07.12.2012 Views

HATCH Iron and Steel - Hares Engineering

HATCH Iron and Steel - Hares Engineering

HATCH Iron and Steel - Hares Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Methodology <strong>and</strong> Results of <strong>Iron</strong>making<br />

Technology Selection for Specific Site<br />

Conditions<br />

By Y. Gordon, J. Els, M. Freislich<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine<br />

April 3 rd , 2009


Agenda<br />

• Methodology for <strong>Iron</strong>making technology selection<br />

• Technology flowsheets<br />

• Case study 1 – 2.5 million ton of <strong>Iron</strong> Units Plants<br />

• Case study # 2 – 800,000 t per annum hot metal production<br />

• Case study #3 – 5 million ton slab plant<br />

• Case study #4 5.7 million ton steel plant<br />

• Conclusions<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Methodology for Selection of <strong>Iron</strong>making Technology<br />

• As a substantial growth in hot metal, pig iron <strong>and</strong> DRI/HBI dem<strong>and</strong> is expected in a<br />

future<br />

• A clear choice of the best product to produce cannot be made on the basis of only<br />

market requirements<br />

• The ideal product for specific company <strong>and</strong> site location will depend on the technoeconomical<br />

evaluation of the various <strong>Iron</strong>making technologies because the<br />

combined impact of technology, cost of production <strong>and</strong> transport will play a major<br />

role<br />

• For selection of the best ironmaking technology for specific site conditions Hatch<br />

has developed <strong>and</strong> applied for several projects sound methodology for technology<br />

selection, which is based on two stage approach<br />

• First stage includes evaluation of all available for specific conditions ironmaking<br />

technologies with following selection of one (maximum three) best technologies<br />

based on a simple pay back period, factored capital cost analysis <strong>and</strong> operating cost<br />

estimates<br />

• The second stage includes the detailed financial analysis for the best technologies<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Methodology for Selection of <strong>Iron</strong>making Technology,<br />

cont’d – First stage<br />

• Hatch uses predetermined process of technical <strong>and</strong> economic analyses to screen <strong>and</strong><br />

eliminate the technologies (stage 1). This principles are as follows:<br />

– requirements for the final product<br />

– requirements <strong>and</strong> availability of raw materials<br />

– reductants <strong>and</strong> fuels<br />

– the principles of operation<br />

– the concept level flowsheet for each technology<br />

– the mass <strong>and</strong> energy balance<br />

– estimation of the consumption numbers<br />

– a review of scaling principles for each technology<br />

– analysis of the technical issues<br />

– risks assessment with respect to scaling<br />

– raw materials <strong>and</strong> product quality<br />

– state of the development of the technology, <strong>and</strong> complexity of operation<br />

– the operating cost for each technology estimated on the key cost drivers <strong>and</strong><br />

best practice operating conditions<br />

– the capital costs estimate including core process units as well as any<br />

infrastructure directly associated with the process<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Methodology for Selection of <strong>Iron</strong>making Technology,<br />

cont’d – Second Stage<br />

• The financial analysis includes the following:<br />

• The analyses of tax <strong>and</strong> depreciation<br />

• The analyses of sustainable maintenance <strong>and</strong> provisions for project closure, analyses<br />

of project financing impact, the analyses of time based performance <strong>and</strong> an<br />

evaluation of the project viability<br />

• These aspects of the project, are best evaluated by an IRR/NPV estimate, based on<br />

discounted cash flow analyses<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Methodology Applied in Analysis<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Evaluation completed in two<br />

stages:<br />

1. Filtering technologies<br />

• Market study<br />

• High level flowsheet<br />

• High level/ heat mass<br />

• Simple payback<br />

2. Detailed assessment<br />

• Function design<br />

specification<br />

• Bloc flow process<br />

diagram<br />

• Detailed project<br />

viability analyses


ITmk3 Process Flowsheet<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Blast Furnace Process Flowsheet<br />

