03.11.2015 Views

Environmental Challenges in the Joint Border Area of Norway Finland and Russia

environmental chllenges

environmental chllenges

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

REPORTS 41 | 2015<br />

<strong>Environmental</strong> <strong>Challenges</strong> <strong>in</strong> <strong>the</strong> Jo<strong>in</strong>t <strong>Border</strong><br />

<strong>Area</strong> <strong>of</strong> <strong>Norway</strong>, F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Russia</strong><br />

JUKKA YLIKÖRKKÖ | GUTTORM N. CHRISTENSEN | NIKOLAY KASHULIN | DMITRII DENISOV |<br />

HELÉN JOHANNE ANDERSEN | ELLI JELKÄNEN (EDIT.)


<strong>Environmental</strong> <strong>Challenges</strong> <strong>in</strong> <strong>the</strong> Jo<strong>in</strong>t <strong>Border</strong><br />

<strong>Area</strong> <strong>of</strong> <strong>Norway</strong>, F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Russia</strong><br />

JUKKA YLIKÖRKKÖ<br />

GUTTORM N. CHRISTENSEN<br />

NIKOLAY KASHULIN<br />

DMITRII DENISOV<br />

HELÉN JOHANNE ANDERSEN<br />

ELLI JELKÄNEN (EDIT.)


REPORTS 41 | 2015<br />

ENVIRONMENTAL CHALLENGES IN THE JOINT BORDER AREA OF NORWAY, FINLAND AND RUSSIA<br />

Centre for Economic Development, Transport <strong>and</strong> <strong>the</strong> Environment for Lapl<strong>and</strong><br />

Layout: Elli Jelkänen<br />

Cover photos: Sergei S<strong>and</strong>imirov (top photo), Jukka Ylikörkkö (bottom left),<br />

Guttorm N. Christensen (bottom right)<br />

Maps: Riku Elo<br />

Pr<strong>in</strong>t<strong>in</strong>g place: Juvenes Pr<strong>in</strong>t<br />

ISBN 978-952-314-258-9 (pr<strong>in</strong>t<br />

ISBN 978-952-314-259-6 (PDF)<br />

ISSN-L 2242-2846<br />

ISSN 2242-2846 (pr<strong>in</strong>t)<br />

ISSN 2242-2854 (onl<strong>in</strong>e)<br />

URN:ISBN:978-952-314-259-6<br />

www.doria.fi/ely-keskus


Acknowledgements<br />

Special thanks to <strong>the</strong> follow<strong>in</strong>g persons for <strong>the</strong>ir contribution to <strong>the</strong> EU Kolarctic ENPI project ”Trilateral Cooperation<br />

on <strong>Environmental</strong> <strong>Challenges</strong> <strong>in</strong> <strong>the</strong> Jo<strong>in</strong>t <strong>Border</strong> <strong>Area</strong>.”<br />

Steer<strong>in</strong>g group<br />

Seppo Hellsten<br />

Timo Jokela<strong>in</strong>en<br />

Bente Christiansen<br />

Guttorm N. Christensen<br />

Nikolay Kashul<strong>in</strong><br />

Olga Mokrotovarova<br />

Project coord<strong>in</strong>ation<br />

Ilona Grekelä<br />

Helén Johanne Andersen<br />

Project personnel<br />

Jukka Aroviita<br />

Emmanuela Daza Secco<br />

Tanja Dubrov<strong>in</strong><br />

Elli Jelkänen<br />

Erkki Järv<strong>in</strong>en<br />

Petri Liljaniemi<br />

Katja Määttänen<br />

Annukka Puro-Tahvana<strong>in</strong>en<br />

Martti Rask<br />

Juha Riihimäki<br />

Jukka Ruuhijärvi<br />

Erno Salonen<br />

Samuli Sairanen<br />

Ari Savikko<br />

Mikko Tolkk<strong>in</strong>en<br />

Jukka Ylikörkkö<br />

Per-Arne Amundsen<br />

Paul Eric Aspholm<br />

Ka<strong>the</strong>r<strong>in</strong>e Bell<br />

Tore Flatl<strong>and</strong>smo Berglen<br />

Cecilie Bye<br />

La<strong>in</strong>a Dalsbø<br />

Vo Thanh Dam<br />

Renee van Dorst<br />

Bjørg Jenny Engdahl<br />

Geir Dahl-Hansen<br />

Eirik Henriksen<br />

Kar<strong>in</strong> Str<strong>and</strong> Johannessen<br />

Mart<strong>in</strong> Rognli Johansen<br />

Tiia Kalske<br />

Brianne Kelly<br />

Bjørn Larsen<br />

Liu Li<br />

Marit Mjelde<br />

Birgitte Refsnes<br />

Javier Sanchez-Hern<strong>and</strong>ez<br />

Sigrid Skoglund<br />

Aslak Smalås<br />

Sverre Solberg<br />

Tove Svendby<br />

Anna von Streng Velken<br />

Aleks<strong>and</strong>ra Antsiferova<br />

Vladimir Chizov<br />

Vladimir Dauvalter<br />

Dmitrii Denisov<br />

Tatyana Kashul<strong>in</strong>a<br />

Anna Kosova<br />

Lubov Kudryavtseva<br />

Sergei Makogonyk<br />

Olga Petrova<br />

Natalia Polikarpova<br />

Sergei S<strong>and</strong>imirov<br />

Elena Siekk<strong>in</strong>en<br />

Petr Terentjev<br />

Ingrida Terentjeva<br />

Svetlana Valkova<br />

Oksana V<strong>and</strong>ysh<br />

Elena Zubova<br />

Mar<strong>in</strong>a Zueva<br />

Field, <strong>of</strong>fice <strong>and</strong> laboratory staff from <strong>the</strong> follow<strong>in</strong>g organizations<br />

INEP, MAHEM, LAP ELY, SYKE, NILU, METLA, RKTL, FMIF, UiT <strong>and</strong> SPA ”Typhoon”<br />

This publication has been produced with <strong>the</strong> assistance <strong>of</strong> <strong>the</strong> European Union but <strong>the</strong> contents <strong>of</strong> this publication<br />

can <strong>in</strong> no waybe taken to reflect <strong>the</strong> views <strong>of</strong> <strong>the</strong> European Union.


Contents<br />

Acknowledgements....................................................................................................... 1<br />

Introduction.................................................................................................................... 3<br />

Chapter 1: Climate change <strong>in</strong> <strong>the</strong> border area <strong>and</strong> modell<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> SO 2<br />

emissions from <strong>the</strong> Nikel <strong>and</strong> Zapolyarny facilities................................ 5<br />

1 Introduction............................................................................................................... 6<br />

2 Climate change <strong>in</strong> <strong>the</strong> border area........................................................................... 7<br />

3 Emissions, dispersion <strong>and</strong> deposition <strong>of</strong> SO 2<br />

from Nikel <strong>and</strong><br />

Zapolyarny, model studies......................................................................................... 14<br />

Chapter 2: Classifications <strong>of</strong> ecological state <strong>and</strong> environmental health............ 23<br />

1 Introduction............................................................................................................. 24<br />

2 Chemical status...................................................................................................... 25<br />

3 Typology.................................................................................................................. 30<br />

4 Phytoplankton......................................................................................................... 32<br />

5 Periphytic diatoms................................................................................................... 34<br />

6 Zoobenthos............................................................................................................. 37<br />

Chapter 3: The ecological condition <strong>of</strong> <strong>the</strong> Pasvik River <strong>and</strong> Lake Inarijärvi....... 43<br />

1 Introduction............................................................................................................. 44<br />

2 Climate change impacts on hydrology <strong>and</strong> water level fluctuation......................... 46<br />

3 Toxic substances on <strong>the</strong> sediments <strong>of</strong> <strong>the</strong> Pasvik River......................................... 52<br />

4 Plankton communities <strong>of</strong> <strong>the</strong> Pasvik River.............................................................. 60<br />

5 Aquatic macrophytes <strong>of</strong> Lake Inarijärvi <strong>and</strong> <strong>the</strong> Pasvik River ............................... 68<br />

6 Zoobenthos <strong>of</strong> Lake Inarijärvi <strong>and</strong> <strong>the</strong> Pasvik River .............................................. 73<br />

7 Fish communities <strong>of</strong> <strong>the</strong> Pasvik River <strong>and</strong> long-term<br />

malformation tendencies............................................................................................ 80<br />

8 Long-term effects <strong>of</strong> metal contam<strong>in</strong>ation, water regulation,<br />

species <strong>in</strong>vasion <strong>and</strong> climate change on <strong>the</strong> fish <strong>of</strong> <strong>the</strong> Pasvik River....................... 90<br />

9 Contam<strong>in</strong>ants <strong>in</strong> fish <strong>of</strong> <strong>the</strong> Pasvik River................................................................ 98<br />

Chapter 4: Evaluation <strong>and</strong> development <strong>of</strong> <strong>the</strong> lake monitor<strong>in</strong>g network........... 107<br />

1 Introduction........................................................................................................... 108<br />

2 Water quality......................................................................................................... 109<br />

3 Sediments <strong>and</strong> paleolimnology..............................................................................116<br />

4 Biology.................................................................................................................. 132<br />

Chapter 5: Influence <strong>of</strong> pollution <strong>and</strong> climate variation <strong>in</strong><br />

small rivers <strong>in</strong>dicated by freshwater pearl mussels.............................................. 159<br />

1 Freshwater pearl mussel – The environmental storyteller.................................... 160


Introduction<br />

F<strong>in</strong>l<strong>and</strong><br />

Lake Inari<br />

!P<br />

<strong>Norway</strong><br />

Näätämö<br />

Paatsjoki<br />

Nellim<br />

Km<br />

0 50 100<br />

!P<br />

EU ENPI Project Trilateral Cooperation on <strong>Environmental</strong><br />

<strong>Challenges</strong> <strong>in</strong> <strong>the</strong> Jo<strong>in</strong>t <strong>Border</strong> <strong>Area</strong> was implemented<br />

<strong>in</strong> years 2011–2014 as a collaboration between<br />

F<strong>in</strong>nish, Norwegian <strong>and</strong> <strong>Russia</strong>n environmental<br />

researchers <strong>and</strong> authorities. This report describes<br />

<strong>the</strong> research that addressed several current areas <strong>of</strong><br />

<strong>in</strong>terest <strong>in</strong> <strong>the</strong> Pasvik watercourse area. The Pasvik<br />

watercourse is located <strong>in</strong> <strong>the</strong> border area <strong>of</strong> F<strong>in</strong>l<strong>and</strong>,<br />

<strong>Russia</strong> <strong>and</strong> <strong>Norway</strong> <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn Fennosc<strong>and</strong>ia <strong>and</strong><br />

<strong>the</strong> Kola Pen<strong>in</strong>sula <strong>and</strong> it is important for <strong>the</strong> water<br />

supply, energy production, fish<strong>in</strong>g, aquaculture, tourism<br />

<strong>and</strong> recreation.<br />

Trilateral cooperation started <strong>in</strong> Interreg IIIA Kolarctic<br />

project <strong>of</strong> 2003–2006 <strong>in</strong> which F<strong>in</strong>nish, <strong>Russia</strong>n<br />

<strong>and</strong> Norwegian environmental authorities <strong>and</strong> researchers<br />

from a number <strong>of</strong> research <strong>in</strong>stitutes developed<br />

a jo<strong>in</strong>t environmental monitor<strong>in</strong>g programme for <strong>the</strong><br />

Pasvik River.<br />

Research concentrated on <strong>the</strong> ma<strong>in</strong> water bodies<br />

Lake Inarijärvi <strong>and</strong> <strong>the</strong> Pasvik River. The ma<strong>in</strong> environmental<br />

changes are caused by metallurgical <strong>in</strong>dustry<br />

<strong>in</strong> <strong>Russia</strong> <strong>and</strong> regulation <strong>of</strong> <strong>the</strong> Pasvik River for<br />

hydropower. Climate change will also affect <strong>the</strong> state<br />

<strong>of</strong> <strong>the</strong> environment <strong>in</strong> <strong>the</strong> future. The aims <strong>of</strong> <strong>the</strong><br />

studies were to develop tools to assess <strong>the</strong> effects<br />

<strong>of</strong> harmful substances, water level regulation <strong>and</strong> climate<br />

change <strong>and</strong> to illustrate <strong>the</strong>ir effects on different<br />

aquatic environments.<br />

The climate change <strong>in</strong> <strong>the</strong> border area <strong>and</strong> <strong>the</strong> Kola<br />

Pen<strong>in</strong>sula was assessed based on a long time series<br />

<strong>of</strong> meteorological observations. A clear change towards<br />

<strong>in</strong>crease <strong>in</strong> temperature <strong>and</strong> precipitation could<br />

be seen. Transboundary pollution was modeled <strong>and</strong><br />

<strong>the</strong> results show that SO 2<br />

emissions from <strong>the</strong> facilities<br />

<strong>in</strong> Nikel <strong>and</strong> Zapolyarny <strong>in</strong> <strong>the</strong> Pechenga area <strong>in</strong><br />

<strong>Russia</strong> move to F<strong>in</strong>nish <strong>and</strong> Norwegian territory by air.<br />

The project developed a monitor<strong>in</strong>g programme to assess<br />

<strong>the</strong> effects <strong>and</strong> extent <strong>of</strong> this airborne pollution.<br />

The effects <strong>of</strong> pollutants, water level regulation <strong>and</strong><br />

climate change on <strong>the</strong> ecological condition <strong>of</strong> <strong>the</strong> Pasvik<br />

River <strong>and</strong> Lake Inarijärvi was studied. Lake Inarijärvi<br />

was found to be <strong>in</strong> a good state both chemically<br />

<strong>and</strong> biologically, but parts <strong>of</strong> <strong>the</strong> Pasvik River suffer<br />

from pollution. Water level regulation has changed <strong>the</strong><br />

ecology <strong>of</strong> <strong>the</strong> waterways. Climate change will also<br />

cause changes as <strong>the</strong> ris<strong>in</strong>g water temperature will<br />

shift <strong>the</strong> fish species community, for <strong>in</strong>stance.<br />

The exist<strong>in</strong>g lake monitor<strong>in</strong>g network was developed<br />

fur<strong>the</strong>r. The small lakes <strong>of</strong> <strong>the</strong> border area were<br />

monitored <strong>and</strong> a better monitor<strong>in</strong>g programme based<br />

on <strong>the</strong> most representative lakes <strong>and</strong> sensitive <strong>and</strong><br />

cost-effective variables was developed.<br />

The results <strong>of</strong> <strong>the</strong> project have wide application.<br />

The raw data is <strong>of</strong> high quality <strong>and</strong> can be used <strong>in</strong> future<br />

scientific publications. The assessment <strong>of</strong> climate<br />

change <strong>in</strong> <strong>the</strong> area <strong>and</strong> its effect on <strong>the</strong> regulated water<br />

bodies can be <strong>of</strong> use <strong>in</strong>ternationally.<br />

This is <strong>the</strong> summary report for <strong>the</strong> project. The project<br />

Activities produced detailed expert reports on several<br />

different, environmentally relevant subjects <strong>in</strong><br />

<strong>the</strong> Pasvik area, which have been compressed <strong>in</strong>to<br />

chapters <strong>of</strong> shortened, simplified reports. Orig<strong>in</strong>al full<br />

text reports are available at www.pasvikmonitor<strong>in</strong>g.<br />

org<br />

!P<br />

Pasvikelva<br />

River Paz<br />

Kirkenes<br />

!P !P<br />

Nikel<br />

<strong>Russia</strong><br />

Arctic Circle<br />

!P<br />

Pechenga<br />

Zapoljarnyi<br />

70 °N<br />

60 °N<br />

© ESRI<br />

3


4


Chapter 1: Climate change <strong>in</strong> <strong>the</strong> border<br />

area <strong>and</strong> modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> SO 2<br />

emissions<br />

from <strong>the</strong> Nikel <strong>and</strong> Zapolyarny facilities<br />

Bjørnevatnet <strong>and</strong> Nikel. Photo: Juha Riihimäki<br />

5


1 Introduction<br />

The first part <strong>of</strong> <strong>the</strong> project dealt with climate change<br />

<strong>and</strong> transboundary airborne pollutants <strong>in</strong> <strong>the</strong> areas<br />

surround<strong>in</strong>g <strong>the</strong> Pasvik watercourse.<br />

Climate change affects both <strong>the</strong> nature <strong>and</strong> human<br />

population <strong>in</strong> <strong>the</strong> border area <strong>of</strong> F<strong>in</strong>l<strong>and</strong>, <strong>Norway</strong><br />

<strong>and</strong> <strong>Russia</strong>. Climate change processes were assessed<br />

with a decades-long time series <strong>of</strong> meteorological<br />

observations from <strong>the</strong> Kola Pen<strong>in</strong>sula. The extensive<br />

data set enabled a reliable quantification <strong>of</strong><br />

<strong>the</strong> exist<strong>in</strong>g changes <strong>in</strong> climate <strong>of</strong> <strong>the</strong> region. Both<br />

temperature <strong>and</strong> precipitation seem to be <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> area, <strong>and</strong> <strong>the</strong> warm<strong>in</strong>g <strong>in</strong>tensity is <strong>in</strong>creas<strong>in</strong>g.<br />

However, it should be noted that <strong>the</strong> climate change<br />

is not an evenly distributed process as <strong>the</strong>re are differences<br />

between <strong>the</strong> coastal <strong>and</strong> cont<strong>in</strong>ental areas,<br />

for example. Detailed assessments <strong>of</strong> changes <strong>in</strong> different<br />

regions are especially important because <strong>the</strong>y<br />

need to be considered <strong>in</strong> <strong>the</strong> environmental protection,<br />

economic activities <strong>and</strong> social development <strong>of</strong> <strong>the</strong><br />

Kola Pen<strong>in</strong>sula.<br />

The ma<strong>in</strong> sources <strong>of</strong> pollutants <strong>in</strong> <strong>the</strong> area are <strong>the</strong><br />

Pechenganikel m<strong>in</strong><strong>in</strong>g <strong>and</strong> metallurgical company’s<br />

smelter <strong>in</strong> Nikel <strong>and</strong> roast<strong>in</strong>g plant <strong>in</strong> Zapolyarny.<br />

Emissions <strong>of</strong> SO 2<br />

<strong>and</strong> heavy metals (Ni, Co, Cu, As)<br />

are prom<strong>in</strong>ent. Total emissions <strong>of</strong> SO 2<br />

are about 100<br />

000 tonnes annually, 40 000 tonnes from Zapolyarny<br />

<strong>and</strong> 60 000 tonnes from Nikel. Diffusive emissions <strong>in</strong><br />

Nikel greatly affect areas <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> smelter.<br />

Model studies <strong>of</strong> <strong>the</strong> sulfur dioxide emissions, dispersion<br />

<strong>and</strong> deposition from Nikel <strong>and</strong> Zapolyarny<br />

<strong>in</strong>dustrial plants were performed us<strong>in</strong>g two different<br />

models, a WRF-Chem model <strong>and</strong> a TAPM model.<br />

Correct <strong>in</strong>formation about <strong>the</strong> emissions is important<br />

<strong>in</strong> order to obta<strong>in</strong> reliable model results. The model<br />

results were compared with monitor<strong>in</strong>g data to verify<br />

model performance.<br />

WRF-Chem represents atmospheric processes <strong>in</strong><br />

a very detailed way. The model is most suited to study<br />

processes <strong>and</strong> specific episodes. Budget rout<strong>in</strong>es<br />

were <strong>in</strong>cluded to <strong>in</strong>vestigate <strong>the</strong> different processes <strong>of</strong><br />

loss <strong>of</strong> SO 2<br />

from <strong>the</strong> atmosphere. TAPM can be used<br />

to model air pollution for longer time periods <strong>and</strong> it<br />

was run for <strong>the</strong> year 2011. Both models can be <strong>of</strong> use<br />

<strong>in</strong> obta<strong>in</strong><strong>in</strong>g <strong>in</strong>formation <strong>of</strong> <strong>the</strong> harmful emissions from<br />

<strong>the</strong> Pechenganikel facilities.<br />

The Pasvik River. Photo S. Grechany.<br />

6


2 Climate change <strong>in</strong> <strong>the</strong> border area<br />

ALEKSANDRA ANTSIFEROVA, OLGA MOKROTOVAROVA, ELENA SIEKKINEN<br />

This assessment <strong>of</strong> climate change <strong>in</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula<br />

<strong>and</strong> <strong>the</strong> jo<strong>in</strong>t border area is based on data <strong>of</strong> <strong>the</strong><br />

monitor<strong>in</strong>g network spann<strong>in</strong>g <strong>the</strong> whole pen<strong>in</strong>sula. Climate<br />

data from <strong>Russia</strong>n hydrometeorological stations<br />

<strong>in</strong> Nikel <strong>and</strong> Janiskoski <strong>and</strong> from Norwegian automated<br />

meteorological station <strong>in</strong> Svanvik were used for a<br />

detailed study <strong>of</strong> <strong>the</strong> border area.<br />

Manifestations <strong>of</strong> climate change are extremely<br />

uneven <strong>in</strong> different areas. Detailed region-by-region<br />

assessments <strong>of</strong> <strong>the</strong> observed <strong>and</strong> expected climate<br />

changes are especially important because <strong>the</strong>y are to<br />

be considered <strong>in</strong> <strong>the</strong> course <strong>of</strong> economic activities <strong>in</strong><br />

wea<strong>the</strong>r-dependent <strong>in</strong>dustries <strong>and</strong> <strong>in</strong> <strong>the</strong> regions’ social<br />

<strong>in</strong>frastructure development.<br />

The process <strong>of</strong> global climate change has turned<br />

out to be varied <strong>and</strong> comprises three periods: warm<strong>in</strong>g<br />

<strong>in</strong> 1910–1945, slight cool<strong>in</strong>g <strong>in</strong> 1946–1975, <strong>and</strong><br />

<strong>in</strong>tensive warm<strong>in</strong>g s<strong>in</strong>ce 1976. Also <strong>in</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula<br />

<strong>the</strong> ambient air temperature has changed dur<strong>in</strong>g<br />

1936–2012. A time series <strong>of</strong> spatially-averaged yearly<br />

anomalies (deviations <strong>of</strong> <strong>the</strong> climatic norm <strong>of</strong> mean<br />

values <strong>of</strong> 1961–1990) <strong>of</strong> air temperature <strong>and</strong> l<strong>in</strong>ear<br />

trends to describe <strong>the</strong> tendency (average rate) <strong>of</strong> temperature<br />

change <strong>in</strong> different time <strong>in</strong>tervals illustrates<br />

<strong>the</strong> changes (Figure 1).<br />

The change <strong>of</strong> annual mean air temperature <strong>in</strong> <strong>the</strong><br />

Kola Pen<strong>in</strong>sula was assessed by <strong>the</strong> values <strong>of</strong> l<strong>in</strong>ear<br />

trend coefficient for <strong>the</strong> three monitor<strong>in</strong>g periods: For<br />

<strong>the</strong> 1 st monitor<strong>in</strong>g period (1936–2012) <strong>the</strong> l<strong>in</strong>ear trend<br />

coefficient amounts to 0.06°С <strong>in</strong> 10 years. For <strong>the</strong> 2 nd<br />

(1961–2012) it amounts to 0.3°С <strong>in</strong> 10 years <strong>and</strong> for<br />

<strong>the</strong> 3 rd (1976–2012) it amounts to 0.6°С <strong>in</strong> 10 years,<br />

i.e. <strong>the</strong> warm<strong>in</strong>g <strong>in</strong>tensity is <strong>in</strong>creas<strong>in</strong>g.<br />

Even <strong>in</strong> <strong>the</strong> relatively small territory <strong>of</strong> Murmansk<br />

Region <strong>the</strong> change rate <strong>of</strong> <strong>the</strong> average air temperature<br />

<strong>and</strong> precipitation regime is notably different <strong>in</strong> <strong>the</strong><br />

western part from that <strong>in</strong> <strong>the</strong> central part or at <strong>the</strong> sea<br />

coasts. The geographic distribution <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear trend<br />

coefficients <strong>of</strong> <strong>the</strong> mean seasonal anomalies <strong>of</strong> <strong>the</strong> air<br />

temperature <strong>in</strong> <strong>the</strong> period 1976 through 2012 <strong>in</strong> <strong>the</strong><br />

territory <strong>of</strong> Murmansk Region is presented <strong>in</strong> Figure 2.<br />

˚С<br />

4,0<br />

3,0<br />

2,0<br />

1,0<br />

0,0<br />

-1,0<br />

-2,0<br />

-3,0<br />

1936<br />

1940<br />

1944<br />

1948<br />

1952<br />

1956<br />

1960<br />

1964<br />

1968<br />

1972<br />

1976<br />

1980<br />

1984<br />

1988<br />

1992<br />

1996<br />

2000<br />

2004<br />

2008<br />

2012<br />

Figure 1. Anomalies <strong>of</strong> <strong>the</strong> annual mean (January–December) air temperature ( о С), averaged<br />

for <strong>the</strong> Kola Pen<strong>in</strong>sula territory <strong>in</strong> <strong>the</strong> monitor<strong>in</strong>g period from 1936 through 2012. The curve<br />

correlates with 11-year slid<strong>in</strong>g averag<strong>in</strong>g. The straight l<strong>in</strong>es show l<strong>in</strong>ear trends for <strong>the</strong> periods<br />

1936–2012, 1961–2012, <strong>and</strong> 1976–2012.<br />

7


a) W<strong>in</strong>ter b) Spr<strong>in</strong>g<br />

70<br />

69<br />

0.66<br />

0.87<br />

0.47<br />

0.83<br />

0.49<br />

0.45<br />

0.63<br />

0.79<br />

0.80<br />

0.42<br />

70<br />

69<br />

0.37<br />

0.37<br />

0.51<br />

0.47<br />

0.54<br />

0.47<br />

0.46<br />

0.43<br />

0.41<br />

0.50<br />

68<br />

67<br />

0.79<br />

0.72<br />

0.65<br />

0.67<br />

0.75<br />

0.67<br />

0.77<br />

0.78<br />

0.58<br />

0.70<br />

0.26<br />

68<br />

67<br />

0.41<br />

0.51<br />

0.41<br />

0.44<br />

0.44<br />

0.45<br />

0.55<br />

0.52<br />

0.66<br />

0.58<br />

0.66<br />

66<br />

0.62<br />

0.53<br />

30 35 40<br />

66<br />

0.51<br />

0.57<br />

30 35 40<br />

c) Summer d) Autumn<br />

70<br />

69<br />

0.33<br />

0.39<br />

0.37<br />

0.32<br />

0.30<br />

0.31<br />

0.32<br />

0.34<br />

0.39<br />

0.34<br />

70<br />

69<br />

0.55<br />

0.64<br />

0.54<br />

0.64<br />

0.61<br />

0.57<br />

0.61<br />

0.61<br />

0.59<br />

0.64<br />

68<br />

67<br />

0.46<br />

0.46<br />

0.33<br />

0.43<br />

0.39<br />

0.48<br />

0.49<br />

0.48<br />

0.44<br />

0.50<br />

0.75<br />

68<br />

67<br />

0.68<br />

0.62<br />

0.58<br />

0.62<br />

0.62<br />

0.72<br />

0.64<br />

0.64<br />

0.62<br />

0.72<br />

0.63<br />

0.42<br />

0.72<br />

0.46<br />

0.67<br />

66<br />

66<br />

30 35 40<br />

30 35 40<br />

Figure 2. The average rate <strong>of</strong> seasonal air temperature changes ( o C/10 years) <strong>in</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula territory accord<strong>in</strong>g to <strong>the</strong><br />

monitor<strong>in</strong>g data from 1976–2012. The maximum <strong>in</strong>crease <strong>of</strong> <strong>the</strong> mean air temperature is observed <strong>in</strong> w<strong>in</strong>ter <strong>in</strong> <strong>the</strong> west <strong>of</strong> <strong>the</strong> Kola<br />

Pen<strong>in</strong>sula. However, <strong>in</strong> spr<strong>in</strong>g <strong>and</strong> summer <strong>the</strong> warm<strong>in</strong>g <strong>in</strong>tensity <strong>in</strong> that area is m<strong>in</strong>imal. The geographic distribution <strong>of</strong> <strong>the</strong> mean<br />

seasonal air temperature <strong>in</strong>crease is more even <strong>in</strong> autumn.<br />

Climate change <strong>in</strong> <strong>the</strong> border<br />

area <strong>in</strong> <strong>the</strong> values <strong>of</strong> mean<br />

annual, mean seasonal <strong>and</strong><br />

extreme air temperatures<br />

The Janiskoski station performs a full range <strong>of</strong> meteorological<br />

observations with radiological monitor<strong>in</strong>g, it<br />

monitors cross-border pollutant air transfer <strong>and</strong> samples<br />

precipitations for chemical composition analysis.<br />

Janiskoski, Nikel <strong>and</strong> Svanvik hydrometeorological<br />

stations’ temperature regimes are shown <strong>in</strong> Figure<br />

3. In Janiskoski <strong>the</strong> mean annual air temperature is<br />

-0.7°С. January is <strong>the</strong> coldest <strong>and</strong> July is <strong>the</strong> warmest<br />

month with many-year mean air temperatures <strong>of</strong><br />

-13.3°С <strong>and</strong> +13.6°С, respectively. In Nikel <strong>the</strong> mean<br />

annual air temperature is +0.2°С. January is <strong>the</strong> coldest<br />

<strong>and</strong> July is <strong>the</strong> warmest month with temperatures<br />

<strong>of</strong> -10.7°С <strong>and</strong> +13.1°С, respectively.<br />

Time series describ<strong>in</strong>g <strong>the</strong> air temperature annual<br />

<strong>and</strong> seasonal anomalies <strong>in</strong> <strong>the</strong> period <strong>of</strong> 1955 through<br />

2012 <strong>and</strong> l<strong>in</strong>ear trends characteriz<strong>in</strong>g <strong>the</strong> tendency<br />

(average rate) <strong>of</strong> <strong>the</strong> temperature change <strong>in</strong> different<br />

time <strong>in</strong>tervals shows that <strong>the</strong> warm<strong>in</strong>g <strong>in</strong>tensity has<br />

been <strong>in</strong>creas<strong>in</strong>g at <strong>the</strong> both stations. At <strong>the</strong> same time,<br />

<strong>the</strong> <strong>in</strong>crease <strong>of</strong> <strong>the</strong> annual mean air temperature at<br />

<strong>the</strong> Nikel station is higher than that at Janiskoski both<br />

yearly <strong>and</strong> specifically <strong>in</strong> each season. Just like on an<br />

average <strong>in</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula, <strong>the</strong> coldest 11-year observation<br />

period at <strong>the</strong> stations Nikel <strong>and</strong> Janiskoski<br />

was 1976–1988 <strong>and</strong> <strong>the</strong> period s<strong>in</strong>ce 2002 until now<br />

is <strong>the</strong> warmest.<br />

8


SVANVIK<br />

!(<br />

!( NIKEL<br />

!(<br />

JANISKOSKI<br />

0 50<br />

km<br />

© Maanmittauslaitos, lupa nro 7/MML/15<br />

Figure 3. Temperature regime <strong>in</strong> <strong>the</strong> areas <strong>of</strong> Janiskoski, Nikel <strong>and</strong> Svanvik hydrometeorological stations<br />

Currently, <strong>the</strong> period <strong>of</strong> 1961–1990 is regarded as<br />

<strong>the</strong> basel<strong>in</strong>e period for calculations, i.e. <strong>the</strong> climatic<br />

norm. However, <strong>the</strong>re is an op<strong>in</strong>ion that <strong>the</strong> “basel<strong>in</strong>e”<br />

period should be approximated to <strong>the</strong> present time,<br />

i.e. <strong>the</strong> observation period 1971–2000 should be used<br />

(Table 1).<br />

Noticeably, <strong>the</strong> monthly mean air temperature <strong>in</strong><br />

<strong>the</strong> warmest 11-year period is higher than <strong>the</strong> climatic<br />

norm <strong>in</strong> every month except February. In particular,<br />

while <strong>the</strong>re is an <strong>in</strong>creas<strong>in</strong>g trend <strong>of</strong> <strong>the</strong> mean<br />

air temperature both yearly <strong>and</strong>, especially, <strong>in</strong> w<strong>in</strong>ter,<br />

<strong>the</strong> monthly mean air temperature <strong>in</strong> February at <strong>the</strong><br />

Janiskoski station has been below <strong>the</strong> climate norm 8<br />

times over <strong>the</strong> last 11 years, <strong>and</strong> 2 times <strong>the</strong> negative<br />

anomaly exceeded <strong>the</strong> average quadratic deviation.<br />

This confirms once aga<strong>in</strong> <strong>the</strong> climatologists’ warn<strong>in</strong>gs<br />

that even dur<strong>in</strong>g <strong>the</strong> “global warm<strong>in</strong>g” period considerable<br />

negative anomalies <strong>of</strong> air temperature are possible.<br />

The seasonal division <strong>of</strong> <strong>the</strong> year <strong>in</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula<br />

is w<strong>in</strong>ter: November–March; spr<strong>in</strong>g: April, May;<br />

summer: June–August <strong>and</strong> autumn: September–October.<br />

One <strong>of</strong> <strong>the</strong> signs <strong>of</strong> <strong>the</strong> seasonal change from<br />

w<strong>in</strong>ter to summer <strong>and</strong> vice versa is a permanent<br />

cross<strong>in</strong>g <strong>of</strong> 0°С positively (beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> spr<strong>in</strong>g) <strong>and</strong><br />

negatively (beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> w<strong>in</strong>ter). The analyses <strong>of</strong> <strong>the</strong><br />

dates <strong>of</strong> this zero cross<strong>in</strong>g <strong>in</strong> <strong>the</strong> period s<strong>in</strong>ce 1955<br />

show that at <strong>the</strong> Janiskoski <strong>and</strong> Nikel stations <strong>the</strong> duration<br />

<strong>of</strong> <strong>the</strong> period with daily mean air temperature<br />

above 0°С is <strong>in</strong>creas<strong>in</strong>g (≈3 days over 10 years). In<br />

o<strong>the</strong>r words, w<strong>in</strong>ter has begun to start 1.2–0.9 days<br />

later <strong>and</strong> spr<strong>in</strong>g 1.9–2.7 days earlier <strong>in</strong> ten years.<br />

In <strong>the</strong> Janiskoski <strong>and</strong> Nikel stations <strong>in</strong> <strong>the</strong> period<br />

1955–2012 <strong>the</strong> number <strong>of</strong> days with maximum temperature<br />

extremes has been grow<strong>in</strong>g <strong>in</strong> all seasons.<br />

However, <strong>the</strong> frequency trends were statistically <strong>in</strong>significant.<br />

The frequency trends <strong>of</strong> <strong>the</strong> m<strong>in</strong>imal temperature<br />

extremes <strong>in</strong> all seasons both <strong>in</strong> <strong>the</strong> period s<strong>in</strong>ce<br />

1955 <strong>and</strong> s<strong>in</strong>ce 1976 at both stations are negative but<br />

only <strong>the</strong> trend <strong>of</strong> <strong>the</strong> m<strong>in</strong>imal temperature extremes<br />

<strong>in</strong> w<strong>in</strong>ter at <strong>the</strong> Nikel station is statistically significant.<br />

It seems that <strong>the</strong> severity <strong>of</strong> <strong>the</strong> border area climate<br />

is decreas<strong>in</strong>g. Meteorological data from <strong>the</strong> automated<br />

Norwegian station Svanvik was used for a more<br />

detailed study <strong>of</strong> <strong>the</strong> climate <strong>in</strong> <strong>the</strong> border area. However,<br />

<strong>the</strong> Svanvik data was shorter <strong>and</strong> had gaps<br />

<strong>and</strong> some <strong>of</strong> it had to be restored based on <strong>the</strong> data <strong>of</strong><br />

Nikel. Due to this certa<strong>in</strong> calculation errors should be<br />

taken <strong>in</strong>to account.<br />

9


Table 1. Monthly mean air temperature (˚С) for three periods: <strong>the</strong> climate norm 1961–1990, 1971–2000, <strong>and</strong> for <strong>the</strong> warmest<br />

11-year observation period 2001–2012.<br />

Period I II III IV V VI VII VIII IX X XI XII Year<br />

Janiskoski hydrometeorological station<br />

1961-1990 -14.2 -13.1 -8.3 -2.3 4.0 10.0 13.3 10.9 5.9 0.1 -7.0 -12.0 -1.1<br />

1971-2000 -13.6 -12.3 -7.5 -2.2 3.9 10.2 13.5 10.9 6.1 -0.1 -7.6 -11.7 -0.9<br />

2001-2012 -12.1 -13.7 -7.8 -0.8 5.0 10.4 14.1 11.4 6.8 1.0 -5.9 -9.2 -0.1<br />

Nikel hydrometeorological station<br />

1961-1990 -11.9 -11.1 -6.9 -2.0 3.6 9.6 13.0 11.0 6.5 0.5 -5.7 -9.8 -0.3<br />

1971-2000 -10.9 -9.8 -5.9 -1.7 3.6 9.5 13.2 11.2 6.6 0.4 -5.9 -9.1 0.1<br />

2001-2012 -9.0 -10.5 -5.8 0.0 4.7 9.7 13.8 11.8 7.5 1.7 -4.0 -6.6 1.1<br />

a<br />

b<br />

T°C<br />

0,0<br />

-2,0<br />

-4,0<br />

-6,0<br />

-8,0<br />

-10,0<br />

-12,0<br />

-14,0<br />

-16,0<br />

y = 0,0643x -8,4795<br />

R² = 0,0956<br />

y = 0,1305x -11,83<br />

R² = 0,2632<br />

1985<br />

1987<br />

1989<br />

1991<br />

1993<br />

1995<br />

1997<br />

1999<br />

2001<br />

2003<br />

2005<br />

2007<br />

2009<br />

2011<br />

T°C<br />

5,0<br />

4,0<br />

3,0<br />

2,0<br />

1,0<br />

0,0<br />

-1,0<br />

-2,0<br />

-3,0<br />

-4,0<br />

-5,0<br />

y = 0,0775x + 0,3929<br />

R² = 0,1673<br />

y = 0,1058x -0,4468<br />

R² = 0,2858<br />

1985<br />

1987<br />

1989<br />

1991<br />

1993<br />

1995<br />

1997<br />

1999<br />

2001<br />

2003<br />

2005<br />

2007<br />

2009<br />

2011<br />

Svanvik<br />

Линейная (Svanvik)<br />

Nikel<br />

Линейная (Nikel)<br />

Svanvik<br />

Линейная (Svanvik)<br />

Nikel<br />

Линейная (Nikel)<br />

c<br />

d<br />

T°C<br />

16,0<br />

15,0<br />

14,0<br />

13,0<br />

12,0<br />

11,0<br />

10,0<br />

9,0<br />

8,0<br />

7,0<br />

6,0<br />

y = 0,0078x + 11,444<br />

R² = 0,0053<br />

y = 0,0229x + 10,854<br />

R² = 0,028<br />

1985<br />

1987<br />

1989<br />

1991<br />

1993<br />

1995<br />

1997<br />

1999<br />

2001<br />

2003<br />

2005<br />

2007<br />

2009<br />

2011<br />

T°C<br />

8,0<br />

7,0<br />

6,0<br />

5,0<br />

4,0<br />

3,0<br />

2,0<br />

1,0<br />

0,0<br />

-1,0<br />

-2,0<br />

y = 0,0546x + 3,4286<br />

R² = 0,1094<br />

y = 0,0846x + 2,3556<br />

R² = 0,1686<br />

1985<br />

1987<br />

1989<br />

1991<br />

1993<br />

1995<br />

1997<br />

1999<br />

2001<br />

2003<br />

2005<br />

2007<br />

2009<br />

2011<br />

Svanvik<br />

Линейная (Svanvik)<br />

Nikel<br />

Линейная (Nikel)<br />

Svanvik<br />

Линейная (Svanvik)<br />

Nikel<br />

Линейная (Nikel)<br />

Figure 4. Changes <strong>in</strong> <strong>the</strong> mean seasonal air temperature (˚С) <strong>in</strong> (a) w<strong>in</strong>ter, b) spr<strong>in</strong>g, c) summer, d) autumn) for <strong>the</strong> monitor<strong>in</strong>g period<br />

1985 through 2012 at <strong>the</strong> meteorological stations Nikel <strong>and</strong> Svanvik. Straight l<strong>in</strong>es show l<strong>in</strong>ear trends.<br />

10


The mean annual air temperature is lower <strong>in</strong> Svanvik<br />

than <strong>in</strong> Nikel. However, <strong>the</strong> l<strong>in</strong>ear trend coefficient<br />

demonstrat<strong>in</strong>g <strong>the</strong> growth rate <strong>of</strong> <strong>the</strong> mean annual air<br />

temperature <strong>in</strong> Svanvik is higher <strong>and</strong> estimated as<br />

0.9°С <strong>in</strong> ten years dur<strong>in</strong>g <strong>the</strong> period <strong>of</strong> 1985–2012.<br />

In <strong>the</strong> same period <strong>in</strong> Nikel <strong>the</strong> l<strong>in</strong>ear trend coefficient<br />

is almost two times lower <strong>and</strong> amounts to 0.5 °C <strong>in</strong><br />

10 years. The same tendency is observed <strong>in</strong> all seasons<br />

(Figure 4). In Svanvik <strong>the</strong> largest <strong>in</strong>crease <strong>of</strong> <strong>the</strong><br />

mean seasonal air temperature is observed <strong>in</strong> w<strong>in</strong>ter<br />

(with <strong>the</strong> l<strong>in</strong>ear trend coefficient for this season equal<br />

to 1.3°С <strong>in</strong> ten years), <strong>and</strong> <strong>the</strong> least <strong>in</strong>crease is observed<br />

<strong>in</strong> summer (0.2°С <strong>in</strong> ten years). Statistical significance<br />

can not be determ<strong>in</strong>ed due to Svanvik’s data<br />

be<strong>in</strong>g partly restored.<br />

Precipitation regime’s<br />

changes <strong>in</strong> <strong>the</strong> values <strong>of</strong><br />

annual, seasonal <strong>and</strong> daily<br />

maximum total precipitation<br />

The average annual precipitation <strong>in</strong> <strong>the</strong> border area<br />

is 500 mm. Table 2 presents <strong>the</strong> many-year mean<br />

amounts <strong>of</strong> precipitation per month, as well as annual<br />

total precipitation amounts <strong>in</strong> <strong>the</strong> period 1976 through<br />

2012. As a rule, <strong>in</strong> <strong>the</strong> summer months <strong>the</strong> amount<br />

<strong>of</strong> precipitation is 2–2.5 times larger than that <strong>in</strong> w<strong>in</strong>ter.<br />

In summer precipitation <strong>in</strong>tensity is considerably<br />

higher than that <strong>in</strong> w<strong>in</strong>ter. The daily precipitation <strong>of</strong><br />

>10 mm <strong>in</strong> summer is fairly usual. Such precipitation<br />

may occur several times dur<strong>in</strong>g one season. In w<strong>in</strong>ter,<br />

<strong>the</strong>re are considerably fewer days with precipitation <strong>of</strong><br />

>10 mm, not every year; 0.5 mm per day is <strong>the</strong> most<br />

common.<br />

S<strong>in</strong>ce <strong>the</strong> middle 1970’s an <strong>in</strong>creas<strong>in</strong>g trend <strong>of</strong> annual<br />

precipitation amount has been observed at <strong>the</strong><br />

Janiskoski <strong>and</strong> Nikel hydrometeorological stations.<br />

This <strong>in</strong>crease is 1.8 mm/month for 10 years at <strong>the</strong><br />

Janiskoski station <strong>and</strong> 2.4 mm/month for 10 years at<br />

Nikel station.<br />

The changes <strong>of</strong> total precipitation anomalies are<br />

different <strong>in</strong> different seasons. At <strong>the</strong> Janiskoski station<br />

an <strong>in</strong>crease <strong>of</strong> seasonal precipitation is observed <strong>in</strong><br />

all seasons except for w<strong>in</strong>ter. In spr<strong>in</strong>g, summer, <strong>and</strong><br />

autumn precipitation is 3–4 mm/month for 10 years.<br />

At <strong>the</strong> Nikel station an <strong>in</strong>crease <strong>of</strong> precipitation <strong>in</strong> all<br />

seasons is observed <strong>and</strong> <strong>the</strong> largest <strong>in</strong>crease is <strong>in</strong> autumn:<br />

6 mm/month for 10 years.<br />

Heavy ra<strong>in</strong> <strong>and</strong> snowfall create <strong>the</strong> greatest problems<br />

for various <strong>in</strong>dustrial activities. In w<strong>in</strong>ter virtually<br />

no changes are observed <strong>in</strong> <strong>the</strong> number <strong>of</strong> days with<br />

extreme precipitation both at Janiskoski <strong>and</strong> at Nikel.<br />

In spr<strong>in</strong>g, <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> number <strong>of</strong> days with extreme<br />

precipitation is greater at Nikel than at Janiskoski.<br />

In summer, slight <strong>in</strong>crease <strong>in</strong> <strong>the</strong> number <strong>of</strong> days<br />

with extreme precipitation is observed at <strong>the</strong> Janiskoski<br />

station while a decrease is observed at Nikel. In<br />

autumn, certa<strong>in</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> number <strong>of</strong> days with<br />

peak precipitations is observed at <strong>the</strong> both stations.<br />

Noticeably, <strong>the</strong> changes <strong>in</strong> all seasons are statistically<br />

<strong>in</strong>significant.<br />

Table 2. Average precipitation (mm) per month, season, <strong>and</strong> year.<br />

Janiskoski station<br />

month<br />

I<br />

31<br />

II<br />

25<br />

III<br />

26<br />

IV<br />

32<br />

V<br />

40<br />

VI<br />

61<br />

VII<br />

75<br />

VIII<br />

68<br />

IX<br />

50<br />

X<br />

51<br />

XI<br />

36<br />

XII<br />

29<br />

season<br />

w<strong>in</strong>ter<br />

147<br />

spr<strong>in</strong>g<br />

72<br />

summer<br />

204<br />

autumn<br />

101<br />

w<strong>in</strong>ter<br />

147<br />

year 524<br />

Nikel station<br />

month<br />

I<br />

37<br />

II<br />

28<br />

III<br />

28<br />

IV<br />

28<br />

V<br />

32<br />

VI<br />

54<br />

VII<br />

69<br />

VIII<br />

60<br />

IX<br />

48<br />

X<br />

55<br />

XI<br />

40<br />

XII<br />

36<br />

season<br />

w<strong>in</strong>ter<br />

169<br />

spr<strong>in</strong>g<br />

60<br />

summer<br />

183<br />

autumn<br />

103<br />

w<strong>in</strong>ter<br />

169<br />

year 515<br />

11


W<strong>in</strong>d regime <strong>and</strong> frequency<br />

<strong>of</strong> various w<strong>in</strong>d speed grades<br />

A typical feature <strong>of</strong> <strong>the</strong> border area w<strong>in</strong>d regime is its<br />

monsoon pattern, i.e. a clear seasonal change <strong>in</strong> <strong>the</strong><br />

prevail<strong>in</strong>g w<strong>in</strong>d directions. In w<strong>in</strong>ter sou<strong>the</strong>rn w<strong>in</strong>ds<br />

from <strong>the</strong> ma<strong>in</strong>l<strong>and</strong> prevail <strong>in</strong> Nikel <strong>and</strong> due to <strong>the</strong> local<br />

terra<strong>in</strong> differences south-west w<strong>in</strong>ds prevail <strong>in</strong> Janiskoski<br />

(Figure 6). In summer, nor<strong>the</strong>rn <strong>and</strong> north-eastern<br />

w<strong>in</strong>ds from <strong>the</strong> Barents Sea prevail <strong>in</strong> Nikel <strong>and</strong><br />

north-eastern w<strong>in</strong>ds are <strong>the</strong> most frequent <strong>in</strong> Janiskoski.<br />

The annual mean w<strong>in</strong>d speed <strong>in</strong> Nikel is 3.8 m/s<br />

<strong>and</strong> fluctuates seasonally with<strong>in</strong> 1 m/s. The w<strong>in</strong>d<br />

speed <strong>in</strong> Janiskoski is somewhat lower with <strong>the</strong> annual<br />

mean <strong>of</strong> 1.8 m/s <strong>and</strong> <strong>the</strong> yearly fluctuation <strong>of</strong> 0.5<br />

m/s.<br />

In Nikel <strong>the</strong> highest frequency is observed for <strong>the</strong><br />

average w<strong>in</strong>d speed with<strong>in</strong> <strong>the</strong> grade <strong>of</strong> 2–3 m/s. In<br />

Janiskoski over 46 % <strong>of</strong> w<strong>in</strong>d accounts for very weak<br />

w<strong>in</strong>d up to 1 m/s. In Nikel <strong>the</strong> concentrations <strong>of</strong> contam<strong>in</strong>ants<br />

from <strong>the</strong> Pechenganikel m<strong>in</strong><strong>in</strong>g <strong>and</strong> metallurgical<br />

<strong>in</strong>dustry <strong>in</strong> <strong>the</strong> ambient air may <strong>in</strong>crease dur<strong>in</strong>g<br />

<strong>the</strong> periods <strong>of</strong> weak w<strong>in</strong>d, or <strong>the</strong> so-called stale air.<br />

At <strong>the</strong> Nikel station <strong>the</strong> number <strong>of</strong> days with still air<br />

<strong>and</strong> low speed w<strong>in</strong>d has somewhat <strong>in</strong>creased s<strong>in</strong>ce<br />

<strong>the</strong> middle 1970’s, while at <strong>the</strong> Janiskoski station <strong>the</strong><br />

number <strong>of</strong> stale air cases has decreased.<br />

One <strong>of</strong> <strong>the</strong> most important parameters <strong>of</strong> <strong>the</strong> w<strong>in</strong>d<br />

regime is <strong>the</strong> average number <strong>of</strong> days with stormy<br />

w<strong>in</strong>d (w<strong>in</strong>d speed ≥15 m/s). The number <strong>of</strong> stormy<br />

w<strong>in</strong>d cases <strong>in</strong>creases <strong>in</strong> <strong>the</strong> w<strong>in</strong>ter months <strong>in</strong> <strong>the</strong> period<br />

<strong>of</strong> <strong>the</strong> highest frequency <strong>and</strong> <strong>in</strong>tensity <strong>of</strong> cyclone<br />

processes <strong>and</strong> decreases almost 5 times <strong>in</strong> summer<br />

(Table 3). S<strong>in</strong>ce <strong>the</strong> middle 1970’s <strong>the</strong> number <strong>of</strong> stormy<br />

days has been observed to decrease 3 days <strong>in</strong> 10<br />

years both at <strong>the</strong> Nikel <strong>and</strong> Janiskoski stations.<br />

Conclusions<br />

The climate change <strong>in</strong> <strong>the</strong> border area is characterized<br />

by <strong>the</strong>rmal regime changes, an <strong>in</strong>crease <strong>of</strong> <strong>the</strong><br />

mean annual <strong>and</strong> mean seasonal air temperature <strong>in</strong><br />

particular. The <strong>in</strong>tensity <strong>of</strong> this <strong>in</strong>crease is grow<strong>in</strong>g,<br />

<strong>and</strong> it is more significant <strong>in</strong> w<strong>in</strong>ter. In Nikel <strong>and</strong> Janiskoski<br />

<strong>the</strong> frequency <strong>of</strong> <strong>the</strong> days with maximum air<br />

temperatures extremes is grow<strong>in</strong>g, along with decreas<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> number <strong>of</strong> days with m<strong>in</strong>imal temperatures.<br />

Both at Janiskoski <strong>and</strong> Nikel precipitation is <strong>in</strong>creas<strong>in</strong>g.<br />

The largest <strong>in</strong>crease is observed at <strong>the</strong> Nikel<br />

station <strong>in</strong> autumn. In spr<strong>in</strong>g <strong>and</strong> autumn <strong>the</strong> number<br />

<strong>of</strong> days with extreme precipitation is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> Nikel<br />

<strong>and</strong> at Janiskoski <strong>the</strong> number is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> all<br />

seasons except w<strong>in</strong>ter.<br />

The w<strong>in</strong>d demonstrates monsoon pattern <strong>in</strong> <strong>the</strong><br />

border area. In w<strong>in</strong>ter, sou<strong>the</strong>rn <strong>and</strong> south-western<br />

w<strong>in</strong>ds prevail, while <strong>in</strong> summer <strong>the</strong> prevail<strong>in</strong>g w<strong>in</strong>d directions<br />

are north <strong>and</strong> north-east. At Nikel a decrease<br />

<strong>in</strong> <strong>the</strong> number <strong>of</strong> stormy days <strong>and</strong> a grow<strong>in</strong>g number<br />

<strong>of</strong> days with low w<strong>in</strong>d speed can be seen <strong>in</strong> <strong>the</strong> period<br />

s<strong>in</strong>ce <strong>the</strong> middle 1970’s <strong>and</strong> until <strong>the</strong> present. Both <strong>the</strong><br />

number <strong>of</strong> days with stormy w<strong>in</strong>d <strong>and</strong> low speed w<strong>in</strong>d<br />

is decreas<strong>in</strong>g at Janiskoski.<br />

Table 3. Average number <strong>of</strong> days with gusts <strong>of</strong> w<strong>in</strong>d 15 m/s or more. The average number <strong>of</strong> days less than 1 means that<br />

such gusts <strong>of</strong> w<strong>in</strong>d do not occur every year.<br />

Janiskoski station<br />

month<br />

I<br />

1<br />

II<br />

1<br />

III<br />

1<br />

IV<br />

1<br />

V<br />

1<br />

VI<br />

1<br />

VII<br />

0.2<br />

VIII<br />

0.4<br />

IX<br />

0.5<br />

X<br />

1<br />

XI<br />

1<br />

XII<br />

1<br />

year 10<br />

Nikel station<br />

month<br />

I<br />

9<br />

II<br />

9<br />

III<br />

8<br />

IV<br />

6<br />

V<br />

5<br />

VI<br />

4<br />

VII<br />

2<br />

VIII<br />

2<br />

IX<br />

2<br />

X<br />

7<br />

XI<br />

8<br />

XII<br />

7<br />

year 71<br />

12


W<br />

NW<br />

N<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

NE<br />

E<br />

W<br />

NW<br />

N<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

NE<br />

E<br />

SW<br />

SE<br />

SW<br />

SE<br />

S<br />

S<br />

W<br />

NW<br />

N<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

NE<br />

E<br />

W<br />

NW<br />

N 40<br />

35<br />

30<br />

NE<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

E<br />

SW<br />

SE<br />

SW<br />

SE<br />

S<br />

Figure 6. Seasonal frequency <strong>of</strong> w<strong>in</strong>ter (blue) <strong>and</strong> summer (red) w<strong>in</strong>d directions. In Nikel station (left) <strong>the</strong> still air frequency is 19%<br />

<strong>in</strong> w<strong>in</strong>ter <strong>and</strong> 9 % <strong>in</strong> summer. In Janiskoski station (right) <strong>the</strong> still air frequency is 27 % <strong>in</strong> w<strong>in</strong>ter <strong>and</strong> 20 % <strong>in</strong> summer.<br />

S<br />

References<br />

Oganesyan V.V. 2004: Climate change <strong>in</strong> Moscow from 1879 to 2002 <strong>in</strong> <strong>the</strong> extreme values <strong>of</strong> temperature <strong>and</strong> precipitations.<br />

Meteorology <strong>and</strong> hydrology 9: 31–37. Moscow. (<strong>in</strong> <strong>Russia</strong>n)<br />

Bulyg<strong>in</strong>a, O.N., Korshunova, N.N., Razuvaev, V.N., Shaimardanov, M.Z., Shvets, N.V. 2000: Variability <strong>of</strong> extreme climate<br />

phenomena <strong>in</strong> <strong>the</strong> territory <strong>of</strong> <strong>Russia</strong>. Publications <strong>of</strong> VNIIGMI-IDC 167: 16–32. Obn<strong>in</strong>sk. (<strong>in</strong> <strong>Russia</strong>n)<br />

Yakovlev, B.A. 1961: Climate <strong>of</strong> Murmansk Region. Murmansk publish<strong>in</strong>g company. 24–27. (<strong>in</strong> <strong>Russia</strong>n)<br />

Davydov, A.A., Antsiferova, A.R. 2007: Climate change <strong>in</strong> Barentsburg from 1960 to 2005 <strong>in</strong> <strong>the</strong> values <strong>of</strong> annual mean temperature<br />

<strong>and</strong> its extreme values. Integrated research <strong>of</strong> <strong>the</strong> Spitsbergen environment, 7: 140–150. Kola Science Center<br />

RAS. Apatity. (<strong>in</strong> <strong>Russia</strong>n)<br />

13


3 Emissions, dispersion <strong>and</strong> deposition<br />

<strong>of</strong> SO 2<br />

from Nikel <strong>and</strong> Zapolyarny, model<br />

studies<br />

TORE FLATLANDSMO BERGLEN, BJØRG JENNY ENGDAHL, ANNA VON STRENG VELKEN, LIU LI, VO THANH DAM,<br />

ØYVIND HODNEBROG, FRODE STORDAL<br />

The soil <strong>in</strong> <strong>the</strong> <strong>Russia</strong>n-Norwegian border area is rich<br />

<strong>in</strong> metals <strong>and</strong> m<strong>in</strong>erals. In 1921 nickel was discovered<br />

<strong>in</strong> <strong>the</strong> soil near Kolosjoki <strong>in</strong> <strong>the</strong> Pasvik Valley, close to<br />

<strong>the</strong> Norwegian border. A smelter was established <strong>in</strong><br />

<strong>the</strong> 1930s to exploit <strong>the</strong>se nickel resources. Nickel is<br />

an important constituent <strong>in</strong> sta<strong>in</strong>less steel <strong>and</strong> hence a<br />

strategically important resource. The nickel produc<strong>in</strong>g<br />

facilities were an important target dur<strong>in</strong>g World War<br />

II. After <strong>the</strong> war <strong>the</strong> plants were reconstructed. Now<br />

<strong>the</strong> plants are owned by Kola M<strong>in</strong><strong>in</strong>g <strong>and</strong> Metallurgical<br />

Company (Kola MMC), a subsidiary <strong>of</strong> Norilsk-Nickel 1 .<br />

The ore <strong>in</strong> <strong>the</strong> border area is rich <strong>in</strong> heavy metals,<br />

but also conta<strong>in</strong>s a fraction <strong>of</strong> sulphur (5–6 %). The<br />

<strong>in</strong>dustrial processes cause large emissions <strong>of</strong> sulfur<br />

dioxide (SO 2<br />

) <strong>and</strong> heavy metals. The comb<strong>in</strong>ed SO 2<br />

emissions from <strong>the</strong> two facilities are reported to be<br />

over 100 000 tonnes per year, about 40 % from Zapolyarny<br />

<strong>and</strong> 60 % from Nikel respectively. The emissions<br />

from <strong>the</strong> briquett<strong>in</strong>g facility <strong>in</strong> Zapolyarny <strong>and</strong> <strong>the</strong><br />

smelter <strong>in</strong> Nikel affect air quality <strong>in</strong> <strong>the</strong> area, both on a<br />

local <strong>and</strong> on a regional scale.<br />

NILU has been conduct<strong>in</strong>g a monitor<strong>in</strong>g program<br />

<strong>in</strong> <strong>the</strong> border area s<strong>in</strong>ce 1974, funded by Norwegian<br />

authorities (M<strong>in</strong>istry <strong>of</strong> Climate <strong>and</strong> Environment <strong>and</strong><br />

Norwegian Environment Agency). At <strong>the</strong> moment <strong>the</strong>re<br />

are two well equipped monitor<strong>in</strong>g stations operat<strong>in</strong>g,<br />

one at Svanvik, 8.5 km to <strong>the</strong> west <strong>of</strong> <strong>the</strong> city <strong>of</strong><br />

Nikel <strong>and</strong> one <strong>in</strong> Karpdalen, about 30 km north <strong>of</strong> Nikel<br />

<strong>and</strong> 20 km north-west <strong>of</strong> Zapolyarny. Both Svanvik<br />

<strong>and</strong> Karpdalen monitor SO 2<br />

<strong>and</strong> meteorology cont<strong>in</strong>uously,<br />

<strong>in</strong> addition <strong>the</strong>re are sampl<strong>in</strong>g <strong>and</strong> analysis<br />

<strong>of</strong> heavy metals <strong>in</strong> air <strong>and</strong> precipitation. There is also<br />

long term monitor<strong>in</strong>g <strong>of</strong> SO 2<br />

at Viksjøfjell us<strong>in</strong>g passive<br />

samplers. These are <strong>the</strong> stations at <strong>the</strong> Norwegian<br />

side <strong>of</strong> <strong>the</strong> border. In <strong>Russia</strong> <strong>the</strong>re are air quality monitor<strong>in</strong>g<br />

stations <strong>in</strong> Nikel <strong>and</strong> <strong>in</strong> Zapolyarny us<strong>in</strong>g high<br />

resolution monitors 2 . See map <strong>in</strong> Figure 1 for location<br />

<strong>of</strong> <strong>the</strong> nickel produc<strong>in</strong>g facilities <strong>and</strong> <strong>the</strong> monitor<strong>in</strong>g<br />

stations <strong>in</strong> <strong>the</strong> border area.<br />

As already stated, emissions from <strong>the</strong> nickel produc<strong>in</strong>g<br />

facilities <strong>in</strong> Zapolyarny <strong>and</strong> Nikel affect <strong>the</strong><br />

environment both on a local <strong>and</strong> on a regional scale.<br />

In order to quantify <strong>the</strong> impact <strong>of</strong> <strong>the</strong>se emissions,<br />

<strong>the</strong>re is a need to better underst<strong>and</strong> <strong>the</strong> sources, dispersion<br />

<strong>and</strong> loss <strong>of</strong> <strong>the</strong> pollution from <strong>the</strong>se facilities.<br />

Atmospheric models constitute a good tool to better<br />

answer this need. In that respect models also constitute<br />

a valuable supplement to monitor<strong>in</strong>g. The ma<strong>in</strong><br />

focus <strong>of</strong> <strong>the</strong> NILU studies is to model <strong>the</strong> emissions,<br />

dispersion, chemical loss <strong>and</strong> deposition <strong>of</strong> <strong>the</strong> SO 2<br />

emitted from <strong>the</strong> briquett<strong>in</strong>g plant <strong>in</strong> Zapolyarny <strong>and</strong><br />

<strong>the</strong> smelter <strong>in</strong> Nikel us<strong>in</strong>g two different atmospheric<br />

models, WRF-Chem (Wea<strong>the</strong>r Research <strong>and</strong> Forecast<strong>in</strong>g<br />

with chemistry <strong>in</strong>cluded) <strong>and</strong> TAPM (The Air<br />

Pollution Model, developed by CSIRO).<br />

The atmosphere is a complex system that behaves<br />

accord<strong>in</strong>g to <strong>the</strong> laws <strong>of</strong> physics <strong>and</strong> chemistry. The<br />

basic assumption <strong>in</strong> modell<strong>in</strong>g is that <strong>the</strong> atmospheric<br />

processes can be solved ma<strong>the</strong>matically. A model is<br />

a large set <strong>of</strong> equations that is solved us<strong>in</strong>g supercomputers.<br />

However, simplifications, also called parameterizations,<br />

have to be made. Parameterization is<br />

a method to represent equations us<strong>in</strong>g variables <strong>and</strong><br />

formulas that are easier to solve ma<strong>the</strong>matically.<br />

Both WRF-Chem <strong>and</strong> TAPM are Eulerian models.<br />

This means that <strong>the</strong> atmosphere is divided <strong>in</strong>to boxes.<br />

Then <strong>the</strong> variables are calculated for each grid<br />

box. The models <strong>in</strong>clude processes like emissions,<br />

chemical loss, dry deposition (loss onto surfaces),<br />

wet deposition (loss by ra<strong>in</strong>), <strong>and</strong> transport between<br />

adjacent grid boxes (by w<strong>in</strong>d or convection). For emissions<br />

from po<strong>in</strong>t sources it is important to have f<strong>in</strong>e<br />

resolution near <strong>the</strong> emission po<strong>in</strong>t, <strong>in</strong> <strong>the</strong>se studies<br />

this means <strong>the</strong> stacks at <strong>the</strong> smelter, <strong>and</strong> more coarse<br />

resolution at a regional scale. Figure 2 shows <strong>the</strong><br />

model doma<strong>in</strong>s applied <strong>in</strong> <strong>the</strong> WRF-Chem model with<br />

f<strong>in</strong>e resolution near <strong>the</strong> Zapolyarny <strong>and</strong> Nikel facilities<br />

(1 × 1 km 2 grid boxes), <strong>the</strong>n a regional model doma<strong>in</strong><br />

14<br />

1 http://www.nornik.ru/en/about-norilsk-nickel/operations/kola-mmc [URL 17-Dec-2014]<br />

2 See http://www.kolgimet.ru/<strong>in</strong>dex.php?option=com_content&view=article&id=54&Itemid=239 [URL 22-Dec-2014]


Figure 1. Nickel produc<strong>in</strong>g facilities (Nikel <strong>and</strong> Zapolyarny) <strong>and</strong> monitor<strong>in</strong>g stations for air quality, precipitation quality <strong>and</strong> meteorology<br />

<strong>in</strong> <strong>the</strong> border area between <strong>Norway</strong> <strong>and</strong> <strong>Russia</strong>.<br />

Figure 2. The model doma<strong>in</strong>s: doma<strong>in</strong> d01 is <strong>the</strong> outermost doma<strong>in</strong>, doma<strong>in</strong> d02 is an <strong>in</strong>termediate/regional doma<strong>in</strong> while doma<strong>in</strong><br />

d03 covers <strong>the</strong> area close to Nikel <strong>and</strong> Zapolyarny.<br />

15


(5 × 5 km 2 grid boxes), <strong>and</strong> f<strong>in</strong>ally an outer model doma<strong>in</strong><br />

(25 × 25 km 2 grid boxes).<br />

The SO 2<br />

emissions from Nikel can vary considerably<br />

even on a short time scale, from virtually no<br />

emissions to large plumes <strong>of</strong> flue gas pour<strong>in</strong>g out <strong>of</strong><br />

<strong>the</strong> smelter <strong>and</strong> stacks. This variation is probably dependent<br />

upon <strong>the</strong> smelt<strong>in</strong>g processes employed but<br />

no details are known. Due to this lack <strong>of</strong> <strong>in</strong>formation<br />

concern<strong>in</strong>g <strong>the</strong> emissions variation, <strong>the</strong> model assumed<br />

constant emissions, add<strong>in</strong>g up to 40 000 tonnes<br />

SO 2<br />

per year from Zapolyarny <strong>and</strong> 60 000 tonnes SO 2<br />

per year from Nikel.<br />

In Nikel a large fraction <strong>of</strong> <strong>the</strong> flue gas is emitted<br />

at ground level, i.e. from <strong>the</strong> smelter build<strong>in</strong>gs. These<br />

emissions affect <strong>the</strong> air quality <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong><br />

smelter <strong>and</strong> also local air quality <strong>in</strong> <strong>the</strong> city <strong>of</strong> Nikel<br />

(when <strong>the</strong> w<strong>in</strong>d is com<strong>in</strong>g from <strong>the</strong> north). The aim <strong>of</strong><br />

a stack is to emit pollutants high above <strong>the</strong> ground so<br />

that <strong>the</strong> flue gas is diluted when it reaches <strong>the</strong> ground<br />

(lower concentrations). The proportion <strong>of</strong> diffusive<br />

ground level emissions is not known. For <strong>the</strong> Nikel<br />

smelter, <strong>the</strong> model assumed that 50 % were emitted<br />

at <strong>the</strong> ground (diffusive emissions) <strong>and</strong> 50 % from 160<br />

m above ground level (layer 4 <strong>in</strong> <strong>the</strong> model).<br />

WRF-Chem model<br />

WRF-Chem (The Wea<strong>the</strong>r Research <strong>and</strong> Forecast<br />

with chemistry <strong>in</strong>cluded) model has been applied to<br />

study two specific episodes (Engdahl et al. 2014). Dur<strong>in</strong>g<br />

<strong>the</strong> summer episode <strong>in</strong> June–July 2007 <strong>the</strong>re were<br />

large emissions comb<strong>in</strong>ed with stable atmosphere<br />

<strong>and</strong> weak w<strong>in</strong>d. In this study <strong>the</strong> period 1.–7. July<br />

2007 was <strong>in</strong>vestigated. Dur<strong>in</strong>g w<strong>in</strong>ter 2010/11 <strong>the</strong>re<br />

were many episodes with high concentrations <strong>in</strong> Karpdalen.<br />

Karpdalen is <strong>in</strong>fluenced by emissions from<br />

both Zapolyarny <strong>and</strong> Nikel. The period 23. December<br />

2010–7. January 2011 was <strong>in</strong>vestigated.<br />

The WRF-Chem model is able to describe air pollution<br />

on both local <strong>and</strong> regional scale. A nested grid<br />

was applied to <strong>the</strong> study area, which was divided <strong>in</strong>to<br />

three doma<strong>in</strong>s (Figure 2). The largest doma<strong>in</strong> <strong>in</strong>cluded<br />

<strong>the</strong> nor<strong>the</strong>rn regions <strong>of</strong> Fennosc<strong>and</strong>ia, northwest<br />

<strong>Russia</strong> <strong>and</strong> <strong>the</strong> Barents Sea with grid box size <strong>of</strong> 25<br />

× 25 km 2 . The middle doma<strong>in</strong> covered eastern F<strong>in</strong>nmark,<br />

some regions <strong>of</strong> Nor<strong>the</strong>rn F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>the</strong> region<br />

around Nikel with grid box size <strong>of</strong> 5 × 5km 2 . The<br />

smallest doma<strong>in</strong> concentrated on <strong>the</strong> immediate vic<strong>in</strong>ity<br />

<strong>of</strong> <strong>the</strong> emission sources with grid box size <strong>of</strong> 1 ×<br />

1 km 2 . In <strong>the</strong> vertical <strong>the</strong> atmosphere was divided <strong>in</strong>to<br />

layers, th<strong>in</strong> layers close to <strong>the</strong> ground <strong>and</strong> gradually<br />

<strong>in</strong>creas<strong>in</strong>g layers with altitude.<br />

As <strong>in</strong>put data to <strong>the</strong> model, prescribed meteorological<br />

data from WRF were applied. In a way, <strong>the</strong>se data<br />

are <strong>the</strong> same as data used for wea<strong>the</strong>r forecast. Data<br />

from WRF were compared with analysis data from European<br />

Centre for Medium Range Wea<strong>the</strong>r Forecast,<br />

ECMWF. The WRF data compared well with <strong>the</strong> analysis<br />

data. This means that <strong>the</strong> meteorological <strong>in</strong>put<br />

data represent well <strong>the</strong> meteorological conditions <strong>in</strong><br />

<strong>the</strong> atmosphere, like w<strong>in</strong>d direction <strong>and</strong> w<strong>in</strong>d speed,<br />

temperature, etc. Especially w<strong>in</strong>d direction <strong>and</strong> w<strong>in</strong>d<br />

speed, as well as atmospheric stability are important<br />

parameters for dispersion <strong>of</strong> air pollution. In addition,<br />

wet deposition/ra<strong>in</strong>fall is an important loss process<br />

for sulphur. As described earlier <strong>the</strong> model assumed<br />

constant emissions <strong>of</strong> SO 2<br />

, 40 000 tonnes per year<br />

from Zapolyarny <strong>and</strong> 60 000 tonnes per year from Nikel.<br />

For Nikel 50 % were emitted at ground level <strong>and</strong><br />

50 % at 160 m above ground.<br />

Dur<strong>in</strong>g <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> summer episode <strong>of</strong> 1.–<br />

8. July 2007 <strong>the</strong>re was a high pressure system over<br />

<strong>the</strong> Barents Sea <strong>and</strong> a low pressure system south<br />

from <strong>the</strong> Kola Pen<strong>in</strong>sula. This caused dry wea<strong>the</strong>r<br />

<strong>and</strong> absence <strong>of</strong> strong w<strong>in</strong>ds, only some nor<strong>the</strong>astern<br />

w<strong>in</strong>ds were noted. At <strong>the</strong> end <strong>of</strong> <strong>the</strong> episode <strong>the</strong><br />

high pressure area had moved eastwards, w<strong>in</strong>d had<br />

grown stronger <strong>and</strong> blew from <strong>the</strong> east. The nor<strong>the</strong>astern<br />

w<strong>in</strong>ds transported <strong>the</strong> emissions from Nikel <strong>and</strong><br />

Zapolyarny towards <strong>the</strong> city <strong>of</strong> Nikel <strong>and</strong> also some towards<br />

Svanvik. The SO 2<br />

concentrations are generally<br />

highest <strong>in</strong> <strong>the</strong>se areas near <strong>the</strong> smelter. But emissions<br />

can disperse over relatively large areas <strong>and</strong> even far<br />

<strong>in</strong>to F<strong>in</strong>l<strong>and</strong>, Sweden <strong>and</strong> <strong>Norway</strong>, though concentrations<br />

far<strong>the</strong>r away from <strong>the</strong> sources are much lower.<br />

In <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> w<strong>in</strong>ter episode <strong>of</strong> 23. December<br />

2010–7. January 2011 <strong>the</strong>re was relatively<br />

weak w<strong>in</strong>d from <strong>the</strong> west, which changed suddenly <strong>in</strong>to<br />

stronger sou<strong>the</strong>rn w<strong>in</strong>d around <strong>the</strong> turn <strong>of</strong> <strong>the</strong> year.<br />

After a while <strong>the</strong>re was some nor<strong>the</strong>rn w<strong>in</strong>d, but <strong>the</strong><br />

episode ended with sou<strong>the</strong>rn w<strong>in</strong>d aga<strong>in</strong>. Stable conditions<br />

<strong>and</strong> weak w<strong>in</strong>ds transport <strong>the</strong> emissions slowly<br />

away from <strong>the</strong> city <strong>of</strong> Nikel <strong>and</strong> <strong>the</strong> local concentrations<br />

north <strong>of</strong> <strong>the</strong> smelters are <strong>the</strong>refore higher.<br />

Comparison with observations is <strong>the</strong> only way to<br />

verify model performance. Model results were compared<br />

with observations <strong>of</strong> Svanvik, Nikel (only summer<br />

episode) <strong>and</strong> Karpdalen (only w<strong>in</strong>ter episode) (Figure<br />

3). Observations show a pattern typical for monitor<strong>in</strong>g<br />

stations located close to major emission sources, <strong>the</strong>re<br />

are usually very low concentrations when <strong>the</strong> w<strong>in</strong>d<br />

16


is com<strong>in</strong>g from o<strong>the</strong>r directions than <strong>the</strong> smelter. The<br />

gas plume is well def<strong>in</strong>ed close to <strong>the</strong> sources <strong>and</strong><br />

when <strong>the</strong> flue gas plume hits <strong>the</strong> monitor<strong>in</strong>g station,<br />

<strong>the</strong> concentration suddenly <strong>in</strong>creases.<br />

The modelled concentrations are lower than <strong>the</strong><br />

observed maximum concentrations <strong>and</strong> <strong>the</strong> variation<br />

<strong>in</strong> actual concentrations is larger. A possible explanation<br />

for this is that <strong>in</strong> <strong>the</strong> real atmosphere <strong>the</strong> gas plume<br />

from <strong>the</strong> stacks is well def<strong>in</strong>ed, whereas <strong>in</strong> <strong>the</strong> model it<br />

will be distributed evenly with<strong>in</strong> <strong>the</strong> grid boxes (“levelled<br />

out” <strong>in</strong> a 1 × 1 km 2 grid box). Ano<strong>the</strong>r explanation<br />

is that <strong>the</strong> model emissions are not well represented.<br />

The gas is also emitted at <strong>the</strong> ground level (diffuse<br />

emissions), not only from <strong>the</strong> stacks, but no reliable<br />

<strong>in</strong>formation exists concern<strong>in</strong>g <strong>the</strong> ground:stack<br />

emission ratio. Especially Svanvik is affected both by<br />

ground level emissions <strong>and</strong> stack emissions. There is<br />

also a no <strong>in</strong>formation about <strong>the</strong> time variation <strong>of</strong> <strong>the</strong><br />

emissions. In <strong>the</strong> model constant emissions are assumed<br />

whereas <strong>in</strong> <strong>the</strong> real atmosphere <strong>the</strong> emissions<br />

will vary considerably on a short time scale. Correct<br />

emission <strong>in</strong>formation is crucial to obta<strong>in</strong> more precice<br />

model results.<br />

Plots show<strong>in</strong>g <strong>the</strong> dispersion <strong>in</strong> <strong>the</strong> three model<br />

doma<strong>in</strong>s have been elaborated (Figure 4). Dur<strong>in</strong>g <strong>the</strong><br />

summer episode <strong>the</strong> w<strong>in</strong>ds were stronger <strong>and</strong> dispersion<br />

more effective on a regional scale. Dur<strong>in</strong>g <strong>the</strong><br />

w<strong>in</strong>ter episode <strong>the</strong>re were stable conditions, weak<br />

w<strong>in</strong>ds <strong>and</strong> slow dispersion (results not shown). Short<br />

“films” were also made to show <strong>the</strong> dispersion dur<strong>in</strong>g<br />

<strong>the</strong> summer episode 3 .<br />

A budget quantify<strong>in</strong>g <strong>the</strong> processes important for<br />

SO 2<br />

was elaborated as a tool <strong>in</strong> <strong>the</strong> model development.<br />

These rout<strong>in</strong>es were also helpful <strong>in</strong> <strong>the</strong> assess-<br />

Figure 3. Modelled <strong>and</strong> observed concentrations <strong>of</strong> SO 2<br />

from (a) Svanvik 3. July 2007, (b) Nikel 3. July 2007, (c) Svanvik 3. January<br />

2011, <strong>and</strong> (d) Karpdalen 3. January 2011. If <strong>the</strong> observations are close to 0, <strong>the</strong>y are not visible <strong>in</strong> <strong>the</strong> plot (blue dots).<br />

3 Please see ”films” at [visited 01-03-2015]:<br />

http://folk.uio.no/torefl/WRF-Chem/Domene1_SO2-SO4_delay10.gif<br />

http://folk.uio.no/torefl/WRF-Chem/Domene2_SO2-SO4_delay10.gif<br />

http://folk.uio.no/torefl/WRF-Chem/Domene3_SO2-SO4_delay10.gif<br />

17


Figure 4. Dispersion <strong>of</strong> SO 2<br />

for 6. July 2007 at 12h UTC a) model doma<strong>in</strong> 1 (outermost doma<strong>in</strong>), b) model doma<strong>in</strong> 2 (<strong>in</strong>termediate)<br />

<strong>and</strong> model doma<strong>in</strong> 3 (<strong>in</strong>nermost doma<strong>in</strong>). Please note different scale <strong>in</strong> plots (a) <strong>and</strong> (b) compared to plot (c). Unit: ppb (parts per<br />

billion, 10 -9 , mix<strong>in</strong>g ratio) as sum over <strong>the</strong> lowermost model layers.<br />

ment <strong>of</strong> <strong>the</strong> wet deposition parameterization. Wet deposition<br />

is an important process <strong>and</strong> has a large effect<br />

on SO 2<br />

<strong>and</strong> H 2<br />

SO 4<br />

concentrations. Thus a budget was<br />

calculated to determ<strong>in</strong>e <strong>the</strong> contribution from each<br />

s<strong>in</strong>gle process (dry deposition, wet deposition, transport,<br />

chemistry etc.) with<strong>in</strong> <strong>the</strong> model grid (largest<br />

doma<strong>in</strong>).<br />

SO 2<br />

emissions <strong>and</strong> transport <strong>in</strong>to <strong>the</strong> model doma<strong>in</strong><br />

are <strong>the</strong> two most important sources dur<strong>in</strong>g both summer<br />

<strong>and</strong> w<strong>in</strong>ter episodes. Emissions are positively <strong>the</strong><br />

largest source <strong>of</strong> SO 2<br />

, especially <strong>in</strong> boxes near Nikel,<br />

<strong>and</strong> transport from <strong>the</strong> outer edges <strong>of</strong> <strong>the</strong> model doma<strong>in</strong><br />

are m<strong>in</strong>or. There is a large difference between<br />

<strong>the</strong> summer <strong>and</strong> w<strong>in</strong>ter episodes concern<strong>in</strong>g <strong>the</strong> pathways<br />

<strong>of</strong> loss <strong>of</strong> SO 2<br />

from <strong>the</strong> atmosphere. Sunlight,<br />

especially shortwave UV, drives <strong>the</strong> chemical processes<br />

<strong>in</strong> <strong>the</strong> atmosphere (photochemistry) <strong>and</strong> sunlight<br />

is abundant <strong>in</strong> summer (midnight sun) <strong>and</strong> absent<br />

<strong>in</strong> w<strong>in</strong>ter. Sunlight generates OH, which is <strong>the</strong> most<br />

important oxidant <strong>in</strong> daytime chemistry. OH also oxidizes<br />

SO 2<br />

to H 2<br />

SO 4<br />

. Chemical loss is <strong>the</strong> most important<br />

summertime process <strong>of</strong> loss <strong>of</strong> SO 2<br />

from <strong>the</strong><br />

atmosphere, <strong>the</strong> o<strong>the</strong>rs be<strong>in</strong>g wet deposition <strong>and</strong> dry<br />

deposition.<br />

Dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter <strong>the</strong>re is a polar night <strong>and</strong> total<br />

absence <strong>of</strong> direct sunlight <strong>in</strong> <strong>the</strong> border area. Chemical<br />

loss is m<strong>in</strong>or <strong>in</strong> w<strong>in</strong>tertime due to low levels <strong>of</strong><br />

oxidants <strong>in</strong> <strong>the</strong> atmosphere (e.g. OH). Because only<br />

a little sulfuric acid is formed, all <strong>of</strong> <strong>the</strong> reactions are<br />

reduced. The ma<strong>in</strong> loss processes dur<strong>in</strong>g w<strong>in</strong>ter are<br />

wet deposition <strong>and</strong> dry deposition.<br />

Deposition, dry or wet, is <strong>the</strong> f<strong>in</strong>al removal process<br />

<strong>of</strong> sulphur from <strong>the</strong> atmosphere. Sulphur deposited on<br />

<strong>the</strong> ground will eventually contribute to acidification.<br />

Oxidation changes SO 2<br />

<strong>in</strong>to H 2<br />

SO 4<br />

but does not remove<br />

it from <strong>the</strong> atmosphere.<br />

18


TAPM model<br />

TAPM (The Air Pollution Model developed by CSIRO)<br />

was set up for <strong>the</strong> border area <strong>and</strong> run for <strong>the</strong> year<br />

2011, i.e. <strong>the</strong> meteorological data represented 2011.<br />

The set up concern<strong>in</strong>g model doma<strong>in</strong>s <strong>and</strong> emissions<br />

were similar to <strong>the</strong> WRF-Chem (see previous section).<br />

Monthly mean <strong>and</strong> annual mean concentrations<br />

were put to file, as well as results <strong>of</strong> dry <strong>and</strong> wet deposition.<br />

In addition hourly mean results for <strong>the</strong> grid<br />

boxes represent<strong>in</strong>g Svanvik, Nikel smelter, city <strong>of</strong> Nikel<br />

