07.12.2012 Views

From the excitation of surface plasmon polaritons ... - Andreas Otto

From the excitation of surface plasmon polaritons ... - Andreas Otto

From the excitation of surface plasmon polaritons ... - Andreas Otto

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>From</strong> <strong>the</strong> <strong>excitation</strong> <strong>of</strong> <strong>surface</strong> <strong>plasmon</strong> <strong>polaritons</strong> (SPP’s) by<br />

evanescent waves to „SERS active sites”<br />

<strong>Andreas</strong> <strong>Otto</strong><br />

1) History <strong>of</strong> <strong>plasmon</strong>s, <strong>surface</strong> <strong>plasmon</strong> <strong>polaritons</strong> (SPP) and „<strong>Otto</strong>configuration“<br />

2) Roughness spectrum <strong>of</strong> a smooth silver film obtained by SPP-SPP<br />

scattering.<br />

3) Collecting light from „SPP-cone“ with <strong>the</strong> „Weierstraß-prism“ (WP)<br />

4) Pro<strong>of</strong> <strong>of</strong> <strong>the</strong> <strong>excitation</strong> <strong>of</strong> SPP‘s by „hot electrons“ in metal-insulatormetal<br />

junctions, using <strong>the</strong> WP<br />

5) Using <strong>the</strong> WP in <strong>surface</strong> Raman spectroscopy from single crystal<br />

copper electrodes<br />

6) SERS active sites


Bulk-plasma oscillations (<strong>plasmon</strong>s)<br />

1) Oscillations in ionized gases: Tonks & Langmuir 1929<br />

2) Bulk plasma oscillations in free electron metal:<br />

Pines & Bohm, Phys.Rev.85(1952)338<br />

3) Bulk <strong>plasmon</strong> in Silver, Fröhlich & Pelzer 1955<br />

Proc.Phys.Soc.A68(1955)525<br />

ε(ω) = 0 at<br />

ca.3.75eV


Surface <strong>plasmon</strong> polariton <strong>of</strong> silver<br />

bulk<br />

<strong>plasmon</strong><br />

(Fröhlich,<br />

Pelzer 1955)<br />

hω<br />

( eV )<br />

4<br />

3<br />

2<br />

1<br />

radiative<br />

SPP-dispersion relation<br />

ω/k = c<br />

nonradiative<br />

Surface <strong>plasmon</strong>-polariton <strong>of</strong> plane silver with<br />

phase velocity parallel <strong>surface</strong> < c<br />

Dielectric <strong>the</strong>ory with retardation: „plasmaradiation“<br />

by Ritchie & Eldridge 1962, SPP<br />

dispersion in thin film by <strong>Otto</strong> 1965 (first?)<br />

k parallel<br />

ω εω ( )<br />

( ω)<br />

= ( )<br />

c εω ( ) + 1<br />

Surface Plasmon: Ritchie,<br />

Phys.Rev.106 (1957) 874,<br />

Ferrell and Stern 1958, 1960<br />

unretarded<br />

1/2<br />

k parallel<br />

<strong>surface</strong>


c<br />

α<br />

silver<br />

v phase,parallel <strong>surface</strong> = c/n sin α<br />

c<br />

Problem and idea<br />

phase velocity length <strong>surface</strong><br />

v phase,parallel <strong>surface</strong> = c/sin α >c<br />

c c<br />

α ≥ α<br />

total reflection: n sin α > 1 evanescent field with v phase,parallel <strong>surface</strong> < c<br />

c/n<br />

total reflection<br />

c/n<br />

PUT <strong>the</strong> silver sample in about a wavelength<br />

distance BELOW <strong>the</strong> prism!


