13.11.2015 Views

Dynamics cheat sheet

my dynamics notes - 12000.org

my dynamics notes - 12000.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

are the natural frequencies of the system. Since there are two degrees of freedom, there will be two natural<br />

frequencies ω 1 , ω 2 for the system.<br />

det ( [K] − ω 2 [M] ) = 0<br />

⎛⎡<br />

⎤ ⎡ ⎤⎞<br />

det ⎝⎣ k 11 k 12<br />

⎦ − ω 2 ⎣ m 11 m 12<br />

⎦⎠ = 0<br />

k 21 k 22 m 21 m 22<br />

⎡<br />

⎤<br />

det ⎣ k 11 − ω 2 m 11 k 12 − ω 2 m 12<br />

⎦ = 0<br />

k 21 − ω 2 m 21 k 22 − ω 2 m 22<br />

(<br />

k11 − ω 2 ) (<br />

m 11 k22 − ω 2 ) (<br />

m 22 − k12 − ω 2 ) (<br />

m 12 k21 − ω 2 )<br />

m 21 = 0<br />

ω 4 (m 11 m 22 − m 12 m 21 ) + ω 2 (−k 11 m 22 + k 12 m 21 + k 21 m 12 − k 22 m 11 ) + k 11 k 22 − k 12 k 21 = 0<br />

The above is a polynomial in ω 4 . Let ω 2 = λ it becomes<br />

λ 2 (m 11 m 22 − m 12 m 21 ) + λ (−k 11 m 22 + k 12 m 21 + k 21 m 12 − k 22 m 11 ) + k 11 k 22 − k 12 k 21 = 0<br />

This quadratic polynomial in λ which is now solved using the quadratic formula. Then the positive square<br />

root of each λ root to obtain ω 1 and ω 2 which are the roots of the original eigenvalue problem. Assuming from<br />

now that these roots are ω 1 and ω 2 the next step is to obtain the non-normalized shape vectors ϕ 1 , ϕ 2 also<br />

called the eigenvectors associated with ω 1 and ω 2<br />

1.3 Step 3, finding the non-normalized eigenvectors<br />

For each natural frequency ω 1 and ω 2 the corresponding shape function is found by solving the following two<br />

sets of equations for the vectors ϕ 1 , ϕ 2<br />

⎡<br />

⎡<br />

⎧<br />

⎫<br />

⎣ k 11 k 12<br />

k 21<br />

⎤<br />

⎦ − ω1<br />

2<br />

k 22<br />

⎣ m 11 m 12<br />

m 21<br />

⎤ ⎫ ⎧<br />

⎨ϕ ⎦ 11 ⎬ ⎨<br />

m<br />

⎩<br />

22 ϕ<br />

⎭ = 0⎬<br />

⎩<br />

21 0<br />

⎭<br />

and<br />

⎡ ⎤<br />

⎣ k 11 k 12<br />

⎦ − ω2<br />

2<br />

k 21 k 22<br />

⎡<br />

⎣ m 11 m 12<br />

m 21<br />

⎤ ⎧ ⎫ ⎧ ⎫<br />

⎨ϕ ⎦ 12 ⎬ ⎨<br />

m<br />

⎩<br />

22 ϕ<br />

⎭ = 0⎬<br />

⎩<br />

22 0<br />

⎭<br />

For ω 1 , let ϕ 11 = 1 and solve for<br />

⎡ ⎤ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫<br />

⎣ k 11 k 12<br />

⎦ − ω1<br />

2 ⎣ m 11 m 12<br />

⎨ 1 ⎬ ⎨<br />

⎦<br />

k 21 k 22 m 21 m<br />

⎩<br />

22 ϕ<br />

⎭ = 0⎬<br />

⎩<br />

21 0<br />

⎭<br />

⎡<br />

⎤ ⎧ ⎫ ⎧ ⎫<br />

⎣ k 11 − ω1 2m 11 k 12 − ω1 2m ⎨<br />

12 1 ⎬ ⎨<br />

⎦<br />

k 21 − ω1 2m 21 k 22 − ω1 2m ⎩<br />

22 ϕ<br />

⎭ = 0⎬<br />

⎩<br />

21 0<br />

⎭<br />

Which gives one equation now to solve for ϕ 21 (the first row equation is only used)<br />

(<br />

k11 − ω 2 1m 11<br />

)<br />

+ ϕ21<br />

(<br />

k12 − ω 2 1m 12<br />

)<br />

= 0<br />

Hence<br />

ϕ 21 = − ( k 11 − ω1 2m )<br />

11<br />

(<br />

k12 − ω1 2m 12)<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!