and</strong> breast milk (0–6 m<strong>on</strong>ths), baby <strong>and</strong> toddler food (6–12 m<strong>on</strong>ths) <strong>and</strong> adult<br />

food. Most available data are for free (aglyc<strong>on</strong>e) BPA. However, in some cases (e.g. for<br />

breast milk), <strong>on</strong>e would like to use total c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> BPA (i.e. free plus c<strong>on</strong>jugated<br />

BPA) for exposure assessment.<br />

For breast milk, three studies representing more than 200 samples generally gave total BPA<br />

levels below 8 µg/l; however, two <strong>of</strong> the studies were c<strong>on</strong>sidered to be <strong>of</strong> questi<strong>on</strong>able utility<br />

because <strong>of</strong> their analytical shortcomings.<br />

For canned liquid infant formula, six studies representing more than 50 samples gave free<br />

BPA levels below 10 µg/l as c<strong>on</strong>sumed. The studies are primarily from North America. One<br />

<strong>of</strong> the studies was c<strong>on</strong>sidered to be questi<strong>on</strong>able in terms <strong>of</strong> method validati<strong>on</strong>.<br />

For toddler food, <strong>on</strong>e study in North America, representing about 100 samples, gave free<br />

BPA levels <strong>of</strong> about 1 µg/kg at the mean. Another study found no detectable BPA, but the<br />

LOD <strong>of</strong> the method used was relatively high.<br />

For adult foods, 30 studies representing about 1000 samples from several countries were<br />

available. The data were segregated according to food type. Levels in beverages were lower<br />

than levels in foods, levels in fruits were lower than levels in vegetables, <strong>and</strong> levels in fatty<br />

foods were higher than levels in all other foods. The data <strong>on</strong> canned foods were c<strong>on</strong>sidered to<br />

be sufficient for exposure assessment.<br />

For food c<strong>on</strong>tact materials, numerous studies (primarily <strong>on</strong> bottles) examined various food<br />

simulants, c<strong>on</strong>tact times, bottle h<strong>and</strong>ling practices (washing, detergents, etc.) <strong>and</strong> bottle age.<br />

BPA levels were generally higher for n<strong>on</strong>-aqueous simulants, higher temperatures, higher<br />

c<strong>on</strong>tact times <strong>and</strong> increasing pH <strong>of</strong> the c<strong>on</strong>tact medium. The data <strong>on</strong> PC articles were<br />

c<strong>on</strong>sidered to be adequate.


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

For the migrati<strong>on</strong> <strong>of</strong> BPA from PC, worst-case realistic uses were defined. For the use <strong>of</strong><br />

baby bottles, the worst-case scenario was defined as filling the bottle with boiling water,<br />

adding milk formula <strong>and</strong> leaving the bottle to cool down. In the case <strong>of</strong> PC tableware, the<br />

worst-case scenario was represented by a 30-minute c<strong>on</strong>tact time at 95 °C. Because <strong>of</strong> the<br />

large distributi<strong>on</strong> <strong>of</strong> available test results, a maximum migrati<strong>on</strong> was selected for both<br />

situati<strong>on</strong>s for use in the exposure assessment.<br />

Several data exist <strong>on</strong> the levels <strong>of</strong> BPA in tap <strong>and</strong> bottled water. Because the c<strong>on</strong>centrati<strong>on</strong>s<br />

vary widely, a maximum c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> BPA in water was selected for use in the exposure<br />

assessment.<br />

The c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> BPA in air <strong>and</strong> dust are widely distributed, <strong>and</strong> two papers show that<br />

there is no difference between c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> BPA in indoor <strong>and</strong> outdoor air. Published<br />

estimates <strong>of</strong> exposure to BPA from air <strong>and</strong> dust were used in the exposure assessment (see<br />

background paper <strong>on</strong> BPA exposure assessment).<br />

Few studies <strong>on</strong> BPA from paper packaging, paper treatment water <strong>and</strong> thermal paper were<br />

available. BPA levels were higher in recycled paper than in virgin paper. Additi<strong>on</strong>al studies<br />

<strong>on</strong> BPA migrati<strong>on</strong> from paper packaging to food are needed.<br />

BPA levels in saliva from dental materials were low. The Expert Meeting determined that<br />

there was no need to collect additi<strong>on</strong>al data <strong>on</strong> BPA levels from dental materials, as exposure<br />

is short term <strong>and</strong> unlikely to c<strong>on</strong>tribute substantially to chr<strong>on</strong>ic exposure.<br />

Table 19 summarizes the occurrence data that were deemed to be valid for use in the<br />

exposure assessment.<br />

Table 19. <strong>Occurrence</strong> data for BPA in food <strong>and</strong> beverages<br />

Matrix / Reference<br />

C<strong>on</strong>centrati<strong>on</strong> (µg/l or µg/kg)<br />

60<br />

Average Maximum<br />

Human breast milk (Ye et al., 2006) 1.9 7.3 20<br />

Liquid milk formula, ready to feed a<br />

Cao et al. (2008) 5.1 10.2 3<br />

Ackerman et al. (2010) 5.05 10 39<br />

Goods<strong>on</strong>, Summerfield & Cooper (2002)


Table 19 (c<strong>on</strong>tinued)<br />

Matrix / Reference<br />

C<strong>on</strong>centrati<strong>on</strong> (µg/l or µg/kg)<br />

61<br />

Average Maximum<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Fruits 0.6 3.7 26<br />

Meats 1.1 7.2 25<br />

Vegetables 1.2 7.2 39<br />

Overall 0.82 7.2 99<br />

Canned food, solid b<br />

Fruits 9.8 — 70<br />

Vegetables 32.4 — 305<br />

Grains 42.7 — 22<br />

Meat (no soups or seafood) 69.6 — 70<br />

Soups 49.1 — 66<br />

Seafood 26.6 — 166<br />

Desserts 26.7 — 11<br />

Overall 36.7 — 710<br />

Canned food, liquid b<br />

Drinks, carb<strong>on</strong>ated (cola, beer, soda, t<strong>on</strong>ic) 1.0 — 128<br />

Drinks, n<strong>on</strong>-carb<strong>on</strong>ated (tea, c<strong>of</strong>fee, other) 23.2 — 131<br />

Migrati<strong>on</strong> from PC<br />

Baby bottles (Maragou et al., 2008) — 15 6<br />

Tableware (Kawamura et al., 1998) — 2 3<br />

Tap water <strong>and</strong> bottled water c — 1 >100<br />

Number <strong>of</strong> samples<br />

a Expressed as c<strong>on</strong>sumed.<br />

b Brot<strong>on</strong>s et al. (1995); Horie et al. (1999); Kawamura, Sano & Yamada (1999); Imanaka et al. (2001); Yoshida<br />

et al. (2001); Goods<strong>on</strong>, Summerfield & Cooper (2002); Kataoka, Ise & Narimatsu (2002); Kang & K<strong>on</strong>do<br />

(2003); Braunrath et al. (2005); Munguia-Lopez et al. (2005); Thoms<strong>on</strong> & Grounds (2005); Maragou et al.<br />

(2006); Sun et al. (2006); EWG (2007); Podlipna & Cichna-Markl (2007); Poustka et al. (2007); Sajiki et al.<br />

(2007); Shao et al. (2007); Garcia-Prieto et al. (2008); Grumetto et al. (2008); Y<strong>on</strong>ekubo, Hayakawa & Sajiki<br />

(2008); Bendito et al. (2009); Cao, Corriveau & Popovic (2009a, 2010a,b); C<strong>on</strong>sumers Uni<strong>on</strong> (2009); Rastkari<br />

et al. (2010); Vinas et al. (2010).<br />

c Biles et al. (1997); Ghijsen & Hoogenboezem (2000); Kuch & Ballschmiter (2001); Inoue et al. (2002); Boyd et<br />

al. (2003); Casajuana & Lacorte (2003); Rodriguez-Mozaz, López De Alda & Barceló (2004); Stackelberg et al.<br />

(2004); Szymanski & Wasiak (2004); Rykowska, Shao et al. (2005); Jiang et al. (2006); Szymanski, Rykowska<br />

& Wasiak (2006); Loos et al. (2007); Cao & Corriveau (2008c); L. Li et al. (2008); X. Li et al. (2010); Sodré,<br />

Locatelli & Jardim (2010); Wang & Schnute (2010); Amiridou & Voutsa (2011).<br />

The following data gaps were identified by the Expert Meeting:<br />

••<br />

••<br />

••<br />

••<br />

Further surveys <strong>of</strong> BPA levels in breast milk from countries other than the USA are<br />

needed. Such studies should employ analytical methods that determine both free <strong>and</strong> total<br />

BPA.<br />

Further surveys <strong>of</strong> BPA c<strong>on</strong>centrati<strong>on</strong>s in infant formula from countries outside <strong>of</strong> North<br />

America are needed.<br />

Further surveys <strong>of</strong> BPA levels in toddler food from countries outside <strong>of</strong> North America,<br />

especially if such food is packed in metal cans, are needed.<br />

Additi<strong>on</strong>al studies <strong>on</strong> BPA migrati<strong>on</strong> from paper packaging to food are needed.