The realization (1968)<br />

A. <strong>Otto</strong>, Excitation <strong>of</strong> nonradiative <strong>surface</strong> plasma waves in silver by <strong>the</strong> method <strong>of</strong> frustrated<br />

total reflection, Z. Physik 216 (1968) 398, download from http://fkphy.uni-duesseldorf.de<br />

measuring D by intererence<br />

fringes <strong>of</strong> white light<br />

gap width d ~λ<br />

Want to know more about<br />

history, priority, who<br />

invented and introduced <strong>the</strong><br />

names „X-configuration“?<br />

Look for<br />

www.fkphy.<br />

uni-duesseldorf.de/<br />

lecturexiamen/LectureI<br />

SPP resonance only observed for p-polarized light (equivalent to TH polarization)


Experimental dispersion<br />

ω<br />

k( hω)=<br />

sinα<br />

c<br />

minimum <strong>of</strong> reflectivity


In 1968, <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> ATR – SPP resonance was clear,<br />

but real <strong>surface</strong> diagnostic needs were not known, at least to me.<br />

error bar<br />

+2nm AgS<br />

+1nm AgS<br />

calculated<br />

experiment


2) Roughness spectrum <strong>of</strong> a smooth<br />

silver film obtained by SPP-SPP<br />

scattering


k = kSPP<br />

out<br />

Fluid prism (refractive<br />

index <strong>of</strong> BK7 glass)<br />

in<br />

ω<br />

k = n<br />

c<br />

k<br />

=<br />

ω<br />

c<br />

k x<br />

Scattered<br />

intensity<br />

Laser<br />

in<br />

Quantitative measurement <strong>of</strong> <strong>the</strong><br />

roughness spectrum <strong>of</strong> silver films,<br />

J. Bodesheim, A. <strong>Otto</strong> Surf. Sci. 45 (1974) 441<br />

SPP(in) – SPP(out) –<br />

scattering<br />

with „fluid-prism“


oughness spectrum <strong>of</strong> a „smooth“ silver film<br />

without ATR-prism<br />

with ATR-prism,<br />

perpendicular<br />

incidence<br />

from SPP – SPP<br />

scattering


3) Collecting light from „SPP-cone“<br />

with <strong>the</strong><br />

„Weierstraß-prism“ (WP)


Invention <strong>of</strong> <strong>the</strong> „Weierstraß-prism“ : Integration over all emitted SPP‘s<br />

from an emitting point<br />

k = kSPP<br />

out<br />

out<br />

ω<br />

k = n<br />

c<br />

k<br />

ω<br />

=<br />

c<br />

k x<br />

W. Wittke, A. Hatta, A. <strong>Otto</strong><br />

Efficient use <strong>of</strong> <strong>the</strong> <strong>surface</strong> <strong>plasmon</strong> polariton resonance in light scattering from adsorbates.<br />

Applied Physics A 48 (1989) 289-294


Adjusting <strong>the</strong> gap sample-Weierstraßprism<br />

R=1 d=2λ L R=0.94 d=3/2 λ L<br />

gap modes<br />

R=0.71 d=5/4 λ L R=0.35 d=λ L<br />

Peter Bor<strong>the</strong>n, Diplomarbeit Düsseldorf 1988<br />

SPP<br />

R=0.45 d=3/4 λ L<br />

R=0.81 d< 1/2 λ L<br />

R=0.61 d=1/2 λ L


4) Pro<strong>of</strong> <strong>of</strong> <strong>the</strong> <strong>excitation</strong> <strong>of</strong> SPP‘s by<br />

