The MOSEK Python optimizer API manual Version 7.0 (Revision 141)

Optimizer API for Python - Documentation - Mosek Optimizer API for Python - Documentation - Mosek

25.11.2015 Views

174 CHAPTER 13. THE ANALYZERS 13.2.5 Theory concerning infeasible problems This section discusses the theory of infeasibility certificates and how MOSEK uses a certificate to produce an infeasibility report. In general, MOSEK solves the problem where the corresponding dual problem is (13.3) minimize c T x + c f subject to l c ≤ Ax ≤ u c , l x ≤ x ≤ u x maximize (l c ) T s c l − (u c ) T s c u + (l x ) T s x l − (u x ) T s x u + c f subject to A T y + s x l − s x u = c, − y + s c l − s c u = 0, s c l , s c u, s x l , s x u ≥ 0. (13.4) We use the convension that for any bound that is not finite, the corresponding dual variable is fixed at zero (and thus will have no influence on the dual problem). For example l x j = −∞ ⇒ (s x l ) j = 0 13.2.6 The certificate of primal infeasibility A certificate of primal infeasibility is any solution to the homogenized dual problem with a positive objective value. That is, (s c∗ l , s c∗ maximize (l c ) T s c l − (u c ) T s c u + (l x ) T s x l − (u x ) T s x u subject to A T y + s x l − s x u = 0, − y + s c l − s c u = 0, s c l , s c u, s x l , s x u ≥ 0. u , s x∗ l , s x∗ u ) is a certificate of primal infeasibility if and (l c ) T s c∗ l − (u c ) T s c∗ u + (l x ) T s x∗ l − (u x ) T s x∗ u > 0 A T y + s x∗ l − s x∗ u = 0, − y + s c∗ l − s c∗ u = 0, s c∗ l , s c∗ u , s x∗ l , s x∗ u ≥ 0. The well-known Farkas Lemma tells us that (13.3) is infeasible if and only if a certificate of primal infeasibility exists. Let (s c∗ l , s c∗ u , s x∗ l , s x∗ u ) be a certificate of primal infeasibility then

13.2. ANALYZING INFEASIBLE PROBLEMS 175 (s c∗ l ) i > 0((s c∗ u ) i > 0) implies that the lower (upper) bound on the i th constraint is important for the infeasibility. Furthermore, (s x∗ l ) j > 0((s x∗ u ) i > 0) implies that the lower (upper) bound on the j th variable is important for the infeasibility. 13.2.7 The certificate of dual infeasibility A certificate of dual infeasibility is any solution to the problem minimize c T x subject to ¯lc ≤ Ax ≤ ū c , ¯lx ≤ x ≤ ū x with negative objective value, where we use the definitions and { 0, l c ¯lc i := i > −∞, − ∞, otherwise, , ū c i := { 0, u c i < ∞, ∞, otherwise, { 0, l x ¯lx i := i > −∞, − ∞, otherwise, and ū x i := { 0, u x i < ∞, ∞, otherwise. Stated differently, a certificate of dual infeasibility is any x ∗ such that ¯lc ¯lx c T x ∗ < 0, ≤ Ax ∗ ≤ ū c , (13.5) ≤ x ∗ ≤ ū x The well-known Farkas Lemma tells us that (13.4) is infeasible if and only if a certificate of dual infeasibility exists. Note that if x ∗ is a certificate of dual infeasibility then for any j such that variable j is involved in the dual infeasibility. x ∗ j ≠ 0,

174 CHAPTER 13. THE ANALYZERS<br />

13.2.5 <strong>The</strong>ory concerning infeasible problems<br />

This section discusses the theory of infeasibility certificates and how <strong>MOSEK</strong> uses a certificate to<br />

produce an infeasibility report. In general, <strong>MOSEK</strong> solves the problem<br />

where the corresponding dual problem is<br />

(13.3)<br />

minimize<br />

c T x + c f<br />

subject to l c ≤ Ax ≤ u c ,<br />

l x ≤ x ≤ u x<br />

maximize (l c ) T s c l − (u c ) T s c u<br />

+ (l x ) T s x l − (u x ) T s x u + c f<br />

subject to A T y + s x l − s x u = c,<br />

− y + s c l − s c u = 0,<br />

s c l , s c u, s x l , s x u ≥ 0.<br />

(13.4)<br />

We use the convension that for any bound that is not finite, the corresponding dual variable is fixed<br />

at zero (and thus will have no influence on the dual problem). For example<br />

l x j = −∞ ⇒ (s x l ) j = 0<br />

13.2.6 <strong>The</strong> certificate of primal infeasibility<br />

A certificate of primal infeasibility is any solution to the homogenized dual problem<br />

with a positive objective value. That is, (s c∗<br />

l<br />

, s c∗<br />

maximize (l c ) T s c l − (u c ) T s c u<br />

+ (l x ) T s x l − (u x ) T s x u<br />

subject to A T y + s x l − s x u = 0,<br />

− y + s c l − s c u = 0,<br />

s c l , s c u, s x l , s x u ≥ 0.<br />

u , s x∗<br />

l<br />

, s x∗<br />

u ) is a certificate of primal infeasibility if<br />

and<br />

(l c ) T s c∗<br />

l<br />

− (u c ) T s c∗<br />

u<br />

+ (l x ) T s x∗<br />

l<br />

− (u x ) T s x∗<br />

u > 0<br />

A T y + s x∗<br />

l − s x∗<br />

u = 0,<br />

− y + s c∗<br />

l − s c∗<br />

u = 0,<br />

s c∗<br />

l , s c∗<br />

u , s x∗<br />

l , s x∗<br />

u ≥ 0.<br />

<strong>The</strong> well-known Farkas Lemma tells us that (13.3) is infeasible if and only if a certificate of primal<br />

infeasibility exists.<br />

Let (s c∗<br />

l<br />

, s c∗<br />

u , s x∗<br />

l<br />

, s x∗<br />

u ) be a certificate of primal infeasibility then

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!