<strong>and</strong> Zapolyarny were put to file. Model – observation<br />

comparison for hourly mean values at Svanvik is<br />

shown <strong>in</strong> Figure 5. Annual mean ground level values<br />

for <strong>the</strong> <strong>in</strong>ner model doma<strong>in</strong> are shown <strong>in</strong> Figure 6.<br />

For <strong>the</strong> Svanvik station <strong>the</strong> model tends to overestimate<br />

<strong>the</strong> peak maximum values, maximum value <strong>in</strong><br />

<strong>the</strong> model is 3300 µg/m 3 <strong>of</strong> SO 2<br />

while observations<br />

show maximum 858 µg/m 3 , i.e. <strong>the</strong> model maximum<br />

is a factor 4 higher than observed. The model also<br />

overestimates <strong>the</strong> annual mean concentration (model<br />

results 23 µg SO 2<br />

/m 3 vs observations 7,3 µg SO 2<br />

/m 3 ).<br />

It is difficult to compare short term values at <strong>Russia</strong>n<br />

stations s<strong>in</strong>ce <strong>the</strong> observations are 20-m<strong>in</strong>utes mean<br />

while <strong>the</strong> model calculates 1-hr means. For Zapolyarny<br />

<strong>and</strong> Nikel <strong>the</strong> model underestimates <strong>the</strong> observed<br />

values concern<strong>in</strong>g annual mean concentrations (results<br />

not shown).<br />

Dry deposition is <strong>the</strong> ma<strong>in</strong> loss pathway close to<br />

<strong>the</strong> smelter. The dry deposition results resemble to a<br />

large extent <strong>the</strong> ground level concentrations (results<br />

not shown). This is logical s<strong>in</strong>ce dry deposition is a<br />

function <strong>of</strong> ground level concentration <strong>and</strong> deposition<br />

velocity. Wet deposition is a function <strong>of</strong> concentrations<br />

<strong>in</strong> <strong>the</strong> column <strong>of</strong> air, solubility <strong>of</strong> <strong>the</strong> compounds,<br />

clouds <strong>and</strong> ra<strong>in</strong>fall.<br />

To estimate deposition <strong>of</strong> heavy metals a simple<br />

method has been elaborated. The best <strong>in</strong>formation<br />

available concern<strong>in</strong>g deposition <strong>of</strong> sulphur <strong>and</strong> deposition<br />

<strong>of</strong> Ni are <strong>the</strong> observations from Svanvik <strong>and</strong><br />

Karpdalen where both components were sampled<br />

an analyzed simultaneously dur<strong>in</strong>g <strong>the</strong> period 1993–<br />

2003. The nss-S:Ni-fraction 4 was about 35 at Svanvik<br />

dur<strong>in</strong>g this period. The basic idea here is <strong>the</strong>n to<br />

use <strong>the</strong> observed nss-S:Ni-ratio from 1993–2003 from<br />

Svanvik <strong>and</strong> Karpdalen <strong>and</strong> <strong>the</strong> model calculated deposition<br />

<strong>of</strong> sulphur from TAPM to estimate deposition<br />

<strong>of</strong> Ni. In this study a nss-S:Ni-ratio <strong>of</strong> 25 <strong>and</strong> 30 was<br />

assumed. This is lower than observed dur<strong>in</strong>g 1993–<br />

2003. But given that <strong>the</strong> emission <strong>of</strong> sulphur has decreased<br />

<strong>and</strong> emissions <strong>of</strong> Ni <strong>in</strong>creased s<strong>in</strong>ce <strong>the</strong>n <strong>the</strong><br />

Svanvik SO2 model & observation µg/m³<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

1<br />

314<br />

627<br />

940<br />

1253<br />

1566<br />

1879<br />

2192<br />

2505<br />

2818<br />

3131<br />

3444<br />

3757<br />

4070<br />

4383<br />

4696<br />

5009<br />

5322<br />

5635<br />

5948<br />

6261<br />

6574<br />

6887<br />

7200<br />

7513<br />

7826<br />

8139<br />

8452<br />

Model<br />

Observations<br />

Figure 5. Model results <strong>and</strong> observations (hourly mean values) from <strong>the</strong> Svanvik monitor<strong>in</strong>g station, count<strong>in</strong>g hours from 1 st January<br />

2011. Unit µg SO 2<br />

/m 3 .<br />

4 nss-S is abbreviation for non sea-salt sulphur<br />

19


Figure 6. Annual mean concentration <strong>of</strong> SO 2<br />

for <strong>the</strong> year 2011 for <strong>the</strong> area close to Nikel <strong>and</strong> Zapolyarny. Unit: µg/m 3 .<br />

ratio is likely lower now than 20 years ago. Ni-deposition<br />

for 5 stations <strong>and</strong> 9 lakes <strong>in</strong> <strong>the</strong> border area were<br />

estimated. For Svanvik <strong>the</strong> estimate is lower than<br />

observations, but with<strong>in</strong> a factor 2 <strong>of</strong> <strong>the</strong> observed values<br />

<strong>of</strong> Ni.<br />

Conclusions<br />

Models represent an important tool to better underst<strong>and</strong><br />

emissions, dispersion <strong>and</strong> loss <strong>of</strong> pollutants<br />

emitted from smelter facilities <strong>in</strong> <strong>the</strong> border area. Correct<br />

<strong>in</strong>formation about <strong>the</strong> emissions is crucial <strong>in</strong> order<br />

to obta<strong>in</strong> reliable model results. Total emissions <strong>of</strong><br />

SO 2<br />

is about 100 000 tonnes annually, 40 000 tonnes<br />

from Zapolyarny <strong>and</strong> 60 000 tonnes from Nikel. Diffusive<br />

emissions <strong>in</strong> Nikel greatly affect areas <strong>in</strong> <strong>the</strong><br />

vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> smelter. It is also important to represent<br />

wet deposition correctly <strong>in</strong> <strong>the</strong> model. Meteorology,<br />

especially w<strong>in</strong>d <strong>and</strong> stability, are important factors for<br />

dispersion from <strong>the</strong> smelters.<br />

The WRF-Chem model (Wea<strong>the</strong>r Research <strong>and</strong><br />

Forecast<strong>in</strong>g with chemistry <strong>in</strong>cluded) has been set up<br />

for <strong>the</strong> border area with a nested grid centered on Zapolyarny<br />

<strong>and</strong> Nikel. The periods 1.–7. July 2007 (dur<strong>in</strong>g<br />

<strong>the</strong> summer episode 2007) <strong>and</strong> 23. December<br />

2010–7. January 2011 (w<strong>in</strong>ter with elevated concentrations)<br />

have been <strong>in</strong>vestigated. The model tends to<br />

underestimate <strong>the</strong> concentration <strong>in</strong> episodes. Budget<br />

rout<strong>in</strong>es were <strong>in</strong>cluded to <strong>in</strong>vestigate <strong>the</strong> different loss<br />

processes. Chemistry is an important loss process <strong>in</strong><br />

summertime, but not <strong>in</strong> w<strong>in</strong>ter. Wet deposition <strong>and</strong> dry<br />

deposition are <strong>the</strong> ma<strong>in</strong> loss processes <strong>of</strong> sulphur.<br />

Short “films” have been made to show <strong>the</strong> dispersion.<br />

WRF-Chem does represent atmospheric processes<br />

<strong>in</strong> a very detailed way. However, it is computationally<br />

dem<strong>and</strong><strong>in</strong>g. In that respect <strong>the</strong> model is most<br />

suited to study processes (emissions, dispersion, chemical<br />

loss, dry deposition, wet deposition etc.) <strong>and</strong> to<br />

study specific episodes (e.g. summer episode 2007)<br />

ra<strong>the</strong>r than produce long-term calculations <strong>of</strong> concentrations<br />

<strong>and</strong> deposition.<br />

20


TAPM (The Air Pollution Model) was set up for <strong>the</strong><br />

border area <strong>and</strong> run for <strong>the</strong> year 2011. Both short term<br />

(hour) <strong>and</strong> long term (month, year) concentration means<br />

were put to file, as well as annual mean <strong>of</strong> dry <strong>and</strong><br />

wet deposition. The model overestimates <strong>the</strong> observed<br />

values at Svanvik (both hourly mean <strong>and</strong> annual<br />

mean concentrations), while it underestimates <strong>the</strong> annual<br />

mean observations for <strong>the</strong> Zapolyarny <strong>and</strong> Nikel<br />

stations. The model shows high values to <strong>the</strong> north<br />

<strong>of</strong> Nikel, but <strong>the</strong>re are no observations to verify <strong>the</strong>se<br />

results.<br />

A method to estimate deposition <strong>of</strong> heavy metals<br />

has been elaborated based on model results <strong>of</strong> deposition<br />

<strong>of</strong> sulphur <strong>and</strong> observed sulphur:Ni ratio at<br />

Svanvik <strong>and</strong> Karpdalen.<br />

TAPM is fast to run on <strong>the</strong> supercomputer, but <strong>the</strong>re<br />

is no access to <strong>the</strong> model code (“black box”). Because<br />

<strong>of</strong> this it is <strong>the</strong>refore difficult to make sensitivity tests to<br />

<strong>in</strong>vestigate <strong>and</strong> analyze <strong>the</strong> results.<br />

References<br />

Engdahl, B.J., Velken, A.v.S., Berglen, T.F., Hodnebrog, Ø., <strong>and</strong> Stordal, F. 2014: Utslipp, spredn<strong>in</strong>g og avsetn<strong>in</strong>g av SO2<br />

fra Nikel og Zapoljarnij, En WRF-Chem modellstudie, NILU OR 57/2014 (<strong>in</strong> Norwegian with Summary <strong>and</strong> figure captions<br />

<strong>in</strong> English).<br />

Berglen, T.F., Liu, L., <strong>and</strong> Dam, V.T. 2014: Emissions, dispersion <strong>and</strong> deposition <strong>of</strong> SO 2<br />

emitted from Nikel <strong>and</strong> Zapolyarny<br />

facilities. A TAPM model study, NILU OR 70/2014.<br />

Pechenganikel after <strong>the</strong> summer episode <strong>of</strong><br />

2007. Photo: Espen Aarnes.<br />

Affiliations <strong>of</strong> <strong>the</strong> authors: Tore Flatl<strong>and</strong>smo Berglen (NILU), Bjørg Jenny Engdahl (NILU, now Meteorological Institute, <strong>Norway</strong>), Anna<br />

von Streng Velken (NILU, now Norwegian Environment Agency), Liu Li (NILU), Vo Thanh Dam (NILU), Øyv<strong>in</strong>d Hodnebrog (Univ.<br />

<strong>of</strong> Oslo, now CICERO), <strong>and</strong> Frode Stordal (Univ. <strong>of</strong> Oslo)<br />

21


22


Chapter 2: Classifications <strong>of</strong> ecological<br />

state <strong>and</strong> environmental health<br />

JUKKA YLIKÖRKKÖ<br />

Vätsäri wilderness. Photo Jukka Ylikörkkö.<br />

23


1 Introduction<br />

When assess<strong>in</strong>g <strong>the</strong> chemical state <strong>of</strong> surface waters,<br />

different limit values <strong>and</strong> st<strong>and</strong>ards are applied <strong>in</strong> different<br />

countries. Similarly <strong>the</strong> classification <strong>of</strong> aquatic<br />

ecological status is based on different organisms <strong>and</strong><br />

multiple variables. Therefore <strong>the</strong> risk assessments<br />

<strong>and</strong> ecological evaluations are <strong>of</strong>ten difficult to compare.<br />

The classifications for ecological status <strong>and</strong> limit<br />

values for concentrations <strong>of</strong> hazardous substances<br />

are undergo<strong>in</strong>g updat<strong>in</strong>g <strong>and</strong> changes <strong>in</strong> Europe,<br />

both on national <strong>and</strong> <strong>in</strong>ternational level. Intercalibration<br />

<strong>and</strong> harmonization has been done between <strong>the</strong><br />

EU nations. St<strong>and</strong>ards or classifications are <strong>of</strong>ten not<br />

suitable for naturally harsh <strong>and</strong> nutrient poor nor<strong>the</strong>rn<br />

environments. Here <strong>the</strong> validity <strong>of</strong> exist<strong>in</strong>g st<strong>and</strong>ards<br />

<strong>and</strong> metrics for lakes is assessed us<strong>in</strong>g data collected<br />

<strong>in</strong> <strong>the</strong> project.<br />

Literature review <strong>and</strong> <strong>in</strong>ternational comparison<br />

concern<strong>in</strong>g <strong>the</strong> national <strong>and</strong> <strong>in</strong>ternational classifications,<br />

typologies, st<strong>and</strong>ards <strong>and</strong> limit values for ecological<br />

state <strong>and</strong> environmental health has been done<br />

as a background 1 for <strong>the</strong> follow<strong>in</strong>g work with project<br />

data. The most valid tools for analysis <strong>and</strong> report<strong>in</strong>g<br />

results are selected for trilateral monitor<strong>in</strong>g programme<br />

based on this assessment. These outcomes will<br />

also support <strong>the</strong> selection <strong>of</strong> most representative <strong>and</strong><br />

cost-effective environmental variables <strong>and</strong> <strong>in</strong>dicators<br />

for aquatic monitor<strong>in</strong>g.<br />

Biological diversity metrics are compared<br />

between <strong>the</strong> regions us<strong>in</strong>g Kruskal-Wallis<br />

test, which is a non-parametric variance<br />

analysis suitable for small, skewed data <strong>and</strong><br />

for groups <strong>of</strong> unequal size.<br />

Sediment samples.<br />

Photo: Helén Andersen<br />

Field equipment. Photo: Jukka Ylikörkkö<br />

1 See precursory work at www.pasvikmonitor<strong>in</strong>g.org<br />

24


2 Chemical status<br />

In this part water chemistry data from <strong>the</strong> Pasvik River<br />

(Chapter 3) <strong>and</strong> lakes <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g regions<br />

(Chapter 4) was used. For reference an additional lake<br />

LN-2 from north-east <strong>of</strong> Nikel was <strong>in</strong>cluded. The lakes<br />

can be grouped <strong>in</strong>to 3 areas <strong>in</strong> relation to Nikel: nor<strong>the</strong>ast<br />

lake LN-2 is <strong>the</strong> most exposed to <strong>the</strong> smelter’s<br />

airborne emissions, Norwegian lakes <strong>in</strong> Jarfjord are<br />

fur<strong>the</strong>r away <strong>in</strong> <strong>the</strong> same direction <strong>and</strong> <strong>the</strong> rest <strong>of</strong> lakes<br />

<strong>in</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Russia</strong> are located south or west <strong>of</strong><br />

Nikel, upw<strong>in</strong>d <strong>of</strong> <strong>the</strong> prevail<strong>in</strong>g w<strong>in</strong>d direction <strong>and</strong> <strong>the</strong><br />

least affected by <strong>the</strong> airborne emissions. The Pasvik<br />

River runs roughly along this gradient. It receives heavy<br />

metals <strong>in</strong> wastewater discharge through Kuetsjarvi<br />

<strong>and</strong> some aerial deposition. All values are measured<br />

from 1 m depth dur<strong>in</strong>g project period 2012–2013.<br />

The chemical st<strong>and</strong>ards assessed here <strong>in</strong>clude<br />

<strong>the</strong> lists <strong>of</strong> <strong>the</strong> EU priority substances <strong>and</strong> nor<strong>the</strong>rn<br />

EU countries’ specific pollutants, <strong>Russia</strong>n MAHEM,<br />

United States <strong>Environmental</strong> Agency (USEPA) <strong>and</strong><br />

Canada. The latter two st<strong>and</strong>ard lists concern criteria<br />

for aquatic life. The work has been done with st<strong>and</strong>ards<br />

valid <strong>in</strong> 2013.<br />

The most common metals have limit values <strong>in</strong> all<br />

national <strong>and</strong> <strong>the</strong> EU st<strong>and</strong>ards (Table 4). Cadmium,<br />

chromium, copper, nickel <strong>and</strong> z<strong>in</strong>c have <strong>of</strong>ten water<br />

hardness-dependent st<strong>and</strong>ards. The project lakes’<br />

water hardness <strong>in</strong> CaCO 3<br />

content was estimated<br />

us<strong>in</strong>g calcium <strong>and</strong> magnesium concentrations. Most<br />

locations had s<strong>of</strong>t water: estimated CaCO 3<br />

< 20 mg/l.<br />

For Kuetsjarvi <strong>the</strong> hardness was higher: 40 mg/l, <strong>and</strong><br />

for LN-2 estimation <strong>in</strong>dicated hard water: 125 mg/l.<br />

St<strong>and</strong>ards for s<strong>of</strong>t water <strong>in</strong> Table 4 were calculated for<br />

hardness 17 mg/l CaCO 3<br />

, because <strong>the</strong> models <strong>of</strong>ten<br />

do not apply on lower values (CCME 2012).<br />

Project data mean values were compared to chronic<br />

<strong>and</strong> long-term environmental st<strong>and</strong>ards, <strong>and</strong> data<br />

maximums to maximum allowable concentrations<br />

(MACs) <strong>and</strong> acute short-term st<strong>and</strong>ards.<br />

The 33 EU priority substances that <strong>in</strong>clude persistent<br />

organic pollutants, organochloride <strong>and</strong> organophosphorus<br />

compounds <strong>and</strong> pesticides were not<br />

analyzed <strong>in</strong> water <strong>in</strong> <strong>the</strong> scope <strong>of</strong> this project.<br />

Major ions<br />

Lake LN-2 has both <strong>the</strong> maximum <strong>and</strong> average<br />

sulphate concentration above all <strong>the</strong> listed st<strong>and</strong>ard<br />

values (Figures 1–2, Table 1). Results from <strong>the</strong> lakes<br />

<strong>in</strong> <strong>the</strong> o<strong>the</strong>r regions or <strong>in</strong> <strong>the</strong> Pasvik River were substantially<br />

below <strong>the</strong> lowest st<strong>and</strong>ards. Regional maximum<br />

<strong>and</strong> average values aga<strong>in</strong>st <strong>the</strong> lowest st<strong>and</strong>ard<br />

are summarized <strong>in</strong> Table 1 <strong>and</strong> Figures 1 <strong>and</strong> 2.<br />

Table 1. The lowest st<strong>and</strong>ards for major ions with <strong>the</strong> correspond<strong>in</strong>g maximum (short-term) or highest average (longterm)<br />

<strong>in</strong> certa<strong>in</strong> lakes or regions <strong>in</strong> 2012–2013 sampl<strong>in</strong>g period. St<strong>and</strong>ard-exceed<strong>in</strong>g results emphasized.<br />

Lowest st<strong>and</strong>ard<br />

(mg)<br />

LN-2/<br />

(mg)<br />

Kuetsjarvi<br />

(mg)<br />

Jarfjord max.<br />

(mg)<br />

Small lakes max.<br />

(mg)<br />

Pasvik max.<br />

(mg)<br />

Na short-term 120 MAHEM 4.3 4.1 4.0 1.6 1.7<br />

Mg short-term 40 MAHEM 10.3 4.4 1.1 1.2 1.3<br />

K short-term 10 MAHEM 0.70 0.95 0.44 0.54 0.50<br />

Cl- short-term 300 MAHEM 5.7 3.9 5.6 1.8 1.6<br />

Cl- long-term 120 Canada 4.0 3.2 - 1.7 1.4<br />

SO4 short-term 100 MAHEM 126.0 34.1 4.6 3.5 6.4<br />

SO4 long-term 50 Canada 118.5 30.0 - 3.3 4.6<br />

25


Figure 1. Maximum measured sulphate <strong>in</strong> Lake LN-2, regionally<br />

<strong>in</strong> small lakes, Kuetsjarvi <strong>and</strong> o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> Pasvik River<br />

with <strong>the</strong> <strong>Russia</strong>n MAC (100 mg/l).<br />

Figure 2. Average sulphate levels <strong>in</strong> <strong>in</strong> Lake LN-2, regionally <strong>in</strong><br />

small lakes, Kuetsjarvi <strong>and</strong> o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> Pasvik River with<br />

<strong>the</strong> Canadian alert level for long-term average (50 mg/l).<br />

Metals<br />

Metals are given as dissolved concentrations <strong>in</strong> filtered<br />

(0.45 µm) samples unless stated o<strong>the</strong>rwise. Nickel<br />

<strong>and</strong> copper are <strong>the</strong> ma<strong>in</strong> metals emitted by <strong>in</strong>dustry <strong>in</strong><br />

<strong>the</strong> study area. Both are found on high levels <strong>in</strong> <strong>the</strong><br />

nearest lakes (LN-2 <strong>and</strong> Kuetsjarvi) <strong>and</strong> <strong>in</strong> some <strong>of</strong><br />

<strong>the</strong> Jarfjord lakes (Table 2, Figures 3–7).<br />

Some <strong>of</strong> <strong>the</strong> st<strong>and</strong>ards represent added risk <strong>in</strong><br />

addition to <strong>the</strong> background concentration. Regional<br />

background concentrations were not noted <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g<br />

results. The lowest MAC for copper is 1 μg/l<br />

by MAHEM. There are s<strong>in</strong>gle results from all <strong>the</strong> lake<br />

groups that exceed this concentration. USEPA acute<br />

st<strong>and</strong>ard for s<strong>of</strong>t water (


Figure 3. Maximum measured copper <strong>in</strong> certa<strong>in</strong> small lakes,<br />

<strong>the</strong> Pasvik River <strong>and</strong> Vätsäri area. The l<strong>in</strong>es show short-tem<br />

st<strong>and</strong>ard values: USEPA (2.6 μg/l) <strong>and</strong> <strong>Russia</strong>n MAC (1.0 μg/l)<br />

Figure 4. Average copper <strong>in</strong> certa<strong>in</strong> small lakes, <strong>the</strong> Pasvik<br />

River <strong>and</strong> Vätsäri area. The l<strong>in</strong>es show long-term st<strong>and</strong>ard<br />

values for s<strong>of</strong>t water: <strong>the</strong> UK (1 μg/l), Canada (2 μg/l), Sweden<br />

(4 μg/l) .<br />

Figure 5. Maximum measured nickel <strong>in</strong> certa<strong>in</strong> small lakes, <strong>the</strong><br />

Pasvik River <strong>and</strong> Vätsäri area. The l<strong>in</strong>es show short-term st<strong>and</strong>ard<br />

values: USEPA (105 μg/l) <strong>and</strong> <strong>Russia</strong>n MAC (10 μg/l).<br />

Figure 6. Average nickel <strong>in</strong> certa<strong>in</strong> small lakes, <strong>the</strong> Pasvik<br />

River <strong>and</strong> Vätsäri area. The l<strong>in</strong>es show long-term st<strong>and</strong>ard<br />

values for s<strong>of</strong>t water: USEPA (12 μg/l), EU EQS (20 μg/l) <strong>and</strong><br />

Canada (24 μg/l).<br />

Figure 7. Lake LN-2 maximum <strong>and</strong> average copper <strong>and</strong> maximum<br />

nickel. L<strong>in</strong>es show correspondent st<strong>and</strong>ard values adjusted<br />

for <strong>the</strong> lake’s water hardness by <strong>the</strong> USEPA criteria.<br />

27


Several o<strong>the</strong>r measured metal concentrations are<br />

<strong>the</strong> highest <strong>in</strong> LN-2 yet below <strong>the</strong> lowest st<strong>and</strong>ard<br />

(Table 3). These <strong>in</strong>clude maximum total alum<strong>in</strong>um <strong>and</strong><br />

cadmium.<br />

Alum<strong>in</strong>um is measured both as total <strong>and</strong> labile. Total<br />

alum<strong>in</strong>um maximum concentrations are clearly <strong>the</strong><br />

highest close to Nikel, but do not exceed <strong>the</strong> lowest<br />

st<strong>and</strong>ard values.<br />

Manganese MAC by MAHEM (10 µg/l) is exceeded<br />

by many lakes. Consider<strong>in</strong>g <strong>the</strong> past results measured<br />

from streams (Salm<strong>in</strong>en 2005) <strong>and</strong> <strong>the</strong> monitored<br />

lakes <strong>in</strong> <strong>the</strong> area, 10–20 µg/l still represents <strong>the</strong> Mn<br />

background level <strong>in</strong> lakes <strong>in</strong> <strong>the</strong> area. The only notably<br />

high manganese concentration is found <strong>in</strong> Lake<br />

LN-2 (max. 123 µg/l). Manganese is not noted <strong>in</strong> national<br />

st<strong>and</strong>ard lists, but for example USEPA (2010)<br />

refers to results from LC 50<br />

experiments with mussels,<br />

which <strong>in</strong>dicate Mn on <strong>the</strong> order <strong>of</strong> tens <strong>of</strong> milligrams<br />

to be toxic.<br />

Iron MAC by MAHEM (100 µg/l) is also exceeded<br />

by several water bodies. The st<strong>and</strong>ard is aga<strong>in</strong> ra<strong>the</strong>r<br />

low compared to <strong>the</strong> regional background level (Salm<strong>in</strong>en<br />

2005). In long-term all <strong>the</strong> iron st<strong>and</strong>ards are<br />

met.<br />

There seems to be elevated z<strong>in</strong>c concentration <strong>in</strong><br />

Lake LN-2, which does not meet <strong>the</strong> lowest st<strong>and</strong>ards<br />

<strong>in</strong> maximum or long-term concentrations. Background<br />

levels <strong>in</strong> <strong>the</strong> region’s streams are generally less than<br />

1 µg/l for Zn (Salm<strong>in</strong>en 2005) <strong>and</strong> <strong>the</strong> content <strong>in</strong> all <strong>the</strong><br />

o<strong>the</strong>r lakes is clearly below <strong>the</strong> st<strong>and</strong>ard.<br />

Nutrients <strong>and</strong> trophic status<br />

Ammonium, nitrate <strong>and</strong> phosphate<br />

MAHEM MACs for ammonium (400 μg/l) <strong>and</strong> nitrate<br />

nitrogen (9100 μg/l) are <strong>the</strong> lowest <strong>of</strong> considered st<strong>and</strong>ards.<br />

All <strong>the</strong> measured results were notably below<br />

<strong>the</strong> st<strong>and</strong>ard MACs. Among <strong>the</strong> lakes <strong>the</strong> maximum<br />

measured ammonium nitrogen concentration varied<br />

from 9.0 to 60.0 μg/l, <strong>in</strong> <strong>the</strong> Pasvik River 9.0–85.0<br />

μg/l, <strong>and</strong> <strong>the</strong> maximum nitrate nitrogen 3–49 μg/l <strong>in</strong><br />

<strong>the</strong> lakes <strong>and</strong> 1–46 μg/l <strong>in</strong> <strong>the</strong> river. All <strong>the</strong> maximum<br />

measured phosphate phosphorus concentrations were<br />

below MAHEM MAC (150 μg/l), vary<strong>in</strong>g from 1 to 9<br />

μg/l <strong>in</strong> <strong>the</strong> lakes <strong>and</strong> 1–5 μg/l <strong>in</strong> Pasvik river.<br />

pH<br />

The measured m<strong>in</strong>imum pH values from <strong>the</strong> lakes <strong>and</strong><br />

<strong>the</strong> Pasvik River mostly exceeded <strong>the</strong> 6.5 limit, which<br />

is most <strong>of</strong>ten used st<strong>and</strong>ard for m<strong>in</strong>imum pH. Lake<br />

Sierramjärvi had lower m<strong>in</strong>imum (5.8), which seems<br />

to be a s<strong>in</strong>gle anomaly when observed <strong>in</strong> long time<br />

scale. The lake is <strong>in</strong> <strong>the</strong> reference area <strong>and</strong> m<strong>in</strong>imally<br />

affected by anthropogenic pressures.<br />

COD<br />

The highest measured chemical oxygen dem<strong>and</strong> values<br />

were 6.8 mg/l (Virtuovoshjaur) <strong>and</strong> 5.8 mg/l <strong>in</strong><br />

Pasvik River (Ruskebukta). <strong>Russia</strong>n MAC for COD is<br />

15 mg/l.<br />

Trophic status<br />

Us<strong>in</strong>g <strong>the</strong> Canadian trophic status criteria for mean<br />

total phosphorus, <strong>the</strong> lakes are ultra-oligotrophic (< 4<br />

μg/l) or oligotrophic (< 10 μg/l). The Pasvik River water<br />

reservoirs are all oligotrophic (< 10 μg/l total P),<br />

except for Ruskebukta, which is meso-eutrophic <strong>in</strong><br />

terms <strong>of</strong> total phosphorus (22 μg/l). This is consistent<br />

with <strong>the</strong> previous studies <strong>and</strong> o<strong>the</strong>r obta<strong>in</strong>ed results<br />

(see Chapter 3).<br />

Conclusions<br />

<strong>Russia</strong>n maximum allowable concentrations <strong>and</strong> Canadian<br />

or US environmental agency criteria for <strong>the</strong><br />

protection <strong>of</strong> aquatic life are <strong>the</strong> most comprehensive<br />

national st<strong>and</strong>ard lists <strong>and</strong> <strong>the</strong>refore useful <strong>in</strong> assess<strong>in</strong>g<br />

chemical status. Moreover <strong>the</strong>se are most <strong>of</strong>ten<br />

<strong>the</strong> lowest <strong>and</strong> strictest st<strong>and</strong>ards. For example <strong>the</strong><br />

USEPA criteria are set as a result <strong>of</strong> lethal dose <strong>and</strong><br />

effect dose studies with zooplankton, some benthic<br />

animals <strong>and</strong> fish to m<strong>in</strong>imize <strong>the</strong> risk to aquatic biota<br />

(e.g. USEPA 2014).<br />

Sulphate accumulation is a key issue <strong>in</strong> <strong>the</strong> study<br />

area. That is detected by <strong>the</strong> lowest st<strong>and</strong>ards, which<br />

represent an early level <strong>of</strong> contam<strong>in</strong>ation.<br />

Nickel concentration is elevated <strong>in</strong> lakes near <strong>the</strong><br />

Nikel smelter <strong>and</strong> this is detected by all <strong>the</strong> st<strong>and</strong>ards.<br />

However <strong>the</strong>re is a great difference between different<br />

criteria <strong>and</strong> whe<strong>the</strong>r water hardness is considered.<br />

There are some unnecessarily low st<strong>and</strong>ards for<br />

copper, manganese <strong>and</strong> iron. These are <strong>Russia</strong>n national<br />

maximum concentrations <strong>and</strong> consider<strong>in</strong>g <strong>the</strong><br />

background concentration <strong>the</strong>y may be too sensitive<br />

for <strong>the</strong> study area. Use <strong>of</strong> o<strong>the</strong>r criteria or lowest observed<br />

toxic concentration as a reference po<strong>in</strong>ts out<br />

better <strong>the</strong> potential pollution <strong>in</strong> lakes downw<strong>in</strong>d <strong>of</strong> <strong>the</strong><br />

Nikel smelter.<br />

Eutrophication is generally not a key issue <strong>in</strong> <strong>the</strong><br />

study area.<br />

28


Table 3. The lowest st<strong>and</strong>ards for metals with <strong>the</strong> correspond<strong>in</strong>g maximum (short-term) or highest average (long-term) <strong>in</strong> certa<strong>in</strong><br />

lakes or regions <strong>in</strong> 2012–2013 sampl<strong>in</strong>g period. St<strong>and</strong>ard-exceed<strong>in</strong>g results emphasized.<br />

Lowest st<strong>and</strong>ard<br />

(µg/l)<br />

LN-2<br />

(µg/l)<br />

Kuetsjarvi<br />

(µg/l)<br />

Jarfjord max.<br />

(µg/l)<br />

Vätsäri-<strong>Russia</strong> max.<br />

(µg/l)<br />

Pasvik max.<br />

(µg/l)<br />

Al short-term 750 USEPA 134.0 113 12.0 50.0 86.0<br />

Al long-term 87 USEPA 47.0 49.6 - 36.8 65.0<br />

Cd short-term 0.35 USEPA 0.14 0.12 0.01 0.09 0.02<br />

Cd long-term 0.03 CA 0.11 0.06 - 0.05 0.02<br />

Mn short-term 10 MAHEM 123 48 6.09 13.2 (Virtuvuoshjaur) 25 (Vaggatem)<br />

11.0 (Kochejaur)<br />

Fe short-term 100 MAHEM 233 238 49.0 185 (Virtuvuoshjaur)<br />

174 (Kochejaur)<br />

365 (Vaggatem)<br />

139 (Skrukkebukta)<br />

Fe long-term 300 CA 143 108 - 106 223<br />

Co short-term 10 MAHEM 6.6 2.2 0.15 0.25 0.3<br />

Zn short-term 10 MAHEM 18 7.8 1.7 5.2 2.9<br />

Zn long-term 8 SWE 13,65 4.7 - 2.9 1.2<br />

Pb short-term 6 MAHEM 0.2 0.2 0.2 0.4 0.4<br />

Table 4. Metal st<strong>and</strong>ard concentration by <strong>the</strong> EU priority substance list, Canadian (CCME 2011, Meays & Nordl<strong>in</strong> 2013), <strong>the</strong> US<br />

(USEPA 2012) criteria for aquatic life, <strong>Russia</strong>n MAHEM MAC values for Pasvik River, Swedish specific pollutants (Naturvårdsverket<br />

2008) <strong>and</strong> <strong>the</strong> UK proposal for specific pollutants (UKTAG 2008). The most sensitive value for each variable bolded.<br />

A. Long-term st<strong>and</strong>ards (µg/l)<br />

Al Cd Cr (III) Cr (VI) Fe Cu Ni Zn As Se Pb Hg Cl SO4<br />

EU EQS 0.08 3 20.00 7.2 5 0.05 5<br />

CA 100 1 0.03 2 8.90 1.0 300 2.00 24.86 2 30.0 5 1.0 1.0 2 0.026 120 000 50 000<br />

US 87 0.07 2 20.19 2 1.0 1000 2.01 2 11.65 2 26.7 2 150 5.0 0.3 2 230 000<br />

SW EQS 4.00 3/8.0 4<br />

UK 4.70 3.4 1000 1.00 6 8.0 6<br />

B. Short-term st<strong>and</strong>ards <strong>and</strong> MACs (µg/l)<br />

Al Cd Cr (III) Cr (VI) Fe Cu Ni Zn As Se Pb Hg Cl SO4<br />

EU MAC 0.45 3 - 0.07 5<br />

CA 640 128 000 7<br />

US 750 0.35 2 422.42 2 16.00 2.64 2 104.78 2 26.70 2 340 8.56 2 860<br />

RUS MAC 40 (labile) 5 70.00 20.00 100 1.00 10.00 10.00 50 2.0 6.00 0.01 300 100 000<br />

UK 32<br />

[1] when pH ≥ 6.5<br />

[2] when water hardness 17 mg/l CaCO 3<br />

(USEPA, Canada)<br />

[3] when water hardness < 40 mg/l CaCO 3<br />

[4] when water hardness < 24/> 24 mg/l CaCO 3<br />

[5] lead <strong>and</strong> mercury measured with <strong>the</strong>ir compounds<br />

[6] when water hardness < 50 mg/l CaCO 3<br />

[7] when water hardness < 30 mg/l CaCO 3<br />

29


3 Typology<br />

Typologies <strong>and</strong> <strong>the</strong>ir categories have been discussed<br />

about <strong>in</strong> <strong>the</strong> precursory work. 1 Project data from lakes<br />

(Chapters 4 <strong>and</strong> 5) was primarily used for type categorization.<br />

Older water quality data was used alongside<br />

when available. The results are shown <strong>in</strong> Table 1.<br />

F<strong>in</strong>nish typology separates North-Lapl<strong>and</strong> lakes<br />

above p<strong>in</strong>e forest l<strong>in</strong>e as a type itself. The range <strong>of</strong><br />

this type was estimated by model<strong>in</strong>g from latitude, longitude<br />

<strong>and</strong> altitude (Mikkola p.c. 2013). Based on <strong>the</strong><br />

geographical model three <strong>of</strong> <strong>the</strong> project lakes <strong>in</strong> area<br />

belong to ‘North-Lapl<strong>and</strong>’ type (Table 1). All <strong>the</strong> lakes<br />

are at least 3 meters deep <strong>in</strong> average. Therefore,<br />

based on <strong>the</strong>ir size (< 40 km 2 ) <strong>and</strong> water colour (< 30<br />

mg Pt/l), <strong>the</strong> rest fit <strong>in</strong> type ‘small <strong>and</strong> medium-sized<br />

clear water lakes’. Alkal<strong>in</strong>ity threshold <strong>of</strong> 0.4 meq/l, on<br />

average, for calcium-rich lakes was not exceeded.<br />

Norwegian typology starts from division to altitud<strong>in</strong>al<br />

zones. All <strong>the</strong> project lakes fall <strong>in</strong>to <strong>the</strong> ‘Forest’<br />

zone below tree l<strong>in</strong>e. The size category is ei<strong>the</strong>r small<br />

(< 5 km 2 ) or large (> 5 km 2 ). The third tier describes<br />

alkal<strong>in</strong>ity. Kuetsjarvi exceeds <strong>the</strong> average alkal<strong>in</strong>ity<br />

threshold (0.2 meq) <strong>and</strong> so represents moderately<br />

calcium rich type. At last <strong>the</strong> lakes are categorized<br />

for clarity based on colour (mg Pt/l) or total organic<br />

carbon (TOC). Most lakes are clear based on water<br />

colour values <strong>in</strong> <strong>the</strong> project data <strong>and</strong> available data<br />

from previous years. Lake Vaggatem <strong>in</strong> <strong>the</strong> Pasvik River<br />

watercourse is set to ‘humic’ water colour category<br />

(colour > 30 mg Pt/l) by <strong>the</strong> Norwegian authority <strong>and</strong><br />

so it will be considered as such.<br />

As a result <strong>the</strong> lakes represent two different types<br />

accord<strong>in</strong>g to F<strong>in</strong>nish system <strong>and</strong> four types <strong>in</strong> Norwegian<br />

typology. Geographical location divides <strong>the</strong><br />

lakes <strong>in</strong> F<strong>in</strong>nish typology; size, alkal<strong>in</strong>ity <strong>and</strong> colour<br />

<strong>in</strong> <strong>the</strong> Norwegian. The resulted types describe partly<br />

different aspects: <strong>the</strong> size category is different <strong>and</strong><br />

<strong>the</strong> Norwegian system has more alkal<strong>in</strong>ity categories.<br />

Water clarity is uniformly assessed <strong>and</strong> expressed by<br />

both typologies.<br />

The lakes closest to Nikel smelter are high <strong>in</strong> calcium.<br />

This is mostly due to dry deposition <strong>of</strong> calcium<br />

compounds from <strong>the</strong> <strong>in</strong>dustry <strong>and</strong> partly natural state<br />

because <strong>of</strong> calcareous bedrock. Based on alkal<strong>in</strong>ity<br />

measures, however, <strong>the</strong>y are, at most, moderately alkal<strong>in</strong>e.<br />

The Pasvik River is heavily modified for hydropower<br />

<strong>and</strong> it has to a large extent lost its river character.<br />

The large reservoirs are considered as humic lakes <strong>in</strong><br />

<strong>Norway</strong>. In F<strong>in</strong>nish typology <strong>the</strong>se would be similarly<br />

heavily modified or artificial humic lakes or lakes with<br />

short retention time <strong>in</strong> case <strong>the</strong> retention is less than<br />

10 days. Lake Vaggatem is presented as an example<br />

here.<br />

Photo:Esko Jaskari.<br />

1 www.pasvikmonitor<strong>in</strong>g.org<br />

30


Table 1. Categories used <strong>in</strong> F<strong>in</strong>nish <strong>and</strong> Norwegian typologies <strong>and</strong> <strong>the</strong> result<strong>in</strong>g types for different project lakes.<br />

Size (km 2 )<br />

Altitude<br />

(masl)<br />

Calcium<br />

(mg/l)<br />

Alk.<br />

(mekv/l)<br />

Colour<br />

(mg Pt/l)<br />

TOC<br />

(mg/l)<br />

FI type NO type<br />

FI<br />

Lampi 222 < 5 222 < 4 < 0.2 < 30 < 5 6.1 Small <strong>and</strong> medium size clear 12 Forest zone calcium-poor clear<br />

Harrijärvi < 5 127 < 4 < 0.2 < 30 < 5 6.1 Small <strong>and</strong> medium size clear 12 Forest zone calcium-poor clear<br />

Pitkä-Surnujärvi < 5 126 < 4 < 0.2 < 30 < 5 6.1 Small <strong>and</strong> medium size clear 12 Forest zone calcium-poor clear<br />

Sierramjärvi < 5 254 < 4 < 0.2 < 30 < 5 1 North-Lapl<strong>and</strong> lakes 12 Forest zone calcium-poor clear<br />

RU<br />

Shuonijaur 5–40 180 < 4 < 0.2 < 30 < 5 6.1 Small <strong>and</strong> medium size clear 12 Forest zone large calcium-poor clear<br />

Ala-Nautsijarvi 5–40 159 < 4 < 0.2 < 30 5–15 6.1 Small <strong>and</strong> medium size clear 12 Forest zone large calcium-poor clear<br />

Toartesjaur < 5 195 < 4 < 0.2 < 30 < 5 6.1 Small <strong>and</strong> medium size clear 12 Forest zone calcium-poor clear<br />

Virtuovoshjaur < 5 182 < 4 < 0.2 < 30 5-15 6.1 Small <strong>and</strong> medium size clear 12 Forest zone calcium-poor clear<br />

Riuttikjaure < 5 190 < 4 < 0.2 < 30 < 5 6.1 Small <strong>and</strong> medium size clear 12 Forest zone calcium-poor clear<br />

Kochejaur < 5 133 < 4 < 0.2 < 30 5–15 6.1 Small <strong>and</strong> medium size clear 12 Forest zone calcium-poor clear<br />

LN-2 < 5 210 > 20 < 0.2 < 30 < 5 6.1 Small <strong>and</strong> medium size clear * 12 Forest zone calcium-poor clear<br />

Kuetsjarvi 5–40 21 4–20 0.2-1 < 30 5–15 6.1 Small <strong>and</strong> medium size clear 14.7 Forest zone large moderately calcium-rich<br />

NO<br />

Gardsjøen < 5 82 < 4 < 0.2 < 30 < 5 6.1 Small <strong>and</strong> medium size clear 12 Forest zone calcium-poor clear<br />

Holmvatnet < 5 156 < 4 < 0.2 < 30 < 5 1 North-Lapl<strong>and</strong> lakes 12 Forest zone calcium-poor clear<br />

Rabbvatnet < 5 83 < 4 < 0.2 < 30 < 5 6.1 Small <strong>and</strong> medium size clear 12 Forest zone calcium-poor clear<br />

Durvatn < 5 231 < 4 < 0.2 < 30 < 5 1 North-Lapl<strong>and</strong> lakes 12 Forest zone calcium-poor clear<br />

Børsevatn < 5 178 < 4 < 0.2 < 30 < 5 6.1 Small <strong>and</strong> medium size clear * 12 Forest zone calcium-poor clear<br />

Vaggatem 5–40 51 < 4 < 0.2 30–90 5–15 7.1. Medium-sized humic lakes 13 Forest zone large calcium-poor humic lakes<br />

*borderl<strong>in</strong>e case on <strong>the</strong> modeled forest l<strong>in</strong>e<br />

31


4 Phytoplankton<br />

Data processed here consist <strong>of</strong> phytoplankton densities<br />

<strong>and</strong> chlorophyll a contents for Vätsäri <strong>and</strong> <strong>Russia</strong>n<br />

lakes (Chapter 4). The sampled zone for phytoplankton<br />

was 0–2 m <strong>in</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong> 0–10 m <strong>in</strong> <strong>Russia</strong><br />

<strong>and</strong> <strong>Norway</strong>. Sampl<strong>in</strong>g was conducted dur<strong>in</strong>g grow<strong>in</strong>g<br />

season <strong>in</strong> June–September. For detailed sampl<strong>in</strong>g<br />

methods see Chapter 4 Biology.<br />

Results <strong>and</strong> discussion<br />

Chlorophyll<br />

The measured chlorophyll a was low <strong>in</strong> Vätsäri lakes:<br />

less than 2 µg/l (Table 1). The reliable detection limit<br />

<strong>in</strong> <strong>the</strong> analysis is 1 µg/l. The studied lakes <strong>in</strong> <strong>Russia</strong><br />

had similarly low chlorophyll content, apart from Lake<br />

Shuonijaur. Lake chlorophyll a is a phytoplankton metric<br />

<strong>in</strong> F<strong>in</strong>nish, Norwegian <strong>and</strong> Swedish classification.<br />

All systems give consistent good or high status class<br />

to measured chlorophyll results. The Norwegian reference<br />

value for nor<strong>the</strong>rn clear water lakes is <strong>the</strong> lowest,<br />

thus it would be <strong>the</strong> first metric to react to a rise<br />

<strong>in</strong> chlorophyll content.<br />

Species diversity<br />

Even though diversity <strong>in</strong>dices are not used for phytoplankton<br />

classification <strong>in</strong> any country <strong>the</strong> number <strong>of</strong><br />

species between <strong>the</strong> regions is compared <strong>in</strong> Figure 1.<br />

Norwegian Jarfjord <strong>and</strong> F<strong>in</strong>nish Vätsäri are neighbour<strong>in</strong>g<br />

regions with ra<strong>the</strong>r similar trophic status. Some<br />

<strong>of</strong> <strong>the</strong> Jarfjord lakes have very high copper content<br />

(see Chapter 4) <strong>and</strong> <strong>the</strong>refore <strong>the</strong> species diversity<br />

is expected to be lower than <strong>in</strong> Vätsäri. <strong>Russia</strong>n lakes<br />

locate more south <strong>and</strong> are mostly bigger <strong>in</strong> surface<br />

<strong>and</strong> catchment area, which should contribute to<br />

higher phytoplankton species diversity.<br />

The <strong>Russia</strong>n lakes differ from <strong>the</strong> o<strong>the</strong>r two regions<br />

with significantly higher number <strong>of</strong> species (Kruskal-<br />

Wallis, p = 0.01). Jarfjord lakes tend to have fewer<br />

species, but <strong>in</strong> this data set no difference to Vätsäri<br />

could be verified.<br />

Conclusions<br />

Grow<strong>in</strong>g season chlorophyll a content gives an <strong>in</strong>dication<br />

<strong>of</strong> <strong>the</strong> phytoplankton biomass <strong>and</strong> thus <strong>of</strong><br />

<strong>the</strong> general trophic status. Apply<strong>in</strong>g <strong>the</strong> limit values<br />

for correct type <strong>in</strong> any <strong>of</strong> <strong>the</strong> national classifications<br />

should reveal possible status deterioration. Therefore<br />

chlorophyll content should be measured systematically<br />

from all <strong>the</strong> locations.<br />

Biomass <strong>of</strong> harmful cyanobacteria (blue-green<br />

algae) is a straightforward <strong>and</strong> commonly used<br />

phytoplankton metric <strong>of</strong> eutrophication for which taxa<br />

biomasses would be required. It would be a good additional<br />

tool for assess<strong>in</strong>g phytoplankton communities.<br />

Phytoplankton seasonal changes should be considered<br />

when us<strong>in</strong>g it as a quality element. Phytoplankton<br />

classification is recommended to be based<br />

on more than one grow<strong>in</strong>g season sample. In <strong>Norway</strong><br />

five annual samples are recommended (Direktoratsgruppa<br />

2013).<br />

32


Table 1. Average measured chlorophyll <strong>in</strong> June–September 2013 <strong>and</strong> <strong>the</strong> current type-specific reference values,<br />

high/good (H/G) class limit values <strong>and</strong> consequent status classes <strong>in</strong> F<strong>in</strong>nish, Norwegian <strong>and</strong> Swedish lake<br />

classification.<br />

Vätsäri<br />

Chlorophyll a<br />

(µg/l)<br />

Harrijärvi 1.65<br />

Lampi 222 < 1<br />

Pitkä-Surnujärvi 1.25<br />

F<strong>in</strong>nish 1 Norwegian 2 Swedish 3<br />

Ref.<br />

(µg/l)<br />

H/G<br />

(µg/l)<br />

3 4<br />

Sierramjärvi < 1 2 3<br />

<strong>Russia</strong><br />

Shuonijaur 2.44<br />

Ala-Nautsijarvi 0.78<br />

Toartesjaur 1.44<br />

Riuttikjaure 0.41<br />

Virtuovoshjaur 0.6<br />

Kochejaur 1.05<br />

class<br />

Ref.<br />

(µg/l)<br />

H/G<br />

(µg/l)<br />

class<br />

Ref.<br />

(µg/l)<br />

H/G<br />

(µg/l)<br />

class<br />

high 1.3 2 high 2 4 high<br />

3 4 high 1.3 2<br />

good<br />

high<br />

2 4 high<br />

[1] F<strong>in</strong>nish types: small <strong>and</strong> medium size clear lakes or (Sierramjärvi) North-Lapl<strong>and</strong> lakes.<br />

[2] All lakes forest zone calcium-poor clear water (L-N5) type<br />

[3] Ecotype for phytoplankton: Northl<strong>and</strong> clear lakes.<br />

Gardsjøen<br />

Holmvatnet<br />

Rabbvatnet<br />

Durvatn<br />

average<br />

0 10 20 30 40 50 60<br />

6<br />

4<br />

5<br />

7<br />

5,5<br />

Lampi 222<br />

Harrijärvi<br />

Pitkä-Surnujärvi<br />

Sierramjärvi<br />

average<br />

6<br />

12<br />

13<br />

12<br />

17<br />

Shuonijaur<br />

Ala-Nautsijarvi<br />

Toartesjaur<br />

Virtuovoshjaur<br />

Riuttikjaure<br />

Kochejaur<br />

average<br />

11<br />

16<br />

20<br />

19<br />

31<br />

24,5<br />

50<br />

Jarfjord Vätsäri <strong>Russia</strong><br />

Figure 1. The number <strong>of</strong> phytoplankton species <strong>in</strong> each lake <strong>and</strong> <strong>the</strong> regional<br />

averages.<br />

33


5 Periphytic diatoms<br />

Diatom communities have been traditionally studied<br />

<strong>in</strong> rivers <strong>and</strong> <strong>the</strong>re are only few metrics that apply to<br />

lake littoral habitats. Here diatom communities were<br />

assessed us<strong>in</strong>g Diatom Assessment <strong>of</strong> Lake Ecological<br />

Status (DALES) for nutrient level, saprobity <strong>in</strong>dex<br />

for organic pollution <strong>and</strong> community metrics for general<br />

quality. The material <strong>in</strong>cludes Chapter 4 lake data.<br />

Results <strong>and</strong> discussion<br />

Diversity<br />

Diatom species diversity <strong>and</strong> <strong>the</strong>ir relative abundances<br />

were estimated with Shannon entropy (Shannon<br />

& Weaver 1962) (Table 1). The <strong>in</strong>dex value <strong>in</strong>creases<br />

with both species number <strong>and</strong> grow<strong>in</strong>g equality <strong>in</strong><br />

abundance. Evenness value is derived from <strong>the</strong> <strong>in</strong>dex<br />

to illustrate how evenly <strong>the</strong> species are distributed.<br />

The results between <strong>the</strong> three regions were compared<br />

us<strong>in</strong>g a non-parametric Kruskal-Wallis test.<br />

Species diversity is used <strong>in</strong> ecological assessment,<br />

but <strong>the</strong>y are not among <strong>the</strong> nor<strong>the</strong>rn Water Framework<br />

Directive classification tools. Based on water<br />

quality analysis (See Chapter 4, Water quality), Vätsäri<br />

lakes represent <strong>the</strong> most undisturbed small lakes<br />

<strong>and</strong> Jarfjord lakes represent slightly polluted, small,<br />

clear water lakes <strong>in</strong> <strong>the</strong> same region. Pollution impact<br />

was expected to show <strong>in</strong> lower diversity <strong>in</strong> Jarfjord.<br />

Due to <strong>the</strong>ir more sou<strong>the</strong>rn location <strong>and</strong> greater size<br />

<strong>the</strong> <strong>Russia</strong>n lakes are expected represent ecologically<br />

divergent lake types with more species.<br />

Species richness <strong>and</strong> diversity <strong>in</strong> <strong>the</strong> diatom<br />

samples was <strong>the</strong> highest <strong>in</strong> Vätsäri area <strong>and</strong> lowest<br />

<strong>in</strong> Jarfjord, with regional average <strong>of</strong> 60 <strong>and</strong> 28 spp.<br />

respectively. The difference is statistically significant<br />

(Kruskal-Wallis, p = 0.05). The number <strong>of</strong> species <strong>in</strong><br />

<strong>Russia</strong>n lakes varied widely from 22 to 56, be<strong>in</strong>g 40<br />

Table 1. Number <strong>of</strong> diatom species, Shannon entropy <strong>and</strong> evenness<br />

value for each lake calculated from diatom species. For<br />

Vätsäri lakes values are averages <strong>of</strong> 2–3 sampl<strong>in</strong>g stations.<br />

No. <strong>of</strong> species Shannon Evenness<br />

Vätsäri<br />

Lampi 222 50.7 2.98 0.76<br />

Harrijärvi 37.5 2.51 0.69<br />

Pitkä-Surnujärvi 83.3 3.54 0.8<br />

Sierramjärvi 67.0 3.08 0.73<br />

Average 59.6 3.00 0.75<br />

<strong>Russia</strong><br />

Shuonijaur 22 1.54 0.5<br />

Ala-Nautsijarvi 30 3.03 0.89<br />

Toartesjaur 46 3.18 0.83<br />

Virtuovoshjaur 46 2.82 0.74<br />

Riuttikjaure 56 3.58 0.89<br />

Average 40.0 2.83 0.77<br />

Jarfjord<br />

Gardsjøen 23 2.08 0.66<br />

Holmvatnet 22 2.34 0.76<br />

Rabbvatnet 31 2.7 0.79<br />

Durvatn 34 2.97 0.84<br />

Average 27.5 2.5 0.76<br />

34


on average. Shannon entropy or evenness was not<br />

significantly different between <strong>the</strong> three areas.<br />

Diatom Assessment <strong>of</strong> Lake Ecological status<br />

DALES <strong>in</strong>dex was developed <strong>in</strong> <strong>the</strong> UK for lake diatom<br />

community assessment. It is an average score per<br />

taxa method <strong>in</strong> terms <strong>of</strong> eutrophication impact. The<br />

sample taxa were mostly found among <strong>the</strong> UKTAG<br />

(2008) list <strong>of</strong> species or genuses. In case species level<br />

was not found <strong>the</strong> genus alone was used. Genera<br />

that weren’t listed were ignored <strong>in</strong> calculation.<br />

The reference <strong>in</strong>dex value for low alkal<strong>in</strong>ity water<br />

(0.8) (Table<br />

2). The <strong>in</strong>dex values somewhat reflected <strong>the</strong> water<br />

quality: <strong>the</strong> values were highest <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn lakes,<br />

which are more humic <strong>and</strong> higher <strong>in</strong> nutrients. The difference<br />

was due to higher proportion <strong>of</strong> Nitzschia <strong>and</strong><br />

certa<strong>in</strong> Gomphonema <strong>and</strong> Navicula species. Fragilaria<br />

on genus level gives high score compared to some<br />

<strong>in</strong>dividual species <strong>in</strong> <strong>the</strong> genus, <strong>and</strong> so hav<strong>in</strong>g many<br />

Fragilaria sp. <strong>in</strong> <strong>the</strong> data also raises <strong>the</strong> <strong>in</strong>dex value.<br />

Saprobic <strong>in</strong>dex<br />

Sladecek (1973) saprobic <strong>in</strong>dex resulted oligosaprobic<br />

level <strong>and</strong> clean water quality class for majority <strong>of</strong><br />

lakes (Table 3). Shuonijaur diatom community was<br />

found to be mesosaprobic <strong>and</strong> it exceeded <strong>the</strong> <strong>Russia</strong>n<br />

st<strong>and</strong>ard limit for clean water class with two o<strong>the</strong>r<br />

lakes.<br />

Table 2. DALES <strong>in</strong>dex values, <strong>the</strong>ir respective ecological quality<br />

ratios (EQR) <strong>and</strong> mean 2012-2013 total phosphorus content<br />

for each lake. Aga<strong>in</strong>st <strong>the</strong> reference value (20) <strong>and</strong> high/good<br />

threshold (36), all results represent high status.<br />

DALES Class P tot. mean (µg/l)<br />

Vätsäri<br />

Lampi 222 14<br />

2.0<br />

Harrijärvi 6 2.3<br />

high<br />

Pitkä-Surnujärvi 20 4.0<br />

Sierramjärvi 26 3.8<br />

<strong>Russia</strong><br />

Shuonijaur 26<br />

4.8<br />

Ala-Nautsijarvi 27 3.0<br />

Toartesjaur 28 high<br />

7.5<br />

Virtuovoshjaur 21 8.5<br />

Riuttikjaure 36 7.0<br />

Jarfjord<br />

Gardsjøen 20<br />

Holmvatnet 12<br />

Rabbvatnet 19<br />

high<br />

Durvatn 23<br />

Table 3. Diatom periphyton <strong>in</strong>ferred water quality estimation by<br />

<strong>the</strong> saprobic <strong>in</strong>dex (S), <strong>the</strong> consequent saprobic level <strong>and</strong> <strong>the</strong><br />

<strong>Russia</strong>n st<strong>and</strong>ard water quality class (II clean; III moderately<br />

polluted).<br />

S Saprobic level Class<br />

Vätsäri<br />

Lampi 222 1.16 α-oligosaprobic II<br />

Harrijärvi 1.25 α-oligosaprobic II<br />

Pitkä Surnujärvi 1.22 α-oligosaprobic II<br />

Sierramjärvi 1.44 α-oligosaprobic II<br />

<strong>Russia</strong><br />

Shuonijaur 1.63 β-mesosaprobic III<br />

Ala-Nautsijarvi 1.57 α-oligosaprobic III<br />

Toartesjaur 1.46 α-oligosaprobic II<br />

Virtuovoshjaur 1.39 α-oligosaprobic II<br />

Riuttikjaure 1.42 α-oligosaprobic II<br />

Jarfjord<br />

Gardsjoen 1.55 α-oligosaprobic III<br />

Holmvatn 1.34 α-oligosaprobic II<br />

Rabbvatn 1.45 α-oligosaprobic II<br />

Durvatn 1.22 α-oligosaprobic II<br />

35


pH reconstruction by diatom analysis<br />

Diatom communities can be used <strong>in</strong> estimation <strong>of</strong> <strong>the</strong>ir<br />

environment pH with method by Moiseenko & Razumovskii<br />

(2009). The results come close to measured<br />

pH values which represent neutral water (Table 4).<br />

This supports <strong>the</strong> assumption that recently measured<br />

pH values represent <strong>the</strong> prevail<strong>in</strong>g long-term level <strong>in</strong><br />

<strong>the</strong> lakes.<br />

Community <strong>in</strong>dices<br />

F<strong>in</strong>nish classification <strong>of</strong> type-specific species <strong>and</strong> percent<br />

model aff<strong>in</strong>ity give variable results (Table 5). The<br />

<strong>in</strong>dices are currently based on ra<strong>the</strong>r small reference<br />

lake data which most likely expla<strong>in</strong>s <strong>the</strong> moderately<br />

low results: <strong>the</strong> studied lakes are not affected by any<br />

large scale impact <strong>and</strong> <strong>the</strong>refore <strong>the</strong> results should <strong>in</strong>dicate<br />

at least good status class. The larger lakes (><br />

5 km) were not classified for <strong>the</strong> lack <strong>of</strong> representative<br />

reference data.<br />

Conclusions<br />

DALES <strong>in</strong>dex seemed to have an approximate reaction<br />

to nutrient level. Index taxa did not perfectly match<br />

<strong>the</strong> nor<strong>the</strong>rn taxonomic composition <strong>and</strong> some species<br />

had to be dropped out or listed on genus level<br />

which caused unwanted variation to <strong>in</strong>dex values.<br />

Saprobic <strong>in</strong>dex gave reasonable results <strong>in</strong> primarily<br />

po<strong>in</strong>t<strong>in</strong>g out <strong>the</strong> one mesosaprobic lake. Lakes <strong>in</strong> Vätsäri<br />

<strong>and</strong> Jarfjord were found to be oligosaprobic, as<br />

expected. Diatom community as pH estimator proved<br />

to be an accurate <strong>in</strong>dicator <strong>of</strong> cation-anion balance.<br />

The data was scarce both spatially <strong>and</strong> temporally,<br />

consist<strong>in</strong>g <strong>of</strong> only 4–5 lakes per area <strong>and</strong> only one<br />

diatom sample from most <strong>of</strong> <strong>the</strong>m. There were also<br />

some differences <strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g efforts between <strong>the</strong><br />

regions <strong>and</strong> also <strong>in</strong> <strong>the</strong> regional catchment properties<br />

that were not controlled <strong>in</strong> <strong>the</strong> study. All this may contribute<br />

to <strong>the</strong> observed diversity results. Never<strong>the</strong>less,<br />

changes <strong>in</strong> species richness would be a straightforward<br />

ecological metric easy to monitor <strong>in</strong> <strong>the</strong> future.<br />

Table 4. The diatom-<strong>in</strong>ferred pH <strong>and</strong> chemical measured pH for<br />

<strong>the</strong> <strong>in</strong>vestigated lakes. Vätsäri lake values are averages from<br />

three parallel samples.<br />

Table 5. Average ecological quality ratio (EQR) <strong>of</strong> <strong>the</strong> F<strong>in</strong>nish<br />

type-specific species <strong>and</strong> percent model aff<strong>in</strong>ity metrics. Results<br />

vary from 0.4 < moderate > 0.6 to 0.6 < good > 0.8.<br />

Lake pH (diatom) pH (chemical)<br />

FI type<br />

Class (EQR)<br />

Vätsäri<br />

Lampi 222 6.8 6.7<br />

Harrijärvi 6.7 6.7<br />

Pitkä Surnujärvi 6.9 6.7<br />

Sierramjärvi 7.0 6.8<br />

<strong>Russia</strong><br />

Shuonijaut 6.8 6.8<br />

Ala-Nautsijarvi 7.3 7.0<br />

Toartesjaur 7.0 6.9<br />

Virtuovoshjaur 7.0 6.9<br />

Riuttikjaure 7.2 7.1<br />

Jarfjord<br />

Gardsjoen 6.9 6.8<br />

Holmvatn 6.9 6.8<br />

Rabbvatn 7.0 7.0<br />

Durvatn 7.0 7.0<br />

Vätsäri<br />

Lampi 222 6.1 good (0.6)<br />

Harrijärvi 6.1 good (0.6)<br />

Pitkä-Surnujärvi 6.1 good (0.6)<br />

Sierramjärvi 1 good (0.6)<br />

<strong>Russia</strong><br />

Shuonijaur - -<br />

Ala-Nautsijarvi - -<br />

Toartesjaur 6.1 good (0.6)<br />

Virtuovoshjaur 6.1 moderate (0.5)<br />

Riuttikjaure 6.1 good (0.6)<br />

Jarfjord<br />

Gardsjøen 6.1 good (0.6)<br />

Holmvatnet 1 moderate (0.5)<br />

Rabvatn 6.1 moderate (0.4)<br />

Durvatn 1 moderate (0.5)<br />

36


6 Zoobenthos<br />

Benthic macro<strong>in</strong>vertebrate metrics for biological classification<br />

are studied here as <strong>the</strong>y are considered <strong>in</strong><br />

<strong>the</strong> F<strong>in</strong>nish, Norwegian <strong>and</strong> Swedish classifications<br />

<strong>and</strong> <strong>Russia</strong>n st<strong>and</strong>ards. F<strong>in</strong>nish <strong>and</strong> Swedish <strong>in</strong>dices<br />

are primarily community <strong>in</strong>dices. The Norwegian approach<br />

is to detect <strong>the</strong> ma<strong>in</strong> impact <strong>and</strong> use relevant<br />

metrics. Here acidification <strong>and</strong> chemical pollution are<br />

considered <strong>the</strong> pr<strong>in</strong>cipal impacts. Swedish <strong>and</strong> Norwegian<br />

systems apply additional multimetric <strong>in</strong>dices<br />

that were not possible to calculate by h<strong>and</strong>.<br />

In addition to <strong>the</strong> small lakes zoobenthos data from<br />

lakes <strong>in</strong> <strong>the</strong> Pasvik River was collected. Lake Kuetsjarvi<br />

<strong>and</strong> Vaggatem results are <strong>in</strong>cluded here to create<br />

a gradient <strong>in</strong> terms <strong>of</strong> <strong>in</strong>dustrial pollution.<br />

Littoral data was collected us<strong>in</strong>g a kick-net (mesh<br />

size 0.5 mm) with total <strong>of</strong> 1.5–2 m<strong>in</strong>utes <strong>of</strong> sampl<strong>in</strong>g.<br />

Pr<strong>of</strong>undal samples are collected with 2–5 Ekman grab<br />

samples. Data sampl<strong>in</strong>g details are available <strong>in</strong> <strong>the</strong><br />

publication Ylikörkkö et al. (2015).<br />

Results <strong>and</strong> discussion<br />

Community metrics<br />

The F<strong>in</strong>nish littoral <strong>in</strong>dices, type-specific species <strong>and</strong><br />

percent model aff<strong>in</strong>ity (PMA), lack reference data for<br />

clear nor<strong>the</strong>rn lakes where taxa is scarce. The <strong>in</strong>dices<br />

use more sou<strong>the</strong>rn data as comparison, result<strong>in</strong>g <strong>in</strong><br />

falsely poor <strong>and</strong> bad values for both littoral <strong>in</strong>dices.<br />

For this reason <strong>the</strong> littoral results will not be considered<br />

fur<strong>the</strong>r.<br />

The pr<strong>of</strong>undal samples had very few <strong>in</strong>dividuals,<br />

especially <strong>in</strong> Jarfjord <strong>and</strong> Vätsäri. The above mentioned<br />

weakness was also apparent <strong>in</strong> pr<strong>of</strong>undal PMA,<br />

which yielded low results (Table 1). Some lakes had<br />

so few taxa that PMA would have been 0, which is<br />

not a useful result. Pr<strong>of</strong>undal Invertebrate Community<br />

Metric (PICM) requires certa<strong>in</strong> <strong>in</strong>dicator Chironomidae<br />

<strong>and</strong> Oligochaeta on species level to assess benthos<br />

status. PICM species were not found <strong>in</strong> half <strong>of</strong> <strong>the</strong> lakes.<br />

This is likely because <strong>of</strong> extremely low density<br />

<strong>of</strong> <strong>in</strong>vertebrates <strong>in</strong> <strong>the</strong> studied lakes <strong>and</strong> not because<br />

<strong>of</strong> true oxygen depletion. When <strong>the</strong>re were <strong>in</strong>dicator<br />

species for PICM calculation, <strong>the</strong> presence <strong>of</strong> relatively<br />

sensitive Sergentia <strong>and</strong> Cladotanytarsus resulted<br />

<strong>in</strong> high <strong>in</strong>dex values <strong>and</strong> high status class (Table 1).<br />

Swedish average score per taxon (ASPT) method<br />

measures littoral ecological quality through taxa <strong>in</strong>dicator<br />

values <strong>in</strong> relation to pollution (Naturvårdsverket<br />

2007). The <strong>in</strong>dex value is an average <strong>of</strong> all <strong>in</strong>dicator<br />

taxa. It also describes <strong>the</strong> community diversity,<br />

namely <strong>the</strong> proportion <strong>of</strong> resilient Chironomidae <strong>and</strong><br />

Oligochaeta to <strong>the</strong> more sensitive mayflies (Ephemeroptera),<br />

caddisflies (Trichoptera), stoneflies (Plecoptera),<br />

etc. The higher <strong>the</strong> score <strong>the</strong> more sensitive<br />

species it holds. The Swedish <strong>in</strong>dices use regional<br />

reference states based on Illies’ ecoregions <strong>and</strong> <strong>the</strong><br />

studied lakes belong to ‘boreal upl<strong>and</strong>’.<br />

The results from APST vary from moderate to high<br />

(Table 2). There is no evident explanation for moderate<br />

results, o<strong>the</strong>r than low distribution <strong>of</strong> fauna. There<br />

is a wide variance <strong>in</strong> <strong>the</strong> results even <strong>in</strong> <strong>the</strong> reference<br />

lakes, which shows <strong>in</strong> lowered class boundaries. Likely<br />

<strong>the</strong> reference data does not suit well <strong>the</strong> nor<strong>the</strong>rnmost<br />

lakes.<br />

Benthic quality <strong>in</strong>dex (BQI) is <strong>the</strong> Swedish pr<strong>of</strong>undal<br />

metric. The <strong>in</strong>dex is an average score per taxon<br />

method for Chironomidae species <strong>in</strong> terms <strong>of</strong> <strong>the</strong>ir tolerance<br />

to oxygen depletion.<br />

For most lakes <strong>the</strong>re were no <strong>in</strong>dicator species<br />

identified <strong>and</strong> thus no material to calculate <strong>the</strong> <strong>in</strong>dex<br />

from. There was mostly one or at most two <strong>in</strong>dicator<br />

species <strong>in</strong> pr<strong>of</strong>undal samples that enabled <strong>in</strong>dex<br />

calculation. Results <strong>in</strong>dicate ma<strong>in</strong>ly good status class<br />

(Table 3). In Harrijärvi <strong>the</strong> presence <strong>of</strong> Chironomus<br />

plumosus dropped <strong>the</strong> status to poor. As <strong>the</strong>re were<br />

very few taxa small differences <strong>in</strong> <strong>the</strong> community reflected<br />

as drastic changes <strong>in</strong> <strong>the</strong> <strong>in</strong>dex value. In addition,<br />

<strong>the</strong> class limit values were set higher than usually,<br />

requir<strong>in</strong>g more than 70 % <strong>of</strong> <strong>the</strong> reference value<br />

to reach good status.<br />

37


Table 1. The F<strong>in</strong>nish lake type, pr<strong>of</strong>undal PMA <strong>and</strong> PICM status classes. The <strong>in</strong>dex could not<br />

be used if <strong>in</strong>dicator taxa for PICM calculation was not present.<br />

FI Type PMA PICM F<strong>in</strong>al status<br />

Vätsäri<br />

Lampi222 6.1 - no taxa -<br />

Harrijärvi 6.1 Good Good Good<br />

Pitkä-Surnujärvi 6.1 Good no taxa Good<br />

Sierramjärvi 1 - High High<br />

<strong>Russia</strong><br />

Shuonijaur 6.1 High High High<br />

Ala-Nautsijarvi 6.1 Good High High<br />

Toartesjaur 6.1 Moderate High High<br />

Virtuovoshjaur 6.1 - no taxa<br />

Riuttikjaur 6.1 Poor High High<br />

Kochejaur 6.1 - no taxa -<br />

<strong>the</strong> Pasvik River<br />

Vaggatem 7.1 - no taxa -<br />

Kuetsjarvi 6.1 Good High High<br />

Jarfjord<br />

Gardsjøen 6.1 High High High<br />

Holmvatnet 1 - no taxa -<br />

Rabbvatnet 6.1 Moderate High High<br />

Durvatn 1 - no taxa -<br />

Table 2. The average score per taxon (ASPT) value <strong>and</strong> <strong>the</strong><br />

correspond<strong>in</strong>g status class. Reference value for ‘boreal upl<strong>and</strong>’<br />

is 5.6. The status class boundaries are set lower than usually:<br />

high/good threshold 3.36 (60 % <strong>of</strong> <strong>the</strong> reference).<br />

ASPT<br />

Class<br />

Vätsäri<br />

Lampi222 3.5 High<br />

Harrijärvi 1.9 Moderate<br />

Pitkä-Surnujärvi 2.5 Moderate<br />

Sierramjärvi 2.8 Good<br />

<strong>Russia</strong><br />

Shuonijaur 4.4 Good<br />

Ala-Nautsijarvi 3 Good<br />

Toartesjaur 2.9 Good<br />

Virtuovoshjaur 4.8 High<br />

Riuttikjaure 5.7 High<br />

Kochejaur 4.4 Good<br />

<strong>the</strong> Pasvik River<br />

Vaggatem 2.9 Good<br />

Kuetsjarvi 2.7 Good<br />

Jarfjord<br />

Gardsjøen 2.1 Moderate<br />

Holmvatnet 5.3 High<br />

Rabbvatnet 2.7 Good<br />

Durvatn 6.1 High<br />

Table 3. Benthic quality <strong>in</strong>dex (BQI) value <strong>and</strong> <strong>the</strong> correspond<strong>in</strong>g<br />

status class. The reference value for ‘boreal upl<strong>and</strong>’ is<br />

3.25. The class limit values are set higher than usually: high/<br />

good threshold 3.1, good/moderate threshold 2.28 (70 % <strong>of</strong> <strong>the</strong><br />

reference).<br />

Vätsäri<br />

BQI<br />

Class<br />

Harrijärvi 1 Poor<br />

Sierramjärvi 3 Good<br />

<strong>Russia</strong> <strong>and</strong> <strong>the</strong> Pasvik River<br />

Shuonijaur 3 Good<br />

Kuetsjarvi 3 Good<br />

Jarfjord<br />

Gardsjøen 3 Good<br />

Holmvatnet 3 Good<br />

38


Index for acidification<br />

Norwegian ‘Raddum’ <strong>in</strong>dex for acidification measures<br />

<strong>the</strong> presence <strong>of</strong> <strong>in</strong>dicator taxa <strong>in</strong> <strong>the</strong> littoral zoobenthos<br />

community (Direktoratsgruppa 2009). It is<br />

based on a list <strong>of</strong> <strong>in</strong>dicator values from 0 to 1 for certa<strong>in</strong><br />

taxa. Observed taxa are given scores <strong>and</strong> simply<br />

<strong>the</strong> highest score i.e. <strong>the</strong> most sensitive species makes<br />

<strong>the</strong> <strong>in</strong>dex value. Taxa that were not found <strong>in</strong> reference<br />

list were excluded.<br />

The <strong>in</strong>dex results vary from no impact (1) to moderately<br />

(0.5) <strong>and</strong> strongly acidified (0.25) (Table 4).<br />

There were three lakes where <strong>the</strong> only <strong>in</strong>dicator species<br />

were tolerant <strong>and</strong> so <strong>the</strong> results <strong>in</strong>dicate severe<br />

acidification (0). However, water quality <strong>in</strong> any <strong>of</strong> <strong>the</strong><br />

lakes does not support noticeable acidification. The<br />

difference between <strong>in</strong>dex values 1 <strong>and</strong> 0 was made <strong>in</strong><br />

many cases by a s<strong>in</strong>gle species, e.g. just one <strong>in</strong>dividual<br />

<strong>of</strong> Gammarus <strong>in</strong> <strong>the</strong> sample. Evidently <strong>the</strong> <strong>in</strong>dex<br />

was worsened by naturally low diversity <strong>and</strong> density <strong>of</strong><br />

benthic fauna. The <strong>in</strong>dex does show consistently low<br />

values <strong>in</strong> Jarfjord, where acidification has been observed<br />

<strong>in</strong> o<strong>the</strong>r lakes (Puro-Tahvana<strong>in</strong>en et al. 2011;<br />

Chapter 4 Water quality). So far it cannot be ruled out<br />

that benthic communities <strong>in</strong> <strong>the</strong> studied lakes haven’t<br />

suffered from acidic deposition.<br />

Accord<strong>in</strong>g to <strong>the</strong> Norwegian classification <strong>the</strong><br />

amphipod Gammarus species are used as an <strong>in</strong>dicator<br />

<strong>of</strong> good status class (Direktoratsgruppa 2009).<br />

They are considered sensitive especially to acidification.<br />

In <strong>the</strong> studied lakes Gammarus lacustris was<br />

found <strong>in</strong> lakes Sierramjärvi <strong>and</strong> Lampi 222 <strong>in</strong> Vätsäri.<br />

Index for organic pollution<br />

Woodiwiss <strong>in</strong>dex, or so called ‘Trend Biotic Index’<br />

(Woodiwiss 1964), is a st<strong>and</strong>ard tool <strong>in</strong> <strong>Russia</strong> to<br />

analyse littoral zoobenthos communities <strong>in</strong> terms<br />

<strong>of</strong> organic pollution impact. The <strong>in</strong>dex is based on<br />

<strong>the</strong> presence or absence <strong>of</strong> key taxonomic groups:<br />

Ephemeroptera, Plecoptera, Trichopera, Asellus sp.<br />

etc. Taxa abundances are not considered. The <strong>in</strong>dex<br />

value decreases from 10 to 0 towards pollution.<br />

The results <strong>in</strong>dicate ma<strong>in</strong>ly clean (>7) status (Table<br />

5). Shuonijaur, Kuetsjarvi <strong>and</strong> Vaggatem yielded<br />

slightly deteriorated values (6–7). The result is sensible<br />

as <strong>the</strong>se lakes lie closest to pollution sources <strong>of</strong><br />

<strong>the</strong> Pechenganikel. Certa<strong>in</strong> Jarfjord lakes yield <strong>the</strong> lowest<br />

values (3–4), which is a result <strong>of</strong> fewer key taxa.<br />

Table 4. The Raddum <strong>in</strong>dex for acidification values for <strong>the</strong><br />

studied lakes. 1 <strong>in</strong>dicates no acidification, 0.5 moderate, 0.25<br />

strong <strong>and</strong> 0 <strong>the</strong> most severe acidification.<br />

Raddum value<br />

Vätsäri<br />

Lampi222 1<br />

Harrijärvi 0<br />

Pitkä-Surnujärvi 1<br />

Sierramjärvi 1<br />

<strong>Russia</strong><br />

Shuonijaur 1<br />

Ala-Nautsijarvi 1<br />

Toartesjaur 1<br />

Virtuovoshjaur 1<br />

Riuttikjaure 1<br />

Kochejaur 1<br />

<strong>the</strong> Pasvik River<br />

Vaggatem 1<br />

Kuetsjarvi 1<br />

Jarfjord<br />

Gardsjøen 0.25<br />

Holmvatnet 0<br />

Rabbvatnet 0.5<br />

Durvatn 0<br />

Table 5. The Woodiwiss/Trend Biotic Index <strong>and</strong> <strong>the</strong> correspond<strong>in</strong>g<br />

status for <strong>the</strong> studied lakes littoral data (I: clean, II: clean,<br />

III: moderately polluted).<br />

Woodiwiss<br />

Status<br />

Vätsäri<br />

Lampi222 9 I<br />

Harrijärvi 9 I<br />

Pitkä-Surnujärvi 9 I<br />

Sierramjärvi 9 I<br />

<strong>Russia</strong><br />

Shuonijaur 7 II<br />

Ala-Nautsijarvi 8 I<br />

Toartesjaur 8 I<br />

Virtuovoshjaur 10 I<br />

Riuttikjaure 8 I<br />

Kochejaur 10 I<br />

<strong>the</strong> Pasvik River<br />

Vaggatem 7 II<br />

Kuetsjarvi 6–7 II<br />

Jarfjord<br />

Gardsjøen 3 III<br />

Holmvatnet 4 III<br />

Rabbvatnet 8 I<br />

Durvatn 6 II<br />

39


Table 6. The number <strong>of</strong> families <strong>and</strong> <strong>the</strong> number <strong>of</strong> EPT families<br />

<strong>in</strong> <strong>the</strong> studied lakes’ littoral data.<br />

Families<br />

EPT-families<br />

Vätsäri<br />

Lampi 222 11 2<br />

Harrijärvi 10 4<br />

Pitkä-Surnujärvi 12 5<br />

Sierramjärvi 16 6<br />

Average 12.3 4.3<br />

<strong>Russia</strong><br />

Shuonijaur 8 2<br />

Ala-Nautsijarvi 11 3<br />

Toartesjaur 10 5<br />

Virtuovoshjaur 13 6<br />

Riuttikjaure 10 5<br />

Kochejaur 18 9<br />

Average 11.7 5<br />

<strong>the</strong> Pasvik River<br />

Vaggatem 6 0<br />

Kuetsjarvi 11 5<br />

Jarfjord<br />

Gardsjøen 4 0<br />

Holmvatnet 3 1<br />

Rabbvatnet 8 5<br />

Durvatn 9 4<br />

Average 6.0 2.5<br />

Number <strong>of</strong> families <strong>and</strong> EPT-families<br />

Number <strong>of</strong> families <strong>in</strong> littoral <strong>and</strong> riparian zones is a<br />

metric <strong>in</strong> <strong>the</strong> Canadian zoobenthos assessment. The<br />

number <strong>of</strong> Ephemeroptera, Plecoptera <strong>and</strong> Trichoptera<br />

(EPT) families toge<strong>the</strong>r is a widely used parameter<br />

<strong>in</strong> Canada <strong>and</strong> also as part <strong>of</strong> Swedish multimetric<br />

zoobenthos <strong>in</strong>dex ‘MILA’. The parameters are only<br />

used as a part <strong>of</strong> greater entity or multimetric <strong>in</strong>dex<br />

<strong>and</strong> <strong>the</strong>re are no reference values available. Never<strong>the</strong>less,<br />

<strong>the</strong> number <strong>of</strong> families <strong>and</strong> <strong>the</strong> number <strong>of</strong> EPT<br />

families <strong>in</strong> littoral samples are studied here. Expectations<br />

were similar to those for periphyton diversity:<br />

pollution-affected Jarfjord area ought to express lower<br />

family diversities.<br />

The only notable difference <strong>in</strong> family diversity between<br />

<strong>the</strong> areas was <strong>in</strong>deed lower number <strong>of</strong> all families<br />

<strong>in</strong> Jarfjord (Table 6). On average <strong>the</strong>re were 6<br />

families, <strong>in</strong> comparison to 12 families both <strong>in</strong> Vätsäri<br />

<strong>and</strong> <strong>the</strong> <strong>Russia</strong>n lakes. The difference was statistically<br />

close to significant (p=0.06, Kruskal-Wallis). In Jarfjord<br />

<strong>the</strong> number <strong>of</strong> EPT families was also lower, but<br />

<strong>the</strong>re was no statistical significance between <strong>the</strong> areas<br />

(p=0.38, Kruskal-Wallis).<br />

In <strong>the</strong> Pasvik River littoral family diversity was ra<strong>the</strong>r<br />

low <strong>in</strong> Vaggatem. The location is prone to several<br />

factors that add up to <strong>the</strong> result, <strong>in</strong>clud<strong>in</strong>g water level<br />

regulation <strong>and</strong> slight pollution. Effects <strong>of</strong> water level<br />

regulation on littoral benthos have been studied <strong>in</strong> Keto<br />

et al. (2008), where <strong>the</strong> decl<strong>in</strong>e <strong>in</strong> Ephemeroptera<br />

<strong>and</strong> Trichoptera taxa were observed to result from<br />

regulation. There were no EPT-families found <strong>in</strong> <strong>the</strong><br />

2013 samples <strong>in</strong> Vaggatem. Moderately polluted Lake<br />

Kuetsjarvi expressed fairly average results. However,<br />

<strong>the</strong>re are more nutrients <strong>in</strong> Kuetsjarvi (See Chapter 3<br />

