07.12.2012 Views

RF for Linacs Erk Jensen – CERN AB/RF - CERN Accelerator School

RF for Linacs Erk Jensen – CERN AB/RF - CERN Accelerator School

RF for Linacs Erk Jensen – CERN AB/RF - CERN Accelerator School

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>RF</strong> <strong>for</strong> <strong>Linacs</strong><br />

<strong>Erk</strong> <strong>Jensen</strong> <strong>–</strong> <strong>CERN</strong> <strong>AB</strong>/<strong>RF</strong><br />

Outline<br />

�� <strong>RF</strong> Power Sources (solid state, tetrodes, klystrons, ...)<br />

�� <strong>RF</strong> Pulse Compression (principle, flat pulses, BOC)<br />

�� Accelerating Structures (Brillouin diagram, HOMs, beam<br />

loading, SC accelerating structures, HDS)<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 1


CW/Average power [kW]<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

Transistors<br />

SSPAs (x32)<br />

Grid tubes<br />

IOT<br />

Klystrons<br />

CCTWT<br />

<strong>RF</strong> Power sources<br />

Typical ranges (commercially available)<br />

10 100 1000 f [MHz] 10000<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 2


MOSFET<br />

VDMOS<br />

Vertical Doubly Diffused<br />

www.essderc2002.deis.unibo.it/ESSDERC_web/Session_D18/D18_4.pdf<br />

<strong>RF</strong> power transistors<br />

LDMOS<br />

Lateral Doubly Diffused<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 3


LEIR SSPA, 1 kW, 0.2 <strong>–</strong> 50 MHz<br />

M<strong>RF</strong>151G<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 4


DU1029UK<br />

Soleil Booster SSPA, 40 kW, 352 MHz<br />

http://accelconf.web.cern.ch/AccelConf/e04/PAPERS/THPKF031.PDF<br />

147 modules<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 5


potential<br />

control<br />

grid<br />

Ug1<br />

Ug2<br />

Ra<br />

cathode anode (plate)<br />

4CX250B<br />

(Eimac/CPI),<br />

< 500 MHz, 600 W<br />

(Anode removed)<br />

screen<br />

grid<br />

Ia=0<br />

Ia max<br />

Tetrode<br />

+Ua<br />

Ua<br />

RS 1084 CJ (ex Siemens, now Thales),<br />

< 30 MHz, 75 kW<br />

YL1520 (ex Philips, now Richardson),<br />

< 260 MHz, 25 kW<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 6


Classes of operation:<br />

A: large DC bias current, η < 50 %<br />

<strong>AB</strong>: small DC bias current, η ≈50 … 60 %<br />

B: 0 bias current, halfwave, η < 78 %<br />

C: current only with large modulation, η ≈90 %<br />

Tetrode operation (<strong>AB</strong>1)<br />

operating line<br />

Ia(t)<br />

This example: Thales TH 681<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 7


High power tetrode amplifier<br />

<strong>CERN</strong> Linac3: 100 MHz, 350 kW<br />

50 kW Driver: TH345, Final: RS 2054 SK<br />

<strong>CERN</strong> PS: 13-20 MHz, 30 kW<br />

Driver: solid state 400 W, Final: RS 1084 CJSC<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 8


-V 0<br />

t<br />

Cathode<br />

velocity<br />

modulation<br />

drift<br />

<strong>RF</strong> in <strong>RF</strong> out<br />

Klystron principle<br />

density<br />

modulation<br />

z<br />

Collector<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 9


Klystrons<br />

<strong>CERN</strong> CTF3 (LIL):<br />

3 GHz, 45 MW,<br />

4.5 μs, 50 Hz, η 45 %<br />

<strong>CERN</strong> LHC:<br />

400 MHz, 300 kW,<br />

CW, η 62 %<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 10


1<br />

4<br />

2<br />

3<br />

<strong>RF</strong> Pulse Compression<br />

6<br />

4<br />

2<br />

Input pulse<br />

0<br />

0 2000 4000 6000 8000<br />

360<br />

180<br />

Input phase<br />

0<br />

0 2000 4000 6000 8000<br />

6<br />

4<br />

2<br />

“SLED” output<br />

pulse<br />

0<br />

0 2000 4000 6000 8000<br />

SLED: SLAC Energy Doubler LIPS: LEP Injector Power Saver<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 11


6<br />

4<br />

2<br />

3<br />

2<br />

1<br />

Standard “SLED”<br />

Pulse<br />

0<br />

0 2000 4000 6000 8000<br />

0<br />

0 2000 4000 6000 8000<br />

Flat pulse<br />

Flat output pulses<br />

200<br />

100<br />

200<br />

100<br />

0<br />

0<br />

<strong>RF</strong> phase<br />

modulation<br />

5000 6000<br />

Old<br />

New<br />

5000 6000<br />

<strong>RF</strong> phase<br />

modulation<br />

3<br />

2<br />

1<br />

0<br />

0 2000 4000 6000 8000<br />

3<br />

2<br />

1<br />

Flat pulse<br />

0<br />

0 2000 4000 6000 8000<br />

Distorted pulse<br />

-10 kHz<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 12


BOC „Barrel Open Cavity“<br />

Pulse compressor<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 13


Electric field, logarithmic scale<br />

BOC<br />

2.99848 GHz,<br />

S11: -12.9 dB<br />

Magnetic field<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 14


Travelling Wave Structure<br />

SiC wedges<br />

st<br />

31 disc<br />

m 1.10<br />

Coupler cell<br />

length:<br />

(2 waveguide ports) total<br />

dimple tuning holes<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 15


Input coupler<br />

Travelling wave structure<br />

4-cell travelling wave structure<br />

¼ of geometry shown<br />

shown: Re {Poynting vector}<br />

(power density)<br />

Output coupler<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 16


Iris loaded waveguide<br />

1 cm<br />

30 GHz structure (CLIC)<br />

11.4 GHz structure (NLC)<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 17


ω<br />

Pass band<br />

Higher order modes<br />

(HOM)<br />

Brillouin diagram<br />

synchronous<br />

interaction<br />

speed of light line,<br />

ω = k /c<br />

Stop band or band gap<br />

π 2 π<br />

k d = phase advance per cell<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 18