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

REFERENCES<br />

Ackerman LK et al. (2010). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in US infant formulas: updated methods <strong>and</strong><br />

c<strong>on</strong>centrati<strong>on</strong>s. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 58:2307–2313.<br />

AFSSA (2010). Opini<strong>on</strong> <strong>of</strong> the French Food Safety Agency regarding exposure to bisphenol A in the French<br />

populati<strong>on</strong>s <strong>and</strong> maximum levels <strong>of</strong> bisphenol A in foods. Mais<strong>on</strong>s-Alfort, French Food Safety Agency<br />

(http://www.anses.fr/Documents/MCDA2010sa0041EN.pdf, accessed 27 April 2011).<br />

Alum A et al. (2004). Oxidati<strong>on</strong> <strong>of</strong> bisphenol A, 17β-estradiol, <strong>and</strong> 17α-ethynyl estradiol <strong>and</strong> byproduct<br />

estrogenicity. Envir<strong>on</strong>mental Toxicology, 19(3):257–264.<br />

Amiridou D, Voutsa D (2011). Alkylphenols <strong>and</strong> phthalates in bottled waters. Journal <strong>of</strong> Hazardous Materials,<br />

185(1):281–286.<br />

Arenholt-Bindslev D et al. (1999). Time-related bisphenol-A c<strong>on</strong>tent <strong>and</strong> estrogenic activity in saliva samples<br />

collected in relati<strong>on</strong> to placement <strong>of</strong> fissure sealants. Clinical Oral Investigati<strong>on</strong>s, 3:120–125.<br />

Azarpazhooh A, Main PA (2008). Is there a risk <strong>of</strong> harm or toxicity in the placement <strong>of</strong> pit <strong>and</strong> fissure sealant<br />

materials? A systematic review. Journal <strong>of</strong> the Canadian Dental Associati<strong>on</strong>, 74:179–183.<br />

Bae B, Je<strong>on</strong>g JH, Lee SJ (2002). The quantificati<strong>on</strong> <strong>and</strong> characterizati<strong>on</strong> <strong>of</strong> endocrine disruptor bisphenol-A<br />

leaching from epoxy resin. Water Science <strong>and</strong> Technology, 46:381–387.<br />

Basheer C, Lee HK, Tan KS (2004). Endocrine disrupting alkylphenols <strong>and</strong> bisphenol-A in coastal waters <strong>and</strong><br />

supermarket seafood from Singapore. Marine Polluti<strong>on</strong> Bulletin, 48:1161–1167.<br />

Bayer AG (1999). <strong>Bisphenol</strong>-A m<strong>on</strong>omer in milk from returnable polycarb<strong>on</strong>ate bottles. Unpublished test data<br />

[cited in ECB, 2003].<br />

Bendito MD et al. (2009). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in canned fatty foods by coacervative microextracti<strong>on</strong>,<br />

liquid chromatography <strong>and</strong> fluorimetry. Food Additives & C<strong>on</strong>taminants. Part A, Chemistry, Analysis,<br />

C<strong>on</strong>trol, Exposure & Risk Assessment, 26:265–274.<br />

Berkner S, Streck G, Herrmann R (2004). Development <strong>and</strong> validati<strong>on</strong> <strong>of</strong> a method for determinati<strong>on</strong> <strong>of</strong> trace<br />

levels <strong>of</strong> alkylphenols <strong>and</strong> bisphenol A in atmospheric samples. Chemosphere, 54:575–584.<br />

BfR (2009a). <strong>Bisphenol</strong> A in Beruhigungssaugern. Berlin, Federal Institute for Risk Assessment (BfR<br />

Informati<strong>on</strong> No. 037/2009, 26 October 2009; http://www.bfr.bund.de/cm/343/<br />

bisphenol_a_in_beruhigungssaugern.pdf, accessed 27 April 2011).<br />

BfR (2009b). <strong>Bisphenol</strong> A in Beruhigungssaugern - Untersuchungsergebnisse des BfR. Berlin, Federal Institute<br />

for Risk Assessment (BfR Informati<strong>on</strong> No. 039/2009, 3 November 2009; http://www.bfr.bund.de/cm/343/<br />

bisphenol_a_in_beruhigungssaugern_untersuchungsergebnisse_des_bfr.pdf, accessed 27 April 2011 ).<br />

Biedermann S, Tschudin P, Grob K (2010). Transfer <strong>of</strong> bisphenol A from thermal printer paper to the skin.<br />

Analytical <strong>and</strong> Bioanalytical Chemistry, 398:571–576.<br />

Biedermann-Brem S, Grob K (2009). Release <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate baby bottles: water hardness<br />

as the most relevant factor. European Food Research <strong>and</strong> Technology, 228:679–684.<br />

Biedermann-Brem S, Grob K, Fjeldal P (2008). Release <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate baby bottles:<br />

mechanisms <strong>of</strong> formati<strong>on</strong> <strong>and</strong> investigati<strong>on</strong> <strong>of</strong> worst case scenarios. European Food Research <strong>and</strong><br />

Technology, 227:1053–1060.<br />

Biles JE, McNeal TP, Begley TH (1997). Determinati<strong>on</strong> <strong>of</strong> bisphenol A migrating from epoxy can coatings to<br />

infant formula liquid c<strong>on</strong>centrates. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 45:4697–4700.<br />

Biles JE et al. (1997). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in reusable polycarb<strong>on</strong>ate food-c<strong>on</strong>tact plastics <strong>and</strong><br />

migrati<strong>on</strong> to food-simulating liquids. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 45:3541–3544<br />

[correcti<strong>on</strong> in Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 1998, 46:2894].<br />

Boyd GR et al. (2003). Pharmaceuticals <strong>and</strong> pers<strong>on</strong>al care products (PPCPs) in surface <strong>and</strong> treated waters <strong>of</strong><br />

Louisiana, U.S.A. <strong>and</strong> Ontario, Canada. Science <strong>of</strong> the Total Envir<strong>on</strong>ment, 311:135–149.<br />

Braunrath R et al. (2005). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in canned foods by immunoaffinity chromatography,<br />

HPLC, <strong>and</strong> fluorescence detecti<strong>on</strong>. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 53:8911–8917.<br />

Brede C et al. (2003). Increased migrati<strong>on</strong> levels <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate baby bottles after<br />

dishwashing, boiling <strong>and</strong> brushing. Food Additives <strong>and</strong> C<strong>on</strong>taminants, 20:684–689.<br />

Brenn-Struckh<strong>of</strong>ova Z, Cichna-Markl M (2006). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in wine by sol-gel<br />

immunoaffinity chromatography, HPLC <strong>and</strong> fluorescence detecti<strong>on</strong>. Food Additives <strong>and</strong> C<strong>on</strong>taminants,<br />

23:1227–1235.<br />

Brot<strong>on</strong>s JA et al. (1995). Xenoestrogens released from lacquer coatings in food cans. Envir<strong>on</strong>mental Health<br />

Perspectives, 103:608–612.<br />

Cao XL, Corriveau J (2008a). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in water by isotope diluti<strong>on</strong> headspace solid-phase<br />

microextracti<strong>on</strong> <strong>and</strong> gas chromatography/mass spectrometry without derivatizati<strong>on</strong>. Journal <strong>of</strong> AOAC<br />

Internati<strong>on</strong>al, 91:622–629.<br />

Cao XL, Corriveau J (2008b). Migrati<strong>on</strong> <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate baby <strong>and</strong> water bottles into water<br />

under severe c<strong>on</strong>diti<strong>on</strong>s. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 56:6378–6381.<br />

62


63<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Cao XL, Corriveau J (2008c). Survey <strong>of</strong> bisphenol A in bottled water products in Canada. Food Additives <strong>and</strong><br />