Water quality) than <strong>in</strong> <strong>the</strong> o<strong>the</strong>r small lakes <strong>and</strong> thus<br />

it’s not completely comparable to <strong>the</strong>m.<br />

Conclusions<br />

Many <strong>of</strong> <strong>the</strong> ma<strong>the</strong>matical <strong>in</strong>dices proved to be prone<br />

to falsely low results due to low abundance <strong>of</strong> benthic<br />

fauna. This shows <strong>in</strong> large-scale drop <strong>in</strong> status with<br />

loss <strong>of</strong> just one species. At <strong>the</strong> moment, many <strong>of</strong> <strong>the</strong><br />

community <strong>in</strong>dices are too uncerta<strong>in</strong> to be applied <strong>in</strong><br />

status assessment.<br />

Ephemeroptera, Plecoptera <strong>and</strong> Trichoptera species<br />

are considered sensitive to acidification, pollution<br />

<strong>and</strong> water level regulation. The number <strong>of</strong> families <strong>and</strong><br />

EPT families are feasible diversity metrics that could<br />

be used <strong>in</strong> detect<strong>in</strong>g changes <strong>in</strong> time, presum<strong>in</strong>g <strong>the</strong><br />

sampl<strong>in</strong>g efforts are st<strong>and</strong>ardized. Similarly <strong>the</strong> Woodiwiss/Trend<br />

Biotic Index po<strong>in</strong>ted out <strong>the</strong> communities<br />

lack<strong>in</strong>g EPT <strong>in</strong>dicator species.<br />

40


References<br />

CCME. 2012: Canadian <strong>Environmental</strong> Guidel<strong>in</strong>es. Canadian Council <strong>of</strong> M<strong>in</strong>isters <strong>of</strong> <strong>the</strong> Environment. http://ceqg-rcqe.<br />

ccme.ca/ [accessed 1.11.2012].<br />

Direktoratsgruppa Vanndirektivet. 2009: Klassifiser<strong>in</strong>g av miljøtilst<strong>and</strong> i vann. Veileder 01:2009. (<strong>in</strong> Norwegian)<br />

Direktoratsgruppa Vanndirektivet. 2013 Klassifiser<strong>in</strong>g av miljøtilst<strong>and</strong> i vann. Veileder 02:2013. 181 p. (<strong>in</strong> Norwegian)<br />

Keto, A., Sutela, T., Aroviita, J., Tarva<strong>in</strong>en, A., Hämälä<strong>in</strong>en, H., Hellsten, S., Vehanen, T., Marttunen, M. 2008: Säännösteltyjen<br />

järvien ekologisen tilan arvio<strong>in</strong>ti. Suomen ympäristö 41/2008. 105 p. (<strong>in</strong> F<strong>in</strong>nish)<br />

Naturvårdsverket. 2007: Status, potential och kvalitetskrav för sjöar, vattendrag, kustvatten och vatten i övergångszon. En<br />

h<strong>and</strong>bok om hur kvalitetskrav i ytvattenförekomster kan bestämmas och följas upp. Naturvårdsverket. 2007:4. 66 p. (<strong>in</strong><br />

Swedish)<br />

Naturvårdsverket. 2008: Förslag till gränsvärden för särskilda föroren<strong>and</strong>e ämnen. Stöd till vattenmyndigheterna vid statusklassificer<strong>in</strong>g<br />

och fastställ<strong>and</strong>e av MKN. Swedish <strong>Environmental</strong> Protection Agency. Report 5799 (<strong>in</strong> Swedish)<br />

Meays, C. & Nordl<strong>in</strong>, R. 2013. Ambient Water Quality Guidel<strong>in</strong>es For Sulphate. Update April 2013. M<strong>in</strong>istry <strong>of</strong> Environment<br />

Prov<strong>in</strong>ce <strong>of</strong> British Columbia. 55 p. http://www.env.gov.bc.ca/wat/wq/BCguidel<strong>in</strong>es/sulphate/pdf/sulphate_f<strong>in</strong>al_guidel<strong>in</strong>e.<br />

pdf<br />

Mikkola, K. (FM) 2013: F<strong>in</strong>nish Forest Research Institute. Personal communication.<br />

Salm<strong>in</strong>en R. (ed.) 2005: Geochemical atlas <strong>of</strong> Europe. Part 1 Background <strong>in</strong>formation, methodology <strong>and</strong> maps. http://weppi.<br />

gtk.fi/publ/foregsatlas/ [accessed 3.3.2014]<br />

Shannon, C.E., Weaver, W. 1963: The ma<strong>the</strong>matical <strong>the</strong>ory <strong>of</strong> communication. University <strong>of</strong> Ill<strong>in</strong>ois Press, Urbana. 117 p.<br />

Sladecek, V. 1973: System <strong>of</strong> water quality from biological po<strong>in</strong>t <strong>of</strong> view. Archiv für Hydrobiologie – Beiheft Ergebnisse der<br />

Limnologie 7: 1–128.<br />

State <strong>of</strong> Alaska. 2012: Alaska Water Quality Criteria Manual for Toxic <strong>and</strong> O<strong>the</strong>r Deleterious Organic <strong>and</strong> Inorganic Substances.<br />

Department <strong>of</strong> <strong>Environmental</strong> conservation. 45 p.<br />

UKTAG. 2008: Proposals for environmental quality st<strong>and</strong>ards for VIII substances. UK Technical Advisory Group on <strong>the</strong><br />

Water Framework Directive. 92 p.<br />

UKTAG. 2008: UKTAG lake assessment methods macrophytes <strong>and</strong> phytobenthos, phytobenthos – diatom assessment <strong>of</strong><br />

lake ecological quality (DARLEQ). Water Framework Directive - United K<strong>in</strong>gdom Advisory Group. 19 p. http://www.wfduk.<br />

org/sites/default/files/Media/Characterisation%20<strong>of</strong>%20<strong>the</strong>%20water%20environment/Biological%20Method%20Statements/Lake%20phytobenthos.pdf<br />

USEPA. 2010: F<strong>in</strong>al Report on Acute <strong>and</strong> Chronic Toxicity <strong>of</strong> Nitrate, Nitrite, Boron, Manganese, Fluoride, Chloride <strong>and</strong><br />

Sulfate to Several Aquatic Animal Species. http://www.epa.gov/r5water/wqs5/pdfs/techdocs/FINAL%20Report%20EPA-<br />

905-R-10-002.pdf [accessed 3.3.2014]<br />

USEPA 2012: Water quality criteria. Aquatic life criteria. United States <strong>Environmental</strong> Protection Agency. http://water.epa.<br />

gov/scitech/swguidance/st<strong>and</strong>ards/criteria/aqlife/<strong>in</strong>dex.cfm [accessed 5.11.2012]<br />

Ylikörkkö, J., Christensen, G.N., Andersen, H.J., Denisov, D., Amundsen, P.-A., Terentjev, P., Jelkänen, E. (edit.) 2015: <strong>Environmental</strong><br />

Monitor<strong>in</strong>g Programme for Aquatic Ecosystems <strong>in</strong> <strong>the</strong> Norwegian, F<strong>in</strong>nish <strong>and</strong> <strong>Russia</strong>n <strong>Border</strong> <strong>Area</strong> – Updated<br />

Implementation Guidel<strong>in</strong>es<br />

Fix<strong>in</strong>g oxygen samples.<br />

Photo: Esko Jaskari<br />

41


42


Chapter 3: The ecological condition <strong>of</strong> <strong>the</strong><br />

Pasvik River <strong>and</strong> Lake Inarijärvi<br />

Macrophyte studies <strong>in</strong> Lake Muddusjärvi. Photo: Jukka Ylikörkkö<br />

43


1 Introduction<br />

The areas <strong>of</strong> <strong>in</strong>terest <strong>in</strong> Chapter 3 were Lake Inarijärvi,<br />

<strong>the</strong> Pasvik River <strong>and</strong> <strong>the</strong> major lakes <strong>in</strong> <strong>the</strong> Pasvik<br />

watercourse. The ecological status <strong>of</strong> Lake Inarijärvi<br />

<strong>and</strong> <strong>the</strong> Pasvik River were estimated by us<strong>in</strong>g def<strong>in</strong>ed<br />

<strong>in</strong>dicators sensitive for hydrological change <strong>in</strong>duced<br />

by climate change <strong>and</strong> water level regulation. The<br />

presence <strong>and</strong> amounts <strong>of</strong> contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> water,<br />

fish tissues <strong>and</strong> bottom sediments <strong>of</strong> <strong>the</strong> watercourse<br />

were determ<strong>in</strong>ed. The effects <strong>of</strong> climate change,<br />

contam<strong>in</strong>ants, water level regulation <strong>and</strong> species<br />

<strong>in</strong>troductions <strong>and</strong> <strong>in</strong>vasions <strong>in</strong> <strong>the</strong> Pasvik River were<br />

estimated by analyz<strong>in</strong>g a long time series <strong>of</strong> fish population<br />

<strong>in</strong> two ma<strong>in</strong> lakes.<br />

The water quality <strong>in</strong> <strong>the</strong> Pasvik area has been monitored<br />

for longer than biological <strong>in</strong>dicators <strong>of</strong> ecological<br />

status. The newest trends <strong>in</strong> water quality have<br />

been published <strong>in</strong> a separate report Pasvik Water<br />

Quality until 2013 (Ylikörkkö et al. 2014) which is a<br />

cont<strong>in</strong>uation <strong>of</strong> earlier reports <strong>of</strong> 2007 <strong>and</strong> 2011.<br />

The ma<strong>in</strong> reason for <strong>the</strong> monitor<strong>in</strong>g <strong>of</strong> <strong>the</strong> water<br />

quality <strong>in</strong> <strong>the</strong> Pasvik watercourse is <strong>the</strong> Pechenganikel<br />

copper-nickel smelter complex on <strong>the</strong> Kola Pen<strong>in</strong>sula.<br />

Lake Inarijärvi <strong>and</strong> <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> Pasvik<br />

River are affected ma<strong>in</strong>ly by low levels <strong>of</strong> atmospherically<br />

transported pollutants whereas <strong>the</strong> lower part <strong>in</strong><br />

<strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> comb<strong>in</strong>e <strong>and</strong> <strong>the</strong> areas downstream<br />

are affected by both direct waste water discharge <strong>and</strong><br />

atmospheric deposition. Along <strong>the</strong> Pasvik watercourse<br />

<strong>the</strong>re is also discharge <strong>of</strong> water from <strong>the</strong> Pasvik<br />

hydropower plant cascade. The issues tied to <strong>the</strong> hydropower<br />

stations <strong>in</strong>clude changes <strong>in</strong> <strong>the</strong> rivers’ regime<br />

resultant from construction <strong>of</strong> water reservoirs, upsett<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> natural water balance <strong>and</strong> impact on <strong>the</strong><br />

hydro-chemical regime <strong>of</strong> small rivers <strong>and</strong> <strong>the</strong>ir selfclean<strong>in</strong>g<br />

capacity.<br />

Lake Inarijärvi is situated <strong>in</strong> <strong>the</strong> upstream <strong>of</strong> <strong>the</strong><br />

Pasvik watercourse <strong>and</strong> is free <strong>of</strong> direct emissions<br />

from <strong>the</strong> Pechenganikel. There is some nutrient load<strong>in</strong>g<br />

from diffuse <strong>and</strong> po<strong>in</strong>t sources <strong>and</strong> <strong>the</strong> Pasvik<br />

River regulation <strong>in</strong>flicts moderate water level fluctuation.<br />

The water quality is excellent <strong>and</strong> <strong>the</strong> measured<br />

chemical <strong>in</strong>dicators have stayed on <strong>the</strong> same levels<br />

throughout <strong>the</strong> monitor<strong>in</strong>g programme.<br />

In <strong>the</strong> Pasvik River <strong>and</strong> <strong>the</strong> directly connected lakes<br />

<strong>the</strong> water monitor<strong>in</strong>g data <strong>of</strong> <strong>the</strong> observation period<br />

confirms certa<strong>in</strong> stabilization <strong>of</strong> <strong>the</strong> established<br />

hydro-chemical regime, pollutants’ concentrations <strong>and</strong><br />

pollution <strong>in</strong>dicators. Copper, nickel, <strong>and</strong> sulphates are<br />

<strong>the</strong> ma<strong>in</strong> pollutants <strong>of</strong> <strong>the</strong> bas<strong>in</strong>. The monitor<strong>in</strong>g data<br />

also shows that pollutants are brought <strong>in</strong>to <strong>the</strong> water<br />

bodies <strong>of</strong> <strong>the</strong> river bas<strong>in</strong> system both directly with<br />

wastewater <strong>and</strong> by way <strong>of</strong> long-range transboundary<br />

air transport. The most polluted water body <strong>in</strong> <strong>the</strong><br />

bas<strong>in</strong> is <strong>the</strong> Kolosjoki River where <strong>the</strong> Pechenganikel<br />

comb<strong>in</strong>e plant wastewater is discharged, as well<br />

as <strong>the</strong> stream connect<strong>in</strong>g <strong>the</strong> Lakes Salmijarvi <strong>and</strong><br />

Kuetsjarvi. The concentration <strong>of</strong> metals <strong>and</strong> sulphates<br />

<strong>in</strong> <strong>the</strong> water notably <strong>in</strong>creases downstream from<br />

Lake Kuetsjarvi. In Lake Kuetsjarvi <strong>the</strong> concentrations<br />

<strong>of</strong> copper <strong>and</strong> nickel are clearly elevated <strong>and</strong> have<br />

changed <strong>in</strong>significantly <strong>in</strong> <strong>the</strong> last years <strong>of</strong> <strong>the</strong> monitor<strong>in</strong>g<br />

period<br />

44


!( !(<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

!( !(<br />

!(<br />

!(<br />

!( !(<br />

!(<br />

!(<br />

Muddusjärvi<br />

Inari<br />

!(<br />

Nitsijärvi<br />

!(<br />

INARIJÄRVI<br />

!(<br />

!(<br />

!(<br />

!(<br />

Näätämö<br />

!(<br />

!(<br />

Vaggatem<br />

Tjerebukta<br />

Ruskebukta<br />

Rajakoski<br />

Hestefoss<br />

!(<br />

")<br />

!(<br />

River Pasvik<br />

")<br />

!( ")<br />

")<br />

!(<br />

!(<br />

!(<br />

!(<br />

Fuglebukta<br />

Langvatnet<br />

")<br />

Kirkenes<br />

")<br />

!(<br />

")<br />

!(<br />

!(<br />

Skrukkebukta !(<br />

Björnevatn<br />

Svanevatn<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

")<br />

")<br />

!(<br />

") !(<br />

!(<br />

!(<br />

!(<br />

Kuetsjarvi<br />

!(<br />

NIKEL<br />

!(<br />

!(<br />

!(<br />

!(<br />

Pechenga<br />

!(<br />

ZAPOLYARNY<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

Nellim<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

Ivalo<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

!(<br />

Figure 1. Map <strong>of</strong> <strong>the</strong> study area.<br />

!(<br />

!(<br />

0 50<br />

km<br />

© Maanmittauslaitos, lupa nro 7/MML/14<br />

!(<br />

!(<br />

!(<br />

!(<br />

Golfstream<br />

!(<br />

!(<br />

Beliy kamen<br />

!(<br />

Salmijarvi<br />

Kolosjoki<br />

!(<br />

Shuonijoki<br />

!(<br />

0 5<br />

km<br />

Figure 2. Map <strong>of</strong> <strong>the</strong> monitor<strong>in</strong>g stations <strong>of</strong> Lake Kuetsjarvi.<br />

© Karttakeskus Oy, Lupa L4659<br />

45


2 Climate change impacts on hydrology<br />

<strong>and</strong> water level fluctuation<br />

SEPPO HELLSTEN AND JUHA RIIHIMÄKI<br />

Climate change forecasts used <strong>in</strong> this study (see generally<br />

Veijala<strong>in</strong>en et al. 2012) estimate annual mean<br />

temperature <strong>in</strong> Lake Inarijärvi watershed to <strong>in</strong>crease<br />

3.6 °C <strong>in</strong> 2040–2069 compared to annual mean temperature<br />

dur<strong>in</strong>g 1971–2000 <strong>and</strong> <strong>in</strong>crease on mean<br />

w<strong>in</strong>ter temperature (December–February) is estimated<br />

to be 5.1 °C. Annual mean precipitation is estimated<br />

to <strong>in</strong>crease 12 % <strong>and</strong> w<strong>in</strong>ter mean precipitation 16<br />

%. These changes would affect also <strong>the</strong> yearly hydrological<br />

cycle alter<strong>in</strong>g tim<strong>in</strong>g <strong>of</strong> high <strong>and</strong> low water<br />

levels <strong>and</strong> discharges on lakes <strong>and</strong> rivers.<br />

The hydrological model, Watershed Simulation <strong>and</strong><br />

Forecast<strong>in</strong>g System (WSFS) (Vehvilä<strong>in</strong>en et al. 2005),<br />

was used to estimate climate change impacts on hydrology<br />

<strong>of</strong> <strong>the</strong> Pasvik River catchment (Figure 1). Climate<br />

chance scenario used was mean <strong>of</strong> 19 global<br />

climate models calculated by F<strong>in</strong>nish meteorological<br />

<strong>in</strong>stitute FMI (Jylhä et al. 2009) with emission scenario<br />

SRES A1B (IPCC 2000).<br />

Effects <strong>of</strong> climate change <strong>in</strong>duced changes on<br />

<strong>the</strong> Pasvik River hydrology <strong>and</strong> Lake Inarijärvi water<br />

levels were analyzed us<strong>in</strong>g DHRAM calculation programme<br />

on <strong>the</strong> Pasvik River <strong>and</strong> water-level fluctuation<br />

analysis tool (Regcel) on Lake Inarijärvi. Scenario<br />

period used <strong>in</strong> this study was 2040–2069 <strong>and</strong> reference<br />

period used was 1971–2000.<br />

Materials <strong>and</strong> methods<br />

Regcel model developed <strong>in</strong> <strong>the</strong> F<strong>in</strong>nish Environment<br />

Institute (SYKE) was used to enable assessment <strong>of</strong><br />

<strong>the</strong> ecological impacts <strong>of</strong> water-level regulation on<br />

aquatic macrophytes, benthic <strong>in</strong>vertebrates, fishes<br />

<strong>and</strong> nest<strong>in</strong>g <strong>of</strong> waterfowl. Indicators for Lake Inarijärvi<br />

were calculated for reference period 1971–2000 <strong>and</strong><br />

<strong>the</strong> average values <strong>of</strong> that period were compared to<br />

<strong>in</strong>dicators calculated for <strong>the</strong> scenario period 2040–<br />

2069.<br />

The Dundee Hydrological Regime Assessment<br />

Method (DHRAM) was used for water flow analysis.<br />

This approach compares differences between <strong>the</strong><br />

affected <strong>and</strong> unaffected flow data <strong>and</strong> is <strong>the</strong>refore<br />

descriptive. It resembles <strong>the</strong> Regcel application, but<br />

uses only discharge data without any measured biological<br />

response. The method assessess <strong>the</strong> degree<br />

<strong>of</strong> hydrological alteration, presum<strong>in</strong>g that <strong>the</strong> change<br />

is hav<strong>in</strong>g an ecologically harmful impact on naturally<br />

adapted biota. Discharge factors are divided <strong>in</strong>to<br />

five different groups, <strong>in</strong> which both mean value (A)<br />

<strong>and</strong> coefficients <strong>of</strong> variation (B) are used as <strong>in</strong>dicators.<br />

Comparisons between un-affected <strong>and</strong> affected<br />

situations are calculated as an absolute change (%).<br />

Hydrological change thresholds used for allocation <strong>of</strong><br />

Water level (m.a.s.l.)<br />

119,6<br />

119,4<br />

119,2<br />

119,0<br />

118,8<br />

118,6<br />

118,4<br />

118,2<br />

118,0<br />

117,8<br />

1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. 1.8. 1.9. 1.10. 1.11.1.12.<br />

Date<br />

MW 1971-2000 MW 2040-2069<br />

Discharge (m 3 /s)<br />

240<br />

0<br />

1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. 1.8. 1.9. 1.10. 1.11. 1.12.<br />

Date<br />

MQ 1971-2000 MQ 2040-2069<br />

Figure 1. Simulated water level fluctuations (left) <strong>and</strong> simulated discharges (right) for <strong>the</strong> reference period <strong>and</strong> <strong>the</strong> scenario period at Lake Inarijärvi.<br />

200<br />

160<br />

120<br />

80<br />

40<br />

46


f<strong>in</strong>al impact po<strong>in</strong>ts <strong>and</strong> <strong>the</strong> f<strong>in</strong>al impact classes can be<br />

found <strong>in</strong> Black et al. (2000).<br />

In our study DHRAM was applied to compare <strong>the</strong><br />

regulated water flow (reference period) <strong>in</strong> Kaitakoski<br />

(1970–2000) <strong>and</strong> simulated flow for climate change<br />

scenario (2040–2069).<br />

Results<br />

Regcel<br />

Results for <strong>the</strong> water level fluctuation <strong>in</strong>dicators <strong>of</strong><br />

Lake Inarijärvi are presented on Table 1. Simulated<br />

water levels have quite clear <strong>in</strong>fluence <strong>in</strong> some <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>dicators although <strong>the</strong>re are many <strong>in</strong>dicators where<br />

<strong>the</strong>re is no change or it is negligible.<br />

Magnitude <strong>of</strong> spr<strong>in</strong>g flood is an <strong>in</strong>dicator that describes<br />

“clean<strong>in</strong>g effect” <strong>of</strong> spr<strong>in</strong>g high water levels<br />

transport<strong>in</strong>g <strong>the</strong> dead organic material to upper shore<br />

areas. Higher spr<strong>in</strong>g flood is considered to <strong>in</strong>hibit<br />

excessive growth <strong>of</strong> shore vegetation. Spr<strong>in</strong>g flood<br />

magnitude <strong>in</strong> Lake Inarijärvi is very small <strong>in</strong> reference<br />

period <strong>and</strong> <strong>the</strong>re is no spr<strong>in</strong>g flood at all <strong>in</strong> scenario<br />

period.<br />

Water level change dur<strong>in</strong>g grow<strong>in</strong>g season <strong>in</strong> Lake<br />

Inarijärvi is smaller <strong>in</strong> scenario period than <strong>in</strong> reference<br />

period. The change is calculated by subtract<strong>in</strong>g<br />

75 % fractal <strong>of</strong> water levels <strong>of</strong> <strong>the</strong> first ice-free month<br />

from <strong>the</strong> 75 % fractal <strong>of</strong> water levels <strong>of</strong> <strong>the</strong> rest <strong>of</strong> <strong>the</strong><br />

grow<strong>in</strong>g season (from 30 days after ice-out to 30th<br />

September). If <strong>the</strong> <strong>in</strong>dicator value <strong>of</strong> <strong>the</strong> water level<br />

change were negative (water level is lower<strong>in</strong>g dur<strong>in</strong>g<br />

<strong>the</strong> grow<strong>in</strong>g season), it would promote zonation <strong>of</strong><br />

littoral vegetation <strong>and</strong> would have positive effect on<br />

shore habitat diversity. However, <strong>the</strong> <strong>in</strong>dicator value is<br />

positive (water level is ris<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season)<br />

<strong>in</strong> both reference period <strong>and</strong> scenario period <strong>in</strong>dicat<strong>in</strong>g<br />

unfavorable conditions. Never<strong>the</strong>less, <strong>the</strong> <strong>in</strong>dicator<br />

value is smaller (<strong>and</strong> better) <strong>in</strong> scenario period.”<br />

Carex zone is <strong>the</strong> optimum grow<strong>in</strong>g level <strong>of</strong> sedge<br />

(Carex) species be<strong>in</strong>g important habitat for nor<strong>the</strong>rn<br />

pike spawn<strong>in</strong>g. Change <strong>in</strong> maximum vertical extension<br />

<strong>of</strong> Carex zone <strong>and</strong> decrease <strong>of</strong> water level dur<strong>in</strong>g<br />

spawn<strong>in</strong>g <strong>of</strong> nor<strong>the</strong>rn pike is negligible. However,<br />

although <strong>in</strong>dicator m<strong>in</strong>imum water depth <strong>in</strong> <strong>the</strong> Carex<br />

zone dur<strong>in</strong>g <strong>the</strong> spawn<strong>in</strong>g <strong>of</strong> nor<strong>the</strong>rn pike is hav<strong>in</strong>g<br />

negative value <strong>in</strong>dicat<strong>in</strong>g that water levels at Lake Inarijärvi<br />

stays below optimum zone for Carex species<br />

dur<strong>in</strong>g spawn<strong>in</strong>g period, <strong>the</strong> direction <strong>of</strong> <strong>the</strong> change<br />

between reference period <strong>and</strong> scenario period is positive.<br />

Extent <strong>of</strong> frozen productive zone describes how<br />

much <strong>of</strong> <strong>the</strong> littoral productive zone is frozen dur<strong>in</strong>g<br />

w<strong>in</strong>ter. It is important factor affect<strong>in</strong>g organisms<br />

(aquatic vegetation, <strong>in</strong>vertebrates <strong>and</strong> eggs <strong>of</strong> autumn<br />

spawn<strong>in</strong>g fish species) that can’t tolerate freez<strong>in</strong>g.<br />

Decrease <strong>of</strong> extent <strong>of</strong> frozen productive zone over 10<br />

percentage po<strong>in</strong>ts is positive effect. Also changes <strong>in</strong><br />

o<strong>the</strong>r similar <strong>in</strong>dicators depend<strong>in</strong>g <strong>of</strong> water level changes<br />

dur<strong>in</strong>g ice covered period i.e. extent <strong>of</strong> ice pressure<br />

zone <strong>and</strong> magnitude <strong>of</strong> w<strong>in</strong>ter drawdown have similar<br />

positive effects.<br />

Table 1. Water level fluctuation <strong>in</strong>dicators calculated with Regcel model <strong>and</strong> assessment <strong>of</strong> effect <strong>of</strong> climate change on environment.<br />

“+” = positive effect, “-“ = negative effect.<br />

Water level fluctuation <strong>in</strong>dicator<br />

Reference period<br />

1971–2000<br />

Climate change<br />

scenario<br />

2040–2069<br />

Effect<br />

Magnitude <strong>of</strong> spr<strong>in</strong>g flood (m) 0.03 -0.01<br />

Water level change dur<strong>in</strong>g grow<strong>in</strong>g season (m) 0.21 0.10 +<br />

Maximum vertical extension <strong>of</strong> <strong>the</strong> Carex zone (m) 0.24 0.25<br />

Extent <strong>of</strong> frozen productive zone (%) 33.63 21.99 +<br />

Extent <strong>of</strong> ice pressure zone (%) 50.83 37.18 +<br />

Extent <strong>of</strong> disturbed productive zone (%) 38.27 32.07 +<br />

Water level rise dur<strong>in</strong>g <strong>the</strong> nest<strong>in</strong>g <strong>of</strong> birds (m) 0.18 0.13 +<br />

Magnitude <strong>of</strong> w<strong>in</strong>ter drawdown = water level decrease dur<strong>in</strong>g <strong>the</strong> ice<br />

cover period (m)<br />

1.20 0.92 +<br />

Decrease <strong>of</strong> water level dur<strong>in</strong>g spawn<strong>in</strong>g <strong>of</strong> nor<strong>the</strong>rn pike (m) 0.00 0.01<br />

M<strong>in</strong>imum water depth <strong>in</strong> <strong>the</strong> Carex zone dur<strong>in</strong>g <strong>the</strong> spawn<strong>in</strong>g <strong>of</strong> nor<strong>the</strong>rn<br />

pike (m)<br />

-0.44 -0.23 +<br />

Mean number <strong>of</strong> days per year when water level > 119,35 9.7 6.4 +<br />

47


Magnitude <strong>of</strong> monthly water conditions<br />

Tim<strong>in</strong>g <strong>of</strong> annual extremes<br />

Magnitude <strong>and</strong> duration <strong>of</strong> annual extremes<br />

Flow (m3/s)<br />

Variation coefficient (%)<br />

Flow (m3/s)<br />

Variation coefficient (%)<br />

Day number<br />

Variation coefficient (%)<br />

200<br />

60 300<br />

50<br />

250<br />

90<br />

160<br />

120<br />

80<br />

40<br />

0<br />

Janmeameameameameameameamean<br />

0 mean mean mean mean<br />

Feb-<br />

Mar-<br />

Apr-<br />

May-<br />

Jun-<br />

Jul-<br />

Aug-<br />

Sep-<br />

Oct-<br />

Nov-<br />

Dec-<br />

1-Day-M<strong>in</strong>-<br />

Date<br />

Mean Regulated<br />

CV Regulated<br />

200<br />

150<br />

100<br />

50<br />

Mean Recalculated<br />

50<br />

40<br />

30<br />

20<br />

10<br />

CV Recalculated Mean Regulated<br />

CV Regulated<br />

0<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1-day-m<strong>in</strong>imum<br />

flow<br />

1-day-maximum<br />

flow<br />

3-day-m<strong>in</strong>imum<br />

flow<br />

3-day-maximum<br />

flow<br />

7-day-m<strong>in</strong>imum<br />

flow<br />

7-day-maximum<br />

flow<br />

30-day-m<strong>in</strong>imum<br />

flow<br />

30-day-maximum<br />

flow<br />

90-day-m<strong>in</strong>imum<br />

flow<br />

Mean Recalculated<br />

CV Recalculated<br />

Figure 2. Magnitude <strong>of</strong> monthly water conditions <strong>and</strong> magnitude <strong>and</strong> duration <strong>of</strong> annual extremes <strong>in</strong> <strong>the</strong> Pasvik River. Comparison<br />

<strong>of</strong> current (1970–2000 deep blue, red l<strong>in</strong>e) <strong>and</strong> climate change (2040–2069, light blue, black l<strong>in</strong>e) hydrology.<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

90-day-maximum<br />

flow<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Day number<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Tim<strong>in</strong>g <strong>of</strong> annual extremes<br />

1-Day-M<strong>in</strong>-<br />

Date<br />

Mean Regulated<br />

CV Regulated<br />

Variation coefficient Tim<strong>in</strong>g <strong>of</strong> (%) annual Number/duration extremes <strong>of</strong> pulses (d)<br />

90<br />

35<br />

Day number<br />

Variation coefficient (%)<br />

250<br />

80<br />

90<br />

30<br />

70<br />

80<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1-Day-Max-<br />

Date<br />

Mean Regulated<br />

Mean Recalculated<br />

CV Regulated<br />

CV Recalculated<br />

1-Day-Max-<br />

0 Date<br />

1-Day-M<strong>in</strong>-<br />

Mean Recalculated Date<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

CV Recalculated Mean Regulated<br />

CV Regulated<br />

0<br />

Figure 3. Tim<strong>in</strong>g <strong>of</strong> annual extremes <strong>and</strong> frequency <strong>and</strong> duration <strong>of</strong> high <strong>and</strong> low pulses <strong>in</strong> <strong>the</strong> Pasvik River. Comparison <strong>of</strong> current<br />

(1970–2000, deep blue, red l<strong>in</strong>e) <strong>and</strong> climate change (2040–2069, light blue, black l<strong>in</strong>e) hydrology.<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Frequency <strong>and</strong> duration <strong>of</strong> high <strong>and</strong> low pulses<br />

Number <strong>of</strong> High- Number <strong>of</strong> Low-<br />

1-Day-Max-<br />

Pulses<br />

Pulses<br />

Date Mean Regulated<br />

Mean Recalculated<br />

CV Regulated<br />

CV Recalculated<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Duration- Hi-<br />

Pulse<br />

Variation coefficient (%)<br />

Duration- Lo -<br />

Pulse<br />

Mean Recalculated<br />

CV Recalculated<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

48


Productive littoral zone between mean high water<br />

<strong>and</strong> mean low water is disturbed by wave action dur<strong>in</strong>g<br />

open water period <strong>and</strong> by freez<strong>in</strong>g <strong>and</strong> ice pressure<br />

dur<strong>in</strong>g ice covered period. These disturbances also<br />

have an effect on littoral biota restrict<strong>in</strong>g survival <strong>of</strong><br />

sensitive species. Change <strong>in</strong> extent <strong>of</strong> disturbed productive<br />

zone, although only 6.2 percentage po<strong>in</strong>ts, is<br />

positive.<br />

Water level rise dur<strong>in</strong>g <strong>the</strong> nest<strong>in</strong>g <strong>of</strong> birds can<br />

destroy nests near <strong>the</strong> water. Decrease <strong>in</strong> water level<br />

rise is only 0,05 m but <strong>the</strong> direction <strong>of</strong> change is<br />

positive <strong>and</strong> it can have an positive effect on nest<strong>in</strong>g<br />

success <strong>of</strong> birds.<br />

Wave action <strong>in</strong>duced erosion is significant disturbance<br />

affect<strong>in</strong>g littoral habitats on Lake Inarijärvi <strong>and</strong><br />

water levels above 119.35 m.a.s.l. are considered to<br />

be <strong>the</strong> conditions when erosion <strong>in</strong> Lake Inarijärvi is <strong>in</strong>creas<strong>in</strong>g<br />

substantially (Puro-Tahvana<strong>in</strong>en et al. 2011).<br />

Decrease <strong>in</strong> mean number <strong>of</strong> days per year when water<br />

level is greater than 119.35 m.a.s.l. has a positive<br />

effect on erosion sensitive shores mitigat<strong>in</strong>g disturbance<br />

caused by erosion.<br />

DHRAM<br />

DHRAM analysis was applied to water flow data from<br />

<strong>the</strong> Kaitakoski station, situated at <strong>the</strong> outlet <strong>of</strong> Lake<br />

Inarijärvi. The difference between flow situations was<br />

also quite clear; with very much higher spr<strong>in</strong>g flow <strong>and</strong><br />

lower flow dur<strong>in</strong>g summer.<br />

There are relatively large changes between <strong>the</strong> reference<br />

period <strong>and</strong> <strong>the</strong> climate change scenario period<br />

<strong>in</strong> flow situations accord<strong>in</strong>g to <strong>the</strong> DHRAM analysis.<br />

When compar<strong>in</strong>g monthly water level fluctuations,<br />

<strong>the</strong>re is a clear change from summer months to w<strong>in</strong>ter<br />

as a consequence <strong>of</strong> climate change. However, summer<br />

<strong>and</strong> <strong>the</strong> <strong>in</strong>crease <strong>in</strong> variation are <strong>the</strong> ma<strong>in</strong> factors<br />

affect<strong>in</strong>g <strong>the</strong> situation (Figure 2).<br />

Magnitude <strong>and</strong> duration <strong>of</strong> annual extremes shows<br />

no significant change <strong>in</strong> terms <strong>of</strong> f<strong>in</strong>al impact po<strong>in</strong>ts<br />

although <strong>the</strong> values <strong>of</strong> <strong>the</strong> extremes have changed<br />

slightly (Table 1, Figure 2). The tim<strong>in</strong>g <strong>of</strong> annual extremes<br />

has changed significantly, but <strong>the</strong>re has been<br />

also <strong>in</strong>creas<strong>in</strong>g variation as a consequence <strong>of</strong> climate<br />

change (Figure 3). Change <strong>in</strong> flood tim<strong>in</strong>g reaches 2<br />

f<strong>in</strong>al impact po<strong>in</strong>ts, which is quite significant from <strong>the</strong><br />

po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> ecology.<br />

More relevant ecological change is visible <strong>in</strong> <strong>the</strong><br />

frequency <strong>and</strong> duration <strong>of</strong> high <strong>and</strong> low pulses (Figure<br />

3). There are more high <strong>and</strong> low pulses, but mean<br />

duration is significantly lower. This situation can cause<br />

environmental stress for most biota, which cannot<br />

adapt to rapid changes (Richter et al. 1996).<br />

There are no big differences <strong>in</strong> <strong>the</strong> rate <strong>and</strong> frequency<br />

<strong>of</strong> change <strong>in</strong> conditions. DHRAM analysis<br />

showed only a weak trend; a total <strong>of</strong> impact 2 po<strong>in</strong>ts<br />

were reached, which accord<strong>in</strong>g to Black et al. (2000)<br />

<strong>in</strong>dicates a low risk <strong>of</strong> impact.<br />

Conclusions<br />

Climate change impacts on hydrology <strong>and</strong> water level<br />

fluctuation <strong>in</strong>dicators were analysed <strong>in</strong> <strong>the</strong> Pasvik<br />

River catchment. Two different hydrological analysis<br />

systems were applied. Water level data for Lake Inarijärvi<br />

was analysed us<strong>in</strong>g Regcel model. The model<br />

enables assessment <strong>of</strong> <strong>the</strong> ecological impacts <strong>of</strong> water-level<br />

regulation on aquatic macrophytes, benthic<br />

<strong>in</strong>vertebrates, fishes <strong>and</strong> nest<strong>in</strong>g <strong>of</strong> waterfowl.<br />

The results <strong>in</strong> water level fluctuation <strong>in</strong>dicators<br />

showed that changes <strong>in</strong> water level fluctuation would<br />

have ma<strong>in</strong>ly positive effects on environment brought<br />

by decrease <strong>in</strong> fluctuation. Water level change dur<strong>in</strong>g<br />

grow<strong>in</strong>g season <strong>in</strong> Lake Inarijärvi be<strong>in</strong>g smaller<br />

<strong>in</strong> scenario period than <strong>in</strong> reference period promotes<br />

zonation <strong>of</strong> littoral vegetation <strong>and</strong> would have a positive<br />

effect on shore habitat diversity. Decrease <strong>of</strong><br />

extent <strong>of</strong> <strong>the</strong> zone disturbed by wave action, extent<br />

frozen productive zone, extent <strong>of</strong> ice pressure zone<br />

<strong>and</strong> magnitude <strong>of</strong> w<strong>in</strong>ter drawdown all have positive<br />

effects on survival <strong>of</strong> sensitive littoral biota. Decrease<br />

<strong>in</strong> water level rise can have a positive effect on nest<strong>in</strong>g<br />

success <strong>of</strong> birds <strong>and</strong> decrease <strong>in</strong> mean number <strong>of</strong><br />

days per year when water level is greater than 119.35<br />

m.a.s.l. has an positive effect on erosion sensitive<br />

shores.<br />

General flow data for <strong>the</strong> Pasvik River was analysed<br />

by <strong>the</strong> DHRAM programme. The method is rapid,<br />

but <strong>the</strong> biological response was partly unclear.<br />

The analysis showed that <strong>the</strong> climate change <strong>in</strong>duced<br />

change <strong>in</strong> flow regimes would have low risk <strong>of</strong> impact.<br />

Both Regcel <strong>and</strong> DHRAM method can be effectively<br />

used to assess hydrological <strong>and</strong> ecological effects <strong>of</strong><br />

climate change on lakes <strong>and</strong> rivers us<strong>in</strong>g measured<br />

<strong>and</strong> simulated water level <strong>and</strong> discharge data.<br />

49


References<br />

Black, A.R., Bragg, O.M., Duck, R.W., Jones, A.M., Rowan, J.S., Werritty A. 2000: Anthropogenic Impacts upon <strong>the</strong> Hydrology<br />

<strong>of</strong> Rivers <strong>and</strong> Lochs: Phase I A User Manual Introduc<strong>in</strong>g <strong>the</strong> Dundee Hydrological Regime Assessment Method. -<br />

SNIFFER Report No SR(00)01/2F. 32 p.<br />

IPCC. 2000: IPCC Special Report, Emission Scenarios. (Nakicenovic, N., Swart R. (eds.)). Cambridge University Press.<br />

UK. 570 p.<br />

Jylhä, K., Ruosteenoja, K., Venälä<strong>in</strong>en, A., Tuomenvirta, H., Ruokola<strong>in</strong>en, L., Saku, S., Seitola, T. 2009: Arvioita Suomen<br />

muuttuvasta ilmastosta sopeutumistutkimuksia varten. ACCLIM-hankkeen raportti 2009. Ilmatieteen laitos, Reports<br />

2009:4. Hels<strong>in</strong>ki. 102 p. (<strong>in</strong> F<strong>in</strong>nish)<br />

Puro-Tahvana<strong>in</strong>en, A., Aroviita, J., Järv<strong>in</strong>en, E. A., Kuoppala, M., Marttunen, M., Nurmi, T., Riihimäki, J., Salonen, E. 2011:<br />

Inarijärven tilan kehittym<strong>in</strong>en vuos<strong>in</strong>a 1960-2009. Suomen ympäristökeskus. Suomen ympäristö 2011, 19. Hels<strong>in</strong>ki, 89 p<br />

http://www.ymparisto.fi/default.asp?contentid=393911&lan=fi (<strong>in</strong> F<strong>in</strong>nish with abstracts <strong>in</strong> Swedish <strong>and</strong> <strong>in</strong> English)<br />

Richter, B.D, Baumgartner, J.V., Powell, J. & Braun, D.P. 1996: A method for assess<strong>in</strong>g hydrological alteration with<strong>in</strong> a river<br />

network. Conservation Biology 10: 1163–1174.<br />

Vehvilä<strong>in</strong>en, B., Huttunen, M., Huttunen, I. 2005: Hydrological forecast<strong>in</strong>g <strong>and</strong> real time monitor<strong>in</strong>g <strong>in</strong> F<strong>in</strong>l<strong>and</strong>: The watershed<br />

simulation <strong>and</strong> forecast<strong>in</strong>g system (WSFS). In: Innovation, Advances <strong>and</strong> Implementation <strong>of</strong> Flood Forecast<strong>in</strong>g<br />

Technology, conference papers, Tromsø, <strong>Norway</strong>, 17–19 October 2005.<br />

Veijala<strong>in</strong>en, N., Jakkila, J., Nurmi, T., Vehvilä<strong>in</strong>en, B., Marttunen, M., Aaltonen, J. 2012: Suomen vesivarat ja ilmastonmuutos<br />

– vaikutukset ja muutoksi<strong>in</strong> sopeutum<strong>in</strong>en, WaterAdapt-projekt<strong>in</strong> loppuraportti (F<strong>in</strong>l<strong>and</strong>´s water resources <strong>and</strong> climate<br />

change – Effects <strong>and</strong> adaptation, f<strong>in</strong>al report <strong>of</strong> <strong>the</strong> WaterAdapt –project). Suomen ympäristökeskus, Suomen ympäristö<br />

16/2012, Hels<strong>in</strong>ki, 138 p. (<strong>in</strong> F<strong>in</strong>nish)<br />

The Pasvik River.<br />

Photo: O. Persh<strong>in</strong>.<br />

50


Carex zone <strong>in</strong> <strong>the</strong> Pasvik River.<br />

Photo: Juha Riihimäki.<br />

The rocks <strong>of</strong> Lake Inari reflect water level fluctuation.<br />

Photo: Heidi Salow.<br />

51


3 Toxic substances on <strong>the</strong> sediments <strong>of</strong><br />

<strong>the</strong> Pasvik River<br />

VLADIMIR DAUVALTER, GUTTORM N. CHRISTENSEN, HELÉN JOHANNE ANDERSEN<br />

Lakes <strong>and</strong> reservoirs (<strong>and</strong> <strong>the</strong>ir sediments as storage<br />

<strong>of</strong> physical <strong>and</strong> chemical dis<strong>in</strong>tegration products <strong>of</strong> a<br />

wide range <strong>of</strong> chemical substances) serve as collectors<br />

<strong>of</strong> all substances delivered <strong>in</strong>to <strong>the</strong>ir catchment<br />

area. Sediments are an important <strong>in</strong>formation source<br />

about climatic, geochemical <strong>and</strong> environmental<br />

conditions that existed <strong>in</strong> <strong>the</strong> catchment area <strong>and</strong> <strong>in</strong><br />

<strong>the</strong> reservoirs itself, which allows estimat<strong>in</strong>g today’s<br />

ecological state <strong>of</strong> <strong>the</strong> air <strong>and</strong> aquatic environments.<br />

Heavy metals’ concentrations <strong>in</strong> <strong>the</strong> sediments allow<br />

estimat<strong>in</strong>g contam<strong>in</strong>ation <strong>in</strong>tensity <strong>and</strong> history <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>vestigated lakes.<br />

Sediment cores from <strong>the</strong> river-<strong>and</strong>-lake system <strong>of</strong><br />

<strong>the</strong> Pasvik River were used to estimate <strong>the</strong> effect <strong>of</strong><br />

<strong>the</strong> Pechenganikel m<strong>in</strong><strong>in</strong>g <strong>and</strong> metallurgical company<br />

activity on <strong>the</strong> waterway’s status. Maximum concentration<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>vestigated heavy metals (nickel (Ni),<br />

copper (Cu), cobalt (Co), z<strong>in</strong>c (Zn), cadmium (Cd),<br />

lead (Pb), mercury (Hg) <strong>and</strong> arsenic (As)) <strong>in</strong> <strong>the</strong> sediment<br />

surface layers was identified <strong>in</strong> Lake Kuetsjarvi<br />

receiv<strong>in</strong>g waste waters from <strong>the</strong> Pechenganikel<br />

Company. Heavy metal content decrease <strong>in</strong> <strong>the</strong> sediment<br />

surface layers is observed downstream <strong>the</strong><br />

Pasvik River from waste water <strong>in</strong>flow, although contam<strong>in</strong>ation<br />

is considerably high. In <strong>the</strong> lakes polluted<br />

only by air transport <strong>and</strong> household sewage <strong>the</strong>re was<br />

no <strong>in</strong>crease <strong>in</strong> <strong>the</strong> Ni, Cu, Co, Zn content emitted by<br />

<strong>the</strong> Pechenganikel but great <strong>in</strong>crease <strong>of</strong> chalcophile<br />

elements’ (Pb, Cd, Hg <strong>and</strong> As) concentration was discovered.<br />

The average sedimentation rate <strong>in</strong> <strong>the</strong> lakes<br />

under study appeared to be higher (1–3 mm/year)<br />

than on an average for <strong>the</strong> lakes <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn Fennosc<strong>and</strong>ia<br />

(less than 1 mm/year). Phosphorus content<br />

<strong>in</strong>crease is detected towards sediment surface <strong>in</strong> some<br />

lakes which may give evidence <strong>of</strong> eutrophication<br />

process development.<br />

Materials <strong>and</strong> methods<br />

Sediment cores for heavy metal analysis were collected<br />

at five stations <strong>of</strong> Lake Kuetsjarvi (1. White<br />

Stone, 2. Gulf Stream, 3. Salmijarvi, 4. Kolosjoki, 5.<br />

Shuonijoki) <strong>and</strong> <strong>in</strong> lakes Ruskebukta, Vaggatem <strong>and</strong><br />

Skrukkebukta (Introduction, Figures 1 <strong>and</strong> 2). Sediment<br />

cores for persistent organic pollutants (POPs)<br />

were collected <strong>in</strong> lakes Vaggatem, Kuetsjarvi <strong>and</strong><br />

Skrukkebukta. The upper 3 cm <strong>of</strong> <strong>the</strong> sediment core<br />

was sliced <strong>in</strong> 1 cm sections.<br />

Industrial impact on <strong>the</strong> lake ecosystem was determ<strong>in</strong>ed<br />

us<strong>in</strong>g <strong>the</strong> contam<strong>in</strong>ation factor (C f<br />

) <strong>of</strong> each<br />

priority heavy metal contam<strong>in</strong>ant (Ni, Cu, Co, Zn, Pb,<br />

Cd, Hg <strong>and</strong> As) (method <strong>of</strong> Håkanson, 1980, 1984).<br />

i<br />

In this approach <strong>the</strong> follow<strong>in</strong>g classification <strong>of</strong> C f<br />

was<br />

used: C fi<br />


o<strong>the</strong>r lakes under study. The highest Pb concentrations<br />

were detected <strong>in</strong> lakes Ruskebukta <strong>and</strong> Skrukkebukta.<br />

Generally, <strong>the</strong> average background concentrations<br />

<strong>of</strong> almost all heavy metals (except Cd) <strong>in</strong> <strong>the</strong><br />

Pasvik River reservoir catchment areas are higher<br />

than <strong>the</strong> average background concentrations <strong>in</strong> sediments<br />

<strong>of</strong> <strong>the</strong> North-West <strong>of</strong> Murmansk Region <strong>and</strong><br />

border area <strong>of</strong> <strong>the</strong> neighbour<strong>in</strong>g countries (Kashul<strong>in</strong><br />

et al. 2009).<br />

Accord<strong>in</strong>g to factor analysis <strong>the</strong> chemical composition<br />

<strong>of</strong> <strong>the</strong> sediment background layers is <strong>in</strong>fluenced<br />

by natural peculiarities <strong>of</strong> <strong>the</strong> Pasvik River dra<strong>in</strong>age<br />

(physical parameters <strong>and</strong> geochemical peculiarities)<br />

<strong>and</strong> <strong>the</strong> processes <strong>in</strong> <strong>the</strong> lake itself (biological processes,<br />

changes <strong>in</strong> reductive-oxidative conditions etc.).<br />

Three groups were clearly identified by cluster analysis:<br />

<strong>the</strong> first group <strong>in</strong>cludes channel reservoirs (lakes<br />

Ruskebukta, Vaggatem <strong>and</strong> Skrukkebukta), <strong>the</strong><br />

second is <strong>the</strong> Lake Kuetsjarvi stations 1 <strong>and</strong> 3 with<br />

m<strong>in</strong>imum sedimentation rate where <strong>the</strong> deepest sediment<br />

layers are <strong>the</strong> most approximated to <strong>the</strong> natural<br />

background values <strong>and</strong> <strong>the</strong> third is <strong>the</strong> Lake Kuetsjarvi<br />

station 4 <strong>and</strong> 5 with <strong>the</strong> maximum sedimentation rate<br />

where background sediment layers most likely were<br />

never reached.<br />

Vertical distribution <strong>of</strong> elements <strong>in</strong> <strong>the</strong> sediments<br />

Waste water from <strong>the</strong> Pechenganikel <strong>in</strong>tegrated plant<br />

is <strong>the</strong> ma<strong>in</strong> contam<strong>in</strong>ation source <strong>of</strong> Lake Kuetsjarvi<br />

<strong>and</strong> surface waters <strong>in</strong> <strong>the</strong> territory <strong>of</strong> <strong>in</strong>dustrial area.<br />

heavy metals (Ni, Cu, Zn, <strong>and</strong> Fe (iron)) <strong>and</strong> organic<br />

substances (xanthates) are <strong>the</strong> ma<strong>in</strong> components <strong>of</strong><br />

<strong>the</strong> waste waters (Dauvalter 2002).<br />

Even though <strong>the</strong> Pechenganikel reduced its heavy<br />

metal discharge <strong>in</strong>to Lake Kuetsjarvi <strong>the</strong>re is no observed<br />

decrease <strong>of</strong> concentrations <strong>in</strong> <strong>the</strong> sediments<br />

<strong>in</strong> Lake Kuetsjarvi <strong>and</strong> almost all <strong>the</strong> elements have<br />

surface maximums. Only Hg is characterized by maximum<br />

concentrations at depths 2–4 cm <strong>of</strong> sediment cores<br />

almost at all <strong>of</strong> <strong>the</strong> lake stations (Figure 1). No significant<br />

changes were found <strong>in</strong> <strong>the</strong> vertical distribution<br />

<strong>of</strong> Ni, Cu, Co <strong>and</strong> Zn concentrations <strong>in</strong> sediments <strong>of</strong><br />

Ruskebukta <strong>and</strong> Vaggatem situated upstream from<br />

Lake Kuetsjarvi. A slight <strong>in</strong>crease <strong>of</strong> Ni <strong>and</strong> Cu concentrations<br />

is observed <strong>in</strong> <strong>the</strong> upper 4 cm sediments<br />

<strong>of</strong> Lake Vaggatem, which is connected with airborne<br />

<strong>in</strong>dustrial pollution from <strong>the</strong> Pechenganikel. However<br />

an <strong>in</strong>creas<strong>in</strong>g trend <strong>of</strong> concentrations <strong>of</strong> chalcophile<br />

elements (Pb, Cd, Hg <strong>and</strong> As) was discovered <strong>in</strong><br />

<strong>the</strong> surface layers <strong>of</strong> <strong>the</strong>se lakes <strong>in</strong> comparison with<br />

<strong>the</strong> background content. The greatest <strong>in</strong>crease was<br />

observed <strong>in</strong> Lake Ruskebukta for Hg. This phenomenon<br />

is probably connected to <strong>the</strong> global atmospheric<br />

pollution <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn hemisphere <strong>and</strong> not directly<br />

connected with <strong>the</strong> Pechenganikel because this part<br />

<strong>of</strong> <strong>the</strong> Pasvik River catchment area is not significantly<br />

affected by <strong>the</strong> discharges (Pacyna & Pacyna 2001;<br />

Hagen et al. 1991). A slight decrease <strong>of</strong> Cd concentration<br />

is also found <strong>in</strong> <strong>the</strong> upper layer <strong>in</strong> Lake Vaggatem.<br />

In <strong>the</strong> sediments <strong>of</strong> Lake Skrukkebukta situated<br />

downstream from Lake Kuetsjarvi <strong>the</strong> maximum concentrations<br />

<strong>of</strong> Ni, Cu, Co, Cd <strong>and</strong> Pb were found <strong>in</strong><br />

<strong>the</strong> upper 1 cm layer (Figure 1). A significant <strong>in</strong>crease<br />

<strong>of</strong> heavy metal concentrations as compared to <strong>the</strong><br />

background was detected <strong>in</strong> <strong>the</strong> upper 3 cm <strong>of</strong> sediments.<br />

Concentration decrease <strong>of</strong> alum<strong>in</strong>ium (Al), magnesium<br />

(Mg), potassium (K) <strong>and</strong> calsium (Ca) is observed<br />

towards to sediment surface <strong>of</strong> Lake Kuetsjarvi<br />

(Figure 2) which can be related to <strong>the</strong> <strong>in</strong>flow <strong>of</strong> a large<br />

amount <strong>of</strong> sulphate <strong>in</strong> <strong>the</strong> content <strong>of</strong> waste waters<br />

from <strong>the</strong> Pechenganikel Company caus<strong>in</strong>g release <strong>of</strong><br />

alkal<strong>in</strong>e <strong>and</strong> alkal<strong>in</strong>e-earth metals <strong>and</strong> Al from <strong>the</strong> suspended<br />

particles <strong>and</strong> sediments <strong>and</strong> <strong>the</strong>ir transition<br />

<strong>in</strong>to a dissolvable form (Baklanov & Makarova 1992).<br />

The sulphate content <strong>in</strong> <strong>the</strong> water <strong>of</strong> Lake Kuetsjarvi<br />

is 2–3 times higher than <strong>in</strong> all <strong>the</strong> o<strong>the</strong>r lakes <strong>of</strong> <strong>the</strong><br />

Pasvik River system under study. Such regularity was<br />

also discovered <strong>in</strong> sediments <strong>of</strong> Lake Skrukkebukta.<br />

Increase <strong>of</strong> Mn <strong>and</strong> Fe concentrations is observed<br />

towards <strong>the</strong> sediment surface almost at all <strong>the</strong> stations<br />

<strong>of</strong> Lake Kuetsjarvi. Increase <strong>of</strong> phosphorus (P)<br />

content is also observed <strong>in</strong> <strong>the</strong> surface layers <strong>of</strong> sediments<br />

<strong>of</strong> Lake Kuetsjarvi <strong>and</strong> <strong>the</strong> o<strong>the</strong>r lakes. This can<br />

<strong>in</strong>dicate development <strong>of</strong> eutrophication processes, related<br />

to <strong>the</strong> <strong>in</strong>flow <strong>of</strong> household sewage <strong>and</strong> <strong>the</strong> river<br />

flow regulation <strong>and</strong> result<strong>in</strong>g <strong>in</strong>to <strong>the</strong> flow deceleration,<br />

stagnations, <strong>and</strong>, f<strong>in</strong>ally, accumulation <strong>of</strong> nutrients<br />

<strong>in</strong> aquatic ecosystems. Phosphorus accumulated <strong>in</strong><br />

sediments can be a source <strong>of</strong> this nutrient permeat<strong>in</strong>g<br />

<strong>in</strong>to <strong>the</strong> water layers (Lennox 1984; S<strong>and</strong>man et al.<br />

1990; Shaw & Prepas, 1990).<br />

Factor analysis was performed to discover <strong>the</strong> ma<strong>in</strong><br />

factors <strong>in</strong>fluenc<strong>in</strong>g chemical composition formation <strong>of</strong><br />

<strong>the</strong> sediments. The first factor is effect <strong>of</strong> discharged<br />

waters <strong>and</strong> emissions from <strong>the</strong> Pechenganikel Company,<br />

<strong>the</strong> second factor is natural processes tak<strong>in</strong>g<br />

place <strong>in</strong> <strong>the</strong> water layer <strong>and</strong> <strong>the</strong> sediments <strong>of</strong> reservoirs<br />

<strong>and</strong> <strong>the</strong> third factor comprises reductive-oxidative<br />

processes <strong>and</strong> eutrophication.<br />

53


Cu<br />

0<br />

0 500 1000 1500 2000 2500 Ni 0 1000 2000 3000 4000 5000 Cu 0 40 80 120 160 Ni 0 100 200<br />

0<br />

0<br />

0<br />

5<br />

10<br />

Sediment depth, cm<br />

15<br />

Skrukkebukta<br />

Vaggatem<br />

Ruskebukta<br />

5<br />

10<br />

Sediment depth, cm<br />

5<br />

10<br />

15<br />

1<br />

2<br />

3<br />

4<br />

5<br />

5<br />

10<br />

15<br />

Skrukkebukta<br />

Vaggatem<br />

Ruskebukta<br />

Zn 0 200 400 600 800 Co 0 100 200 300 400 500 Zn 0 40 80 120 Co 0 20 40<br />

0<br />

0<br />

0<br />

0<br />

5<br />

10<br />

15<br />

Skrukkebukta<br />

Sediment depth, cm<br />

Vaggatem<br />

Ruskebukta<br />

5<br />

10<br />

Sediment depth, cm<br />

15<br />

Skrukkebukta<br />

Vaggatem<br />

Ruskebukta<br />

0 10 20 30 40 50 Cd 0 0.1 0.2<br />

Pb 0 10 20<br />

0<br />

0<br />

5<br />

10<br />

Sediment depth, cm<br />

15<br />

Skrukkebukta<br />

Vaggatem<br />

Ruskebukta<br />

5<br />

10<br />

Sediment depth, cm<br />

15<br />

Skrukkebukta<br />

Vaggatem<br />

Ruskebukta<br />

0 0.4 0.8 1.2<br />

As 0 4 8<br />

Hg 0 0.1 0.2<br />

0<br />

0<br />

5<br />

10<br />

Sediment depth, cm<br />

15<br />

Skrukkebukta<br />

Vaggatem<br />

Ruskebukta<br />

5<br />

10<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

15<br />

1<br />

Sediment depth, cm<br />

2<br />

3<br />

4<br />

5<br />

5<br />

10<br />

15<br />

1<br />

2<br />

Sediment depth, cm<br />

5<br />

3<br />

4<br />

5<br />

10<br />

15<br />

1<br />

2<br />

Sediment depth, cm<br />

5<br />

3<br />

4<br />

Cd 0 1 2 3 4<br />

0<br />

Pb<br />

0<br />

5<br />

10<br />

15<br />

3<br />

Sediment depth, cm<br />

1<br />

2<br />

4<br />

5<br />

5<br />

10<br />

15<br />

3<br />

Sediment depth, cm<br />

1<br />

2<br />

4<br />

5<br />

As 0 40 80 120<br />

0<br />

Hg<br />

0<br />

5<br />

10<br />

15<br />

1<br />

Sediment depth, cm<br />

4<br />

5<br />

2<br />

3<br />

5<br />

10<br />

15<br />

1<br />

Sediment depth, cm<br />

4<br />

5<br />

2<br />

3<br />

15<br />

Skrukkebukta<br />

Vaggatem<br />

Ruskebukta<br />

Figure 1. Vertical distribution <strong>of</strong> heavy metal concentrations (µg/g) <strong>in</strong> bottom sediment columns <strong>of</strong> Lake Kuetsjarvi (stations 1–5) <strong>and</strong> <strong>in</strong> <strong>the</strong> Pasvik River lakes (red = Skrukkebukta, green =<br />

Vaggatem, blue = Ruskebukta).<br />

54


Al<br />

0<br />

0 10000 20000 30000<br />

Mg<br />

0<br />

0 20000 40000 60000<br />

Sediment depth, cm<br />

5<br />

10<br />

15<br />

1<br />

2<br />

3<br />

4<br />

5<br />

Sediment depth, cm<br />

5<br />

10<br />

15<br />

1<br />

2<br />

3<br />

4<br />

5<br />

K<br />

0<br />

0 2000 4000 6000<br />

Na<br />

0<br />

0 400 800 1200<br />

Sediment depth, cm<br />

5<br />

10<br />

1<br />

2<br />

3<br />

15<br />

4<br />

15<br />

4<br />

5<br />

5<br />

Figure 2. Vertical distribution (sediment depth, cm) <strong>of</strong> Al, Mg, K <strong>and</strong> Na concentrations (µg/g) <strong>in</strong> sediments <strong>of</strong><br />

Lake Kuetsjarvi.<br />

Sediment depth, cm<br />

5<br />

10<br />

1<br />

2<br />

3<br />

Element distribution <strong>in</strong> <strong>the</strong> surface layers <strong>of</strong> bottom<br />

sediments<br />

Pechenganikel emissions are <strong>the</strong> ma<strong>in</strong> source <strong>of</strong> <strong>in</strong>creased<br />

heavy metal concentrations <strong>of</strong> <strong>the</strong> Pasvik River<br />

system. This is especially <strong>in</strong>tensive <strong>in</strong> Lake Kuetsjarvi.<br />

The highest Ni <strong>and</strong> Cu concentrations exceed<strong>in</strong>g<br />

<strong>the</strong> background values 10–380 times are observed at<br />

a distance ≤10 km from <strong>the</strong> Pechenganikel (Dauvalter<br />

1994, 1995, 1999). The background concentration<br />

exceed<strong>in</strong>g reduces up to 3–7 times at a distance <strong>of</strong> 10<br />

to 40 km from <strong>the</strong> pollution source. Co concentrations<br />

were 4–10 times higher than <strong>the</strong> background at a distance<br />

<strong>of</strong> ≤15 km from <strong>the</strong> pollution source <strong>and</strong> up to 3<br />

times higher <strong>in</strong> o<strong>the</strong>r lakes, which is evidence <strong>of</strong> <strong>the</strong><br />

emissions’ impact.<br />

The ma<strong>in</strong> part <strong>of</strong> <strong>the</strong> <strong>in</strong>dustrial waste water from <strong>the</strong><br />

Pechenganikel enters Lake Kuetsjarvi. The highest<br />

concentrations <strong>of</strong> heavy metals were observed at <strong>the</strong><br />

deepest station 1 (Ni, As), at stations 4 <strong>and</strong> 5 (Cu, Cd,<br />

Pb, Hg) situated nearest to <strong>the</strong> Pechenganikel waste<br />

water discharge area <strong>and</strong> also at station 3 (Zn, Co),<br />

closest to <strong>the</strong> channel connect<strong>in</strong>g Lake Kuetsjarvi <strong>and</strong><br />

<strong>the</strong> Pasvik River watercourse. In <strong>the</strong> lower course <strong>of</strong><br />

<strong>the</strong> Pasvik River <strong>in</strong> Lake Skrukkebukta <strong>the</strong> maximum<br />

concentrations <strong>of</strong> Ni, Cu, Co, Zn, Cd <strong>and</strong> Pb were<br />

found <strong>in</strong> <strong>the</strong> surface sediment layer which is related<br />

to <strong>the</strong> contam<strong>in</strong>ated water <strong>in</strong>flow from Lake Kuetsjarvi<br />

Concentration <strong>in</strong>crease <strong>of</strong> chalcophile elements<br />

(Pb, Cd, As <strong>and</strong> Hg) was observed <strong>in</strong> <strong>the</strong> upper sediment<br />

layers <strong>in</strong> <strong>the</strong> lakes <strong>of</strong> <strong>the</strong> Pasvik River upper<br />

stream. High concentrations were observed <strong>in</strong> Lake<br />

Ruskebukta (<strong>the</strong> highest As <strong>and</strong> Hg concentrations<br />

except for Lake Kuetsjarvi), which proves that atmospheric<br />

emissions <strong>of</strong> <strong>the</strong> Pechenganikel are not<br />

<strong>the</strong> major contam<strong>in</strong>ation source <strong>of</strong> chalcophile elements.<br />

The highest Fe <strong>and</strong> Mn concentrations <strong>in</strong> <strong>the</strong><br />

surface layers <strong>of</strong> sediment were recorded at station 1<br />

<strong>of</strong> Lake Kuetsjarvi <strong>and</strong> <strong>the</strong> highest concentrations <strong>of</strong><br />

alkal<strong>in</strong>e-earth metals (Ca, Mg <strong>and</strong> Sr (strontium)) <strong>and</strong><br />

P are also discovered <strong>in</strong> Lake Kuetsjarvi. Increased P<br />

content was observed <strong>in</strong> Ruskebukta, which is related<br />

to <strong>the</strong> water flow regulation <strong>and</strong> household waste<br />

water discharge from <strong>the</strong> populated localities on lake<br />

shores.<br />

Factor analysis was performed to identify <strong>the</strong> ma<strong>in</strong><br />

factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> formation <strong>of</strong> chemical composition<br />

<strong>of</strong> today’s sediments <strong>in</strong> <strong>the</strong> surface 1 cm layer<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>vestigated reservoirs. The first factor consists<br />

<strong>of</strong> <strong>the</strong> development <strong>of</strong> lakes’ contam<strong>in</strong>ation processes<br />

<strong>and</strong> <strong>the</strong> second factor comb<strong>in</strong>es values characteriz<strong>in</strong>g<br />

<strong>the</strong> biological activity <strong>of</strong> <strong>the</strong> reservoirs as well as some<br />

<strong>of</strong> <strong>the</strong> ma<strong>in</strong> elements <strong>in</strong> <strong>the</strong> Earth crust (Na (sodium)<br />

<strong>and</strong> Mg). Most likely <strong>the</strong> processes tak<strong>in</strong>g place <strong>in</strong> <strong>the</strong><br />

55


eservoirs play <strong>the</strong> ma<strong>in</strong> role despite <strong>of</strong> <strong>the</strong> heavy contam<strong>in</strong>ation<br />

<strong>in</strong> Lake Kuetsjarvi.<br />

Two groups <strong>of</strong> reservoirs were determ<strong>in</strong>ed by cluster<br />

analysis. The first group is <strong>the</strong> water area <strong>of</strong> Lake<br />

Kuetsjarvi (stations 2–5). The second group forms <strong>of</strong><br />

<strong>the</strong> lakes situated downstream <strong>and</strong> upstream from Lake<br />

Kuetsjarvi (Skrukkebukta, Ruskebukta <strong>and</strong> Vaggatem),<br />

which are characterized by less contam<strong>in</strong>ation<br />

<strong>of</strong> <strong>the</strong> sediment surface layers due to greater distance<br />

from <strong>the</strong> smelters. Station 1 <strong>of</strong> Lake Kuetsjarvi st<strong>and</strong>s<br />

apart, probably because it is <strong>the</strong> deepest station <strong>and</strong><br />

specific physical chemical <strong>and</strong> geochemical peculiarities<br />

<strong>of</strong> this water area made a contribution to <strong>the</strong><br />

sediment chemical composition. This station is also<br />

characterized by <strong>the</strong> highest contam<strong>in</strong>ation degree<br />

among all <strong>the</strong> <strong>in</strong>vestigated stations.<br />

Factor <strong>and</strong> degree <strong>of</strong> contam<strong>in</strong>ation<br />

Contam<strong>in</strong>ation <strong>in</strong>tensity <strong>of</strong> reservoirs can be estimated<br />

by compar<strong>in</strong>g heavy metal concentrations <strong>in</strong> <strong>the</strong><br />

surface layer to <strong>the</strong> background values <strong>of</strong> sediments.<br />

Determ<strong>in</strong>ation methods <strong>of</strong> factor <strong>and</strong> degree <strong>of</strong> contam<strong>in</strong>ation<br />

<strong>of</strong> water ecosystems by heavy metals <strong>in</strong><br />

sediments us<strong>in</strong>g C f<br />

<strong>and</strong> C d<br />

are described <strong>in</strong> Håkanson<br />

(1980, 1984). Determ<strong>in</strong>ation methods <strong>of</strong> sediment<br />

contam<strong>in</strong>ation by <strong>in</strong>dustrial enrichment factor are<br />

described <strong>in</strong> Alhonen (1986), Ouellet & Jones (1983)<br />

<strong>and</strong> Tolonen & Jaakkola (1983).<br />

Maximum values <strong>of</strong> C f<br />

(high contam<strong>in</strong>ation) for almost<br />

all <strong>of</strong> <strong>the</strong> studied heavy metals are observed <strong>in</strong><br />

<strong>the</strong> sediments <strong>of</strong> Lake Kuetsjarvi. Only for Zn (except<br />

for station 3) <strong>and</strong> Pb <strong>the</strong> moderate <strong>and</strong> considerable<br />

contam<strong>in</strong>ation were observed. Stations 1 (Ni), 3 (Zn,<br />

Co <strong>and</strong> As), 4 (Cu), 5 (Cd, Pb <strong>and</strong> Hg) are characterized<br />

by <strong>the</strong> higher contam<strong>in</strong>ation factors. In general<br />

<strong>the</strong> highest value <strong>of</strong> contam<strong>in</strong>ation degree was recorded<br />

at <strong>the</strong> station 1.<br />

Impact <strong>of</strong> <strong>the</strong> waste water from <strong>the</strong> Pechenganikel<br />

as significant Ni contam<strong>in</strong>ation was also observed<br />

downstream <strong>in</strong> Lake Skrukkebukta. The C f<br />

values for<br />

Cu <strong>and</strong> Cd are on <strong>the</strong> borderl<strong>in</strong>e between moderate<br />

<strong>and</strong> considerable <strong>and</strong> moderate contam<strong>in</strong>ation is observed<br />

for <strong>the</strong> o<strong>the</strong>r metals. Among <strong>the</strong> lakes situated<br />

upstream from <strong>the</strong> Pechenganikel Company <strong>the</strong> high<br />

Hg contam<strong>in</strong>ation is found <strong>in</strong> Lake Ruskebukta. Low<br />

<strong>and</strong> moderate values <strong>of</strong> C f<br />

are observed for o<strong>the</strong>r metals<br />

<strong>in</strong> lakes Ruskebukta <strong>and</strong> Vaggatem.<br />

In general, Lake Kuetsjarvi (high value <strong>of</strong> C d<br />

) is<br />

characterized by <strong>the</strong> maximum contam<strong>in</strong>ation by all<br />

<strong>the</strong> studied contam<strong>in</strong>ants. Lake Skrukkebukta has C d<br />

value on <strong>the</strong> boundary between low <strong>and</strong> moderate<br />

<strong>and</strong> low values <strong>of</strong> C d<br />

are recorded <strong>in</strong> lakes Vaggatem<br />

<strong>and</strong> Ruskebukta.<br />

Persistent organic pollutants <strong>in</strong> sediments<br />

Previous screen<strong>in</strong>g studies <strong>of</strong> persistent organic pollutants<br />

(POPs) <strong>in</strong> bottom sediments revealed higher<br />

levels <strong>of</strong> several environmental contam<strong>in</strong>ants <strong>in</strong> Lake<br />

Kuetsjarvi compared to o<strong>the</strong>r lakes <strong>in</strong> <strong>the</strong> Pasvik River<br />

(Christensen et al. 2007).<br />

The highest concentrations <strong>of</strong> ∑PCB were measured<br />

<strong>in</strong> sediments from Lake Kuetsjarvi downstream<br />

from <strong>the</strong> Nikel city (Figure 1). The levels <strong>of</strong> ∑PCB <strong>in</strong><br />

lake sediments from Vaggatem <strong>and</strong> Skrukkebukta were<br />

comparable. The levels <strong>in</strong> surface sediment (0–1<br />

cm) were approximately 4 times higher <strong>in</strong> Lake Kuetsjarvi<br />

compared to Vaggatem <strong>and</strong> Skrukkebukta. The<br />

highest concentrations <strong>of</strong> PCB were detected <strong>in</strong> <strong>the</strong><br />

2–3 cm layer from Lake Kuetsjarvi. These results are<br />

comparable with previous study from <strong>the</strong> Pasvik River<br />

(Christensen et al. 2007) <strong>and</strong> <strong>the</strong> concentrations <strong>of</strong><br />

∑PCB <strong>in</strong> Lake Kuetsjarvi are elevated compared to<br />

o<strong>the</strong>r lakes <strong>in</strong> Nor<strong>the</strong>rn <strong>Norway</strong> (Skotvold et al. 1997,<br />

Christensen et al. 2008).<br />

The highest concentrations <strong>of</strong> ∑DDT were measured<br />

<strong>in</strong> sediments from Skrukkebukta (Figure 2). DDT<br />

was also detected <strong>in</strong> <strong>the</strong> surface sample from Vaggatem.<br />

The concentrations <strong>of</strong> DDT <strong>in</strong> all <strong>the</strong> sediment<br />

samples from Lake Kuetsjarvi were below <strong>the</strong> detection<br />

limit. There are no known sources <strong>of</strong> DDT <strong>in</strong> <strong>the</strong><br />

area. However, DDT was previously used as pesticide<br />

<strong>in</strong> agriculture but tit was banned <strong>in</strong> <strong>the</strong> early 1970s. In<br />

a previous study <strong>the</strong> highest levels <strong>of</strong> DDT were detected<br />

<strong>in</strong> sediments from Lake Kuetsjarvi (Christensen<br />

et al. 2007).<br />

Polybrom<strong>in</strong>ated diphenyl e<strong>the</strong>rs (PBDE) were only<br />

detected <strong>in</strong> sediments from Skrukkebukta <strong>and</strong> Vaggatem<br />

(Christensen et al. 2015).<br />

Based on <strong>the</strong> results from this study <strong>the</strong>re is no<br />

clear time trend <strong>of</strong> <strong>the</strong> historical development <strong>of</strong> POPs<br />

<strong>in</strong> <strong>the</strong> sediments from <strong>the</strong>se lakes. It is recommended<br />

that a more extensive sediment survey be carried out<br />

with dat<strong>in</strong>g <strong>of</strong> <strong>the</strong> sediments, which will give detailed<br />

<strong>in</strong>formation about historical trends for POPs <strong>and</strong> heavy<br />

metals.<br />

The higher levels <strong>of</strong> PCB <strong>and</strong> mercury <strong>in</strong> <strong>the</strong> analysed<br />

sediment samples downstream from Nikel compared<br />

to upstream clearly <strong>in</strong>dicate emissions <strong>of</strong> <strong>the</strong>se<br />

compounds from Nikel. The source might be related to<br />

<strong>the</strong> activity <strong>in</strong> <strong>the</strong> metallurgical smelter or o<strong>the</strong>r <strong>in</strong>dustrial<br />

activity, contam<strong>in</strong>ated areas <strong>in</strong> <strong>the</strong> city or l<strong>and</strong>fills.<br />

56


The results from this sediment study <strong>and</strong> <strong>the</strong> results<br />

from <strong>the</strong> study <strong>of</strong> contam<strong>in</strong>ants <strong>in</strong> fish are comparable<br />

<strong>in</strong> that sense that <strong>the</strong> highest levels <strong>of</strong> POPs<br />

are found downstream from Nikel. However <strong>the</strong>re are<br />

several very <strong>in</strong>terest<strong>in</strong>g questions that need fur<strong>the</strong>r<br />

<strong>in</strong>vestigations: <strong>the</strong> time-trends for PCB, DDT, PBDE<br />

<strong>and</strong> mercury <strong>and</strong> where <strong>the</strong> sources <strong>in</strong> <strong>the</strong> Nikel city<br />

are, for example.<br />

PCB<br />

20<br />

18<br />

16<br />

14<br />

ng/g dw<br />

12<br />

10<br />

8<br />

6<br />

0-1 cm<br />

1-2 cm<br />

2-3 cm<br />

4<br />

2<br />

0<br />

Vaggatem Kuetsjärvi Skrukkebukta<br />

Figure 1. Levels <strong>of</strong> ∑PCB (ng/g dw) <strong>in</strong> three layer (0–1 cm blue bars, 1–2 cm red bars, 2–3 cm green bars) <strong>of</strong> bottom<br />

sediments from lakes Vaggatem, Kuetsjarvi <strong>and</strong> Skrukkebukta.<br />

4<br />

3,5<br />

3<br />

DDT<br />

ng/g dw<br />

2,5<br />

2<br />

1,5<br />

0-1 cm<br />

1-2 cm<br />

2-3 cm<br />

1<br />

0,5<br />

0<br />

Vaggatem Kuetsjärvi Skrukkebukta<br />

Figure 2. Levels <strong>of</strong> ∑DDT (ng/g dw) <strong>in</strong> three layer (0–1 cm blue bars, 1–2 cm red bars, 2–3 cm green bars) <strong>of</strong> bottom<br />

sediments from lakes Vaggatem, Kuetsjarvi <strong>and</strong> Skrukkebukta.<br />

57


Conclusions<br />

The highest background concentrations <strong>of</strong> most <strong>of</strong><br />

<strong>the</strong> heavy metals (Ni, Zn, Co, Cd, Hg <strong>and</strong> As) <strong>in</strong> <strong>the</strong><br />

sediments are observed <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> Lake<br />

Kuetsjarvi, which is accounted for by <strong>the</strong> geochemical<br />

<strong>and</strong> morphometric peculiarities <strong>of</strong> <strong>the</strong> lake <strong>and</strong> its<br />

catchment area. In general <strong>the</strong> average background<br />

concentrations <strong>of</strong> almost all <strong>the</strong> heavy metals (except<br />

Cd) <strong>in</strong> <strong>the</strong> catchment reservoirs <strong>of</strong> <strong>the</strong> Pasvik River<br />

are higher than <strong>the</strong> average background concentrations<br />

<strong>in</strong> <strong>the</strong> North-West <strong>of</strong> Murmansk Region <strong>and</strong> <strong>the</strong><br />

border territories.<br />

The Pechenganikel emissions result <strong>in</strong>to <strong>the</strong> maximum<br />

concentrations <strong>of</strong> all <strong>the</strong> <strong>in</strong>vestigated heavy<br />

metals <strong>in</strong> <strong>the</strong> surface layers <strong>of</strong> <strong>the</strong> sediments <strong>of</strong> Lake<br />

Kuetsjarvi. Almost all heavy metals have surface<br />

maximum <strong>and</strong> despite <strong>the</strong> reduction <strong>of</strong> discharge <strong>in</strong>to<br />

Lake Kuetsjarvi <strong>and</strong> atmospheric emissions by <strong>the</strong><br />

Pechenganikel <strong>the</strong>re is no observable decrease <strong>in</strong> <strong>the</strong><br />

content. Downstream from <strong>the</strong> Pechenganikel <strong>in</strong> Lake<br />

Skrukkebukta maximum concentrations <strong>of</strong> Ni, Cu,<br />

Co, Cd, <strong>and</strong> Pb are found <strong>in</strong> <strong>the</strong> upper 1 cm layer <strong>of</strong><br />

sediments <strong>and</strong> large <strong>in</strong>crease <strong>of</strong> heavy metal concentrations<br />

<strong>in</strong> comparison to <strong>the</strong> background is dist<strong>in</strong>guished<br />

<strong>in</strong> <strong>the</strong> upper 3 cm <strong>of</strong> <strong>the</strong> sediments.<br />

In lakes Vaggatem <strong>and</strong> Ruskebukta upstream from<br />

<strong>the</strong> Pechenganikel no great changes <strong>in</strong> <strong>the</strong> vertical<br />

distribution <strong>of</strong> Ni, Cu, Co <strong>and</strong> Zn concentrations are<br />

found <strong>in</strong> <strong>the</strong> sediments, although <strong>the</strong>re is a slight <strong>in</strong>crease<br />

<strong>of</strong> Ni <strong>and</strong> Cu concentrations <strong>in</strong> <strong>the</strong> upper 4 cm<br />

<strong>in</strong> Lake Vaggatem. However, a slight <strong>in</strong>crease <strong>in</strong> concentration<br />

<strong>of</strong> chalcophile elements was discovered <strong>in</strong><br />

<strong>the</strong> surface layers <strong>of</strong> lakes Ruskebukta <strong>and</strong> Vaggatem<br />

<strong>in</strong> comparison to <strong>the</strong> background content. The largest<br />

<strong>in</strong>crease is observed <strong>in</strong> Lake Ruskebukta for Hg.<br />

In general Lake Kuetsjarvi (high value <strong>of</strong> C d<br />

contam<strong>in</strong>ation<br />

degree) is characterized by maximum contam<strong>in</strong>ation<br />

by all <strong>the</strong> studied contam<strong>in</strong>at<strong>in</strong>g elements.<br />

Lake Skrukkebukta has <strong>the</strong> C d<br />

value on <strong>the</strong> boundary<br />

between low <strong>and</strong> moderate. Low values <strong>of</strong> C d<br />

are<br />

found <strong>in</strong> lakes Vaggatem <strong>and</strong> Ruskebukta, which are<br />

<strong>the</strong> least polluted <strong>of</strong> <strong>the</strong> studied lakes.<br />

Industry is <strong>the</strong> ma<strong>in</strong> source <strong>of</strong> contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> Pasvik region. Photo: Sergey S<strong>and</strong>imirov<br />

58


References<br />

Alhonen P. 1986: Heavy metal load <strong>of</strong> Lake Iidesjarvi as reflected <strong>in</strong> its sediments. Aqua Fennica 16(1): 11–16.<br />

Baklanov А.А, Makarova Т.D. 1992: Contam<strong>in</strong>ation with sulfuric gas <strong>in</strong> <strong>the</strong> area <strong>of</strong> Soviet-Norwegian border. Ecological <strong>and</strong><br />

geographical problems <strong>of</strong> <strong>the</strong> Kola North: 114–129. Kola Science Center RAS. Apatity. (<strong>in</strong> <strong>Russia</strong>n)<br />

Christensen, G.N., Sav<strong>in</strong>ov, V. Sav<strong>in</strong>ova, T. 2007: Screen<strong>in</strong>g studies <strong>of</strong> POPs levels <strong>in</strong> bottom sediments from selected<br />

lakes <strong>in</strong> Paz watercourse. Akvaplan-niva report 3665.01.<br />

Christensen, G., A. Evenset, S. Rognerud, B.L. Skjelkvåle, R. Palerud, E. Fjeld, Røyset, O. 2008: National lake survey<br />

2004–2006, PART III: AMAP. Status <strong>of</strong> metals <strong>and</strong> environmental pollutants <strong>in</strong> lakes <strong>and</strong> fish from <strong>the</strong> Norwegian part <strong>of</strong><br />

<strong>the</strong> AMAP region. Akvaplan-niva rapport 3613.01. SFT TA 2363-2008.<br />

Christensen, G.N., Andersen, H.J., Dahl-Hansen, G. 2015: Contam<strong>in</strong>ants <strong>in</strong> fish <strong>and</strong> sediments from <strong>the</strong> Pasvik River.<br />

Akvaplan-niva report. 5943.01.<br />

Dauvalter V. 1994: Heavy metals <strong>in</strong> lake sediments <strong>of</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula, <strong>Russia</strong>. Science <strong>of</strong> <strong>the</strong> Total Environment 158:<br />

