13.11.2015 Views

Dynamics cheat sheet

my dynamics notes - 12000.org

my dynamics notes - 12000.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where ∆ is very small positive quantity. and we also have<br />

Multiplying Eq (2) and (3) with each others gives<br />

Going back to Eq (1A) and rewriting it as<br />

ω + ϖ ≈ 2ϖ (3)<br />

ω 2 − ϖ 2 = 4∆ϖ (4)<br />

( v0<br />

u (t) = u 0 cos ωt +<br />

ω − u ωϖ<br />

)<br />

ω 2<br />

st sin ωt + u st sin ϖt<br />

4∆ϖ<br />

4∆ϖ<br />

( v0<br />

= u 0 cos ωt +<br />

ω − u ω<br />

)<br />

ω 2<br />

st sin ωt + u st sin ϖt<br />

4∆<br />

4∆ϖ<br />

Since ϖ ≈ ω the above becomes<br />

( v0<br />

u (t) = u 0 cos ωt +<br />

ω − u ω<br />

)<br />

ω<br />

st sin ωt + u st sin ϖt<br />

4∆<br />

4∆<br />

= u 0 cos ωt + v 0<br />

ω sin ωt + u ω<br />

st (sin ϖt − sin ωt)<br />

4∆<br />

now using sin ϖt − sin ωt = 2 sin ( ϖ−ω<br />

2<br />

t ) cos ( ϖ+ω<br />

2<br />

t ) the above becomes<br />

u (t) = u 0 cos ωt + v ( ( )<br />

0<br />

ω sin ωt + u ω ϖ − ω<br />

st sin t cos<br />

2∆ 2<br />

From Eq(2) ϖ − ω = −2∆ and ω + ϖ ≈ 2ϖ hence the above becomes<br />

or since ϖ ≈ ω<br />

Now lim ∆→0<br />

sin(∆t)<br />

∆<br />

This can also be written as<br />

( ϖ + ω<br />

u (t) = u 0 cos ωt + v 0<br />

ω sin ωt + u ω<br />

st (sin (−∆t) cos (ϖt))<br />

2∆<br />

u (t) = u 0 cos ωt + v 0<br />

ω sin ωt − u ω<br />

st (sin (∆t) cos (ωt))<br />

2∆<br />

= t hence the above becomes<br />

u (t) = u 0 cos ωt + v 0<br />

ω sin ωt − u ωt<br />

st cos (ωt)<br />

2<br />

2<br />

))<br />

t<br />

u (t) = u 0 cos ϖt + v 0<br />

ϖ sin ϖt − u ϖt<br />

st cos (ϖt) (1)<br />

( )<br />

2<br />

π<br />

= u 0 cos t + v ( ) ( ) ( )<br />

0 π π π<br />

t 1 ϖ sin t − u st t cos t<br />

t 1 2t 1 t 1<br />

since ϖ ≈ ω in this case. This is the solution to use for resonance and for t ≤ t 1<br />

Hence for t > t 1 , the above equations is used to determine initial conditions at t = t 1<br />

u (t 1 ) = u 0 cos ϖt 1 + v 0<br />

ϖ sin ϖt 1 − u st<br />

ϖt 1<br />

2 cos (ϖt 1)<br />

but cos ϖt 1 = cos π t 1<br />

t 1 = −1 and sin ϖt 1 = 0 and ϖt 1<br />

2<br />

= π 2<br />

, hence the above becomes<br />

Taking derivative of Eq (1) gives<br />

u (t 1 ) = −u 0 + u st<br />

π<br />

2<br />

ϖ 2 t<br />

˙u (t) = −ϖu 0 sin ϖt + v 0 cos ϖt + u st<br />

2 sin (ϖt) − u ϖ<br />

st cos (ϖt)<br />

2<br />

45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!