<strong>Iron</strong> ore<br />

Limestone<br />

Coal<br />

Pellet plant<br />

Sinter plant<br />

Crusher<br />

Coke plant<br />

Blast<br />

Furnace<br />

Slag<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Hot metal


Midrex Coal Based Process Flowsheet<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Midrex Natural Gas Based Process Flowsheet<br />

Natural Gas<br />

Off-gas heat exchanger<br />

Natural gas reformer<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Pellets + Lump Ore<br />

Shaft furnace<br />

CDRI/HDRI/HBI


HYL Coal Based Process Flowsheet<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


HYL Natural Gas Based ZR Process Flowsheet<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Rotary Hearth Furnace + Melter Process Flowsheet<br />

Conference of ITmk3 Family<br />

Electrical Power<br />

Kiev, Ukraine 2009<br />

Off Gas<br />

De-Vanadised Hot Metal<br />

Vanadium Slag<br />

<strong>Steel</strong>making Slag


<strong>Iron</strong><br />

Ore<br />

(PC)<br />

Rotary Kiln + Smelter Process Flowsheet<br />

MULTI<br />

HEARTH<br />

FURNACE<br />

Air<br />

Burner<br />

Coal &<br />

Limestone<br />

Char coal,<br />

Dry Concentrate<br />

4 rotary kilns<br />

Off Gas<br />

ROTARY<br />

KILN<br />

4 Multi<br />

Hearth<br />

Furnaces<br />

Air<br />

AFTER<br />

BURNER<br />

WASTE<br />

HEAT<br />

BOILER<br />

Air<br />

RPCC<br />

TiO2<br />

Slag<br />

PC Adjustments<br />

POWER<br />

TO GRID<br />

MELTER<br />

Conference of ITmk3 Family<br />

Electrical Power<br />

2 Smelters<br />

Off Gas<br />

Kiev, Ukraine 2009<br />

STACK<br />

Mill Scale, PC O2<br />

Hot Metal<br />

Off Gas<br />

De-Vanadised Hot Metal<br />

<strong>Iron</strong><br />

Treatment &<br />

Ladle<br />

Weight<br />

Control<br />

2 vanadium recovery inits<br />

KOBM<br />

1 converter<br />

Vanadium Slag<br />

KOBM<br />

Secondary<br />

Baghouse<br />

O2, Lime, Coke, MgO, FeSi<br />

<strong>Steel</strong>making Slag<br />

Slag Bowl<br />

<strong>Steel</strong><br />

Casting<br />

Ladle


Corex Process Flowsheet<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Finex Process Flowsheet<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


HIsmelt Process Flowsheet<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Romelt Process Flowsheet<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Technored Process Flowsheet<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Case Study 1 – 2.5 million ton <strong>Iron</strong> Unit Plant<br />

Composition of Concentrates<br />

Composition, %<br />

Fe total FeO CaO SiO 2 MgO Al 2 O 3 S MnO TiO 2 P 2 O 5 Size,<br />

mm<br />

C1 68,72 29,3 1,4 1,47 0,33 0,85 0,1 0,18 0,14 0,08 < 0,2<br />

C2 64,35 21,95 0,35 6,41 0,71 0,66 0,003 0,68 0,13 0,11


Case Study 1– 2.5 million ton <strong>Iron</strong> Unit Plant<br />

Anthracite coal composition (Coal A)<br />

Basic parameters, %<br />

S C H 2 O Volatile Ash<br />

Submitted by Client 0.3 81.2 4.0 13.5 10.0<br />

Normalized, dry<br />

basis (Hatch)<br />

77.55 12.89 9.55<br />

This coal is a good quality <strong>and</strong> is suitable for all evaluating processes<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Case Study 1 – 2.5 million ton <strong>Iron</strong> Unit Plant<br />

Bituminous coals composition<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Basic parameters, %<br />

S C VM Ash<br />

BC1 0.35-0.46 75-85 24-42 17-43<br />

BC1 Most probable<br />

(Hatch)<br />

75 25 30<br />

Normalized (Hatch) 57 19.2 23<br />

BC2 0.16-1 61-77 39-57 10-23.4<br />

BC2 Most probable<br />

(Hatch)<br />

61 39 17<br />

Normalized (Hatch) 51 33 14.5<br />

The BC1 was used as the alternative coal for the study because of higher fixed carbon.<br />

It is a medium volatile coal, <strong>and</strong> is available from local sources. However the coal price may<br />

drive to more profitable economical indexes at the poorer coals use despite the lower carbon<br />

content. Blending of 22.6% of anthracite with the 77.4% of coal from the BC2 provides the<br />

same content of the fixed carbon as in the BC1, but with higher volatiles content.