51–61.<br />

Dauvalter V.А. 1995: Heavy metal concentrations <strong>in</strong> sediments <strong>of</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula lakes as an <strong>in</strong>dicator <strong>of</strong> contam<strong>in</strong>ation<br />

<strong>of</strong> aquatic ecosystems. Problems <strong>of</strong> chemical <strong>and</strong> biological monitor<strong>in</strong>g <strong>of</strong> ecological state <strong>of</strong> water bodies <strong>of</strong> <strong>the</strong> Kola<br />

North: 24–35 Kola Sience Center RAS. (<strong>in</strong> <strong>Russia</strong>n)<br />

Dauvalter V.А. 1999: Appropriateness <strong>of</strong> sedimentation <strong>in</strong> water objects <strong>of</strong> European Subarctic (nature protection aspects<br />

<strong>of</strong> problem). DrSci Thesis. Kola Science Center RAS. Apatity. 399 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Dauvalter V.А. 2002: Chemical composition <strong>of</strong> subarctic lake sediments under <strong>in</strong>fluence <strong>of</strong> m<strong>in</strong><strong>in</strong>g <strong>and</strong> metallurgical activities<br />

- Izvestiya <strong>of</strong> <strong>Russia</strong>n Academy <strong>of</strong> Sciences. Geography series 4: 65–73. (<strong>in</strong> <strong>Russia</strong>n)<br />

Hagen L.O., Aarnes M.J., Henriksen J.F., Sivertsen B. 1991: Basisundersokelse av luftforurens<strong>in</strong>ger i Sor-Varanger<br />

1988–1991. Oslo: NILU-report 67/91. 89 p. (<strong>in</strong> Norwegian)<br />

Håkanson L. 1980: An ecological risk <strong>in</strong>dex for aquatic pollution control – a sedimentological approach. Water Research 14:<br />

975–1001.<br />

Håkanson L. 1984: Sediment sampl<strong>in</strong>g <strong>in</strong> different aquatic environments: Statistical aspects. Water Resources Research<br />

20(1): 41–46.<br />

Kashul<strong>in</strong> N.A., S<strong>and</strong>imirov S.S., Dauvalter V.А., Terentiev P.M., Denisov D.B. 2009: Ecological catalogue <strong>of</strong> lakes <strong>of</strong> Murmansk<br />

Region. The North-western part <strong>of</strong> Murmansk Region <strong>and</strong> boundary territory <strong>of</strong> <strong>the</strong> contiguous countries. Kola<br />

Sience Center RAS. Apatity. 226 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Lennox L.J. 1984: Sediment-water exchange <strong>in</strong> Lough Ennel with particular reference to phosphorus. Water Resources<br />

18(12): 1483–1485.<br />

Norton S.A., Dillon P.J., Evans R.D., Mierle G., Kahl J.S. 1990: The history <strong>of</strong> atmospheric deposition <strong>of</strong> Cd, Hg <strong>and</strong> Pb<br />

<strong>in</strong> North America: Evidence from lake <strong>and</strong> peat bog sediments. <strong>in</strong> L<strong>in</strong>dberg S. E. et al. (Eds.). Sources, Deposition <strong>and</strong><br />

Capony Interactions. V. III, Acidic Precipitation. New York: Spr<strong>in</strong>ger-Verlag. 73–101.<br />

Ouellet M., Jones H.G. 1983: Paleolimnological evidence for <strong>the</strong> long-range atmospheric transport <strong>of</strong> acidic pollution <strong>and</strong><br />

heavy metals <strong>in</strong>to Quebec, Canada. Canadian Journal <strong>of</strong> Earth Sciences 20: 23–26.<br />

Pacyna J.M., Pacyna E.G. 2001: An assessment <strong>of</strong> global <strong>and</strong> regional emissions <strong>of</strong> trace elements to <strong>the</strong> atmosphere<br />

from anthropogenic sources worldwide. <strong>Environmental</strong> Reviews 4: 269–298.<br />

S<strong>and</strong>man O, Eskonen K, Liehu A. 1990: The eutrophication history <strong>of</strong> Lake Särk<strong>in</strong>en, F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>the</strong> effects <strong>of</strong> lake aeration.<br />

Hydrobiologia 214: 191–199.<br />

Shaw J.F.H., Prepas E.E. 1990: Relationships between phosphorus <strong>in</strong> shallow sediments <strong>and</strong> <strong>in</strong> <strong>the</strong> trophogenic zone <strong>of</strong><br />

seven Alberta lakes. Water Research 24(5): 551–556.<br />

Skotvold, T., Wartena, E.M.M., Rognerud, S. 1997: Heavy metals <strong>and</strong> persistent organic pollutants <strong>in</strong> sediments <strong>and</strong> fish<br />

from lakes <strong>in</strong> Nor<strong>the</strong>rn <strong>and</strong> Arctic regions <strong>of</strong> <strong>Norway</strong>. Statlig program for forurensn<strong>in</strong>gsovervåkn<strong>in</strong>g, SFT rapport 688/97.<br />

98 p.<br />

Tenhola M., Lummaa M. 1979: Regional distribution <strong>of</strong> z<strong>in</strong>c <strong>in</strong> lake sediments from eastern F<strong>in</strong>l<strong>and</strong>. Symposium on Economic<br />

Geology, Dubl<strong>in</strong>, Irel<strong>and</strong>, 26–29 August: 67–73.<br />

Tolonen K., Jaakkola T. 1983: History <strong>of</strong> lake acidification <strong>and</strong> air pollution studied on sediments <strong>in</strong> South F<strong>in</strong>l<strong>and</strong>. Annales<br />

Botanici Fennici 20: 57–78.<br />

59


4 Plankton communities <strong>of</strong> <strong>the</strong> Pasvik<br />

River<br />

DMITRII DENISOV<br />

Phytoplankton<br />

Phytoplankton communities are an <strong>in</strong>tegral part <strong>of</strong> <strong>the</strong><br />

status assesment <strong>of</strong> water bodies <strong>in</strong> subarctic regions.<br />

Phytoplankton algae play an important role <strong>in</strong> primary<br />

production <strong>of</strong> aquatic ecosystems. Various <strong>in</strong>dicators<br />

<strong>of</strong> <strong>the</strong> status <strong>of</strong> algae communities are successfully<br />

used <strong>in</strong> assessment <strong>of</strong> water trophic status, level <strong>of</strong><br />

organic pollution <strong>and</strong> <strong>in</strong>tensity <strong>of</strong> eutrophication processes.<br />

The structure <strong>and</strong> taxonomic composition <strong>of</strong><br />

phytoplankton communities <strong>in</strong> lake-<strong>and</strong>-river systems<br />

<strong>in</strong> different seasons are necessary for build<strong>in</strong>g <strong>and</strong><br />

improvement <strong>of</strong> bio<strong>in</strong>dication systems <strong>and</strong> expansion<br />

<strong>of</strong> underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> diversity <strong>of</strong> conditions with<strong>in</strong><br />

one water body depend<strong>in</strong>g on environment <strong>and</strong> <strong>in</strong>dustrial<br />

load. Data on <strong>the</strong> composition <strong>of</strong> communities<br />

is important also for identify<strong>in</strong>g <strong>the</strong> crucial factors <strong>of</strong><br />

water bodies’ development <strong>in</strong> high-latitude regions <strong>in</strong><br />

<strong>the</strong> course <strong>of</strong> local <strong>and</strong> global changes <strong>in</strong> <strong>the</strong> natural<br />

environment. Special <strong>in</strong>terest is held by <strong>the</strong> study <strong>of</strong><br />

annual phytoplankton dynamics <strong>in</strong> monitor<strong>in</strong>g longterm<br />

<strong>in</strong>dustrial pollution <strong>and</strong> changes <strong>in</strong> <strong>the</strong> climate<br />

system dynamics.<br />

Materials <strong>and</strong> methods<br />

Different areas <strong>of</strong> <strong>the</strong> Pasvik watercourse traditionally<br />

used for assessment <strong>of</strong> <strong>the</strong> water quality <strong>and</strong> <strong>the</strong><br />

aquatic ecosystem status were sampled. The sampled<br />

water bodies were Rajakoski, Vaggatem, Ruskebukta,<br />

Tjerebukta, Skrukkebukta <strong>and</strong> Lake Kuetsjarvi<br />

(Introduction, Figure 1).<br />

Sampl<strong>in</strong>g for assessment <strong>of</strong> species composition,<br />

abundance <strong>and</strong> biomass <strong>of</strong> phytoplankton was performed<br />

<strong>in</strong> 2012 <strong>in</strong> July <strong>and</strong> August; additional samples<br />

from Lake Kuetsjarvi were taken <strong>in</strong> June for assessment<br />

<strong>of</strong> <strong>the</strong> seasonal dynamics <strong>of</strong> phytoplankton <strong>in</strong>dicators.<br />

Sampl<strong>in</strong>g <strong>and</strong> analysis <strong>of</strong> phytoplankton samples<br />

was performed accord<strong>in</strong>g to <strong>the</strong> st<strong>and</strong>ards GOST<br />

17.1.3.07-82 (RF) with <strong>the</strong> use <strong>of</strong> <strong>the</strong> recommended<br />

st<strong>and</strong>ard methods accord<strong>in</strong>g to <strong>the</strong> scheme adopted<br />

at INEP KSC RAS. Species composition was identified<br />

accord<strong>in</strong>g to several field guides (Krammer 2000,<br />

2002, 2003, Lange-Bertalot 2001, Tikkanen 1986, Bar<strong>in</strong>ova<br />

& Medvedeva 1996, Krammer & Lange-Bertalot<br />

1986, 1988, 1991а, 1991b). The taxonomic diversity<br />

was assessed with Shannon-Weaver <strong>in</strong>dex (1949).<br />

Phytoplankton pigments were determ<strong>in</strong>ed to assess<br />

<strong>the</strong> algae photosyn<strong>the</strong>tic activity. The chlorophyll<br />

a concentration <strong>and</strong> phytoplankton biomass <strong>in</strong> a water<br />

body reflect its trophic status accurately enough accord<strong>in</strong>g<br />

to Kitaev’s trophic scale (Table 1).<br />

Table 1. Kitaev’s trophic scale (1984)<br />

Oligotrophic Мesotrophic Eutrophic Hypereutrophic<br />

α β α β α β<br />

Chlorophyll а, mg/m 3 48<br />

Phytoplankton biomass, g/m 3 16<br />

Table 2. Water quality classification accord<strong>in</strong>g to saprobity <strong>in</strong>dex S (GOST 17.1.3.07-82)<br />

Saprobity <strong>in</strong>dex Water quality class Pollution range<br />

4.00 VI Highly polluted<br />

60


Based on <strong>the</strong> taxonomic composition <strong>of</strong> phytoplankton,<br />

assessment <strong>of</strong> water quality class was made<br />

on <strong>the</strong> basis <strong>of</strong> saprobity <strong>in</strong>dex (S) us<strong>in</strong>g Pantle-<br />

Buck method modified by Sladecek. (Pantle & Buck<br />

1955, Sladecek 1967). Saprobity is <strong>the</strong> pollution <strong>of</strong><br />

<strong>the</strong> water body with organic substances. Water quality<br />

classification accord<strong>in</strong>g to GOST 17.1.3.07-82 (RF) is<br />

presented <strong>in</strong> Table 2.<br />

Results <strong>and</strong> discussion<br />

Species composition <strong>and</strong> structure <strong>of</strong> phytoplankton<br />

communities<br />

Totally 95 algae taxa one order lower than genus<br />

from seven systematic groups were identified <strong>in</strong> <strong>the</strong><br />

phytoplankton composition <strong>of</strong> <strong>the</strong> Pasvik river-<strong>and</strong>lake<br />

system: Cyanophyceae – 9, Chlorophyta – 25,<br />

Charophyceae – 8, Chrysophyceae – 5, D<strong>in</strong>ophyta –<br />

8, Bacillariophyceae – 37, Euglenophyceae – 1. The<br />

number <strong>of</strong> taxa at each station is presented <strong>in</strong> Table 3.<br />

The species abundance (number <strong>of</strong> discovered taxa)<br />

was <strong>the</strong> highest close to Lake Kuetsjarvi (Salmijarvi,<br />

52 taxa) as a result <strong>of</strong> comb<strong>in</strong>ation <strong>of</strong> different type<br />

water masses <strong>and</strong> a current. Species abundances <strong>in</strong><br />

<strong>the</strong> sampl<strong>in</strong>g place were variable, second highest was<br />

31 taxa <strong>in</strong> Rajakoski <strong>and</strong> third highest 27 taxa <strong>in</strong> Ruskebukta.<br />

Lowest abundances were <strong>in</strong> Tjerebukta (11),<br />

Vaggatem (18) <strong>and</strong> Skrukkebukta (19).<br />

In different parts <strong>of</strong> <strong>the</strong> Pasvik River <strong>the</strong> structure<br />

<strong>of</strong> communities, species composition <strong>and</strong> quantitative<br />

parameters <strong>of</strong> phytoplankton show considerable<br />

differences (Figures 1 <strong>and</strong> 2). Diatoms, blue-green<br />

algae <strong>and</strong> yellow-green algae were found <strong>the</strong> most<br />

abundant; green algae accounted for a large portion<br />

(up to 51 %) <strong>in</strong> Lake Kuetsjarvi. Perid<strong>in</strong>iales (5 %) <strong>and</strong><br />

charophytes (< 1%) were rare at all <strong>the</strong> stations.<br />

In Ruskebukta <strong>the</strong> phytoplankton abundance is two<br />

orders higher than <strong>in</strong> o<strong>the</strong>r sections. The cause was a<br />

mass occurrence <strong>of</strong> diatom Urosolenia eriensis, which<br />

is a typical benthic species, <strong>and</strong> its transition to planktonic<br />

state confirms eutrophication. This correlates<br />

with <strong>the</strong> hydrochemical analysis results as Ruskebukta<br />

has <strong>the</strong> highest concentrations <strong>of</strong> nutrients (primarily<br />

nitrates <strong>and</strong> phosphates) <strong>in</strong> <strong>the</strong> Pasvik River.<br />

Blue-green algae were <strong>the</strong> most abundant (up to 52<br />

%) <strong>in</strong> Rajakoski, mostly due to abundance <strong>of</strong> Oscillatoria<br />

tenuis, which is ano<strong>the</strong>r sign <strong>of</strong> eutrophication.<br />

Abundance <strong>of</strong> green algae separates Lake Kuetsjarvi<br />

from <strong>the</strong> o<strong>the</strong>r stations. The phytoplankton communities<br />

are considerably different <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn <strong>and</strong><br />

nor<strong>the</strong>rn parts <strong>of</strong> <strong>the</strong> lake. In <strong>the</strong> nor<strong>the</strong>rn part yellowgreen<br />

algae, diatoms <strong>and</strong> green algae are abundant;<br />

<strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part, where <strong>the</strong> polluted wastewater<br />

from <strong>the</strong> Pechenganikel plant is discharged, bluegreen<br />

algae were actively develop<strong>in</strong>g (Figure 1b). At<br />

<strong>the</strong> outflow, where Lake Kuetsjarvi is connected to <strong>the</strong><br />

Figure 1. Phytoplankton communities <strong>of</strong> <strong>the</strong> Pasvik River <strong>in</strong> August-September 2012: а) all stations; b) Lake Kuetsjarvi.<br />

61


Figure 2. Total phytoplankton abundance <strong>of</strong> <strong>the</strong> Pasvik River <strong>in</strong> August–September 2012, mln.cells/m 3 : а) differences<br />

between Ruskebukta <strong>and</strong> o<strong>the</strong>r stations; b) differences between o<strong>the</strong>r stations.<br />

Figure 3.Trophic status <strong>of</strong> <strong>the</strong> different parts <strong>of</strong> <strong>the</strong> Pasvik River accord<strong>in</strong>g to Kitaev (1984): a) phytoplankton<br />

photosyn<strong>the</strong>tic pigments, mg/m 3 ; b) phytoplankton biomass, g/m 3 .<br />

Pasvik River, <strong>the</strong> algae abundance was found to be<br />

m<strong>in</strong>imal while <strong>the</strong> range <strong>of</strong> species was large. This is<br />

possibly a result <strong>of</strong> mix<strong>in</strong>g <strong>of</strong> hydro-chemically different<br />

water masses, which creates suitable conditions<br />

for development <strong>of</strong> various phytoplankton species.<br />

The highest <strong>in</strong>dicators Shannon-Weaver <strong>in</strong>dex was<br />

found at <strong>the</strong> stations Golfstream <strong>and</strong> Salmijarvi <strong>in</strong><br />

Lake Kuetsjarvi, which might be due to mix<strong>in</strong>g <strong>of</strong> different<br />

water masses. The permanent presence <strong>of</strong> nutrients<br />

along with <strong>in</strong>creased m<strong>in</strong>eralization (amount <strong>of</strong><br />

all ions determ<strong>in</strong>ed dur<strong>in</strong>g water analysis (mg/l)) supports<br />

development <strong>of</strong> non-typical subarctic plankton<br />

communities with a large portion <strong>of</strong> green algae. The<br />

lowest species diversity was found <strong>in</strong> Ruskebukta associated<br />

with <strong>the</strong> absolute dom<strong>in</strong>ation <strong>of</strong> Urosolenia<br />

eriensis.<br />

The amount <strong>of</strong> photosyn<strong>the</strong>tic pigments <strong>in</strong> phytoplankton<br />

is used <strong>in</strong> monitor<strong>in</strong>g <strong>of</strong> <strong>the</strong> status, natural<br />

seasonal processes, anthropogenic impact <strong>and</strong> pollution<br />

level <strong>of</strong> water bodies <strong>in</strong> <strong>in</strong>dustrially developed regions<br />

<strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn Kola Pen<strong>in</strong>sula (Sharov 2004). It<br />

is used as an <strong>in</strong>dicator for assessment <strong>of</strong> phytoplankton<br />

productivity <strong>and</strong> biomass (V<strong>in</strong>berg 1960).<br />

Accord<strong>in</strong>g to chlorophyll a concentration <strong>the</strong> trophic<br />

status <strong>of</strong> <strong>the</strong> Pasvik River areas under study ranges<br />

from α-oligotrophic (Skrukkebukta) to β-mesotrophic<br />

(Kuetsjarvi, Kolosjoki) (Figure 3a). The highest concentrations<br />

<strong>of</strong> chlorophyll a <strong>in</strong> 2012 were <strong>in</strong> <strong>the</strong> eutrophied<br />

areas <strong>of</strong> Ruskebukta <strong>and</strong> Lake Kuetsjarvi; <strong>the</strong>se<br />

data correlate well with <strong>the</strong> <strong>in</strong>dicators <strong>of</strong> phytoplankton<br />

abundance <strong>and</strong> hydrochemical analysis results.<br />

The concentrations <strong>of</strong> phaeopigments <strong>and</strong> carotenoids<br />

were <strong>the</strong> highest <strong>in</strong> Lake Kuetsjarvi <strong>and</strong> Raja-<br />

62


koski, which is a sign <strong>of</strong> a higher detritus concentration<br />

<strong>in</strong> <strong>the</strong> water column or presence <strong>of</strong> ag<strong>in</strong>g plankton<br />

populations with a slowed-down photosyn<strong>the</strong>tic activity.<br />

Ruskebukta had <strong>the</strong> lowest concentration <strong>of</strong> carotenoids,<br />

which confirms active development <strong>of</strong> phytoplankton<br />

<strong>and</strong> its high photosyn<strong>the</strong>tic activity.<br />

In 2012 <strong>the</strong> phytoplankton biomass <strong>in</strong> <strong>the</strong> Pasvik<br />

river-<strong>and</strong>-lake system varied from 0.23 (Skrukkebukta)<br />

to 2.94 g/m 3 (Lake Kuetsjarvi, Kolosjoki). The highest<br />

biomass levels were typical <strong>of</strong> Lake Kuetsjarvi <strong>and</strong><br />

Ruskebukta <strong>and</strong> <strong>the</strong>ir trophic status may be regarded<br />

as α- <strong>and</strong> β-mesotrophic; <strong>the</strong> o<strong>the</strong>r water bodies have<br />

reta<strong>in</strong>ed <strong>the</strong>ir oligotrophic status (Figure 3b). The average<br />

biomass level <strong>of</strong> phytoplankton <strong>in</strong> <strong>the</strong> study<br />

lakes did not exceed <strong>the</strong> biomass level <strong>of</strong> <strong>the</strong> Kola<br />

Pen<strong>in</strong>sula lakes: 0.6–2.5 g/m 3 for <strong>the</strong> tundra <strong>and</strong> forest<br />

tundra lakes <strong>and</strong> 0.56–2.96 g/m 3 for <strong>the</strong> north taiga<br />

lakes (Letanskaya 1974, Kupetzkaya et al.1976).<br />

Seasonal dynamics <strong>of</strong> phytoplankton<br />

The seasonal dynamics <strong>of</strong> phytoplankton communities<br />

were studied <strong>in</strong> Lake Kuetsjarvi (station Golfstream).<br />

The phytoplankton abundance is comparatively high<br />

already <strong>in</strong> June with green algae be<strong>in</strong>g <strong>the</strong> most abundant,<br />

<strong>the</strong> portion <strong>of</strong> diatoms is also large <strong>and</strong> d<strong>in</strong>ophytes<br />

<strong>and</strong> yellow-green algae are develop<strong>in</strong>g. In July<br />

<strong>the</strong> total algae abundance rema<strong>in</strong>s at <strong>the</strong> same level<br />

as <strong>in</strong> June but blue-green algae develop. Also <strong>the</strong> proportion<br />

<strong>of</strong> green algae <strong>in</strong>creases, diatoms decrease,<br />

d<strong>in</strong>ophytes virtually disappear <strong>and</strong> <strong>the</strong> abundance <strong>of</strong><br />

yellow-green algae also decreases considerably. Later<br />

by August <strong>the</strong> total phytoplankton abundance decreases,<br />

mostly because <strong>the</strong> growth <strong>of</strong> green algae slowed<br />

down; yellow-green algae disappear entirely, <strong>the</strong><br />

portion <strong>of</strong> blue-green algae decreas <strong>and</strong> <strong>the</strong> abundance<br />

<strong>of</strong> diatoms rema<strong>in</strong>ed at <strong>the</strong> same level.<br />

The seasonal dynamics <strong>of</strong> phytoplankton <strong>in</strong> Lake<br />

Kuetsjarvi are not typical for subarctic lakes due to<br />

<strong>in</strong>tensive development <strong>of</strong> green algae, which start<br />

active growth already <strong>in</strong> June. At <strong>the</strong> same time, <strong>the</strong><br />

abundance <strong>of</strong> diatoms <strong>and</strong> yellow-green algae, <strong>the</strong> typical<br />

<strong>in</strong>habitants <strong>of</strong> subarctic, is relatively low.<br />

Saprobity <strong>in</strong>dex <strong>and</strong> water quality<br />

Saprobity <strong>in</strong>dex was estimated for assessment <strong>of</strong> organic<br />

pollution level for each research area. At <strong>the</strong> time<br />

<strong>of</strong> study <strong>the</strong> saprobity <strong>in</strong>dex <strong>of</strong> <strong>the</strong> water bodies<br />

varied with<strong>in</strong> 1.2–1.89, which correlates with a relatively<br />

low pollution level (GOST 17.1.3.07-82). The<br />

lowest saprobity <strong>in</strong>dex was <strong>in</strong> Tjerebukta <strong>and</strong> <strong>the</strong><br />

highest <strong>in</strong> Ruskebukta, where <strong>the</strong>re was massive development<br />

<strong>of</strong> Urosolenia eriensis. Saprobity <strong>in</strong>dices<br />

were relatively high <strong>in</strong> Lake Kuetsjarvi: at <strong>the</strong> stations<br />

Belyi kamen, Salmijarvi, <strong>and</strong> Kolosjoki <strong>the</strong> water quality<br />

class was III whereas <strong>the</strong> stations Golfstream <strong>and</strong><br />

Shuonijoki are <strong>in</strong> <strong>the</strong> class II. This may be <strong>in</strong>terpreted<br />

as ano<strong>the</strong>r pro<strong>of</strong> <strong>of</strong> different conditions with<strong>in</strong> this water<br />

body.<br />

Long-term dynamics <strong>of</strong> phytoplankton<br />

Assessment <strong>of</strong> many-year dynamics <strong>of</strong> quantitative<br />

<strong>in</strong>dicators <strong>of</strong> phytoplankton, especially biomass, is<br />

important for underst<strong>and</strong><strong>in</strong>g <strong>the</strong> long-term changes<br />

<strong>in</strong> <strong>the</strong> ecosystem <strong>of</strong> <strong>the</strong> Pasvik watercourse. A grow-<br />

Figure 4. Long-term phytoplankton biomass dynamics (g/m 3 ): a) Lake Kuetsjarvi; b) O<strong>the</strong>r water bodies <strong>of</strong> <strong>the</strong><br />

Pasvik River system.<br />

63


<strong>in</strong>g trend <strong>in</strong> phytoplankton biomass was observed <strong>in</strong><br />

Lake Kuetsjarvi from 1994 to 2012 with all <strong>the</strong> values<br />

<strong>in</strong>dicat<strong>in</strong>g mesotrophic state. In <strong>the</strong> o<strong>the</strong>r water<br />

bodies <strong>the</strong> maximum values were observed <strong>in</strong> 1998<br />

<strong>and</strong> 2008 but <strong>in</strong> 2012 <strong>the</strong>re was a decrease. No clear<br />

trend has been determ<strong>in</strong>ed, which is due to <strong>the</strong> different<br />

conditions <strong>in</strong> each lake as well as to irregular<br />

sampl<strong>in</strong>g periods <strong>in</strong> different seasons. The average<br />

biomass values for Lake Kuetsjarvi were higher than<br />

those for <strong>the</strong> o<strong>the</strong>r water bodies (Figure 4). The average<br />

biomass values for <strong>the</strong> Pasvik watercourse system<br />

seem to confirm that its trophic status is chang<strong>in</strong>g<br />

from β-oligotrophic to β-mesotrophic.<br />

Considerable changes have taken place <strong>in</strong> <strong>the</strong><br />

phytoplankton species composition. In August 1994<br />

diatoms dom<strong>in</strong>ated <strong>in</strong> different areas <strong>of</strong> <strong>the</strong> Pasvik<br />

River <strong>and</strong> <strong>the</strong> portion <strong>of</strong> blue-green algae was <strong>in</strong>significant<br />

(Sharov 2004). In July 1996 several groups<br />

<strong>in</strong>clud<strong>in</strong>g green <strong>and</strong> yellow-green algae <strong>and</strong> diatoms<br />

dom<strong>in</strong>ated. In September 2008 <strong>the</strong> same taxa dom<strong>in</strong>ated<br />

<strong>in</strong> many areas but blue-green algae abundance<br />

was <strong>in</strong>creased compared to <strong>the</strong> previous years, which<br />

may be associated with favorable meteorological factors,<br />

water temperatures etc. The high abundance <strong>of</strong><br />

blue-green algae also implies a possibility <strong>of</strong> massive<br />

phytoplankton development outbreaks that may take<br />

place <strong>in</strong> favorable conditions.<br />

In Lake Kuetsjarvi <strong>the</strong> changes <strong>in</strong> phytoplankton<br />

species composition are more prom<strong>in</strong>ent still. Diatoms<br />

<strong>and</strong> yellow-green algae that dom<strong>in</strong>ated earlier are<br />

be<strong>in</strong>g gradually replaced by green <strong>and</strong> blue-green algae,<br />

especially <strong>in</strong> <strong>the</strong> latest years. This may be regarded<br />

as an <strong>in</strong>dicator <strong>of</strong> a warm<strong>in</strong>g trend <strong>in</strong> <strong>the</strong> climate<br />

change. Algae growth is also facilitated by reduction<br />

<strong>of</strong> toxic load <strong>in</strong> <strong>the</strong> latest decade.<br />

Periphyton<br />

Study <strong>of</strong> periphyton <strong>in</strong> <strong>the</strong> Pasvik River has not been<br />

conducted. However, <strong>in</strong> <strong>the</strong> rocky substrate <strong>in</strong> shallow<br />

waters near <strong>the</strong> Janiskoski reservoir outflow an unusual<br />

massive foul<strong>in</strong>g formed <strong>of</strong> diatom Didymosphenia<br />

gem<strong>in</strong>ata (Lyngb.) Schmidt colonies was discovered.<br />

This phenomenon is known as “Brown plague: Didymo”<br />

which has been a worldwide serious problem for<br />

stream<strong>in</strong>g water bodies with coldish conditions <strong>in</strong> <strong>the</strong><br />

latest years (International…, 2013).<br />

The structure <strong>of</strong> colonies <strong>of</strong> D. gem<strong>in</strong>ata associated<br />

with o<strong>the</strong>r algae, ma<strong>in</strong>ly with diatoms, creates firm slimy<br />

algal mats on <strong>the</strong> rocky substrate cover<strong>in</strong>g <strong>the</strong> river<br />

bed. Massive development <strong>of</strong> D. gem<strong>in</strong>ata does<br />

not require a large amount <strong>of</strong> nutrients or higher water<br />

temperature. The species is widespread but it is only<br />

<strong>in</strong> <strong>the</strong> latest decades that mass development outbreaks<br />

have been observed particularly <strong>in</strong> <strong>the</strong> areas<br />

where <strong>the</strong>y were not common before (International…<br />

2013). The dense colonies disrupt <strong>the</strong> natural habitats<br />

<strong>of</strong> typical arctic water fauna, <strong>in</strong>clud<strong>in</strong>g benthos<br />

<strong>and</strong> fish, <strong>and</strong> <strong>the</strong> changes affect potential spawn<strong>in</strong>g<br />

sites <strong>and</strong> trophic cha<strong>in</strong>s. Massive development <strong>of</strong> D.<br />

gem<strong>in</strong>ata def<strong>in</strong>itely poses a certa<strong>in</strong> threat to <strong>the</strong> Pasvik<br />

River ecosystem function<strong>in</strong>g <strong>and</strong> <strong>the</strong> occurrence<br />

could be regarded as a sign <strong>of</strong> global climate change<br />

(Lavery et al. 2014).<br />

Zooplankton<br />

Zooplankton is an <strong>in</strong>tegral component <strong>of</strong> aquatic<br />

ecosystems. In subarctic lakes <strong>the</strong> ma<strong>in</strong> flows <strong>of</strong> organic<br />

substances <strong>and</strong> energy from producers to higher<br />

trophic levels go through <strong>the</strong> communities <strong>of</strong> Protozoa,<br />

Rotatoria <strong>and</strong> Crustacea. Zooplankton plays an<br />

important role <strong>in</strong> <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> resource potential<br />

<strong>of</strong> <strong>the</strong> lakes as it holds <strong>the</strong> <strong>in</strong>termediate position<br />

between bacterioplankton, phytoplankton, benthos<br />

<strong>and</strong> fish. Prevalence <strong>of</strong> species need<strong>in</strong>g higher water<br />

quality is characteristic <strong>of</strong> nor<strong>the</strong>rn water bodies,<br />

which means higher sensitivity to <strong>in</strong>dustrial impact.<br />

The taxonomic structure <strong>of</strong> zooplankton community is<br />

a good <strong>in</strong>dicator <strong>of</strong> <strong>the</strong> pollution degree <strong>of</strong> <strong>the</strong> water<br />

body.<br />

Zooplankton plays a significant role <strong>in</strong> <strong>the</strong> determ<strong>in</strong>ation<br />

<strong>of</strong> fishery productivity <strong>of</strong> <strong>the</strong> water body as it is<br />

one <strong>of</strong> <strong>the</strong> feed resources for fish. In terms <strong>of</strong> feed <strong>the</strong><br />

most valuable organisms should be considered <strong>the</strong><br />

crustacean genuses Daphnia, Bosm<strong>in</strong>a, Bythotrepes,<br />

Eudiaptomus, Heterocope <strong>and</strong> Cyclops.<br />

Materials <strong>and</strong> methods<br />

Zooplankton was sampled at <strong>the</strong> same stations as<br />

phytoplankton (Introduction, Figure 1). Quantitative<br />

samples were taken with a bathometer (<strong>of</strong> 2 l <strong>and</strong> 6 l)<br />

from <strong>the</strong> surface to <strong>the</strong> bottom every o<strong>the</strong>r meter with<br />

dist<strong>in</strong>guish<strong>in</strong>g layers: surface–2 m; 2–5 m, 5–10 m,<br />

10 m–bottom. All qualitative samples were taken with<br />

a qualitative Apste<strong>in</strong> net. Lugol’s solution was used as<br />

a fixative.<br />

Sampl<strong>in</strong>g <strong>and</strong> <strong>the</strong> required calculations were performed<br />

accord<strong>in</strong>g to st<strong>and</strong>ard practices <strong>of</strong> hydrobiological<br />

monitor<strong>in</strong>g (Abakumov 1992). The calculation<br />

64


Table 3. Structural <strong>and</strong> functional <strong>in</strong>dicators <strong>of</strong> zooplankton.<br />

Parameter Rajakoski Tjerebukta Ruskebukta Vaggatem Skrukkebukta<br />

Abundance (N), 10 3 <strong>in</strong>d./m 3 76.4 37.6 239.8 67.7 75.2<br />

Biomass (B), g wet weight/m 3 0.2 0.7 1.8 0.5 0.4<br />

N Rot<br />

: N Clad<br />

: N Cop<br />

, % 93.1:2.7:4.2 63.8:28.3:8.0 85.3:10.7:4.0 85.2:12.1:2.7 92.5:3.3:4.2<br />

B Rot<br />

: B Clad<br />

: B Cop<br />

, % 18.1:58.2:21.4 22.0:64.8:8.4 14.7:62.6:22.4 24.9:70.0:0.7 27.3:16.6:53.1<br />

B Crust<br />

/B Rot<br />

4.5 3.7 5.8 3 2.6<br />

N Clad<br />

/N Cop<br />

0.6 3.5 2.6 4.5 0.7<br />

B 3<br />

/B 2<br />

0.2 0.2 0.3 0.1 1.7<br />

Shannon <strong>in</strong>dex, bit/<strong>in</strong>d. 2.1 2.8 2.1 2.3 2.1<br />

w=B/N, mg 0.002 0.02 0.007 0.007 0.005<br />

Saprobity (water quality class) 1.8 (III) 1.7 (III) 2.1 (III) 1.7 (III) 1.9 (III)<br />

Trophic state (Kitaev, 1984) α-oligotrophic β-oligotrophic α-mesotrophic α-oligotrophic α-oligotrophic<br />

<strong>of</strong> <strong>in</strong>dividual mass <strong>of</strong> organisms was based on <strong>the</strong> ratio<br />

<strong>of</strong> <strong>the</strong> length <strong>and</strong> body mass <strong>of</strong> planktonic Rotatoria<br />

<strong>and</strong> Crustacea (Ruttner-Kolisko 1977; Balushk<strong>in</strong>a<br />

& V<strong>in</strong>berg 1979). The calculations <strong>of</strong> <strong>the</strong> abundance<br />

<strong>and</strong> biomass were performed with a statistical programme<br />

package (Syarki 1996).<br />

Saprobity <strong>in</strong>dex (Pantle & Bukk <strong>in</strong> Sladecek modification)<br />

was calculated proceed<strong>in</strong>g from <strong>the</strong> <strong>in</strong>dividual<br />

characteristics <strong>of</strong> <strong>the</strong> species saprobity accord<strong>in</strong>g to<br />

st<strong>and</strong>ard practices. Water quality was evaluated by<br />

hydrobiological <strong>in</strong>dicators: <strong>the</strong> total number <strong>of</strong> organisms<br />

(<strong>in</strong>dividuals/m 3 ), <strong>the</strong> total number <strong>of</strong> species, <strong>the</strong><br />

total <strong>of</strong> biomass (g/m 3 ), <strong>the</strong> number <strong>of</strong> <strong>the</strong> ma<strong>in</strong> groups<br />

(<strong>in</strong>dividuals/m 3 ), <strong>the</strong> biomass <strong>of</strong> <strong>the</strong> ma<strong>in</strong> groups (g/<br />

m 3 ), <strong>the</strong> number <strong>of</strong> species <strong>in</strong> <strong>the</strong> group, <strong>the</strong> ma<strong>in</strong> species<br />

<strong>and</strong> <strong>the</strong> species <strong>in</strong>dicative <strong>of</strong> saprobity (description,<br />

% from <strong>the</strong> total number, saprobity).<br />

Accord<strong>in</strong>g to <strong>the</strong> classification <strong>of</strong> lakes on <strong>the</strong> Kitaev’s<br />

trophic scale (1984), <strong>the</strong> lakes with <strong>the</strong> biomass<br />

<strong>of</strong> zooplankton 16 g/m 3 to a very high class (hypertrophic).<br />

Results<br />

The species detected <strong>in</strong> <strong>the</strong> zooplankton community<br />

<strong>of</strong> <strong>the</strong> Pasvik watercourse were typical for oligotrophic,<br />

cold lakes <strong>and</strong> rivers. The majority <strong>of</strong> <strong>the</strong> zooplankton<br />

community <strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g period was represented by<br />

rotifers. Cladoceran “f<strong>in</strong>e” filtrators Bosm<strong>in</strong>a sp. <strong>and</strong><br />

Daphnia sp. were detected. Also calanoids Eudiaptomus<br />

gracilis Sars <strong>and</strong> Eudiaptomus graciloides Lilljeborg,<br />

which are sensitive to pollution <strong>and</strong> valuable<br />

<strong>in</strong> terms <strong>of</strong> fish feed, were found <strong>in</strong> all studied lakes<br />

except <strong>in</strong> Skrukkebukta. The amount <strong>of</strong> zooplankton<br />

species varied from 12 to 14; at Skrukkebukta 8 taxa<br />

<strong>of</strong> <strong>the</strong> species range were detected.<br />

The ratio <strong>of</strong> <strong>the</strong> ma<strong>in</strong> taxonomic groups (Rotatоria:<br />

Cladocera: Copepoda) (Table 3) <strong>of</strong> zooplankton community<br />

shows that when tak<strong>in</strong>g rotifers prevail <strong>in</strong> numers<br />

but cladocerans dom<strong>in</strong>ate <strong>in</strong> biomass <strong>in</strong> all <strong>the</strong><br />

stations except <strong>in</strong> Skrukkebukta where copepods<br />

dom<strong>in</strong>ate. Shannon species diversity <strong>in</strong>dex by number<br />

varied <strong>in</strong> <strong>the</strong> range <strong>of</strong> 2.1–2.8 bit/<strong>in</strong>dividuals <strong>and</strong> <strong>the</strong><br />

highest value was obta<strong>in</strong>ed at <strong>the</strong> Tjerebukta station.<br />

The <strong>in</strong>dex value <strong>of</strong> <strong>the</strong> average <strong>in</strong>dividual zooplankter<br />

mass <strong>in</strong> <strong>the</strong> community varied with<strong>in</strong> <strong>the</strong> range <strong>of</strong><br />

0.002 mg (Rajakoski)–0.02 mg (Tjerebukta) <strong>and</strong> <strong>the</strong><br />

mean was 0.008 mg.<br />

The highest abundance was noted at <strong>the</strong> Ruskebukta<br />

station (239.8 10 3 <strong>in</strong>d./m 3 ) where <strong>the</strong> biomass<br />

was 1.8 g wet weight/m 3 . At o<strong>the</strong>r sites <strong>the</strong> total abundance<br />

<strong>and</strong> biomass were not high <strong>and</strong> were characteristic<br />

<strong>of</strong> <strong>the</strong> oligotrophic water bodies (37.6–76.4 10 3<br />

<strong>in</strong>d./m 3 <strong>and</strong> 0.2–0.7 g wet weight/m 3 ). Accord<strong>in</strong>g to <strong>the</strong><br />

saprobity <strong>in</strong>dex <strong>the</strong> water <strong>of</strong> <strong>the</strong> studied sites characterized<br />

as α-mesosaprobic <strong>and</strong> <strong>in</strong> <strong>the</strong> III water quality<br />

class. Accord<strong>in</strong>g to <strong>the</strong> Kitaev’s trophic scale <strong>the</strong> lakes<br />

are α-oligotrophic type except for Ruskebukta, which<br />

is α-mesotrophic type.<br />

65


Conclusions<br />

The phytoplankton species composition <strong>in</strong> <strong>the</strong> Pasvik<br />

watercourse is characterized by high diversity <strong>and</strong> it<br />

is different <strong>in</strong> different reaches. 95 algae taxa have<br />

been found at <strong>the</strong> level one order lower than genus.<br />

Relatively high species diversity is typical <strong>of</strong> <strong>the</strong> border<br />

area conditions comb<strong>in</strong><strong>in</strong>g water masses different<br />

<strong>in</strong> hydrodynamic <strong>and</strong> hydrochemical properties.<br />

Diatoms, blue-green <strong>and</strong> yellow-green algae were<br />

<strong>the</strong> most abundant taxonomic groups. Abundance <strong>of</strong><br />

green algae separates Lake Kuetsjarvi from o<strong>the</strong>r stations.<br />

In Ruskebukta a massive development <strong>of</strong> <strong>the</strong><br />

diatom Urosolenia eriensis was observed, which is a<br />

sign <strong>of</strong> eutrophication.<br />

The highest chlorophyll a concentrations <strong>in</strong> 2012<br />

were detected <strong>in</strong> Ruskebukta <strong>and</strong> Lake Kuetsjarvi<br />

which correlates with <strong>in</strong>dicators <strong>of</strong> phytoplankton<br />

abundance <strong>and</strong> hydrochemical analyses results. Accord<strong>in</strong>g<br />

to chlorophyll a concentration <strong>the</strong> trophic status<br />

<strong>of</strong> study areas ranges from α-oligotrophic (Skrukkebukta)<br />

to β-mesotrophic (Kuetsjarvi, Kolosjoki). The<br />

phytoplankton biomass <strong>in</strong> <strong>the</strong> Pasvik River areas <strong>in</strong><br />

2012 was with<strong>in</strong> 0.23–2.94 g/m 3 which does not exceed<br />

<strong>the</strong> average values for <strong>the</strong> Kola Pen<strong>in</strong>sula. The<br />

saprobity <strong>in</strong>dex calculated accord<strong>in</strong>g to phytoplankton<br />

<strong>in</strong>dicators was with<strong>in</strong> 1.27–1.89, which means a relatively<br />

low water pollution level (Water quality classes<br />

II <strong>and</strong> III).<br />

The many-year dynamics <strong>of</strong> phytoplankton biomass<br />

<strong>in</strong> Lake Kuetsjarvi show an <strong>in</strong>creas<strong>in</strong>g trend<br />

as a result <strong>of</strong> reduction <strong>of</strong> toxic load <strong>and</strong> anthropogenic<br />

eutrophication supported by climate warm<strong>in</strong>g.<br />

In o<strong>the</strong>r water bodies no <strong>in</strong>crease <strong>in</strong> production has<br />

been found. However, analysis <strong>of</strong> <strong>the</strong> collected data<br />

is difficult because <strong>of</strong> different conditions <strong>in</strong> each station<br />

<strong>and</strong> irregular <strong>in</strong>tervals <strong>in</strong> sampl<strong>in</strong>g <strong>in</strong> different seasons.<br />

Synchronization <strong>of</strong> sampl<strong>in</strong>g at each station is<br />

recommended for collection <strong>of</strong> representative data.<br />

The species composition <strong>and</strong> structure <strong>of</strong> phytoplankton<br />

communities <strong>in</strong> <strong>the</strong> Pasvik River has undergone<br />

a number <strong>of</strong> considerable changes. The previously<br />

dom<strong>in</strong>at<strong>in</strong>g diatoms <strong>and</strong> yellow-green algae are<br />

be<strong>in</strong>g replaced by green <strong>and</strong> blue-green algae which<br />

confirms climate warm<strong>in</strong>g <strong>and</strong> presence <strong>of</strong> eutrophication<br />

processes.<br />

The ratio <strong>of</strong> <strong>the</strong> ma<strong>in</strong> taxonomic groups <strong>of</strong> zooplankton<br />

<strong>in</strong> total number reflects <strong>the</strong> prevalence <strong>of</strong><br />

Rotatoria, <strong>and</strong> <strong>of</strong> <strong>the</strong> biomass <strong>the</strong> groups <strong>of</strong> “f<strong>in</strong>e” <strong>and</strong><br />

“coarse” filtrators, which are valuable fish feed. Shannon<br />

species diversity <strong>in</strong>dex by <strong>the</strong> number <strong>of</strong> zooplankton<br />

has a relatively high value, also characteristic<br />

<strong>of</strong> <strong>the</strong> oligotrophic water bodies. It should be noted<br />

that low content <strong>of</strong> taxa <strong>and</strong> high quantitative values<br />

at some stations can be expla<strong>in</strong>ed by multifactorial impact<br />

<strong>and</strong> by <strong>the</strong> period <strong>of</strong> plankton sampl<strong>in</strong>g<br />

Zooplankton can be used to evaluate <strong>the</strong> water<br />

quality. Based on <strong>the</strong> analysis <strong>of</strong> qualitative <strong>and</strong> quantitative<br />

structural <strong>and</strong> functional <strong>in</strong>dicators a conclusion<br />

can be made that <strong>the</strong> sites under study <strong>of</strong> <strong>the</strong> Pasvik<br />

river-<strong>and</strong>-lake system (Rajakoski, Tjerebukta, Ruskebukta,<br />

Vaggatem, Skrukkebukta) have an oligotrophic<br />

status <strong>and</strong> average saprobity <strong>of</strong> α-mesosaprobic.<br />

The water bodies belong <strong>in</strong> <strong>the</strong> III water quality class,<br />

“slightly polluted.” They are <strong>of</strong> α-oligotrophic type except<br />

for Ruskebukta, which is α-mesotrophic type.<br />

Bloom <strong>of</strong> blue-green algae. Photo: Juha Riihimäki<br />

66


References<br />

Abakumov, V.A. (edit.)1992: Guidel<strong>in</strong>es for freshwater ecosystems’ hydrobiological monitor<strong>in</strong>g. Hydromete Sa<strong>in</strong>t Petersburg.<br />

320 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Balushk<strong>in</strong>a, E.V., V<strong>in</strong>berg, G.G. 1979: Ratio <strong>of</strong> <strong>the</strong> length <strong>and</strong> mass <strong>of</strong> <strong>the</strong> body <strong>of</strong> plankton crustacean. In: V<strong>in</strong>berg G.G.<br />

(ed.) Experimental <strong>and</strong> field research <strong>of</strong> <strong>the</strong> biological fundamentals <strong>of</strong> lakes productivity: 58–72. (<strong>in</strong> <strong>Russia</strong>n)<br />

Bar<strong>in</strong>ova, S.S., Medvedeva, L.A. 1996: Atlas <strong>of</strong> algae as saprobic <strong>in</strong>dicators (<strong>Russia</strong>n Far East). Dal’nauka Press. Vladivostok.<br />

364 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

International Didymo Conference: new horizons <strong>in</strong> science <strong>and</strong> management (March, 12–13, 2013, Providence, Rhode,<br />

Isl<strong>and</strong>)/ Hosted by <strong>the</strong> Invasive Species Action Network <strong>and</strong> <strong>the</strong> Nor<strong>the</strong>ast Aquatic Nuisance Species<br />

Kitaev, S.P. 1984: Ecological basis <strong>of</strong> lakes bioproductivity <strong>in</strong> different natural zones. Nauka. Moscow. 207 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Kitaev, S.P. 1984: Ecological fundamentals <strong>of</strong> <strong>the</strong> biological productivity <strong>of</strong> <strong>the</strong> lakes <strong>of</strong> various natural zones. Nauka.<br />

Мoscow. 309 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Krammer, K. & Lange-Bertalot, H. 1986. Bacillariophyceae, volume 1: Naviculaceae. In: Ettl, H., Gerl<strong>of</strong>f, J., Heynig, H.<br />

& Mollenhauer D. (ed.): Süsswasserflora von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer Verlag, Jena. 876 p. (<strong>in</strong><br />

German)<br />

Krammer, K. & Lange-Bertalot, H. 1988. Bacillariophyceae, volume 2: Bacillariaceae, Epi<strong>the</strong>miaceae, Surirellaceae. In: Ettl,<br />

H., Gerl<strong>of</strong>f J., Heynig, H. & Mollenhauer, D. (ed.): Süsswasserflora von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer<br />

Verlag, Jena. 596 p. (<strong>in</strong> German)<br />

Krammer, K. & Lange-Bertalot, H. 1991. Bacillariophyceae, volume 3: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H.,<br />

Gerl<strong>of</strong>f, J., Heynig, H. & Mollenhauer, D. (ed.): Süsswasserflora von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer<br />

Verlag, Jena. 576 p. (<strong>in</strong> German)<br />

Krammer, K. & Lange-Bertalot, H. 1991. Bacillariophyceae, volume 4: Achnanthaceae. Kritishce Ergänzungen zu Navicula<br />

(L<strong>in</strong>eolatae) und Gomphonema. In: Ettl, H., Gärtner, G., Gerl<strong>of</strong>f, J., Heynig, H. & Mollenhauer, D. (ed.): Süsswasserflora<br />

von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer Verlag, Jena. 437 p. Krammer K. 2000: The genus P<strong>in</strong>nularia. In: H.<br />

Lange-Bertalot (ed.), Diatoms <strong>of</strong> Europe. 1: A.R.G. Gantner Verlag K.G. Vaduz. 703 p. (<strong>in</strong> German)<br />

Krammer, K. 2000: P<strong>in</strong>nularia. In: Lange-Bertalot, H. (ed.): Diatoms <strong>of</strong> Europe, volume 1. A.R.G. Gantner Verlag K.G. Ruggell.<br />

703 p.<br />

Krammer, K. 2002: Cymbella. In: Lange-Bertalot, H. (ed.): Diatoms <strong>of</strong> Europe, volume 3. A.R.G. Gantner Verlag K.G. Ruggell.<br />

584 p.<br />

Krammer, K. 2003: Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. In: Lange-Bertalot, H. (ed.):<br />

Diatoms <strong>of</strong> Europe, volume 4. A.R.G. Gantner Verlag K.G.. Ruggell. 530 p.<br />

Kupetzkaya, GK., Velikoretzkaya, I.I., Zenus, B.G., et al. 1976: Large lakes <strong>of</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula. Nauka. Len<strong>in</strong>grad. 349 p.<br />

(<strong>in</strong> <strong>Russia</strong>n)<br />

Lange-Bertalot, H. 2001: Navicula sensu stricto. 10 Genera Separated from Navicula sensu lato. Frustulia.In: Lange-Bertalot,<br />

H. (ed.): Diatoms <strong>of</strong> Europe, volume 2. A.R.G. Gantner Verlag K.G.. Ruggell. 526 p.<br />

Lavery, J.M., Kurek, J., Rühl<strong>and</strong>, K.M., Gillis, C.A, Pisaric, M.F.J., Smol, J.P. 2014: Explor<strong>in</strong>g <strong>the</strong> environmental context <strong>of</strong><br />

recent Didymosphenia gem<strong>in</strong>ata proliferation <strong>in</strong> Gaspésie, Quebec, us<strong>in</strong>g paleolimnology – Canadian Journal <strong>of</strong> Fisheries<br />

<strong>and</strong> Aquatic Sciences 71(4): 616-626.<br />

Letanskaya, G.I. 1974: Phytoplankton <strong>and</strong> primary production <strong>in</strong> lakes <strong>of</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula. Lakes <strong>of</strong> different l<strong>and</strong>scapes<br />

<strong>of</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula. P.2: 143–179. (<strong>in</strong> <strong>Russia</strong>n)<br />

Makrush<strong>in</strong>, A.V. 1974: Biological analysis <strong>of</strong> water quality. Len<strong>in</strong>grad. 60 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Fiscal management provided by <strong>the</strong> Nor<strong>the</strong>ast Aquatic Nuisance Species Council 2013: Panel. 44 p.<br />

Ruttner-Kolisko, A. 1977: Suggestion for biomass calculation <strong>of</strong> planktonic Rotatoria. Archiv für Hydrobiologie – Beiheft<br />

Ergebnisse der Limnologie 8: 71–78.<br />

Sharov, A.N. 2004: Phytoplankton <strong>in</strong> water bodies <strong>of</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula. Petrozavodsk: Karelian Research Center, RAS.<br />

113 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Syarki, М.Т. 1996: Thesis report from <strong>the</strong> <strong>in</strong>ternational conference <strong>in</strong> Petrozavodsk. 159 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Tikkanen, T: Kasviplanktonopas. Suomen luonnonsuojelun tuki. Forssa. 278 p. (<strong>in</strong> F<strong>in</strong>nish)<br />

V<strong>in</strong>berg, G.G. 1960: Primary production <strong>of</strong> water bodies. M<strong>in</strong>sk. 329 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

67


5 Aquatic macrophytes <strong>of</strong> Lake Inarijärvi<br />

<strong>and</strong> <strong>the</strong> Pasvik River<br />

JUHA RIIHIMÄKI, MARIT MJELDE, SEPPO HELLSTEN<br />

Regulation <strong>of</strong> <strong>the</strong> water level <strong>of</strong> Lake Inarijärvi <strong>and</strong> <strong>the</strong><br />

Pasvik River due to hydropower production is probably<br />

<strong>the</strong> strongest human <strong>in</strong>duced pressure on aquatic<br />

ecosystem <strong>in</strong> <strong>the</strong> Pasvik River bas<strong>in</strong>. The global climate<br />

change will also have several effects on hydrological<br />

cycle; chang<strong>in</strong>g <strong>the</strong> tim<strong>in</strong>g <strong>of</strong> high water levels <strong>and</strong><br />

discharges <strong>and</strong> thus affect<strong>in</strong>g <strong>the</strong> habitat conditions<br />

<strong>of</strong> aquatic organisms (see Chapter 3, Climate change<br />

impacts on hydrology <strong>and</strong> water level fluctuation).<br />

Assessment <strong>of</strong> <strong>the</strong> ecological status <strong>of</strong> Lake Inarijärvi<br />

<strong>and</strong> <strong>the</strong> Pasvik River us<strong>in</strong>g aquatic macrophytes as<br />

biological elements is important.<br />

Materials <strong>and</strong> methods<br />

Macrophyte data was collected from lakes Inarijärvi,<br />

Muddusjärvi <strong>and</strong> Nitsijärvi <strong>and</strong> <strong>the</strong> Pasvik River. Lakes<br />

Muddusjärvi <strong>and</strong> Nitsijärvi are unregulated lakes<br />

<strong>and</strong> are used as reference lakes. All lakes are classified<br />

as “large oligohumic lakes (North)” <strong>in</strong> F<strong>in</strong>nish lake<br />

typology (Aroviita et al. 2012). The lakes <strong>in</strong> <strong>the</strong> Pasvik<br />

River are classified as low alkal<strong>in</strong>ity, clear lakes us<strong>in</strong>g<br />

Norwegian typology (Direktoratsgruppa 2013).<br />

Field work on macrophyte sampl<strong>in</strong>g <strong>in</strong> <strong>the</strong> lakes<br />

Inarijärvi, Muddusjärvi <strong>and</strong> Nitsijärvi was done 31.7.–<br />

15.8.2012. Macrophyte data was ga<strong>the</strong>red us<strong>in</strong>g <strong>the</strong><br />

F<strong>in</strong>nish “Ma<strong>in</strong> belt transect method” (Kuoppala et al.<br />

2008). Observations <strong>of</strong> macrophyte species were made<br />

along a 5 m wide transect perpendicular to shorel<strong>in</strong>e.<br />

Start<strong>in</strong>g po<strong>in</strong>t for <strong>the</strong> transects were at <strong>the</strong> upper<br />

eulittoral <strong>and</strong> extended to <strong>the</strong> outer depth limit <strong>of</strong> <strong>the</strong><br />

macrophyte vegetation. All macrophyte species (<strong>in</strong>clud<strong>in</strong>g<br />

helophytes <strong>and</strong> bryophytes) were recorded, <strong>and</strong><br />

frequency <strong>and</strong> abundance for each species was estimated<br />

us<strong>in</strong>g a cont<strong>in</strong>uous percentage scale.<br />

In Lake Inarijärvi 24 transects <strong>in</strong> 5 areas were surveyed.<br />

Lakes Muddusjärvi <strong>and</strong> Nitsijärvi had 25 evenly<br />

distributed transects. Total area surveyed differs<br />

among <strong>the</strong> lakes s<strong>in</strong>ce <strong>the</strong> length <strong>of</strong> transects are determ<strong>in</strong>ed<br />

by <strong>the</strong> outer limit <strong>of</strong> <strong>the</strong> vegetation on transect.<br />

Total length <strong>of</strong> transects <strong>and</strong> hence also <strong>the</strong> total<br />

area was higher <strong>in</strong> Lake Nitsijärvi than <strong>in</strong> <strong>the</strong> o<strong>the</strong>r<br />

two lakes.<br />

The macrophyte survey <strong>in</strong> <strong>the</strong> Pasvik River took<br />

place 27.–30. August 2013. Here, <strong>the</strong> macrophyte<br />

data was collected us<strong>in</strong>g both <strong>the</strong> F<strong>in</strong>nish <strong>and</strong> <strong>the</strong><br />

Norwegian field methods. The Norwegian method<br />

(Mjelde 2013) <strong>in</strong>cludes only true aquatic macrophytes<br />

(i.e. isoetids, elodeids, nymphaeids, lemnids <strong>and</strong> charophytes).<br />

Helophytes, bryophytes <strong>and</strong> filamentous<br />

algae are excluded. Different habitats, from shore<br />

to maximum vegetation depth, are surveyed <strong>and</strong> <strong>the</strong><br />

species are recorded us<strong>in</strong>g an aquascope <strong>and</strong> collected<br />

by dredg<strong>in</strong>g from a boat. Species abundance<br />

is estimated us<strong>in</strong>g a semi-quantitative scale (1=rare,<br />

2=scattered, 3=common, 4=locally dom<strong>in</strong>ant <strong>and</strong><br />

5=dom<strong>in</strong>ant) <strong>and</strong> maximum depth distribution <strong>of</strong> vegetation<br />

is noted.<br />

The Norwegian field method was applied also <strong>in</strong> <strong>in</strong><br />

previous macrophyte study <strong>in</strong> <strong>the</strong> Pasvik River (Moiseenko<br />

et al. 1993) <strong>and</strong> <strong>the</strong> same study sites on <strong>the</strong><br />

Norwegian side <strong>of</strong> <strong>the</strong> river were used <strong>in</strong> both surveys.<br />

A total <strong>of</strong> 15 sites us<strong>in</strong>g Norwegian method was<br />

visited. The F<strong>in</strong>nish field method was applied for 14 <strong>of</strong><br />

those sites, with one transect on each site.<br />

Ecological status <strong>of</strong> <strong>the</strong> lakes <strong>and</strong> <strong>the</strong> Pasvik River<br />

was assessed us<strong>in</strong>g macrophytes accord<strong>in</strong>g <strong>the</strong> European<br />

Union Water Framework Directive. Assessment<br />

method for F<strong>in</strong>nish lake macrophytes was used for <strong>the</strong><br />

lakes <strong>and</strong> both F<strong>in</strong>nish <strong>and</strong> Norwegian methods were<br />

used for <strong>the</strong> Pasvik River.<br />

F<strong>in</strong>nish assessment method is a multimetric <strong>in</strong>dex<br />

comb<strong>in</strong><strong>in</strong>g results <strong>of</strong> three different metrics: Proportion<br />

<strong>of</strong> type specific taxa (TT50), Percent Model Aff<strong>in</strong>ity<br />

(PMA) <strong>and</strong> Trophic <strong>in</strong>dex (RI) (see Vuori et al. 2009,<br />

Aroviita et al. 2012). Observed metric values <strong>of</strong> studied<br />

lakes are divided by <strong>the</strong> average metric values <strong>of</strong><br />

reference lakes (expected values) to calculate Ecological<br />

Quality Ratio (EQR) for each metric. EQRs are<br />

scaled to common thresholds so that scaled EQR value<br />

0.8 is threshold for high/good status, 0,6 for good/<br />

moderate, 0.4 for moderate/poor <strong>and</strong> 0.2 for poor/bad.<br />

Norwegian assessment method (TIc <strong>in</strong>dex) is<br />

based on <strong>the</strong> relationship between <strong>the</strong> number <strong>of</strong> sensitive<br />

<strong>and</strong> tolerant species <strong>in</strong> relation to eutrophication<br />

(Mjelde 2013). EQR is calculated us<strong>in</strong>g observed TIc<br />

68


<strong>in</strong>dex <strong>and</strong> expected TIc <strong>in</strong>dex value obta<strong>in</strong>ed from <strong>the</strong><br />

reference lakes.<br />

Results<br />

Lakes Inarijärvi, Muddusjärvi <strong>and</strong> Nitsijärvi<br />

The total number <strong>of</strong> observed macrophyte species<br />

<strong>in</strong> <strong>the</strong> studied lakes was 45, <strong>of</strong> which only 18 species<br />

were common to all three lakes, 12 species were<br />

common for two lakes <strong>and</strong> 15 species were observed<br />

only <strong>in</strong> one lake. However, <strong>the</strong> total number <strong>of</strong> observed<br />

species per lake was quite even: <strong>in</strong> Lake Inarijärvi<br />

<strong>the</strong>re were 33 species, <strong>in</strong> Lake Muddusjärvi 31 <strong>and</strong> <strong>in</strong><br />

Lake Nitsijärvi 29.<br />

Classification <strong>of</strong> true aquatic macrophytes (helophytes<br />

<strong>and</strong> bryophytes are omitted) accord<strong>in</strong>g to<br />

<strong>the</strong>ir <strong>in</strong>dicator value related to sensitivity <strong>and</strong> tolerance<br />

aga<strong>in</strong>st eutrophication (Penn<strong>in</strong>g 2008 a, b) showed<br />

very similar composition among <strong>the</strong> lakes. Eutrophication-tolerant<br />

species were totally miss<strong>in</strong>g from all<br />

<strong>of</strong> <strong>the</strong> lakes <strong>and</strong> <strong>the</strong> species pool was dom<strong>in</strong>ated by<br />

eutrophication-sensitive species with only few <strong>in</strong>different<br />

species per lake.<br />

Ecological status <strong>of</strong> <strong>the</strong> Lake Inarijärvi was assessed<br />

us<strong>in</strong>g F<strong>in</strong>nish multimetric <strong>in</strong>dex for lake<br />

macrophytes. Macrophyte data from lakes Muddusjärvi,<br />

Nitsijärvi, Kitkajärvi <strong>and</strong> Yli-Kitka were used as<br />

reference data. Average EQR <strong>of</strong> <strong>the</strong> three metrics was<br />

0.81, so Lake Inarijärvi was assessed to be slightly <strong>in</strong><br />

high ecological status based on aquatic macrophytes.<br />

For each separate metrics <strong>the</strong> EQR value was also<br />

clearly above good/moderate boundary.<br />

The Pasvik River<br />

Total number <strong>of</strong> macrophyte species, <strong>in</strong>clud<strong>in</strong>g true<br />

aquatic macrophytes, bryophytes <strong>and</strong> helophytes, observed<br />

<strong>in</strong> <strong>the</strong> Pasvik River sites was 47. 37 <strong>of</strong> <strong>the</strong>m<br />

were observed us<strong>in</strong>g <strong>the</strong> F<strong>in</strong>nish field method <strong>and</strong> 34<br />

us<strong>in</strong>g <strong>the</strong> Norwegian field method (only true aquatic<br />

macrophytes). The number <strong>of</strong> species per site was<br />

higher us<strong>in</strong>g <strong>the</strong> Norwegian method <strong>in</strong> all but one site<br />

(site 4). Average number <strong>of</strong> species per site us<strong>in</strong>g <strong>the</strong><br />

F<strong>in</strong>nish method <strong>and</strong> <strong>the</strong> Norwegian method were 11<br />

<strong>and</strong> 14 <strong>and</strong> range (m<strong>in</strong>–max) 5–17 <strong>and</strong> 4–22 species,<br />

respectively.<br />

There is a clear difference <strong>in</strong> <strong>the</strong> field methods that<br />

affects <strong>the</strong> results. In <strong>the</strong> F<strong>in</strong>nish method also helophytes<br />

<strong>and</strong> bryids are observed <strong>and</strong> <strong>the</strong> number <strong>of</strong><br />

visited sites at <strong>the</strong> Pasvik River was different. When<br />

compar<strong>in</strong>g results us<strong>in</strong>g only common sites <strong>and</strong> common<br />

observed growth forms, <strong>the</strong> total number <strong>of</strong> observed<br />

plant species us<strong>in</strong>g <strong>the</strong> F<strong>in</strong>nish <strong>and</strong> Norwegian<br />

field method were 27 <strong>and</strong> 33 species, respectively.<br />

Number <strong>of</strong> species per site is clearly higher <strong>in</strong> all<br />

sites with <strong>the</strong> Norwegian method when comparison<br />

was made us<strong>in</strong>g only common sites <strong>and</strong> growth forms<br />

(Figure 1). In this comparison <strong>the</strong> average number<br />

Number <strong>of</strong> species<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

New 1 2 3 4 5 6 7 8 9 14 15 18 19<br />

Species per site FI<br />

Species per site NO<br />

Figure 1. Number <strong>of</strong> species per <strong>the</strong> Pasvik River macrophyte study site us<strong>in</strong>g<br />

<strong>the</strong> F<strong>in</strong>nish field method (FI) <strong>and</strong> <strong>the</strong> Norwegian field method (NO) with common<br />

growth forms <strong>and</strong> sites.<br />

69


Table 1. Ecological status assessment <strong>of</strong> <strong>the</strong> Pasvik River lakes us<strong>in</strong>g <strong>the</strong> F<strong>in</strong>nish <strong>and</strong> Norwegian status assessment methods. Numbers after<br />

lake names <strong>in</strong>dicate site codes. The F<strong>in</strong>nish method was not applied on site 16.<br />

Data<br />

The Pasvik River (all<br />

sites)<br />

RI TT50SO PMA Total (FI) TIc<br />

EQR Status EQR Status EQR Status EQR Status EQR Status<br />

0.72 Good 0.62 Good 0.66 Good 0.67 Good 0.90 Good<br />

Hestefoss (new) 0.60 Good 0.70 Good 0.12 Bad 0.47 Moderate 1.11 High<br />

Fjørevatnet (1) 0.65 Good 0.47 Moderate 0.06 Bad 0.39 Poor 0.88 Goog<br />

Vaggatem (2,3,4,5,6) 1.13 High 0.87 High 0.55 Moderate 0.85 High 0.89 Good<br />

Langvatn (7,8) 1.00 High 0.70 Good 0.75 Good 0.82 High 0.98 High<br />

Fuglebukta (9) 1.13 High 1.03 High 0.63 Good 0.93 High 1.00 High<br />

Svanvatn (14, 15, 16) 0.74 Good 0.70 Good 0.61 Good 0.68 Good 0.87 Good<br />

Björnvatn (18, 19) 1.13 High 0.70 Good 0.46 Moderate 0.76 Good 0.91 Good<br />

<strong>of</strong> species per site us<strong>in</strong>g <strong>the</strong> F<strong>in</strong>nish method <strong>and</strong> <strong>the</strong><br />

Norwegian method were 9 <strong>and</strong> 15 <strong>and</strong> range (m<strong>in</strong>–<br />

max) number <strong>of</strong> species 3–14 <strong>and</strong> 4–22 species, respectively.<br />

Ecological status assessment gave quite similar results<br />

when F<strong>in</strong>nish <strong>and</strong> Norwegian assessment methods<br />

were compared us<strong>in</strong>g RI <strong>in</strong>dex <strong>and</strong> TIc <strong>in</strong>dex,<br />

<strong>and</strong> all <strong>the</strong> Pasvik River lakes were classified to high<br />

or good status (Table 1). Also, when comb<strong>in</strong>ed F<strong>in</strong>nish<br />

multimetric <strong>in</strong>dex was used, most <strong>of</strong> <strong>the</strong> lakes<br />

were classified to high or good status, except Hestefoss<br />

<strong>and</strong> Fjørevatnet where low number <strong>of</strong> sites made<br />

PMA <strong>in</strong>dex unstable <strong>and</strong> lowered status (Table 1). Results<br />

showed that relatively similar RI <strong>and</strong> TIc <strong>in</strong>dices<br />

gave exactly <strong>the</strong> same results show<strong>in</strong>g relatively high<br />

status <strong>of</strong> <strong>the</strong> Pasvik River lakes.<br />

Macrophyte composition was also assessed by<br />

us<strong>in</strong>g a water level regulation <strong>in</strong>dex developed by<br />

Mjelde et al. (2012). The <strong>in</strong>dex showed that all lakes<br />

except Hestefoss <strong>and</strong> Langvatn were <strong>in</strong> better than<br />

moderate status. However, this <strong>in</strong>dex is developed for<br />

lakes regulated for hydroelectric power with (more or<br />

less) considerable w<strong>in</strong>ter drawdown. The lakes <strong>in</strong> <strong>the</strong><br />

Pasvik River have different regulation regimes, with<br />

limited w<strong>in</strong>ter drawdown.<br />

Aquatic macrophyte diversity <strong>of</strong> <strong>the</strong> Pasvik River is<br />

significantly higher compared to o<strong>the</strong>r large rivers <strong>in</strong><br />

<strong>Norway</strong> (exclud<strong>in</strong>g River Glomma, which is situated<br />

<strong>in</strong> sou<strong>the</strong>rn <strong>Norway</strong> <strong>and</strong> represents naturally higher<br />

diversity gradients).<br />

Discussion<br />

The ecological status <strong>of</strong> Lake Inarijärvi based on<br />

aquatic macrophytes was high. Water level regulation<br />

for hydropower production is considered to be <strong>the</strong><br />

dom<strong>in</strong>ant human <strong>in</strong>duced pressure to Lake Inarijärvi<br />

s<strong>in</strong>ce nutrient load<strong>in</strong>g due to human activity are estimated<br />

to be relatively low. Average water level fluctuation<br />

dur<strong>in</strong>g <strong>the</strong> period 2000–2009 has been about<br />

1.40 meters, which is about 0.30 meters larger than<br />

<strong>the</strong> natural water level fluctuation (Puro-Tahvana<strong>in</strong>en<br />

et. al. 2011). Water level regulation <strong>in</strong>duced effects<br />

on littoral areas at Lake Inarijärvi are limited <strong>and</strong> <strong>the</strong><br />

macrophyte communities are well adapted to <strong>the</strong> current<br />

conditions. However, it should be noted that vertical<br />

extension <strong>of</strong> sedges (Carex spp.) has decreased<br />

<strong>and</strong> also areas <strong>of</strong> spr<strong>in</strong>g-flood depended vegetation<br />

are smaller.<br />

The macrophyte surveys <strong>in</strong> <strong>the</strong> Pasvik River lakes<br />

showed similar high-good status <strong>in</strong> almost all lakes.<br />

Despite <strong>the</strong> fact that <strong>the</strong> whole river has changed significantly<br />

<strong>and</strong> consists <strong>of</strong> cascades <strong>of</strong> hydropower<br />

reservoirs, macrophyte species composition resembles<br />

natural. It should be noted that water level <strong>of</strong> lakes<br />

is relatively stable <strong>and</strong> without significant w<strong>in</strong>ter<br />

drawdown. W<strong>in</strong>ter drawdown is one <strong>of</strong> <strong>the</strong> most significant<br />

factors negatively affect<strong>in</strong>g <strong>the</strong> status <strong>of</strong> lake<br />

macrophytes, as shown <strong>in</strong> several studies (Mjelde et<br />

al. 2013, <strong>and</strong> references here<strong>in</strong>). On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>,<br />

more or less stable water levels (as <strong>in</strong> <strong>the</strong> Pasvik River<br />

lakes) positively affect <strong>the</strong> abundance <strong>of</strong> several<br />

aquatic macrophyte species. However, abundance <strong>of</strong><br />

helophytes <strong>and</strong> especially sedges is much lower than<br />

70


<strong>in</strong> lakes with normal spr<strong>in</strong>g flood reflect<strong>in</strong>g decreased<br />

water level fluctuation.<br />

The Pasvik River water quality reflects largely <strong>the</strong><br />

outflow <strong>of</strong> Lake Inarijärvi, which <strong>in</strong> general is <strong>in</strong> good<br />

status. Therefore, <strong>the</strong> number species <strong>in</strong>dicat<strong>in</strong>g<br />

eutrophication is low even <strong>in</strong> areas affected by <strong>the</strong><br />

Pechenganikel.<br />

Biological monitor<strong>in</strong>g <strong>of</strong> Lake Inarijärvi <strong>and</strong> <strong>the</strong> Pasvik<br />

River us<strong>in</strong>g macrophytes is well established <strong>and</strong><br />

usable <strong>in</strong> its current state. Both F<strong>in</strong>nish <strong>and</strong> Norwegian<br />

field methods <strong>and</strong> ecological status assessment<br />

show similar results regardless <strong>of</strong> <strong>the</strong> obvious disparities<br />

<strong>in</strong> <strong>the</strong> field methods. Aquatic macrophyte surveys<br />

are lack<strong>in</strong>g from <strong>the</strong> <strong>Russia</strong>n side <strong>of</strong> <strong>the</strong> Pasvik River<br />

bas<strong>in</strong>, hence we recommend sett<strong>in</strong>g up comparable<br />

macrophyte monitor<strong>in</strong>g <strong>and</strong> apply<strong>in</strong>g <strong>the</strong> status assessment<br />

system also to <strong>the</strong> <strong>Russia</strong>n area <strong>of</strong> <strong>the</strong> river<br />

bas<strong>in</strong>.<br />

Macrophyte studies <strong>in</strong> <strong>the</strong> Pasvik River. Photos: Juha Riihimäki<br />

71


References<br />

Aroviita, J., Hellsten, S., Jyväsjärvi, J., Järvenpää, L., Järv<strong>in</strong>en, M., Karjala<strong>in</strong>en S. M., Kauppila, P., Keto, A., Kuoppala, M.,<br />

Manni, K., Mannio, J., Mitikka, S., Ol<strong>in</strong>, M., Perus, J., Pilke, A., Rask, M., Riihimäki, J., Ruuskanen, A., Siimes, K., Sutela,<br />

T., Vehanen, T., Vuori, K.-M. 2012: Ohje p<strong>in</strong>tavesien ekologisen ja kemiallisen tilan luokitteluun vuosille 2012–2013 −<br />

päivitetyt arvio<strong>in</strong>tiperusteet ja niiden soveltam<strong>in</strong>en. (Guidel<strong>in</strong>es for <strong>the</strong> ecological <strong>and</strong> chemical status classification <strong>of</strong><br />

surface waters for 2012–2013 – updated assessment criteria <strong>and</strong> <strong>the</strong>ir application). Ympäristöhall<strong>in</strong>non ohjeita 7/2012,<br />

144 p. (<strong>in</strong> F<strong>in</strong>nish)<br />

Kuoppala M., Hellsten S., Kann<strong>in</strong>en A. 2008: Sisävesien vesikasviseurantojen laadunvarmennus (Development <strong>of</strong> quality<br />

control <strong>in</strong> aquatic macrophyte monitor<strong>in</strong>g). Suomen ympäristö 36: 1–93.<br />

EEA 2008: European River Catchments. GIS database. http://www.eea.europa.eu/data-<strong>and</strong>-maps/data/european-rivercatchments-1<br />

Hellsten, S., Willby, N., Ecke, F., Mjelde, M., Phillips, G., Tierney, D., Poikane S. (ed.). 2014: Water Framework Directive<br />

Intercalibration Technical Report: Nor<strong>the</strong>rn Lake Macrophyte ecological assessment methods. JRC Technical Reports.<br />

Luxembourg: Publications Office <strong>of</strong> <strong>the</strong> European Union., ISBN: 978-92-79-35470-0<br />

Lap<strong>in</strong> ympäristökeskus 2010: Tenon–Näätämöjoen–Paatsjoen vesienhoitoalueen vesienhoitosuunnitelma vuoteen 2015.<br />

(Teno – Näätämö – Paatsjoki River bas<strong>in</strong> management plan for 2015). 123 p. (<strong>in</strong> F<strong>in</strong>nish)<br />

Mjelde, M. 2013. Vannplanter. I: Direktoratsgruppa 2013. Veileder 02:2013 Klassifiser<strong>in</strong>g av miljøtilst<strong>and</strong> i vann (<strong>in</strong> Norwegian).<br />

Mjelde, M., Hellsten, S., Ecke, F. 2013: A water level drawdown <strong>in</strong>dex for aquatic macrophytes <strong>in</strong> Nordic lakes. Hydrobiologia<br />

704: 141–151<br />

Moiseenko, T., Mjelde, M., Br<strong>and</strong>rud, T., Brettum, P., Dauvalter, V., Kagan, L., Kashul<strong>in</strong>, N., Kudriavtseva, L., Luk<strong>in</strong>, A., S<strong>and</strong>imirov,<br />

S., Traaen, T.S., V<strong>and</strong>ysh, O., Yakovlev, V. 1994: Pasvik River Watercourse, Barents Region: Pollution Impacts<br />

<strong>and</strong> Ecological Responses. Investigations <strong>in</strong> 1993. - Institute <strong>of</strong> North Industrial Ecology Problems (<strong>Russia</strong>), Norwegian<br />

Institute for Water Research (<strong>Norway</strong>). NIVA-report OR-3118. 87 p.<br />

Penn<strong>in</strong>g, W. E., Dudley, B., Mjelde, M., Hellsten, S., Hanganu, J., Kolada, A., van den Berg, M., Maemets, H., Poikane, S.,<br />

Phillips, G., Willby, N., Ecke, F. 2008a: Us<strong>in</strong>g aquatic macrophyte community <strong>in</strong>dices to def<strong>in</strong>e <strong>the</strong> ecological status <strong>of</strong><br />

European lakes. Aquatic Ecology 42: 253–264.<br />

Penn<strong>in</strong>g, W. E., Mjelde, M., Dudley, B., Hellsten, S., Hanganu, J., Kolada, A., van den Berg, M., Maemets, H., Poikane, S.,<br />

Phillips, G., Willby, N., Ecke, F. 2008b: Classify<strong>in</strong>g aquatic macrophytes as <strong>in</strong>dicators <strong>of</strong> eutrophication <strong>in</strong> European lakes.<br />

Aquatic Ecology 42: 237–251.<br />

Puro-Tahvana<strong>in</strong>en, A., Aroviita, J., Järv<strong>in</strong>en, E. A., Kuoppala, M., Marttunen, M., Nurmi, T., Riihimäki, J., Salonen, E. 2011:<br />

Inarijärven tilan kehittym<strong>in</strong>en vuos<strong>in</strong>a 1960–2009, (Development <strong>of</strong> <strong>the</strong> status <strong>of</strong> Lake Inari between 1960 <strong>and</strong> 2009).<br />

Suomen ympäristö 19/2011, 89 p. (<strong>in</strong> F<strong>in</strong>nish, with abstracts <strong>in</strong> Swefish <strong>and</strong> <strong>in</strong> English)<br />

UNECE 2011: Second Assessment <strong>of</strong> transboundary rivers, lakes <strong>and</strong> groundwaters. EDE/MP.WAT/33, United Nations.<br />

Vuori, K., Mitikka, S., Vuoristo, H. 2009: P<strong>in</strong>tavesien ekologisen tilan luokittelu (Guidance on ecological classification <strong>of</strong> surface<br />

waters <strong>in</strong> F<strong>in</strong>l<strong>and</strong>. Part 1: Reference conditions <strong>and</strong> classification criteria, Part 2: <strong>Environmental</strong> impact assessment).<br />

Ympäristöopas 3/2009, 120 p. (<strong>in</strong> F<strong>in</strong>nish)<br />

Tak<strong>in</strong>g a break <strong>in</strong> Lake Muddusjärvi. Photo: Juha Riihimäki<br />

72


6 Zoobenthos <strong>of</strong> Lake Inarijärvi <strong>and</strong> <strong>the</strong><br />

Pasvik River<br />

MIKKO TOLKKINEN, EMMANUELA DAZA SECCO, JUKKA AROVIITA, SVETLANA VALKOVA<br />

Alteration <strong>of</strong> natural water level regime due to<br />

construction <strong>of</strong> dams <strong>and</strong> reservoirs for hydropower<br />

production <strong>and</strong> flood control is one <strong>of</strong> <strong>the</strong> major<br />

anthropogenic disturbances <strong>in</strong> freshwater ecosystems<br />

(Dynesius & Nilsson 1994, Coops et al. 2003). The<br />

ma<strong>in</strong> effects <strong>of</strong> water level regulation are shore-l<strong>in</strong>e<br />

erosion caused by raised water level, changes <strong>in</strong> <strong>the</strong><br />

annual water dynamics <strong>and</strong> changes <strong>in</strong> mean open<br />

water level (Hellsten 1998). Water level modifications<br />

are likely to be exacerbated <strong>in</strong> future by global climate<br />

change because <strong>of</strong> greater frequency <strong>of</strong> floods <strong>and</strong><br />

droughts (Dudgeon et al. 2006). Altered variation <strong>of</strong><br />

water level impacts especially <strong>the</strong> littoral zone <strong>of</strong> lakes<br />

where organisms, both zoobenthos <strong>and</strong> fish, can<br />

be affected directly by desiccation <strong>and</strong> <strong>in</strong>directly by<br />

a reduction <strong>in</strong> habitat availability <strong>and</strong> food resources<br />

(e.g. Gasith & Gafny 1990).<br />

Lake Inarijärvi belongs to <strong>the</strong> Pasvik River water<br />

system <strong>in</strong> F<strong>in</strong>nish Lapl<strong>and</strong>. Inarijärvi is a subarctic oligotrophic<br />

lake which has been regulated <strong>in</strong> <strong>the</strong> Pasvik<br />

area for hydropower production s<strong>in</strong>ce 1941, with<br />

a yearly water level fluctuation <strong>of</strong> ~1.38 m (Palomäki<br />

& Hellsten 1996, Hellsten et al. 1997). Regulation<br />

activities have caused coastal erosion <strong>and</strong> structural<br />

changes <strong>in</strong> aquatic vegetation <strong>and</strong> zoobenthic <strong>and</strong><br />

fish communities (Hellsten et al. 1997).<br />

This report presents <strong>the</strong> status <strong>of</strong> zoobenthic communities<br />

<strong>of</strong> rocky shores <strong>and</strong> s<strong>of</strong>t bottom habitats <strong>in</strong><br />

Lake Inarijärvi <strong>in</strong> September 2012 <strong>and</strong> <strong>in</strong> <strong>the</strong> Pasvik<br />

River 2013. Report also summarises <strong>the</strong> results from<br />

earlier monitor<strong>in</strong>g <strong>of</strong> <strong>the</strong> same sites. In addition, unregulated<br />

nearby lakes Nitsijärvi <strong>and</strong> Muddusjärvi were<br />

sampled <strong>in</strong> 2012 for regional references to more accurately<br />

evaluate <strong>the</strong> status <strong>of</strong> <strong>the</strong> zoobenthic communities<br />

<strong>in</strong> <strong>the</strong> Pasvik River catchment.<br />

Materials <strong>and</strong> methods<br />

Zoobenthos was sampled from lakes Inarijärvi, Nitsijärvi<br />

<strong>and</strong> Muddusjärvi <strong>in</strong> 2012 <strong>and</strong> <strong>the</strong> Pasvik River<br />

