13.11.2015 Views

Dynamics cheat sheet

my dynamics notes - 12000.org

my dynamics notes - 12000.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Or in full form<br />

and<br />

⎧ ⎫ ⎡<br />

⎨η 1 (0) ⎬<br />

⎩<br />

η 2 (0)<br />

⎭ = ⎣<br />

⎧ ⎫ ⎡<br />

⎨η 1 ′ (0) ⎬<br />

⎩<br />

η 2 ′ (0) ⎭ = ⎣<br />

⎤T ⎡<br />

õ1<br />

ϕ 11 √µ2<br />

ϕ 12<br />

⎦<br />

õ1<br />

ϕ 21 √µ2<br />

ϕ 22<br />

⎤T ⎡<br />

õ1<br />

ϕ 11 √µ2<br />

ϕ 12<br />

⎦<br />

õ1<br />

ϕ 21 √µ2<br />

ϕ 22<br />

⎣ m 11 m 12<br />

m 21<br />

⎣ m 11 m 12<br />

m 21<br />

⎤ ⎧ ⎫<br />

⎨x ⎦ 1 (0) ⎬<br />

m<br />

⎩<br />

22 x 2 (0)<br />

⎭<br />

⎤ ⎧ ⎫<br />

⎨x ⎦<br />

′ 1 (0) ⎬<br />

m<br />

⎩<br />

22 x ′ 2 (0) ⎭<br />

Each of these EOM are solved using any of the standard methods. This will result is solutions η 1 (t) and<br />

η 2 (t)<br />

1.7 Step 7. Converting modal solution to normal coordinates solution<br />

The solutions found above are in modal coordinates η 1 (t) , η 2 (t). The solution needed is x 1 (t) , x 2 (t). Therefore,<br />

the transformation {x} = [Φ] {η} is now applied to convert the solution to normal coordinates<br />

⎧ ⎫ ⎡ ⎤ ⎧ ⎫<br />

⎨x 1 (t) ⎬ √µ1<br />

ϕ 11 √µ2<br />

ϕ 12 ⎨<br />

⎩<br />

x 2 (t)<br />

⎭ = η<br />

⎣ ⎦ 1 (t) ⎬<br />

õ1<br />

ϕ 21 √µ2<br />

ϕ 22 ⎩<br />

η 2 (t)<br />

⎭<br />

⎧<br />

⎫<br />

⎨ √µ1<br />

ϕ 11<br />

η 1 (t) + √ ϕ 12<br />

µ2<br />

η 2 (t) ⎬<br />

=<br />

⎩ √µ1<br />

ϕ 21<br />

η 1 (t) + √ ϕ 22<br />

µ2<br />

η 2 (t)<br />

⎭<br />

Hence<br />

and<br />

x 1 (t) = ϕ 11<br />

√<br />

µ1<br />

η 1 (t) + ϕ 12<br />

√<br />

µ2<br />

η 2 (t)<br />

x 2 (t) = ϕ 21<br />

√<br />

µ1<br />

η 1 (t) + ϕ 22<br />

√<br />

µ2<br />

η 2 (t)<br />

Notice that the solution in normal coordinates is a linear combination of the modal solutions. The terms<br />

ϕ<br />

√ ij<br />

µ<br />

are just scaling factors that represent the contribution of each modal solution to the final solution. This<br />

completes modal analysis<br />

1.8 Numerical solution using modal analysis<br />

This is a numerical example that implements the above steps using a numerical values for [K] and [M].<br />

Let k 1 = 1, k 2 = 2, m 1 = 1, m 2 = 3 and let f 1 (t) = 0 and f 2 (t) = sin (5t). Let initial conditions be<br />

x 1 (0) = 0, x ′ 1 (0) = 1, x 2 (0) = 1.5, x ′ 2 (0) = 3, hence<br />

⎧ ⎫ ⎫<br />

⎨x 1 (0) ⎬ 0⎬<br />

⎧<br />

⎨<br />

⎩<br />

x 2 (0)<br />

⎭ = ⎩<br />

1<br />

⎭<br />

and<br />

⎧ ⎫ ⎧ ⎫<br />

⎨x ′ 1 (0) ⎬ ⎨<br />

⎩<br />

x ′ 2 (0) ⎭ = 1.5⎬<br />

⎩<br />

3<br />

⎭<br />

In normal coordinates, the EOM are<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!