Case Study 1 – 2.5 million ton <strong>Iron</strong> Unit Plant<br />

Capacity, Utilization, Raw Materials, Product Quality<br />

Technology BF Midrex &<br />

Coal<br />

Typical unit capacity<br />

(*1000 tpa)<br />

HYL &<br />

Coal<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

HIsmelt Romelt HYL &<br />

Gas<br />

Midrex<br />

& Gas<br />

3,000 1,300 1,100 830 300 1,75* 1,800<br />

Utilisation (%) 97 91.3 91.3 92 92.3 91.3 91.3<br />

Ore chemistry:<br />

%Fe (tot)<br />

%P (max)<br />

%S (max)<br />

%Na2O + K2O Ore Size, (mm)<br />

Pellets (reduction unit)<br />

Lump (reduction unit)<br />

Fines (reduction unit)<br />

>53<br />


Case Study 1 – 2.5 million ton <strong>Iron</strong> Unit Plant<br />

Capacity, Utilization, Raw Materials, Product Quality<br />

Technology Technored COREX FINEX 4RK &<br />

Smelter<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

2RH &<br />

Smelter<br />

ITmk3<br />

Unit capacity (*1000 tpa) 700 1,500 1,500 750 1,000 550,000<br />

Utilisation (%) 92 92.5 92.5 85 80 >94<br />

Ore chemistry:<br />

%Fe (tot)<br />

%P (max)<br />

%S (max)<br />

% Na2O + %K2O Ore Size (mm)<br />

Pellets (reduction unit)<br />

Lump (reduction unit)<br />

Fines (reduction unit)<br />

65<br />


Case Study 1 – 2.5 million ton <strong>Iron</strong> Unit Plant<br />

Process sensitivity to sulphur <strong>and</strong> phosphorus<br />

Process S, %Wt S, %Wt,<br />

requirement<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

P, %Wt P, %Wt<br />

requirement<br />

C1 Maximum C1 Concentrate<br />

Technored 0.1 N/A 0.035 0.05 Y<br />

Midrex with Gas 0.1 0.015 0.035 0.03 N<br />

HYL with Gas 0.1 0.03 0.035 0.03 N<br />

Midrex with Coal 0.1 0.01 0.035 0.03 N<br />

HYL with Coal 0.1 0.02 0.035 0.03 N<br />

HIsmelt 0.1 N/A 0.035 N/A Y<br />

Rotary Kiln <strong>and</strong> Smelter 0.1 0.1 0.035 0.08 Y<br />

Rotary Hearth <strong>and</strong> Smelter 0.1 0.12 0.035 0.08 Y<br />

Romelt 0.1 N/A 0.035 N/A Y<br />

FINEX 0.1 0.6 0.035 0.08 Y<br />

COREX 0.1 0.6 0.035 0.08 Y<br />

ITmk3 0.1 0.1 0.035 0.05 Y<br />

Blast Furnace 0.1 0.6 0.035 0.08 Y


Case Study 1 – 2.5 million ton <strong>Iron</strong> Unit Plant<br />

Two Most Favourable Technologies<br />

• ITmk3 process <strong>and</strong> Rotary Hearth – Smelter<br />

combination were selected as most favourable<br />

technologies for detailed financial analysis<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Case Study 1 – 2.5 million ton <strong>Iron</strong> Unit Plant<br />

Results of financial modelling<br />

• Return on investment (IRR) <strong>and</strong> net present value<br />

(NPV) for ITmk3 are at acceptable level in industry <strong>and</strong><br />

are somewhat 5-% higher than for combination of Rotary<br />

hearth furnace plus melter. Because of this ITmk3<br />

process was recommended as the best technology in this<br />

case study<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Case Study 2 –, 0.8 million ton Hot metal production<br />