<strong>in</strong> 2013 (Introduction, Figure 1). Both s<strong>of</strong>t bottom <strong>and</strong><br />

rocky shore habitats were sampled. Samples were<br />

sieved through a mesh <strong>of</strong> 0.5 mm <strong>and</strong> preserved<br />

with 70 % ethanol. Zoobenthic animals were identified<br />

to genus or species <strong>in</strong> <strong>the</strong> laboratory; Oligochaeta,<br />

Nematoda, Hydracar<strong>in</strong>a <strong>and</strong> Chironomidae were<br />

counted but not identified.<br />

This report also <strong>in</strong>cludes <strong>the</strong> previous decades-old<br />

data from <strong>the</strong> same sites as a basel<strong>in</strong>e for temporal<br />

comparisons. Lakes Nitsijärvi <strong>and</strong> Muddusjärvi were<br />

chosen to reduce latitud<strong>in</strong>al variation <strong>in</strong> reference<br />

zoobenthic communities (Jacobsen et al. 1997, S<strong>and</strong><strong>in</strong><br />

& Johnson 2000).<br />

Structural <strong>and</strong> functional <strong>in</strong>dicators <strong>of</strong> benthic communities<br />

are used as criteria for <strong>the</strong> evaluation <strong>of</strong> water<br />

quality as well as compar<strong>in</strong>g <strong>the</strong> states <strong>of</strong> communities<br />

<strong>and</strong> ecosystems with <strong>in</strong>dustrial <strong>in</strong>fluences (Makrush<strong>in</strong><br />

1984, Balushk<strong>in</strong>a 1987, Shitikov et al. 2003, Semenchenko<br />

2011, Z<strong>in</strong>chenko 2011). Zoobenthos is used to<br />

assess <strong>of</strong> <strong>the</strong> state <strong>of</strong> aquatic ecosystems <strong>and</strong> water<br />

quality as it is <strong>the</strong> most long-lived component <strong>of</strong> community<br />

reflect<strong>in</strong>g <strong>the</strong> state over a long period <strong>of</strong> time<br />

<strong>and</strong> describ<strong>in</strong>g its “average” regime. The most widely<br />

used <strong>in</strong>dicators are <strong>the</strong> total abundance (<strong>in</strong>d./m 2 ), <strong>the</strong><br />

total biomass (g/m 2 ), <strong>the</strong> total number <strong>of</strong> species, <strong>the</strong><br />

proportion <strong>of</strong> widespread species <strong>in</strong> <strong>the</strong> community,<br />

<strong>the</strong> <strong>in</strong>dicator species <strong>of</strong> saprobity, <strong>the</strong> abundance <strong>of</strong><br />

<strong>the</strong> ma<strong>in</strong> groups (<strong>in</strong>d/m 2 ) <strong>and</strong> <strong>the</strong> biomass <strong>of</strong> <strong>the</strong> ma<strong>in</strong><br />

groups (g/m 2 ). Kitaev’s trophic scale (1984) classifies<br />

types <strong>of</strong> lake ecosystems based on zoobenthic communities’<br />

quantitative <strong>in</strong>dicators (Table 1).<br />

Goodnight <strong>and</strong> Whitley oligochaetic <strong>in</strong>dex is based<br />

on <strong>the</strong> account<strong>in</strong>g ratio <strong>of</strong> <strong>the</strong> number <strong>of</strong> oligochaetes<br />

<strong>and</strong> o<strong>the</strong>r zoobenthic animals. Woodiwiss biotic <strong>in</strong>dex<br />

values are determ<strong>in</strong>ed <strong>in</strong> <strong>the</strong> biotic <strong>in</strong>dices accord<strong>in</strong>g<br />

to a special table. Both <strong>in</strong>dicators are used to evaluate<br />

<strong>the</strong> water quality <strong>and</strong> to control <strong>of</strong> <strong>the</strong> environmental<br />

compartments’ pollution (Table 2).<br />

In <strong>the</strong> Pasvik River <strong>and</strong> Lake Kuetsjarvi both s<strong>of</strong>t<br />

bottom <strong>and</strong> rocky shore habitats were sampled <strong>in</strong><br />

August–September 2012–2013. Samples were fixed<br />

with 4 % formal<strong>in</strong> or 70–80 % alcohol. The analysis<br />

<strong>of</strong> benthic samples was performed <strong>and</strong> <strong>in</strong>vertebrates<br />

73


Table 1. Kitaev’s trophic scale based on benthic biomass (1984).<br />

Characteristic<br />

Type <strong>of</strong> lake ecosystem<br />

Oligotrophic Mesotrophic Eutrophic<br />

Hypereutrophic<br />

α β α β α β<br />

Benthic biomass, g/m 2 < 1.25 1.2–2.5 2.5-5 5-10 10-20 20-40 > 40<br />

Table 2. Classification <strong>of</strong> water quality <strong>in</strong> ponds <strong>and</strong> streams <strong>in</strong> terms <strong>of</strong> zoobenthos (GOST 17.1.3.07-82).<br />

Water quality<br />

class<br />

Degree <strong>of</strong> water pollution<br />

Goodnight <strong>and</strong> Whitley<br />

oligochaetic <strong>in</strong>dex, %<br />

Woodiwiss biotic<br />

<strong>in</strong>dex, scores<br />

The saprobity zone<br />

I Extremely clear 1 – 20 10 Oligosaprobic<br />

II Clear 21 – 35 7 – 9 Oligosaprobic<br />

III Moderately polluted 36 – 50 5 – 6 β-mesosaprobic<br />

IV Polluted 51 – 65 4 α-mesosaprobic<br />

V Extremely polluted 66 – 85 2 – 3 Polysaprobic<br />

Isoperla sp. Photo Mira Grönroos<br />

Micrasema gelium.<br />

Photo Mira Grönroos<br />

Benthic macro<strong>in</strong>vertebrate research.<br />

Photo Mirkka Hadzic<br />

74


were identified <strong>and</strong> <strong>the</strong>ir biomass was calculated as<br />

wet weight.<br />

Community data is presented as total abundances<br />

(sum <strong>of</strong> <strong>in</strong>dividuals/site) for rocky shore habitat <strong>and</strong><br />

as densities (<strong>in</strong>dividuals/m²) for s<strong>of</strong>t bottoms. To summarize<br />

<strong>the</strong> variability <strong>in</strong> community structure among<br />

<strong>the</strong> last three sampl<strong>in</strong>g years (2003, 2008, <strong>and</strong> 2012),<br />

a Non-metric Multidimensional Scal<strong>in</strong>g (NMS based<br />

on Sørensen´s distance) was performed for Lake Inari<br />

community data from both habitats. NMS was also<br />

used to summarize <strong>the</strong> variability <strong>in</strong> rocky shore<br />

community structure among regulated Lake Inarijärvi<br />

<strong>and</strong> <strong>the</strong> Pasvik River <strong>and</strong> unregulated lakes Nitsijärvi<br />

<strong>and</strong> Muddusjärvi. Indicator species analysis (Dufrene<br />

& Legendre 1997) was done to dist<strong>in</strong>guish <strong>the</strong> species<br />

that best expla<strong>in</strong>ed <strong>the</strong> possible difference between<br />

lake group<strong>in</strong>gs.<br />

The community composition was evaluated with<br />

occurrence <strong>of</strong> Type-specific Taxa (TT; Aroviita et al.<br />

2008) <strong>and</strong> relative abundance was evaluated with<br />

<strong>the</strong> Percentage Model Aff<strong>in</strong>ity (PMA; Novak & Bode<br />

1992). Data from unregulated reference lakes Nitsijärvi<br />

<strong>and</strong> Muddusjärvi were used to def<strong>in</strong>e <strong>the</strong> reference<br />

communities <strong>and</strong> to calculate <strong>the</strong> expected values,<br />

<strong>and</strong> to fur<strong>the</strong>r calculate <strong>the</strong> Ecological Quality Ratio<br />

(EQR). The sampl<strong>in</strong>g effort <strong>of</strong> <strong>the</strong> reference lakes<br />

was st<strong>and</strong>ardized with Inarijärvi. Status class boundaries<br />

for each parameter were def<strong>in</strong>ed by us<strong>in</strong>g <strong>the</strong><br />

25 th percentile <strong>of</strong> <strong>the</strong> reference lakes’ EQR distribution<br />

as high-good quality class boundary. The lower quality<br />

classes good, moderate, poor <strong>and</strong> bad were <strong>the</strong>n<br />

def<strong>in</strong>ed between <strong>the</strong> high-good class boundary <strong>and</strong><br />

EQR = 0 at equal class widths.<br />

Results<br />

Taxa composition <strong>and</strong> abundance<br />

Rocky shore communities<br />

The number <strong>of</strong> taxa <strong>and</strong> <strong>in</strong>dividuals <strong>in</strong> all samples <strong>in</strong><br />

Lake Inarijärvi was 42 <strong>and</strong> 2204 respectively. Highest<br />

taxa richness <strong>and</strong> <strong>in</strong>dividuals’ abundance was found <strong>in</strong><br />

Lake Muddusjärvi (Table 3). In average taxa richness<br />

per site was higher <strong>in</strong> <strong>the</strong> Pasvik River than <strong>in</strong> <strong>the</strong> lakes.<br />

After rarefaction to 71 <strong>in</strong>dividuals per site mean<br />

number <strong>of</strong> taxas per site was 10 <strong>in</strong> <strong>the</strong> Pasvik River,<br />

8 <strong>in</strong> Inarijärvi, 9 <strong>in</strong> Nitsijärvi <strong>and</strong> 12 <strong>in</strong> Muddusjärvi. In<br />

<strong>the</strong> Pasvik River number <strong>of</strong> taxa varied between different<br />

river sections. Species richness was highest <strong>in</strong><br />

Vaggatem <strong>and</strong> Svanevatn (37, 25, respectively) <strong>and</strong><br />

lowest <strong>in</strong> Hestefossdammen <strong>and</strong> Skrukkebukta (19,<br />

both). The zoobenthos consisted ma<strong>in</strong>ly <strong>of</strong> Chironomidae<br />

<strong>and</strong> Oligochaeta <strong>in</strong> all sampled water bodies.<br />

There are some differences between study years<br />

(2003, 2008, 2012) <strong>in</strong> taxa richness <strong>and</strong> <strong>in</strong>dividuals’<br />

abundance. Chironomidae <strong>and</strong> Oligochaeta were <strong>the</strong><br />

most abundant groups among <strong>the</strong> <strong>in</strong>vertebrate communities<br />

compris<strong>in</strong>g more than 50 % <strong>of</strong> <strong>the</strong> total abundance.<br />

17 major groups were identified <strong>in</strong> <strong>the</strong> three<br />

sampled years <strong>in</strong> rocky shores <strong>in</strong> Lake Inarijärvi. Zoobenthos<br />

abundance (<strong>in</strong>dividuals per 30 kicknet samples<br />

from 10 sites) was highest <strong>in</strong> 2008 <strong>and</strong> lowest <strong>in</strong><br />

2012.<br />

S<strong>of</strong>t bottom communities<br />

In 2012 32 identified taxa were collected from Lake<br />

Inarijärvi (2 m depth), with an estimated density <strong>of</strong><br />

1746 <strong>in</strong>d./m² <strong>and</strong> an average <strong>of</strong> 9 taxa/site (5–15). 13<br />

Table 3. Total, average (per sites <strong>and</strong> per sample) <strong>and</strong> range (m<strong>in</strong>–max) number <strong>of</strong> zoobenthic taxa <strong>and</strong> <strong>in</strong>dividuals <strong>of</strong><br />

rocky shores from lakes Inarijärvi, Nitsijärvi <strong>and</strong> Muddusjärvi from September 2012.<br />

Total Average site Average sample<br />

Lake Taxa Individuals Taxa Individuals Taxa Individuals<br />

Inarijärvi 42 2204 13<br />

(8-24)<br />

200<br />

(76-435)<br />

8<br />

(3-13)<br />

73<br />

(26-177)<br />

Nitsijärvi 22 484 17<br />

(14-19)<br />

161<br />

(108-202)<br />

8<br />

(5-11)<br />

54<br />

(23-81)<br />

Muddusjärvi 34 835 19<br />

(14-24)<br />

278<br />

(221-370)<br />

11<br />

(4-20)<br />

93<br />

(24-253)<br />

<strong>the</strong> Pasvik River 64 3450 25<br />

(19-37)<br />

459<br />

(212-749)<br />

12<br />

(4-22)<br />

139<br />

(12-393)<br />

75


taxa were collected from Lake Nitsijärvi, where <strong>the</strong><br />

density was 773 <strong>in</strong>d./m² <strong>and</strong> an average <strong>of</strong> 7 taxa/site<br />

(4–19). In Muddusjärvi 19 identified taxa were found<br />

<strong>and</strong> on average density was <strong>of</strong> 925 <strong>in</strong>d./m² <strong>and</strong> 9 taxa/<br />

site. A total <strong>of</strong> 15 major groups were found. Chironomidae<br />

constituted more than 50 % <strong>of</strong> <strong>the</strong> total community.<br />

All major groups were found <strong>in</strong> Inarijärvi while<br />

Isopoda, Plecoptera, <strong>and</strong> Heteroptera were not found<br />

<strong>in</strong> any <strong>of</strong> <strong>the</strong> reference lakes. Gastropoda densities<br />

were especially lower <strong>in</strong> Inarijärvi compared to those<br />

<strong>in</strong> <strong>the</strong> reference lakes.<br />

The temporal follow-up <strong>of</strong> Lake Inarijärvi zoobenthic<br />

communities based on all available data from<br />

literature <strong>and</strong> this study showed that <strong>the</strong> highest densities<br />

<strong>in</strong> s<strong>of</strong>t bottoms were found <strong>in</strong> 1977 with 2217<br />

<strong>in</strong>d./m². In average <strong>the</strong> lowest densities were observed<br />

1965 <strong>and</strong> 1966 (217 <strong>in</strong>d./m²). Communities were<br />

ma<strong>in</strong>ly composed <strong>of</strong> chironomids <strong>and</strong> oligochaetes <strong>in</strong><br />

all studied years. Mean densities were lower for <strong>the</strong><br />

reference lakes. Sampl<strong>in</strong>g effort <strong>and</strong> method differences<br />

exist among <strong>the</strong> studies.<br />

Community structure <strong>and</strong> status<br />

In NMS ord<strong>in</strong>ation samples from <strong>the</strong> Pasvik River<br />

grouped separately from o<strong>the</strong>r lakes, <strong>and</strong> communities<br />

from different river sections <strong>in</strong> <strong>the</strong> Pasvik River<br />

clustered toge<strong>the</strong>r <strong>in</strong>dicat<strong>in</strong>g with<strong>in</strong>-river variation. In<br />

Lake Nitsijärvi Chelifera spp. was <strong>the</strong> only significant<br />

<strong>in</strong>dicator species. In Lake Muddusjärvi Hydrachnellae,<br />

Tipula spp. <strong>and</strong> Oligochaeta were significant <strong>in</strong>dicator<br />

species whereas Asellus aquaticus was <strong>the</strong> only<br />

<strong>in</strong>dicator species <strong>in</strong> <strong>the</strong> Pasvik River. There were no<br />

<strong>in</strong>dicator species <strong>in</strong> Lake Inarijärvi.<br />

In NMS ord<strong>in</strong>ation samples <strong>of</strong> <strong>the</strong> rocky shore community<br />

composition, year 2003 differed quite clearly<br />

from years 2008 <strong>and</strong> 2012. Communities <strong>in</strong> 2008 <strong>and</strong><br />

2012 appeared more widely distributed <strong>in</strong> <strong>the</strong> ord<strong>in</strong>ation<br />

space, suggest<strong>in</strong>g larger differences among <strong>the</strong><br />

sites. In <strong>the</strong> s<strong>of</strong>t bottom communities none <strong>of</strong> <strong>the</strong> years<br />

clustered clearly. In some cases, regardless <strong>of</strong> <strong>the</strong><br />

sampl<strong>in</strong>g year, sites closely located clustered <strong>in</strong> <strong>the</strong><br />

graph suggest<strong>in</strong>g a with<strong>in</strong> lake variation <strong>in</strong> <strong>the</strong> communities<br />

associated to <strong>the</strong> location <strong>of</strong> <strong>the</strong> sites. Generally<br />

no clear trend <strong>in</strong> time for ei<strong>the</strong>r <strong>of</strong> <strong>the</strong> habitats<br />

was observed.<br />

Zoobenthic communities’ status <strong>in</strong> Lake Inarijärvi<br />

was calculated us<strong>in</strong>g subarctic lakes’ communities<br />

as reference. Status assessment <strong>of</strong> macro<strong>in</strong>vertebrate<br />

communities <strong>of</strong> Inarijärvi gave different results<br />

from <strong>the</strong> two parameters analysed. PMA <strong>in</strong>dicates<br />

that most <strong>of</strong> <strong>the</strong> communities from rocky shore <strong>and</strong><br />

s<strong>of</strong>t bottom from different years fall <strong>in</strong>to <strong>the</strong> moderate/<br />

poor class except for <strong>the</strong> rocky shore community from<br />

2012. Results from TT showed that community status<br />

class was good or moderate <strong>in</strong> most cases. TT <strong>in</strong>dex<br />

<strong>in</strong>dicated generally good status class, whereas PMA<br />

<strong>in</strong>dicated moderate status <strong>in</strong> most cases (Table 4).<br />

Table 4. Status <strong>of</strong> zoobenthic communities from Lake Inari based on reference data from unregulated lakes Nitsijärvi <strong>and</strong> Muddusjärvi.<br />

Lake Inarijärvi values were calculated us<strong>in</strong>g data from three r<strong>and</strong>omly selected sites (P1, K4, <strong>and</strong> L4). Community status was<br />

classified as: high (blue), good (green), <strong>and</strong> moderate (yellow). None <strong>of</strong> <strong>the</strong> <strong>in</strong>dex values were found with<strong>in</strong> poor or bad class.<br />

Nitsijärvi <strong>and</strong> Muddusjärvi (n=2)<br />

Lake Habitat Year TT 0.4<br />

PMA EQRs (TT 0.4<br />

) EQRs (PMA)<br />

Inarijärvi Rocky shore 2003 18 0,38 0,64 0,52<br />

Rocky shore 2008 27 0,39 0,96 0,53<br />

Rocky shore 2012 21 0,45 0,75 0,61<br />

average 0,79 0,55<br />

S<strong>of</strong>t bottom 1977 7 0,37 0,44 0,49<br />

S<strong>of</strong>t bottom 2003 13 0,35 0,81 0,46<br />

S<strong>of</strong>t bottom 2008 10 0,34 0,63 0,45<br />

S<strong>of</strong>t bottom 2012 12 0,33 0,75 0,44<br />

average 0,66 0,46<br />

Nitsijärvi Rocky shore 2012 22 0,73 0,78 1,00<br />

S<strong>of</strong>t bottom 2012 12 0,75 0,81 1,00<br />

Muddusjärvi Rocky shore 2012 34 0,73 1,21 1,00<br />

S<strong>of</strong>t bottom 2012 19 0,75 1,18 1,00<br />

76


Status <strong>of</strong> zoobenthos <strong>of</strong> Lake<br />

Kuetsjarvi <strong>and</strong> <strong>the</strong> Pasvik River<br />

Zoobenthos <strong>of</strong> <strong>the</strong> rocky littoral zone <strong>of</strong> <strong>the</strong> Pasvik<br />

River was <strong>in</strong>vestigated at Lake Kuetsjarvi, Vaggatem<br />

<strong>and</strong> Rajakoski. Amphibiotic <strong>in</strong>sects form <strong>the</strong> basis <strong>of</strong><br />

benthic communities <strong>of</strong> all <strong>of</strong> <strong>the</strong> <strong>in</strong>vestigated stations,<br />

among which caddisflies <strong>and</strong> chironomids have <strong>the</strong><br />

highest species diversity. The taxonomic diversity <strong>of</strong><br />

benthos <strong>and</strong> <strong>the</strong> number <strong>of</strong> <strong>in</strong>dicator groups <strong>in</strong>crease<br />

with distance from <strong>the</strong> source <strong>of</strong> pollution.<br />

The Shannon <strong>in</strong>dex (bit/<strong>in</strong>d) is 3.28 <strong>in</strong> Kuetsjarvi,<br />

1.92 <strong>in</strong> Vaggatem <strong>and</strong> 3.35 <strong>in</strong> Rajakoski. In terms <strong>of</strong><br />

saprobity Lake Kuetsjarvi is β-mesosaprobic whereas<br />

<strong>the</strong> o<strong>the</strong>r lakes are oligosaprobic. Kuetsjarvi belongs<br />

to <strong>the</strong> III water quality class, “moderately polluted”,<br />

<strong>and</strong> <strong>the</strong> Woodiwiss <strong>in</strong>dex varies between 6–7. Vaggatem<br />

<strong>and</strong> Rajakoski belong <strong>in</strong> <strong>the</strong> II class, “clear”, <strong>and</strong><br />

<strong>the</strong> Woodiwiss <strong>in</strong>dex values are 7 <strong>and</strong> 8, respectively.<br />

Variety <strong>of</strong> zoobenthos <strong>in</strong> <strong>the</strong> pr<strong>of</strong>undal s<strong>of</strong>t bottoms<br />

<strong>of</strong> Lake Kuetsjarvi <strong>and</strong> <strong>the</strong> Pasvik River is low. 4<br />

systematic groups <strong>of</strong> <strong>in</strong>vertebrates were identified <strong>in</strong><br />

<strong>the</strong> samples. Chironomids (predom<strong>in</strong>antly Procladius<br />

choreus gr.) <strong>and</strong> <strong>the</strong> oligochaetes dom<strong>in</strong>ate <strong>in</strong> benthic<br />

communities <strong>of</strong> <strong>the</strong> Pasvik River at all stations. The o<strong>the</strong>r<br />

groups <strong>of</strong> zoobenthos (ma<strong>in</strong>ly bivalves <strong>and</strong> water<br />

mites) are rare. The quantitative <strong>in</strong>dicators are low at<br />

all stations (Table 5). The maximum benthos density<br />

was observed at Ruskebukta, which is mesotrophic<br />

whereas <strong>the</strong> o<strong>the</strong>r stations are oligotrophic. The m<strong>in</strong>imum<br />

values ​<strong>of</strong> numbers <strong>and</strong> biomass were observed<br />

at Skrukkebukta station, possibly due to greater<br />

depths (> 20 m).<br />

In Lake Kuetsjarvi <strong>the</strong> pr<strong>of</strong>undal zone is characterized<br />

by low taxonomic diversity. Oligochaetes, chironomids<br />

<strong>and</strong> bivalves form <strong>the</strong> basis <strong>of</strong> <strong>the</strong> communities<br />

<strong>and</strong> dipterous larvae, caddisflies <strong>and</strong> water mites<br />

are met sporadically. Quantitative <strong>in</strong>dicators are low.<br />

The number <strong>of</strong> benthos was on average 506.9 <strong>in</strong>d./<br />

m 2 <strong>and</strong> biomass 2.1 g/m 2 with considerable variation<br />

<strong>of</strong> both <strong>in</strong>dicators <strong>in</strong> <strong>the</strong> samples <strong>and</strong> <strong>in</strong> different<br />

zones <strong>of</strong> <strong>the</strong> water body. Shannon <strong>in</strong>dex values are<br />

less than 1 <strong>in</strong> all sampl<strong>in</strong>g stations <strong>of</strong> <strong>the</strong> lake, vary<strong>in</strong>g<br />

between 0.79–0.98 bit/<strong>in</strong>d. Oligochaetic <strong>in</strong>dex was 42<br />

%, “moderately polluted”, with a variation between <strong>the</strong><br />

samples from 20 % to 80 %. The trophic state <strong>of</strong> water<br />

is rated as oligotrophic, largely due to pollution with<br />

Pechenganikel <strong>in</strong>dustrial complex effluents promot<strong>in</strong>g<br />

<strong>the</strong> “oligotrophysation” processes <strong>of</strong> <strong>the</strong> water body<br />

(Yakovlev 2005).<br />

In Lake Kuetsjarvi 18 species <strong>of</strong> Chironomidae were<br />

identified. The basis <strong>of</strong> chironomid communities is<br />

formed <strong>of</strong> Procladius, Cricotopus <strong>and</strong> Chironomus,<br />

which are common <strong>in</strong> polluted lakes. 13 species are<br />

found <strong>in</strong> <strong>the</strong> deepwater zone <strong>of</strong> Lake Kuetsjarvi <strong>and</strong><br />

three species account for > 70 % <strong>of</strong> <strong>the</strong> total number<br />

<strong>of</strong> chironomids: Sergentia corac<strong>in</strong>a, a coldwater species<br />

widespread <strong>in</strong> <strong>the</strong> deepwater zones <strong>of</strong> various lakes<br />

<strong>of</strong> Murmansk Region, <strong>and</strong> Chironomus c<strong>in</strong>gulatus<br />

<strong>and</strong> Prodiamesa olivacea, which are resistant to water<br />

pollution with heavy metals. 9 species <strong>of</strong> chironomids<br />

were found <strong>in</strong> <strong>the</strong> littoral zone <strong>of</strong> Lake Kuetsjarvi: <strong>the</strong><br />

basis <strong>of</strong> communities is formed from <strong>the</strong> Orthocladi<strong>in</strong>ae<br />

subfamily members Cricotopus silvestris gr. <strong>and</strong><br />

Procladius choreus gr., which are commonly found <strong>in</strong><br />

polluted streams.<br />

Discussion<br />

Variation <strong>in</strong> environmental variables caused by lakes’<br />

geographical position (latitude) generally strongly <strong>in</strong>fluences<br />

community structure <strong>and</strong> composition (e.g.<br />

Jacobsen et al. 1997; S<strong>and</strong><strong>in</strong> & Johnson 2000).<br />

Zoobenthic communities <strong>in</strong> <strong>the</strong> unregulated subarctic<br />

lakes (Nitsijärvi <strong>and</strong> Muddusjärvi) differ from<br />

those <strong>in</strong> unregulated more sou<strong>the</strong>rn lakes. For fur<strong>the</strong>r<br />

biomonitor<strong>in</strong>g studies subarctic unregulated reference<br />

Table 5. Composition <strong>and</strong> quantitative <strong>in</strong>dicators <strong>of</strong> deepwater zones’ zoobenthos <strong>of</strong> Lake Kuetsjarvi <strong>and</strong> some stretches <strong>of</strong> <strong>the</strong><br />

Pasvik River.<br />

Species Kuetsjarvi Ruskebukta Skrukkebukta Vaggatem Tjerebukta<br />

Mean values <strong>of</strong> number,<br />

<strong>in</strong>d./m 2 506.0 1211.0 103.8 553.6 276.8<br />

Mean values <strong>of</strong> biomass,<br />

g/m 2 2.1 4.8 0.4 2.2 1.1<br />

Shannon <strong>in</strong>dex,<br />

bit/<strong>in</strong>d.<br />

0.88 1.37 1.0 0.99 0.95<br />

Trophic state oligotrophic mesotrophic oligotrophic<br />

77


lakes should be sampled toge<strong>the</strong>r with Lake Inarijärvi<br />

to avoid bias caused by with<strong>in</strong>-year <strong>and</strong> biogeographical<br />

variability. Additionally, constant monitor<strong>in</strong>g <strong>and</strong> a<br />

larger set <strong>of</strong> reference lakes would give more accurate<br />

results for assessment <strong>of</strong> community status.<br />

In 2012 number <strong>of</strong> taxa <strong>and</strong> <strong>in</strong>dividuals from rocky<br />

shores from Lake Inarijärvi were on average lower<br />

than those <strong>in</strong> <strong>the</strong> unregulated lakes. Littoral zone organisms<br />

are particularly affected by water level regulation<br />

both directly by desiccation <strong>and</strong> <strong>in</strong>directly by a<br />

decrease <strong>in</strong> habitat availability <strong>and</strong> food resources<br />

(Gasith & Gafny 1990). Previous studies (Smith et al.<br />

1987, Aroviita & Hämälä<strong>in</strong>en 2008) have found that<br />

taxa richness decreases with <strong>in</strong>creased regulation<br />

<strong>in</strong>tensity <strong>and</strong> this effect might be stronger <strong>in</strong> boreal<br />

lakes due to <strong>the</strong> exposure <strong>of</strong> <strong>the</strong> regulated zone to<br />

subzero temperatures <strong>and</strong> freez<strong>in</strong>g (Aroviita & Hämälä<strong>in</strong>en<br />

2008). Temporal follow-up <strong>of</strong> zoobenthic communities<br />

from rocky shores from Lake Inarijärvi showed<br />

an <strong>in</strong>crease <strong>in</strong> number <strong>of</strong> <strong>in</strong>dividuals from 2003<br />

to 2008, however, numbers decreased aga<strong>in</strong> <strong>in</strong> 2012.<br />

The small number <strong>of</strong> sampled years toge<strong>the</strong>r with natural<br />

variation makes it difficult to yet estimate any<br />

specific effect <strong>of</strong> water level regulation on rocky shore<br />

macro<strong>in</strong>vertebrate communities.<br />

In s<strong>of</strong>t bottom communities mean densities were<br />

higher <strong>in</strong> Lake Inarijärvi than <strong>in</strong> <strong>the</strong> unregulated lakes<br />

while average number <strong>of</strong> taxa did not differ greatly. In<br />

regulated lakes organic matter tends to accumulate<br />

immediately below <strong>the</strong> drawdown limit which <strong>in</strong> turn<br />

might <strong>in</strong>crease <strong>in</strong>dividuals’ abundance (Palomäki &<br />

Koskenniemi 1993, Furey et al. 2006). Density <strong>of</strong> s<strong>of</strong>t<br />

bottom zoobenthic communities from Lake Inarijärvi<br />

showed a reduction <strong>in</strong> 2003 <strong>and</strong> 2008. The stabilization<br />

<strong>of</strong> shores <strong>and</strong> <strong>in</strong>creased sedimentation <strong>of</strong> organic<br />

matter that has followed water level regulation would<br />

be expected to raise <strong>the</strong> amount <strong>of</strong> specific groups<br />

such as Diptera <strong>and</strong> Oligochaeta, but it has not been<br />

<strong>the</strong> case <strong>in</strong> 2003 <strong>and</strong> 2008. This reduction <strong>in</strong> density<br />

can be attributed to natural among-year variation<br />

<strong>in</strong> environmental conditions such as <strong>the</strong> notably dry<br />

summer <strong>of</strong> 2003.<br />

The results from TT <strong>and</strong> PMA from rocky shores<br />

<strong>and</strong> s<strong>of</strong>t bottom habitats <strong>in</strong>dicate that <strong>the</strong> status <strong>of</strong><br />

<strong>the</strong> communities <strong>in</strong> Lake Inarijärvi falls between good/<br />

moderate <strong>and</strong> poor/moderate conditions respectively.<br />

The discrepancies found between <strong>the</strong> two <strong>in</strong>dices<br />

might be attributed to <strong>the</strong> small number <strong>of</strong> reference<br />

lakes which affects <strong>the</strong>ir accuracy. However, both <strong>in</strong>dices<br />

<strong>in</strong>dicate that communities are affected by water<br />

level regulation.<br />

The Pasvik River water bodies are regarded as<br />

oligotrophic except for mesotrophic Lake Kuetsjarvi.<br />

Saprobity <strong>in</strong>dex <strong>in</strong>dicated low pollution level, except<br />

for Lake Kuetsjarvi, which was β-mesosaprobic. Water<br />

quality classes were ei<strong>the</strong>r II or III for <strong>the</strong> studies<br />

lakes.<br />

Zoobenthic communities <strong>in</strong> unregulated subarctic<br />

lakes clearly differed from <strong>the</strong> regulated Pasvik River.<br />

Water level regulation <strong>and</strong> variation <strong>in</strong> environmental<br />

conditions caused by elevation may impact community<br />

structure, but <strong>the</strong> Pasvik River macro<strong>in</strong>vertebrate<br />

communities conta<strong>in</strong> typical river taxas <strong>and</strong> <strong>the</strong>refore<br />

comparison to subarctic reference lakes may not be<br />

suitable.<br />

Despite water level regulation, species richness<br />

<strong>and</strong> abundance <strong>in</strong> <strong>the</strong> Pasvik River was higher than<br />

<strong>in</strong> <strong>the</strong> reference lakes. This can be expla<strong>in</strong>ed by <strong>the</strong><br />

water level changes <strong>in</strong> <strong>the</strong> Pasvik River be<strong>in</strong>g ra<strong>the</strong>r<br />

moderate dur<strong>in</strong>g <strong>the</strong> year, as <strong>in</strong> some studies <strong>of</strong> regulated<br />

lakes <strong>the</strong> benthic macro<strong>in</strong>vertebrate taxa<br />

richness decreases only beyond 2.0 m amplitude disturbance<br />

level (White et al. 2011). Abundance <strong>of</strong> <strong>the</strong><br />

most sensitive species to water level changes (e.g.<br />

Polycentropus flamoculatus, Sialis sp. <strong>and</strong> Caenis horaria<br />

(Ephemeroptera)) varied between sampl<strong>in</strong>g sites,<br />

<strong>in</strong>dicat<strong>in</strong>g that some parts <strong>of</strong> <strong>the</strong> Pasvik River may<br />

be more sensitive to water lever changes than o<strong>the</strong>rs.<br />

M<strong>in</strong>imum water level fluctuation is recommended.<br />

78


References<br />

Aroviita, J., Hämälä<strong>in</strong>en, H. 2008: The impact <strong>of</strong> water level regulation on littoral macro<strong>in</strong>vertebrate assemblages <strong>in</strong> boreal<br />

lakes. Hydrobiologia 613: 45–56.<br />

Aroviita, J., Koskenniemi, E., Kotanen, J. & Hämälä<strong>in</strong>en, H. 2008: A priori typology-based prediction <strong>of</strong> benthic macro<strong>in</strong>vertebrate<br />

fauna for ecological classification <strong>of</strong> rivers. <strong>Environmental</strong> Management 42: 894–906.<br />

Balushk<strong>in</strong>a, E.V. 1987: The functional significance <strong>of</strong> chironomid larvae <strong>in</strong> cont<strong>in</strong>ental waters. Nauka. Len<strong>in</strong>grad.179 p. (<strong>in</strong><br />

<strong>Russia</strong>n)<br />

Coops, H., Beklioglu, M., Crisman, T. L. 2003: The role <strong>of</strong> water-level fluctuations <strong>in</strong> shallow lake ecosystems– workshop<br />

conclusions. Hydrobiologia 506: 23–27.<br />

Dudgeon, D., Arth<strong>in</strong>gton, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Sullivan, C. A. 2006: Freshwater<br />

biodiversity: importance, threats, status <strong>and</strong> conservation challenges. Biological reviews 81(2), 163–182.<br />

Dynesius, M., Nilsson, C. 1994: Fragmentation <strong>and</strong> flow regulation <strong>of</strong> river systems <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn third <strong>of</strong> <strong>the</strong> World. Science<br />

266: 753–762.<br />

Furey, P. C., Nord<strong>in</strong>, R. N., Mazumder, A. 2006: Littoral benthic macro<strong>in</strong>vertebrates under contrast<strong>in</strong>g drawdown <strong>in</strong> a reservoir<br />

<strong>and</strong> a natural lake. Journal <strong>of</strong> <strong>the</strong> North American Benthological Society 25: 19–31.<br />

Gasith A., Gafny, S. 1990: Effects <strong>of</strong> Water Level Fluctuation on <strong>the</strong> Structure <strong>and</strong> Function <strong>of</strong> <strong>the</strong> Littoral Zone. In: Tilzer M.<br />

M. & Serruya C. (eds). Large Lakes Ecological Structure <strong>and</strong> Function. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>: 156–171.<br />

Hellsten, S.K. 1998: <strong>Environmental</strong> factors related to water level regulation- A comparative study <strong>in</strong> nor<strong>the</strong>rn F<strong>in</strong>l<strong>and</strong>. Boreal<br />

<strong>Environmental</strong> Research 2: 345–367.<br />

Hellsten, S., Palomäki, R., Järv<strong>in</strong>en, E. 1997: Inarijärven vedenkorkeuden säännöstelystä ja sen vaikutuksista rantavyöhykkeellä.<br />

Lap<strong>in</strong> ympäristökeskuksen moniste 2: 1–77.<br />

Jacobsen, D. Schultz, R., Encalada, A. 1997: Structure <strong>and</strong> diversity <strong>of</strong> stream <strong>in</strong>vertebrate assemblages: <strong>the</strong> <strong>in</strong>fluence <strong>of</strong><br />

temperature with altitude <strong>and</strong> latitude. Freshwater Biology 38: 246–261.<br />

Kitaev, S.P. 1984: Ecological basis <strong>of</strong> lakes bioefficiency <strong>of</strong> various natural zones. Nauka. Moscow. 309 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Makrush<strong>in</strong>, A.V. 1984: Bio<strong>in</strong>dication <strong>of</strong> <strong>in</strong>l<strong>and</strong> water bodies pollution. Biological methods <strong>of</strong> natural waters evaluation.<br />

Nauka. Moscow. 123-137. (<strong>in</strong> <strong>Russia</strong>n)<br />

Novak, M.A., Bode, R.W. 1992: Percent Model Aff<strong>in</strong>ity - A new measure <strong>of</strong> macro<strong>in</strong>vertebrate community composition. Journal<br />

<strong>of</strong> <strong>the</strong> North American Benthological Society 11: 80–85.<br />

Palomäki, R., Hellsten, S. 1996: Littoral macrozoobenthos biomass <strong>in</strong> a cont<strong>in</strong>uous habitat series. Hydrobiologia 339:<br />

85–92.<br />

Palomäki, R., E. Koskenniemi, 1993: Effects <strong>of</strong> bottom freez<strong>in</strong>g on macrozoobenthos <strong>in</strong> <strong>the</strong> regulated Lake Pyhäjärvi.<br />

Archiv fur Hydrobiologie 128: 73–90.<br />

S<strong>and</strong><strong>in</strong>, L., Johnson, L.K. 2000: Ecoregions <strong>and</strong> benthic macro<strong>in</strong>vertebrate assemblages <strong>of</strong> Swedish streams. Journal <strong>of</strong><br />

<strong>the</strong> North American Benthological Society 19: 462–474.<br />

Semenchenko, V.P. 2011: Ecological quality <strong>of</strong> surface waters. In V.P. Semenchenko, V.I. Razlutskij. 2 nd ed. corr. Belarus<br />

Science. M<strong>in</strong>sk. 329 p.<br />

Shitikov, V.K., Rosenberg, G.S., Z<strong>in</strong>chenko, T.D. 2003: Quantitative hydroecology: modern methods <strong>of</strong> identification. Institute<br />

<strong>of</strong> Ecology <strong>of</strong> <strong>the</strong> Volga River Bas<strong>in</strong> RAS. Togliatti 463 p.<br />

Smith, B. D., Maitl<strong>and</strong>, P. S., Pennock, S. M. 1987: A comparative study <strong>of</strong> water level regimes <strong>and</strong> littoral benthic communities<br />

<strong>in</strong> Scottish lochs. Biological Conservation 39: 291–316.<br />

White, M.S., Xenopoulos, M.A., Metcalfe, R.A., Somers, K.M. 2011: Water level thresholds <strong>of</strong> benthic macro<strong>in</strong>vertebrate<br />

richness, structure, <strong>and</strong> function <strong>of</strong> boreal lake stony littoral habitats. Canadian Journal <strong>of</strong> Fisheries <strong>and</strong> Aquatic Sciences<br />

68: 1695-1704.<br />

Yakovlev, V.A. 2005: Freshwater zoobenthos <strong>of</strong> Nor<strong>the</strong>rn Fennosc<strong>and</strong>ia (Variety, structure <strong>and</strong> anthropogenic dynamics).<br />

Kola Science Center RAS 1. Apatity 161 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Z<strong>in</strong>chenko, T.D. 2011: Ecological <strong>and</strong> faunistic characteristics <strong>of</strong> chironomids (Diptera, Chironomidae) <strong>of</strong> <strong>the</strong> small rivers <strong>of</strong><br />

<strong>the</strong> middle <strong>and</strong> lower Volga (Atlas). Togliatti. (<strong>in</strong> <strong>Russia</strong>n)<br />

Rhyacophila nubila.<br />

Photo Mira Grönroos<br />

Asellus aquaticus.<br />

Photo Mira Grönroos<br />

79


7 Fish communities <strong>of</strong> <strong>the</strong> Pasvik River<br />

<strong>and</strong> long-term malformation tendencies<br />

PETR TERENTJEV, NIKOLAY KASHULIN, ELENA ZUBOVA, MIKKO TOLKKINEN<br />

Long-term changes <strong>in</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong> community<br />

<strong>and</strong> changes <strong>in</strong> <strong>the</strong> population <strong>and</strong> organisms were<br />

estimated tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> anthropogenic load<br />

<strong>in</strong>tensity <strong>in</strong> different areas at different times. Data <strong>of</strong><br />

multiyear <strong>in</strong>vestigations cover<strong>in</strong>g a long period (from<br />

<strong>the</strong> early 1990s till <strong>the</strong> present) were analyzed. The<br />

researched water bodies (lakes) were Lake Kuetsjarvi<br />

<strong>and</strong> water storage reservoirs Rajakoski (<strong>Russia</strong>), Vaggatem<br />

<strong>and</strong> Skrukkebukta (<strong>Norway</strong>). The fish fauna<br />

consists <strong>of</strong> representatives <strong>of</strong> 9 species belong<strong>in</strong>g to<br />

8 families: trout (Salmo trutta L.), European whitefish<br />

(Coregonus lavaretus L.), European vendace (Coregonus<br />

albula L.), European grayl<strong>in</strong>g (Thymallus thymallus<br />

L.), pike (Esox lucius L.), burbot (Lota lota L.),<br />

perch (Perca fluviatilis L.), Eurasian m<strong>in</strong>now (Phox<strong>in</strong>us<br />

phox<strong>in</strong>us) <strong>and</strong> n<strong>in</strong>e-sp<strong>in</strong>ed stickleback (Pungitius<br />

pungitius). The lakes form a gradient <strong>of</strong> anthropogenic<br />

load relative to <strong>the</strong>ir distance from <strong>the</strong> Pechenganikel<br />

smelter.<br />

Malformations are found <strong>in</strong> fish liv<strong>in</strong>g <strong>in</strong> polluted<br />

conditions <strong>and</strong> exposed to various chemical substances.<br />

Detected malformations <strong>in</strong>clude changes <strong>in</strong> external<br />

appearance (pigmentation <strong>of</strong> <strong>in</strong>tegument, depigmentation<br />

<strong>of</strong> skull), sp<strong>in</strong>al curvature (i.e. scoliosis,<br />

ithykyphosis, lordosis), malformed gills (deformed, bifurcated<br />

<strong>and</strong> club-shaped rakers, irregular row or partial<br />

lack <strong>of</strong> rakers, onset <strong>of</strong> necrotic abnormalities <strong>in</strong><br />

gill filament tips (anaemic r<strong>in</strong>g)), malformed gonads<br />

(synchronic <strong>and</strong> asymmetric maturation, constriction<br />

<strong>and</strong> torsion <strong>of</strong> gonads), malformed liver (destruction <strong>of</strong><br />

tissue, hyperaemia, focal necrosis result<strong>in</strong>g <strong>in</strong> change<br />

<strong>in</strong> color <strong>and</strong> elongation) <strong>and</strong> malformed kidneys (hyperemia,<br />

hemorrhages, progression <strong>of</strong> focal necrosis,<br />

dystrophic changes <strong>in</strong> tubule epi<strong>the</strong>lium, onset <strong>of</strong> granulosis).<br />

The most common kidney disorder is development<br />

<strong>of</strong> excess connective tissue.<br />

Material <strong>and</strong> methods<br />

Studies <strong>of</strong> <strong>the</strong> fish communities were conducted along<br />

<strong>the</strong> Pasvik watercourse <strong>in</strong> <strong>the</strong> four ma<strong>in</strong> localities. Aerial<br />

pollution, sewage <strong>of</strong> <strong>the</strong> Pechenganikel enterprise<br />

<strong>and</strong> domestic sewage flow <strong>in</strong>to Lake Kuetsjarvi, located<br />

ca 5 km from <strong>the</strong> Pechanganikel <strong>and</strong> downstream<br />

<strong>the</strong> Pasvik River. Skrukkebukta is located 16 km northwards<br />

<strong>of</strong> <strong>the</strong> Pechenganikel smelter. Vaggatem is located<br />

upstream from <strong>the</strong> Pechenganikel as is Rajakoski,<br />

far<strong>the</strong>st away (Introduction, Figure 1).<br />

Sampl<strong>in</strong>g was done with a st<strong>and</strong>ard set <strong>of</strong> bottom<br />

nets. The nets were employed <strong>in</strong> <strong>the</strong> littoral zone one<br />

by one perpendicular to <strong>the</strong> coast <strong>and</strong> <strong>in</strong> <strong>the</strong> pr<strong>of</strong>undal<br />

zone <strong>the</strong>re were ten ormore nets <strong>in</strong> l<strong>in</strong>e. Age <strong>of</strong><br />

fishes was determ<strong>in</strong>ed from <strong>the</strong> operculum, cleithrum<br />

or scales (method <strong>of</strong> Pravd<strong>in</strong> 1960,1966). The rakers<br />

on <strong>the</strong> first gill arch <strong>of</strong> <strong>the</strong> whitefishes were counted<br />

to isolate <strong>in</strong>traspecific forms (Pravd<strong>in</strong> 1966, Reshetnikov<br />

1980, Amundsen et al. 2004, Siwertsson et al.<br />

Figure 1. Rakers on<br />

<strong>the</strong> first gill arch <strong>of</strong> SR<br />

whitefish with 23 rakers<br />

(left) <strong>and</strong> DR whitefish<br />

with 34 rakers (right)<br />

<strong>in</strong> Lake Kuetsjarvi <strong>in</strong><br />

2012–2013.<br />

80


2008) (Figure 1). Back-calculations <strong>of</strong> growth were<br />

carried out us<strong>in</strong>g <strong>the</strong> formula <strong>of</strong> Lee (Chugunova<br />

1959, Bryuzg<strong>in</strong> 1969). The formula for back calculations<br />

<strong>of</strong> body length for sparsely-rakered (SR) whitefish<br />

<strong>of</strong> Lake Kuetsjarvi was: lnL i<br />

= 71.38 + R i<br />

/ R ×<br />

(lnL n<br />

– 71.38) <strong>and</strong> for densely-rakered (DR) whitefish<br />

<strong>of</strong> Lake Kuetsjarvi: lnL i<br />

= ln25.64 + lnR i<br />

/ lnR × (lnL n<br />

– ln26.64). The formula for back calculations <strong>of</strong> body<br />

length for hybrid whitefish <strong>of</strong> Rajakoski: lnL i<br />

= ln39.15<br />

+ lnR i<br />

/ lnR × (lnL n<br />

– ln39.15). The specific growth rate<br />

was calculated us<strong>in</strong>g <strong>the</strong> formula <strong>of</strong> Schmalhausen-<br />

Brodie (Schmalhausen 1935, M<strong>in</strong>a & Klevezal 1976,<br />

Dgebuadze 2001).<br />

Heavy metals <strong>in</strong> skeletal muscle tissues, liver, kidney<br />

<strong>and</strong> gills 10–15 fish <strong>in</strong>dividuals <strong>of</strong> <strong>the</strong> same size<br />

were analyzed. The metal concentration was expressed<br />

<strong>in</strong> mg/g dry weight.<br />

The Pasvik River littoral fish were sampled <strong>in</strong> September<br />

2013 by electr<strong>of</strong>ish<strong>in</strong>g. Sampl<strong>in</strong>g sites were<br />

habitats that have shelters to fish (stony littoral or<br />

macrophytes). All captured fish were identified <strong>and</strong><br />

counted. Total length <strong>of</strong> every fish was measured <strong>and</strong><br />

pooled <strong>in</strong>dividuals <strong>of</strong> each species were weighted.<br />

Presented fish densities represent <strong>the</strong> catch <strong>of</strong> one<br />

electr<strong>of</strong>ish<strong>in</strong>g run.<br />

Results<br />

Fish communities <strong>and</strong> population<br />

characteristics<br />

Lake Kuetsjarvi<br />

Despite <strong>the</strong> <strong>in</strong>tensive <strong>in</strong>dustrial pollution all 9 fish species<br />

are present. The structure <strong>of</strong> fish population has<br />

not changed pr<strong>of</strong>oundly dur<strong>in</strong>g <strong>the</strong> last 20 years (Figure<br />

2). Predom<strong>in</strong>ant species are whitefish <strong>and</strong> perch;<br />

<strong>the</strong> rest composed less than 1 %. In <strong>the</strong> conditions<br />

<strong>of</strong> <strong>the</strong> highest anthropogenic load <strong>and</strong> toxic environment<br />

<strong>of</strong> Lake Kuetsjarvi whitefish is probably <strong>the</strong> most<br />

stable species capable <strong>of</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g relatively high<br />

population by early matur<strong>in</strong>g, change <strong>of</strong> life cycle strategy<br />

<strong>and</strong> polymorphism (Kashul<strong>in</strong> et al., 1999). The<br />

share <strong>of</strong> whitefish <strong>in</strong> <strong>the</strong> samples changed from 75<br />

% to 96 %. The population <strong>of</strong> whitefish <strong>in</strong> Kuetsjarvi<br />

Lake was presented by two forms, sparsely rakered<br />

(SR) <strong>and</strong> densely rakered (DR), which was more numerous.<br />

Sparsely-rakered whitefish <strong>of</strong> <strong>the</strong> lake can be<br />

divided <strong>in</strong>to fast-grow<strong>in</strong>g (large, LSR) <strong>and</strong> slow grow<strong>in</strong>g<br />

(small, SSR) forms. Ecological niches <strong>of</strong> <strong>the</strong>se<br />

forms <strong>of</strong> whitefish do not <strong>in</strong>tercross. High water body<br />

trophicity creates favorable conditions for co-existence<br />

<strong>of</strong> several forms <strong>of</strong> whitefish. The vendace <strong>of</strong> Lake<br />

Kuetsjarvi are represented by one species.<br />

The average weight <strong>of</strong> DR whitefish dur<strong>in</strong>g <strong>the</strong><br />

whole period <strong>of</strong> studies varied widely (23–82 g), <strong>and</strong><br />

<strong>the</strong> length varied from 12.1 to 18.7 cm. In some years<br />

<strong>the</strong> average values <strong>of</strong> size <strong>and</strong> weight <strong>in</strong>creased,<br />

which probably was caused by large fish migrat<strong>in</strong>g <strong>in</strong>to<br />

<strong>the</strong> water body from o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> Pasvik River.<br />

Maximum age <strong>of</strong> DR whitefish was eight years (Figure<br />

7). Juvenile <strong>in</strong>dividuals composed 2.9 % <strong>of</strong> <strong>the</strong> community.<br />

Extremely early matur<strong>in</strong>g (age 1+) <strong>of</strong> <strong>in</strong>dividuals<br />

was registered <strong>in</strong> both DR <strong>and</strong> SR whitefish. The<br />

share <strong>of</strong> fish ready for spawn, overall <strong>in</strong> <strong>the</strong> population<br />

<strong>in</strong> <strong>the</strong> pre-spawn<strong>in</strong>g period, varied from 20 % to 66<br />

%. M<strong>in</strong>imal size <strong>of</strong> DR whitefish spawn<strong>in</strong>g for <strong>the</strong> first<br />

time was <strong>the</strong> weight <strong>of</strong> 6 g <strong>and</strong> <strong>the</strong> length <strong>of</strong> 9.5 cm.<br />

The average weight <strong>and</strong> length <strong>of</strong> SR whitefish<br />

varied from 38 to 140 g <strong>and</strong> from 14.7 to 20.5 cm.<br />

Length-weight parameters did not significantly change<br />

dur<strong>in</strong>g more than 20 years. The largest <strong>in</strong>dividuals<br />

<strong>of</strong> SR whitefish were aged eleven years (Figure 7).<br />

Juvenile <strong>in</strong>dividuals composed < 8.5 % <strong>of</strong> <strong>the</strong> community.<br />

SR whitefish reach maturity at <strong>the</strong> age 1+ with<br />

<strong>the</strong> weight 8 g <strong>and</strong> <strong>the</strong> length 9.5 cm. Overall <strong>in</strong> <strong>the</strong><br />

population percentage <strong>of</strong> fish ready for spawn<strong>in</strong>g varied<br />

from 24 % to 49 %.<br />

Growth rates <strong>of</strong> both whitefish morphs have decreased,<br />

which can be expla<strong>in</strong>ed by persist<strong>in</strong>g anthropogenic<br />

load.<br />

Skrukkebukta<br />

Whitefishes are predom<strong>in</strong>ant <strong>in</strong> <strong>the</strong> community structure<br />

<strong>and</strong> <strong>the</strong> proportion <strong>of</strong> whitefish <strong>in</strong> <strong>the</strong> selection dur<strong>in</strong>g<br />

<strong>the</strong> whole study period varied from 64.2 to 77.5%<br />

(Figure 4). Proportions <strong>of</strong> vendace <strong>and</strong> perch were<br />

19–28 % <strong>and</strong> <strong>the</strong> proportionst <strong>of</strong> o<strong>the</strong>r species varied<br />

from 0.1 to 2.4 %. The proportion <strong>of</strong> perch <strong>in</strong>creased<br />

dur<strong>in</strong>g <strong>the</strong> study.<br />

The average weight <strong>of</strong> DR whitefish was 18–42<br />

g <strong>and</strong> length 11.5–15.5 cm. Age composition <strong>of</strong> DR<br />

whitefish was dom<strong>in</strong>ated <strong>of</strong> fish <strong>of</strong> young age classes<br />

(0+–1+) (Figure 7) but <strong>in</strong> 2004 <strong>in</strong>dividuals aged 1+,2+<br />

<strong>and</strong> 4+ were represented almost <strong>in</strong> equal proportion.<br />

Size <strong>of</strong> DR whitefish spawn<strong>in</strong>g for <strong>the</strong> first time was<br />

less than 6 g <strong>and</strong> 8.9 cm. In all age groups <strong>the</strong>re was<br />

a high number <strong>of</strong> non-spawn<strong>in</strong>g fish.<br />

SR whitefish were presented by <strong>in</strong>dividuals <strong>of</strong> small<br />

size. The average weight <strong>and</strong> length were 50–150 g<br />

<strong>and</strong> 14.8–19.5 cm. The basis <strong>of</strong> <strong>the</strong> population was<br />

81


1990-1992<br />

1998<br />

2004<br />

perch<br />

10%<br />

pike<br />

11%<br />

burbot<br />

0,2%<br />

grayl<strong>in</strong>g<br />

0,2%<br />

perch 1% pike 1%<br />

burbot<br />

2%<br />

vendace<br />

6.5%<br />

perch<br />

9%<br />

pike<br />

2%<br />

grayl<strong>in</strong>g 0,2%<br />

trout<br />

1%<br />

whitefish 78%<br />

whitefish 96%<br />

whitefish 83%<br />

Figure 2. Proportion<br />

<strong>of</strong> fish species<br />

<strong>in</strong> Lake Kuetsjarvi<br />

<strong>in</strong> different periods<br />

<strong>of</strong> <strong>the</strong> research.<br />

2007<br />

2009<br />

2012-2013<br />

perch<br />

24%<br />

pike 0%<br />

burbot 5% vendace 1%<br />

perch 0.8%<br />

burbot 1%<br />

pike 3%<br />

perch 8%<br />

grayl<strong>in</strong>g 5%<br />

trout 1%<br />

trout<br />

0.8%<br />

whitefish 75%<br />

whitefish 93%<br />

whitefish 82%<br />

1990-th<br />

2000-th<br />

2010-th<br />

Figure 4. Proportion<br />

<strong>of</strong> fish species<br />

<strong>in</strong> Skrukkebukta <strong>in</strong><br />

different periods <strong>of</strong><br />

<strong>the</strong> research.<br />

pike 1.0%<br />

perch 7.1%<br />

burbot<br />

1.7%<br />

vendace<br />

11.9%<br />

trout<br />

0,1%<br />

whitefish 77%<br />

grayl<strong>in</strong>g 1.0%<br />

trout 0,1%<br />

grayl<strong>in</strong>g 1.8%<br />

pike 2.4%<br />

perch 9.3%<br />

burbot 2.1%<br />

vendace<br />

18.8%<br />

whitefish 64.2%<br />

pike 0.5%<br />

perch 16.7%<br />

burbot<br />

0.6%<br />

vendace<br />

9.0%<br />

trout 0,1%<br />

grayl<strong>in</strong>g 1.9%<br />

whitefish 70.5%<br />

1990-th<br />

2000-th<br />

2010-th<br />

Figure 5. Propotion<br />

<strong>of</strong> fish species <strong>in</strong><br />

Vaggatem <strong>in</strong> different<br />

periods <strong>of</strong> <strong>the</strong><br />

research.<br />

perch<br />

25%<br />

burbot<br />

1%<br />

pike 4%<br />

vendace<br />

33%<br />

whitefish<br />

37%<br />

perch<br />

30%<br />

burbot<br />

0.4%<br />

pike<br />

4.4%<br />

trout 0.2%<br />

grayl<strong>in</strong>g 0.2%<br />

whitefish<br />

28.1%<br />

vendace<br />

29.6%<br />

perch<br />

24.2%<br />

burbot<br />

0.1%<br />

pike 6.5%<br />

trout 0,1%<br />

grayl<strong>in</strong>g<br />

0.3%<br />

vendace<br />

32.4%<br />

whitefish<br />

36.4%<br />

2002<br />

2004<br />

2012<br />

Figure 6. Proportion<br />

<strong>of</strong> fish species<br />

<strong>in</strong> Rajakoski n different<br />

periods <strong>of</strong> <strong>the</strong><br />

research.<br />

pike 3%<br />

perch 4%<br />

burbot<br />

28%<br />

grayl<strong>in</strong>g 1%<br />

whitefish<br />

41%<br />

perch<br />

50%<br />

pike 6%<br />

grayl<strong>in</strong>g 1%<br />

whitefish<br />

41%<br />

pike 8%<br />

perch<br />

32%<br />

trout 4%<br />

grayl<strong>in</strong>g 2%<br />

whitefish<br />

47%<br />

82<br />

vendace<br />

23%<br />

vendace 1%<br />

burbot 1%<br />

burbot 6%<br />

vendace 1%


No <strong>of</strong> obs<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

No <strong>of</strong> obs<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Kuetsjarvi<br />

0<br />

0+<br />

1+<br />

2+<br />

3+<br />

4+<br />

5+<br />

6+<br />

7+<br />

8+<br />

10+<br />

9+ 11+<br />

0<br />

0+<br />

1+<br />

2+<br />

3+<br />

4+<br />

5+<br />

6+<br />

7+<br />

8+<br />

9+<br />

10+<br />

11+<br />

No <strong>of</strong> obs<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0+ 2+ 4+ 6+ 8+ 10+ 12+ 14+<br />

1+ 3+ 5+ 7+ 9+ 11+ 13+<br />

No <strong>of</strong> obs<br />

35<br />

0+ 2+ 4+ 6+ 8+ 10+ 12+ 14+<br />

1+ 3+ 5+ 7+ 9+ 11+ 12+<br />

No <strong>of</strong> obs<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Skrukkebukta<br />

0+ 2+ 4+ 6+ 8+ 10+ 12+ 14+<br />

1+ 3+ 5+ 7+ 9+ 11+ 13+<br />

No <strong>of</strong> obs<br />

Vaggatem<br />

0+ 2+ 4+ 6+ 8+ 10+ 12+ 14+<br />

1+ 3+ 5+ 7+ 9+ 11+ 12+<br />

DR Whitefish<br />

SR Whitefish<br />

No <strong>of</strong> obs<br />

30<br />

28<br />

26<br />

Rajakoski<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0+ 2+ 4+ 6+ 8+ 10+ 12+ 14+<br />

1+ 3+ 5+ 7+ 9+ 11+ 12+<br />

SR Whitefish<br />

Figure 7. The present age structure <strong>of</strong> DR <strong>and</strong> SR whitefish <strong>of</strong> <strong>the</strong> <strong>in</strong>vestigated reservoirs (blue = fish ready to spawn).<br />

83


formed by <strong>in</strong>dividuals <strong>of</strong> older age groups, which is<br />

more common <strong>in</strong> natural water bodies (Figure 7). It is<br />

obvious that <strong>in</strong> Skrukkebukta, despite its location <strong>in</strong><br />

<strong>the</strong> lower reaches <strong>of</strong> <strong>the</strong> Pasvik River, <strong>in</strong>fluence <strong>of</strong> direct<br />

<strong>and</strong> aerial pollution is less <strong>in</strong>tensive compared to<br />

Kuetsjarvi Lake. However, early matur<strong>in</strong>g <strong>of</strong> fish was<br />

observed here as well.<br />

SR whitefish aged fifteen years were encountered<br />

s<strong>in</strong>gly. Juvenile <strong>in</strong>dividuals (0+–3+) <strong>in</strong> <strong>the</strong> selection<br />

comprised from 10 % to 27.8 %. As for DR whitefish,<br />

m<strong>in</strong>imal sizes <strong>of</strong> matur<strong>in</strong>g fish were extremely small,<br />

<strong>the</strong> weight <strong>of</strong> 7 g <strong>and</strong> <strong>the</strong> length <strong>of</strong> 9.4 cm, <strong>and</strong> maturation<br />

age did not exceed 1+. The percentage <strong>of</strong> mature<br />

fish ready for spawn was low <strong>and</strong> varied with<strong>in</strong><br />

13.8–32.3 % dur<strong>in</strong>g <strong>the</strong> whole period <strong>of</strong> <strong>the</strong> study.<br />

Analyses <strong>of</strong> size-age parameters <strong>of</strong> SR whitefish <strong>of</strong><br />

Skrukkebukta showed that <strong>the</strong> growth rate <strong>of</strong> fish has<br />

decreased.<br />

Vaggatem<br />

Vaggatem is located ca 40 km upstream from <strong>the</strong><br />

Pechenganikel. Dur<strong>in</strong>g <strong>the</strong> whole period <strong>of</strong> studies dom<strong>in</strong>ation<br />

<strong>of</strong> whitefish was observed <strong>in</strong> <strong>the</strong> structure <strong>of</strong><br />

<strong>the</strong> community. However, whitefish <strong>and</strong> vendace were<br />

encountered here almost <strong>in</strong> equal proportion. Perch is<br />

also <strong>of</strong> great importance <strong>and</strong> its share <strong>in</strong> samples may<br />

reach 30 % (Figure 5). The proportion <strong>of</strong> o<strong>the</strong>r species<br />

does not exceed 5–7 %.<br />

The basis <strong>of</strong> DR whitefish population was formed<br />

by <strong>in</strong>dividuals with weight up to 100 g <strong>and</strong> length <strong>of</strong><br />

5–18 cm. The age structure <strong>of</strong> DR whitefish was dom<strong>in</strong>ated<br />

by age classes 2+– 4+ <strong>and</strong> <strong>the</strong> age <strong>of</strong> <strong>the</strong> largest<br />

fish did not exceed ten years (Figure 7). Juvenile<br />

<strong>in</strong>dividuals were encountered only <strong>in</strong> <strong>the</strong> samples <strong>of</strong><br />

2002 (8 %). Early matur<strong>in</strong>g <strong>of</strong> whitefish is also dist<strong>in</strong>ctive<br />

<strong>of</strong> Vaggatem: <strong>in</strong>dividuals <strong>of</strong> <strong>the</strong> age 2+, <strong>the</strong> weight<br />

<strong>of</strong> 28 g <strong>and</strong> <strong>the</strong> length 15.4 cm can be mature. Generally<br />

percentage <strong>of</strong> fish ready for spawn<strong>in</strong>g comprised<br />

46.5 % <strong>of</strong> <strong>the</strong> mature population.<br />

The average weight <strong>of</strong> SR whitefish was 200-420 g<br />

<strong>and</strong> length 23–31 cm. There were two peaks <strong>in</strong> length<br />

distribution <strong>of</strong> fish: 15–25 cm <strong>and</strong> 30–35 cm. A generally<br />

uniform age distribution <strong>of</strong> all classes from 1+ to<br />

10+ was seen <strong>and</strong> larger <strong>in</strong>dividuals <strong>of</strong> fifteen years<br />

were registered s<strong>in</strong>gly (Figure 7). SR whitefish beg<strong>in</strong><br />

to spawn <strong>in</strong> <strong>the</strong> age <strong>of</strong> 2+ with <strong>the</strong> weight 34 g <strong>and</strong> <strong>the</strong><br />

length 15.3 cm. Quite high percentage (up to 67 % <strong>in</strong><br />

2+ or older fish) skips <strong>the</strong> spawn.<br />

There seems to be an <strong>in</strong>creas<strong>in</strong>g trend <strong>in</strong> growth<br />

rate <strong>of</strong> both whitefish morphs, which is <strong>the</strong> opposite<br />

<strong>of</strong> <strong>the</strong> situation <strong>of</strong> Lake Kuetsjarvi <strong>and</strong> Skrukkebukta.<br />

Rajakoski<br />

Rajakoski is located ca 65 km upstream from <strong>the</strong><br />

Pechenganikel. Whitefish dom<strong>in</strong>ates <strong>in</strong> <strong>the</strong> fish community<br />

<strong>and</strong> <strong>the</strong> share <strong>of</strong> vendace has significantly<br />

reduced. The proportion <strong>of</strong> perch varies but <strong>the</strong>re is<br />

generally an <strong>in</strong>crease (Figure 6).<br />

Dur<strong>in</strong>g <strong>the</strong> research DR whitefish differed by sizeweight<br />

parameters: variation <strong>of</strong> <strong>the</strong> weight was 7–548<br />

g <strong>and</strong> lenght 9.2–36.0 cm. In 2002 <strong>the</strong> basis was formed<br />

by fish <strong>of</strong> age 0+ <strong>and</strong> later <strong>the</strong> number <strong>of</strong> <strong>in</strong>dividuals<br />

<strong>of</strong> older age still gradually reduced. There are<br />

no conditions for reproduction <strong>in</strong> Rajakoski <strong>and</strong> DR<br />

whitefish may be migrants from <strong>the</strong> upper reach <strong>of</strong><br />

<strong>the</strong> river <strong>and</strong> from Lake Inari. Mature <strong>in</strong>dividuals were<br />

aged 2+ <strong>and</strong> m<strong>in</strong>imal maturation weight was 36 g <strong>and</strong><br />

length 15.8 cm.<br />

The average weight <strong>and</strong> length <strong>of</strong> SR whitefish<br />

grew dur<strong>in</strong>g <strong>the</strong> study: <strong>in</strong> 2002 <strong>the</strong>y were 43 g <strong>and</strong><br />

12.4 cm, <strong>in</strong> 2004 180 g <strong>and</strong> 22.9 cm <strong>and</strong> <strong>in</strong> 2012 585<br />

g <strong>and</strong> 35.1 cm. The age distribution <strong>of</strong> SR whitefish<br />

differed greatly between <strong>the</strong> study years. In 2002 fish<br />

aged 0+ comprised more than 65 % <strong>of</strong> <strong>the</strong> population<br />

while fish <strong>of</strong> o<strong>the</strong>r age classes encountered s<strong>in</strong>gly but<br />

later <strong>the</strong> dom<strong>in</strong>at<strong>in</strong>g age class changed. This may be<br />

connected to migration <strong>of</strong> large <strong>in</strong>dividuals from <strong>the</strong><br />

upper reach <strong>of</strong> <strong>the</strong> river as <strong>in</strong> this area <strong>the</strong>re are no<br />

conditions for reproduction. The percentage <strong>of</strong> nonspawn<strong>in</strong>g<br />

whitefish is very high. Maturity <strong>of</strong> SR whitefish<br />

comes <strong>in</strong> <strong>the</strong> age <strong>of</strong> 2+ when <strong>the</strong> weight is 31 g<br />

<strong>and</strong> <strong>the</strong> length 14.7 cm.<br />

Rajakoski water reservoir has <strong>the</strong> highest density<br />

<strong>of</strong> <strong>in</strong>troduced vendace <strong>of</strong> all <strong>the</strong> studied water bodies.<br />

Vendace actively force DR whitefish out <strong>of</strong> <strong>the</strong> pelagic<br />

region. They are forced to look for new food items<br />

<strong>and</strong> habitats <strong>in</strong>trud<strong>in</strong>g <strong>the</strong> ecological niche <strong>of</strong> SR whitefish.<br />

This contributes to hybridization <strong>of</strong> SR <strong>and</strong> DR<br />

whitefish. In <strong>the</strong> early 2000’s <strong>the</strong> dom<strong>in</strong>ance <strong>of</strong> vendace<br />

was significantly lower <strong>and</strong> segregation <strong>of</strong> <strong>the</strong> two<br />

forms <strong>of</strong> whitefish was more <strong>in</strong>tense.<br />

Fish community <strong>of</strong> <strong>the</strong> littoral zone<br />

6 fish species were caught with electr<strong>of</strong>ish<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

Pasvik River (Figure 8). Rocky shore fish densities<br />

varied between <strong>the</strong> river sections from 0 to 55 <strong>in</strong>dividuals/100<br />

m 2 . M<strong>in</strong>nows (Phox<strong>in</strong>us phox<strong>in</strong>us) were<br />

abundant <strong>and</strong> <strong>the</strong> only species <strong>in</strong> Skrukkebukta <strong>and</strong><br />

Skogmo sites, which also had <strong>the</strong> highest fish density.<br />

No fish were caught <strong>in</strong> Vaggatem-Hauge <strong>and</strong> Hessefoss.<br />

84


Malformations<br />

Major malformations observed <strong>in</strong> fish <strong>of</strong> <strong>the</strong> studied<br />

lakes are shown <strong>in</strong> Figures 9–11.<br />

Lake Kuetsjarvi<br />

The most severe malformations are found <strong>in</strong> Lake<br />

Kuetsjarvi whitefish. The fish have specific kidney<br />

malformations described as progression <strong>of</strong> nephrolithiasis<br />

(nephrocalc<strong>in</strong>osis) <strong>in</strong> response to nickel <strong>in</strong>toxication.<br />

In some years 100 % <strong>of</strong> sampled fish had liver<br />

<strong>and</strong> kidney malformations. Despite lower<strong>in</strong>g anthropogenic<br />

stress <strong>the</strong>re is still no substantial improvement<br />

<strong>in</strong> <strong>the</strong> status <strong>of</strong> fish population <strong>in</strong> Lake Kuetsjarvi (Figure<br />

12) <strong>and</strong> whitefish liver <strong>and</strong> kidney malformation<br />

frequency <strong>and</strong> rate rema<strong>in</strong>s at 75–86 %.<br />

Skrukkebukta<br />

Svanevatn<br />

Melkefoss<br />

Skogmo<br />

Vaggatem -Hauge<br />

Vaggatem<br />

Noatun<br />

Hessefoss<br />

0<br />

20 40 60<br />

Lota lota Phox<strong>in</strong>us phox<strong>in</strong>us Esox lucius<br />

Salmo trutta Thymallus thymallus Pungitius pungitius<br />

Figure 8. Rocky littoral<br />

shore electr<strong>of</strong>ish<strong>in</strong>g fish<br />

densities/100m 2 .<br />

Figure 9. Depigmentation <strong>of</strong> whitefish skull (left) <strong>and</strong> segmentation <strong>of</strong> gonads <strong>of</strong> male <strong>and</strong> female whitefish due to fibrogenesis (right).<br />

Figure 10. Term<strong>in</strong>al stage <strong>of</strong> fibrogenesis <strong>in</strong> whitefish kidney (left) <strong>and</strong> whitefish kidney stones (right).<br />

85


Vaggatem <strong>and</strong> Skrukkebukta<br />

Changes <strong>in</strong> whitefish liver structure, color <strong>and</strong> shape<br />

were <strong>the</strong> most common malformation noted <strong>in</strong> Vaggatem<br />

<strong>and</strong> o<strong>the</strong>r storage reservoirs <strong>in</strong> early 1990s. Kidney<br />

<strong>and</strong> gonad-related abnormalities came <strong>in</strong> second<br />

by frequency <strong>of</strong> occurrence (Kashul<strong>in</strong> et al. 1999).<br />

Later <strong>the</strong> frequency <strong>of</strong> gonad-, gill- <strong>and</strong> liver-related<br />

malformations decreased <strong>and</strong> <strong>the</strong> frequency <strong>of</strong> kidney<br />

malformations <strong>in</strong>creased.<br />

In <strong>the</strong> observation period <strong>of</strong> 2003–2005 <strong>the</strong> number<br />

<strong>of</strong> fish with affected kidneys decreased <strong>and</strong> affected<br />

liver <strong>in</strong>creased <strong>in</strong> Vaggatem, <strong>and</strong> similar trends were<br />

seen <strong>in</strong> Skrukkebukta. The rate <strong>of</strong> affected gills <strong>and</strong><br />

gonads stayed lower. The frequency <strong>of</strong> malformations<br />

<strong>in</strong> whitefish <strong>in</strong> Vaggatem <strong>and</strong> Skrukkebukta, as <strong>in</strong> Lake<br />

Kuetsjarvi, rema<strong>in</strong>s almost <strong>the</strong> same <strong>in</strong> 2008 as <strong>in</strong><br />

<strong>the</strong> 90s, when <strong>in</strong>tensity <strong>of</strong> stress on <strong>the</strong> waterways<br />

was at <strong>the</strong> peak level.<br />

Rajakoski<br />

Similar fish malformations are identified <strong>in</strong> Rajakoski,<br />

far<strong>the</strong>st from <strong>the</strong> <strong>in</strong>dustrial pollution source. The<br />

transformation <strong>in</strong>tensity <strong>in</strong> whitefish organs <strong>and</strong> tissues<br />

was considerably less, <strong>and</strong> generally <strong>the</strong> liver<br />

<strong>and</strong> kidney malformations <strong>in</strong> whitefish are <strong>in</strong>cipient <strong>in</strong><br />

nature. However, <strong>the</strong> number <strong>of</strong> fish with such transformations<br />

has not decreased dur<strong>in</strong>g <strong>the</strong> decade <strong>of</strong><br />

observations (Figure 13).<br />

Malformations <strong>in</strong> fish <strong>and</strong><br />

anthropogenic stress<br />

Nickel <strong>and</strong> copper are predom<strong>in</strong>ant contam<strong>in</strong>ants <strong>of</strong><br />

<strong>the</strong> area <strong>and</strong> <strong>the</strong> cause <strong>of</strong> high malformation rate <strong>of</strong><br />

fish. Accumulation <strong>of</strong> nickel <strong>in</strong> organs is <strong>in</strong> direct correlation<br />

to proximity <strong>of</strong> a water body to <strong>the</strong> Pecheng-<br />

Figure 11. Extreme degree <strong>of</strong> malformations <strong>of</strong> whitefish organs <strong>in</strong> Lake Kuetsjarvi.<br />

%<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1992 2004 2007 2009 2012 2013<br />

changes <strong>of</strong> gonads stones <strong>in</strong> <strong>the</strong> kidney<br />

changes <strong>of</strong> kidneys changes <strong>of</strong> liver<br />

changes <strong>of</strong> gills<br />

external changes<br />

frequency occurance, %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2002<br />

2004 2012<br />

changes <strong>of</strong> gonads changes <strong>of</strong> liver<br />

changes <strong>of</strong> kidneys changes <strong>of</strong> gills<br />

Figure 12. Long-term malformations <strong>of</strong> whitefish organs <strong>in</strong><br />

Lake Kuetsjarvi.<br />

Figure 13. Long-term malformations <strong>of</strong> whitefish organs <strong>in</strong><br />

Rajakoski.<br />

86


anikel (Figure 14). Nickel <strong>and</strong> copper accumulation <strong>in</strong><br />

<strong>the</strong> bottom sediments <strong>of</strong> <strong>the</strong> lakes correlates strongly<br />

(r=0.85–0.90) with <strong>the</strong> malformation frequency <strong>in</strong><br />

whitefish liver <strong>and</strong> kidneys (Figure 15). Whitefish is a<br />

bottom feeder <strong>and</strong> this forag<strong>in</strong>g strategy contributes<br />

to high rates <strong>of</strong> heavy metal accumulation which may<br />

have an effect on <strong>the</strong>se organs. The most commonly<br />

encountered change is <strong>the</strong> enlargement <strong>of</strong> connective<br />

tissues <strong>of</strong> kidneys, which may be <strong>in</strong>dicative <strong>of</strong> <strong>the</strong> persist<strong>in</strong>g<br />

nickel load <strong>in</strong> <strong>the</strong> lakes.<br />

No considerable improvement <strong>of</strong> condition <strong>of</strong> fish<br />

can be expected under <strong>the</strong> exist<strong>in</strong>g levels <strong>of</strong> <strong>the</strong><br />

anthropogenic stress. Also <strong>the</strong> climate change processes<br />

may cause community-level transformations<br />

<strong>in</strong> some water bodies, which may result <strong>in</strong> a decrease<br />

<strong>in</strong> valued commercial species. This, <strong>in</strong> turn, leads to<br />

decrease <strong>of</strong> <strong>the</strong> resource potential <strong>of</strong> <strong>the</strong> ecosystem<br />

as such.<br />

Discussion<br />

The analysis <strong>of</strong> long-term observations <strong>of</strong> fish community<br />

<strong>of</strong> <strong>the</strong> Pasvik River bas<strong>in</strong> revealed changes,<br />

which are associated with natural variability <strong>of</strong> <strong>the</strong> basic<br />

biological characteristics <strong>of</strong> fish <strong>and</strong> negative consequences<br />

<strong>of</strong> anthropogenic processes. Dom<strong>in</strong>at<strong>in</strong>g<br />

fish community structure complexes shift from salmon-whitefish<br />

family to perch, smelt <strong>and</strong> cypr<strong>in</strong>id families<br />

due to chang<strong>in</strong>g climate <strong>and</strong> persist<strong>in</strong>g anthropogenic<br />

stress (Kashul<strong>in</strong> et al. 2012). Such processes<br />

were identified specifically <strong>in</strong> Vaggatem, Skrukkebuk-<br />

Ni concentrations (μg / g d.w.)<br />

8<br />

a) Liver<br />

6<br />

Ni concentrations (μg / g d.w.)<br />

15<br />

b) Gills<br />

10<br />

4<br />

2<br />

5<br />

0<br />

20<br />

10<br />

0<br />

0<br />

Ku Sk Va Ra Ku Sk Va Ra<br />

Ni concentrations (μg / g d.w.)<br />

30<br />

c) Kidney<br />

Ni concentrations (μg / g d.w.)<br />

2,0<br />

d) Muscle<br />

0,0<br />

Ku Sk Va Ra Ku Sk Va Ra<br />

Lake locality<br />

Lake locality<br />

frequency <strong>of</strong> occurance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Kuetsjarvi<br />

DR whitefish<br />

1,5<br />

1,0<br />

0,5<br />

SR whitefish<br />

Ku - Kuetsjarvi, Sk - Skrukkebukta, Va - Vaggatem, Ra - Rajakoski<br />

Skrukkebukta<br />

Ni<br />

changes <strong>in</strong> kidneys<br />

Ni <strong>in</strong> sediments<br />

Vaggatem<br />

Ni <strong>in</strong> sediments<br />

Rajakoski<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

frequency <strong>of</strong> occurance<br />

80<br />

Figure 14. Nickel accumulation<br />

levels <strong>in</strong> organs<br />

<strong>of</strong> SR & DR whitefish <strong>of</strong><br />

studied lakes.<br />

Figure 15. Correlation <strong>of</strong> whitefish liver <strong>and</strong> kidney malformation occurrence <strong>and</strong> nickel <strong>and</strong> copper accumulation <strong>in</strong> sediment<br />

beds (µg/g dryweight<br />

) <strong>of</strong> <strong>the</strong> studied lakes.<br />

60<br />

40<br />

20<br />

0<br />

Kuetsjarvi<br />

Skrukkebukta<br />

Cu<br />

Cu <strong>in</strong> sediments<br />

800<br />

changes <strong>in</strong> liver<br />

700<br />

Cu <strong>in</strong> sediments<br />

600<br />

Vaggatem<br />

Rajakoski<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

87


ta <strong>and</strong> Rajakosk. Increase <strong>in</strong> <strong>the</strong> share <strong>of</strong> perch <strong>and</strong><br />

pike was noted as well as <strong>in</strong>crease <strong>in</strong> <strong>the</strong>ir size <strong>and</strong><br />

<strong>the</strong> weight. At <strong>the</strong> same time <strong>in</strong> polluted Lake Kuetsjarvi<br />

<strong>the</strong>re were no major changes <strong>in</strong> <strong>the</strong> fish community<br />

structure with whitefish be<strong>in</strong>g <strong>the</strong> most stable<br />

family, as it is able to ma<strong>in</strong>ta<strong>in</strong> relatively high population<br />

due to early maturity, changes <strong>in</strong> life cycle strategy<br />

<strong>and</strong> polymorphism (Kashul<strong>in</strong> et al. 1999). DR <strong>and</strong><br />

SSR forms <strong>of</strong> whitefish <strong>of</strong> Lake Kuetsjarvi have <strong>the</strong><br />

lowest values <strong>of</strong> l<strong>in</strong>ear growth <strong>of</strong> all <strong>the</strong> studied reservoirs<br />

<strong>of</strong> <strong>the</strong> Pasvik River system. In <strong>the</strong>se forms<br />

unique early matur<strong>in</strong>g with a m<strong>in</strong>imal size (at <strong>the</strong> age<br />

<strong>of</strong> 1+ with length 6–9 cm, weight 10 g) was observed,<br />

which is considered as one <strong>of</strong> adaptations to survive<br />

<strong>in</strong> heavily polluted waters.<br />

Decrease <strong>in</strong> age, size <strong>and</strong> maturity classes <strong>of</strong> fish<br />

populations <strong>in</strong> contam<strong>in</strong>ated waters may serve as a<br />

water quality criterion. In <strong>the</strong> whitefish populations<br />

miss<strong>in</strong>g age classes, large proportion <strong>of</strong> young fish,<br />

maturation <strong>of</strong> extremely young fish <strong>and</strong> large percentage<br />

<strong>of</strong> fish skipp<strong>in</strong>g <strong>the</strong> spawn<strong>in</strong>g season were noted.<br />

Anthropogenic stress is directly l<strong>in</strong>ked to fish growth<br />

processes. The average length <strong>and</strong> weight <strong>of</strong> whitefish,<br />

pike <strong>and</strong> perch seem to <strong>in</strong>crease <strong>in</strong> proportion to<br />

<strong>in</strong>creas<strong>in</strong>g distance from <strong>the</strong> Pechenganikel.<br />

Assessment <strong>of</strong> fish communities revealed that even<br />

though anthropogenic stress is decreas<strong>in</strong>g, <strong>the</strong> condition<br />

<strong>of</strong> fish rema<strong>in</strong>s without considerable improvement<br />

at <strong>the</strong> level <strong>of</strong> communities, populations <strong>and</strong> <strong>in</strong>dividual<br />

organisms. The exam<strong>in</strong>ed areas are located at different<br />

distances from <strong>the</strong> Pechenganikel plant <strong>and</strong> <strong>the</strong>y<br />

are most representative <strong>in</strong> terms <strong>of</strong> long-term assessment<br />

<strong>of</strong> status <strong>of</strong> fish communities.<br />

Fish species sensitive to water level regulation<br />

(m<strong>in</strong>now, Phox<strong>in</strong>us phox<strong>in</strong>us) were found only <strong>in</strong><br />

Skrukkebukta <strong>and</strong> Skogmo sites, <strong>in</strong>dicat<strong>in</strong>g that water<br />

level regulation may have effect on littoral fish communities<br />

<strong>of</strong> <strong>the</strong> Pasvik River. Fish densities <strong>and</strong> species<br />

richness varied between <strong>the</strong> sites <strong>in</strong>dicat<strong>in</strong>g that<br />

effect <strong>of</strong> water level regulation may differ <strong>in</strong> different<br />

river sections depend<strong>in</strong>g on littoral morphological characteristics.<br />

The Pasvik River bas<strong>in</strong> monitor<strong>in</strong>g programme<br />

should fur<strong>the</strong>r focus on more comprehensive research<br />

on fish species composition <strong>and</strong> monitor<strong>in</strong>g <strong>of</strong> condition<br />

<strong>of</strong> whitefish, vendace, pike <strong>and</strong> perch populations.<br />

Length, weight <strong>and</strong> age structure, growth, reproduction<br />

<strong>and</strong> feed<strong>in</strong>g characteristics <strong>of</strong> fish should be <strong>the</strong><br />

ma<strong>in</strong> fish population <strong>in</strong>dicators. Whitefish should be<br />

used to assess <strong>the</strong> level <strong>of</strong> malformations <strong>in</strong> fish at <strong>the</strong><br />

organism level under <strong>the</strong> anthropogenic stress: status<br />

<strong>of</strong> <strong>the</strong> kidneys (excretory system) is a critical parameter.<br />

Identification <strong>of</strong> relations between <strong>the</strong> stress <strong>in</strong>tensity<br />

<strong>and</strong> negative biological responses <strong>of</strong> fish requires<br />

an <strong>in</strong>tegrated approach tak<strong>in</strong>g <strong>in</strong>to account both pathology<br />

components <strong>and</strong> levels <strong>of</strong> heavy metal accumulation<br />

<strong>in</strong> fish organs <strong>and</strong> tissues <strong>and</strong> <strong>in</strong> sediments.<br />

Nickel <strong>and</strong> copper should be <strong>the</strong> ma<strong>in</strong> heavy metals<br />

used <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> anthropogenic stress on <strong>the</strong><br />

ecosystems <strong>of</strong> <strong>the</strong> border area. Observations <strong>of</strong> <strong>the</strong><br />

status <strong>of</strong> <strong>the</strong> fish fauna <strong>of</strong> <strong>the</strong> lakes should be carried<br />

out once every three years.<br />

88<br />

Gett<strong>in</strong>g electr<strong>of</strong>ish<strong>in</strong>g equipment ready<br />

Photo: Jukka Ylikörkkö.