„hot electrons“ in metal-insulator-<br />

metal junctions, using <strong>the</strong> WP


Ag<br />

hot<br />

electrons<br />

<strong>excitation</strong> <strong>of</strong><br />

slow modes?<br />

<strong>excitation</strong><br />

<strong>of</strong> SPP‘s ?<br />

Reversed bias:<br />

No <strong>excitation</strong><br />

<strong>of</strong> SPP‘s ?<br />

Light emission from<br />

Al/AlOx/Ag tunnelling<br />

junctions<br />

D. Diesing, G. Kritzler, A. <strong>Otto</strong>, Surface reactions <strong>of</strong> hot<br />

electrons at metal-liquid interfaces, in Solid Liquid<br />

Interfaces, Macroscopic Phenomena and Microscopic<br />

Understanding, eds. S. Thurgate and K. Wandelt,<br />

Topic in Applied Physics 85, p.365-421 Springer 2003<br />

d


Inset: integrated normalized emission<br />

as function <strong>of</strong> d<br />

200nm<br />

400 nm<br />

1000nm<br />

2000nm<br />

Diesing, G. Kritzler, A. <strong>Otto</strong><br />

D. Surface reactions <strong>of</strong> hot electrons at metal-liquid interfaces<br />

Topic in Applied Physics 85, p.365-421 Springer 2003<br />

Reversed bias: No light,<br />

no <strong>excitation</strong> <strong>of</strong> SPP‘s !<br />

Pro<strong>of</strong> <strong>of</strong> hot electron – SPP<br />

mechanism


5) Using <strong>the</strong> Weierstraß-prism in<br />

<strong>surface</strong> Raman spectroscopy from<br />

single crystal copper electrodes


Advantage <strong>of</strong> „<strong>Otto</strong> –configuration“, when using flat single crystals <strong>of</strong> different<br />

orientations: Variation <strong>of</strong> gap width, no excessive heating <strong>of</strong> <strong>the</strong> sample<br />

A. Bruckbauer, A. <strong>Otto</strong>,, J. Raman Spectrosc., 29 (1998) 665-672<br />

Raman<br />

light<br />

0.01 M pyridine +<br />

0.1M KClO 4<br />

aqueous electrolyte<br />

Laser beam<br />

Hg/Hg 2 SO 4<br />

reference<br />

ring breathing Raman band <strong>of</strong><br />

pyridine at optimal electrode<br />

potential


Reversible potential dependance <strong>of</strong> SERS <strong>of</strong> pyridine at Cu electrodes <strong>of</strong> different<br />

crystallographic orientation<br />

Cu-electrode potential<br />

electrolyte: 0.01 M pyridine in 0.1<br />

M KClO 4, (Hg/Hg 2 SO 4 ) reference electrode<br />

Capacity measurements: pyridine stays<br />

adsorbed at all electrode potentials E.<br />

The dependence <strong>of</strong> intensity on potential<br />

reflects tuning in and out <strong>of</strong> <strong>the</strong> transient<br />

electron transfer resonance.<br />

(metal-adsobate) (metal + -adsorbate - )<br />

(Socalled „first layer chemical effect“ in<br />

SERS)


SERS <strong>of</strong> pyridine at Cu electrodes originates at defects (SERS active sites)<br />

Cu(110) vicinal at E = -1000mV<br />

Cu(110) vicinal at E=-500 mV<br />

Cu(110) vicinal at E=-1700 mV<br />

Cu(111) at E=-1100 mV<br />

SERS <strong>of</strong> pyridine on Cu<br />

films deposited at T substrate<br />

120K<br />

240K<br />

300K<br />

pyr. at defects pyridine at Cu(111) facets<br />

Electromagnetic<br />

enhancement by<br />

SPP resonance is<br />

not enough to<br />

observe pyridine at<br />

atomic smooth<br />

facets


Concentration <strong>of</strong> <strong>surface</strong> defects is unknown in this experiment<br />

83<br />

40<br />

19<br />

3<br />

Average enhancement <strong>of</strong> SERS <strong>of</strong> pyridine<br />

at Cu electrodes <strong>of</strong> different<br />

crystallographic orientation<br />

electrolyte: 0.01 M pyridine in 0.1<br />

M KClO 4, (Hg/Hg 2 SO 4 ) reference electrode<br />

Average enhancement with respect to<br />

pyridine in <strong>the</strong> liquid gap (assuming<br />

SERS originates from all adsorbed<br />

pyridine molecules, ra<strong>the</strong>r than only<br />

from species adsorbed at defects)