Results of financial modelling (rotary kiln based<br />

process)<br />

• Client requested Hatch to evaluate NZS flowsheet for processing of their fine ore<br />

• The ore is a good quality <strong>and</strong> does not contain titania <strong>and</strong> vanadium<br />

• Hatch evaluated two major options: NZS flowsheet <strong>and</strong> long rotary kiln without MHF<br />

NPV<br />

Scenario<br />

1<br />

Scenario<br />

2<br />

Scenario<br />

3<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Scenario<br />

4<br />

Scenario<br />

5<br />

Scenario<br />

6<br />

Scenario<br />

7<br />

US$<br />

millions ($309) ($317) ($329) ($281) ($330) ($243) ($315)<br />

IRR % -4.3% -5.5% -8.2% -1.5% -8.5% -2.7% -4.2%<br />

Simple<br />

payback Years 24 24 24 23 24 24 24<br />

Hatch did not recommend to the client to proceed with this project


Case Study 3 – 5 MTPA Slab Plant Study<br />

Project Overview<br />

• Hatch conducted a high level conceptual study for a 5 MTPA<br />

slab plant subsequent to a plant site location study.<br />

• The project will take advantage of local circumstances, such as:<br />

– Availability of iron ore<br />

– Inexpensive green electrical power<br />

– Opportunity of exporting gases to an adjacent industrial<br />

establishment<br />

• Design principles:<br />

– Maximize use of internally generated gas for chemical reduction as<br />

a first priority <strong>and</strong> as a fuel gas as a second priority<br />

– Flexibility for use lower quality iron ore <strong>and</strong> coal<br />

– Only industrially proven technologies<br />

– Selection of the most suitable capacity of the plant for each<br />

selected production route in the range of 5-5.7 million ton of slabs<br />

– No purchase any iron bearing raw materials except iron or<br />

concentrate<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Case Study 3 – 5 MTPA Slab Plant Study<br />

Basis of Study<br />

• 5.7 Mtpa slabs selected to utilize 100% of largest COREX<br />

capacity (Two C-3000 units)<br />

• 5.0 Mtpa slabs selected for blast furnace option<br />

• Local supply of iron ore <strong>and</strong> pellets<br />

• Natural gas is not available in the region<br />

• Three process options studied:<br />

1. Coke Plant/Pellet Plant/Blast Furnace/BOF <strong>Steel</strong>making/Slab<br />

Casting<br />

2. Coke Plant/ (1/3) Pellet Plant/Sinter Plant/Blast Furnace/BOF<br />

<strong>Steel</strong>making/Slab Casting<br />

3. Pellet Plant/COREX® Plant/Midrex/Conarc® <strong>Steel</strong>making/Slab<br />

Casting<br />

• ITmk3 plant would be 11 units for 5 million ton slab<br />

production – significant required space<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Case Study 3 – 5 MTPA Slab Plant Study<br />

Definition – Option 1<br />

Option 1<br />

• Production Capacity: 5 Mtpa Conventional Thickness Slab<br />

• Process Route: Pellet Plant/Coke Plant/Blast Furnace/BOF <strong>Steel</strong><br />

Making/ Slab Casting<br />

• Plant units:<br />

- Coke plant: By-product type coke plant with production capacity of<br />

1.9 Mtpa<br />

- Blast Furnace: Two 2.8 MTPA blast furnaces<br />

- <strong>Steel</strong> Making Shop: Two 330t converters<br />

- Casting Shop: Two 2 str<strong>and</strong> slab casting machines<br />

- Ancillary Systems: All plant operation supporting systems<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Case Study 3 – 5 MTPA Slab Plant Study<br />

Definition – Option 2<br />

Option 2<br />

• Production Capacity: 5 Mtpa Conventional Thickness Slab<br />

• Process Route: Sinter Plant/Coke Plant/Blast Furnace/BOF <strong>Steel</strong><br />