C<strong>on</strong>taminants. Part B, 1(2):161–164.<br />

Cao XL, Corriveau J, Popovic S (2009a). Levels <strong>of</strong> bisphenol A in canned s<strong>of</strong>t drink products in Canadian<br />

markets. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 57:1307–1311.<br />

Cao XL, Corriveau J, Popovic S (2009b). Migrati<strong>on</strong> <strong>of</strong> bisphenol A from can coatings to liquid infant formula<br />

during storage at room temperature. Journal <strong>of</strong> Food Protecti<strong>on</strong>, 72:2571–2574.<br />

Cao XL, Corriveau J, Popovic S (2010a). <strong>Bisphenol</strong> A in canned food products from Canadian markets. Journal<br />

<strong>of</strong> Food Protecti<strong>on</strong>, 73:1085–1089.<br />

Cao XL, Corriveau J, Popovic S (2010b). <strong>Sources</strong> <strong>of</strong> low c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> bisphenol A in canned beverage<br />

products. Journal <strong>of</strong> Food Protecti<strong>on</strong>, 73:1548–1551.<br />

Cao XL et al. (2008). Levels <strong>of</strong> bisphenol A in canned liquid infant formula products in Canada <strong>and</strong> dietary<br />

intake estimates. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 56:7919–7924.<br />

Cao XL et al. (2009). <strong>Bisphenol</strong> A in baby food products in glass jars with metal lids from Canadian markets.<br />

Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 57:5345–5351.<br />

Casajuana N, Lacorte S (2003). Presence <strong>and</strong> release <strong>of</strong> phthalic esters <strong>and</strong> other endocrine disrupting<br />

compounds in drinking water. Chromatographia, 57(9–10):649–655.<br />

Casajuana N, Lacorte S (2004). New methodology for the determinati<strong>on</strong> <strong>of</strong> phthalate esters, bisphenol A,<br />

bisphenol A diglycidyl ether, <strong>and</strong> n<strong>on</strong>ylphenol in commercial whole milk samples. Journal <strong>of</strong> Agricultural<br />

<strong>and</strong> Food Chemistry, 52:3702–3707.<br />

CEH (2007a). Chemical Ec<strong>on</strong>omics H<strong>and</strong>book (CEH) Marketing Research Report—Epoxy resins (November<br />

2007; 580.0600A-580.0602X).<br />

CEH (2007b). Chemical Ec<strong>on</strong>omics H<strong>and</strong>book (CEH) Marketing Research Report—Epoxy surface coatings<br />

(December 2007; 592.7000A-592.7002Q).<br />

CEH (2008). Chemical Ec<strong>on</strong>omics H<strong>and</strong>book (CEH) Marketing Research Report—Polycarb<strong>on</strong>ate resins<br />

(November 2008; 580.1100A-580.1104Z).<br />

CEH (2010). Chemical Ec<strong>on</strong>omics H<strong>and</strong>book (CEH) Marketing Research Report—<strong>Bisphenol</strong> A (July 2010;<br />

619.5000A-619.5002D).<br />

Chang CM, Chou CC, Lee MR (2005). Determining leaching <strong>of</strong> bisphenol A from plastic c<strong>on</strong>tainers by solidphase<br />

microextracti<strong>on</strong> <strong>and</strong> gas chromatography–mass spectrometry. Analytica Chimica Acta, 539:41–47.<br />

Chapin RE et al. (2008). NTP-CERHR expert panel report <strong>on</strong> the reproductive <strong>and</strong> developmental toxicity <strong>of</strong><br />

bisphenol A. Birth Defects Research. Part B, Developmental <strong>and</strong> Reproductive Toxicology, 83:157–395.<br />

C<strong>on</strong>sumers Uni<strong>on</strong> (2009). C<strong>on</strong>cern over canned foods. Our tests find wide range <strong>of</strong> bisphenol A in soups, juice<br />

<strong>and</strong> more. C<strong>on</strong>sumer Reports (December 2009).<br />

CSL (2004). A study <strong>of</strong> the migrati<strong>on</strong> <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate feeding bottles into food simulants.<br />

Central Science Laboratory Test Report L6BB-1008 for the Boots Group (http://www.bootsplc.com/envir<strong>on</strong>ment/library/250.pdf)<br />

[cited in ECB, 2008].<br />

D’Antu<strong>on</strong>o A et al. (2001). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in food-simulating liquids using LCED with a<br />

chemically modified electrode. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 49:1098–1101.<br />

Earls AO, Clay CA, Braybrook JH (2000). Preliminary investigati<strong>on</strong> into the migrati<strong>on</strong> <strong>of</strong> bisphenol-A from<br />

commercially-available polycarb<strong>on</strong>ate baby feeding bottles (LGC Technical Report LGC/DTI/2000/005)<br />

[cited in ECB, 2003].<br />

ECB (2003). European Uni<strong>on</strong> Risk Assessment Report: 4,4′-isopropylidinediphenol (bisphenol A). Office <strong>of</strong><br />

Official Publicati<strong>on</strong>s <strong>of</strong> the European Communities. Luxembourg, European Chemicals Bureau (Report<br />

EUR 20843 EN; http://publicati<strong>on</strong>s.jrc.ec.europa.eu/repository/bitstream/111111111/1304/1/<br />

EUR%2020843%20EN.pdf, accessed 27 April 2011).<br />

ECB (2008). European Uni<strong>on</strong> Risk Assessment Report: updated risk assessment <strong>of</strong> 4,4′-isopropylidenediphenol<br />

(bisphenol-A). Luxembourg, European Chemicals Bureau (http://ecb.jrc.ec.europa.eu/<br />

DOCUMENTS/Existing-Chemicals/RISK_ASSESSMENT/REPORT/bisphenolareport325.pdf, accessed 27<br />

April 2011).<br />

EFSA (2006). Opini<strong>on</strong> <strong>of</strong> the Scientific Panel <strong>on</strong> Food Additives, Flavourings, Processing Aids <strong>and</strong> Materials in<br />

C<strong>on</strong>tact with Food <strong>on</strong> a request from the Commissi<strong>on</strong> related to 2,2-bis(4-hydroxyphenyl)propane<br />

(bisphenol A). Questi<strong>on</strong> No. EFSA-Q-2005-100. Adopted <strong>on</strong> 29 November 2006. European Food Safety<br />

Authority. The EFSA Journal, 428:1–75 (http://www.efsa.europa.eu/de/scdocs/doc/428.pdf, accessed 27<br />

April 2011).<br />

Ehlert KA, Beumer CW, Groot MC (2008). Migrati<strong>on</strong> <strong>of</strong> bisphenol A into water from polycarb<strong>on</strong>ate baby<br />

bottles during microwave heating. Food Additives & C<strong>on</strong>taminants. Part A, Chemistry, Analysis, C<strong>on</strong>trol,<br />

Exposure & Risk Assessment, 25:904–910.<br />

Envir<strong>on</strong>mental Defence (2008). Toxic baby bottles in Canada. 17 pp. [cited in Envir<strong>on</strong>ment Canada & Health<br />

Canada, 2008].


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Envir<strong>on</strong>ment Canada, Health Canada (2008). Screening assessment for the challenge chemical phenol, 4,4′-(1methylethylidene)bis-<br />

(<strong>Bisphenol</strong> A) CAS# 80-05-7. Ottawa, Ontario, Government <strong>of</strong> Canada<br />

(http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=3C756383-1, accessed 27 April 2011).<br />

EURL-FCM (2009). An<strong>on</strong>ymous data collecti<strong>on</strong> by the Nati<strong>on</strong>al Reference Laboratories for the European<br />

Uni<strong>on</strong> Reference Laboratory for Food C<strong>on</strong>tact Materials <strong>on</strong> the release <strong>of</strong> BPA from baby bottles.<br />

EWG (2007). EWG’s guide to infant formula <strong>and</strong> baby bottles—summary & findings. Washingt<strong>on</strong>, DC,<br />

Envir<strong>on</strong>mental Working Group (http://www.ewg.org/reports/infantformula, accessed 27 April 2011).<br />

EWG (2010). Synthetic estrogen BPA coats cash registry receipts. Washingt<strong>on</strong>, DC, Envir<strong>on</strong>mental Working<br />

Group (http://www.ewg.org/bpa-in-store-receipts, accessed 27 April 2011).<br />

FSANZ (2011). FSANZ survey <strong>and</strong> activities <strong>on</strong> BPA. Food St<strong>and</strong>ards Australia New Zeal<strong>and</strong><br />

