13.11.2015 Views

Dynamics cheat sheet

my dynamics notes - 12000.org

my dynamics notes - 12000.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

However, [Φ] −1 = [Φ] T [M] therefore<br />

{η} = [Φ] T [M] {x}<br />

⎧ ⎫ ⎡ ⎤<br />

⎨η 1 (t) ⎬ √µ1<br />

ϕ 11 √µ2<br />

ϕ 12<br />

⎩<br />

η 2 (t)<br />

⎭ = ⎣ ⎦<br />

õ1<br />

ϕ 21 √µ2<br />

ϕ 22<br />

⎤ ⎧ ⎫<br />

⎣ m 11 m 12<br />

⎨x ⎦ 1 (t) ⎬<br />

m 21 m<br />

⎩<br />

22 x 2 (t)<br />

⎭<br />

T ⎡<br />

The next step is to apply this transformation to the original equations of motion in order to decouple them<br />

1.6 Step 6, applying modal transformation to decouple the original equations of motion<br />

The EOM in normal coordinates is<br />

⎡<br />

⎣ m 11 m 12<br />

m 21<br />

⎤ ⎧<br />

⎨<br />

⎦<br />

m<br />

⎩<br />

22<br />

x ′′<br />

1<br />

x ′′<br />

2<br />

⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫<br />

⎬<br />

⎭ + ⎣ k 11 k 12<br />

⎨x ⎦ 1 ⎬ ⎨<br />

k<br />

⎩<br />

22 x<br />

⎭ = f 1 (t) ⎬<br />

⎩<br />

2 f 2 (t)<br />

⎭<br />

Applying the above modal transformation {x} = [Φ] {η} on the above results in<br />

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫<br />

⎣ m 11 m 12<br />

⎨η 1<br />

⎦ ′′ ⎬<br />

[Φ]<br />

m 21 m<br />

⎩<br />

22 η ′′ ⎭ + ⎣ k 11 k 12<br />

⎨η ⎦ 1 ⎬ ⎨<br />

[Φ]<br />

k 21 k<br />

⎩<br />

22 η<br />

⎭ = f 1 (t) ⎬<br />

⎩<br />

2 f 2 (t)<br />

⎭<br />

pre-multiplying by [Φ] T results in<br />

⎡ ⎤ ⎧<br />

[Φ] T ⎣ m 11 m 12<br />

⎨<br />

⎦ [Φ]<br />

m<br />

⎩<br />

22<br />

m 21<br />

η 1<br />

′′<br />

η 2<br />

′′<br />

2<br />

k 21<br />

⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫<br />

⎬<br />

⎭ + [Φ]T ⎣ k 11 k 12<br />

⎨η ⎦ 1 ⎬ ⎨<br />

[Φ]<br />

k<br />

⎩<br />

22 η<br />

⎭ = f 1 (t) ⎬<br />

[Φ]T ⎩<br />

2 f 2 (t)<br />

⎭<br />

⎡ ⎤<br />

⎡ ⎤<br />

The result of [Φ] T ⎣ m 11 m 12<br />

⎦ [Φ] will always be ⎣ 1 0 ⎦. This is because mass normalized shape vectors<br />

m 21 m 22 0 1<br />

are used. If the shape functions were not mass normalized, then the diagonal values will not be 1 as shown.<br />

⎡ ⎤<br />

⎡ ⎤<br />

The result of [Φ] T ⎣ k 11 k 12<br />

⎦ [Φ] will be ⎣ ω2 1 0<br />

⎦.<br />

k 21 k 22 0 ω2<br />

2<br />

⎧ ⎫ ⎧ ⎫<br />

⎨<br />

Let the result of [Φ] T f 1 (t) ⎬ ⎨ ˜f<br />

⎩<br />

f 2 (t)<br />

⎭ be 1 (t) ⎬<br />

,Therefore, in modal coordinates the original EOM becomes<br />

⎩ ˜f 2 (t)<br />

⎭<br />

⎡ ⎤ ⎧<br />

⎣ 1 0 ⎨<br />

⎦<br />

0 1<br />

⎩<br />

η 1<br />

′′<br />

η 2<br />

′′<br />

k 21<br />

⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫<br />

⎬<br />

⎭ + ⎣ ω2 1 0 ⎨η ⎦ 1 ⎬ ⎨ ˜f<br />

0 ω2<br />

2 ⎩<br />

η<br />

⎭ = 1 (t) ⎬<br />

⎩<br />

2<br />

˜f 2 (t)<br />

⎭<br />

The EOM are now decouples and each can be solved as follows<br />

η ′′<br />

1 (t) + ω 2 1η 1 (t) = ˜f 1 (t)<br />

η ′′<br />

2 (t) + ω 2 2η 2 (t) = ˜f 2 (t)<br />

To solve these EOM’s, the initial conditions in normal coordinates must be transformed to modal coordinates<br />

using the above transformation rules<br />

{η (0)} = [Φ] T [M] {x (0)}<br />

{<br />

η ′ (0) } = [Φ] T [M] { x ′ (0) }<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!