ω d/c<br />

2π<br />

π<br />

π/2<br />

0<br />

synchronous<br />

Brillouin<br />

Diagram<br />

speed of light line,<br />

ω = β /c<br />

π/2 k d<br />

π<br />

π<br />

2π/3<br />

π/2<br />

0<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 19


12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Brillouin diagram TM 0n modes<br />

iris variation (parameter a ):<br />

blue solid: 1st cell (17 mm)<br />

red dashed: 32nd cell (13.3 mm)<br />

speed of light line<br />

0 30 60 90 120 150 180<br />

Brillouin diagram<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Brillouin diagram dipole modes<br />

iris variation (parameter a ):<br />

blue solid: 1st cell (17 mm)<br />

red dashed: 32nd cell (13.3 mm)<br />

2<br />

0 30 60 90 120 150 180<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 20


E r<br />

H r<br />

Fundamental accelerating<br />

mode (TM 0n )<br />

Higher order modes<br />

E v<br />

1 st dipole mode Higher order<br />

longitudinal mode (TM 0n )<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 21


“Choke mode cavity ”<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 22


TDS: Tapered Damped Structure<br />

accelerating mode: cut-off in waveguide<br />

shown |E|, color coding logarithmic<br />

Dipole mode: Poynting vector towards SiC load<br />

SiC load<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 23


Slotted iris structure<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 24


OP-:4024<br />

#1DGRAPH<br />

ORDINATE: WAKET<br />

COMPONENT: X<br />

FIXED COORDINATES:<br />

DIM...........MESHLINE<br />

X 11<br />

Y 1<br />

<strong>AB</strong>SCISSA: GEOMWAKE<br />

[BASE OF WAKET]<br />

REFERENCE COORDINATE: S<br />

VARY..........MESHLINE<br />

FROM 0<br />

TO 2994<br />

HOM damping at work<br />

FRAME: 1 01/06/00 - 17:06:38 VERSION[V4.024] SICA32.DRD<br />

transverse wake <strong>for</strong> 3 cells.<br />

offset 10 mm, 2.5 mm<br />

σ<br />

4.00<br />

2.00<br />

0.000E+00<br />

-2.00<br />

-4.00<br />

SI: A+3,10,4, B-5,CELL-6,15<br />

A: 1.700E+01 MM, B: 3.703E+01 MM.<br />

FOR REF., E.J., JUNE 2000<br />

X COMPONENT OF WAKE POTENTIAL IN V [INDIRECT CALC.]<br />

3 GHz SICA structure: Transverse wake suppression<br />

W [V/pC]<br />

t<br />

0.000E+00 0.500 1.00 1.50 2.00 2.50<br />

s [m]<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 25


SICA 3 GHz structures<br />

lined up waiting <strong>for</strong> installation mounted on the girder in CTF3<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 26


Beam Loading<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 27


Methods of<br />

beam loading<br />

compensation:<br />

Beam loading compensation<br />

Ramped <strong>RF</strong> pulse<br />

Staggered timing<br />

I.V. Syrachev, T.Higo:<br />

“Numerical investigation of transient<br />

beam loading compensation in JLC<br />

X-band main linac”, KEK Report 96-8<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 28


Superconducting <strong>RF</strong><br />

10.2 MV/ per cavity<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 29


115 MHz split-ring cavity, 172.5 MHz β = 0.19 “lollipop” cavity<br />

345 MHz β = 0.4 spoke cavity<br />

SC cavities <strong>for</strong> small β<br />

β = 0.021 <strong>for</strong>k cavity<br />

β = 0.03 <strong>for</strong>k cavity<br />

57.5 MHz cavities:<br />

β= 0.06 QWR<br />

(quarter wave resonator)<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 30


25 -35 MV/m<br />

TESLA/ILC SC cavities<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 31


Surface field [MV/m]<br />

10000<br />

1000<br />

100<br />

10<br />

Surface field breakdown limits<br />

Kilpatrick, 1957<br />

Wang&Loew '88, SLAC-pub-4647<br />

Wang&Loew '97, SLAC-pub-7684<br />

CLIC design<br />

c e E<br />

f in GHz, E c in MV/m<br />

1<br />

0.01 0.1 1 10<br />

Frequency [GHz]<br />

100<br />

Normal conducting, on Cu<br />

24.<br />

67<br />

f<br />

=<br />

4.<br />

25<br />

−<br />

Ec<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 32


Pulse length dependence<br />

6<br />

1<br />

−<br />

τ<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 33


CLIC HDS structure<br />

30 GHz, phase advance per cell: 70°,<br />

Cell length: 1.94 mm,<br />

Smallest iris diameter: 3 mm,<br />

accelerating gradient 150 MV/m,<br />

Max surface field 380 MV/m,<br />

max. ΔT 56 K,<br />

Optimized <strong>for</strong> Mo iris, CuZr cavities<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 34


E r<br />

HDS: Optimizing the cavity contour<br />

Field distribution in the optimized HDS cell geometry. The contour optimization is done to prevent hot spots.<br />

H r<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 35


HDS: Cu prototype<br />

1 cm<br />

E. <strong>Jensen</strong>, <strong>RF</strong> <strong>for</strong> <strong>Linacs</strong> 36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!