Making/ Slab Casting<br />

• Plant units:<br />

- Sinter Plant: production capacity: 6.6 MTPA<br />

- Coke plant: By-product type coke plant with production capacity of<br />

1.7 Mtpa<br />

- Blast Furnace: Two 2.8 Mtpa blast furnaces<br />

- Sinter – Pellet rate: 70:30<br />

- <strong>Steel</strong> Making Shop: Two 330 t converters<br />

- Casting Shop: Two 2 str<strong>and</strong> slab casting machines<br />

- Ancillary Systems: All plant operation supporting systems<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Case Study 3 – 5 MTPA Slab Plant Study<br />

Definition – Option 3<br />

Option 3:<br />

• Production Capacity: 5.7 MTPA Conventional Thickness Slab<br />

• Process Route: COREX ® + DR/ EAF <strong>Steel</strong> Making/ Slab Casting<br />

• Plant units:<br />

- COREX® plant: 2x C – 3000 units<br />

- DR plant: 2x 7.2 m diameter Midrex ® DR furnaces<br />

- One hot metal desulphurization station<br />

- <strong>Steel</strong> Making Shop: 3 x 235 ton CONARC ® electric arc furnaces<br />

- Casting Shop: Two 2 str<strong>and</strong> slab casting machines<br />

- Ancillary Systems: All plant operation supporting systems<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Case Study 3 – 5 MTPA Slab Plant Study<br />

CAPEX<br />

Option 1<br />

BF Route with Pellet Plant<br />

Option 2<br />

BF Route with Sinter Plant<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Option 3<br />

Corex + Midrex<br />

($US 000) ($US 000) ($US 000)<br />

Coke Making 733,000 668,000 -<br />

Pellet Plant 1,300,000 379,000 1,452,000<br />

Sinter Plant - 786,000 -<br />

<strong>Iron</strong> Making 1,840,000 1,830,000 1,700,000<br />

<strong>Steel</strong> Making 1,150,000 1,160,000 1,750,000<br />

General Site Facilities<br />

<strong>and</strong> Utilities 761,000 761,000 748,000<br />

TOTAL ($US 000) 5,784,000 5,584,000 5,650,000<br />

Annual Production<br />

(Mtpa)<br />

5.0 5.0 5.7<br />

Unit Cost ($US/t slab) 1,157 1,117 988<br />

ITmk3 based slab plant capital cost would be maximum 5 billon $ US to produce 5 million<br />

ton of slab with the same configuration of steelmaking as at Corex case or 1000 $ US/t of slab


Case Study 3 – 5 MTPA Slab Plant Study<br />

OPEX<br />

Option 1<br />

BF Route with Pellet<br />

Plant<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Option 2<br />

BF Route with Sinter<br />

Plant<br />

Option 3<br />

Corex + Midrex<br />

Coke Making $US/tonne coke 402 402 -<br />

Pellet Plant $US/tonne pellet 108 - 106<br />

Sinter Plant $US/tonne sinter - 100 -<br />

<strong>Iron</strong> Making<br />

$US/tonne hot metal 349 345 403<br />

$US/tonne DRI - - 231<br />

<strong>Steel</strong> Making $US/tonne slab 507 499 490


Case Study 3 – 5 MTPA Slab Plant Study<br />

Energy Consumption <strong>and</strong> CO2 Emissions<br />

Option 1<br />

BF Route with Pellet<br />

Plant<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Option 2<br />

BF Route with<br />

Sinter Plant<br />

Option 3<br />

Corex + Midrex<br />

Power (kWh/t slab) 475 432 812<br />

PCI/Thermal Coal (t/t slab) 0.205 0.239 0.516<br />

Coking Coal (t/t slab) 0.530 0.488 0.026<br />

Input Energy (GJ/t slab) 21.4 20.7 14.7<br />

Export Energy (GJ/t slab) 4.0 4.5 0<br />

Net Energy Dem<strong>and</strong> (GJ/t slab) 17.4 16.2 14.7<br />

CO 2 at plant (kg/t slab) 1538 1459 1540<br />

CO 2 in Export gases (kg/t slab) 652 711 0<br />

Total CO 2 Emissions 1 (kg/t slab) 2190 2170 1540<br />

ITmk3 total fuel requirements are ~ 400-440 coal <strong>and</strong> 140-150 Nm3 natural gas – could<br />

compete with all three production routes in enrgy required <strong>and</strong> CO2 emissions