References<br />

Amundsen P-A., Bøhn T., Vaga G.H. 2004: Gill raker morphology <strong>and</strong> feed<strong>in</strong>g ecology <strong>of</strong> two sympatric whitefish (Coregonus<br />

lavaretus) morphs. Annales Zoologici Fennici 41: 291–300.<br />

Bryuzg<strong>in</strong> V.L. 1969: Methods <strong>of</strong> study <strong>of</strong> fish growth by scales, bones <strong>and</strong> otoliths. Naukova Dumka. Kiev. 188 p.<br />

Chugunova N.I. 1959: Fish age <strong>and</strong> growth study guide. Publisher <strong>of</strong> USSR Academy <strong>of</strong> Science. 164 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Dgebuadze Y.Y. 2001: Ecological regularities <strong>of</strong> fish growth variability. Nauka. 276 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Fevolden S-E., Amundsen P-A. 2013: Ecological speciation <strong>in</strong> postglacial European whitefish: rapid adaptive radiations <strong>in</strong>to<br />

<strong>the</strong> littoral, pelagic, <strong>and</strong> pr<strong>of</strong>undal lake habitats. Ecology <strong>and</strong> Evolution 3(15): 4970–86.<br />

Kashul<strong>in</strong>, N.N., Luk<strong>in</strong>, A.A. & Amundsen, P.-A. 1999. Fish <strong>of</strong> subarctic freshwater systems as bio<strong>in</strong>dicators <strong>of</strong> <strong>in</strong>dustrial pollution.<br />

Kola Science Centre, <strong>Russia</strong>n Academy <strong>of</strong> Sciences. Monograph. 170 p. (In <strong>Russia</strong>n with an English summary)<br />

M<strong>in</strong>a М.V., Klevezal G.А. 1976: Growth <strong>of</strong> animals. Nauka. 291 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Pravd<strong>in</strong>, I.F. 1960: Methods o fish studies. Moscow 376 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Pravd<strong>in</strong>, I.F. 1966: H<strong>and</strong>book on <strong>the</strong> techniques <strong>of</strong> fish studies. Pischevaya Promyshlennost’. Moscow. 376 p.<br />

(<strong>in</strong> <strong>Russia</strong>n)<br />

Reshetnikov, Yu 1980: Ecology <strong>and</strong> systematics <strong>of</strong> coregonid fish. Nauka. Moscow. 300 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Schmalhausen, I.I. 1935, Def<strong>in</strong>itions <strong>of</strong> <strong>the</strong> Basic Conceptions <strong>and</strong> <strong>the</strong> Technique <strong>of</strong> Growth Investigation, Growth <strong>of</strong> Animals.<br />

Biomedgiz. Moscow. p. 8–60. (<strong>in</strong> <strong>Russia</strong>n)<br />

Siwertsson A., Knudsen R., Amundsen P.-A. 2008: Temporal stability <strong>in</strong> gill raker numbers <strong>of</strong> subarctic European whitefish<br />

populations. Advances <strong>in</strong> Limnology 63: 229–240.<br />

Electr<strong>of</strong>ish<strong>in</strong>g catch. Photo: Jukka Ylikörkkö.<br />

89


8 Long-term effects <strong>of</strong> metal<br />

contam<strong>in</strong>ation, water regulation, species<br />

<strong>in</strong>vasion <strong>and</strong> climate change on <strong>the</strong> fish<br />

<strong>of</strong> <strong>the</strong> Pasvik River<br />

PER-ARNE AMUNDSEN<br />

Fish community composition<br />

Altoge<strong>the</strong>r 15 different fish species have been recorded<br />

<strong>in</strong> <strong>the</strong> Pasvik watercourse, which is ma<strong>in</strong>ly formed<br />

<strong>of</strong> lakes <strong>and</strong> reservoirs due to hydropower stations.<br />

The most important fish species <strong>in</strong> <strong>the</strong>se lacustr<strong>in</strong>e<br />

systems <strong>in</strong>clude whitefish, vendace, perch, pike, burbot,<br />

n<strong>in</strong>e-sp<strong>in</strong>ed stickleback, brown trout <strong>and</strong> grayl<strong>in</strong>g.<br />

Vendace <strong>in</strong>vaded <strong>the</strong> Pasvik watercourse around<br />

1990, after be<strong>in</strong>g <strong>in</strong>troduced to Lake Inarijärvi <strong>in</strong> <strong>the</strong><br />

1960’s (Amundsen et al. 1999, 2012; Præbel et al.<br />

2013) <strong>and</strong> has now become <strong>the</strong> dom<strong>in</strong>ant pelagic<br />

species <strong>in</strong> <strong>the</strong> watercourse (Bøhn et al. 2008; S<strong>and</strong>lund<br />

et al. 2013). Whitefish has been <strong>the</strong> most numerous<br />

fish species, occupy<strong>in</strong>g all major lake habitats <strong>in</strong><br />

high numbers (Amundsen et al. 1999). The whitefish<br />

<strong>in</strong> <strong>the</strong> watercourse is polymorphic, consist<strong>in</strong>g <strong>of</strong> three<br />

different morphs, differentiated <strong>in</strong> particular by <strong>the</strong>ir<br />

morphology <strong>and</strong> number <strong>of</strong> gill rakers, <strong>and</strong> referred<br />

to as small sparsely-rakered (SSR), large sparselyrakered<br />

(LSR) <strong>and</strong> densely-rakered (DR) whitefish<br />

(Siwertsson et al. 2010). The three morphs have large<br />

ecological differences; <strong>the</strong> LSR morph predom<strong>in</strong>antly<br />

resid<strong>in</strong>g <strong>in</strong> <strong>the</strong> littoral zone feed<strong>in</strong>g on littoral zoobenthos,<br />

<strong>the</strong> DR morph <strong>in</strong> <strong>the</strong> pelagic habitat feed<strong>in</strong>g<br />

on zooplankton, <strong>and</strong> <strong>the</strong> SSR morph <strong>in</strong> <strong>the</strong> pr<strong>of</strong>undal<br />

utiliz<strong>in</strong>g typical pr<strong>of</strong>undal prey (Kahila<strong>in</strong>en et al. 2011).<br />

Perch is also numerous <strong>in</strong> <strong>the</strong> watercourse, ma<strong>in</strong>ly<br />

resid<strong>in</strong>g <strong>in</strong> <strong>the</strong> littoral zone <strong>and</strong> to some extent also<br />

utiliz<strong>in</strong>g <strong>the</strong> pr<strong>of</strong>undal. The diet <strong>of</strong> perch <strong>in</strong>cludes several<br />

ontogenetic niche shifts (Amundsen et al. 2003).<br />

Pike is typically found <strong>in</strong> <strong>the</strong> shallow littoral, but has<br />

<strong>in</strong> <strong>the</strong> latest years also more frequently been caught<br />

<strong>in</strong> <strong>the</strong> pelagic habitat. Also pike goes through ontogenetic<br />

niche shifts. Burbot is a benthic dwell<strong>in</strong>g fish<br />

species, <strong>the</strong> abundance <strong>of</strong> which is low relative to e.g.<br />

perch <strong>and</strong> pike. N<strong>in</strong>e-sp<strong>in</strong>ed stickleback has a key<br />

role <strong>in</strong> <strong>the</strong> food web <strong>of</strong> <strong>the</strong> lacustr<strong>in</strong>e ecosystems <strong>in</strong><br />

<strong>the</strong> watercourse, be<strong>in</strong>g a dom<strong>in</strong>ant prey for <strong>the</strong> small<br />

to <strong>in</strong>termediate sized predatory fishes, <strong>in</strong> particular<br />

perch <strong>and</strong> burbot (Figure 1; Amundsen et al. 2003).<br />

Brown trout<br />

Pike<br />

Perch<br />

Burbot<br />

Figure 1. Summary <strong>of</strong> <strong>the</strong> basic<br />

food web structure <strong>of</strong> <strong>the</strong> lacustr<strong>in</strong>e<br />

fish communities <strong>in</strong> <strong>the</strong> Pasvik watercourse<br />

(l<strong>in</strong>e thickness <strong>in</strong>dicates<br />

<strong>the</strong> importance <strong>of</strong> <strong>the</strong> different l<strong>in</strong>ks.<br />

Stippled l<strong>in</strong>es represent unconfirmed<br />

l<strong>in</strong>ks).<br />

Vendace<br />

Pelagic<br />

DR whitefish<br />

9-sp. st.b.<br />

Benthic<br />

LSR whitefish<br />

90


The brown trout <strong>in</strong> <strong>the</strong> Pasvik watercourse is a fastgrow<strong>in</strong>g,<br />

typically piscivorous form, which ma<strong>in</strong>ly feed<br />

on coregonid prey (vendace <strong>and</strong> DR whitefish) <strong>in</strong> <strong>the</strong><br />

pelagic (Jensen et al. 2004, 2008). The water level regulations<br />

<strong>in</strong> <strong>the</strong> Pasvik watercourse have chiefly reduced<br />

<strong>the</strong> spawn<strong>in</strong>g <strong>and</strong> nursery areas for brown trout,<br />

<strong>and</strong> annual stock<strong>in</strong>g <strong>of</strong> brown trout is carried out to<br />

compensate for <strong>the</strong> reduced reproduction <strong>and</strong> recruitment<br />

possibilities. Also grayl<strong>in</strong>g has suffered from <strong>the</strong><br />

hydropower stations due to <strong>the</strong> loss <strong>of</strong> stretches with<br />

runn<strong>in</strong>g water.<br />

Food web structure <strong>and</strong><br />

stable isotopes<br />

The food web <strong>of</strong> <strong>the</strong> lake ecosystems <strong>in</strong> <strong>the</strong> watercourse<br />

consist <strong>of</strong> two ma<strong>in</strong> compartments orig<strong>in</strong>at<strong>in</strong>g<br />

from <strong>the</strong> pelagic <strong>and</strong> benthic primary production,<br />

respectively (Figure 1). In <strong>the</strong> native ecological community,<br />

<strong>the</strong> two most common whitefish morphs, DR<br />

<strong>and</strong> LSR whitefish, have central roles <strong>in</strong> each <strong>of</strong> <strong>the</strong>se<br />

compartments; <strong>the</strong> DR morph utiliz<strong>in</strong>g <strong>the</strong> zooplankton<br />

resources <strong>and</strong> <strong>the</strong> LSR morph <strong>the</strong> benthic<br />

<strong>in</strong>vertebrates ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> littoral zone (additionally<br />

<strong>the</strong> less abundant SSR morph is utiliz<strong>in</strong>g <strong>the</strong> benthic<br />

<strong>in</strong>vertebrates <strong>in</strong> <strong>the</strong> pr<strong>of</strong>undal). Vendace has now become<br />

<strong>the</strong> key zooplankton predator <strong>and</strong> <strong>the</strong> dom<strong>in</strong>ant<br />

fish species <strong>in</strong> <strong>the</strong> pelagic habitat. Brown trout is <strong>the</strong><br />

key top predator <strong>in</strong> <strong>the</strong> pelagic compartment, feed<strong>in</strong>g<br />

predom<strong>in</strong>antly on vendace <strong>and</strong> DR whitefish. In <strong>the</strong><br />

benthic part <strong>of</strong> <strong>the</strong> trophic network, adult perch, burbot<br />

<strong>and</strong> pike are piscivorous species utiliz<strong>in</strong>g <strong>in</strong> particular<br />

n<strong>in</strong>e-sp<strong>in</strong>ed stickleback <strong>and</strong> whitefish as prey. Pike<br />

constitutes <strong>the</strong> apex predator <strong>of</strong> <strong>the</strong> whole aquatic<br />

network <strong>in</strong> <strong>the</strong> Pasvik watercourse (Figure 1). Pike,<br />

<strong>and</strong> more recently also perch <strong>and</strong> burbot, have started<br />

to <strong>in</strong>clude vendace <strong>in</strong> <strong>the</strong>ir diet, <strong>and</strong> <strong>the</strong> separation <strong>of</strong><br />

<strong>the</strong> pelagic <strong>and</strong> benthic food-web compartments has<br />

<strong>the</strong>refore become less pronounced after <strong>the</strong> vendace<br />

<strong>in</strong>vasion <strong>in</strong> <strong>the</strong> watercourse.<br />

Stable isotope analysis provides long-term <strong>in</strong>tegrated<br />

<strong>in</strong>formation about <strong>the</strong> ma<strong>in</strong> nutritional sources,<br />

<strong>the</strong>reby constitut<strong>in</strong>g a cost-effective tool to explore<br />

<strong>the</strong> trophic ecology <strong>of</strong> freshwater organisms <strong>and</strong> <strong>the</strong><br />

food-web structure <strong>of</strong> aquatic ecosystems (Boecklen<br />

et al. 2011, Layman et al. 2012). The carbon <strong>and</strong> nitrogen<br />

stable isotope ratios (expressed as δ 13 C <strong>and</strong><br />

δ 15 N, respectively) can dist<strong>in</strong>guish between resources<br />

from <strong>the</strong> three pr<strong>in</strong>cipal lake habitats; littoral, pelagic<br />

<strong>and</strong> pr<strong>of</strong>undal (V<strong>and</strong>er Z<strong>and</strong>en & Rasmussen 1999,<br />

Syväranta et al. 2006).<br />

A summary plot <strong>of</strong> <strong>the</strong> mean carbon <strong>and</strong> nitrogen<br />

stable isotope ratios for key taxa <strong>in</strong> <strong>the</strong> Pasvik lakes<br />

food webs reveals a dist<strong>in</strong>ct pattern <strong>of</strong> trophic levels<br />

<strong>and</strong> resource utilization (Figure 2), chiefly reflect<strong>in</strong>g<br />

<strong>the</strong> trophic network established from habitat use <strong>and</strong><br />

stomach contents data (Figure 1). Along <strong>the</strong> δ 15 N-<br />

axis, <strong>the</strong> <strong>in</strong>vertebrates are positioned at lower values,<br />

which reflect <strong>the</strong>ir low positions <strong>in</strong> <strong>the</strong> trophic network.<br />

The pr<strong>of</strong>undal <strong>in</strong>vertebrates (chironomids) show elevated<br />

δ 15 N-levels typical for <strong>the</strong>m as compared to <strong>the</strong><br />

δ 15 N<br />

12<br />

Brown trout<br />

Pike<br />

10<br />

SSR whitefish<br />

Perch<br />

8<br />

Vendace<br />

9-sp. stickleback<br />

DR whitefish<br />

LSR whitefish<br />

6<br />

Chironomids ( pr<strong>of</strong>undal )<br />

4<br />

Zooplankton<br />

Chironomids (littoral)<br />

2<br />

0<br />

Snails<br />

-35 -30 -25 -20 -15<br />

δ 13 C<br />

Figure 2. Mean stable isotopes<br />

ratios (δ 13 C <strong>and</strong> δ 15 N) <strong>of</strong> important<br />

taxa <strong>in</strong> <strong>the</strong> lacustr<strong>in</strong>e food<br />

webs <strong>of</strong> <strong>the</strong> Pasvik watercourse<br />

(data ma<strong>in</strong>ly from Vaggatem).<br />

91


littoral <strong>and</strong> pelagic <strong>in</strong>vertebrates, a pattern that is also<br />

reflected <strong>in</strong> <strong>the</strong> relatively high δ 15 N-levels <strong>of</strong> <strong>the</strong> pr<strong>of</strong>undal<br />

dwell<strong>in</strong>g, <strong>in</strong>vertebrate-feed<strong>in</strong>g SSR whitefish.<br />

Invertebrate-feed<strong>in</strong>g fish species from <strong>the</strong> pelagic<br />

<strong>and</strong> littoral habitats dom<strong>in</strong>ate <strong>the</strong> <strong>in</strong>termediate δ 15 N-<br />

levels whereas piscivorous species are positioned at<br />

<strong>the</strong> highest trophic levels as <strong>in</strong>dicated by <strong>the</strong>ir high<br />

δ 15 N-values (Figure 2). Perch is positioned <strong>in</strong>termediate<br />

to <strong>the</strong> coregonids <strong>and</strong> pike, reflect<strong>in</strong>g <strong>the</strong>ir more<br />

omnivorous diet consist<strong>in</strong>g both <strong>of</strong> <strong>in</strong>vertebrate <strong>and</strong><br />

fish prey. Along <strong>the</strong> δ 13 C-axis <strong>the</strong> pr<strong>of</strong>undal <strong>and</strong> pelagic<br />

<strong>in</strong>vertebrates have lower values than <strong>the</strong> littoral<br />

<strong>in</strong>vertebrates. Similarly <strong>the</strong> coregonid species utiliz<strong>in</strong>g<br />

pelagic <strong>and</strong> pr<strong>of</strong>undal resources are positioned towards<br />

lower δ 13 C-values than <strong>the</strong> predom<strong>in</strong>antly littoral<br />

dwell<strong>in</strong>g LSR whitefish. Among <strong>the</strong> top predators,<br />

brown trout, which typically feed <strong>in</strong> <strong>the</strong> pelagic habitat,<br />

had somewhat lower δ 13 C-values than pike (Figure 2).<br />

Anthropogenic impacts<br />

The Pasvik watercourse suffers from a multitude <strong>of</strong><br />

stressors that encompass chemical, physical <strong>and</strong> biological<br />

factors, <strong>in</strong> particular represented by large pollution<br />

outputs from <strong>the</strong> Pechenganikel extensive water<br />

level regulations, <strong>in</strong>troduction <strong>and</strong> <strong>in</strong>vasion <strong>of</strong> non-native<br />

species, compensatory fish stock<strong>in</strong>gs, <strong>and</strong> unregulated<br />

<strong>and</strong> unrecorded fish exploitation. Over <strong>the</strong> latest<br />

decades, global warm<strong>in</strong>g scenario has become<br />

an additional stressor. In relation to <strong>the</strong>se extant threats<br />

<strong>and</strong> <strong>in</strong> order to enhance <strong>the</strong> general knowledge<br />

<strong>of</strong> subarctic freshwater ecosystems <strong>in</strong> this region, <strong>the</strong><br />

fish communities <strong>of</strong> lakes <strong>in</strong> <strong>the</strong> Pasvik watercourse<br />

have been subject to extensive long-term biological<br />

studies with annual sampl<strong>in</strong>g s<strong>in</strong>ce 1991.<br />

Heavy metal contam<strong>in</strong>ations <strong>in</strong> fish<br />

Several heavy metals have been analyzed <strong>in</strong> different<br />

tissues from six fish species <strong>and</strong> at three different sites,<br />

cover<strong>in</strong>g four sampl<strong>in</strong>g periods (Period 1: 1991–<br />

1992, Period 2: 2002–2005, Period 3: 2007–2008, Period<br />

4: 2012–2013). The studied lakes are Kuetsjarvi,<br />

Skrukkebukta <strong>and</strong> Vaggatem. Some additional samples<br />

are also available from Rajakoski (Period 2 <strong>and</strong><br />

4) <strong>and</strong> Lake Inarijärvi (Period 2). Studied fish species<br />

are DR <strong>and</strong> LSR whitefish, perch, pike, brown trout<br />

<strong>and</strong> vendace, <strong>and</strong> tissue samples have been retrieved<br />

from muscle, liver, gills, kidney <strong>and</strong> skeleton. Elements<br />

exam<strong>in</strong>ed <strong>in</strong> all sampl<strong>in</strong>g periods <strong>in</strong>clude nickel<br />

(Ni), copper (Cu), cadmium (Cd), chromium (Cr), z<strong>in</strong>c<br />

(Zn) <strong>and</strong> mercury (Hg).<br />

A temporal analysis <strong>of</strong> <strong>the</strong> Ni contents <strong>in</strong> different<br />

tissues <strong>of</strong> <strong>the</strong> DR <strong>and</strong> LSR whitefish morphs revealed<br />

no dist<strong>in</strong>ct variations throughout <strong>the</strong> four time periods<br />

from 1991 to 2013. A pr<strong>of</strong>ound <strong>and</strong> significant decl<strong>in</strong>e<br />

<strong>in</strong> contam<strong>in</strong>ation levels with <strong>in</strong>creas<strong>in</strong>g distance from<br />

<strong>the</strong> smelters (i.e. from Kuetsjarvi to Skrukkebukta to<br />

Vaggatem) was, however, evident for all <strong>the</strong> exam<strong>in</strong>ed<br />

time periods. This could also be seen for <strong>the</strong> Ni<br />

contents <strong>in</strong> different tissues <strong>of</strong> perch <strong>and</strong> pike. Similar<br />

patterns were also revealed for Cu <strong>and</strong> Cd. Also for<br />

<strong>the</strong> tissue contents <strong>of</strong> Cr <strong>and</strong> Zn <strong>the</strong>re were no dist<strong>in</strong>ct<br />

variations through time. Hence, no major changes<br />

<strong>in</strong> <strong>the</strong> contam<strong>in</strong>ation levels <strong>of</strong> <strong>the</strong>se elements <strong>in</strong> fish<br />

tissue appear to have occurred over <strong>the</strong> time period<br />

<strong>of</strong> 1991–2013.<br />

In contrast, a dist<strong>in</strong>ct temporal pattern was evident<br />

for <strong>the</strong> mercury (Hg) contents <strong>in</strong> fish tissues. Both <strong>in</strong><br />

Kuetsjarvi (Figure 3a) <strong>and</strong> Skrukkebukta & Vaggatem<br />

(Figure 3b) <strong>the</strong>re was a significant <strong>in</strong>crease <strong>in</strong> <strong>the</strong> Hg<br />

contents <strong>in</strong> muscle tissue <strong>of</strong> most fish species over<br />

<strong>the</strong> four sampl<strong>in</strong>g periods from 1991 to 2013. The <strong>in</strong>c-<br />

Hg contents <strong>in</strong> muscle tissue<br />

( μg g - 1 fish dry weight)<br />

2,0<br />

a) Kuetsjarvi<br />

2,0<br />

b) Vaggatem & Skrukkebukta<br />

Hg contents <strong>in</strong> muscle tissue<br />

( μg g - 1 fish dry weight)<br />

1,5<br />

1,5<br />

1,0<br />

1,0<br />

Figure 3. Temporal changes <strong>in</strong> Hg levels <strong>in</strong> muscle<br />

tissue <strong>of</strong> fish from a) Kuetsjarvi <strong>and</strong> b) Skrukkebukta<br />

& Vaggatem (samples from <strong>the</strong>se two lakes were<br />

comb<strong>in</strong>ed to streng<strong>the</strong>n <strong>the</strong> observation numbers as<br />

no large differences <strong>in</strong> Hg levels were evident between<br />

<strong>the</strong>se two localities). Time periods 1: 1991–<br />

1992, 2: 2002–2005, 3: 2007–2008, 4: 2012–2013<br />

0,5<br />

0,0<br />

1 2 3 4<br />

Time period<br />

DR whitefish SR whitefish<br />

0,5<br />

0,0<br />

Vendace<br />

1 2 3 4<br />

Time period<br />

Perch Pike Brown trout<br />

92


ease <strong>in</strong> Hg contam<strong>in</strong>ation over <strong>the</strong> study period was<br />

particularly large for <strong>the</strong> predatory species <strong>and</strong> was<br />

most dist<strong>in</strong>ct <strong>in</strong> Skrukkebukta & Vaggatem. The generally<br />

higher contam<strong>in</strong>ation levels <strong>in</strong> predatory species<br />

than <strong>in</strong> <strong>the</strong> coregonids are to be expected as Hg is an<br />

element that accumulates <strong>in</strong> organisms <strong>and</strong> thus typically<br />

<strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g trophic levels with<strong>in</strong><br />

<strong>the</strong> food webs. Similarly, <strong>the</strong> Hg contents <strong>in</strong> fish also<br />

tend to <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g fish size, which could<br />

be seen for brown trout, perch, pike, <strong>and</strong> LSR whitefish<br />

but was not evident for DR whitefish <strong>and</strong> vendace<br />

which have more narrow size ranges.<br />

The observed <strong>in</strong>crease <strong>in</strong> <strong>the</strong> Hg levels <strong>of</strong> <strong>the</strong> predatory<br />

fishes may be related to <strong>the</strong> recent ecological<br />

changes follow<strong>in</strong>g <strong>the</strong> vendace <strong>in</strong>vasion <strong>in</strong> <strong>the</strong> watercourse,<br />

as pelagic pathways are known to be <strong>of</strong> large<br />

importance <strong>in</strong> bioaccumulation <strong>and</strong> magnification<br />

<strong>of</strong> Hg <strong>in</strong> subarctic lake food webs. Ano<strong>the</strong>r plausible<br />

explanation for <strong>the</strong> high levels <strong>of</strong> Hg <strong>and</strong> <strong>the</strong> dist<strong>in</strong>ct<br />

<strong>in</strong>crease <strong>in</strong> Hg levels <strong>in</strong> fish over <strong>the</strong> latest decade<br />

is related to <strong>the</strong> ongo<strong>in</strong>g global climate changes.<br />

Increased temperatures <strong>and</strong> a higher run-<strong>of</strong>f due to<br />

<strong>in</strong>creased precipitation have already been demonstrated<br />

for <strong>the</strong> watercourse (Chapter 1). This has likely<br />

resulted <strong>in</strong> a more extensive wash-out <strong>of</strong> pollutants<br />

from <strong>the</strong> large catchment area <strong>and</strong> <strong>in</strong>to <strong>the</strong> watercourse,<br />

where biomagnification <strong>and</strong> accumulation <strong>of</strong> Hg<br />

through <strong>the</strong> food web rapidly may result <strong>in</strong> elevated<br />

contam<strong>in</strong>ation levels <strong>in</strong> <strong>the</strong> top predators (conf. e.g.<br />

Harris et al. 2007).<br />

Water regulations<br />

Follow<strong>in</strong>g <strong>the</strong> establishment <strong>of</strong> seven hydropower stations<br />

along <strong>the</strong> Pasvik watercourse <strong>the</strong>re have been<br />

large changes <strong>in</strong> <strong>the</strong> physical characteristics: large<br />

areas were flooded, previous rapids <strong>and</strong> waterfalls<br />

disappeared, <strong>and</strong> <strong>the</strong> former river system is now dom<strong>in</strong>ated<br />

by consecutive lakes <strong>and</strong> reservoirs. Pr<strong>in</strong>cipal<br />

spawn<strong>in</strong>g, nursery <strong>and</strong> feed<strong>in</strong>g areas for brown<br />

trout <strong>and</strong> grayl<strong>in</strong>g were severely degraded <strong>and</strong> reduced<br />

due to <strong>the</strong> disappearance <strong>of</strong> <strong>the</strong> river<strong>in</strong>e stretches<br />

<strong>of</strong> <strong>the</strong> watercourse, result<strong>in</strong>g <strong>in</strong> strong decl<strong>in</strong>es<br />

<strong>in</strong> <strong>the</strong> abundance <strong>of</strong> <strong>the</strong>se species (Krist<strong>of</strong>fersen<br />

1984, Arnesen 1987). The large physical changes <strong>of</strong><br />

<strong>the</strong> watercourse have benefitted typical lake-dwell<strong>in</strong>g<br />

fish species like whitefish, perch <strong>and</strong> pike, especially<br />

through <strong>the</strong> development <strong>of</strong> large reservoirs. The<br />

dam constructions have resulted <strong>in</strong> a fragmentation <strong>of</strong><br />

<strong>the</strong> watercourse, mak<strong>in</strong>g upstream fish migration impossible<br />

<strong>and</strong> downstream migration <strong>in</strong>feasible. For <strong>the</strong><br />

fish populations <strong>the</strong> fragmentation <strong>and</strong> migration limitations<br />

may have resulted <strong>in</strong> some genetic constra<strong>in</strong>ts<br />

for some <strong>of</strong> <strong>the</strong> fish populations, but this has yet not<br />

been explored.<br />

Brown trout stock<strong>in</strong>g <strong>and</strong> vendace <strong>in</strong>vasion<br />

The Pasvik brown trout recruitment potential suffers<br />

from <strong>the</strong> hydropower plants <strong>of</strong> <strong>the</strong> Pasvik River <strong>and</strong><br />

due to this <strong>the</strong> local Norwegian hydropower company<br />

is carry<strong>in</strong>g out an imposed annual stock<strong>in</strong>g <strong>of</strong><br />

5000 large-sized trout. The stock<strong>in</strong>gs are important<br />

for <strong>the</strong> present brown trout population as stocked fish<br />

comprise >80 % <strong>of</strong> <strong>the</strong> total catches. From 1998 to<br />

2008, <strong>the</strong> contribution <strong>of</strong> stocked fish <strong>in</strong> <strong>the</strong> catches<br />

has dist<strong>in</strong>ctly decreased, which suggests that <strong>the</strong> natural<br />

production <strong>of</strong> brown trout may have slightly improved,<br />

possibly as a result <strong>of</strong> a larger spawn<strong>in</strong>g population<br />

due to <strong>the</strong> contribution <strong>of</strong> stocked fish. Vendace<br />

has been <strong>the</strong> dom<strong>in</strong>ant prey over this time period, with<br />

an <strong>in</strong>creas<strong>in</strong>g dietary contribution from around 75 %<br />

<strong>in</strong> 1998 to nearly 100 % <strong>in</strong> 2008. Hence, <strong>the</strong> vendace<br />

<strong>in</strong>vasion <strong>and</strong> <strong>the</strong> establishment <strong>of</strong> a high population<br />

abundance <strong>of</strong> <strong>the</strong> <strong>in</strong>vader have provided a new prey<br />

source for <strong>the</strong> piscivorous trout, <strong>and</strong> may thus have<br />

<strong>in</strong>creased <strong>the</strong> production potential <strong>of</strong> brown trout <strong>in</strong><br />

<strong>the</strong> watercourse.<br />

The strategy for <strong>the</strong> stock<strong>in</strong>g programme appears<br />

good, especially <strong>in</strong> respect to <strong>the</strong> exclusive use <strong>of</strong><br />

brood fish from <strong>the</strong> local trout population. However,<br />

artificial selection may occur dur<strong>in</strong>g <strong>the</strong> collection <strong>of</strong><br />

<strong>the</strong> brood stock <strong>and</strong> subsequently <strong>in</strong> <strong>the</strong> breed<strong>in</strong>g <strong>and</strong><br />

rear<strong>in</strong>g facilities, potentially lead<strong>in</strong>g to a reduced or<br />

altered genetic diversity. Fur<strong>the</strong>r studies <strong>of</strong> <strong>the</strong> brown<br />

trout population should <strong>the</strong>refore be implemented,<br />

<strong>in</strong>clud<strong>in</strong>g a genetic survey. Moreover, <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

spawn<strong>in</strong>g <strong>and</strong> nursery areas for brown trout <strong>in</strong> tributary<br />

streams need particular attention <strong>and</strong> protection,<br />

especially s<strong>in</strong>ce <strong>the</strong> trout has an obligate role <strong>in</strong> <strong>the</strong><br />

lifecycle <strong>of</strong> <strong>the</strong> red-listed freshwater pearl mussel Margaritifera<br />

margaritifera (e.g. Aspholm 2013).<br />

The vendace <strong>in</strong>vasion started from Lake Inarijärvi,<br />

where <strong>the</strong> species was <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> headwaters<br />

on two occasions <strong>in</strong> <strong>the</strong> 1950s <strong>and</strong> -60s (Mutenia &<br />

Salonen 1992), <strong>and</strong> by 1995 it was apparently present<br />

along <strong>the</strong> whole watercourse (Amundsen et al.<br />

1999). With<strong>in</strong> few years <strong>the</strong> <strong>in</strong>vader became an important<br />

pelagic fish species <strong>in</strong> lakes <strong>in</strong> <strong>the</strong> Pasvik watercourse<br />

(Amundsen et al. 1999, Bøhn et al. 2004,<br />

2008). However, <strong>the</strong> vendace population also entered<br />

a typical fluctuat<strong>in</strong>g ‘boom-<strong>and</strong>-bust’ development<br />

with large variations <strong>in</strong> population density (Salonen et<br />

al. 2007, S<strong>and</strong>lund et al. 2013), result<strong>in</strong>g <strong>in</strong> a highly<br />

93


variable <strong>and</strong> unpredictable ecological situation <strong>in</strong> <strong>the</strong><br />

watercourse.<br />

In Vaggatem <strong>the</strong> vendace population rapidly <strong>in</strong>creased<br />

<strong>in</strong> abundance after its arrival <strong>in</strong> 1991 <strong>and</strong> had<br />

by 1998 atta<strong>in</strong>ed a peak density <strong>in</strong> <strong>the</strong> pelagic habitat.<br />

However, over <strong>the</strong> next couple <strong>of</strong> years <strong>the</strong>re was an<br />

abrupt decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> vendace density, which stayed<br />

low until 2003. Later, <strong>the</strong> vendace density has shown<br />

large fluctuations with ma<strong>in</strong>ly three years <strong>in</strong>tervals<br />

between peaks.<br />

The <strong>in</strong>vasion <strong>and</strong> rapid population <strong>in</strong>crease <strong>of</strong> vendace<br />

<strong>in</strong> Vaggatem had an immediate <strong>and</strong> dramatic effect<br />

on <strong>the</strong> DR whitefish population. Over <strong>the</strong> first 3-4<br />

years <strong>the</strong> total density <strong>of</strong> DR whitefish rema<strong>in</strong>ed at a<br />

constant level. However, only one year after <strong>the</strong> arrival<br />

<strong>of</strong> vendace a major behavioral shift occurred, where<br />

most <strong>of</strong> <strong>the</strong> DR whitefish population disappeared<br />

from <strong>the</strong> pelagic, <strong>and</strong> was relegated <strong>in</strong>to <strong>the</strong> littoral<br />

<strong>and</strong> pr<strong>of</strong>undal habitats. This situation was ma<strong>in</strong>ta<strong>in</strong>ed<br />

for a few years, but after 1995 a dramatic decl<strong>in</strong>e occurred<br />

<strong>in</strong> <strong>the</strong> DR whitefish abundance. Even dur<strong>in</strong>g<br />

<strong>the</strong> period from 2000 to 2003 when <strong>the</strong> vendace density<br />

seem<strong>in</strong>gly was at low levels, no apparent rebuild<br />

<strong>of</strong> <strong>the</strong> DR whitefish population occurred.<br />

Vendace can utilize zooplankton more efficiently<br />

than DR whitefish (Bøhn & Amundsen 2001) which<br />

can be seen from <strong>the</strong> long-term changes <strong>in</strong> zooplankton<br />

density, which decreased follow<strong>in</strong>g <strong>the</strong> vendace<br />

<strong>in</strong>vasion. The zooplankton resource appears to be<br />

<strong>in</strong>accessible as a significant dietary source for DR<br />

whitefish when vendace is present <strong>in</strong> high densities.<br />

Assumedly <strong>the</strong> differences <strong>in</strong> vendace populations<br />

between localities (Figure 4) are related to a variable<br />

resistance towards <strong>the</strong> <strong>in</strong>vad<strong>in</strong>g species between sites<br />

<strong>and</strong> among fish communities <strong>of</strong> different structure<br />

<strong>and</strong> dynamics. In particular, <strong>the</strong> DR whitefish populations<br />

<strong>in</strong> Skrukkebukta <strong>and</strong> Kuetsjarvi consist <strong>of</strong> smaller-sized<br />

<strong>in</strong>dividuals <strong>and</strong> have a shorter generation<br />

time than <strong>in</strong> Vaggatem, which may make <strong>the</strong>m more<br />

capable <strong>of</strong> respond<strong>in</strong>g to <strong>the</strong> competitive impacts <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>vad<strong>in</strong>g vendace. In Kuetsjarvi, local adaptations<br />

<strong>of</strong> <strong>the</strong> whitefish populations to <strong>the</strong> heavy pollution may<br />

also have made it more difficult for <strong>the</strong> <strong>in</strong>vad<strong>in</strong>g vendace<br />

to get an upper h<strong>and</strong> <strong>in</strong> competition <strong>and</strong> to establish<br />

<strong>in</strong> high densities. Fur<strong>the</strong>rmore, at <strong>the</strong> time <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>vasion <strong>the</strong> propagule pressure was likely much<br />

larger <strong>in</strong> <strong>the</strong> upper parts <strong>of</strong> <strong>the</strong> watercourse, which<br />

may have led to an abrupt shift <strong>in</strong> competitive <strong>and</strong> numerical<br />

dom<strong>in</strong>ance <strong>in</strong> favor <strong>of</strong> <strong>the</strong> vendace.<br />

Vendace <strong>and</strong> whitefish belong to <strong>the</strong> same genus<br />

(Coregonus) <strong>and</strong> hybridization between <strong>the</strong> two species<br />

is plausible even though it has not been documented<br />

<strong>in</strong> <strong>the</strong> Pasvik watercourse. In contrast, a breakdown<br />

<strong>of</strong> <strong>the</strong> reproductive isolation between <strong>the</strong> LSR<br />

<strong>and</strong> DR whitefish morphs is documented to have occurred<br />

follow<strong>in</strong>g <strong>the</strong> <strong>in</strong>vasion <strong>of</strong> vendace (Bhat et al.<br />

2014). It was revealed that <strong>the</strong> frequency <strong>of</strong> hybrids<br />

had <strong>in</strong>creased from 34 % <strong>in</strong> 1993 to nearly 100 % by<br />

2008. The extensive hybridization between this morph-pair<br />

appears to reflect a situation <strong>of</strong> “speciation <strong>in</strong><br />

reverse”, where <strong>the</strong> vendace <strong>in</strong>vasion has reversed<br />

<strong>the</strong> <strong>in</strong>cipient speciation process that has led to <strong>the</strong> formation<br />

<strong>of</strong> <strong>the</strong> whitefish morphs, collaps<strong>in</strong>g <strong>the</strong>se <strong>in</strong>to<br />

a hybrid swarm <strong>and</strong> creat<strong>in</strong>g a situation which potentially<br />

may have large consequences for <strong>the</strong> biodiversity<br />

<strong>and</strong> function<strong>in</strong>g <strong>of</strong> <strong>the</strong>se ecosystems.<br />

Climate change impacts<br />

Three key objectives have been addressed: 1. Are<br />

<strong>the</strong>re any significant changes to be seen <strong>in</strong> <strong>the</strong> temperature<br />

regime <strong>of</strong> <strong>the</strong> watercourse; 2. Are <strong>the</strong>re any<br />

evidence <strong>of</strong> temperature effects on fish growth (juve-<br />

% vendace <strong>in</strong> pelagic catches<br />

100<br />

80<br />

Vaggatem<br />

60<br />

40<br />

Skrukke -<br />

bukta<br />

Figure 4. The contribution <strong>of</strong> vendace<br />

<strong>in</strong> pelagic fish catches <strong>in</strong> Vaggatem,<br />

Skrukkebukta <strong>and</strong> Kuetsjarvi <strong>in</strong> <strong>the</strong> period<br />

from 1991 to 2013.<br />

20<br />

Kuetsjarvi<br />

0<br />

-90 -92 -94 -96 -98 -00 -02 -04 -06 -08 -10 -12 -14<br />

Year (19 -/20 -)<br />

94


nile coregonids); 3. Are <strong>the</strong>re any changes <strong>in</strong> <strong>the</strong> fish<br />

community composition that can be related to temperature-<strong>in</strong>duced<br />

changes <strong>in</strong> species <strong>in</strong>teractions?<br />

The water temperatures <strong>in</strong> <strong>the</strong> Pasvik watercourse<br />

have been monitored on a daily basis s<strong>in</strong>ce 1991,<br />

<strong>and</strong> <strong>the</strong> water temperatures between 1975 <strong>and</strong> 1991<br />

have fur<strong>the</strong>rmore been estimated from a model<strong>in</strong>g effort<br />

based on measured air temperatures (Gjell<strong>and</strong> et<br />

al. 2013). We found that average summer water temperature<br />

(i.e. July–September) <strong>in</strong>creased significantly<br />

from 1975 to 2013 with on average 0.05 °C/year. Over<br />

<strong>the</strong> 38 years, <strong>the</strong> average summer water temperature<br />

<strong>in</strong>creased from 11.89 °C to 13.84 °C, i.e. an <strong>in</strong>crease<br />

<strong>of</strong> 1.95 °C for <strong>the</strong> total period, equivalent to a mean<br />

temperature <strong>in</strong>crease <strong>of</strong> 0.51 °C per decade.<br />

Accord<strong>in</strong>g to modelled temperature, precipitation<br />

<strong>and</strong> run<strong>of</strong>f predictions for <strong>the</strong> Pasvik watercourse, <strong>the</strong><br />

water temperature <strong>and</strong> length <strong>of</strong> <strong>the</strong> ice-free season<br />

will cont<strong>in</strong>ue to <strong>in</strong>crease throughout <strong>the</strong> 21 century<br />

(Gjell<strong>and</strong> et al. 2013), as will also <strong>the</strong> annual precipitation<br />

<strong>and</strong> run<strong>of</strong>f. This sets <strong>the</strong> scene for potential<br />

large ecological changes <strong>in</strong> <strong>the</strong> watercourse.<br />

Changes <strong>in</strong> summer water temperatures may affect<br />

<strong>the</strong> juvenile growth <strong>of</strong> <strong>the</strong> coregonids <strong>in</strong> <strong>the</strong> Pasvik<br />

watercourse. It is suggested that coregonid larval<br />

growth is primarily controlled by temperature <strong>and</strong><br />

<strong>the</strong>reafter by food availability. Hence, a slight shift <strong>in</strong><br />

temperature regime may potentially have a dramatic<br />

effect on growth <strong>of</strong> larval <strong>and</strong> juvenile coregonids<br />

(Eckmann <strong>and</strong> Rösch 1998; Perrier et al. 2012). To<br />

explore this, <strong>the</strong> back-calculated length at age 1+ (<strong>and</strong><br />

thus <strong>the</strong> growth performance dur<strong>in</strong>g <strong>the</strong> first year <strong>of</strong><br />

life) <strong>of</strong> vendace <strong>and</strong> DR <strong>and</strong> LSR whitefish from Vaggatem<br />

<strong>and</strong> Skrukkebukta were matched to <strong>the</strong> correspond<strong>in</strong>g<br />

summer water temperatures to explore<br />

possible climate <strong>and</strong> temperature effects on juvenile<br />

coregonid growth over an approx. 20 year time period.<br />

The study revealed that an <strong>in</strong>crease <strong>in</strong> temperature<br />

evidently will <strong>in</strong>crease larval <strong>and</strong> juvenile growth. The<br />

present temperature regime <strong>in</strong> <strong>the</strong> Pasvik watercourse<br />

may be favorable for <strong>the</strong> juvenile growth rate <strong>of</strong> <strong>the</strong><br />

LSR whitefish morph but <strong>the</strong> expected future <strong>in</strong>crease<br />

<strong>in</strong> temperatures will likely shift <strong>the</strong> favorability towards<br />

vendace. Hence, as vendace <strong>and</strong> DR whitefish compete<br />

strongly for <strong>the</strong> pelagic resources <strong>and</strong> s<strong>in</strong>ce a<br />

fur<strong>the</strong>r <strong>in</strong>crease <strong>in</strong> water temperatures likely will be<br />

favorable for <strong>the</strong> vendace, <strong>the</strong> outcome may be an<br />

even stronger negative effect on <strong>the</strong> DR whitefish population.<br />

Climate warm<strong>in</strong>g is expected to <strong>in</strong>duce complex<br />

changes <strong>in</strong> fish community structure (Jeppesen et al.<br />

2010). Whitefish is a cold-water steno<strong>the</strong>rmic species<br />

with optimum growth at 18 o C (Siikavuopio et<br />

al. 2013), whereas perch is a cool-water eury<strong>the</strong>rmic<br />

species with optimum growth at 23 o C (Fiogbe & Kestemont<br />

2003). Hence, perch is considered as <strong>the</strong> species<br />

that most likely will benefit from <strong>in</strong>creas<strong>in</strong>g temperatures<br />

at <strong>the</strong> expense <strong>of</strong> e.g. whitefish (Graham &<br />

Harrod 2009, Hayden et al. 2014).<br />

Our long-term data set has been analyzed <strong>in</strong> respect<br />

to <strong>the</strong> contribution <strong>of</strong> perch <strong>in</strong> <strong>the</strong> littoral habitat<br />

(Figure 5). In Vaggatem, a significant <strong>in</strong>crease occurred<br />

over <strong>the</strong> first part <strong>of</strong> <strong>the</strong> study period from a contribution<br />

<strong>of</strong> ca. 20 % <strong>in</strong> 1991 to 50–60 % around 2003.<br />

In Skrukkebukta, <strong>the</strong> development pattern <strong>of</strong> <strong>the</strong> littoral<br />

fish community was very clear-cut with a dist<strong>in</strong>ct<br />

<strong>and</strong> significant <strong>in</strong>crease <strong>in</strong> <strong>the</strong> perch contribution from<br />

1993 to 2013, from around 5 % <strong>in</strong> <strong>the</strong> start to nearly<br />

50 % at <strong>the</strong> end <strong>of</strong> <strong>the</strong> study period. These f<strong>in</strong>d<strong>in</strong>gs<br />

% perch <strong>in</strong> littoral catches<br />

90<br />

80<br />

70<br />

60<br />

Vaggatem<br />

50<br />

Skrukke -<br />

40<br />

bukta<br />

30<br />

20<br />

10<br />

0<br />

-90 -92 -94 -96 -98 -00 -02 -04 -06 -08 -10 -12 -14<br />

Year (19-/20-)<br />

Figure 5. The contribution <strong>of</strong> perch (with<br />

fitted trend l<strong>in</strong>es) <strong>in</strong> littoral samples<br />

from Vaggatem <strong>and</strong> Skrukkebukta <strong>in</strong><br />

<strong>the</strong> time period from 1991 to 2013.<br />

95


strongly suggest that perch have benefitted from <strong>the</strong><br />

<strong>in</strong>creas<strong>in</strong>g temperatures.<br />

The present f<strong>in</strong>d<strong>in</strong>gs demonstrate that climate<br />

change impacts already are <strong>in</strong> effect <strong>in</strong> <strong>the</strong> Pasvik watercourse,<br />

hav<strong>in</strong>g <strong>in</strong>duced a significant <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

mean summer water temperatures over <strong>the</strong> last decades<br />

<strong>and</strong> seem<strong>in</strong>gly also <strong>in</strong>duced important ecological<br />

responses <strong>and</strong> effects. In particular, it has been demonstrated<br />

that <strong>the</strong> juvenile growth <strong>of</strong> <strong>the</strong> coregonids<br />

is significantly affected by <strong>the</strong> <strong>in</strong>creased water temperatures,<br />

which potentially may affect <strong>the</strong>ir <strong>in</strong>terspecific<br />

<strong>in</strong>teractions. Fur<strong>the</strong>rmore, a change <strong>in</strong> <strong>the</strong> fish community<br />

composition <strong>of</strong> <strong>the</strong> littoral zone is also evident,<br />

with an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> contribution <strong>of</strong> perch. Additionally,<br />

<strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> levels <strong>of</strong> Hg <strong>in</strong> fish over <strong>the</strong><br />

latest years may suggestively be a climate change<br />

consequence related to <strong>in</strong>creased precipitation <strong>and</strong><br />

run<strong>of</strong>f. The multitude <strong>of</strong> stressors affect<strong>in</strong>g <strong>the</strong> Pasvik<br />

watercourse may enhance potential climate change<br />

impacts <strong>in</strong> <strong>the</strong> watercourse, mak<strong>in</strong>g <strong>the</strong> ecosystems<br />

less resistant <strong>and</strong> thus more vulnerable to <strong>the</strong> <strong>in</strong>duced<br />

changes.<br />

References<br />

Amundsen, P.-A., Staldvik, F.J., Reshetnikov, Y.S., Kashul<strong>in</strong>, N., Luk<strong>in</strong>, A., Bøhn, T., S<strong>and</strong>lund, O.T., Popova, O.A. 1999:<br />

Invasion <strong>of</strong> vendace (Coregonus albula) <strong>in</strong> a subarctic watercourse. Biological Conservation 88: 405–413.<br />

Amundsen, P.-A., Bøhn, T., Popova, O.A., Staldvik, F.J., Reshetnikov, Y.S., Luk<strong>in</strong>, A.A., Kashul<strong>in</strong>, N.A. 2003: Ontogenetic<br />

niche shifts <strong>and</strong> resource partition<strong>in</strong>g <strong>in</strong> a subarctic piscivorous fish guild. Hydrobiologia 497: 109-119.<br />

Amundsen, P.-A., Salonen, E., Niva, T., Gjell<strong>and</strong>, K.Ø., Præbel, K., S<strong>and</strong>lund, O.T., Knudsen, R., Bøhn, T. 2012: Invader<br />

population speeds up life history dur<strong>in</strong>g colonization. Biological Invasions 14: 1501-1513.<br />

Arnesen, A.-M. 1987: Utsett<strong>in</strong>ger av ørret i Pasvikelva 1979 – 1986. Fylkesmannen i F<strong>in</strong>nmark, Miljøvernavdel<strong>in</strong>gen. Rapport<br />

nr. 26. 22 p. (In Norwegian)<br />

Aspholm, P. 2013: Historisk <strong>in</strong>formasjon om forekomster av elvemusl<strong>in</strong>g Margaritifera margaritifera i forhold til kjente nåværende<br />

best<strong>and</strong>er i F<strong>in</strong>nmark. Bi<strong>of</strong>orsk Rapport 8 (115). 28 p. (In Norwegian)<br />

Bhat, S., Amundsen, P.-A., Knudsen, R., Gjell<strong>and</strong>, K.Ø., Fevolden, S.-E, Bernatchez, L., Præbel, K. 2014: Speciation reversal<br />

<strong>in</strong> European whitefish (Coregonus lavaretus (L.)) caused by competitor <strong>in</strong>vasion. PLOS ONE 9(3): e91208.<br />

Boecklen, W.J., Yarnes, C.T., Cook, B.A., James, A.C. 2011: On <strong>the</strong> use <strong>of</strong> stable isotopes <strong>in</strong> trophic ecology. Annual Review<br />

<strong>of</strong> Ecology, Evolution <strong>and</strong> Systematics 42: 411–440.<br />

Bøhn, T., Amundsen, P.-A. 2001: The competitive edge <strong>of</strong> an <strong>in</strong>vad<strong>in</strong>g specialist. Ecology 82: 2150–2163.<br />

Bøhn, T., S<strong>and</strong>lund, O.T., Amundsen, P.-A., Primicerio, R. 2004: Rapidly chang<strong>in</strong>g life history dur<strong>in</strong>g <strong>in</strong>vasion. Oikos 106:<br />

138–150.<br />

Bøhn, T., Amundsen, P.-A., Sparrow, A. 2008: Competitive exclusion after <strong>in</strong>vasion? Biological Invasions 10: 359-368.<br />

Castello, L. et al. 2013: Low <strong>and</strong> decl<strong>in</strong><strong>in</strong>g mercury <strong>in</strong> Arctic <strong>Russia</strong>n rivers. <strong>Environmental</strong> Science & Technology 48:<br />

747−752.<br />

Eckmann, R., Rösch, R. 1998: Lake Constance fisheries <strong>and</strong> fish ecology. Advances <strong>in</strong> Limnology 53: 285–301.<br />

Fiogbe, E. D. & Kestemont, P. 2003: Optimum daily ration for Eurasian perch Perca fluviatilis L. reared at its optimum grow<strong>in</strong>g<br />

temperature. Aquaculture 216:243–252.<br />

Gjell<strong>and</strong>, K.Ø., F<strong>in</strong>stad, A.G., Amundsen, P.-A., Christensen, G., Jensen, H. 2013: Limnosystem Pasvik (LIPA) observation<br />

system – report from <strong>the</strong> 2012 pilot project. NINA M<strong>in</strong>irapport 429. 24 p.<br />

Graham, C. T., Harrod, C. 2009: Implications <strong>of</strong> climate change for <strong>the</strong> fishes <strong>of</strong> <strong>the</strong> British Isles. Journal <strong>of</strong> Fish Biology 74:<br />

1143–1205.<br />

Harris, R.C., Rudd, J.W.M., Amyot, M., Babiarz, C.L., Beaty, K.G., Blanchfield, P.J., Bodaly, RA., Branfireun, B.A., Gilmour.<br />

CC, Graydon, J.A., Heyes, A., H<strong>in</strong>telmann, H., Hurley, J.P., Kelly, Ca., Krabbenh<strong>of</strong>t, D.P., L<strong>in</strong>dberg, S.E, Mason, R.P.,<br />

Paterson, MJ., Podemski, C.L., Rob<strong>in</strong>son, A., S<strong>and</strong>il<strong>and</strong>s, K.A, Southworth, G.R., St Louis, V.L., Tate, M.T. 2007: Whole<br />

ecosystem study shows rapid fish-mercury response to changes <strong>in</strong> mercury deposition. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> National Academy<br />

<strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> United States <strong>of</strong> America 104: 16586–16591.<br />

Hayden, B., Harrod, C., Kahila<strong>in</strong>en, K. 2014: Lake morphometry <strong>and</strong> resource polymorphism determ<strong>in</strong>e niche segregation<br />

between cool- <strong>and</strong> cold-water-adapted fish. Ecology 95: 538–552.<br />

Jensen, H., Bøhn, T., Amundsen, P.-A., Aspholm, P.E. 2004: Feed<strong>in</strong>g ecology <strong>of</strong> piscivorous brown trout (Salmo trutta L.) <strong>in</strong> a<br />

subarctic watercourse. Annales Zoologici Fennici 41: 319–328.<br />

Jensen, H., Kahila<strong>in</strong>en, K.K., Amundsen, P.-A., Gjell<strong>and</strong>, K.Ø., Tuomaala, A., Mal<strong>in</strong>en, T., Bøhn, T. 2008: Predation by brown<br />

trout (Salmo trutta) along a diversify<strong>in</strong>g prey community gradient. Canadian Journal <strong>of</strong> Fisheries <strong>and</strong> Aquatic Sciences 65:<br />

1831–1841.<br />

96


Jeppesen, E., Meerh<strong>of</strong>f, M, Holmgren, K, Gonzáles-Bergonzoni, I., Teixeira-de Mello, F., Declerck A.J.A, De Meester, L.,<br />

Søndergaard, M., Lauridsen, T.L., Bjerr<strong>in</strong>g, R., Conde-Porcuna, J.M., Mazzeo, N., Iglesias, C., Reizenste<strong>in</strong>, M., Malmquist,<br />

H.J., Liu, Z, Balayla, D., Lazzaro, X. 2010: Impacts <strong>of</strong> climate warm<strong>in</strong>g on lake fish community structure <strong>and</strong> potential<br />

effects on ecosystem function. Hydrobiologia 646: 73–90.<br />

Kahila<strong>in</strong>en, K., Siwertsson, A., Gjell<strong>and</strong>, K.Ø., Knudsen, R., Bøhn, T., Amundsen, P.-A. 2011: The role <strong>of</strong> gill raker number<br />

variability <strong>in</strong> adaptive radiation <strong>of</strong> coregonid fish. Evolutionary Ecology 25: 573–588.<br />

Krist<strong>of</strong>fersen, K. 1984: Fiskeribiologiske registrer<strong>in</strong>ger i Pasvikvassdraget sommeren 1982. Fylkesmannen i F<strong>in</strong>nmark,<br />

Miljøvernavdel<strong>in</strong>gen. Rapport nr. 5. 66 p. (In Norwegian)<br />

Layman, C.A., Araújo, M.S., Boucek, R., Hammerschlag-Peyer, C.M., Harrison, E., Jud, Z.R., Matich, P., Rosenblatt, A.S.,<br />

Vaudo, J.J., Yeager, L.A., Post, D.M., Bearhop, S. 2012: Apply<strong>in</strong>g stable isotope to exam<strong>in</strong>e food-web structure: an overview<br />

<strong>of</strong> analytical tools. Biological Reviews 87: 545–532.<br />

Mutenia, A., Salonen, E. 1992: The vendace (Coregonus albula L.), a new species <strong>in</strong> <strong>the</strong> fish community <strong>and</strong> fisheries <strong>of</strong><br />

Lake Inari. Polskie Archiwum Hydrobiologii 39: 797805.<br />

Perrier, C., Mol<strong>in</strong>ero, J. C., Gerdeaux, D., Anneville, O. 2012: Effects <strong>of</strong> temperature <strong>and</strong> food supply on <strong>the</strong> growth <strong>of</strong> whitefish<br />

Coregonus lavaretus larvae <strong>in</strong> an oligotrophic peri-alp<strong>in</strong>e lake. Journal <strong>of</strong> Fish Biology 81: 1501–1513.<br />

Præbel, K., Gjell<strong>and</strong>, K.-Ø., Salonen, E., Amundsen, P.-A. 2013: Invasion genetics <strong>of</strong> vendace (Coregonus albula (L.)) <strong>in</strong><br />

<strong>the</strong> Inari-Pasvik watercourse: reveal<strong>in</strong>g <strong>the</strong> orig<strong>in</strong> <strong>and</strong> expansion pattern <strong>of</strong> a rapid colonization event. Ecology <strong>and</strong> Evolution<br />

3, 1400–1412.<br />

Salonen, E., Amundsen, P-A., Bøhn, T. 2007: Invasion, boom <strong>and</strong> bust by vendace (Coregonus albula) <strong>in</strong> <strong>the</strong> subarctic<br />

Lake Inari, F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>the</strong> Pasvik watercourse, <strong>Norway</strong>. Advances <strong>in</strong> Limnology 60: 331–342.<br />

S<strong>and</strong>lund, O.T., Gjell<strong>and</strong>, K.Ø., Bøhn, T., Knudsen, R., Amundsen, P.-A. 2013: Contrast<strong>in</strong>g life history responses <strong>of</strong> a young<br />

morph-pair <strong>of</strong> European whitefish to <strong>the</strong> <strong>in</strong>vasion <strong>of</strong> a specialised coregonid competitor, vendace. PLOS One 8 (7),<br />

e68156.<br />

Siikavuopio, S.I., Knudsen, R., Amundsen, P.-A., Sæ<strong>the</strong>r, B.S., James, P. 2013: Effects <strong>of</strong> high temperature on <strong>the</strong> growth<br />

<strong>of</strong> European whitefish (Coregonus lavaretus L.). Aquaculture Research 44: 8–12.<br />

Siwertsson, A., Knudsen, R., Kahila<strong>in</strong>en, K.K., Præbel, K., Primicerio, R., Amundsen, P.-A. 2010: Sympatric diversification<br />

<strong>in</strong>fluenced by ecological opportunity <strong>and</strong> historical cont<strong>in</strong>gency <strong>in</strong> a young species l<strong>in</strong>eage <strong>of</strong> whitefish. Evolutionary<br />

Ecology Research 12, 929–947.<br />

V<strong>and</strong>er Z<strong>and</strong>en, M.J., Rasmussen, J.B. 1999: Primary consumer δ 13 C <strong>and</strong> δ 15 N <strong>and</strong> <strong>the</strong> trophic position <strong>of</strong> aquatic consumers.<br />

Ecology 80: 1395–1404.<br />

Photo: Juha Riihimäki<br />

Tak<strong>in</strong>g <strong>the</strong> water temperature at fish<strong>in</strong>g<br />

site. Photo: Jukka Ylikörkkö.<br />

97


9 Contam<strong>in</strong>ants <strong>in</strong> fish <strong>of</strong> <strong>the</strong> Pasvik River<br />

GUTTORM N. CHRISTENSEN, HELÉN JOHANNE ANDERSEN, GEIR DAHL-HANSEN, NIKOLAY KASHULIN, PETR<br />

TERENTJEV, DMITRII DENISOV<br />

The ma<strong>in</strong> contam<strong>in</strong>ant sources to aquatic <strong>and</strong> terrestrial<br />

environments <strong>in</strong> <strong>the</strong> area are <strong>the</strong> Pechenganikel<br />

m<strong>in</strong><strong>in</strong>g <strong>and</strong> metallurgical company’s smelter <strong>in</strong> Nikel<br />

<strong>and</strong> roast<strong>in</strong>g plant <strong>in</strong> Zapolyarny. In addition to this,<br />

<strong>the</strong> area is also exposed to long-range airborne pollutants.<br />

The area has been identified by <strong>the</strong> Arctic Monitor<strong>in</strong>g<br />

<strong>and</strong> Assessment Programme (AMAP 2000) as<br />

a “Key monitor<strong>in</strong>g area,” where pollution, emissions<br />

<strong>and</strong> <strong>the</strong>ir effects are to be monitored.<br />

Studies carried out <strong>in</strong> <strong>the</strong> early 1990s revealed numerous<br />

acidified <strong>and</strong> heavy metal polluted lakes <strong>in</strong><br />

<strong>the</strong> border area (Traaen et al. 1991, 1992, Moiseenko<br />

1994, Dauvalter <strong>and</strong> Rognerud 2001). Water quality<br />

monitor<strong>in</strong>g has shown that <strong>the</strong> heavy metal concentrations<br />

<strong>in</strong> <strong>the</strong> lakes <strong>in</strong> this area have been <strong>in</strong>creas<strong>in</strong>g<br />

s<strong>in</strong>ce 2004. Heavy metal levels <strong>in</strong> fish are well studied<br />

by <strong>Russia</strong>n <strong>and</strong> Norwegian scientists (Amundsen et<br />

al. 1993, 1997, Arnesen et al. 1996, Kashul<strong>in</strong>a & Kashul<strong>in</strong><br />

1997, Moiseenko et al. 1995, Luk<strong>in</strong> et al. 2003).<br />

Previous screen<strong>in</strong>g <strong>of</strong> contam<strong>in</strong>ants demonstrated<br />

elevated levels <strong>of</strong> persistent organic pollutants<br />

(POPs) <strong>in</strong> different fish species <strong>in</strong> <strong>the</strong> Pasvik River<br />

(Stebel et al. 2007, Christensen et al. 2007, Christensen<br />

2008). In previous screen<strong>in</strong>g studies, <strong>the</strong> highest<br />

levels <strong>of</strong> POPs were found <strong>in</strong> fish from Lake Kuetsjarvi<br />

<strong>and</strong> it was a tendency <strong>of</strong> decreas<strong>in</strong>g levels <strong>of</strong> POPs<br />

with <strong>in</strong>creas<strong>in</strong>g distance to <strong>the</strong> smelter.<br />

The aims <strong>of</strong> this study were to follow up <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs<br />

<strong>of</strong> <strong>the</strong> previous project, “State <strong>of</strong> <strong>the</strong> environment <strong>in</strong><br />

<strong>the</strong> Norwegian, F<strong>in</strong>nish <strong>and</strong> <strong>Russia</strong>n border area” that<br />

was carried out dur<strong>in</strong>g 2003–2006 (Stebel et al. 2007).<br />

Based on <strong>the</strong> previous studies <strong>the</strong> ma<strong>in</strong> contam<strong>in</strong>ants<br />

<strong>in</strong> fish are mercury, polychlor<strong>in</strong>ated biphenyls(PCBs),<br />

pesticides <strong>and</strong> polybrom<strong>in</strong>ated diphenyl e<strong>the</strong>rs (PB-<br />

DEs). Fish from <strong>the</strong> Pasvik River is an important food<br />

source for <strong>the</strong> people <strong>in</strong> <strong>the</strong> area. There are more than<br />

15 species <strong>of</strong> freshwater fish <strong>in</strong> <strong>the</strong> Lake Inarijärvi <strong>and</strong><br />

<strong>the</strong> Pasvik River watercourse. The fish community is<br />

a mixture <strong>of</strong> eastern, western <strong>and</strong> <strong>in</strong>troduced species.<br />

The most important fish species for food consumption<br />

are whitefish (Coregonus lavaretus), trout (Salmo<br />

trutta), perch (Perca fluviatilis) <strong>and</strong> pike (Esox lucius).<br />

The results from this study can be used to evaluate<br />

<strong>the</strong> levels <strong>of</strong> contam<strong>in</strong>ants related to food safety.<br />

The most dist<strong>in</strong>ct contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> area<br />

Mercury (Hg) occurs naturally <strong>in</strong> <strong>the</strong> environment <strong>and</strong><br />

has been used <strong>in</strong> numerous medic<strong>in</strong>al, commercial<br />

<strong>and</strong> <strong>in</strong>dustrial applications. Today mercury presents<br />

risks to Arctic wildlife <strong>and</strong> human populations (Arctic<br />

Monitor<strong>in</strong>g <strong>and</strong> Assessment Programme, AMAP<br />

2011). Mercury is also one <strong>of</strong> <strong>the</strong> prioritized substances<br />

under The EU Water Framework Directive (WFD)<br />

<strong>and</strong> it is <strong>in</strong>cluded on <strong>Norway</strong>’s priority list <strong>of</strong> hazardous<br />

substances. It is <strong>of</strong> particular concern that mercury<br />

levels are cont<strong>in</strong>u<strong>in</strong>g to rise <strong>in</strong> parts <strong>of</strong> <strong>the</strong> Arctic, despite<br />

reductions <strong>in</strong> anthropogenic emissions. There are<br />

several reasons for this: <strong>in</strong>creased emissions <strong>in</strong> Asia,<br />

<strong>in</strong>creased river<strong>in</strong>e discharge, thaw<strong>in</strong>g <strong>of</strong> permafrost<br />

<strong>and</strong> local-scale climate change (AMAP 2011).<br />

Mercury enters <strong>the</strong> Arctic environment via long-range<br />

transport from human sources at lower latitudes.<br />

The European limits for allowable levels <strong>of</strong> mercury<br />

<strong>in</strong> fish are 0.5 mg/kg ww. The documented elevated<br />

levels <strong>of</strong> mercury <strong>and</strong> especially <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g trends<br />

<strong>of</strong> mercury <strong>in</strong> <strong>the</strong> environment are <strong>of</strong> a great concern<br />

for <strong>the</strong> Arctic countries (AMAP 2011).<br />

Persistent organic pollutants (POPs) are a group<br />

<strong>of</strong> chemicals which persist <strong>in</strong> <strong>the</strong> environment, may<br />

bioaccumulate <strong>in</strong> human <strong>and</strong> animal tissues <strong>and</strong> are<br />

toxic. They also have <strong>the</strong> potential to be transported<br />

long distances <strong>and</strong> be deposited far away from <strong>the</strong>ir<br />

place <strong>of</strong> release.<br />

Polychlor<strong>in</strong>ated biphenyls (PCBs) were first manufactured<br />

<strong>in</strong> 1929 <strong>and</strong> produced <strong>in</strong> many countries.<br />

PCBs have been used extensively <strong>in</strong> a variety <strong>of</strong> <strong>in</strong>dustrial<br />

products <strong>and</strong> as plasticisers. In <strong>Russia</strong>, production<br />

<strong>of</strong> PCBs was term<strong>in</strong>ated between 1987 <strong>and</strong><br />

1993 <strong>and</strong> <strong>the</strong>y are listed as carc<strong>in</strong>ogenic. The International<br />

Agency for Research on Cancer ranks PCBs as<br />

a probable human carc<strong>in</strong>ogen. Chronic low-level exposure<br />

to PCBs can cause liver damage, reproductive<br />

abnormalities, immune suppression, neurological <strong>and</strong><br />

endocr<strong>in</strong>e system disorders, delayed <strong>in</strong>fant development<br />

<strong>and</strong> stunted <strong>in</strong>tellectual function.<br />

Dichlorodiphenyltrichloroethane (DDT) was widely<br />

used as a pesticide <strong>and</strong> <strong>in</strong>secticide, but has s<strong>in</strong>ce <strong>the</strong><br />

early 1970s been banned <strong>in</strong> North America, Europe<br />

<strong>and</strong> <strong>the</strong> former USSR. However, it cont<strong>in</strong>ues to be us-<br />

98


ed <strong>in</strong> Asia, Africa, Central <strong>and</strong> South America (Voldner<br />

<strong>and</strong> Li 1995), result<strong>in</strong>g <strong>in</strong> a cont<strong>in</strong>ued global source.<br />

Total DDT is <strong>the</strong> sum <strong>of</strong> <strong>the</strong> DDT structural analogs<br />

<strong>and</strong> breakdown products. DDT has been shown to<br />

be a hormone-disrupt<strong>in</strong>g chemical that can affect <strong>the</strong><br />

reproductive <strong>and</strong> nervous systems.<br />

Hexachlorobenzene (HCB) has been used as a<br />

fungicide, solvent <strong>and</strong> as a manufactur<strong>in</strong>g <strong>in</strong>termediate<br />

or additive. Production <strong>and</strong> use has ceased <strong>in</strong><br />

many countries. HCB cont<strong>in</strong>ues to be created as a<br />

by-product <strong>in</strong> <strong>the</strong> manufacture <strong>of</strong> many chlor<strong>in</strong>ated<br />

solvents <strong>and</strong> pesticides <strong>and</strong> <strong>in</strong> o<strong>the</strong>r chlor<strong>in</strong>ated processes.<br />

It is also released <strong>in</strong> <strong>the</strong> burn<strong>in</strong>g <strong>of</strong> municipal<br />

waste, dur<strong>in</strong>g <strong>in</strong>complete combustion. In <strong>Russia</strong>, HCB<br />

was used until 1990, <strong>and</strong> was banned <strong>in</strong> 1997. HCB is<br />

toxic <strong>and</strong> can damage <strong>the</strong> liver, thyroid <strong>and</strong> kidneys,<br />

as well as <strong>the</strong> endocr<strong>in</strong>e, immune, reproductive <strong>and</strong><br />

nervous systems.<br />

Chlordane is a versatile, broad-spectrum contact<br />

<strong>in</strong>secticide used ma<strong>in</strong>ly for non-agricultural purposes.<br />

Recently, <strong>the</strong> use <strong>of</strong> chlordane has been restricted <strong>in</strong><br />

many countries, due to its toxic effects <strong>and</strong> capacity to<br />

persist <strong>and</strong> bioaccumulate. It is banned <strong>in</strong> <strong>Russia</strong> (de<br />

March et al. 1989). Chlordane exposure has been l<strong>in</strong>ked<br />

to liver <strong>and</strong> blood disorders, severe neurological<br />

effects <strong>and</strong> damage to <strong>the</strong> endocr<strong>in</strong>e <strong>and</strong> reproductive<br />

systems.<br />

Different mixtures <strong>of</strong> polybrom<strong>in</strong>ated diphenyl e<strong>the</strong>rs<br />

(PBDEs) are used as additive flame retardants<br />

<strong>in</strong> plastics <strong>and</strong> textiles. (Bergman 1989). There is evidence<br />

that some PBDEs bioaccumulate <strong>and</strong> cause<br />

toxic effects at low levels. The United States <strong>Environmental</strong><br />

Protection Agency (EPA) has classified decabromodiphenyl<br />

e<strong>the</strong>r as a possible human carc<strong>in</strong>ogen.<br />

PBDEs are also endocr<strong>in</strong>e disrupters.<br />

Study area <strong>and</strong> sampl<strong>in</strong>g locations<br />

The Pasvik River catchment area is <strong>the</strong> ma<strong>in</strong> freshwater<br />

system <strong>in</strong> <strong>the</strong> region, cover<strong>in</strong>g an area <strong>of</strong> approximately<br />

1250 km 2 . It has a catchment area <strong>of</strong> 18 404<br />

km 2, <strong>of</strong> which approximately 70 % belongs to F<strong>in</strong>l<strong>and</strong>,<br />

25 % to <strong>Russia</strong> <strong>and</strong> 5 % to <strong>Norway</strong>. The watercourse<br />

constitutes a subarctic system with high biodiversity<br />

<strong>and</strong> production <strong>of</strong> fish <strong>and</strong> o<strong>the</strong>r aquatic organisms.<br />

The fish populations are important food resources for<br />

<strong>the</strong> locals <strong>and</strong> <strong>the</strong>re is a long tradition to utilize <strong>the</strong><br />

resources both for commercial <strong>and</strong> recreational fish<strong>in</strong>g<br />

(Aspholm 2004, Aspholm 1996). Detailed descriptions<br />

<strong>of</strong> <strong>the</strong> study area are given <strong>in</strong> numerous report<br />

<strong>and</strong> publications (e.g. Arnesen et al. 1996, Moiseenko<br />

et al. 1995, Amundsen et al. 1993, 1997, Luk<strong>in</strong> et al.<br />

2003, Stebel et al. 2007).<br />

Sampl<strong>in</strong>g <strong>of</strong> fish was carried out <strong>in</strong> <strong>in</strong> September<br />

2012 <strong>and</strong> September 2013. The follow<strong>in</strong>g lakes <strong>in</strong> <strong>the</strong><br />

Pasvik River were sampled: Vaggatem (Tjerebukta<br />

<strong>and</strong> Ruskebukta), Lake Kuetsjarvi <strong>and</strong> Skrukkebukta<br />

(Table 1, Chapter 3, Introduction, Figure 1).<br />

Sampl<strong>in</strong>g procedure<br />

Fish sampl<strong>in</strong>g was performed <strong>in</strong> <strong>the</strong> littoral (< 8 m),<br />

pr<strong>of</strong>undal (> 10 m) <strong>and</strong> pelagic habitats (0–6 m) us<strong>in</strong>g<br />

gillnets. In all studied lakes, <strong>the</strong> whitefish is represented<br />

by two different morphs, differentiated by <strong>the</strong>ir<br />

number <strong>and</strong> morphology <strong>of</strong> gill rakers <strong>and</strong> referred to<br />

as sparsely-rakered (SR) <strong>and</strong> densely-rakered (DR)<br />

whitefish (Amundsen et al. 2004). The two whitefish<br />

morphs exhibit dist<strong>in</strong>ct genetic <strong>and</strong> ecological differences<br />

(Amundsen 1988, Amundsen et al. 2004), <strong>and</strong><br />

are treated as functional species <strong>in</strong> <strong>the</strong> analysis <strong>and</strong><br />

presentation <strong>of</strong> <strong>the</strong> results. Fish were identified to <strong>the</strong><br />

species level.<br />

The follow<strong>in</strong>g fish species were collected for contam<strong>in</strong>ant<br />

analyses dur<strong>in</strong>g 2012–2013: pike, perch, whitefish<br />

<strong>and</strong> trout.<br />

Each fish was measured for fork length <strong>and</strong> weight,<br />

sex <strong>and</strong> stage <strong>of</strong> maturation were recorded. Otoliths<br />

were sampled from whitefish <strong>and</strong> opercula from perch<br />

for age determ<strong>in</strong>ations. The tissue samples (muscle<br />

<strong>and</strong> liver, weight 5–20 g) were ei<strong>the</strong>r packed <strong>in</strong> preburned<br />

alum<strong>in</strong>ium foil for POPs samples or plastic<br />

zip-lock bags for metal analysis. Samples were stored<br />

frozen (-20 °C) <strong>in</strong> <strong>the</strong> field <strong>and</strong> transported frozen to<br />

<strong>the</strong> laboratory for analyses.<br />

Materials <strong>and</strong> methods<br />

Analyses<br />

Muscle tissue from pike, perch, SR whitefish, DR whitefish<br />

<strong>and</strong> trout were selected for POPs (55 fish) <strong>and</strong><br />

heavy metal analyses (97 fish) (Table 2).<br />

Persistent organic pollutants analyses carried out<br />

<strong>in</strong> this project were chlor<strong>in</strong>ated pesticides, polychlor<strong>in</strong>ated<br />

biphenyls (PCBs), planar <strong>and</strong> non-orthosubstituted<br />

congeners <strong>of</strong> PCBs <strong>and</strong> brom<strong>in</strong>ated flame retardants<br />

(PBDEs).<br />

Analysed heavy metals were mercury (Hg), arsenic<br />

(As), cadmium (Cd), lead (Pb), copper (Cu), cobolt<br />

(Co), z<strong>in</strong>c (Zn), lithium (Li), nickel (Ni), iron (Fe) <strong>and</strong><br />

magnesium (Mn). Also lipids were analyzed.<br />

Analyses were carried out at Typhoon analytical laboratory<br />

(Obn<strong>in</strong>sk, <strong>Russia</strong>). Detailed descriptions <strong>of</strong><br />

99


analytical methods used for determ<strong>in</strong>ation <strong>of</strong> environmental<br />

contam<strong>in</strong>ants, along with <strong>in</strong>formation on QC/<br />

QA, are given <strong>in</strong> Christensen et al. 2015.<br />

The follow<strong>in</strong>g persistent pollutants were determ<strong>in</strong>ed<br />

<strong>in</strong> <strong>the</strong> biological samples:<br />

• chlor<strong>in</strong>ated pesticides <strong>and</strong> <strong>in</strong>dustrial organochlor<strong>in</strong>es:<br />

DDT-group, HCH, hexachlorobenzene (HCB),<br />

chlordanes, mirex, endr<strong>in</strong> <strong>and</strong> dieldr<strong>in</strong>.<br />

• ortho-substituted congeners <strong>of</strong> polychlor<strong>in</strong>ated<br />

biphenyls.<br />

• planar <strong>and</strong> non-ortho-substituted congeners <strong>of</strong><br />

PCBs<br />

• brom<strong>in</strong>ated flame-retardants<br />

Results <strong>and</strong> discussion<br />

The analysed material was a selection <strong>of</strong> <strong>the</strong> collected<br />

material from 2012 <strong>and</strong> 2013. The aim was to analyse<br />

<strong>the</strong> ma<strong>in</strong> species from <strong>the</strong> three sites, Vaggatem<br />

(Ruskebukta <strong>and</strong> Tjerebukta), Lake Kuetsjarvi <strong>and</strong><br />

Skrukkebukta. The ma<strong>in</strong> fish species <strong>in</strong> all <strong>the</strong> localities<br />

analysed were pike, perch <strong>and</strong> large sparsely-rakered<br />

whitefish (LSR whitefish). In addition, also densely-rakered<br />

whitefish (DS whitefish) from Vaggatem<br />

<strong>and</strong> brown trout from Skrukkebukta were analysed.<br />

There were some differences <strong>in</strong> <strong>the</strong> fish material regard<strong>in</strong>g<br />

size <strong>of</strong> <strong>the</strong> different species from <strong>the</strong> different<br />

sites (Table 3). In general, pike, perch <strong>and</strong> LSR whitefish<br />

were larger <strong>in</strong> lake Vaggatem than <strong>in</strong> lakes Kuetsjarvi<br />

<strong>and</strong> Skrukkebukta. In average <strong>the</strong> pike, perch<br />

<strong>and</strong> LSR whitefish were smallest <strong>in</strong> Lake Kuetsjarvi.<br />

For detailed <strong>in</strong>formation about this study, see Christensen<br />

et al. 2015.<br />

Table 1. Study localities <strong>in</strong> <strong>the</strong> Pasvik River.<br />

Lake Country Approx. distance<br />

from <strong>the</strong> smelters<br />

Fish species<br />

Vaggatem <strong>Norway</strong> 40 km, upstream pike, perch, SR whitefish, DR whitefish<br />

Kuetsjarvi <strong>Russia</strong> 5 km, downstream pike, perch, SR whitefish<br />

Skrukkebukta <strong>Norway</strong> 5 km, downstream pike,perch, SR whitefish, trout<br />

Table 2. Analysed fish material from lakes Vaggatem, Kuetsjarvi <strong>and</strong> Skrukkebukta.<br />

Lake Species Number <strong>of</strong> analysed POPs Number <strong>of</strong> analysed metals<br />

Vaggatem pike 5 13<br />

perch 5 10<br />

SR whitefish 5 10<br />

DR whitefish 5 10<br />

Kuetsjarvi pike 5 5<br />

perch 5 9<br />

SR whitefish 5 10<br />

Skrukkebukta pike 5 5<br />

perch 5 10<br />

SR whitefish 5 10<br />

trout 5 5<br />

100


Table 3. Summary <strong>of</strong> weight <strong>and</strong> length (max, m<strong>in</strong> <strong>and</strong> std) <strong>and</strong> average concentrations <strong>of</strong> ΣPCB, ΣDDT, PBDE, Hg, Ni <strong>and</strong> Cu <strong>of</strong><br />

<strong>the</strong> analysed fish material from Vaggatem, Kuetsjarvi <strong>and</strong> Skrukkebukta.<br />

Component<br />

Pike<br />

Vaggatem (n = 10) Kuetsjarvi (n = 5) Skrukkebukta (n = 5)<br />

Average Max M<strong>in</strong> Std Average Max M<strong>in</strong> Std Average Max M<strong>in</strong> Std<br />

weight (g) 1907 3440 823 738 590 1215 256 372 1335 3697 568 1337<br />

length (cm) 66.7 81.4 49.9 8.79 39.8 50.8 33.0 6.61 51.2 73.5 40.9 13.5<br />

Σ PCB (ng/g ww) 2.57 4.47 1.33 1.17 6.15 7.85 5.18 1.03 4.95 9.73 3.28 2.71<br />