(http://www.foodst<strong>and</strong>ards.gov.au/science<strong>and</strong>educati<strong>on</strong>/m<strong>on</strong>itoring<strong>and</strong>surveillance/foodsurveillance/fsanzsu<br />

rvey<strong>and</strong>activi4978.cfm, accessed 27 April 2011).<br />

Fu P, Kawamura K (2010). Ubiquity <strong>of</strong> bisphenol A in the atmosphere. Envir<strong>on</strong>mental Polluti<strong>on</strong>, 158(10):3138–<br />

3143.<br />

Fukazawa H et al. (2001). Identificati<strong>on</strong> <strong>and</strong> quantificati<strong>on</strong> <strong>of</strong> chlorinated bisphenol A in wastewater from<br />

wastepaper recycling plants. Chemosphere, 44:973–979.<br />

Fukazawa H et al. (2002). Formati<strong>on</strong> <strong>of</strong> chlorinated derivatives <strong>of</strong> bisphenol A in waste paper recycling plants<br />

<strong>and</strong> their estrogenic activities. Journal <strong>of</strong> Health Science, 48:242–249.<br />

Fung EYK et al. (2000). Pharmacokinetics <strong>of</strong> bisphenol A released from a dental sealant. Journal <strong>of</strong> the<br />

American Dental Associati<strong>on</strong>, 131:51–58.<br />

Furhacker M, Scharf S, Weber H (2000). <strong>Bisphenol</strong> A: emissi<strong>on</strong>s from point sources. Chemosphere, 41:751–<br />

756.<br />

Gallard H, Leclercq A, Croué J-P (2004). Chlorinati<strong>on</strong> <strong>of</strong> bisphenol A: kinetics <strong>and</strong> by-products formati<strong>on</strong>.<br />

Chemosphere, 56:465–473.<br />

Garcia-Prieto A et al. (2008). Decanoic acid reverse micelle-based coacervates for the microextracti<strong>on</strong> <strong>of</strong><br />

bisphenol A from canned vegetables <strong>and</strong> fruits. Analytica Chimica Acta, 617:51–58.<br />

Geens T et al. (2009). Assessment <strong>of</strong> human exposure to bisphenol-A, triclosan <strong>and</strong> tetrabromobisphenol-A<br />

through indoor dust intake in Belgium. Chemosphere, 76:755–760.<br />

Ghijsen RT, Hoogenboezem W (2000). Endocrine disrupting compounds in the Rhine <strong>and</strong> Meuse basin:<br />

occurrence in surface, process <strong>and</strong> drinking water. Associati<strong>on</strong> <strong>of</strong> River Waterworks (http://www.riwarijn.org/uploads/tx_deriwa/068_Endocrine_disrupting_compounds.pdf,<br />

accessed 27 April 2011).<br />

Goods<strong>on</strong> A, Summerfield W, Cooper I (2002). Survey <strong>of</strong> bisphenol A <strong>and</strong> bisphenol F in canned foods. Food<br />

Additives <strong>and</strong> C<strong>on</strong>taminants, 19:796–802.<br />

Goods<strong>on</strong> A et al. (2004). Migrati<strong>on</strong> <strong>of</strong> bisphenol A from can coatings—effects <strong>of</strong> damage, storage c<strong>on</strong>diti<strong>on</strong>s<br />

<strong>and</strong> heating. Food Additives <strong>and</strong> C<strong>on</strong>taminants, 21:1015–1026.<br />

Grumetto L et al. (2008). Determinati<strong>on</strong> <strong>of</strong> bisphenol A <strong>and</strong> bisphenol B residues in canned peeled tomatoes by<br />

reversed-phase liquid chromatography. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 56:10633–10637.<br />

Hamid A, Hume WR (1997). A study <strong>of</strong> comp<strong>on</strong>ent release from resin pit <strong>and</strong> fissure sealants in vitro. Dental<br />

Materials, 13:98–102.<br />

Hanai Y (1997). <strong>Bisphenol</strong>-A eluted from nursing bottles. Unpublished data. Envir<strong>on</strong>mental Science Research<br />

Center, Yokohama Nati<strong>on</strong>al University [cited in ECB, 2003].<br />

He Y et al. (2009) Occupati<strong>on</strong>al exposure levels <strong>of</strong> bisphenol A am<strong>on</strong>g Chinese workers. Journal <strong>of</strong><br />

Occupati<strong>on</strong>al Health, 51:432–436.<br />

Hoekstra EJ, Sim<strong>on</strong>eau C (2011). Release <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate—a review. Critical Reviews in<br />

Food Science <strong>and</strong> Nutriti<strong>on</strong>. In press.<br />

Horie M et al. (1999). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in canned drinks by LC/MS. Bunseki Kagaku, 48:579–588.<br />

Howe SR, Borodinsky L (1998). Potential exposure to bisphenol A from food-c<strong>on</strong>tact use <strong>of</strong> polycarb<strong>on</strong>ate<br />

resins. Food Additives <strong>and</strong> C<strong>on</strong>taminants, 15:370–375.<br />

Hu J-Y, Aizawa T, Ookubo S (2002). Products <strong>of</strong> aqueous chlorinati<strong>on</strong> <strong>of</strong> bisphenol A <strong>and</strong> their estrogenic<br />

activity. Envir<strong>on</strong>mental Science & Technology, 36(9):1980–1987.<br />

Imanaka M et al. (2001). [Determinati<strong>on</strong> <strong>of</strong> bisphenol A in foods using GC/MS.] Shokuhin Eiseigaku Zasshi<br />

(Journal <strong>of</strong> the Food Hygienic Society <strong>of</strong> Japan), 42:71–78 (in Japanese).<br />

Inoue K et al. (2002). Determinati<strong>on</strong> <strong>of</strong> phenolic xenoestrogens in water by liquid chromatography with<br />

coulometric-array detecti<strong>on</strong>. Journal <strong>of</strong> Chromatography, 946(1–2):291–294.<br />

Inoue K et al. (2006). Development <strong>of</strong> stable isotope diluti<strong>on</strong> quantificati<strong>on</strong> liquid chromatography–mass<br />

spectrometry method for estimati<strong>on</strong> <strong>of</strong> exposure levels <strong>of</strong> bisphenol A, 4-tert-octylphenol, 4-n<strong>on</strong>ylphenol,<br />

tetrabromobisphenol A, <strong>and</strong> pentachlorophenol in indoor air. Archives <strong>of</strong> Envir<strong>on</strong>mental C<strong>on</strong>taminati<strong>on</strong> <strong>and</strong><br />

Toxicology, 51:503–508.<br />

Japan Food Chemical Research Foundati<strong>on</strong> (1998). An interim report from the Study Group <strong>on</strong> Health Effects <strong>of</strong><br />

Endocrine Disrupting Chemicals. The Japan Food Chemical Research Foundati<strong>on</strong> (http://www.ffcr.or.jp/<br />

64


65<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

__492565a0001a8909.nsf/0/5e69e178bbad89414925681d001fa22d?OpenDocument, accessed 27 April<br />

2011).<br />

Jiang M et al. (2006). Direct enrichment <strong>and</strong> high performance liquid chromatography analysis <strong>of</strong> ultra-trace<br />

<strong>Bisphenol</strong> A in water samples with narrowly dispersible bisphenol A imprinted polymeric microspheres<br />

column. Journal <strong>of</strong> Chromatography A, 1110:27–34.<br />

Joskow R et al. (2006). Exposure to bisphenol A from bis-glycidyl dimethacrylate–based dental sealants.<br />

Journal <strong>of</strong> the American Dental Associati<strong>on</strong>, 137:353–362.<br />

Kamiura T, Tajima Y, Nakahara T (1997). [Determinati<strong>on</strong> <strong>of</strong> bisphenol A in air.] Journal <strong>of</strong> Envir<strong>on</strong>mental<br />

Chemistry, 7(2):275–279 (in Japanese).<br />

Kang JH, K<strong>on</strong>do F (2002a). <strong>Bisphenol</strong> A migrati<strong>on</strong> from cans c<strong>on</strong>taining c<strong>of</strong>fee <strong>and</strong> caffeine. Food Additives<br />

<strong>and</strong> C<strong>on</strong>taminants, 19:886–890.<br />

Kang JH, K<strong>on</strong>do F (2002b). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in canned pet foods. Research in Veterinary Science,<br />