6) SERS active sites


pyridine on silver in<br />

Ultra-High-Vacuum,<br />

influence <strong>of</strong> atomic scale<br />

roughness<br />

Ü.Ertürk,D.Gherban, A.<strong>Otto</strong>, Surf.Sci.203, 554(1988)<br />

(a) Top: Raman spectrum <strong>of</strong> a<br />

silver film, deposited at room<br />

temperature, exposed at about<br />

40 K to 1 L <strong>of</strong> pyridine in <strong>the</strong><br />

range <strong>of</strong> <strong>the</strong> C-C breathing mode,<br />

1 W, integration time 2000 s.<br />

Bottom: Raman spectrum <strong>of</strong> liquid<br />

pyridine. (b) Raman spectra <strong>of</strong> <strong>the</strong><br />

sample described in (a) for<br />

<strong>the</strong> indicated average thickness<br />

d cold <strong>of</strong> additional silver deposited<br />

on top at about 40 K. 1 W,<br />

integration times 800,400, 400,400<br />

s.<br />

SERS active sites<br />

normal sites


SERS intensity and<br />

<strong>the</strong>rmo-desorptionspectroscopy<br />

<strong>of</strong> CO<br />

on cold-deposited Ag<br />

exposures<br />

desorption from defects<br />

CO-stretch<br />

SERSintensity<br />

W. Akemann, A. <strong>Otto</strong><br />

Vibrational modes <strong>of</strong> CO adsorbed to disordered copper<br />

films investigated with Raman spectroscopy.<br />

J. Raman Spectrosc. 22 (1991) 797-803<br />

Thermal<br />

desorption<br />

desorption temperature (K)<br />

SERS only from<br />

a minority <strong>of</strong><br />

sites, where CO<br />

is most tighly<br />

bound and settles<br />

first<br />

multilayer desorption


STM on<br />

Cu(211)<br />

Ball model <strong>of</strong> <strong>the</strong> Cu(211)<br />

<strong>surface</strong>. The distance between<br />

intrinsic steps is 0.625nm.<br />

Horizontal chains from left to<br />

right are along <strong>the</strong> (0, -1, 1)<br />

direction. Copper atoms in <strong>the</strong><br />

step edge are labeled A, at <strong>the</strong><br />

kink site: B<br />

CO binds preferentially<br />

to kink sites


Clean Cu(211), CO settles first at kink sites<br />

A. <strong>Otto</strong>,<br />

M. Lust,<br />

A. Pucci,<br />

G. Meyer<br />

Proceedings<br />

<strong>of</strong> SERRS<br />

2006, in press<br />

in<br />

Canadian<br />

Journal <strong>of</strong><br />

Analytical<br />

Sciences and<br />

Spectroscopy<br />

“SERS active<br />

sites“, facts and<br />

open questions”


A.<strong>Otto</strong>, M.Futamata, Electronic Mechanisms <strong>of</strong> SERS, in Surface enhanced Raman scattering, physics and applications,<br />

eds K.Kneipp, M.Moskovits, H.Kneipp, Topics inApplied Physics 103 (2006)147-182<br />

No CT-SERS at smooth <strong>surface</strong>s<br />

resonant Raman effect <strong>of</strong><br />

<strong>the</strong> complex by internal<br />

charge transfer


SERS active sites = sites, where electrons are trapped for some fs<br />

A. <strong>Otto</strong>, The „chemical“ (electronic) contribution to SERS, J. Raman Spectr. 36 (2005)497<br />

acts for a short time <strong>of</strong> about 5fs as an isolated metalmolecule<br />

complex („hole does not run away“). Internal<br />

resonance Raman effect by charge transfer for molecules<br />

with π* orbital becomes possible. There is no „first layer<br />

SERS-effect“ at a smooth <strong>surface</strong>.


Acknowledgments to my collaborators 1977-2002<br />

visitors, now at SPP3: Lopez-Rios, Futamata<br />

to Pr<strong>of</strong>. Annemarie Pucci and her people (e.g. Lust, Sin<strong>the</strong>r, Priebe),<br />

M.Futamata (Tsukuba) and G.Meyer (IBM Zürich) and my first<br />

„SPP-students“ in München (1970-1974): Sohler, Bodesheim, Huber.


Merci á<br />

Alain Dereux

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!