Σ DDT (ng/g ww) 0.304 0.460 0.190 0.112 1.26 1.61 0.960 0.255 0.700 1.58 0.260 0.522<br />

PBDE (ng/kg ww) 25.6 43.4 9.33 14.9 41.0 50.6 29.1 8.51 66.2 120.2 35.4 33.5<br />

Hg (mg/kg ww) 0.274 0.486 0.096 0.105 0.078 0.119 0.051 0.026 0.312 0.851 0.118 0.306<br />

Ni (mg/kg ww) 0.211 0.290 0.180 0.033 0.320 0.410 0.230 0.065 0.372 0.710 0.180 0.205<br />

Cu (mg/kg ww) 0.202 0.250 0.170 0.025 0.312 0.470 0.190 0.118 0.242 0.280 0.160 0.048<br />

Component<br />

PERCH<br />

Vaggatem (n = 13) Kuetsjarvi (n = 9) Skrukkebukta (n = 10)<br />

Average Max M<strong>in</strong> Std Average Max M<strong>in</strong> Std Average Max M<strong>in</strong> Std<br />

Weight (g) 311 409 251 49.6 192 440 104 109 251 425 144 113<br />

Length (mm) 28.2 31.0 26.5 1.47 22.4 29.0 19.0 3.34 25.9 32.2 22.0 3.70<br />

Σ PCB (ng/g ww) 0.342 0.680 0.020 0.304 3.95 7.65 0.140 3.50 7.48 13.1 4.97 3.36<br />

Σ DDT (ng/g ww) 0.198 0.280 0.160 0.056 0.503 0.950 0.060 0.374 1.35 2.95 0.850 0.904<br />

PBDE (ng/kg ww) 1.44 2.67 1.00 0.722 16.5 25.0 2.75 11.0 154 482 47.3 184<br />

Hg (mg/kg ww) 0.144 0.21 0.102 0.033 0.068 0.126 0.038 0.027 0.438 1.49 0.076 0.436<br />

Ni (mg/kg ww) 0.229 0.270 0.210 0.022 0.283 0.340 0.220 0.039 0.470 0.670 0.370 0.083<br />

Cu (mg/kg ww) 0.193 0.270 0.130 0.038 0.214 0.260 0.160 0.032 0.151 0.390 0.110 0.085<br />

Component<br />

LSR WHITEFISH<br />

Vaggatem (n = 10) Kuetsjarvi (n = 10) Skrukkebukta (n = 10)<br />

Average Max M<strong>in</strong> Std Average Max M<strong>in</strong> Std Average Max M<strong>in</strong> Std<br />

Weight (g) 1109 1937 523 420 323 981 156 246 381 767 217 171<br />

Length (mm) 43.0 49.8 35.3 4.81 28.2 38.5 24.2 4.38 32.0 40.3 26.7 4.05<br />

Σ PCB (ng/g ww) 0.052 0.140 0.020 0.052 6.69 10.2 4.93 2.39 5.75 13.06 1.94 4.60<br />

Σ DDT (ng/g ww) 0.220 0.330 0.160 0.070 1.69 2.30 0.940 0.6157 1.30 3.38 0.430 1.21<br />

PBDE (ng/kg ww) 1.43 2.80 1.00 0.781 44.2 60.4 25.0 15.2 51.1 83.5 26.9 25.3<br />

Hg (mg/kg ww) 0.036 0.051 0.022 0.009 0.018 0.033 0.011 0.007 0.041 0.055 0.024 0.010<br />

Ni (mg/kg ww) 0.241 0.290 0.190 0.031 0.254 0.330 0.210 0.039 0.297 0.360 0.250 0.033<br />

Cu (mg/kg ww) 0.185 0.270 0.140 0.044 0.300 0.370 0.240 0.045 0.210 0.240 0.190 0.016<br />

Component<br />

DR WHITEFISH<br />

Component<br />

TROUT<br />

Vaggatem (n = 10)<br />

Average Max M<strong>in</strong> Std<br />

Weight (g) 143.9 310.0 91.0 65.8<br />

Length (mm) 23.1 29.6 20.3 2.8<br />

Σ PCB (ng/g ww) 0.8 3.0 0.2 1.2<br />

Σ DDT (ng/g ww) 0.10 0.21 0.03 0.09<br />

PBDE (ng/kg ww) 2.58 5.49 1.00 2.07<br />

Hg (mg/kg ww) 0.05 0.09 0.03 0.02<br />

Ni (mg/kg ww) 0.251 0.31 0.17 0.043<br />

Cu (mg/kg ww) 0.184 0.22 0.15 0.025<br />

Skrukkebukta (n = 5)<br />

Average Max M<strong>in</strong> Std<br />

Weight (g) 1544 3657 435 1464<br />

Length (mm) 46.5 67.2 34.0 14.7<br />

Σ PCB (ng/g ww) 10.6 14.9 5.99 3.79<br />

Σ DDT (ng/g ww) 1.99 3.12 0.81 1.079<br />

PBDE (ng/kg ww) 149.3 270.0 1.00 108.9<br />

Hg (mg/kg ww) 0.161 0.273 0.099 0.071<br />

Ni (mg/kg ww) 0.552 0.870 0.430 0.180<br />

Cu (mg/kg ww) 0.148 0.170 0.120 0.022<br />

101


Mercury<br />

The highest average concentrations <strong>of</strong> mercury were<br />

measured <strong>in</strong> perch (0.44 mg/kg ww) <strong>and</strong> pike (0.31<br />

mg/ww) from Skrukkebukta (Figure 1). The highest<br />

concentration measured <strong>in</strong> a s<strong>in</strong>gle perch from Skrukkebukta<br />

was 1.49 mg/kg ww. The average levels <strong>of</strong><br />

mercury <strong>in</strong> perch from Skrukkebukta are close to <strong>the</strong><br />

European limits for allowable levels <strong>of</strong> mercury <strong>in</strong> fish<br />

(0.5 mg/kg ww). The levels <strong>of</strong> mercury <strong>in</strong> Kuetsjarvi<br />

were significantly lower <strong>in</strong> pike, perch <strong>and</strong> whitefish<br />

compared to Vaggatem <strong>and</strong> Skrukkebukta. However,<br />

<strong>the</strong> levels <strong>of</strong> mercury <strong>in</strong> sediments are considerably<br />

higher <strong>in</strong> Lake Kuetsjarvi compared to o<strong>the</strong>r sites <strong>in</strong><br />

<strong>the</strong> Pasvik River. The reason for this is not clear but<br />

is probably both related to smaller fish (Figure 1) <strong>in</strong><br />

Lake Kuetsjarvi <strong>and</strong> <strong>the</strong> fact that <strong>the</strong> levels <strong>of</strong> o<strong>the</strong>r<br />

contam<strong>in</strong>ants are so high that this limits <strong>the</strong> methylation<br />

<strong>of</strong> mercury <strong>in</strong> <strong>the</strong> sediments. The levels <strong>of</strong> mercury<br />

<strong>in</strong> whitefish are, as assumed, low, compared to <strong>the</strong><br />

predatory fish species (pike, perch <strong>and</strong> trout). The levels<br />

<strong>of</strong> mercury <strong>in</strong> this study are comparable with <strong>the</strong><br />

results from 2008 (Christensen 2008) but <strong>the</strong> levels <strong>in</strong><br />

Skrukkebukta <strong>and</strong> Vaggatem are higher compared to<br />

o<strong>the</strong>r lakes <strong>in</strong> F<strong>in</strong>nmark (Fjeld et al. 2010, Christensen<br />

et al. 2008).<br />

Copper <strong>and</strong> nickel<br />

The highest average concentration <strong>of</strong> copper <strong>and</strong><br />

nickel <strong>in</strong> muscle tissue was measured <strong>in</strong> fish from Lake<br />

Kuetsjarvi (Figure 2). There was no clear difference<br />

between <strong>the</strong> levels <strong>in</strong> fish from Skrukkebukta <strong>and</strong><br />

Vaggatem. The nickel levels <strong>in</strong> almost all <strong>the</strong> samples<br />

from this study are higher than <strong>in</strong> <strong>the</strong> samples from<br />

2008 (Christensen 2008).<br />

Polychlor<strong>in</strong>ated biphenyls (PCBs)<br />

The highest average concentrations <strong>of</strong> ∑PCB were<br />

measured <strong>in</strong> fish from lakes Kuetsjarvi <strong>and</strong> Skrukkebukta<br />

downstream from Nikel (Figure 3). The levels<br />

<strong>in</strong> Vaggatem were significantly lower for all <strong>the</strong> analysed<br />

fish species compared to lakes Kuetsjarvi <strong>and</strong><br />

Skrukkebukta. The highest levels were measured <strong>in</strong><br />

trout (14.9 ng/g ww) from Skrukkebukta. The levels <strong>of</strong><br />

PCBs <strong>in</strong> fish from Skrukkebukta from <strong>the</strong> present study<br />

are higher compared to <strong>the</strong> results from <strong>the</strong> same<br />

fish species <strong>in</strong> Skrukkebukta <strong>in</strong> 2008 (Christensen<br />

2008). The reason for this <strong>in</strong>crease is not known.<br />

The levels <strong>of</strong> PCBs <strong>in</strong> fish from lakes Kuetsjarvi<br />

<strong>and</strong> Vaggatem are elevated compared to o<strong>the</strong>r studies<br />

from Nor<strong>the</strong>rn <strong>Norway</strong> (Christensen et al. 2008).<br />

The higher levels <strong>of</strong> PCBs <strong>in</strong> <strong>the</strong> analysed samples<br />

from fish downstream from Nikel compared to<br />

upstream clearly <strong>in</strong>dicate emissions <strong>of</strong> PCBs from Nikel.<br />

The PCBs’ source might be related to <strong>the</strong> activity<br />

<strong>in</strong> <strong>the</strong> metallurgical smelter or <strong>in</strong> <strong>the</strong> Nikel city. PCBs<br />

have historically been used as an <strong>in</strong>sulat<strong>in</strong>g material<br />

<strong>in</strong> electric equipment, such as transformers <strong>and</strong> capacitors,<br />

<strong>and</strong> <strong>in</strong> fluids, lubricants, pa<strong>in</strong>ts <strong>and</strong> plasticizers.<br />

One possible source is l<strong>and</strong>fills with PCB-conta<strong>in</strong><strong>in</strong>g<br />

products that are leak<strong>in</strong>g <strong>in</strong>to <strong>the</strong> environment.<br />

Pesticides<br />

The results for ∑DDT were very similar to <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs<br />

for ∑PCB with <strong>the</strong> highest average concentrations<br />

<strong>in</strong> fish from lakes Kuetsjarvi <strong>and</strong> Skrukkebukta<br />

downstream from Nikel (Figure 4). The levels <strong>in</strong> Vaggatem<br />

were significantly lower for all <strong>the</strong> analysed fish<br />

species compared to lakes Kuetsjarvi <strong>and</strong> Skrukkebukta.<br />

The highest levels were measured <strong>in</strong> whitefish<br />

(3.38 ng/g ww) <strong>and</strong> trout (3.12 ng/g ww) from Skrukkebukta.<br />

The levels <strong>of</strong> DDT <strong>in</strong> fish from Skrukkebukta<br />

from <strong>the</strong> present study are higher compared to <strong>the</strong><br />

results from <strong>the</strong> same fish species from 2004 <strong>and</strong><br />

2008 (Christensen et al. 2007, Christensen 2008).<br />

The reason for this <strong>in</strong>crease is not known but might<br />

be related to small sample size <strong>in</strong> <strong>the</strong> previous studies.<br />

The levels <strong>of</strong> DDT <strong>in</strong> fish from lakes Kuetsjarvi<br />

<strong>and</strong> Skrukkebukta are considerably higher compared<br />

to o<strong>the</strong>r studies from Nor<strong>the</strong>rn <strong>Norway</strong>, while <strong>the</strong> levels<br />

<strong>in</strong> Vaggatem are similar (Christensen et al. 2008,<br />

Skotvold et al. 1997).<br />

The concentrations <strong>of</strong> hexachlorobenzene (HCB),<br />

hexachlorocyclohexane (HCH) <strong>and</strong> chlordanes were<br />

slightly higher <strong>in</strong> fish downstream from Nikel but <strong>the</strong><br />

levels was comparable with o<strong>the</strong>r studies from Nor<strong>the</strong>rn<br />

<strong>Norway</strong> (Christensen et al. 2008).<br />

Polybrom<strong>in</strong>ated diphenyl e<strong>the</strong>rs (PBDEs)<br />

The results for PBDEs were different from <strong>the</strong> results<br />

for PCBs <strong>and</strong> DDT with <strong>the</strong> highest average concentrations<br />

for PBDEs <strong>in</strong> perch (154 ng/kg ww) <strong>and</strong> trout<br />

(149 ng/kg ww) from Skrukkebukta (Figure 5). The levels<br />

<strong>in</strong> fish from this lake were considerably higher<br />

compared to fish from Vaggatem. The levels <strong>of</strong> PBDE<br />

<strong>in</strong> perch from Skrukkebukta were 10 times higher than<br />

<strong>in</strong> Kuetsjarvi <strong>and</strong> 100 times higher than <strong>in</strong> Vaggatem.<br />

The concentration <strong>of</strong> PBDEs <strong>in</strong> fish from Skrukkebukta<br />

<strong>in</strong> <strong>the</strong> present study is higher compared to <strong>the</strong><br />

results from <strong>the</strong> same fish species <strong>in</strong> Skrukkebukta<br />

<strong>in</strong> 2004 <strong>and</strong> 2008 (Christensen et al. 2008, Christensen<br />

2008). The reason for this <strong>in</strong>crease is not known<br />

102


ut might be related to small sample size <strong>in</strong> <strong>the</strong> previous<br />

studies. The levels <strong>of</strong> PBDE <strong>in</strong> fish from lakes<br />

Skrukkebukta <strong>and</strong> Kuetsjarvi are higher compared to<br />

o<strong>the</strong>r studies from Nor<strong>the</strong>rn <strong>Norway</strong> (Christensen et<br />

al. 2008).<br />

0,6<br />

Pasvik River, Hg<br />

0,5<br />

mg/kg ww<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

Vaggatem<br />

Kuetsjavri<br />

Skrukkebukta<br />

0,0<br />

Pike Perch SR DR<br />

whitefish whitefish<br />

Trout<br />

mg/kg ww<br />

Mercury <strong>in</strong> perch<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

10 15 20 25 30 35<br />

Length (cm)<br />

Kuetsjarvi<br />

Skrukkebukta<br />

Vaggatem<br />

Figure 1. Upper: Levels <strong>of</strong> mercury (mg/kg ww) <strong>in</strong> fish tissue from Vaggatem<br />

(Ruskebukta <strong>and</strong> Tjerebukta, blue bars), Lake Kuetsjarvi (yellow bars) <strong>and</strong><br />

Skrukkebukta (red bars). Lower: Levels <strong>of</strong> mercury (mg/kg ww) related to fish<br />

length (cm) <strong>in</strong> fish tissue from Vaggatem (Ruskebukta <strong>and</strong> Tjerebukta, blue<br />

dots), Lake Kuetsjarvi (yellow dots) <strong>and</strong> Skrukkebukta (red dots).<br />

0,6<br />

Nickel (Ni)<br />

0,6<br />

Copper (Cu)<br />

0,5<br />

0,5<br />

mg/kg ww<br />

0,4<br />

0,3<br />

0,2<br />

Vaggatem<br />

Kuetsjavri<br />

Skrukkebukta<br />

mg/kg ww<br />

0,4<br />

0,3<br />

0,2<br />

Vaggatem<br />

Kuetsjavri<br />

Skrukkebukta<br />

0,1<br />

0,1<br />

0,0<br />

Pike Perch SR DR<br />

whitefish whitefish<br />

Trout<br />

0,0<br />

Pike Perch SR DR<br />

whitefish whitefish<br />

Trout<br />

Figure 2. Levels <strong>of</strong> nickel <strong>and</strong> copper (mg/kg ww) <strong>in</strong> fish tissue from Vaggatem (Ruskebukta <strong>and</strong> Tjerebukta, blue bars), Lake<br />

Kuetsjarvi (yellow bars) <strong>and</strong> Skrukkebukta (red bars).<br />

103


12<br />

Total PCB<br />

10<br />

8<br />

Figure 3. Levels <strong>of</strong> ∑PCB (ng/g ww) <strong>in</strong> fish tissue<br />

from Vaggatem (Ruskebukta <strong>and</strong> Tjerebukta,<br />

blue bars), Lake Kuetsjarvi (yellow bars) <strong>and</strong><br />

Skrukkebukta (red bars).<br />

ng/g ww<br />

6<br />

4<br />

2<br />

0<br />

Pike Perch SR DR<br />

whitefish whitefish<br />

Trout<br />

Vaggatem<br />

Kuetsjavri<br />

Skrukkebukta<br />

DDT<br />

2,5<br />

2,0<br />

Figure 4. Levels <strong>of</strong> ∑DDT (ng/g ww) <strong>in</strong> fish tissue<br />

from Vaggatem (Ruskebukta <strong>and</strong> Tjerebukta,<br />

blue bars), Lake Kuetsjarvi (yellow bars) <strong>and</strong><br />

Skrukkebukta (red bars).<br />

ng/g ww<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

Pike Perch SR DR<br />

whitefish whitefish<br />

Trout<br />

Vaggatem<br />

Kuetsjavri<br />

Skrukkebukta<br />

PBDE<br />

160<br />

140<br />

120<br />

Figure 5. Levels <strong>of</strong> ∑PBDE (ng/kg ww) <strong>in</strong> fish<br />

tissue from Vaggatem (Ruskebukta <strong>and</strong> Tjerebukta,<br />

blue bars), Lake Kuetsjarvi (yellow bars)<br />

<strong>and</strong> Skrukkebukta (red bars).<br />

ng/kg ww<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Pike Perch SR DR<br />

whitefish whitefish<br />

Trout<br />

Vaggatem<br />

Kuetsjavri<br />

Skrukkebukta<br />

Conclusions <strong>and</strong> recommendations<br />

• The highest levels <strong>of</strong> all detected legacy POPs were found <strong>in</strong> fish downstream from <strong>the</strong> Nikel city <strong>in</strong> lakes<br />

Kuetsjarvi <strong>and</strong> Skrukkebukta.<br />

• The highest concentrations <strong>of</strong> mercury were found <strong>in</strong> perch <strong>and</strong> pike from Skrukkebukta. The lowest levels<br />

were found <strong>in</strong> fish from Lake Kuetsjarvi.<br />

• The levels <strong>of</strong> POPs are considered to be elevated <strong>in</strong> lakes Kuetsjarvi <strong>and</strong> Skrukkebukta compared to o<strong>the</strong>r<br />

lakes <strong>in</strong> <strong>the</strong> region.<br />

• The higher levels <strong>of</strong> POPs <strong>and</strong> mercury <strong>in</strong> <strong>the</strong> analysed samples from fish downstream from Nikel compared<br />

to upstream clearly <strong>in</strong>dicate emissions <strong>of</strong> <strong>the</strong>se compounds from Nikel. The source might be related to<br />

<strong>the</strong> activity <strong>in</strong> <strong>the</strong> metallurgical smelter or to o<strong>the</strong>r activities or l<strong>and</strong>fills <strong>in</strong> <strong>the</strong> Nikel city.<br />

• There seems to be an <strong>in</strong>crease <strong>in</strong> concentrations <strong>of</strong> mercury, PCB, DDT <strong>and</strong> PBDE <strong>in</strong> fish from lakes Kuetsjarvi<br />

<strong>and</strong> Skrukkebukta s<strong>in</strong>ce <strong>the</strong> previous studies <strong>in</strong> 2008.<br />

• It is recommended that POPs <strong>and</strong> mercury are <strong>in</strong>cluded <strong>in</strong> a future adaptive monitor<strong>in</strong>g programme for <strong>the</strong><br />

Pasvik River.<br />

104


References<br />

AMAP 2000: PCB <strong>in</strong> <strong>the</strong> <strong>Russia</strong>n Federation: Inventory <strong>and</strong> Proposals for Priority Remedial Actions. Executive Summary <strong>of</strong><br />

<strong>the</strong> report <strong>of</strong> Phase 1: Evaluation <strong>of</strong> <strong>the</strong> Current Status <strong>of</strong> <strong>the</strong> Problem with Respect to <strong>Environmental</strong> Impact <strong>and</strong> Development<br />

<strong>of</strong> Proposals for Priority<br />

AMAP, 2011: AMAP Assessment 2011: Mercury <strong>in</strong> <strong>the</strong> Arctic. Arctic Monitor<strong>in</strong>g <strong>and</strong> Assessment Programme (AMAP), Oslo,<br />

<strong>Norway</strong>. xiv+193 p. Remedial Actions <strong>of</strong> <strong>the</strong> Multilateral Cooperative Project on Phase-out <strong>of</strong> PCB Use, <strong>and</strong> Management<br />

<strong>of</strong> PCB-contam<strong>in</strong>ated Wastes <strong>in</strong> <strong>the</strong> <strong>Russia</strong>n Federation. AMAP Report 2000:3.<br />

AMAP 2011: AMAP Assessment 2011: Mercury <strong>in</strong> <strong>the</strong> Arctic. Arctic Monitor<strong>in</strong>g <strong>and</strong> Assessment Programme (AMAP), Oslo,<br />

<strong>Norway</strong>. xiv+193 p.<br />

Amundsen, P.-A., Staldvik, F., Luk<strong>in</strong>, A., Kashul<strong>in</strong>, N., Reshetnikov, Y.S., Popova, O. 1993: Ecology <strong>and</strong> heavy metal contam<strong>in</strong>ation<br />

<strong>in</strong> <strong>the</strong> fish communities <strong>of</strong> <strong>the</strong> Pasvik River system. Report. Norwegian College <strong>of</strong> Fishery Science, University <strong>of</strong><br />

Tromsø, <strong>Norway</strong>. 29p.<br />

Amundsen, P.-A., Bøhn, T., Våga, G.H. 2004: Gill raker morphology <strong>and</strong> feed<strong>in</strong>g ecology <strong>of</strong> two sympatric whitefish (Coregonus<br />

lavaretus) morphs. Annales Zoologici Fennici 41: 291–300.<br />

Amundsen, P.-A., Staldvik, F.J., Luk<strong>in</strong>, A., Kashul<strong>in</strong>, N., Popova, O., Reshetnikov, Yu. 1997: Heavy metal contam<strong>in</strong>ation <strong>in</strong><br />

freshwater fish from <strong>the</strong> border region between <strong>Norway</strong> <strong>and</strong> <strong>Russia</strong>. Science <strong>of</strong> <strong>the</strong> Total Environment 201: 211–224.<br />

Arnesen, R., Traaen, T., Moiseenko, T., Kudravtseva, L., Mokrotovarova, O. 1996: Heavy metals from Nikel area. NIVA-<br />

Report SNO 3526 – 96. Oslo: 37 p.<br />

Aspholm, P. E. 2004: Fish <strong>and</strong> fishery resources <strong>in</strong> <strong>the</strong> Inari-Pasvik water system. Conference on <strong>in</strong>tegrated water management<br />

<strong>of</strong> transboundary catchments: a contribution from transact 24–26 March 2004.<br />

Aspholm, P.E., 1996: The Pasvik River. Barentswatch: 12–17.<br />

Christensen, G., A. Evenset, S. Rognerud, B.L. Skjelkvåle, R. Palerud, E. Fjeld, O. Røyset 2008: National lake survey<br />

2004–2006, PART III: AMAP. Status <strong>of</strong> metals <strong>and</strong> environmental pollutants <strong>in</strong> lakes <strong>and</strong> fish from <strong>the</strong> Norwegian part <strong>of</strong><br />

<strong>the</strong> AMAP region. Akvaplan-niva rapport 3613.01. SFT TA 2363-2008.<br />

Christensen, G. 2008: Miljøgifter i fisk fra Pasvikvassdraget – nye undersøkelser fra 2008. Akvaplan-niva report 4732.01. (<strong>in</strong><br />

Norwegian)<br />

Christensen, G.N., Andersen, H.J., Dahl-Hansen, G. 2015: Contam<strong>in</strong>ants <strong>in</strong> fish from <strong>the</strong> Pasvik River. Akvaplan-niva<br />

report. 6390.01.<br />

Dauvalter, V. 1994: Heavy metals <strong>in</strong> lake sediments <strong>of</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula. Science <strong>of</strong> <strong>the</strong> Total Environment 158: 51–61.<br />

Dauvalter, V., Rognerud, S. 2001: Heavy metal pollution <strong>in</strong> sediments <strong>of</strong> <strong>the</strong> Pasvik River dra<strong>in</strong>age. Chemosphere 42: 9–18.<br />

de March, B.G.E, de Wit, C.A., Muir, D.C.G. 1998: Persistent organic pollutants. In: AMAP Assessment Report: Arctic Pollution<br />

Issues. Arctic Monitor<strong>in</strong>g <strong>and</strong> Assessment Programme (AMAP). Oslo. <strong>Norway</strong>. 183–372.<br />

Fjeld, E., Rognerud, S., Christensen, G., Dahl-Hansen, G., Veiteberg Braaten, H.–F. 2010: Miljøovervåk<strong>in</strong>g av kvikksølv i<br />

abbor, 2010. NIVA rapport LNR 6090-2010. (<strong>in</strong> Norwegian)<br />

Kashul<strong>in</strong>a, T.G., Kashul<strong>in</strong> N.A. 1997: Accumulation <strong>and</strong> distribution <strong>of</strong> Ni, Cu, <strong>and</strong> Zn <strong>in</strong> <strong>the</strong> organs <strong>and</strong> tissues <strong>of</strong> fishes <strong>in</strong><br />

subarctic waters. <strong>Environmental</strong> Pollution <strong>of</strong> <strong>the</strong> Arctic. Tromso. <strong>Norway</strong>. 210–212.<br />

Luk<strong>in</strong>, A., Dauvalter V., Kashul<strong>in</strong>, N., Yakovlev, V., Sharov, A., V<strong>and</strong>ysh, O. 2003: Assessment <strong>of</strong> copper-nickel <strong>in</strong>dustry<br />

impact on a subarctic lake ecosystem. Science <strong>of</strong> <strong>the</strong> Total Environment 306: 73–83.<br />

Moiseenko T.I. 1994: Acidification <strong>and</strong> critical loads <strong>in</strong> Surface Waters; Kola, Nor<strong>the</strong>rn <strong>Russia</strong>. Ambio, 23(7): 418–424.<br />

Moiseenko T.I., Kudryavtseva, L.P., Rodushk<strong>in</strong>, I.V., Luk<strong>in</strong>, A.A., Kashul<strong>in</strong>, N.A., Dauvalter, V.A. 1995: Airborne contam<strong>in</strong>ants<br />

heavy metals <strong>and</strong> alum<strong>in</strong>ium <strong>in</strong> <strong>the</strong> freshwater ecosystems on <strong>the</strong> Kola subarctic region, <strong>Russia</strong>. Science <strong>of</strong> <strong>the</strong><br />

Total Environment 160–161: 715–727.<br />

Skotvold, T., Wartena, E.M.M., Rognerud, S. 1997: Heavy metals <strong>and</strong> persistent organic pollutants <strong>in</strong> sediments <strong>and</strong> fish<br />

from lakes <strong>in</strong> Nor<strong>the</strong>rn <strong>and</strong> Arctic regions <strong>of</strong> <strong>Norway</strong>. Statlig program for forurensn<strong>in</strong>gsovervåkn<strong>in</strong>g, SFT rapport 688/97.<br />

98p.<br />

Stebel, K, Christensen, G. Derome, J., Grekelä, I. 2007: State <strong>of</strong> <strong>the</strong> environment <strong>in</strong> <strong>the</strong> Norwegian, F<strong>in</strong>nish <strong>and</strong> <strong>Russia</strong>n<br />

border area. Report. The F<strong>in</strong>nish Environment 6/2007.<br />

Traaen, T.S., Henriksen, A., Moiseenko, T., Wright, R.F. 1992: Lake Monitor<strong>in</strong>g, critical load <strong>of</strong> sulphur <strong>and</strong> modell<strong>in</strong>g <strong>of</strong><br />

future acidity for several sulphur reduction scenarios <strong>in</strong> <strong>the</strong> Norwegian-<strong>Russia</strong>n border areas. Symposium on <strong>the</strong> State <strong>of</strong><br />

Environment <strong>and</strong> <strong>Environmental</strong> Monitor<strong>in</strong>g <strong>in</strong> Nor<strong>the</strong>rn Fennosc<strong>and</strong>ia <strong>and</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula. Arctic Centre Publications<br />

No 4, 161–164. University <strong>of</strong> Lapl<strong>and</strong>, Rovaniemi.<br />

Traaen, T.S., Moiseenko, T., Dauvalter, V., Rognerud, S., Henriksen, A., Kudryavtseva L. 1991: Acidification <strong>of</strong> Surface<br />

Waters, Nickel <strong>and</strong> Copper <strong>in</strong> Water <strong>and</strong> Lake Sediments <strong>in</strong> <strong>the</strong> <strong>Russia</strong>n-Norwegian <strong>Border</strong> <strong>Area</strong>s. Progress Report for<br />

1989–1990. Work<strong>in</strong>g Group for Water <strong>and</strong> <strong>Environmental</strong> Problems under <strong>the</strong> Norwegian-Soviet <strong>Environmental</strong> Protection<br />

Commission. Oslo <strong>and</strong> Apatity.<br />

105


106


Chapter 4: Evaluation <strong>and</strong> development<br />

<strong>of</strong> <strong>the</strong> lake monitor<strong>in</strong>g network<br />

Photo: Helén Johanne Andersen<br />

107


1 Introduction<br />

The fifth activity dealt with <strong>the</strong> Pasvik area small lake<br />

monitor<strong>in</strong>g network, first presented <strong>in</strong> Stebel et<br />

al. (2007). Water quality <strong>in</strong> <strong>the</strong> small lakes was last<br />

reported <strong>in</strong> Ylikörkkö et al. (2014). Previously regular<br />

monitor<strong>in</strong>g has focused predom<strong>in</strong>antly on chemical<br />

quality. For 13 selected lakes, additional biological<br />

elements are <strong>in</strong>troduced here: phytoplankton,<br />

periphytic diatoms, zoobenthos <strong>and</strong> fish. Uniform <strong>and</strong><br />

concurrent sampl<strong>in</strong>g between <strong>the</strong> three countries was<br />

<strong>in</strong>tended. Fur<strong>the</strong>rmore, to <strong>in</strong>crease underst<strong>and</strong><strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> history <strong>of</strong> contam<strong>in</strong>ations <strong>and</strong> paleolimnology <strong>of</strong><br />

<strong>the</strong> area, also sediment was analysed.<br />

Sediment sampl<strong>in</strong>g, chemical <strong>and</strong> biological monitor<strong>in</strong>g<br />

was conducted <strong>in</strong> 2012–2013 <strong>and</strong> <strong>the</strong> result<strong>in</strong>g<br />

data was used <strong>in</strong> assessment <strong>of</strong> variables <strong>in</strong> terms<br />

<strong>of</strong> <strong>the</strong>ir reliability, cost-effectiveness <strong>and</strong> sensitivity to<br />

changes <strong>in</strong> climate <strong>and</strong> harmful substances. The Pasvik<br />

area small lakes monitor<strong>in</strong>g programme was updated<br />

<strong>in</strong> <strong>the</strong> light <strong>of</strong> <strong>the</strong> new <strong>in</strong>formation.<br />

In analysis <strong>of</strong> chemical <strong>and</strong> biological state <strong>the</strong> lakes<br />

were grouped <strong>in</strong>to three geographical regions:<br />

Vätsäri west <strong>of</strong> Nikel <strong>in</strong> F<strong>in</strong>l<strong>and</strong>, ‘sou<strong>the</strong>rn’ south <strong>of</strong> Nikel<br />

<strong>in</strong> <strong>Russia</strong> <strong>and</strong> Jarfjord area <strong>in</strong> <strong>Norway</strong>. Lake Sierramjärvi<br />

west <strong>of</strong> <strong>the</strong> actual Vätsäri area was <strong>in</strong>cluded<br />

<strong>in</strong> <strong>the</strong> biological monitor<strong>in</strong>g programme. On <strong>Russia</strong>n<br />

side <strong>the</strong> lakes for biological sampl<strong>in</strong>g lie ma<strong>in</strong>ly south<br />

<strong>of</strong> <strong>the</strong> Pasvik River <strong>and</strong> <strong>the</strong> Jarfjord area is north-east<br />

<strong>of</strong> Nikel.<br />

1 Lampi 222<br />

2 Harrijärvi<br />

3 Pitkä-Surnujärvi<br />

4 Sierramjärvi<br />

5 Pikkujarvi<br />

Näätämö<br />

!(<br />

Kirkenes<br />

!(<br />

"J<br />

18<br />

13 14<br />

"J "J<br />

15<br />

"J<br />

16<br />

"J<br />

17<br />

"J<br />

6 Shuonijaur<br />

7 Ala-Nautsijarvi<br />

8 Ilja-Nautsijarvi<br />

9 Toartesjaur<br />

10 Virtuovoshjaur<br />

4<br />

"J<br />

2<br />

"J<br />

"J<br />

3<br />

1<br />

"J<br />

River Pasvik<br />

ZAPOLYARNY<br />

5<br />

!(<br />

"J<br />

!(<br />

NIKEL<br />

6<br />

"J<br />

11 Riuttikjaure<br />

12 Kochejaur<br />

13 Holmvatn<br />

14 Gardsjøen<br />

15 Rabbvatn<br />

16 Durvatn<br />

17 Børsevatn<br />

Inari<br />

!(<br />

Ivalo<br />

!(<br />

!(<br />

Nellim<br />

9 "J<br />

10<br />

"J<br />

11<br />

"J<br />

12<br />

"J<br />

7<br />

"J "J<br />

8<br />

18 Rundvatn<br />

0 50<br />

km<br />

© Maanmittauslaitos, lupa nro 7/MML/14<br />

Figure 1. Location <strong>of</strong> <strong>the</strong> lakes under study (2012–2013). Lakes 1–4 are F<strong>in</strong>nish , 5–12 <strong>Russia</strong>n <strong>and</strong> 13–18 Norwegian.<br />

108


2 Water quality<br />

JUKKA YLIKÖRKKÖ, GUTTORM N. CHRISTENSEN, HELÉN JOHANNE ANDERSEN<br />

Methods<br />

Water samples were taken between June <strong>and</strong> September<br />

<strong>in</strong> 2012 <strong>and</strong> 2013 (Table 1). The analysis <strong>of</strong><br />

water quality served as a background for <strong>the</strong> biological<br />

variables <strong>and</strong> sediment analysis. Specific chemical<br />

analysis methods for each country are <strong>in</strong>troduced<br />

<strong>in</strong> Puro-Tahvana<strong>in</strong>en et al. (2008). When available,<br />

previous data from <strong>the</strong> same area was <strong>in</strong>cluded <strong>in</strong><br />

analysis for more reliable <strong>in</strong>terpretation. Jarfjord area<br />

samples were all from 1 meter. For <strong>the</strong> o<strong>the</strong>r regions,<br />

average total nutrient content (tot. N, tot. P), total organic<br />

carbon (TOC) content <strong>and</strong> alkal<strong>in</strong>ity concern<br />

1–10 m water column. Sal<strong>in</strong>ity balance <strong>and</strong> metal<br />

concentrations were calculated from samples from<br />

<strong>the</strong> whole water column. Values below <strong>the</strong> reliable detection<br />

limit were calculated as half <strong>of</strong> <strong>the</strong> limit value.<br />

Results <strong>and</strong> discussion<br />

Nitrogen <strong>and</strong> phosphorus<br />

Total phosphorus was on average below <strong>the</strong> reliable<br />

detection limit (2 µg/l) or up to 3 µg/l <strong>in</strong> Vätsäri, 3–9<br />

µg/l <strong>in</strong> <strong>the</strong> <strong>Russia</strong>n lakes <strong>and</strong> 3 µg/l <strong>in</strong> Jarfjord (Figure<br />

1). The sou<strong>the</strong>rnmost lakes <strong>in</strong> <strong>Russia</strong> differed from<br />

o<strong>the</strong>rs with <strong>the</strong> highest total phosphorus content.<br />

Total nitrogen concentrations varied greatly with<strong>in</strong><br />

<strong>the</strong> areas (Figure 2). On average nitrogen concentrations<br />

were 90–170 µg/l <strong>in</strong> Vätsäri, 135–208 µg/l <strong>in</strong> <strong>the</strong><br />

sou<strong>the</strong>rn lakes <strong>and</strong> 94–180 µg/l <strong>in</strong> <strong>the</strong> Jarfjord lakes.<br />

Sou<strong>the</strong>rn lakes stood out with slightly higher average<br />

nitrogen content.<br />

The observed nutrient concentrations are typical<br />

for <strong>the</strong> lakes, consider<strong>in</strong>g <strong>the</strong>ir location. The Vätsäri<br />

<strong>and</strong> Jarfjord lakes are <strong>the</strong> poorest <strong>in</strong> nutrients. The<br />

more sou<strong>the</strong>rn lakes lie on lower altitude, deeper <strong>in</strong><br />

<strong>the</strong> forest zone, where <strong>the</strong>re are thicker, more organic<br />

soils, result<strong>in</strong>g <strong>in</strong> typically higher trophic status <strong>in</strong> <strong>the</strong><br />

lakes. The previous results from <strong>the</strong> lakes or regions<br />

<strong>in</strong>dicate <strong>the</strong> same nutrient levels (Puro-Tahvana<strong>in</strong>en<br />

et al. 2011, Kashul<strong>in</strong> et al. 2008).<br />

Table 1. Lake area (km 2 ), altitude (masl) <strong>and</strong> number <strong>of</strong> water<br />

samples (N) dur<strong>in</strong>g <strong>the</strong> years with<strong>in</strong> <strong>the</strong> project time frame <strong>and</strong><br />

previous data used <strong>in</strong> analysis.<br />

Lake km 2 masl Years N<br />

F<strong>in</strong>l<strong>and</strong> Lampi 222 0.2 222 2013 3<br />

2012–2000 3<br />

Harrijärvi 1.0 127 2013 2<br />

2012–2000 2<br />

Pitkä-Surnujärvi 0.7 126 2013 2<br />

Sierramjärvi 1.1 254 2013 4<br />

2012–2000 10<br />

<strong>Russia</strong> Pikkujärvi<br />

Shuonijaur 11.3 180 2012–2013 6<br />

2011–2000 4<br />

Ilja-Nautsijarvi<br />

Ala-Nautsijarvi 3.2 133 2012 1<br />

Toartesjaur 0.6 195 2013 2<br />

Virtuovoshjaur 1.3 182 2012–2013 6<br />

2011–2000 3<br />

Riuttikjaure 0.9 190 2013 1<br />

Kochejaur 18.5 159 2011–2000 9<br />

<strong>Norway</strong> Gardsjøen 0.7 82 2013 1<br />

2012–1995 3<br />

Holmvatn 0.8 156 2013 1<br />

2012–2000 2<br />

Rabbvatn 0.4 83 2013 1<br />

2012–2000 2<br />

Durvatn 0.4 231 2013 1<br />

2012–1993 2<br />

Børsevatn 0.4 178 2013 1<br />

Rundvatn<br />

109


P tot. µg/l<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

P tot. µg/l<br />

14<br />

12<br />

10<br />

Vätsäri<br />

8<br />

Jarfjord<br />

6<br />

<strong>Russia</strong><br />

4<br />

2<br />

0<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

Figure 1. Average total phosphorus concentration <strong>and</strong> its st<strong>and</strong>ard deviation for each lake <strong>and</strong> area.<br />

300<br />

250<br />

300<br />

250<br />

N tot. µg/l<br />

200<br />

200<br />

150<br />

150<br />

Vätsäri<br />

100<br />

Jarfjord 100<br />

50 <strong>Russia</strong><br />

50<br />

N tot. µg/l<br />

0<br />

0<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

Figure 2. Average total nitrogen concentration <strong>and</strong> its st<strong>and</strong>ard deviation for each lake <strong>and</strong> area.<br />

TOC mg/l<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

TOC mg/l<br />

8<br />

7<br />

6<br />

5<br />

4<br />

Vätsäri<br />

Jarfjord 3<br />

<strong>Russia</strong> 2<br />

1<br />

0<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

Figure 3. Average concentration <strong>and</strong> st<strong>and</strong>ard deviation <strong>of</strong> total organic carbon for each lake <strong>and</strong> area.<br />

110


Organic matter<br />

Total organic carbon (TOC) followed similar pattern<br />

across <strong>the</strong> regions as nutrients. It was <strong>the</strong> lowest <strong>in</strong><br />

<strong>the</strong> Vätsäri <strong>and</strong> Jarfjord lakes: on average 1.3–2.3<br />

mg/l <strong>and</strong> 1.3–3.3 mg/l, respectively (Figure 3). Among<br />

<strong>the</strong> <strong>Russia</strong>n lakes, TOC varied widely from 4.0 to 6.4<br />

on average, depend<strong>in</strong>g <strong>of</strong> <strong>the</strong> lake. TOC content <strong>in</strong> <strong>the</strong><br />

<strong>Russia</strong>n lakes was clearly higher than <strong>in</strong> <strong>the</strong> o<strong>the</strong>r two<br />

regions, <strong>and</strong> Lake Virtuovoshjaur st<strong>and</strong>s out with <strong>the</strong><br />

highest measured values (Figure 3).<br />

Alkal<strong>in</strong>ity <strong>and</strong> pH<br />

Alkal<strong>in</strong>ity average was <strong>the</strong> lowest 68 µeq/l <strong>in</strong> Lampi<br />

222 <strong>in</strong> Vätsäri <strong>and</strong> <strong>the</strong> highest 217 µeq/l <strong>in</strong> Kochejaur,<br />

<strong>Russia</strong> (Figure 4). Generally <strong>the</strong> lakes <strong>in</strong> Vätsäri,<br />

exclud<strong>in</strong>g Sierramjärvi, were <strong>the</strong> least alkal<strong>in</strong>e. The<br />

more sou<strong>the</strong>rn lakes were slightly more alkal<strong>in</strong>e.<br />

There was little variation <strong>in</strong> <strong>the</strong> lake’s pH values:<br />

<strong>the</strong> lowest 6.6 were measured <strong>in</strong> Pitkä-Surnujärvi<br />

(Vätsäri) <strong>and</strong> Holmvatn (Jarfjord) <strong>and</strong> highest 7.2 <strong>in</strong><br />

Kochejaur <strong>in</strong> <strong>Russia</strong> (Figure 5). On regional level Vätsäri<br />

<strong>and</strong> Jarfjord had average pH just below 6.8, only<br />

slightly lower than sou<strong>the</strong>rn region (Figure 5).<br />

Alkal<strong>in</strong>ity <strong>and</strong> pH were with<strong>in</strong> <strong>the</strong> same range as<br />

reported earlier for Vätsäri (Puro-Tahvana<strong>in</strong>en et al.<br />

2011) <strong>and</strong> some <strong>of</strong> <strong>the</strong> <strong>Russia</strong>n lakes (Kashul<strong>in</strong> et al.<br />

2008). The selected Jarfjord lakes appeared to have<br />

more neutral water compared to some o<strong>the</strong>r small lakes<br />

<strong>in</strong> <strong>the</strong> area described <strong>in</strong> Puro-Tahvana<strong>in</strong>en et al.<br />

(2011). No clear <strong>in</strong>dication <strong>of</strong> acidification was observed<br />

<strong>in</strong> water samples <strong>of</strong> <strong>the</strong> studied lakes. All <strong>the</strong> regions<br />

have ra<strong>the</strong>r low alkal<strong>in</strong>ity naturally.<br />

250<br />

250<br />

200<br />

200<br />

Alk. µeq /l<br />

150<br />

100<br />

50<br />

Alk. µeq /l<br />

150<br />

100<br />

50<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

0<br />

0<br />

Figure 4. Average alkal<strong>in</strong>ity for each lake <strong>and</strong> for each area with st<strong>and</strong>ard deviation.<br />

pH<br />

7,6<br />

7,4<br />

7,2<br />

7,0<br />

6,8<br />

6,6<br />

6,4<br />

pH<br />

7,6<br />

7,4<br />

7,2<br />

7,0<br />

6,8<br />

Vätsäri<br />

Jarfjord<br />

6,2<br />

6,0<br />

5,8<br />

6,6<br />

6,4<br />

6,2<br />

<strong>Russia</strong><br />

6,0<br />

Figure 5. Average pH <strong>and</strong> its st<strong>and</strong>ard deviation for each lake <strong>and</strong> area.<br />

111


Sal<strong>in</strong>ity balance<br />

Cation content tended to be low <strong>in</strong> <strong>the</strong> Vätsäri lakes<br />

(Table 2, Figure 6). Lake Shuonijaur, <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong><br />

Nikel, st<strong>and</strong>s out with higher calcium (2.0 mg/l) <strong>and</strong><br />

magnesium (0.8 mg/l) concentrations. The sou<strong>the</strong>rn<br />

lakes <strong>in</strong> <strong>Russia</strong> had mostly higher cation contents <strong>and</strong><br />

greater variance between <strong>the</strong> lakes. Jarfjord lakes were<br />

roughly on <strong>the</strong> same level with calcium (Ca), magnesium<br />

(Mg) <strong>and</strong> potassium (K), but sodium (Na) content<br />

was much higher.<br />

Average sulphate ranged 1.9–2.1 mg/l <strong>in</strong> Vätsäri,<br />

1.8–3.3 <strong>in</strong> <strong>the</strong> <strong>Russia</strong>n lakes, <strong>and</strong> on notably higher<br />

level 2.1–4.7 <strong>in</strong> Jarfjord (Figure 7). The greatest difference<br />

was between Vätsäri <strong>and</strong> Jarfjord lake sulphate<br />

levels. Chloride content did not differ much between<br />

Vätsäri (0.8–1.4 mg/l) <strong>and</strong> <strong>the</strong> <strong>Russia</strong>n lakes (0.9–1.7<br />

mg/l) (Figure 8). Chloride was much higher <strong>in</strong> Jarfjord<br />

compared to <strong>the</strong> o<strong>the</strong>r two regions.<br />

Be<strong>in</strong>g closest to <strong>the</strong> ocean, <strong>the</strong> Jarfjord lakes receive<br />

more mar<strong>in</strong>e salts, which shows <strong>in</strong> higher sodium<br />

<strong>and</strong> chloride contents <strong>in</strong> <strong>the</strong> area. Sulphate concentrations<br />

<strong>in</strong> Jarfjord are elevated also by sulphur deposition<br />

from <strong>the</strong> Pechenganikel. These ions contribute<br />

to sal<strong>in</strong>ity, <strong>and</strong> due to more salts <strong>the</strong> conductivity is<br />

notably higher <strong>in</strong> <strong>the</strong> Jarfjord region (Figure 9).<br />

Table 2. Average range <strong>and</strong> regional means for ma<strong>in</strong> cations (mg/l) <strong>in</strong> <strong>the</strong> lakes <strong>of</strong> three regions.<br />

Ca (mg/l) Na (mg/l) Mg (mg/l) K (mg/l)<br />

range mean range mean range mean range mean<br />

Vätsäri 1.2–2.0 1.4 1.4–1.5 1.5 0.3–0.8 0.5 0.2–0.3 0.2<br />

South 1.8–3.1 2.3 1.2–1.5 1.4 0.9–1.1 0.9 0.4–0.6 0.5<br />

Jarfjord 1.6–2.7 2.0 2.8–3.9 3.3 0.8–1.1 0.9 0.3–0.4 0.4<br />

3<br />

4<br />

Ca mg/l<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

Na mg/l<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

0<br />

0<br />

1,2<br />

0,6<br />

1<br />

0,5<br />

Mg mg/l<br />

0,8<br />

0,6<br />

0,4<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

K mg/l<br />

0,4<br />

0,3<br />

0,2<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

0,2<br />

0,1<br />

0<br />

0<br />

Figure 6. Regional average values <strong>and</strong> st<strong>and</strong>ard deviations for calcium (Ca), sodium (Na), magnesium (Mg) <strong>and</strong> potassium (K).<br />

112


SO 4 mg/l<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4 mg/l<br />

6<br />

5<br />

4<br />

3<br />

Vätsäri<br />

2<br />

Jarfjord<br />

SO 43<br />

<strong>Russia</strong><br />

1<br />

0<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

Figure 7. Average concentration <strong>and</strong> st<strong>and</strong>ard deviation <strong>of</strong> sulphate for each lake <strong>and</strong> area.<br />

7<br />

5,0<br />

Cl mg/l<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

Conductivity mS/m<br />

4,0<br />

3,0<br />

2,0<br />

1,0<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

0<br />

0,0<br />

Figure 8. Regional average values <strong>and</strong> st<strong>and</strong>ard deviations for<br />

chloride<br />

Figure 9. Regional average values <strong>and</strong> st<strong>and</strong>ard deviations for<br />

conductivity.<br />

Metals<br />

Average nickel concentration was <strong>the</strong> lowest <strong>in</strong> Vätsäri:<br />

0.4–1 µg/l (Figure 10). In <strong>the</strong> <strong>Russia</strong>n lakes it<br />

was roughly on <strong>the</strong> same level (0.5–1 µg/l), exclud<strong>in</strong>g<br />

Lake Shuonijaur close to Nikel, where average nickel<br />

concentration was 8.8 µg/l. Jarfjord region had <strong>the</strong><br />

highest nickel concentrations vary<strong>in</strong>g (4.9–16.7 µg/l).<br />

Copper concentrations followed a similar pattern<br />

(Figure 11). Average copper <strong>in</strong> Vätsäri <strong>and</strong> <strong>the</strong> <strong>Russia</strong>n<br />

lakes varied 0.5–1.3 µg/l, exclud<strong>in</strong>g Shuonijaur<br />

(4.9 µg/l). Also <strong>the</strong> copper levels were <strong>the</strong> highest <strong>in</strong><br />

<strong>the</strong> Jarfjord lakes: 2.5–9.2 µg/l.<br />

Copper <strong>and</strong> nickel deposition from <strong>the</strong> Pechenganikel<br />

show <strong>in</strong> Shuonijaur close to Nikel, <strong>and</strong> <strong>in</strong> <strong>the</strong><br />

Jarfjord lakes directly downw<strong>in</strong>d from <strong>the</strong> smelter.<br />

Both metals have notably elevated concentrations <strong>in</strong><br />

<strong>the</strong>se lakes. Metal pollution is on <strong>the</strong> same level <strong>in</strong><br />

<strong>the</strong>se Jarfjord lakes as reported for o<strong>the</strong>r lakes earlier<br />

<strong>in</strong> Puro-Tahvana<strong>in</strong>en et al. (2011). First time sampled<br />

Børsevatn appears to be <strong>the</strong> most polluted <strong>of</strong> all <strong>the</strong><br />

lakes.<br />

Cadmium concentrations were low <strong>in</strong> all <strong>the</strong> lakes.<br />

In Vätsäri area measured cadmium was below <strong>the</strong> reliable<br />

detection limit 0.01 µg/l <strong>and</strong> on <strong>the</strong> same level<br />

<strong>in</strong> Jarfjord lakes, exclud<strong>in</strong>g Rabbvatn (0.02 µg/). Average<br />

cadmium <strong>in</strong> <strong>the</strong> <strong>Russia</strong>n sou<strong>the</strong>rn lakes was only<br />

slightly more: 0.03–0.05 µg/l.<br />

Lead concentrations <strong>in</strong> Vätsäri lakes varied between<br />

0.02–0.04 µg/l, on average. The o<strong>the</strong>r regions<br />

had significantly higher lead content: <strong>in</strong> Jarfjord <strong>the</strong><br />

correspond<strong>in</strong>g range was 0.02–0.52 µg/l, <strong>and</strong> <strong>in</strong> <strong>the</strong><br />

sou<strong>the</strong>rn lakes 0.13–0.23 µg/l.<br />

Average iron concentrations varied widely: 4–11<br />

µg/l <strong>in</strong> Vätsäri, 12–284 µg/l <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn lakes <strong>and</strong><br />

10–49 <strong>in</strong> Jarfjord. Relative to <strong>the</strong> average, <strong>the</strong> measured<br />

iron contents varied highly with<strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g period.<br />

113


Ni µg/l<br />

18<br />

17<br />

16<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Ni µg/l<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Vätsäri<br />

<strong>Russia</strong><br />

Jarfjord<br />

Figure 10. Average nickel concentration <strong>and</strong> st<strong>and</strong>ard deviation for each lake <strong>and</strong> area.<br />

Cu µg/l<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Cu µg/l<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

Vätsäri 4<br />

Jarfjord<br />

3<br />

<strong>Russia</strong><br />

2<br />

1<br />

0<br />

Vätsäri<br />

Jarfjord<br />

<strong>Russia</strong><br />

Figure 11. Average copper concentration <strong>and</strong> st<strong>and</strong>ard deviation for each lake <strong>and</strong> area.<br />

References<br />

Kashul<strong>in</strong>, N.A., Dauvalter, V.A., S<strong>and</strong>imirov, S.S., Terentjev, P.M., Koroleva, I.M. 2008: Catalogue <strong>of</strong> lakes <strong>in</strong> <strong>the</strong> <strong>Russia</strong>n,<br />

F<strong>in</strong>nish <strong>and</strong> Norwegian border area. 141 p.<br />

Puro-Tahvana<strong>in</strong>en, A., Zueva, M., Kashul<strong>in</strong>, N., S<strong>and</strong>imirov, S.,Christensen, G.N., Grekelä, I. 2011 Pasvik Water Quality<br />

Report <strong>Environmental</strong> Monitor<strong>in</strong>g Programme <strong>in</strong> <strong>the</strong> Norwegian, F<strong>in</strong>nish <strong>and</strong> <strong>Russia</strong>n <strong>Border</strong> <strong>Area</strong>. Centre for Economic<br />

Development, Transport <strong>and</strong> <strong>the</strong> Environment for Lapl<strong>and</strong>, Publications 7/2011. 52 p.<br />

Puro-Tahvana<strong>in</strong>en, A., Grekelä, I., Derome, J., Stebel, K. (ed) 2008: <strong>Environmental</strong> monitor<strong>in</strong>g programme <strong>in</strong> <strong>the</strong> Norwegian,<br />

F<strong>in</strong>nish <strong>and</strong> <strong>Russia</strong>n border area – Implementation guidel<strong>in</strong>es. 51 p.<br />

Stebel, K., Christensen, G., Derome, J., Grekelä, I. (ed) 2007: State <strong>of</strong> <strong>the</strong> nvironment <strong>in</strong> <strong>the</strong> Norwegian, F<strong>in</strong>nish <strong>and</strong> <strong>Russia</strong>n<br />

<strong>Border</strong> <strong>Area</strong>. The F<strong>in</strong>nish Environment 6/2007. 98 p.<br />

Ylikörkkö, J., Zueva, M., Kashul<strong>in</strong>, N., Kashul<strong>in</strong>a, T., S<strong>and</strong>imirov, S., Christensen, G., Jelkänen, E. 2014: Pasvik Water<br />

Quality until 2013 – <strong>Environmental</strong> Monitor<strong>in</strong>g Programme <strong>in</strong> <strong>the</strong> Norwegian, F<strong>in</strong>nish <strong>and</strong> <strong>Russia</strong>n <strong>Border</strong> <strong>Area</strong>. Centre for<br />

Economic Development, Transport <strong>and</strong> <strong>the</strong> Environment for Lapl<strong>and</strong>, Publications 96/2014. 43 p.<br />

114


Jarfjord mounta<strong>in</strong>. Photo:Helén Andersen<br />

Go<strong>in</strong>g to sampl<strong>in</strong>g <strong>in</strong> Vätsäri. Photo: Jouni Satokangas<br />

115


3 Sediments <strong>and</strong> paleolimnology<br />

VLADIMIR DAUVALTER, DMITRII DENISOV<br />

The border area between <strong>Russia</strong>, <strong>Norway</strong>, <strong>and</strong> F<strong>in</strong>l<strong>and</strong><br />

is exposed to serious <strong>in</strong>dustrial impact. Lake<br />

Kuetsjarvi <strong>and</strong> <strong>the</strong> lower watercourse <strong>of</strong> <strong>the</strong> Pasvik<br />

River receive wastewater from smelt<strong>in</strong>g <strong>and</strong> by-processes<br />

<strong>of</strong> <strong>the</strong> Pechenganikel Company. The river,<br />

as well as lakes <strong>and</strong> rivers <strong>of</strong> this area not part <strong>the</strong><br />

Pasvik watercourse, is also exposed to pollution via<br />

atmospheric deposition. The major pollutants <strong>in</strong>clude<br />

sulfur compounds <strong>and</strong> heavy metals (Ni, Cu, Cd, Cr,<br />

Zn, As, Hg, etc.), polycyclic aromatic hydrocarbons<br />

(PAHs), <strong>and</strong> persistant organic pollutants (POPs).<br />

Sulfur dioxide emissions cause acidification <strong>and</strong> pollution<br />

<strong>of</strong> <strong>the</strong> surface water due to <strong>in</strong>tensification <strong>of</strong> rock<br />

wea<strong>the</strong>r<strong>in</strong>g processes. Dust, nitrogen oxides <strong>and</strong> carbon<br />

dioxides are also part <strong>of</strong> <strong>the</strong> emissions from <strong>the</strong><br />

Pechenganikel.<br />

The history <strong>of</strong> ecosystems’ development <strong>and</strong> <strong>the</strong><br />

range <strong>of</strong> natural fluctuation <strong>of</strong> biological parameters<br />

are needed to identify <strong>the</strong> reasons for various current<br />

changes <strong>in</strong> <strong>the</strong> Pasvik watercourse. Information about<br />

specific past environmental features allows identification<br />

<strong>of</strong> <strong>the</strong> role <strong>of</strong> climate change <strong>in</strong> <strong>the</strong> ecosystems’<br />

transformations, which is especially important <strong>in</strong> <strong>the</strong><br />

analysis <strong>of</strong> <strong>in</strong>dustrial impact on <strong>the</strong> nor<strong>the</strong>rn areas.<br />

In this context <strong>the</strong> small lakes <strong>of</strong> glacial orig<strong>in</strong> <strong>in</strong> <strong>the</strong><br />

river’s catchment area are most suitable for obta<strong>in</strong><strong>in</strong>g<br />

paleoecological <strong>in</strong>formation for reconstruction <strong>of</strong> <strong>the</strong><br />

historical dynamics <strong>of</strong> <strong>the</strong> environment <strong>and</strong> climate.<br />

Layer-by-layer analysis <strong>of</strong> sediments provides data<br />

on global <strong>and</strong> local climate changes, fluxes <strong>of</strong> various<br />

substances <strong>in</strong>to <strong>the</strong> environment etc., which can be<br />

<strong>in</strong>terrelated with absolute time scale. Paleoecological<br />

research <strong>and</strong> restor<strong>in</strong>g <strong>of</strong> water ecosystems’ development<br />

history is impossible without correct estimation<br />

<strong>of</strong> sedimentation rate allow<strong>in</strong>g to determ<strong>in</strong>e <strong>the</strong> age <strong>of</strong><br />

studied sediments. Radionuclides are widely used for<br />

determ<strong>in</strong>ation <strong>of</strong> sedimentation rate <strong>in</strong> natural water<br />

reservoirs. 210 Pb is applicable for studies <strong>of</strong> contemporary<br />

sedimentation rates (from 100 to 150 years)<br />

which <strong>in</strong> turn can be used to estimate <strong>the</strong> age <strong>of</strong> sediments.<br />

210 Pb-dat<strong>in</strong>g is <strong>of</strong>ten used for chronological<br />

reconstructions <strong>of</strong> anthropogenic pollution by radionuclides,<br />

heavy metals <strong>and</strong> organochlorides.<br />

Materials <strong>and</strong> methods<br />

Sediment cores from <strong>the</strong> deepest areas were sampled<br />

from <strong>the</strong> 16 lakes (Introduction, Figure 1). Heavy<br />

metal concentrations <strong>of</strong> <strong>the</strong> sediments were analyzed<br />

<strong>and</strong> <strong>the</strong> level <strong>of</strong> <strong>in</strong>dustrial load on <strong>the</strong> lakes’ ecosystems<br />

was determ<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong> estimated pollution<br />

factor (C f<br />

) for each <strong>of</strong> <strong>the</strong> priority heavy metal<br />

contam<strong>in</strong>ant (method <strong>of</strong> Håkanson, 1980). The contam<strong>in</strong>ation<br />

degree (C d<br />

) <strong>of</strong> <strong>the</strong> bottom sediment was<br />

determ<strong>in</strong>ed by <strong>the</strong> sum <strong>of</strong> all C f<br />

values for eight ma<strong>in</strong><br />

heavy metals <strong>in</strong> a particular lake.<br />

Three lakes were selected for <strong>the</strong> study <strong>of</strong> diatom<br />

complexes <strong>of</strong> bottom sediments (Harrijärvi, F<strong>in</strong>l<strong>and</strong>,<br />

Rabbvatnet, <strong>Norway</strong>, <strong>and</strong> Shuonijaur, <strong>Russia</strong>) (Introduction,<br />

Figure 1). The selected lakes are characterized<br />

by depths sufficient for formation <strong>of</strong> un<strong>in</strong>terrupted<br />

sequence <strong>of</strong> layers <strong>of</strong> bottom sediments.<br />

Diatom analysis was carried out accord<strong>in</strong>g to <strong>the</strong><br />

st<strong>and</strong>ard generally accepted method (Zhuze et al.<br />

1949, Davydova 1985, Denisov et al. 2006). All diatom<br />

valves were identified, if possible, to <strong>in</strong>traspecific taxonomic<br />

categories (Krammer & Lange-Bertalot 1988–<br />

2003). Fur<strong>the</strong>r analysis <strong>in</strong>cluded <strong>in</strong>vestigation <strong>of</strong> taxonomic<br />

structure <strong>of</strong> diatom complexes, dynamics <strong>of</strong><br />

relative abundance (%) <strong>of</strong> <strong>the</strong> predom<strong>in</strong>ant species<br />

<strong>and</strong> estimation <strong>of</strong> <strong>the</strong> total amount <strong>of</strong> valves <strong>in</strong> <strong>the</strong> sediment.<br />

Species diversity was estimated accord<strong>in</strong>g to<br />

Shannon-Weaver <strong>in</strong>dex (H’ bit/ex.). The total amount<br />

<strong>of</strong> valves was counted <strong>in</strong> each <strong>in</strong>vestigated layer (mln.<br />

ex./g).<br />

Tolerance analysis <strong>in</strong> relation to pH was made for<br />

<strong>the</strong> discovered taxa <strong>and</strong> <strong>in</strong>tegral pH value for each<br />

layer was calculated us<strong>in</strong>g <strong>the</strong> equation (Moiseenko<br />

& Razumovsky 2009): pH = ∑ph i<br />

k / ∑k, where ph i<br />

is<br />

<strong>the</strong> <strong>in</strong>dividual numerocal value <strong>of</strong> each <strong>in</strong>dicator taxon<br />

<strong>and</strong> k is <strong>the</strong> relative abundance <strong>of</strong> this taxon.<br />

In relation to pH values <strong>the</strong> follow<strong>in</strong>g plankton<br />

groups were identified: neutr<strong>of</strong>ilic with developmental<br />

optimum at pH 7.0, <strong>in</strong>different capable <strong>of</strong> develop<strong>in</strong>g<br />

<strong>in</strong> a relatively wide range <strong>of</strong> pH around 7, alkalifilic<br />

preferr<strong>in</strong>g pH> 7.0, alkalibiont preferr<strong>in</strong>g pH 7.6 <strong>and</strong><br />

above, acid<strong>of</strong>ilic preferr<strong>in</strong>g pH< 7.0 <strong>and</strong> acidobiont develop<strong>in</strong>g<br />

at relatively low pH 6.4 <strong>and</strong> below.<br />

116


Ecological groups <strong>of</strong> diatoms <strong>and</strong> <strong>the</strong>ir proportions<br />

<strong>in</strong> each sediment layer were analyzed to reconstruct<br />

<strong>the</strong> conditions <strong>in</strong> each lake. Accord<strong>in</strong>g to preferred habitat<br />

phytoplakton was divided <strong>in</strong>to planktic, benthic<br />

<strong>and</strong> plankto-benthic forms. The relation to water sal<strong>in</strong>ity<br />

(chloride concentration) was also considered:<br />

halophob (growth is <strong>in</strong>hibited by sal<strong>in</strong>ity), <strong>in</strong>different<br />

(tolerates different sal<strong>in</strong>ities), oligohalob (tolerates some<br />

sal<strong>in</strong>ity), hal<strong>of</strong>ilic (growth is stimulated by sal<strong>in</strong>ity)<br />

<strong>and</strong> mesohalob (grows <strong>in</strong> water with medium sal<strong>in</strong>ity,<br />

for example <strong>in</strong> brackish water) groups were identified.<br />

Last ecological group was formed accord<strong>in</strong>g to biogeographical<br />

association (cosmopolitan, arctic-alp<strong>in</strong>e,<br />

boreal, holarctic).<br />

Saprobity <strong>in</strong>dex (S) was calculated for each analyzed<br />

layer as an <strong>in</strong>dicator <strong>of</strong> presence <strong>of</strong> nutrients <strong>and</strong><br />

also as an <strong>in</strong>direct <strong>in</strong>dicator <strong>of</strong> <strong>the</strong> lakes’ trophic status<br />

(Sladecek 1967, Bar<strong>in</strong>ova et al. 2006). Data <strong>of</strong> ecology<br />

<strong>of</strong> specific algae taxa, <strong>in</strong>dividual saprobity <strong>in</strong>dicators<br />

<strong>and</strong> reaction to pH from <strong>the</strong> updated database on<br />

algae ecology (Bar<strong>in</strong>ova et al. 1996, 2006) were used<br />

<strong>in</strong> <strong>the</strong> analysis.<br />

Results <strong>and</strong> discussion<br />

Sediments<br />

Lead-based method <strong>of</strong> sedimentation rate determ<strong>in</strong>ation<br />

Sediment cores’ ages were determ<strong>in</strong>ed accord<strong>in</strong>g to<br />

210<br />

Pb chronology <strong>and</strong> <strong>the</strong> sedimentation rates (Table<br />

1). The average rate <strong>of</strong> sedimentation <strong>in</strong> <strong>the</strong> latest<br />

hundred <strong>and</strong> fifty years <strong>in</strong> <strong>the</strong> lakes was fairly stable,<br />

with<strong>in</strong> 0.3–0.6 mm/year. The lowest sedimentation rates<br />

are typical for <strong>the</strong> oligotrophic lakes Rabbvatnet,<br />

Virtuovoshjaur <strong>and</strong> Shuonijaur. Rabbvatnet had <strong>the</strong><br />

longest sediment column <strong>and</strong> oldest sediment, which<br />

allows <strong>the</strong> study <strong>of</strong> environmental <strong>and</strong> climate changes<br />

prior to active <strong>in</strong>dustry <strong>in</strong> <strong>the</strong> catchment area <strong>of</strong><br />

<strong>the</strong> Pasvik River.<br />

Background concentrations <strong>of</strong> elements <strong>in</strong> bottom<br />

sediments<br />

Background heavy metal concentrations are found<br />

<strong>in</strong> <strong>the</strong> deepest layers <strong>of</strong> <strong>the</strong> sediment cores (usually<br />

>20 cm) which were formed over two hundred years<br />

ago, i.e. before <strong>in</strong>dustrial development <strong>of</strong> North Fennosc<strong>and</strong>ia<br />

(Norton et al. 1992, 1996, Rognerud et al.<br />

1993). The background heavy metal concentrations<br />

reflect <strong>the</strong> geochemical peculiarities <strong>of</strong> <strong>the</strong> catchment<br />

<strong>and</strong> provide quantitative <strong>in</strong>formation <strong>of</strong> water bodies’<br />

pollution degree <strong>and</strong> help determ<strong>in</strong>e anomalies<br />

<strong>in</strong> search <strong>of</strong> m<strong>in</strong>eral resources (Tenhola & Lummaa<br />

1979).<br />

The maximum background heavy metal concentrations<br />

<strong>in</strong> sediment were found <strong>in</strong> different lakes: Cu <strong>and</strong><br />

Hg <strong>in</strong> Lake Lampi 222, Zn <strong>and</strong> Cd <strong>in</strong> Lake Ala-Nautsijarvi,<br />

Co <strong>in</strong> Lake Ilja-Nautsijarvi, Ni <strong>in</strong> Lake Pikkujarvi,<br />

Pb <strong>in</strong> Lake Holmvatnet, <strong>and</strong> As <strong>in</strong> Lake Gardsjøen.<br />

Factor analysis was used to identify <strong>the</strong> factors hav<strong>in</strong>g<br />

<strong>the</strong> greatest impact on <strong>the</strong> chemical composition <strong>of</strong><br />

<strong>the</strong> lakes’ sediment. Analysis confirmed <strong>the</strong> <strong>in</strong>fluence<br />

<strong>of</strong> geochemical composition <strong>of</strong> bedrock on <strong>the</strong> formation<br />

<strong>of</strong> <strong>the</strong> sediment background layers’ chemical<br />

composition.<br />

Cluster analysis identified three groups <strong>of</strong> water<br />

bodies: <strong>the</strong> first group <strong>in</strong>cludes <strong>the</strong> F<strong>in</strong>nish lakes (Pitkä-Surnujärvi<br />

<strong>and</strong> Sierramjärvi) <strong>and</strong> a similar <strong>Russia</strong>n<br />

lake Ilja-Nautsijarvi, <strong>the</strong> second group <strong>in</strong>cludes <strong>the</strong><br />

<strong>Russia</strong>n lakes Shuonijaur <strong>and</strong> Virtuovoshjaur <strong>and</strong> <strong>the</strong><br />

Norwegian lake Rabbvatnet, <strong>and</strong> <strong>the</strong> third group <strong>in</strong>cludes<br />

<strong>the</strong> <strong>Russia</strong>n lakes Toartesjaur, Kochejaur <strong>and</strong><br />

Riuttikjaure. The lakes <strong>in</strong> <strong>the</strong> groups are believed to<br />

be similar <strong>in</strong> terms <strong>of</strong> <strong>the</strong> natural conditions <strong>of</strong> sediment<br />

chemistry formation. A large number <strong>of</strong> lakes not<br />

belong<strong>in</strong>g to any <strong>of</strong> <strong>the</strong> three groups shows <strong>the</strong> large<br />

diversity <strong>of</strong> <strong>the</strong>se conditions, which is reflected by a<br />

considerable range <strong>of</strong> background concentrations <strong>in</strong><br />

Table 1. The lengths <strong>of</strong> sediment cores, sedimentation rates <strong>and</strong> <strong>the</strong> ages <strong>of</strong> <strong>the</strong> bottom sediments <strong>of</strong> some lakes.<br />

Lake<br />

core length<br />

(cm)<br />

sedimentation rate<br />

(mm/year)<br />

Approx. age <strong>of</strong> bottom sediment<br />

(years)<br />

Rabbvatnet 44 0.65 687<br />

Harrijarvi 30 1.3 240<br />

Shuonijaur 14 0.7 210<br />

Ala-Nautsijarvi 17,5 1.6 106<br />

Virtuovoshjaur 18 0.7 257<br />

Kochejaur 16 1.5 106<br />

117


sediments. It was also established that <strong>the</strong> average<br />

background concentrations <strong>in</strong> sediments are similar<br />

to average concentrations <strong>of</strong> chemical elements <strong>in</strong><br />

<strong>the</strong> crust <strong>of</strong> earth (percentage abundance) <strong>and</strong> <strong>in</strong> <strong>the</strong><br />

rocks <strong>and</strong> soils.<br />

Changes <strong>of</strong> elements’ concentration <strong>in</strong> sediments<br />

over time<br />

Increased concentrations <strong>and</strong> sedimentation rates <strong>of</strong><br />

Ni, Cu, <strong>and</strong> Co <strong>in</strong> <strong>the</strong> sediments dated back to 20 th<br />

century were observed <strong>in</strong> <strong>the</strong> Norwegian lakes (Norton<br />

et al. 1992, 1996, Rognerud et al. 1993). Higher<br />

concentrations <strong>of</strong> Pb <strong>in</strong> <strong>the</strong> sediments, generally, are<br />

not related to <strong>the</strong> Pechenganikel’s emissions s<strong>in</strong>ce<br />

<strong>the</strong>y date back to <strong>the</strong> time too early to be related to<br />

any <strong>in</strong>dustrial activities <strong>in</strong> this area. Ni, Cu, Co <strong>and</strong><br />

o<strong>the</strong>r heavy metals enter <strong>the</strong> atmosphere from <strong>the</strong><br />

Pechenganikel but growth <strong>of</strong> <strong>the</strong> concentrations <strong>and</strong><br />

accumulation rates dates back one decade prior to<br />

<strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>in</strong>dustrial activities.<br />

Vertical distribution <strong>of</strong> heavy metal concentrations<br />

<strong>in</strong> <strong>the</strong> sediments was studyied to f<strong>in</strong>d out <strong>the</strong> anthropogenic<br />

load <strong>in</strong>tensity <strong>of</strong> lakes located at different<br />

distances from smelters. The most polluted with Cu<br />

<strong>and</strong> Ni are <strong>the</strong> <strong>Russia</strong>n lakes (Pikkujarvi, Shuonijaur),<br />

located close to <strong>the</strong> emission source as well as all<br />

Norwegian lakes <strong>of</strong> Jarfjord, exposed to <strong>in</strong>tensive atmospheric<br />

pollution <strong>of</strong> <strong>the</strong> <strong>in</strong>tegrated plant (Figure1).<br />

Growth <strong>of</strong> Cu <strong>and</strong> Ni content <strong>in</strong> <strong>the</strong> surface layers <strong>of</strong><br />

sediment was also recorded <strong>in</strong> lakes Ilja-Nautsijarvi<br />

<strong>and</strong> Virtuovoshjaur, located 80 <strong>and</strong> 90 km from <strong>the</strong><br />

smelters respectively.<br />

Increas<strong>in</strong>g Cu <strong>and</strong> Ni content <strong>in</strong> sediment cores<br />

was recorded ma<strong>in</strong>ly near <strong>the</strong> <strong>in</strong>tegrated plant (Shuonijaur).<br />

In <strong>the</strong> Norwegian lake Rabbvatnet <strong>the</strong> first<br />

noticeable growth <strong>of</strong> Cu <strong>and</strong> Ni content was observed<br />

<strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> 17 th century, which is probably associated<br />

with <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>in</strong>dustrial revolution<br />

<strong>in</strong> Europe <strong>and</strong> <strong>in</strong>crease <strong>of</strong> heavy metal emissions <strong>in</strong>to<br />

<strong>the</strong> environment <strong>and</strong> <strong>the</strong>ir air transport <strong>in</strong> <strong>the</strong> direction<br />

<strong>of</strong> <strong>the</strong> Arctic (Figure 2).<br />

The next noticeable growth <strong>of</strong> Cu content was observed<br />

<strong>in</strong> <strong>the</strong> 19 th century, which may be attributed to<br />

<strong>the</strong> <strong>in</strong>dustrialization. S<strong>in</strong>ce <strong>the</strong>n <strong>the</strong> Cu concentration<br />

has kept grow<strong>in</strong>g <strong>and</strong> <strong>the</strong> <strong>in</strong>tensive growth <strong>of</strong> Cu content<br />

is associated with <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> copper <strong>and</strong><br />

nickel production <strong>in</strong> <strong>the</strong> Pechenga area. In <strong>the</strong> last<br />

two decades <strong>the</strong> production dropped after <strong>the</strong> collapse<br />

<strong>of</strong> <strong>the</strong> USSR, but <strong>the</strong> concentrations <strong>of</strong> Cu <strong>in</strong> <strong>the</strong><br />

sediment <strong>of</strong> Lake Rabbvatnet (as well as <strong>in</strong> <strong>Russia</strong>n<br />

lakes Shuonijaur <strong>and</strong> Virtuovoshjaur) have only been<br />

grow<strong>in</strong>g, which can be expla<strong>in</strong>ed by heavy metal accumulation<br />

<strong>in</strong> <strong>the</strong> catchment <strong>of</strong> <strong>the</strong> lakes (Dauvalter<br />

et al. 2012).<br />

No <strong>in</strong>crease <strong>of</strong> Zn concentrations have been noted<br />

<strong>in</strong> <strong>the</strong> surface layers except for Lake Pikkujarvi. In <strong>the</strong><br />

majority <strong>of</strong> <strong>the</strong> lakes <strong>the</strong>re is a tendency <strong>of</strong> Zn decrease.Chalcophile<br />

high-toxic heavy metals Cd <strong>and</strong> Pb<br />

have been considered a global pollution element by<br />

many ecologists <strong>in</strong> <strong>the</strong> last decades (for example Pacyna<br />

& Pacyna 2001). Significant growth <strong>of</strong> Cd <strong>and</strong> Pb<br />

concentrations <strong>in</strong> <strong>the</strong> dated sediment was recorded <strong>in</strong><br />

<strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> 20 th century associated with <strong>the</strong><br />

<strong>in</strong>tensive <strong>in</strong>dustrial development after World War II,<br />

metallurgical production at <strong>the</strong> Pechenganikel <strong>and</strong> <strong>the</strong><br />

grow<strong>in</strong>g use <strong>of</strong> leaded petrol <strong>in</strong> case <strong>of</strong> Pb. In <strong>the</strong> majority<br />

<strong>of</strong> <strong>the</strong> lakes <strong>the</strong>re is a tendency to both Cd <strong>and</strong><br />

Pb content growth towards <strong>the</strong> sediment surface, <strong>and</strong><br />

at <strong>the</strong> same time a decrease occurs <strong>in</strong> <strong>the</strong> very top<br />

layer <strong>in</strong> about half <strong>of</strong> <strong>the</strong> lakes. Cd <strong>and</strong> Pb content reduction<br />

<strong>in</strong> <strong>the</strong> surface layer dated to one-two decades<br />

may be associated with <strong>the</strong> <strong>the</strong> collapse <strong>of</strong> <strong>the</strong> USSR<br />

or with <strong>the</strong> reduction <strong>of</strong> global emission <strong>of</strong> Cd over <strong>the</strong><br />

last decades. Possibly <strong>the</strong> ma<strong>in</strong> reason for decrease<br />

<strong>of</strong> Pb <strong>in</strong> <strong>the</strong> latest decades is <strong>the</strong> prohibition <strong>of</strong> leaded<br />

petrol. However, <strong>in</strong> some lakes maximum heavy metal<br />

contents are noted <strong>in</strong> <strong>the</strong> surface layer.<br />

In majority <strong>of</strong> <strong>the</strong> lakes growth <strong>of</strong> chalcophile hightoxic<br />

As <strong>and</strong> Hg content is noted towards <strong>the</strong>ir surface.<br />

Especially noticeable growth <strong>of</strong> As <strong>and</strong> Hg occurred<br />

<strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> latest century associated with<br />

<strong>the</strong> <strong>in</strong>dustrial development after World War II, grow<strong>in</strong>g<br />

use <strong>of</strong> As <strong>and</strong> coal high <strong>in</strong> Hg <strong>in</strong> metallurgy <strong>in</strong>clud<strong>in</strong>g<br />

at <strong>the</strong> Pechenganikel Company. In <strong>the</strong> very top layer<br />

<strong>of</strong> sediment (1–3 cm) <strong>of</strong> a few lakes a reduction <strong>of</strong> As<br />

<strong>and</strong> Hg occurs, which is suggestive <strong>of</strong> <strong>the</strong> consequences<br />

<strong>of</strong> <strong>the</strong> global emission reduction. The reduction<br />

may be associated with <strong>the</strong> collapse <strong>of</strong> <strong>the</strong> USSR <strong>and</strong><br />

reductions <strong>of</strong> <strong>the</strong> global emissions <strong>in</strong> <strong>the</strong> latest decades<br />

due to use prohibitions <strong>and</strong> <strong>in</strong>crease <strong>in</strong> recycl<strong>in</strong>g.<br />

Growth <strong>of</strong> Co concentrations was found <strong>in</strong> <strong>the</strong> surface<br />

layers <strong>of</strong> all Norwegian lakes, <strong>Russia</strong>n lakes located<br />

close to Pechenganikel (Pikkujarvi <strong>and</strong> Shuonijaur)<br />

<strong>and</strong> F<strong>in</strong>nish Lake Lampi 222, which is <strong>the</strong> closest<br />

to <strong>the</strong> Pechenganikel among all <strong>the</strong> F<strong>in</strong>nish lakes. O<strong>the</strong>r<br />

studied lakes show <strong>the</strong> tendency <strong>of</strong> Co content<br />

reduction towards <strong>the</strong> sediment surface. Co concentrations<br />

reached maximum values <strong>in</strong> <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> 21 st century <strong>and</strong> <strong>the</strong>n <strong>the</strong>y drop towards <strong>the</strong> sediment<br />

surface probably due to <strong>the</strong> reduction <strong>of</strong> production<br />