73:177–182.<br />

Kang JH, K<strong>on</strong>do F (2003). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in milk <strong>and</strong> dairy products by high-performance liquid<br />

chromatography with fluorescence detecti<strong>on</strong>. Journal <strong>of</strong> Food Protecti<strong>on</strong>, 66:1439–1443.<br />

Kang JH, Kito K, K<strong>on</strong>do F (2003). Factors influencing the migrati<strong>on</strong> <strong>of</strong> bisphenol A from cans. Journal <strong>of</strong> Food<br />

Protecti<strong>on</strong>, 66:1444–1447.<br />

Kang JH, K<strong>on</strong>do F, Katayama Y (2006). Human exposure to bisphenol A. Toxicology, 226:79–89.<br />

Kataoka H, Ise M, Narimatsu S (2002). Automated <strong>on</strong>-line in-tube solid-phase microextracti<strong>on</strong> coupled with<br />

high performance liquid chromatography for the analysis <strong>of</strong> bisphenol A, alkylphenols, <strong>and</strong> phthalate esters<br />

in foods c<strong>on</strong>tacted with plastics. Journal <strong>of</strong> Separati<strong>on</strong> Science, 25:77–85.<br />

Kawamura Y, Sano H, Yamada T (1999). Migrati<strong>on</strong> <strong>of</strong> bisphenol A from can coatings to drinks. Shokuhin<br />

Eiseigaku Zasshi (Journal <strong>of</strong> the Food Hygienic Society <strong>of</strong> Japan), 40:158–165.<br />

Kawamura Y et al. (1998). Migrati<strong>on</strong> <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate products. Shokuhin Eiseigaku Zasshi<br />

(Journal <strong>of</strong> the Food Hygienic Society <strong>of</strong> Japan), 99:206–212.<br />

Kawamura Y et al. (2001). Cause <strong>of</strong> bisphenol A migrati<strong>on</strong> from cans for drinks <strong>and</strong> assessment <strong>of</strong> improved<br />

cans. Shokuhin Eiseigaku Zasshi (Journal <strong>of</strong> the Food Hygienic Society <strong>of</strong> Japan), 42:13–17.<br />

Koin PJ et al. (2008). Analysis <strong>of</strong> the degradati<strong>on</strong> <strong>of</strong> a model dental composite. Journal <strong>of</strong> Dental Research,<br />

87:661–665.<br />

Korshin GV, Kim J, Gan L (2006). Comparative study <strong>of</strong> reacti<strong>on</strong>s <strong>of</strong> endocrine disruptors bisphenol A <strong>and</strong><br />

diethylstilbestrol in electrochemical treatment <strong>and</strong> chlorinati<strong>on</strong>. Water Research, 40:1070–1078.<br />

Krishnan AV et al. (1993). <strong>Bisphenol</strong>-A—An estrogenic substance is released from polycarb<strong>on</strong>ate flasks during<br />

autoclaving. Endocrinology, 132:2279–2286.<br />

Kubwabo C et al. (2009). Migrati<strong>on</strong> <strong>of</strong> bisphenol A from plastic baby bottles, baby bottle liners <strong>and</strong> reusable<br />

polycarb<strong>on</strong>ate drinking bottles. Food Additives & C<strong>on</strong>taminants. Part A, Chemistry, Analysis, C<strong>on</strong>trol,<br />

Exposure & Risk Assessment, 26:928–937.<br />

Kuch HM, Ballschmiter K (2001). Determinati<strong>on</strong> <strong>of</strong> endocrine-disrupting phenolic compounds <strong>and</strong> estrogens in<br />

surface <strong>and</strong> drinking water by HRGC-(NCI)-MS in the picogram per liter range. Envir<strong>on</strong>mental Science &<br />

Technology, 35:3201–3206.<br />

Kuo HW, Ding WH (2004). Trace determinati<strong>on</strong> <strong>of</strong> bisphenol A <strong>and</strong> phytoestrogens in infant formula powders<br />

by gas chromatography–mass spectrometry. Journal <strong>of</strong> Chromatography A, 1027:67–74.<br />

Kuruto-Niwa R et al. (2007). Measurement <strong>of</strong> bisphenol A c<strong>on</strong>centrati<strong>on</strong>s in human colostrum. Chemosphere,<br />

66:1160–1164.<br />

Larroque M, Brun S, Blaise A (1989). Migrati<strong>on</strong> <strong>of</strong> c<strong>on</strong>stitutive m<strong>on</strong>omers from epoxy resins used as coating<br />

material for wine vats. Sciences des Aliments, 9:517–531.<br />

Latorre A et al. (2007). Evaluati<strong>on</strong> <strong>of</strong> the treatment efficiencies <strong>of</strong> paper mill whitewaters in terms <strong>of</strong> organic<br />

compositi<strong>on</strong> <strong>and</strong> toxicity. Envir<strong>on</strong>mental Polluti<strong>on</strong>, 147:648–655.<br />

Lazaro JM et al. (2009). Development <strong>and</strong> characterizati<strong>on</strong> <strong>of</strong> a new polyampholyte-surfactant complex applied<br />

to the solid phase extracti<strong>on</strong> <strong>of</strong> bisphenol-A. Talanta, 80:789–796.<br />

Le HH et al. (2008). <strong>Bisphenol</strong> A is released from polycarb<strong>on</strong>ate drinking bottles <strong>and</strong> mimics the neurotoxic<br />

acti<strong>on</strong>s <strong>of</strong> estrogen in developing cerebellar neur<strong>on</strong>s. Toxicology Letters, 176:149–156.<br />

Lee HB, Peart TE (2000). <strong>Bisphenol</strong> A c<strong>on</strong>taminati<strong>on</strong> in Canadian municipal <strong>and</strong> industrial wastewater <strong>and</strong><br />

sludge samples. Water Quality Research Journal <strong>of</strong> Canada, 35:283–298.<br />

Lenz K, Beck V, Fuerhacker M (2004). Behaviour <strong>of</strong> bisphenol A (BPA), 4-n<strong>on</strong>ylphenol (4-NP) <strong>and</strong> 4n<strong>on</strong>ylphenol<br />

ethoxylates (4-NP1EO, 4-NP2EO) in oxidative water treatment processes. Water Science <strong>and</strong><br />

Technology, 50(5):141–147.<br />

Lewis JB et al. (1999). Identificati<strong>on</strong> <strong>and</strong> characterizati<strong>on</strong> <strong>of</strong> estrogen-like comp<strong>on</strong>ents in commercial resinbased<br />

dental restorative materials. Clinical Oral Investigati<strong>on</strong>s, 3:107–113.<br />

Li L et al. (2008). Development <strong>and</strong> characterizati<strong>on</strong> <strong>of</strong> an immunoaffinity m<strong>on</strong>olith for selective <strong>on</strong>-line<br />

extracti<strong>on</strong> <strong>of</strong> bisphenol A from envir<strong>on</strong>mental water samples. Analytica Chimica Acta, 620(1–2):1–7.


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Li X et al. (2010). Simultaneous determinati<strong>on</strong> <strong>and</strong> assessment <strong>of</strong> 4-n<strong>on</strong>ylphenol, bisphenol A <strong>and</strong> triclosan in<br />

tap water, bottled water <strong>and</strong> baby bottles. Envir<strong>on</strong>ment Internati<strong>on</strong>al, 36:557–562.<br />

Lim DS et al. (2009). Potential risk <strong>of</strong> bisphenol A migrati<strong>on</strong> from polycarb<strong>on</strong>ate c<strong>on</strong>tainers after heating,<br />

boiling, <strong>and</strong> microwaving. Journal <strong>of</strong> Toxicology <strong>and</strong> Envir<strong>on</strong>mental Health. Part A. Current Issues,<br />

72:1285–1291.<br />

Loos R et al. (2007). Polar herbicides, pharmaceutical products, perfluorooctanesulf<strong>on</strong>ate (PFOS),<br />

perfluorooctanoate (PFOA), <strong>and</strong> n<strong>on</strong>ylphenol <strong>and</strong> its carboxylates <strong>and</strong> ethoxylates in surface <strong>and</strong> tap waters<br />

around Lake Maggiore in northern Italy. Analytical <strong>and</strong> Bioanalytical Chemistry, 387:1469–1478.<br />

Lopez-Cervantes J, Paseiro-Losada P (2003). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in, <strong>and</strong> its migrati<strong>on</strong> from, PVC<br />

stretch film used for food packaging. Food Additives <strong>and</strong> C<strong>on</strong>taminants, 20:596–606.<br />

