25.11.2015 Views

The MOSEK Python optimizer API manual Version 7.0 (Revision 141)

Optimizer API for Python - Documentation - Mosek

Optimizer API for Python - Documentation - Mosek

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

130 CHAPTER 10. PROBLEM FORMULATION AND SOLUTIONS<br />

10.3 Semidefinite optimization<br />

Semidefinite optimization is an extension of conic quadratic optimization (see Section 10.2) allowing<br />

positive semidefinite matrix variables to be used in addition to the usual scalar variables. A semidefinite<br />

optimization problem can be written as<br />

minimize<br />

subject to l c i ≤<br />

n−1<br />

∑ ∑p−1<br />

〈 〉<br />

c j x j + Cj , X j + c<br />

f<br />

j=0<br />

n−1<br />

j=0<br />

p−1<br />

∑ ∑ 〈 〉<br />

a ij x j + Aij , X j<br />

j=0<br />

j=0<br />

≤ u c i, i = 0, . . . , m − 1<br />

lj x ≤ x j ≤ u x j , j = 0, . . . , n − 1<br />

x ∈ C, X j ∈ S r + j<br />

, j = 0, . . . , p − 1<br />

(10.10)<br />

where the problem has p symmetric positive semidefinite variables X j ∈ S r + j<br />

of dimension r j with<br />

symmetric coefficient matrices C j ∈ S rj and A i,j ∈ S rj . We use standard notation for the matrix inner<br />

product, i.e., for U, V ∈ R m×n we have<br />

〈U, V 〉 :=<br />

m−1<br />

∑<br />

i=0<br />

n−1<br />

∑<br />

U ij V ij .<br />

With semidefinite optimization we can model a wide range of problems as demonstrated in [7].<br />

j=0<br />

10.3.1 Duality for semidefinite optimization<br />

<strong>The</strong> dual problem corresponding to the semidefinite optimization problem (10.10) is given by<br />

maximize<br />

subject to<br />

(l c ) T s c l − (u c ) T s c u + (l x ) T s x l − (u x ) T s x u + c f<br />

c − A T y + s x u − s x l = s x n,<br />

m∑<br />

C j − y i A ij = S j , j = 0, . . . , p − 1<br />

i=0<br />

s c l − s c u = y,<br />

s c l , s c u, s x l , s x u ≥ 0,<br />

s x n ∈ C ∗ , S j ∈ S r + j<br />

, j = 0, . . . , p − 1<br />

(10.11)<br />

where A ∈ R m×n , A ij = a ij , which is similar to the dual problem for conic quadratic optimization (see<br />

Section 10.7), except for the addition of dual constraints<br />

m∑<br />

(C j − y i A ij ) ∈ S r + j<br />

.<br />

Note that the dual of the dual problem is identical to the original primal problem.<br />

i=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!