Case Study 3 – 5 MTPA Slab Plant Study<br />

Export Gases<br />

Option 1 Option 2<br />

Export Gases (10 6 Nm3/y) (10 6 GJ/y) (10 6 Nm3/y) (10 6 GJ/y) (10 6 Nm3/y) (10 6 GJ/y)<br />

BFG/COREX gas 3840 14.4 4132 14.3 0 0.00<br />

COG/DR gas 131 2.6 202 4.0<br />

BOFG 414 3.2 414 3.2 - -<br />

Total 4385 20.2 4748 21.5 0 0.0<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Option 3


Case Study 3 – 5 MTPA Slab Plant Study<br />

Process Routes Comparison<br />

Pros<br />

Cons<br />

Option 1<br />

BF Route with Pellet Plant<br />

� Fast ramp-up<br />

� Proven technology<br />

� Synergy with pellet plant<br />

� High CAPEX<br />

� High CO2 footprint<br />

� By-products to sell<br />

Option 2<br />

BF Route with Sinter Plant<br />

� See Option 1<br />

�Avoid grinding pellet feed<br />

�Use lower cost<br />

concentrate<br />

� See Option 1<br />

�Sinter plant emissions<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Option 3<br />

Corex + Midrex<br />

� Low cost coal<br />

�Lowest coal consumption<br />

� Minimum excess gas<br />

�Lowest OPEX<br />

�Take advantage of pellet<br />

quality<br />

� Slower ramp-up<br />

�Sensitivity to metallurgical<br />

coal price premium


Case Study 3 – 5 MTPA Slab Plant Study<br />

Conclusions <strong>and</strong> Recommendations Case Study 2<br />

• Corex is most attractive considering POSCO operation strategy:<br />

– POSCO use higher grade iron ore than Saldanha <strong>and</strong> have a lower<br />

total fuel rate<br />

– Least flared gas<br />

– OPEX cost can be lower depending on coal prices<br />

– Better environmental footprint<br />

• COREX capital needs more investigation<br />

• Further develop the COREX option, especially capital costs for<br />

the Port Cartier site<br />

• Investigate potential to make a larger heat size with CONARC<br />

process<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009


Case Study 4 – 5.7 MTPA Slab Plant Study Economical<br />

Comparison – 5.7 MTPA Slab Plant for All Three<br />

Options<br />

CAPEX<br />

OPEX<br />

Simple Payback Period<br />

Units<br />

$Million US<br />

$US/t slab<br />

years<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009<br />

Option 1<br />

5,760<br />

494<br />

9.53<br />

Option 2<br />

5,660<br />

505<br />

10.45<br />

Conclusion:<br />

Option one becomes the most economically attractive in the case of<br />

the same plant capacity<br />

Option 3<br />

5,280<br />

518<br />

11.30


Conclusions<br />

• Methodology for selection of ironmaking technology for specific site<br />

conditions is developed<br />

• This methodology was applied for various regions with respect to the<br />

specific limitations <strong>and</strong> client dem<strong>and</strong>s<br />

• Selection of ironmaking technology significantly depends on plant<br />

location, raw materials <strong>and</strong> fuel/reductants availability, quality <strong>and</strong><br />

pricing, market conditions <strong>and</strong> specific limitations<br />

• ITmk3 process is a new <strong>and</strong> very promising player amongst other<br />

ironmaking technologies<br />

• In the case of production only iron units in amount up to 2.5-3 million ton<br />

per annum – ITmk3 is a winning process<br />

• Better underst<strong>and</strong>ing of nuggets application in steelmaking is required<br />

• This will help to promote ITmk3 as an integrated process rather than st<strong>and</strong><br />

alone ironmaking technology for greater steelmaking plant capacity<br />

Conference of ITmk3 Family<br />

Kiev, Ukraine 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!