Lopez-Espinosa MJ et al. (2007). Oestrogenicity <strong>of</strong> paper <strong>and</strong> cardboard extracts used as food c<strong>on</strong>tainers. Food<br />

Additives <strong>and</strong> C<strong>on</strong>taminants. Part A, Chemistry, Analysis, C<strong>on</strong>trol, Exposure & Risk Assessment, 24:95–102.<br />

Maia J et al. (2009). Effect <strong>of</strong> detergents in the release <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate baby bottles. Food<br />

Research Internati<strong>on</strong>al, 42:1410–1414.<br />

Maia J et al. (2010). Effect <strong>of</strong> amines in the release <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate baby bottles. Food<br />

Research Internati<strong>on</strong>al, 43:1283–1288.<br />

Maragou NC et al. (2006). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in milk by solid phase extracti<strong>on</strong> <strong>and</strong> liquid<br />

chromatography–mass spectrometry. Journal <strong>of</strong> Chromatography A, 1129:165–173.<br />

Maragou NC et al. (2008). Migrati<strong>on</strong> <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate baby bottles under real use c<strong>on</strong>diti<strong>on</strong>s.<br />

Food Additives & C<strong>on</strong>taminants. Part A, Chemistry, Analysis, C<strong>on</strong>trol, Exposure & Risk Assessment,<br />

25:373–383.<br />

Matsumoto H, Adachi S, Suzuki Y (2005). <strong>Bisphenol</strong> A in ambient air particulates resp<strong>on</strong>sible for the<br />

proliferati<strong>on</strong> <strong>of</strong> MCF-7 human breast cancer cells <strong>and</strong> its c<strong>on</strong>centrati<strong>on</strong> changes over 6 m<strong>on</strong>ths. Archives <strong>of</strong><br />

Envir<strong>on</strong>mental C<strong>on</strong>taminati<strong>on</strong> <strong>and</strong> Toxicology, 48:459–466.<br />

Mendum T et al. (2010). C<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> bisphenol A in thermal paper. Green Chemistry Letters <strong>and</strong> Reviews.<br />

First published <strong>on</strong> 28 July 2010 (iFirst).<br />

Mercea P (2009). Physicochemical processes involved in migrati<strong>on</strong> <strong>of</strong> bisphenol A from polycarb<strong>on</strong>ate. Journal<br />

<strong>of</strong> Applied Polymer Science, 112:579–593.<br />

MHLW (2010). Result <strong>of</strong> the survey c<strong>on</strong>ducted under the auspices <strong>of</strong> the MHLW in 2008–2009 <strong>on</strong> the<br />

occurrence <strong>of</strong> bisphenol A (BPA) in food <strong>and</strong> food c<strong>on</strong>tact materials [provisi<strong>on</strong>al translati<strong>on</strong>]. Japan<br />

Ministry <strong>of</strong> Health, Labour <strong>and</strong> Welfare.<br />

Miyamoto K, Kotake M (2006). Estimati<strong>on</strong> <strong>of</strong> daily bisphenol A intake <strong>of</strong> Japanese individuals with emphasis<br />

<strong>on</strong> uncertainty <strong>and</strong> variability. Envir<strong>on</strong>mental Sciences: an Internati<strong>on</strong>al Journal <strong>of</strong> Envir<strong>on</strong>mental<br />

Physiology <strong>and</strong> Toxicology, 13:15–29.<br />

Mountfort KA (1997). Investigati<strong>on</strong>s into the potential degradati<strong>on</strong> <strong>of</strong> polycarb<strong>on</strong>ate baby bottles during<br />

sterilizati<strong>on</strong> with c<strong>on</strong>sequent release <strong>of</strong> bisphenol-A. United Kingdom Ministry <strong>of</strong> Agriculture, Fisheries <strong>and</strong><br />

Food (Report FD 97/08) [cited in ECB, 2003].<br />

Mountfort KA et al. (1997). Investigati<strong>on</strong>s into the potential degradati<strong>on</strong> <strong>of</strong> polycarb<strong>on</strong>ate baby bottles during<br />

sterilizati<strong>on</strong> with c<strong>on</strong>sequent release <strong>of</strong> bisphenol A. Food Additives <strong>and</strong> C<strong>on</strong>taminants, 14:737–740.<br />

Munguia-Lopez EM, Soto-Valdez H (2001). Effect <strong>of</strong> heat processing <strong>and</strong> storage time <strong>on</strong> migrati<strong>on</strong> <strong>of</strong><br />

bisphenol A (BPA) <strong>and</strong> bisphenol A-diglycidyl ether (BADGE) to aqueous food simulant from Mexican can<br />

coatings. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 49:3666–3671.<br />

Munguia-Lopez EM et al. (2002). Migrati<strong>on</strong> <strong>of</strong> bisphenol A (BPA) from epoxy can coatings to jalapeno peppers<br />

<strong>and</strong> an acid food simulant. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry, 50:7299–7302.<br />

Munguia-Lopez EM et al. (2005). Migrati<strong>on</strong> <strong>of</strong> bisphenol A (BPA) from can coatings into a fatty-food simulant<br />

<strong>and</strong> tuna fish. Food Additives <strong>and</strong> C<strong>on</strong>taminants, 22:892–898.<br />

Olea N et al. (1996). Estrogenicity <strong>of</strong> resin-based composites <strong>and</strong> sealants used in dentistry. Envir<strong>on</strong>mental<br />

Health Perspectives, 104:298–305.<br />

Ortengren U (2000). On composite resin materials. Degradati<strong>on</strong>, erosi<strong>on</strong> <strong>and</strong> possible adverse effects in dentists.<br />

Swedish Dental Journal Supplement, 141:1–61.<br />

Otaka H, Yasuhara A, Morita M (2003). Determinati<strong>on</strong> <strong>of</strong> bisphenol A <strong>and</strong> 4-n<strong>on</strong>ylphenol in human milk using<br />

alkaline digesti<strong>on</strong> <strong>and</strong> cleanup by solid-phase extracti<strong>on</strong>. Analytical Sciences: the Internati<strong>on</strong>al Journal <strong>of</strong><br />

the Japan Society for Analytical Chemistry, 19:1663–1666.<br />

Ozaki A et al. (2004). Chemical analysis <strong>and</strong> genotoxicological safety assessment <strong>of</strong> paper <strong>and</strong> paperboard used<br />

for food packaging. Food <strong>and</strong> Chemical Toxicology: an Internati<strong>on</strong>al Journal Published for the British<br />

Industrial Biological Research Associati<strong>on</strong>, 42:1323–1337.<br />

Ozaki A et al. (2006). Migrati<strong>on</strong> <strong>of</strong> bisphenol A <strong>and</strong> benzophen<strong>on</strong>es from paper <strong>and</strong> paperboard products used<br />

in c<strong>on</strong>tact with food. Shokuhin Eiseigaku Zasshi (Journal <strong>of</strong> the Food Hygienic Society <strong>of</strong> Japan), 47:99–<br />

104.<br />

66


67<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Podlipna D, Cichna-Markl M (2007). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in canned fish by sol-gel immunoaffinity<br />

chromatography, HPLC <strong>and</strong> fluorescence detecti<strong>on</strong>. European Food Research <strong>and</strong> Technology, 224:629–<br />

634.<br />

Polydorou O et al. (2007). Eluti<strong>on</strong> <strong>of</strong> m<strong>on</strong>omers from two c<strong>on</strong>venti<strong>on</strong>al dental composite materials. Dental<br />

Materials, 23:1535–1541.<br />

Polydorou O et al. (2009). Release <strong>of</strong> m<strong>on</strong>omers from different core build-up materials. Dental Materials,<br />

25:1090–1095.<br />

Poustka J et al. (2007). Determinati<strong>on</strong> <strong>and</strong> occurrence <strong>of</strong> bisphenol A, bisphenol A diglycidyl ether, <strong>and</strong><br />

bisphenol F diglycidyl ether, including their derivatives, in canned foodstuffs from the Czech retail market.<br />

Czech Journal <strong>of</strong> Food Sciences, 25:221–229.<br />

Pulgar R et al. (2000). Determinati<strong>on</strong> <strong>of</strong> bisphenol A <strong>and</strong> related aromatic compounds released from Bis-GMAbased<br />

composites <strong>and</strong> sealants by high performance liquid chromatography. Envir<strong>on</strong>mental Health<br />

