13.11.2015 Views

Dynamics cheat sheet

my dynamics notes - 12000.org

my dynamics notes - 12000.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where r = ϖ ω = π/t 1<br />

ω<br />

= T<br />

2t 1<br />

where T is the natural period of the system. u st = F 0<br />

k<br />

, hence the above becomes<br />

⎛<br />

⎜<br />

u (t) = u 0 cos ωt + ⎝ v 0<br />

ω − F 0<br />

k<br />

When u 0 = 0 and v 0 = 0 then<br />

u (t) = − F 0<br />

k<br />

u (t) = F 0<br />

k<br />

( )<br />

π/t1<br />

ω<br />

1 −<br />

(<br />

π/t1<br />

ω<br />

1<br />

1 −<br />

(<br />

π/t1<br />

ω<br />

( )<br />

π/t1<br />

ω<br />

1 −<br />

(<br />

π/t1<br />

ω<br />

) 2<br />

sin ωt + F 0<br />

k<br />

) 2<br />

(sin<br />

) 2<br />

⎞<br />

⎟<br />

⎠ sin ωt + F 0<br />

k<br />

1<br />

1 −<br />

(<br />

π/t1<br />

ω<br />

1<br />

1 −<br />

(<br />

π/t1<br />

ω<br />

(<br />

π t<br />

t 1<br />

)<br />

− π/t 1<br />

ω sin ωt )<br />

(<br />

) 2<br />

sin π t )<br />

t 1<br />

The above Eq (1) gives solution during the time 0 ≤ t ≤ t 1<br />

Now after t = t 1 the force will disappear, the differential equation becomes<br />

mü + ku = 0 t > t 1<br />

(<br />

) 2<br />

sin π t )<br />

t 1<br />

but with the initial conditions evaluate at t = t 1 . From (1)<br />

( )<br />

v0<br />

u (t 1 ) = u 0 cos ωt 1 +<br />

ω − u r<br />

1<br />

st<br />

1 − r 2 sin ωt 1 + u st<br />

1 − r 2 sin ϖt 1<br />

( )<br />

v0<br />

= u 0 cos ωt 1 +<br />

ω − u r r<br />

st<br />

1 − r 2 u st<br />

1 − r 2 sin ωt 1 (2)<br />

since sin ϖt 1 = 0. taking derivative of Eq (1)<br />

˙u (t) = −ωu 0 sin ωt + ω<br />

and at t = t 1 the above becomes<br />

˙u (t 1 ) = −ωu 0 sin ωt 1 + ω<br />

= −ωu 0 sin ωt 1 + ω<br />

(<br />

v0<br />

)<br />

ω − u r<br />

st<br />

1 − r 2 cos ωt + ϖ 1 cos ϖt<br />

1 − r2 (<br />

v0<br />

)<br />

ω − u r<br />

st<br />

1 − r 2 )<br />

ω − u r<br />

st<br />

1 − r 2<br />

(<br />

v0<br />

cos ωt 1 + ϖ 1<br />

1 − r 2 cos ϖt 1<br />

(1)<br />

cos ωt 1 − ϖ 1<br />

1 − r 2 (3)<br />

since cos ϖt 1 = −1. Now (2) and (3) are used as initial conditions to solve mü + ku = 0 . The solution for<br />

t > t 1 is<br />

u (t) = u (t 1 ) cos ωt + ˙u (t 1)<br />

ω<br />

sin ωt<br />

Resonance with undamped sin impulse When ϖ ≈ ω and t ≤ t 1 we obtain resonance since r → 1 in<br />

the solution shown up and as written the solution can’t be used for analysis in this case. To obtain a solution<br />

for resonance some calculus is needed. Eq (1) is written as<br />

(<br />

)<br />

ϖ<br />

v 0<br />

u (t) = u 0 cos ωt +<br />

ω − u ω<br />

st<br />

1 − ( 1<br />

)<br />

ϖ 2<br />

sin ωt + u st<br />

ω<br />

1 − ( )<br />

ϖ 2<br />

sin ϖt<br />

ω<br />

( )<br />

v0<br />

= u 0 cos ωt +<br />

ω − u ωϖ<br />

ω 2<br />

st<br />

ω 2 − ϖ 2 sin ωt + u st<br />

ω 2 sin ϖt<br />

− ϖ2 (1A)<br />

Now looking at case when ϖ ≈ ω but less than ω, hence let<br />

ω − ϖ = 2∆ (2)<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!