Perspectives, 108:21–27.<br />

Rastkari N et al. (2010). Sensitive determinati<strong>on</strong> <strong>of</strong> bisphenol A <strong>and</strong> bisphenol F in canned food using a solidphase<br />

microextracti<strong>on</strong> fibre coated with single-walled carb<strong>on</strong> nanotubes before GC/MS. Food Additives <strong>and</strong><br />

C<strong>on</strong>taminants. Part A, Chemistry, Analysis, C<strong>on</strong>trol, Exposure & Risk Assessment, 27:1460–1468.<br />

Rigol A et al. (2002). Determinati<strong>on</strong> <strong>of</strong> toxic compounds in paper-recycling process waters by gas<br />

chromatography–mass spectrometry <strong>and</strong> liquid chromatography–mass spectrometry. Journal <strong>of</strong><br />

Chromatography A, 963:265–275.<br />

Rodriguez-Mozaz S, López de Alda MJ, Barceló D (2004) M<strong>on</strong>itoring <strong>of</strong> estrogens, pesticides <strong>and</strong> bisphenol A<br />

in natural waters <strong>and</strong> drinking water treatment plants by solid-phase extracti<strong>on</strong>–liquid chromatography–mass<br />

spectrometry. Journal <strong>of</strong> Chromatography A, 1045(1–2):85–92.<br />

Rudel RA et al. (2003). Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, <strong>and</strong> other<br />

endocrine-disrupting compounds in indoor air <strong>and</strong> dust. Envir<strong>on</strong>mental Science & Technology, 37:4543–<br />

4553.<br />

Rudel RA et al. (2010). Semivolatile endocrine-disrupting compounds in paired indoor <strong>and</strong> outdoor air in two<br />

northern California communities. Envir<strong>on</strong>mental Science & Technology, 44:6583–6590.<br />

Rykowska I, Szymański A, Wasiak W (2004). Method based <strong>on</strong> solid phase extracti<strong>on</strong>, LC <strong>and</strong> GC for analysis<br />

<strong>of</strong> bisphenol A in drinking water. Chemical <str<strong>on</strong>g>Paper</str<strong>on</strong>g>s, 58(6):382–385.<br />

Sabatini L, Barbieri A, Violante FS (2005). Development <strong>and</strong> validati<strong>on</strong> <strong>of</strong> a capillary high-performance liquid<br />

chromatography/electrospray t<strong>and</strong>em mass spectrometric method for the quantificati<strong>on</strong> <strong>of</strong> bisphenol A in air<br />

samples. Rapid Communicati<strong>on</strong>s in Mass Spectrometry, 19:3468–3472.<br />

Sajiki J, Y<strong>on</strong>ekubo J (2004). Leaching <strong>of</strong> bisphenol A (BPA) from polycarb<strong>on</strong>ate plastic to water c<strong>on</strong>taining<br />

amino acids <strong>and</strong> its degradati<strong>on</strong> by radical oxygen species. Chemosphere, 55:861–867.<br />

Sajiki J et al. (2007). <strong>Bisphenol</strong> A (BPA) <strong>and</strong> its source in foods in Japanese markets. Food Additives <strong>and</strong><br />

C<strong>on</strong>taminants, 24:103–112.<br />

Sasaki N et al. (2005). Salivary bisphenol-A levels detected by ELISA after restorati<strong>on</strong> with composite resin.<br />

Journal <strong>of</strong> Materials Science: Materials in Medicine, 16:297–300.<br />

Schafer TE et al. (2000). What parents should know about estrogen-like compounds in dental materials.<br />

Pediatric Dentistry, 22(1):75–76.<br />

Schecter A et al. (2010). <strong>Bisphenol</strong> A in US food. Envir<strong>on</strong>mental Science & Technology, 44(24):9425–9430.<br />

Schmalz G, Preiss A, Arenholt-Bindslev D (1999). <strong>Bisphenol</strong>-A c<strong>on</strong>tent <strong>of</strong> resin m<strong>on</strong>omers <strong>and</strong> related<br />

degradati<strong>on</strong> products. Clinical Oral Investigati<strong>on</strong>s, 3(3):114–119.<br />

Shao B et al. (2005). Determinati<strong>on</strong> <strong>of</strong> alkylphenol <strong>and</strong> bisphenol A in beverages using liquid<br />

chromatography/electrospray i<strong>on</strong>izati<strong>on</strong> t<strong>and</strong>em mass spectrometry. Analytica Chimica Acta, 530(2):245–<br />

252.<br />

Shao B et al. (2007). Analysis <strong>of</strong> alkylphenol <strong>and</strong> bisphenol A in eggs <strong>and</strong> milk by matrix solid phase dispersi<strong>on</strong><br />

extracti<strong>on</strong> <strong>and</strong> liquid chromatography with t<strong>and</strong>em mass spectrometry. Journal <strong>of</strong> Chromatography. B,<br />

Analytical Technologies in the Biomedical <strong>and</strong> Life Sciences, 850:412–416.<br />

Sim J, Jianhua L (2008). Chemical test for baby bottles sample. Singapore, TÜV Sud PSB (Report<br />

S08CHM03672-JS, 23 July 2008; Report S08CHM05415-JS; 8 October 2008; http://www.takaso.com/img/<br />

BPA.pdf, accessed 27 April 2011).<br />

Sim<strong>on</strong>eau C, Roeder G, Anklam E (2000). Migrati<strong>on</strong> <strong>of</strong> bisphenol-A from baby bottles: effect <strong>of</strong> experimental<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> European survey. In: 2nd Internati<strong>on</strong>al Symposium <strong>on</strong> Food Packaging: Ensuring the Safety<br />

<strong>and</strong> Quality <strong>of</strong> Foods (ILSI c<strong>on</strong>ference), Vienna, Austria, 8–10 November 2000 [cited in ECB, 2003].<br />

Sodré FF, Locatelli MAF, Jardim WF (2010). <strong>Occurrence</strong> <strong>of</strong> emerging c<strong>on</strong>taminants in Brazilian drinking<br />

waters: a sewage-to-tap issue. Water, Air <strong>and</strong> Soil Polluti<strong>on</strong>, 206:57–67.<br />

Stackelberg PE et al. (2004). Persistence <strong>of</strong> pharmaceutical compounds <strong>and</strong> other organic wastewater<br />

c<strong>on</strong>taminants in a c<strong>on</strong>venti<strong>on</strong>al drinking-water-treatment plant. Science <strong>of</strong> the Total Envir<strong>on</strong>ment, 329(1–<br />

3):99–113.


Toxicological <strong>and</strong> Health Aspects <strong>of</strong> <strong>Bisphenol</strong> A<br />

Sun C et al. (2006). Single laboratory validati<strong>on</strong> <strong>of</strong> a method for the determinati<strong>on</strong> <strong>of</strong> bisphenol A, bisphenol A<br />

diglycidyl ether <strong>and</strong> its derivatives in canned foods by reversed-phase liquid chromatography. Journal <strong>of</strong><br />

Chromatography A, 1129:145–148.<br />

Sun Y et al. (2000). High-performance liquid chromatography with peroxyoxalate chemiluminescence detecti<strong>on</strong><br />

<strong>of</strong> bisphenol A migrated from polycarb<strong>on</strong>ate baby bottles using 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl<br />

chloride as a label. Journal <strong>of</strong> Chromatography. B, Analytical Technologies in the Biomedical <strong>and</strong> Life<br />

Sciences, 749:49–56.<br />

Sun Y et al. (2004). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in human breast milk by HPLC with column-switching <strong>and</strong><br />

fluorescence detecti<strong>on</strong>. Biomedical Chromatography: BMC, 18:501–507.<br />

Szymanski A, Rykowska I, Wasiak W (2006). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in water <strong>and</strong> milk by micellar<br />

liquid chromatography. Acta Chromatographica, 17:161–172.<br />

Takahashi T (1998). Envir<strong>on</strong>mental horm<strong>on</strong>e increases by PC c<strong>on</strong>tainers with boiling water—eluti<strong>on</strong> study by<br />

pr<strong>of</strong>essors <strong>of</strong> Niigata University. Excerpted from Mainichi Shimbun, dated 29 May 1998 [cited in ECB,<br />

2003].<br />

Takao Y et al. (1999). Fast screening method for bisphenol A in envir<strong>on</strong>mental water <strong>and</strong> in food by solid-phase<br />

microextracti<strong>on</strong> (SPME). Japanese Journal <strong>of</strong> Toxicology <strong>and</strong> Envir<strong>on</strong>mental Health, 45:39.<br />

Takao Y et al. (2002). Release <strong>of</strong> bisphenol A from food can lining up<strong>on</strong> heating. Journal <strong>of</strong> Health Science,<br />

48:331–334.<br />

Tan BL, Mustafa AM (2003). Leaching <strong>of</strong> bisphenol A from new <strong>and</strong> old babies’ bottles, <strong>and</strong> new babies’<br />

feeding teats. Asia-Pacific Journal <strong>of</strong> Public Health / Asia-Pacific Academic C<strong>on</strong>sortium for Public Health,<br />

15:118–123.<br />

Terasaki M et al. (2007). <strong>Occurrence</strong> <strong>and</strong> estrogenicity <strong>of</strong> phenolics in paper-recycling process water: pollutants<br />

originating from thermal paper in waste paper. Envir<strong>on</strong>mental Toxicology <strong>and</strong> Chemistry, 26:2356–2366.<br />

Thoms<strong>on</strong> BM, Grounds PR (2005). <strong>Bisphenol</strong> A in canned foods in New Zeal<strong>and</strong>: an exposure assessment.<br />

Food Additives <strong>and</strong> C<strong>on</strong>taminants, 22:65–72.<br />

Tsai WT (2006). Human health risk <strong>on</strong> envir<strong>on</strong>mental exposure to bisphenol-A: a review. Journal <strong>of</strong><br />

Envir<strong>on</strong>mental Science <strong>and</strong> Health. Part C, Envir<strong>on</strong>mental Carcinogenesis & Ecotoxicology Reviews,<br />

24:225–255.<br />

V<strong>and</strong>enberg LN et al. (2007). Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24:139–177.<br />

Vinas P et al. (2010). Comparis<strong>on</strong> <strong>of</strong> two derivatizati<strong>on</strong>-based methods for solid-phase microextracti<strong>on</strong>–gas<br />

chromatography–mass spectrometric determinati<strong>on</strong> <strong>of</strong> bisphenol A, bisphenol S <strong>and</strong> biphenol migrated from<br />

food cans. Analytical <strong>and</strong> Bioanalytical Chemistry, 397:115–125.<br />

Vinggaard AM et al. (2000). Identificati<strong>on</strong> <strong>and</strong> quantificati<strong>on</strong> <strong>of</strong> estrogenic compounds in recycled <strong>and</strong> virgin<br />

paper for household use as determined by an in vitro yeast estrogen screen <strong>and</strong> chemical analysis. Chemical<br />

Research in Toxicology, 13:1214–1222.<br />

Vivacqua A et al. (2003). The food c<strong>on</strong>taminants bisphenol A <strong>and</strong> 4-n<strong>on</strong>ylphenol act as ag<strong>on</strong>ists for estrogen<br />

receptor alpha in MCF7 breast cancer cells. Endocrine, 22:275–284.<br />

Volkel W, Kiranoglu M, Fromme H (2008). Determinati<strong>on</strong> <strong>of</strong> free <strong>and</strong> total bisphenol A in human urine to<br />

assess daily uptake as a basis for a valid risk assessment. Toxicology Letters, 179:155–162.<br />

v<strong>on</strong> Goetz N et al. (2010). <strong>Bisphenol</strong> A: How the most relevant exposure sources c<strong>on</strong>tribute to total c<strong>on</strong>sumer<br />

exposure. Risk Analysis, 30:473–487.<br />

VWA (2005). Migrati<strong>on</strong> <strong>of</strong> bisphenol A <strong>and</strong> plasticizers from plastic feeding utensils for babies. Dutch Food<br />

<strong>and</strong> C<strong>on</strong>sumer Product Safety Authority (Report No. ND05o410;<br />

http://vwa.nl/txmpub/files/?p_file_id=10413, accessed 27 April 2011).<br />

VWA (2008). [<strong>Bisphenol</strong> A in baby bottles.] Dutch Food <strong>and</strong> C<strong>on</strong>sumer Product Safety Authority. Project No.<br />

ND082217 (http://vwa.nl/txmpub/files/?p_file_id=31842, accessed 27 April 2011) (in Dutch).<br />

Wang J, Schnute WC (2010). Direct analysis <strong>of</strong> trace level bisphenol A, octylphenols <strong>and</strong> n<strong>on</strong>ylphenol in<br />

bottled water <strong>and</strong> leached from bottles by ultra-high-performance liquid chromatography/t<strong>and</strong>em mass<br />

spectrometry. Rapid Communicati<strong>on</strong>s in Mass Spectrometry, 24:2605–2610.<br />

Wils<strong>on</strong> NK et al. (2003). Aggregate exposures <strong>of</strong> nine preschool children to persistent organic pollutants at day<br />

care <strong>and</strong> at home. Journal <strong>of</strong> Exposure Analysis <strong>and</strong> Envir<strong>on</strong>mental Epidemiology, 13:187–202.<br />

Wils<strong>on</strong> NK et al. (2007). An observati<strong>on</strong>al study <strong>of</strong> the potential exposures <strong>of</strong> preschool children to<br />

pentachlorophenol, bisphenol-A, <strong>and</strong> n<strong>on</strong>ylphenol at home <strong>and</strong> daycare. Envir<strong>on</strong>mental Research, 103:9–20.<br />

W<strong>on</strong>g OK, Leo LW, Seah HS (2005). Dietary exposure assessment <strong>of</strong> infants to bisphenol A from the use <strong>of</strong><br />

polycarb<strong>on</strong>ate baby milk bottles. Food Additives <strong>and</strong> C<strong>on</strong>taminants, 22:280–288.<br />

Xu B et al. (2007). Degradati<strong>on</strong> <strong>of</strong> endocrine disruptor bisphenol A in drinking water by oz<strong>on</strong>e oxidati<strong>on</strong>.<br />

Fr<strong>on</strong>tiers in Envir<strong>on</strong>mental Science & Engineering China, 1(3):350–356.<br />

Yamamoto T, Yasuhara A (2000). Determinati<strong>on</strong> <strong>of</strong> bisphenol A migrated from polyvinyl chloride hoses by<br />

GC/MS. Bunseki Kagaku, 49:443–447.<br />

68


69<br />

<strong>Sources</strong> <strong>and</strong> <strong>Occurrence</strong> <strong>of</strong> BPA<br />

Ye XY et al. (2006). Measuring envir<strong>on</strong>mental phenols <strong>and</strong> chlorinated organic chemicals in breast milk using<br />

automated <strong>on</strong>-line column-switching–high performance liquid chromatography–isotope diluti<strong>on</strong> t<strong>and</strong>em<br />

mass spectrometry. Journal <strong>of</strong> Chromatography. B, Analytical Technologies in the Biomedical <strong>and</strong> Life<br />

Sciences, 831:110–115.<br />

Yi B, Kim C, Yang M (2010). Biological m<strong>on</strong>itoring <strong>of</strong> bisphenol A with HPLC/FLD <strong>and</strong> LC/MS/MS assays.<br />

Journal <strong>of</strong> Chromatography. B, Analytical Technologies in the Biomedical <strong>and</strong> Life Sciences, 878(27):2606–<br />

2610.<br />

Y<strong>on</strong>ekubo J, Hayakawa K, Sajiki J (2008). C<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> bisphenol A, bisphenol A diglycidyl ether, <strong>and</strong><br />

their derivatives in canned foods in Japanese markets. Journal <strong>of</strong> Agricultural <strong>and</strong> Food Chemistry,<br />

56:2041–2047.<br />

Yoshida H et al. (2003). Liquid chromatographic determinati<strong>on</strong> <strong>of</strong> bisphenols based <strong>on</strong> intramolecular excimerforming<br />

fluorescence derivatizati<strong>on</strong>. Analytica Chimica Acta, 488:211–221.<br />

Yoshida T et al. (2001). Determinati<strong>on</strong> <strong>of</strong> bisphenol A in canned vegetables <strong>and</strong> fruit by high performance<br />

liquid chromatography. Food Additives <strong>and</strong> C<strong>on</strong>taminants, 18:69–75.<br />

Zafra A et al. (2002). Determinati<strong>on</strong> <strong>of</strong> bisphenol-A <strong>and</strong> related compounds in human saliva by gas<br />

chromatography mass spectrometry. Chromatographia, 56:213–218.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!