<strong>of</strong> heavy metals.<br />

118


Cu<br />

0 100 200<br />

0<br />

10<br />

20<br />

30<br />

40 Lampi<br />

Cu<br />

0 10 20 30<br />

0<br />

10<br />

20<br />

30<br />

40 Harrijarvi<br />

Cu<br />

0 20 40 60<br />

0<br />

10<br />

20<br />

30<br />

40 Pitkasurnujarvi<br />

Cu 0 10 20 Ni 0 20 40 60<br />

0<br />

0<br />

10<br />

20<br />

30<br />

10<br />

20<br />

30<br />

Ni<br />

10<br />

20<br />

30<br />

0 20 40 Ni 0 20 40 60 Ni 0 20 40<br />

0<br />

0<br />

0<br />

40 Sierramjarvi 40<br />

Lampi 40 Harrijarvi 40 Pitkasurnujarvi 40 Sierramjarvi<br />

10<br />

20<br />

30<br />

10<br />

20<br />

30<br />

Cu<br />

Cu<br />

Cu<br />

0 20 40 60<br />

0<br />

10<br />

20<br />

30 Shuonijaur<br />

0 10 20 30<br />

0<br />

10<br />

20<br />

30 Toartesjaur<br />

0 100 200 300<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

Ref<br />

Gardsjøen<br />

Cu 0 20 40 60 Cu 0 10 20 30 Cu 0 100 200 300 Ni 0 40 80<br />

0<br />

Cu<br />

0<br />

10<br />

20<br />

30<br />

AlaNautsijarvi<br />

0 10 20 30 Cu<br />

0<br />

10<br />

20<br />

30 Virtuovoshjaur<br />

Cu 0 100 200<br />

0<br />

10<br />

20<br />

30<br />

40<br />

Ref<br />

Cu<br />

0<br />

10<br />

20<br />

30 IlaNautsijarvi<br />

0 10 20 30<br />

0<br />

10<br />

20<br />

30 Riuttikijaure<br />

0 100 200 300<br />

0<br />

10<br />

20<br />

30<br />

40<br />

10<br />

20<br />

30<br />

Cu<br />

30<br />

Cu<br />

50 Holmvatn 50 Rabbvatnnet 50<br />

10<br />

20<br />

10<br />

20<br />

30<br />

40<br />

0<br />

0<br />

0<br />

Pikkujarvi<br />

0 10 20<br />

Kochejaur<br />

0 200 400<br />

Ref<br />

Durvatn<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Ni<br />

Ni<br />

10<br />

20<br />

Ni<br />

10<br />

20<br />

0 20 40 60<br />

0<br />

0 20 40<br />

0<br />

10<br />

20<br />

30 Shuonijaur 30 AlaNautsijarvi 30 IlaNautsijarvi 30 Pikkujarvi<br />

0 10 20<br />

0<br />

10<br />

20<br />

30 Toartesjaur<br />

0 100 200<br />

0<br />

10<br />

20<br />

30<br />

40<br />

Ref<br />

Ni<br />

10<br />

20<br />

0 20 40<br />

0<br />

Ni<br />

Ni<br />

10<br />

20<br />

Ni<br />

10<br />

20<br />

0 200 400<br />

0<br />

0 20 40 60 Ni 0 20 40<br />

0<br />

0<br />

30 Virtuovoshjaur 30 Riuttikijaure 30 Kochejaur<br />

Ni 0 100 200 Ni 0 100 200 Ni 0 200 400 600<br />

0<br />

10<br />

20 30<br />

40<br />

Ref 0<br />

10<br />

20<br />

30<br />

40<br />

0<br />

10<br />

20 30<br />

40<br />

Ref<br />

50 Gardsjøen 50 Holmvatn 50 Rabbvatnnet 50 Durvatn<br />

10<br />

20<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Sediment depth, cm<br />

Figure 1. Vertical distribution <strong>of</strong> Cu <strong>and</strong> Ni concentrations (µg/g <strong>of</strong> dry weight) <strong>in</strong> <strong>the</strong> sediments <strong>of</strong> <strong>the</strong> studied lakes. In this <strong>and</strong> <strong>in</strong> fur<strong>the</strong>r figures <strong>the</strong> F<strong>in</strong>nish lakes are colored <strong>in</strong> blue, <strong>the</strong> <strong>Russia</strong>n lakes <strong>in</strong><br />

red <strong>and</strong> <strong>the</strong> Norwegian lakes <strong>in</strong> green.<br />

119


Cu 0 20 40 60 Cu 0 100 200 300 Cu 0 10 20 30 Ni 0 40 80<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300<br />

Shuonijaur<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

Rabbvatnnet 1300<br />

Harrijarvi<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300<br />

Shuonijaur<br />

Cu 0 20 40 60 Cu 0 10 20 30 Cu 0 10 20 Ni 0 20 40 60<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300 AlaNautsijarvi<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300 Virtuovoshjaur<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300<br />

Kochejaur<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300 AlaNautsijarvi<br />

Figure 2. Vertical distribution <strong>of</strong> Cu <strong>and</strong> Ni concentrations (µg/g <strong>of</strong> dry weight) <strong>in</strong> <strong>the</strong> dated sediment <strong>of</strong> <strong>the</strong> studied lakes.<br />

Ni<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300<br />

Ni<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300<br />

0 100 200<br />

Rabbvatnnet<br />

0 20 40<br />

Virtuovoshjaur<br />

Ni<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300<br />

Ni<br />

2050<br />

2000<br />

1950<br />

1900<br />

1850<br />

1800<br />

1750<br />

1700<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300<br />

0 20 40<br />

Harrijarvi<br />

0 20 40<br />

Kochejaur<br />

120


Territorial distribution <strong>of</strong> elements <strong>in</strong> <strong>the</strong> surface<br />

<strong>of</strong> <strong>the</strong> bottom sediments<br />

Long-term anthropogenic load on <strong>the</strong> catchments <strong>of</strong><br />

<strong>the</strong> lakes has led to alteration <strong>of</strong> natural conditions <strong>of</strong><br />

<strong>the</strong> formation <strong>of</strong> sediment chemical composition <strong>and</strong><br />

to growth <strong>of</strong> heavy metal concentrations <strong>in</strong> <strong>the</strong> surface<br />

sediment layers. The ma<strong>in</strong> reason for high concentrations<br />

<strong>of</strong> heavy metals (Ni, Cu, Co) <strong>in</strong> <strong>the</strong> surface<br />

layers are <strong>the</strong> atmospheric emissions from <strong>the</strong><br />

smelters <strong>of</strong> <strong>the</strong> Pechenganikel especially near <strong>the</strong> <strong>in</strong>tegrated<br />

plant. The majority <strong>of</strong> heavy metals from <strong>the</strong><br />

emissions <strong>and</strong> waste water are tied to <strong>and</strong> stay <strong>in</strong> <strong>the</strong><br />

sediments.<br />

The most polluted lakes are located <strong>in</strong> <strong>the</strong> immediate<br />

proximity <strong>of</strong> <strong>the</strong> smelters <strong>and</strong> <strong>in</strong> Jarfjord <strong>in</strong>side<br />

20–40 km zone from <strong>the</strong> Pechenganikel. The highest<br />

concentrations <strong>of</strong> Ni, Cu <strong>and</strong> Co, exceed<strong>in</strong>g background<br />

values by 5–25 times, were noted <strong>in</strong> <strong>the</strong> lakes<br />

at a distance up to 40 –50 km from <strong>the</strong> <strong>in</strong>tegrated plant<br />

(Figure 3). Fur<strong>the</strong>r away at 60–100 km <strong>the</strong> reduction<br />

<strong>of</strong> concentrations (first <strong>of</strong> all <strong>of</strong> Ni <strong>and</strong> Cu) is noted. A<br />

similar pattern is observed <strong>in</strong> <strong>the</strong> distribution <strong>of</strong> Cd,<br />

As, <strong>and</strong> Hg: <strong>the</strong> same area up to 50 km is polluted<br />

most <strong>in</strong>tensively (concentrations exceed background<br />

values by 2–8 times) <strong>and</strong> at distance <strong>of</strong> >50 km <strong>the</strong><br />

concentrations are reduced to 1–3 times <strong>of</strong> <strong>the</strong> background<br />

values. However, pollution with chalcophile elements<br />

(especially Pb) is quite serious <strong>the</strong>re.<br />

The contents <strong>of</strong> Zn <strong>in</strong> <strong>the</strong> sediments exceed <strong>the</strong><br />

background values <strong>in</strong>significantly (up to 1.4 times <strong>in</strong><br />

Lake Pikkujarvi); <strong>the</strong>refore this element can be regarded<br />

as non-pollut<strong>in</strong>g. In <strong>the</strong> distribution <strong>of</strong> Pb no<br />

<strong>in</strong>creas<strong>in</strong>g tendency <strong>in</strong> <strong>the</strong> surface layers was noted<br />

approach<strong>in</strong>g <strong>the</strong> Pechenganikel (<strong>the</strong> largest Pb concentrations<br />

were recorded <strong>in</strong> <strong>the</strong> Norwegian territory),<br />

which testifies that <strong>the</strong> Pechenganikel is not <strong>the</strong> major<br />

source <strong>of</strong> Pb pollution.<br />

A close relationship between <strong>the</strong> content <strong>of</strong> alkal<strong>in</strong>e<br />

<strong>and</strong> alkal<strong>in</strong>e-earth metals (first <strong>of</strong> all K, Na <strong>and</strong> Mg) <strong>in</strong><br />

<strong>the</strong> sediment surface <strong>and</strong> <strong>the</strong> distance from <strong>the</strong> source<br />

<strong>of</strong> pollution was also noted: concentrations grow<br />

clos to <strong>the</strong> Pechenganikel. This means that along with<br />

<strong>the</strong> emissions <strong>of</strong> heavy metals, <strong>the</strong> <strong>in</strong>tegrated plant also<br />

releases <strong>in</strong>to <strong>the</strong> atmosphere alkal<strong>in</strong>e <strong>and</strong> alkal<strong>in</strong>eearth<br />

metals, which are <strong>in</strong> <strong>the</strong> ore-host<strong>in</strong>g <strong>and</strong> stripp<strong>in</strong>g<br />

rocks conta<strong>in</strong><strong>in</strong>g m<strong>in</strong>erals with large content <strong>of</strong><br />

<strong>the</strong>se elements.<br />

Factor analysis confirmed <strong>the</strong> contribution <strong>of</strong> <strong>the</strong><br />

Pechenganikel <strong>in</strong> <strong>the</strong> emissions <strong>of</strong> Cu, Ni, chalcophile<br />

elements <strong>and</strong> alkal<strong>in</strong>e <strong>and</strong> alkal<strong>in</strong>e-earth metals that<br />

greatly <strong>in</strong>fluence <strong>the</strong> chemical composition <strong>of</strong> <strong>the</strong> sediments.<br />

Chalcophile elements are delivered also via<br />

atmospheric transboundary transport. Physical <strong>and</strong><br />

chemical conditions <strong>of</strong> <strong>the</strong> lakes also <strong>in</strong>fluence <strong>the</strong> sediments<br />

as does <strong>the</strong> water level <strong>in</strong> lakes above sea<br />

level.<br />

Cluster analysis clearly identified three groups <strong>of</strong><br />

water bodies: lakes Harrijärvi, Ilja-Nautsijarvi <strong>and</strong> Virtuovoshjaur<br />

with relatively small contents <strong>of</strong> priority<br />

pollutant heavy metals (Ni, Cu), lakes Shuonijaur <strong>and</strong><br />

Rabbvatnet with relatively high concentrations <strong>of</strong> Ni<br />

<strong>and</strong> Cu <strong>and</strong> o<strong>the</strong>r heavy metals <strong>and</strong> <strong>Russia</strong>n lakes Toartesjaur,<br />

Riuttikjaure <strong>and</strong> Kochejaur, located close to<br />

each o<strong>the</strong>r <strong>and</strong> far from <strong>the</strong> Pechenganikel <strong>in</strong>tegrated<br />

plant (>80 km) <strong>and</strong> characterized by relatively small<br />

contents <strong>of</strong> Ni <strong>and</strong> Cu as well as o<strong>the</strong>r heavy metals,<br />

except for Pb <strong>and</strong> Hg <strong>in</strong> Lake Riuttikjaure. Probably<br />

<strong>the</strong>se clusters are similar by natural <strong>and</strong> anthropogenic<br />

conditions <strong>of</strong> <strong>the</strong> sediments’ chemical composition<br />

formation. The unclustered lakes suggest a great<br />

variety <strong>of</strong> <strong>the</strong>se conditions, which <strong>in</strong> itself reflects <strong>the</strong><br />

wide range <strong>of</strong> <strong>the</strong> elements’ contents <strong>in</strong> <strong>the</strong> sediment<br />

surface <strong>of</strong> <strong>the</strong> studied lakes.<br />

Factor <strong>and</strong> degree <strong>of</strong> contam<strong>in</strong>ation<br />

To assess <strong>the</strong> geoecological condition <strong>of</strong> <strong>the</strong> surface<br />

waters <strong>the</strong> factor <strong>and</strong> degree <strong>of</strong> contam<strong>in</strong>ation were<br />

determ<strong>in</strong>ed with <strong>the</strong> method <strong>of</strong> Håkanson (1980).<br />

The contam<strong>in</strong>ation factor (C fi<br />

) was calculated as <strong>the</strong><br />

quotient by divisid<strong>in</strong>g <strong>the</strong> element (or compound) concentration<br />

<strong>in</strong> <strong>the</strong> surface 1 centimeter layer by <strong>the</strong><br />

background value. The contam<strong>in</strong>ation degree (C d<br />

)<br />

was determ<strong>in</strong>ed as <strong>the</strong> sum <strong>of</strong> <strong>the</strong> pollution factors for<br />

all eight <strong>in</strong>vestigated pollution elements.<br />

The follow<strong>in</strong>g classification <strong>of</strong> contam<strong>in</strong>ation factor<br />

was used: C fi<br />


C f<br />

value for Cd (3.1 – ‘significant’) was noted <strong>in</strong> Lake<br />

Durvatn. The largest C f<br />

values for Pb were also noted<br />

<strong>in</strong> Norwegian lakes Rabbvatnet <strong>and</strong> Durvatn (14.3<br />

<strong>and</strong> 13.0, respectively). Maximum C f<br />

values for As<br />

<strong>and</strong> Hg were recorded <strong>in</strong> lakes Sierramjärvi <strong>and</strong> Durvatn,<br />

respectively (9.6 <strong>and</strong> 8.3). The pollution factors<br />

for Pb, As <strong>and</strong> Hg refer to high degree <strong>of</strong> pollution. In<br />

general <strong>the</strong> high pollution factors for Ni <strong>and</strong> Cu are<br />

observed near <strong>the</strong> Pechenganikel smelters. Chalcophile<br />

Pb, As <strong>and</strong> Hg are also recorded at a significant<br />

distance from <strong>the</strong> smelters, which confirms <strong>the</strong> conclusions<br />

regard<strong>in</strong>g <strong>the</strong> global nature <strong>of</strong> pollution with<br />

<strong>the</strong>se high-toxic elements.<br />

600<br />

Ni, µg/g<br />

600<br />

Cu, µg/g<br />

400<br />

400<br />

200<br />

y = 4285x -1.0041<br />

R 2 = 0.621<br />

200<br />

y = 6014.5x -1.174<br />

R 2 = 0.5823<br />

0<br />

0<br />

0<br />

40 80 120 0 40 80 120<br />

Distance from Nikel, km<br />

Distance from Nikel, km<br />

Cd, µg/g<br />

Pb, µg/g<br />

0.8<br />

y = 0.3188x 0.0617<br />

R 2 = 0.0069<br />

60<br />

40<br />

y = 20x 0.0581<br />

R 2 = 0.0082<br />

0.4<br />

20<br />

0<br />

0<br />

0 40 80 120 0 40 80 120<br />

Distance from Nikel, km<br />

Distance from Nikel, km<br />

As, µg/g<br />

Hg, µg/g<br />

30<br />

20<br />

y = 23.808x -0.343<br />

R 2 = 0.0868<br />

0.4<br />

y = 0.3414x -0.2014<br />

R 2 = 0.0373<br />

10<br />

0.2<br />

0<br />

0<br />

0 40 80 120 0 40 80 120<br />

Distance from Nikel, km<br />

Distance from Nikel, km<br />

Figure 3. Distribution <strong>of</strong> <strong>the</strong><br />

concentrations <strong>of</strong> key pollution<br />

elements (µg/g) <strong>in</strong> <strong>the</strong> surface<br />

layer (0–1 cm) <strong>of</strong> <strong>the</strong> sediment <strong>of</strong><br />

<strong>the</strong> studiedlakes depend<strong>in</strong>g on <strong>the</strong><br />

distance from <strong>the</strong> Pechenganikel<br />

<strong>in</strong>tegrated plant.<br />

200<br />

100<br />

Zn, µg/g<br />

y = 98.869x -0.0272<br />

R 2 = 0.0037<br />

-0.56 86<br />

y = 151.67x<br />

R 2 = 0.1392<br />

0<br />

0<br />

0 40 80 120 0 40 80 120<br />

Distance from Nikel, km<br />

Distance from Nikel, km<br />

120<br />

80<br />

40<br />

Co, µg/g<br />

122


Sediment sampl<strong>in</strong>g. Photo: Guttorm Christensen<br />

123


Paleolimnology<br />

Lake Shuonijaur<br />

In Lake Shuonijaur <strong>the</strong> diatom complexes <strong>in</strong> <strong>the</strong> top<br />

layer <strong>of</strong> sediments (<strong>in</strong>terval 0.5–1 cm) <strong>and</strong> <strong>in</strong> <strong>the</strong> bottom<br />

part <strong>of</strong> <strong>the</strong> column (13–14 cm) were analyzed.<br />

Top layer reflects <strong>the</strong> present-day status <strong>of</strong> <strong>the</strong> lake<br />

ecosystem <strong>and</strong> <strong>the</strong> bottom layer <strong>the</strong> status before<br />

<strong>the</strong> <strong>in</strong>tensive <strong>in</strong>dustrial transformations (ca. 200 years<br />

ago). Lake Shuonijaur is a subarctic lake with low<br />

sal<strong>in</strong>ity <strong>and</strong> oligotrophic status. Diatom periphyton is<br />

found on <strong>the</strong> numerous shallow-water areas on littoral<br />

rocks <strong>and</strong> rocky bottom down to 2.5–3 m depth, which<br />

illustrates high transparency <strong>of</strong> <strong>the</strong> water.<br />

In <strong>the</strong> present-day plankton <strong>the</strong> typical species<br />

are Aulacoseira alpigena (Grun.) Kramm., A. distans<br />

(Ehrb.) Simons., Cyclotella schumannii (Grun.) Håk.,<br />

C. rossii Håk. <strong>and</strong> Tabellaria flocculosa (Roth) Kütz<br />

<strong>and</strong> <strong>the</strong> same diatoms were found <strong>in</strong> <strong>the</strong> top layer. In<br />

<strong>the</strong> bottom layer <strong>the</strong> same species are complemented<br />

by Cyclotella michiganiana Skvortzov 1937, C. bodanica<br />

var. lemanica (O. Müll. ex Schröter) Bachm. <strong>and</strong><br />

Pseudostaurosira brevistriata (Grun.) D.M. Williams<br />

& Round. The presence <strong>of</strong> P. brevistriata is a sign <strong>of</strong><br />

previously more favorable trophic conditions for algae<br />

development. The ratios between <strong>the</strong> biogeographic<br />

groups have not changed much over <strong>the</strong> latest 200<br />

years. The <strong>in</strong>crease <strong>of</strong> <strong>the</strong> boreal <strong>and</strong> holarctic species<br />

may be regarded as an <strong>in</strong>direct <strong>in</strong>dicator <strong>of</strong> a certa<strong>in</strong><br />

climate change towards warm<strong>in</strong>g (Figure 5d); at<br />

<strong>the</strong> same time <strong>the</strong> portion <strong>of</strong> arctic-alp<strong>in</strong>e species rema<strong>in</strong>s<br />

<strong>the</strong> same.<br />

The present typical subarctic conditions are similar<br />

to those that existed 200 years ago <strong>and</strong> no radical<br />

changes have taken place <strong>in</strong> <strong>the</strong> lake over this period.<br />

A certa<strong>in</strong> <strong>in</strong>crease <strong>of</strong> <strong>the</strong> total abundance <strong>of</strong> diatoms<br />

<strong>in</strong> <strong>the</strong> modern sediments along with a decrease <strong>of</strong><br />

<strong>the</strong> species diversity was observed <strong>and</strong> it may have<br />

resulted from climate change toward warm<strong>in</strong>g. The<br />

modern conditions are also characterized by lower values<br />

<strong>of</strong> pH <strong>and</strong> saprobity (Figure 4). The decrease <strong>in</strong><br />

saprobity <strong>in</strong>dex is a consequence <strong>of</strong> a certa<strong>in</strong> shift <strong>of</strong><br />

<strong>the</strong> lake’s trophic status towards oligotrophy.<br />

There have been no significant changes <strong>in</strong> ecological<br />

conditions (Figure 5). The proportions <strong>of</strong> diatoms<br />

tolerat<strong>in</strong>g different pH-values have not changed except<br />

for some decrease <strong>of</strong> <strong>the</strong> alkalifilic diatoms. Sal<strong>in</strong>ity<br />

also rema<strong>in</strong>ed at <strong>the</strong> same level <strong>and</strong> <strong>the</strong> halophobs<br />

<strong>and</strong> oligohalob-<strong>in</strong>differents dom<strong>in</strong>ate, which<br />

is typical <strong>of</strong> low-m<strong>in</strong>eralized waters. The water level<br />

<strong>and</strong> volume have not changed significantly as <strong>the</strong> proportions<br />

<strong>of</strong> planktic forms have rema<strong>in</strong>ed at <strong>the</strong> same<br />

level. Decrease <strong>in</strong> <strong>the</strong> amount <strong>of</strong> plankto-benthic<br />

diatoms along with <strong>in</strong>crease <strong>of</strong> benthic diatoms may<br />

be a sign <strong>of</strong> changes <strong>in</strong> <strong>the</strong> shorel<strong>in</strong>e or development<br />

<strong>of</strong> new type <strong>of</strong> bottom <strong>and</strong> substrate, which supports<br />

<strong>the</strong> development <strong>of</strong> richer benthic communities.<br />

124


Figure 4. Diatom complexes <strong>of</strong> Lake Shuonijaur: total abundance (N(tot), mln.ex./g),<br />

species diversity (H’, bit/ex.), pH recontructed from diatoms (pH(diatom)) <strong>and</strong> saprobe<br />

<strong>in</strong>dex (S).<br />

Figure 5. Ecological characteristics <strong>of</strong> <strong>the</strong> diatom complexes <strong>in</strong> Lake Shuonijaur: a) pH-tolerance groups;<br />

b) habitat groups; c) sal<strong>in</strong>ity groups; d) biogeographic groups.<br />

125


Lake Harrijärvi<br />

In Lake Harrijärvi <strong>the</strong> top layer <strong>of</strong> sediments (<strong>in</strong>terval<br />

0–1 cm) <strong>and</strong> different parts <strong>of</strong> <strong>the</strong> column (<strong>in</strong>tervals<br />

5–6, 11–12, 15–16, 18–19 <strong>and</strong> 29–30 cm), which have<br />

formed <strong>in</strong> different periods, were analyzed. The<br />

age <strong>of</strong> bottom sediments was 240 years. Lake Harrijarvi<br />

is a typical subarctic lake with low sal<strong>in</strong>ity <strong>and</strong> an<br />

oligotrophic status<br />

Brachysira brebissonii Ross, B. vitrea (Grun.) Ross<strong>in</strong><br />

Hartley <strong>and</strong> Frustulia saxonica Rabenh form a large<br />

proportion <strong>of</strong> <strong>the</strong> present-day periphyton. Typical<br />

species <strong>in</strong> <strong>the</strong> top sediment layers were <strong>the</strong> same<br />

supplemented with Cyclotella comensis Grunow <strong>in</strong><br />

van Heurck 1882. In <strong>the</strong> older layers <strong>the</strong> diatom complexes<br />

also <strong>in</strong>cluded C. kuetz<strong>in</strong>giana Thwaites <strong>and</strong> A.<br />

alpigena. No dramatic differences were found <strong>in</strong> <strong>the</strong><br />

species composition for <strong>the</strong> different periods.<br />

Total abundance (N) <strong>in</strong>creases gradually from<br />

<strong>the</strong> lower sediment layers <strong>and</strong> reaches <strong>the</strong> maximal<br />

values <strong>in</strong> <strong>the</strong> sediment layer 15–16 cm, which is<br />

130 years old (Figure 6). Benthic species preferr<strong>in</strong>g<br />

pH


Figure 6. Diatom complexes <strong>of</strong> Lake Harrijarvi: total abundance (N(tot), mln.ex./g),<br />

species diversity (H’, bit/ex.), pH recontructed from diatoms (pH(diatom)) <strong>and</strong> saprobe<br />

<strong>in</strong>dex (S).<br />

Figure 7. Ecological characteristics <strong>of</strong> <strong>the</strong> diatom complexes <strong>in</strong> Lake Harrijarvi: a) pH-tolerance<br />

groups; b) habitat groups; c) sal<strong>in</strong>ity groups; d) biogeographic groups.<br />

127


Lake Rabbvatnet<br />

In Lake Rabbvatnet <strong>the</strong> diatom complexes were analyzed<br />

<strong>in</strong> <strong>the</strong> top layer <strong>of</strong> sediments (<strong>in</strong>terval 0–1 cm)<br />

<strong>and</strong> <strong>in</strong> different parts <strong>of</strong> <strong>the</strong> column (<strong>in</strong>tervals 1–1.5,<br />

4–4.5, 6–6.5, 10–11, 20–21, 30–31, 42–43, <strong>and</strong> 43–<br />

44 cm). The total age <strong>of</strong> <strong>the</strong> sediments is 680 years.<br />

Lake Rabbvatnet is a typical subarctic lake with an<br />

oligotrophic status.<br />

Typically subarctic diatom flora dom<strong>in</strong>ated <strong>in</strong> <strong>the</strong><br />

lake phytoplankton throughout <strong>the</strong> whole study period:<br />

arctic-alp<strong>in</strong>e phytoplankton formed a significant<br />

portion (up to 18 %) while <strong>the</strong> boreal portion was <strong>in</strong>significant.<br />

The typical diatoms <strong>in</strong> <strong>the</strong> top layer were<br />

A. alpigena, P. brevistriata, Cyclotella ocellata Pant.,<br />

C. bodanica Eulenste<strong>in</strong>. <strong>and</strong> Staurosira construens<br />

Ehrb. In <strong>the</strong> middle part <strong>of</strong> <strong>the</strong> column <strong>the</strong> ma<strong>in</strong> species<br />

were T. flocculosa, Denticula tenuis var. tenuis<br />

Kütz., C. rossii, C. bodanica var. lemanica <strong>and</strong> C.<br />

schumannii. In <strong>the</strong> oldest layers Fragilariforma virescens<br />

(Ralfs) D.M.Williams & Round <strong>and</strong> C. michiganiana<br />

were <strong>the</strong> most abundant species.<br />

Diatom complexes are characterized by significant<br />

changes both <strong>in</strong> <strong>the</strong> quantitative characteristics <strong>and</strong><br />

<strong>in</strong> <strong>the</strong> dynamics <strong>of</strong> <strong>the</strong> ecological structure. The total<br />

abundance (N) is characterized by gradual growth as<br />

time passes <strong>and</strong> it grows almost by 10 times (Figure<br />

8). The primary productivity <strong>of</strong> <strong>the</strong> lake has also gradually<br />

grown. Two maximums <strong>in</strong> abundance can be<br />

seen: 4–6.5 cm (70–100 years old) <strong>and</strong> <strong>in</strong> <strong>the</strong> present-day<br />

layer 0–0.5 cm. The turn <strong>of</strong> <strong>the</strong> 20 th century<br />

was <strong>the</strong> time for <strong>the</strong> most significant changes <strong>in</strong> <strong>the</strong><br />

lake ecosystem <strong>and</strong> many ecological <strong>in</strong>dicators are<br />

characterized by extreme values. Presumably some<br />

transformation <strong>of</strong> <strong>the</strong> trophic structure <strong>of</strong> <strong>the</strong> communities<br />

occurred, which caused <strong>the</strong> maximum value <strong>of</strong><br />

<strong>the</strong> saprobity <strong>in</strong>dex <strong>in</strong> 1900 (Figure 8). The same was<br />

also observed <strong>in</strong> Lake Harrijarvi (Figure 6).<br />

The species diversity <strong>of</strong> diatoms has also changed:<br />

<strong>the</strong>re is a gradual <strong>in</strong>crease <strong>of</strong> <strong>the</strong> Shannon-Weaver<br />

species diversity <strong>in</strong>dex (H’) start<strong>in</strong>g from <strong>the</strong> ancient<br />

layers up to 10-11 cm (1830’s) where <strong>the</strong> maximum<br />

diversity was observed. This process is probably <strong>the</strong><br />

due to end<strong>in</strong>g <strong>of</strong> <strong>the</strong> Little Ice Age. Fur<strong>the</strong>r warm<strong>in</strong>g<br />

early <strong>in</strong> <strong>the</strong> 20 th century led to reduction <strong>of</strong> species<br />

diversity along with <strong>in</strong>crease <strong>of</strong> abundance (Figure 9).<br />

The species diversity grows aga<strong>in</strong> towards present<br />

due to climatic changes towards warm<strong>in</strong>g along with<br />

<strong>in</strong>dustrial impact.<br />

Reconstruction <strong>of</strong> pH from diatom complexes showed<br />

that throughout <strong>the</strong> whole period <strong>the</strong> lake water<br />

was characterized by near-neutral values <strong>and</strong> fluctuations<br />

were <strong>in</strong>significant. No fundamental changes were<br />

detected <strong>in</strong> <strong>the</strong> ma<strong>in</strong> pH tolerance groups’ proportions.<br />

In <strong>the</strong> 14 th century <strong>the</strong> lake was characterized<br />

by more acidic conditions with pH< 7.0, which was<br />

caused by <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> Little Ice Age. Closer to<br />

<strong>the</strong> 16 th century pH grew <strong>and</strong> s<strong>in</strong>ce <strong>the</strong>n it has never<br />

dropped below 7.0. The maximum values were characteristic<br />

<strong>of</strong> <strong>the</strong> early 20 th century <strong>and</strong> <strong>the</strong> present.<br />

These particular periods are also described as <strong>the</strong><br />

warmest. Reduction <strong>of</strong> pH <strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> 20 th<br />

century is a direct consequence <strong>of</strong> deposition <strong>of</strong> acidify<strong>in</strong>g<br />

compounds from <strong>the</strong> Pechenganikel though<br />

this reduction does not exceed natural fluctuations <strong>of</strong><br />

pH (Figure 8). Reduced pH allowed development <strong>of</strong><br />

diatoms preferr<strong>in</strong>g more acidic water.<br />

Changes were also noted <strong>in</strong> <strong>the</strong> ecological structure<br />

<strong>of</strong> <strong>the</strong> diatom complexes (Figure 9). Changes<br />

<strong>in</strong> water sal<strong>in</strong>ity were <strong>in</strong>significant: only <strong>the</strong> proportion<br />

<strong>of</strong> <strong>in</strong>different diatoms <strong>in</strong>creased <strong>and</strong> <strong>the</strong> hal<strong>of</strong>ilous<br />

diatoms decreased. Presumably <strong>the</strong> ratio <strong>of</strong> <strong>the</strong>se<br />

groups reflects primarily <strong>the</strong> <strong>in</strong>tensiveness <strong>of</strong> erosion<br />

processes <strong>in</strong> <strong>the</strong> lake’s catchment area. The sal<strong>in</strong>ity<br />

was highest <strong>in</strong> <strong>the</strong> Little Ice Age when catchment was<br />

m<strong>in</strong>imal. Throughout <strong>the</strong> whole time typical halophob<br />

diatoms characteristic <strong>of</strong> arctic <strong>and</strong> subarctic freshwater<br />

ecosystems were present <strong>in</strong> <strong>the</strong> lake.<br />

Gradual reduction <strong>of</strong> planktic forms <strong>in</strong> <strong>the</strong> period<br />

from <strong>the</strong> 14 th century through late 18 th century illustrates<br />

reduction <strong>of</strong> <strong>the</strong> water quantity <strong>in</strong> <strong>the</strong> lake dur<strong>in</strong>g<br />

<strong>the</strong> Little Ice Age. At <strong>the</strong> same time <strong>the</strong> proportion <strong>of</strong><br />

benthic <strong>and</strong> plankto-benthic algae grows which is a<br />

sign that <strong>the</strong> lake has become shallow. Climate warm<strong>in</strong>g<br />

early <strong>in</strong> <strong>the</strong> 20 th century aga<strong>in</strong> caused <strong>in</strong>crease<br />

<strong>of</strong> water level <strong>and</strong> development <strong>of</strong> planktonic diatoms.<br />

Evidently <strong>in</strong> <strong>the</strong> 1930’s <strong>the</strong> lake had more water than<br />

today.<br />

The present-day diatom complexes confirm <strong>the</strong><br />

reduction <strong>of</strong> pollution as well as <strong>the</strong> more favorable<br />

climatic conditions for development <strong>of</strong> diatoms, which<br />

shows <strong>in</strong> a dramatic <strong>in</strong>crease <strong>of</strong> quantitative parameters.<br />

128


Figure 8. Diatom complexes <strong>of</strong> Lake Rabbvatnet: total abundance (N(tot), mln.ex./g),<br />

species diversity (H’, bit/ex.), pH recontructed from diatoms (pH(diatom)) <strong>and</strong> saprobe<br />

<strong>in</strong>dex (S).<br />

Figure 9. Ecological characteristics <strong>of</strong> <strong>the</strong> diatom complexes <strong>in</strong> Lake Rabbvatnet: a) pH-tolerance groups;<br />

b) habitat groups; c) sal<strong>in</strong>ity groups; d) biogeographic groups.<br />

129


Conclusions<br />

The accumulation <strong>and</strong> distribution <strong>of</strong> elements, <strong>in</strong>clud<strong>in</strong>g<br />

heavy metals, <strong>in</strong> <strong>the</strong> bottom sediments <strong>of</strong> lakes<br />

were thoroughly assessed. Four aspects were reviewed:<br />

1) background contents, 2) vertical distribution<br />

<strong>of</strong> elements, 3) concentrations <strong>in</strong> <strong>the</strong> surface layers<br />

<strong>of</strong> sediments, 4) determ<strong>in</strong>ation <strong>of</strong> anthropogenic load<br />

<strong>in</strong>tensity by <strong>the</strong> factor <strong>and</strong> <strong>the</strong> degree <strong>of</strong> pollution,<br />

caused by <strong>the</strong> heavy metals accumulated <strong>in</strong> <strong>the</strong> sediments.<br />

It was established that <strong>the</strong> largest background concentrations<br />

<strong>of</strong> heavy metals <strong>in</strong> bottom sediments were<br />

noted <strong>in</strong> different lakes, which is caused by geochemical<br />

<strong>and</strong> morphometric peculiarities <strong>of</strong> <strong>the</strong> catchment<br />

territory <strong>and</strong> <strong>of</strong> <strong>the</strong> lake itself. Growth <strong>of</strong> Ni, Cu <strong>and</strong><br />

Co content <strong>in</strong> <strong>the</strong> sediments dates back to <strong>the</strong> 1920s<br />

<strong>and</strong> 1930s <strong>and</strong> maximum values are reached <strong>in</strong> <strong>the</strong><br />

1970s–1980s as a result <strong>of</strong> metallurgical activities.<br />

Emissions <strong>in</strong>to <strong>the</strong> atmosphere from <strong>the</strong> Pechenganikel<br />

are <strong>the</strong> major source <strong>of</strong> high concentrations <strong>of</strong><br />

Ni, Сu <strong>and</strong> Co at <strong>the</strong> distance up to 40–50 km. Similar<br />

pattern is observed <strong>in</strong> <strong>the</strong> distribution <strong>of</strong> alkal<strong>in</strong>e <strong>and</strong><br />

alkal<strong>in</strong>e-earth metals. In <strong>the</strong> more distant lakes <strong>the</strong><br />

ma<strong>in</strong> pollution elements are <strong>the</strong> chalcophile Pb, Hg<br />

<strong>and</strong> As, which <strong>in</strong> <strong>the</strong> latest decades have obta<strong>in</strong>ed <strong>the</strong><br />

status <strong>of</strong> global pollution elements. The area up to 50<br />

km is <strong>the</strong> most <strong>in</strong>tensively polluted.<br />

Diatom complexes <strong>of</strong> all <strong>the</strong> lakes testify <strong>of</strong> <strong>the</strong><br />

changes occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong>ir ecosystems over <strong>the</strong> studied<br />

historical periods. The impact <strong>of</strong> natural processes<br />

associated with <strong>the</strong> dynamics <strong>of</strong> <strong>the</strong> climatic<br />

system <strong>and</strong> <strong>in</strong>dustrial processes associated with <strong>the</strong><br />

Pechenganikel have been detected. However no fundamental<br />

changes <strong>in</strong> <strong>the</strong> ecosystems <strong>of</strong> <strong>the</strong> lakes have<br />

been detected; <strong>the</strong>y all correspond to typical subarctic<br />

oligotrophic lakes with low sal<strong>in</strong>ity.<br />

The most important climatic events <strong>in</strong> <strong>the</strong> development<br />

<strong>of</strong> lakes were 1) <strong>the</strong> Little Ice Age (14 th –19 th<br />

centuries) when low temperatures contributed to acidification,<br />

reduction <strong>of</strong> water quantity <strong>and</strong> decrease<br />

<strong>of</strong> production <strong>and</strong> 2) warm<strong>in</strong>g <strong>in</strong> <strong>the</strong> 20 th century, <strong>the</strong><br />

maximums <strong>of</strong> which fell on <strong>the</strong> period 1900s through<br />

1930s <strong>and</strong> on <strong>the</strong> two latest decades (Figure 10). In<br />

between <strong>the</strong>se events <strong>the</strong> ecosystems <strong>of</strong> <strong>the</strong> lakes<br />

were affected by <strong>in</strong>dustrial load, primarily by acidification<br />

caused by deposition from <strong>the</strong> Pechenganikel. At<br />

present <strong>the</strong> consequences <strong>of</strong> production decrease are<br />

show<strong>in</strong>g. It is impossible to draw a decisive conclusion<br />

regard<strong>in</strong>g <strong>the</strong> dramatic climate changes <strong>in</strong> <strong>the</strong> latest<br />

decades; warm<strong>in</strong>g <strong>in</strong> <strong>the</strong> early 20 th century turned<br />

out to be more significant for <strong>the</strong> studied lakes. At <strong>the</strong><br />

same time, <strong>the</strong> rema<strong>in</strong><strong>in</strong>g level <strong>of</strong> <strong>in</strong>dustrial load evidently<br />

impedes <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> consequences <strong>of</strong><br />

climatic changes.<br />

Figure 10. The diatom abundance reaction on <strong>the</strong> cool<strong>in</strong>g-warm<strong>in</strong>g periods: 1. Lake<br />

Rabbvatnet <strong>and</strong> 2. Lake Harrijarvi. LIA=Little Ice Age.<br />

130


References<br />

Bar<strong>in</strong>ova, S.S., Medvedeva, L.A. 1996: Atlas <strong>of</strong> algae as saprobic <strong>in</strong>dicators (<strong>Russia</strong>n Far East). Dal’nauka Press. Vladivostok.<br />

364 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Bar<strong>in</strong>ova, S.S., Medvedeva, L.A., Anisimova, O.V. 2006: Diversity <strong>of</strong> algal <strong>in</strong>dicators <strong>in</strong> environmental assessment. Pilies<br />

Studio. Tel-Aviv. 498 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Dauvalter V.A., Kashul<strong>in</strong> N.A., S<strong>and</strong>imirov S.S. 2012: Tendencies <strong>of</strong> alterations <strong>of</strong> <strong>the</strong> chemical composition <strong>of</strong> bottom<br />

sediments <strong>of</strong> freshwater Subarctic <strong>and</strong> Arctic water bodies, affected by natural <strong>and</strong> anthropogenic factors. Kola Science<br />

Center RAS. Applied Ecology <strong>of</strong> <strong>the</strong> North. Release 1. 2 (9): 54–87. (<strong>in</strong> <strong>Russia</strong>n)<br />

Davydova, N.N. 1985: Diatom algae – <strong>in</strong>dicators <strong>of</strong> <strong>the</strong> natural conditions <strong>in</strong> <strong>the</strong> reservous <strong>in</strong> Holocene. Nauka. Len<strong>in</strong>grad.<br />

244 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Denisov, D.B., Dauvalter, V.A., Kashul<strong>in</strong>, N.A., Kagan, L.Y. 2006: Long-term changes <strong>in</strong> <strong>the</strong> state <strong>of</strong> <strong>the</strong> sub-arctic waters <strong>in</strong><br />

<strong>the</strong> conditions <strong>of</strong> anthropogenic load (accord<strong>in</strong>g to <strong>the</strong> diatom analysis). Biology <strong>of</strong> Inl<strong>and</strong> Waters 1: 24–30. (<strong>in</strong> <strong>Russia</strong>n)<br />

Håkanson L. 1980: An ecological risk <strong>in</strong>dex for aquatic pollution control – a sedimentological approach. Water Research 14:<br />

975–1001.<br />

Håkanson L., Jansson M. 1983: Pr<strong>in</strong>ciples <strong>of</strong> lake sedimentology. Spr<strong>in</strong>ger-Verlag. Berl<strong>in</strong>. 316 p.<br />

Kashul<strong>in</strong> N.A., S<strong>and</strong>imirov S.S., Dauvalter V.A., Terentjev P.M., Denisov D.B. 2009: Ecological catalogue <strong>of</strong> <strong>the</strong> lakes <strong>of</strong> <strong>the</strong><br />

Murmansk Region. North-western part <strong>of</strong> <strong>the</strong> Murmansk Region <strong>and</strong> <strong>of</strong> <strong>the</strong> territory <strong>of</strong> <strong>the</strong> border with neigbour<strong>in</strong>g countries.<br />

Kola Science Center RAS. Apatity. I part 226 p. II part. 262 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Krammer, K. & Lange-Bertalot, H. 1986. Bacillariophyceae, volume 1: Naviculaceae. In: Ettl, H., Gerl<strong>of</strong>f, J., Heynig, H.<br />

& Mollenhauer D. (ed.): Süsswasserflora von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer Verlag, Jena. 876 p. (<strong>in</strong><br />

German)<br />

Krammer, K. & Lange-Bertalot, H. 1988. Bacillariophyceae, volume 2: Bacillariaceae, Epi<strong>the</strong>miaceae, Surirellaceae. In: Ettl,<br />

H., Gerl<strong>of</strong>f J., Heynig, H. & Mollenhauer, D. (ed.): Süsswasserflora von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer<br />

Verlag, Jena. 596 p. (<strong>in</strong> German)<br />

Krammer, K. & Lange-Bertalot, H. 1991. Bacillariophyceae, volume 3: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H.,<br />

Gerl<strong>of</strong>f, J., Heynig, H. & Mollenhauer, D. (ed.): Süsswasserflora von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer<br />

Verlag, Jena. 576 p. (<strong>in</strong> German)<br />

Krammer, K. & Lange-Bertalot, H. 1991. Bacillariophyceae., vulume 4: Achnanthaceae. Kritishce Ergänzungen zu Navicula<br />

(L<strong>in</strong>eolatae) und Gomphonema. In: Ettl, H., Gärtner, G., Gerl<strong>of</strong>f, J., Heynig, H. & Mollenhauer, D. (ed.): Süsswasserflora<br />

von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer Verlag, Jena. 437 p. Krammer K. 2000: The genus P<strong>in</strong>nularia. In: H.<br />

Lange-Bertalot (ed.), Diatoms <strong>of</strong> Europe. 1: A.R.G. Gantner Verlag K.G. Vaduz. 703 p. (<strong>in</strong> German)<br />

Krammer, K. 2002: Cymbella. In: Lange-Bertalot, H. (ed.): Diatoms <strong>of</strong> Europe, volume 3: A.R.G. Gantner Verlag K.G. Ruggell.<br />

584 p.<br />

Krammer, K. 2003: Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. In: Lange-Bertalot, H. (ed.):<br />

Diatoms <strong>of</strong> Europe, volume 4: A.R.G. Gantner Verlag K.G.. Ruggell. 530 p.<br />

Moiseenko, T.T., Razumovsky, L.V. 2009: A new technique for reconstruct<strong>in</strong>g <strong>the</strong> cation-anion balance <strong>in</strong> lakes by diatom<br />

analysis. Doklady Biological Sciences 427: 325–328.<br />

Norton S.A., Henriksen A., Appleby P.G., Ludwig, L.L., Vereault, D.V., Traaen, T.S. 1992: Trace metal pollution <strong>in</strong> eastern<br />

F<strong>in</strong>nmark, <strong>Norway</strong>, as evidenced by studies <strong>of</strong> lake sediments. Oslo: SFT-report 487/92. 42 p.<br />

Norton S.A., Appleby P.G., Dauvalter V., Traaen T.S. 1996: Trace metal pollution <strong>in</strong> eastern F<strong>in</strong>nmark, <strong>Norway</strong> <strong>and</strong> Kola<br />

Pen<strong>in</strong>sula, Nor<strong>the</strong>astern <strong>Russia</strong> as evidences by studies <strong>of</strong> lake sediment. NIVA-Report 41/1996. Oslo. 18 p.<br />

Pacyna J.M., Pacyna E.G. 2001: An assessment <strong>of</strong> global <strong>and</strong> regional emissions <strong>of</strong> trace elements to <strong>the</strong> atmosphere from<br />

anthropogenic sources worldwide. <strong>Environmental</strong> Reviews 4: 269–298.<br />

Rognerud S., Norton S.A., Dauvalter V. 1993: Heavy metal pollution <strong>in</strong> lake sediments <strong>in</strong> <strong>the</strong> border areas between <strong>Russia</strong><br />

<strong>and</strong> <strong>Norway</strong>. NIVA-Report 522/ 93. Oslo. 18 p.<br />

Sladecek, V. 1967: The ecological <strong>and</strong> physiological trends <strong>in</strong> <strong>the</strong> saprobiology. Hydrobiologia 30: 513-526.<br />

Tenhola M., Lummaa M. 1979: Regional distribution <strong>of</strong> z<strong>in</strong>c <strong>in</strong> lake sediments from eastern F<strong>in</strong>l<strong>and</strong>. Symposium on Economic<br />

Geology, Dubl<strong>in</strong>, Irel<strong>and</strong>, 26-29 August, 1979. p. 67–73.<br />

Zhuze, A.P., Proshk<strong>in</strong>a-Lavrenko, A.I., Sheshukova, V.S. 1949: Diatom analyses, volume 1. Len<strong>in</strong>grad. 240 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Zhuze, A.P., Kiselev, A.I., Poretsky, V.S., Proshk<strong>in</strong>a-Lavrenko, A.I., Sheshukova, V.S 1949: Diatom analyses, volume 2.<br />

Len<strong>in</strong>grad. 238 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

131


4 Biology<br />

DMITRII DENISOV, SVETLANA VALKOVA, JUKKA YLIKÖRKKÖ<br />

4.1 Phytoplankton<br />

Phytoplankton are used to monitor nutrient enrichment.<br />

Phytoplankton biomass <strong>and</strong> water chlorophyll<br />

content are proven to correlate with concentrations<br />

<strong>of</strong> nutrients, especially phosphorus, <strong>in</strong> lakes<br />

(eg. Sch<strong>in</strong>dler 1978). Phytoplankton quality also <strong>in</strong>dicates<br />

<strong>the</strong> lake trophic level. The amount <strong>of</strong> cyanobacteria<br />

(blue-green algae) <strong>in</strong> <strong>the</strong> assemblage is scarce<br />

<strong>in</strong> oligotrophic lakes but tends to grow with <strong>in</strong>creas<strong>in</strong>g<br />

phosphorus content, especially <strong>in</strong> relation to nitrogen<br />

(eg. Smith 1983). Climatic factors affect plankton assemblage<br />

directly as temperature <strong>and</strong> through various<br />

<strong>in</strong>direct ways through nutrient flux.<br />

Toxicity <strong>of</strong> copper to freshwater phytoplankton varies<br />

widely depend<strong>in</strong>g on taxa sensitivity <strong>and</strong> specific<br />

water chemistry. The bioavailable fraction <strong>of</strong> metals<br />

present depends on <strong>the</strong> amount <strong>of</strong> dissolved organic<br />

carbon, among o<strong>the</strong>r factors. Photosyn<strong>the</strong>sis<br />

<strong>and</strong> growth <strong>of</strong> sensitive green algae may be <strong>in</strong>hibited<br />

roughly at >10 μg Cu/l (USEPA 2007). Algae appears<br />

ra<strong>the</strong>r resilient to nickel (USEPA 1980) <strong>and</strong> at <strong>the</strong> measured<br />

levels <strong>of</strong> nickel no growth-<strong>in</strong>hibition should be<br />

evident.<br />

In an earlier study <strong>in</strong> <strong>the</strong> Jarfjord <strong>and</strong> Pechenga regions<br />

phytoplankton density was found to be <strong>the</strong> lowest<br />

<strong>in</strong> <strong>the</strong> most acidified lake (Nøst et al. 1997).<br />

Materials <strong>and</strong> methods<br />

16 lakes were selected for phytoplankton sampl<strong>in</strong>g<br />

<strong>and</strong> analysis <strong>in</strong> <strong>the</strong> project area (Introduction, Figure<br />

1). Small lakes previously <strong>in</strong>cluded <strong>in</strong> <strong>in</strong>ternational<br />

projects were studied, as well as new potential lakes<br />

for <strong>the</strong> future monitor<strong>in</strong>g network. On <strong>the</strong> <strong>Russia</strong>n side,<br />

attento<strong>in</strong> was paid not only to typical small lakes<br />

but also to relatively large water bodies (lakes Ilja-<br />

Nautsijarvi <strong>and</strong> Ala-Nautsijarvi), which gives a better<br />

underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> Pasvik River catchment area.<br />

Phytoplankton sampl<strong>in</strong>g <strong>in</strong> <strong>the</strong> field followed national<br />

st<strong>and</strong>ards. Samples were collected monthly dur<strong>in</strong>g<br />

June–September. All lakes were sampled at least <strong>in</strong><br />

August. Tube sampler was used to collect <strong>in</strong>tegrated<br />

samples. Samples were taken from 0–2 m column <strong>in</strong><br />

Total <strong>of</strong> 117 taxa <strong>of</strong> algae on species or variety level<br />

from seven systematic groups were found: Cyanophyceae<br />

22, Chlorophyta 22, Charophyceae 19,<br />

Chrysophyceae 5, D<strong>in</strong>ophyta 6, Bacillariophyceae 42<br />

<strong>and</strong> Cryptophyceae 1 taxon. The number <strong>of</strong> species <strong>in</strong><br />

each lake is shown <strong>in</strong> Figure 1.<br />

The highest species diversity was found <strong>in</strong> Lake<br />

Virtuovoshjaur. This is likely because <strong>the</strong>re are favo-<br />

F<strong>in</strong>l<strong>and</strong>, from 0–2 m, 2–5 m <strong>and</strong> 5–10 m columns <strong>in</strong><br />

<strong>Russia</strong> <strong>and</strong> from 0–10 m column <strong>in</strong> <strong>Norway</strong>. <strong>Russia</strong>n<br />

<strong>and</strong> Norwegian samples were filtered through 20 µm<br />

plankton net. F<strong>in</strong>nish <strong>and</strong> Norwegian <strong>in</strong>tegrated samples<br />

were taken from composite that represents <strong>the</strong><br />

average phytoplankton density <strong>of</strong> sampled depths. All<br />

samples were preserved <strong>in</strong> Lugol’s solution.<br />

Laboratory procedures <strong>in</strong>cluded identification <strong>and</strong><br />

enumeration <strong>of</strong> phytoplankton taxa. Taxa densities<br />

were estimated.<br />

Floristic analysis based on similarity coefficient<br />

(Sørensen 1948, Czekanowski 1909) was performed<br />

to classify <strong>the</strong> lakes accord<strong>in</strong>g to <strong>the</strong>ir phytoplankton<br />

species structure. Sørensen’s similarity coefficient:<br />

K s<br />

= 2c / a+b<br />

where а is number <strong>of</strong> taxa <strong>of</strong> <strong>the</strong> one site, b is number<br />

<strong>of</strong> taxa <strong>of</strong> ano<strong>the</strong>r site <strong>and</strong> с is number <strong>of</strong> taxa<br />

common to both sites. Sørensen-Czekanowski’s similarity<br />

coefficient (consider<strong>in</strong>g <strong>the</strong> quantitative values):<br />

K<br />

N<br />

∑<br />

i<br />

i=<br />

1<br />

s<br />

=<br />

N N<br />

∑<br />

i=<br />

1<br />

m<strong>in</strong>(A ,B )<br />

∑<br />

i=<br />

1<br />

where A i<br />

<strong>and</strong> B i<br />

are abundance values <strong>of</strong> species i<br />

<strong>in</strong> lakes A <strong>and</strong> B, <strong>and</strong> N is <strong>the</strong> total number <strong>of</strong> species.<br />

The analysis was performed with <strong>the</strong> help <strong>of</strong> s<strong>of</strong>tware<br />

module Graphs (Novakovsky 2004).<br />

Results <strong>and</strong> discussion<br />

A<br />

i<br />

+<br />

i<br />

B<br />

i<br />

132


Gardsjøen<br />

Holmvatnet<br />

Rabbvatnet<br />

Durvatn<br />

average<br />

0 10 20 30 40 50 60<br />

6<br />

4<br />

5<br />

7<br />

5,5<br />

Lampi 222<br />

Harrijärvi<br />

Pitkä-Surnujärvi<br />

Sierramjärvi<br />

average<br />

6<br />

12<br />

13<br />

12<br />

17<br />

Pikkujarvi<br />

34<br />

20<br />

19<br />

Shuonijaur<br />

Ala-Nautsijarvi<br />

Ila-Nautsijarvi<br />

Toartesjaur<br />

Virtuovoshjaur<br />

Riuttikjaure<br />

Kochejaur<br />

average<br />

11<br />

16<br />

30<br />

31<br />

26,375<br />

Jarfjord Vätsäri <strong>Russia</strong><br />

50<br />

Figure 1. The number <strong>of</strong> phytoplankton taxa<br />

<strong>in</strong> <strong>the</strong> monitored lakes.<br />

Figure 2. Phytoplankton<br />

communities <strong>of</strong> <strong>the</strong><br />

monitored lakes<br />

133


Figure 3. Lakes’ classification by floristic analysis based on<br />

Sørensen’s similarity coefficient.<br />

Figure 4. Lakes’ classification by floristic analysis based on<br />

Sørensen-Czekanowski’s similarity coefficient.<br />

rable conditions for algal growth especially <strong>in</strong> terms<br />

<strong>of</strong> nutrients (see Chapter 4, Water Quality). The lakes<br />

<strong>in</strong> Jarfjord area were found to have <strong>the</strong> lowest diversity,<br />

a difference which was not statistically significant<br />

(see Chapter 2). The Jarfjord lakes have higher<br />

sulphate, nickel <strong>and</strong> copper concentrations. However,<br />

<strong>the</strong> catchment areas <strong>in</strong> Jarfjord tend to be smaller <strong>and</strong><br />

soil layer th<strong>in</strong>ner compared to <strong>the</strong> o<strong>the</strong>r regions, which<br />

also might expla<strong>in</strong> <strong>the</strong> result.<br />

The phytoplankton species composition <strong>and</strong> <strong>the</strong><br />

dom<strong>in</strong>at<strong>in</strong>g taxa were variable with<strong>in</strong> regions <strong>and</strong> lake<br />

types (Figure 2). The most abundant phytoplankton<br />

groups were diatoms (Bacillariophyceae, at most 64<br />

%), blue-green (Cyanophyceae, 94 %), yellow-green<br />

(Chrysophyceae, 89 %) <strong>and</strong> green algae (Chlorophyta,<br />

97 %). D<strong>in</strong>ophytes (at most 9 %) <strong>and</strong> Charophytes<br />

(


ure 5). One <strong>of</strong> <strong>the</strong> groups <strong>in</strong>cluded all <strong>the</strong> <strong>Russia</strong>n<br />

lakes <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Pasvik catchment bas<strong>in</strong>;<br />

<strong>the</strong> o<strong>the</strong>r group comprised <strong>the</strong> F<strong>in</strong>nish <strong>and</strong> Norwegian<br />

lakes. Lakes Pikkujarvi <strong>and</strong> Gardsjøen were<br />

found to be <strong>the</strong> most different. This can be expla<strong>in</strong>ed<br />

by <strong>the</strong> high pollution <strong>of</strong> Lake Pikkujarvi, closest to <strong>the</strong><br />

Pechenganikel, <strong>and</strong> also by <strong>the</strong> nutrients it receives<br />

from agricultural l<strong>and</strong>s on its shores. Lake Gardsjøen<br />

differs from <strong>the</strong> o<strong>the</strong>r lakes because it has species not<br />

found <strong>in</strong> <strong>the</strong>m: for example, green-algae Raphidocelis<br />

subcapitata <strong>and</strong> diatom Amphora ovalis. Accord<strong>in</strong>g<br />

to <strong>the</strong> hydrochemical analysis, <strong>the</strong> lakes <strong>of</strong> Jarfjord<br />

are <strong>the</strong> most polluted with heavy metals. Copper<br />

<strong>and</strong> nickel concentrations <strong>in</strong> <strong>the</strong> bottom sediment are<br />

also high. Industrial pollution <strong>and</strong> a short distance to<br />

<strong>the</strong> sea are <strong>the</strong> possible reasons for communities with<br />

a large proportion <strong>of</strong> green algae which is not common<br />

<strong>in</strong> subarctic. At <strong>the</strong> same time, <strong>the</strong> most specific<br />

plankton develops <strong>in</strong> Lake Gardsjøen, which may result<br />

from <strong>the</strong> peculiarities <strong>of</strong> morphometry, nutrition regime<br />

<strong>and</strong> o<strong>the</strong>r local factors.<br />

Identify<strong>in</strong>g groups by phytoplankton species composition<br />

is to describe <strong>the</strong> regional characteristics <strong>and</strong><br />

lake conditions. The division <strong>of</strong> <strong>the</strong> lakes <strong>in</strong>to groups<br />

was primarily def<strong>in</strong>ed by <strong>the</strong> hydrochemical conditions.<br />

The largest differences were found <strong>in</strong> <strong>the</strong> water<br />

bodies exposed to <strong>in</strong>dustrial impact. Jarfjord lakes<br />

deviated with higher contents <strong>of</strong> suphates, certa<strong>in</strong><br />

metals <strong>of</strong> <strong>in</strong>dustrial orig<strong>in</strong> <strong>and</strong> more mar<strong>in</strong>e chlorides.<br />

The <strong>Russia</strong>n lakes were rich <strong>in</strong> nutrients, which was<br />

reflected <strong>in</strong> <strong>the</strong> phytoplankton composition.<br />

Chlorophyll a content <strong>in</strong> <strong>the</strong> Vätsäri lakes were low,<br />

all less than 2 µg/l, which <strong>in</strong>dicates oligotrophic status.<br />

Assessment <strong>of</strong> photosyn<strong>the</strong>tic pigments <strong>and</strong> biomass<br />

for <strong>the</strong> <strong>Russia</strong>n lakes to evaluate <strong>the</strong>ir trophic status<br />

is presented <strong>in</strong> Figure 6. The highest concentration<br />

<strong>of</strong> chlorophyll a <strong>and</strong> <strong>the</strong> highest phytoplankton biomass<br />

was found <strong>in</strong> Lake Pikkujarvi, which is exposed<br />

to anthropogenic eutrophication <strong>and</strong> <strong>the</strong> trophic status<br />

<strong>of</strong> which is eutrophic. The o<strong>the</strong>r lakes were classified<br />

as oligotrophic, based on chlorophyll a <strong>and</strong> phytoplankton<br />

biomass (Kitaev 1984). Among <strong>the</strong> oligotrophic<br />

lakes, <strong>the</strong> highest concentrations <strong>of</strong> chlorophyll<br />

a were found <strong>in</strong> lakes Toartesjaur <strong>and</strong> Ilja-Nautsijarvi,<br />

which is probably associated with <strong>in</strong>tensive development<br />

<strong>of</strong> blue-green algae: Anabaena sp., Dolichospermum<br />

lemmermannii <strong>and</strong> Chroococcus dispersus.<br />

In favorable conditions <strong>the</strong>se species may cause algal<br />

blooms. In <strong>the</strong> same lakes carotenoid concentrations<br />

were relatively high: this is an <strong>in</strong>direct <strong>in</strong>dicator <strong>of</strong> detritus<br />

<strong>in</strong> <strong>the</strong> water column, as well as <strong>of</strong> “ag<strong>in</strong>g” groups<br />

<strong>of</strong> phytoplankton. The blue-green algae <strong>in</strong> <strong>the</strong> samples<br />

were <strong>of</strong>ten associated with detritus.<br />

In all <strong>of</strong> <strong>the</strong> study lakes, except <strong>in</strong> Lake Pikkujarvi,<br />

<strong>the</strong> average plankton biomass dur<strong>in</strong>g <strong>the</strong> study period<br />

(2012–2013) did not exceed <strong>the</strong> average <strong>of</strong> <strong>the</strong> Kola<br />

Pen<strong>in</strong>sula lakes: 0.6–2.5 g/m 3 <strong>in</strong> <strong>the</strong> tundra <strong>and</strong> forest<br />

tundra lakes <strong>and</strong> 0.56–2.96 g/m 3 <strong>in</strong> <strong>the</strong> north taiga lakes<br />

(Letanskaya, 1974, Kupetzkaya et al. 1976).<br />

Pr<strong>in</strong>cipal component analysis was performed <strong>in</strong> <strong>the</strong><br />

s<strong>in</strong>gle factor space comb<strong>in</strong><strong>in</strong>g hydrochemical parameters<br />

<strong>and</strong> certa<strong>in</strong> functional characteristics <strong>of</strong> phytop-<br />

Figure 5. Lakes classification: association<br />

by <strong>the</strong> strongest relations based on<br />

Sørensen similarity coefficient.<br />

135


Figure 6. Photosyn<strong>the</strong>tic pigment content, total biomass <strong>and</strong> trophic state <strong>of</strong> <strong>the</strong> phytoplankton (<strong>Russia</strong>n lakes): a) photosyn<strong>the</strong>tic<br />

pigments (mg/m 3 ), b) biomass (g/m 3 ), c) photosyn<strong>the</strong>tic pigments (mg/m 3 ) exclud<strong>in</strong>g Lake Pikkujarvi, d) biomass (g/m 3 ) exclud<strong>in</strong>g<br />

Lake Pikkujarvi<br />

lankton to assess <strong>the</strong> factors <strong>of</strong> phytoplankton development<br />

conditions. Nutrients, <strong>in</strong> particular nitrates<br />

<strong>and</strong> phosphates, do not seem play an important role<br />

<strong>in</strong> phytoplankton development <strong>in</strong> <strong>the</strong> study lakes, i.e.<br />

a large part <strong>of</strong> <strong>the</strong> assemblages are consistent with<br />

oligotrophic status <strong>and</strong> <strong>the</strong>re are species that do not<br />

require large amounts <strong>of</strong> nutrition.<br />

Sal<strong>in</strong>ity <strong>and</strong> water color were found to be <strong>the</strong> most<br />

important hydrochemical factors that have a positive<br />

impact on phytoplankton development. This is confirmed<br />

by positive relation <strong>of</strong> chlorophyll a <strong>and</strong> plankton<br />

biomass. Possibly, <strong>in</strong> <strong>the</strong> conditions <strong>of</strong> relatively low<br />

sal<strong>in</strong>ity, m<strong>in</strong>eral components <strong>and</strong> humic acids com<strong>in</strong>g<br />

from <strong>the</strong> catchment area become important for <strong>the</strong><br />

plankton. The results <strong>in</strong>dicate that organic compounds<br />

<strong>in</strong> water are associated with plankton vitality. There<br />

is a positive relation between phytoplankton biomass<br />

<strong>and</strong> copper <strong>and</strong> nickel, which confirms <strong>the</strong> absence<br />

<strong>of</strong> <strong>the</strong>ir negative impact; <strong>in</strong> <strong>the</strong> current concentrations<br />

<strong>the</strong>se elements only contribute to general sal<strong>in</strong>ity.<br />

Similar groups <strong>in</strong> terms <strong>of</strong> phytoplankton communities<br />

<strong>and</strong> hydrochemical <strong>in</strong>dicators were identified.<br />

Lake Pikkujarvi differed most from <strong>the</strong> o<strong>the</strong>r lakes:<br />

specific hydrochemical conditions are formed <strong>the</strong>re<br />

because <strong>of</strong> eutrophication <strong>and</strong> pollution result<strong>in</strong>g<br />

from <strong>the</strong> proximity <strong>of</strong> <strong>the</strong> Pechenganikel. This has an<br />

impact on phytoplankton development characterized<br />

by <strong>the</strong> largest quantitative parameters (biomass <strong>and</strong><br />

chlorophyll a concentration) among <strong>the</strong> studied lakes.<br />

Lake Pikkujarvi is <strong>the</strong> most transformed by human activities,<br />

which makes it an <strong>in</strong>terest<strong>in</strong>g lake for <strong>the</strong> <strong>in</strong>tegrated<br />

environmental monitor<strong>in</strong>g network.<br />

Also Lake Toartesjaur was different from <strong>the</strong> o<strong>the</strong>r<br />

lakes: <strong>the</strong> phytoplankton communities are characterized<br />

by high concentration <strong>of</strong> chlorophyll b. Lake Toartesjaur<br />

has a higher concentration <strong>of</strong> z<strong>in</strong>c than <strong>the</strong><br />

o<strong>the</strong>r lakes which may have had a stimulat<strong>in</strong>g effect<br />

on development <strong>of</strong> algae conta<strong>in</strong><strong>in</strong>g this pigment.<br />

The o<strong>the</strong>r lakes reflect background conditions <strong>of</strong><br />

water quality <strong>and</strong> plankton assemblages. In this group<br />

<strong>the</strong> most accessible lakes, Shuonijaur <strong>and</strong> Vuirtuovoshjaur,<br />

may be selected for future monitor<strong>in</strong>g. It<br />

would be reasonable to sample phytoplankton <strong>in</strong> <strong>the</strong><br />

o<strong>the</strong>r lakes less frequently.<br />

136


Conclusions<br />

The phytoplankton assemblages <strong>in</strong> <strong>the</strong> project area<br />

lakes were found to be variable, show<strong>in</strong>g no regional<br />

concordance. In general <strong>the</strong> <strong>Russia</strong>n lakes, which were<br />

larger <strong>and</strong> more sou<strong>the</strong>rn, had <strong>the</strong> highest species<br />

diversity <strong>and</strong> <strong>the</strong> Jarfjord lakes <strong>the</strong> lowest.<br />

Diatoms, blue-green, green, <strong>and</strong> yellow-green algae<br />

formed <strong>the</strong> most abundant algal groups. Green<br />

algae were found to <strong>in</strong>crease from south to north <strong>and</strong><br />

to be <strong>the</strong> highest <strong>in</strong> <strong>the</strong> lakes <strong>of</strong> Jarfjord, as well as <strong>in</strong><br />

lakes Pikkujarvi (<strong>Russia</strong>) <strong>and</strong> Sierramjärvi (F<strong>in</strong>l<strong>and</strong>).<br />

The Pechenganikel seems to have an impact on <strong>the</strong><br />

species composition, as <strong>the</strong> results are consistent<br />

with <strong>the</strong> data on Lake Kuetsjarvi, which is exposed to<br />

direct pollution with copper <strong>and</strong> nickel production process<br />

discharge, <strong>and</strong> where <strong>the</strong> portion <strong>of</strong> green algae<br />

is also large.<br />

The floristic analysis divided <strong>the</strong> lakes <strong>in</strong>to three<br />

groups, ma<strong>in</strong>ly accord<strong>in</strong>g to geographic territorial areas.<br />

Lakes Pikkujarvi <strong>and</strong> Harrijärvi, as well as Lake<br />

Toartesjaur, were found to be <strong>the</strong> most different from<br />

<strong>the</strong> o<strong>the</strong>rs, because <strong>of</strong> specific local conditions <strong>and</strong><br />

hydrochemical parameters. The largest differences<br />

were found <strong>in</strong> <strong>the</strong> lakes under anthropogenic impact,<br />

which is to some extent consistent with <strong>the</strong> hydrochemical<br />

data: <strong>the</strong> <strong>Russia</strong>n lakes are rich <strong>in</strong> nutrients <strong>and</strong><br />

<strong>the</strong> lakes <strong>of</strong> Jarfjord are dramatically different because<br />

<strong>of</strong> high concentration <strong>of</strong> mar<strong>in</strong>e ions as well as sulfates<br />

<strong>and</strong> metals orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> Pechanganikel.<br />

The lakes also have different-sized catchments: generally<br />

<strong>the</strong> largest <strong>in</strong> <strong>Russia</strong> <strong>and</strong> smallest <strong>in</strong> Jarfjord.<br />

Among <strong>the</strong> <strong>Russia</strong>n lakes Lake Pikkujarvi is notably<br />

higher <strong>in</strong> phytoplankton biomass <strong>and</strong> photosyn<strong>the</strong>tic<br />

pigments because <strong>of</strong> anthropogenic eutrophication.<br />

The o<strong>the</strong>r lakes are regarded as oligotrophic accord<strong>in</strong>g<br />

to <strong>the</strong>ir chlorophyll a concentration <strong>and</strong> phytoplankton<br />

biomass, which both represent typical levels<br />

for <strong>the</strong> region.<br />

The pr<strong>in</strong>cipal component analysis <strong>of</strong> <strong>the</strong> <strong>Russia</strong>n<br />

lakes established that water sal<strong>in</strong>ity <strong>and</strong> color are <strong>the</strong><br />

most important hydrochemical factors hav<strong>in</strong>g a positive<br />

impact on phytoplankton development. M<strong>in</strong>eral<br />

components <strong>and</strong> humic acids are important for <strong>the</strong> algae<br />

<strong>in</strong> <strong>the</strong> conditions <strong>of</strong> relatively low sal<strong>in</strong>ity. No significant<br />

impact by contam<strong>in</strong>ants, copper <strong>and</strong> nickel <strong>in</strong><br />

particular, on phytoplankton quantitative parameters<br />

was found. Lake Pikkujarvi exposed to eutrophication<br />

<strong>and</strong> pollution was found to be <strong>the</strong> most different from<br />

<strong>the</strong> o<strong>the</strong>r lakes.<br />

References<br />

Novakovsky, A.B. 2004: Capacity <strong>and</strong> operational pr<strong>in</strong>ciples <strong>of</strong> <strong>the</strong> s<strong>of</strong>tware module Graphs. Automation <strong>of</strong> scientific research.<br />

Komi Science Center UrO RAS. Syktyvkar. 27 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Czekanowski, J. 1909: Zur differential Diagnose der Ne<strong>and</strong>ertalgruppe. Korresp<strong>in</strong>denz-Blatt der Deutschen Gesellschaft für<br />

Anthropologie, Ethnologie und Urgeschichte 40: 44–47. (<strong>in</strong> German)<br />

Kupetzkaya, G.K., Velikoretzkaya, I.I., Zenus, B.G. et al. 1976: Large lakes <strong>of</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula. Nauka .349 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Letanskaya G. I. 1974: Phytoplankton <strong>and</strong> primary production <strong>of</strong> <strong>the</strong> lakes <strong>of</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula. In: Lakes <strong>of</strong> <strong>the</strong> differentl<strong>and</strong>scapes<br />

<strong>of</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula. T.2: 78–19. Nauka. Len<strong>in</strong>grad. (<strong>in</strong> <strong>Russia</strong>n)<br />

Nøst, T., Anatoli, L., Schartau, A.K., Kashul<strong>in</strong>, N., Berger, H.M., Yakolev, V., Sharov, A., Dauvalter, V. 1997: Impacts <strong>of</strong> pollution<br />

on freshwater communities <strong>in</strong> <strong>the</strong> border region between <strong>Russia</strong> <strong>and</strong> <strong>Norway</strong> III. Results <strong>of</strong> <strong>the</strong> 1990-96 monitor<strong>in</strong>g<br />

programme. NINA Norsk <strong>in</strong>stitutt for naturforskn<strong>in</strong>g. 37 p.<br />

Sch<strong>in</strong>dler, D.W. 1978: Factors regulat<strong>in</strong>g phytoplankton production <strong>and</strong> st<strong>and</strong><strong>in</strong>g crop <strong>in</strong> <strong>the</strong> world’s freshwaters. Limnology<br />

<strong>and</strong> Oceanography 23(3): 478–486.<br />

Smith, V.H. 1983: Low nitrogen to phosphorus ratios favor dom<strong>in</strong>ance by blue-green algae <strong>in</strong> lake phytoplankton. Science<br />

221(4611): 669–671.<br />

Sørensen T. A. 1948: Method <strong>of</strong> establish<strong>in</strong>g groups <strong>of</strong> equal amplitude <strong>in</strong> plant sociology based on similarity <strong>of</strong> species<br />

content. Kongelige Danske Videnskabernes Selskab. Biologiske Skrifter 5(4): 1–34.<br />

USEPA. 1980. Ambient water quality criteria for copper. U.S. <strong>Environmental</strong> Protection Agency. 84 p.<br />

USEPA. 1986. Ambient aquatic life water quality criteria for nickel. U.S. <strong>Environmental</strong> Protection Agency. 93 p.<br />

137


4.2 Periphyton<br />

Epilithic diatoms on stone substrate are studied here<br />

as periphyton. In terms <strong>of</strong> chemical factors, <strong>the</strong> diatom<br />

communities are primarily a result <strong>of</strong> water trophic state,<br />

organic matter <strong>and</strong> acidity. The growth substrate<br />

quality affects <strong>the</strong> periphyton especially <strong>in</strong> lake habitats.<br />

Diatom communities are used <strong>in</strong> assess<strong>in</strong>g several<br />

environment variables.<br />

Accord<strong>in</strong>g to So<strong>in</strong><strong>in</strong>en et al. (2004) phosphorus<br />

content is one <strong>of</strong> <strong>the</strong> major environmental factor affect<strong>in</strong>g<br />

diatom communities. The lakes studied <strong>in</strong> <strong>the</strong> project<br />

are oligo- or mesotrophic. As all biota <strong>in</strong> nutrientpoor<br />

habitat, periphyton can be expected to react to<br />

even small changes <strong>in</strong> available m<strong>in</strong>eral nutrients.<br />

Diatom communities <strong>in</strong> water courses have been<br />

observed to react to nutrient <strong>in</strong>crease by <strong>in</strong>creas<strong>in</strong>g<br />

numbers <strong>of</strong> eutrophy-associated species, such as those<br />

<strong>in</strong> Nitzschia-genus (Eloranta et al. 2007). Epilithic<br />

diatoms take <strong>in</strong> all nutrients from <strong>the</strong> water <strong>and</strong> <strong>the</strong>refore<br />

express <strong>the</strong> prevail<strong>in</strong>g nutrient status well.<br />

Traditionally diatom communities are also used <strong>in</strong><br />

assess<strong>in</strong>g <strong>the</strong> organic pollution (<strong>the</strong> saprobic level)<br />

(e.g. Sladecek 1973).<br />

Similar to o<strong>the</strong>r biota, acidity generally decreases<br />

diatom species richness: sensitive species disappear<br />

<strong>and</strong> few tolerant species <strong>in</strong>crease (Patrick 1977).<br />

Diatom taxa can be categorized by <strong>the</strong>ir tolerance to<br />

acidity (Van Dam et al. 2004). However, many species<br />

tolerate changes <strong>in</strong> pH ra<strong>the</strong>r well <strong>and</strong> acid<strong>of</strong>il taxa is<br />

found also <strong>in</strong> neutral water, but <strong>in</strong> less extent compared<br />

to acidified waters (Eloranta 1990).<br />

There is some experimental data regard<strong>in</strong>g diatom<br />

responses to heavy metals. Accord<strong>in</strong>g to USEPA<br />

(2007) freshwater Nitzschia palea growth is <strong>in</strong>hibited<br />

at copper concentration <strong>of</strong> 5 µg/l. This gives a rough<br />

reference to possible pollution-related effects <strong>in</strong> <strong>the</strong><br />

most sensitive diatom taxa. There is less accurate <strong>in</strong>formation<br />

about nickel compounds’ toxicity to diatoms.<br />

Patrick et al. (1975) reported nickel to cause dom<strong>in</strong>ance<br />

<strong>of</strong> green <strong>and</strong> blue-green algae over diatoms.<br />

Materials <strong>and</strong> methods<br />

Samples were collected by scrap<strong>in</strong>g rocks (roughly<br />

fist-sized) from c. 20 cm depth <strong>in</strong> littoral zone <strong>of</strong> <strong>the</strong><br />

lakes. Detached periphyton was collected <strong>and</strong> preserved<br />

<strong>in</strong> ethanol <strong>in</strong> F<strong>in</strong>l<strong>and</strong>, formaldehyde <strong>in</strong> <strong>Norway</strong><br />

<strong>and</strong> Lugol’s solution <strong>in</strong> <strong>Russia</strong>. In F<strong>in</strong>l<strong>and</strong> samples<br />

were collected from 5 stones <strong>in</strong> 2–3 different littoral<br />

stations <strong>in</strong> September; <strong>in</strong> <strong>Russia</strong> <strong>and</strong> <strong>Norway</strong> 10 rocks<br />

from one location <strong>in</strong> August 2013.<br />

Diatom slides for <strong>the</strong> microscope analyses were<br />

prepared us<strong>in</strong>g st<strong>and</strong>ard traditional methods (Zhuze<br />

et al. 1949, Davydova 1985, Denisov 2007). The organic<br />

matter was elim<strong>in</strong>ated by hydrogen peroxide,<br />

<strong>the</strong>n diatom valves were separated from o<strong>the</strong>r m<strong>in</strong>eral<br />

components by <strong>the</strong> difference <strong>in</strong> sedimentation velocity.<br />

All diatoms have been identified, if possible, to<br />

<strong>in</strong>traspecific taxa (Krammer & Lange-Bertalot 1986-<br />

1991). Diatom taxa identification <strong>and</strong> enumeration followed<br />

pr<strong>in</strong>ciples <strong>in</strong> st<strong>and</strong>ard EN 14407:2004.<br />

A nutrient status analysis was done us<strong>in</strong>g <strong>the</strong><br />

Diatom Assessment <strong>of</strong> Lake Ecological Status (DA-<br />

LES), which is based on average score per taxon method<br />

(UKTAG 2008).<br />

The diatom-<strong>in</strong>ferred value <strong>of</strong> <strong>the</strong> pH has been calculated<br />

accord<strong>in</strong>g to method <strong>of</strong> Moiseenko & Razumovsky<br />

(2009) with <strong>the</strong> follow<strong>in</strong>g formula:<br />

pH = Σphi⋅k / Σk,<br />

where phi – <strong>in</strong>dividual numeric value <strong>of</strong> <strong>the</strong> each taxa<strong>in</strong>dicator;<br />

k – abundance value (quantity).<br />

Periphyton groups were determ<strong>in</strong>ed accord<strong>in</strong>g to<br />

<strong>the</strong>ir preferred pH: neutrophils with pH-optimum at<br />

pH 7.0, circumneutrophils with a range <strong>of</strong> pH close to<br />

neutral, <strong>in</strong>different capable <strong>of</strong> develop<strong>in</strong>g at a relatively<br />

wide range <strong>of</strong> pH, alkaliphils preferr<strong>in</strong>g pH > 7.0,<br />

alkalibionts preferr<strong>in</strong>g pH 7.6 <strong>and</strong> above, acidophiles<br />

preferr<strong>in</strong>g pH


Results <strong>and</strong> discussion<br />

Sampled lakes had diatom communities typical <strong>of</strong><br />

nutrient-poor north boreal lakes. There were differences<br />

<strong>in</strong> <strong>the</strong> number <strong>of</strong> species <strong>and</strong> species composition<br />

between <strong>the</strong> areas (Figure 9). The diatom communities<br />

reflected <strong>the</strong> lakes’ humic <strong>and</strong> nutrient content.<br />

DALES <strong>in</strong>dicated low nutrient status for all <strong>and</strong> saprobic<br />

<strong>in</strong>dex oligosaprobia for most <strong>of</strong> <strong>the</strong> lakes (Table<br />

3). Tabellaria flocculosa is considered acidophilous,<br />

ma<strong>in</strong>ly occurr<strong>in</strong>g at pH less than 7 (Van Dam et al.<br />

1994). It is a common species <strong>in</strong> <strong>the</strong> research areas,<br />

which are naturally low alkal<strong>in</strong>e. pH estimated through<br />

diatom communities was quite neutral <strong>and</strong> corresponded<br />

to <strong>the</strong> measured pH values.<br />

Vätsäri area had <strong>the</strong> highest species diversity: on<br />

average 59 littoral diatom species. The lakes were<br />

dom<strong>in</strong>ated ma<strong>in</strong>ly by Brachysira vitraea, Tabellaria<br />

flocculosa <strong>and</strong> Frustulia rhomboides. These taxa are<br />

associated with low nutrient concentrations (UKTAG<br />

2008, Kelly et al. 2001), <strong>and</strong> also considered sensitive<br />

to organic pollution (Cemagref 1982). Diatom communities<br />

were oligosaprobic.<br />

Gardsjøen<br />

Holmvatnet<br />

Rabbvatnet<br />

Durvatn<br />

Lampi 222<br />

Harrijärvi<br />

Pitkä-Surnujärvi<br />

Sierramjärvi<br />

Shuonijaur<br />

Ala-Nautsijarvi<br />

Toartesjaur<br />

Virtuovoshjaur<br />

Riuttikjaure<br />

23<br />

22<br />

31<br />

34<br />

22<br />

30<br />

50.7<br />

37.5<br />

46<br />

46<br />

56<br />

Figure 9. The number <strong>of</strong> periphytic diatom species <strong>in</strong> each lake.<br />

Vätsäri values are averages from 3 sub-samples.<br />

67<br />

83.3<br />

0 20 40 60 80 100<br />

Jarfjord Vätsäri <strong>Russia</strong><br />

Table 3. DALES <strong>in</strong>dex values <strong>and</strong> <strong>the</strong>ir respective ecological quality ratios (EQR) (all values represent high status class EQR ≥<br />

0.8), <strong>the</strong> diatom-<strong>in</strong>ferred saprobe <strong>in</strong>dex (S) <strong>and</strong> saprobe zone <strong>and</strong> <strong>the</strong> diatom-<strong>in</strong>ferred <strong>and</strong> measured pH <strong>of</strong> <strong>the</strong> <strong>in</strong>vestigated lakes.<br />

DALES<br />

Class<br />

(EQR)<br />

S Saprobe zone pH (diatom) pH (measured)<br />

Vätsäri<br />

Lampi 222 14 high (>1) 1.16 α-oligosaprobic 6.8 6.7<br />

Harrijärvi 6 high (>1) 1.25 α-oligosaprobic 6.7 6.7<br />

Pitkä-Surnujärvi 20 high (1.0) 1.22 α-oligosaprobic 6.9 6.7<br />

Sierramjärvi 26 high (0.9) 1.44 α-oligosaprobic 7.0 6.8<br />

<strong>Russia</strong><br />

Shuonijaur 26 high (0.9) 1.63 β-mesosaprobic 6.8 6.8<br />

Ala-Nautsijarvi 27 high (0.9) 1.57 α-oligosaprobic 7.3 7.0<br />

Toartesjaur 28 high (0.9) 1.46 α-oligosaprobic 7.0 6.9<br />

Virtuovoshjaur 21 high (1.0) 1.39 α-oligosaprobic 7.0 6.9<br />

Riuttikjaure 36 high (0.8) 1.42 α-oligosaprobic 7.2 7.1<br />

Jarfjord<br />

Gardsjøen 20 high (1.0) 1.55 α-oligosaprobic 6.9 6.8<br />

Holmvatnet 12 high (>1) 1.34 α-oligosaprobic 6.9 6.8<br />

Rabbvatnet 19 high (>1) 1.45 α-oligosaprobic 7.0 7.0<br />

Durvatn 23 high (0.9) 1.22 α-oligosaprobic 7.0 7.0<br />

139


In <strong>the</strong> sou<strong>the</strong>rn lakes <strong>in</strong> <strong>Russia</strong>, <strong>the</strong>re were, on average,<br />

40 species <strong>in</strong> a lake. Tabellaria flocculosa was<br />

also dom<strong>in</strong>at<strong>in</strong>g <strong>in</strong> <strong>the</strong>se lakes. Taxa <strong>of</strong> slightly higher<br />

nutrient level is more common <strong>the</strong>re, such as Denticula<br />

tenuis <strong>in</strong> Ala-Nautsijarvi. In Riuttikjaure <strong>the</strong> dom<strong>in</strong>at<strong>in</strong>g<br />

species was Epi<strong>the</strong>mia sorex, which is considered<br />

taxa <strong>of</strong> moderate nutrient level (UKTAG 2008) <strong>and</strong><br />

tolerant to mild organic pollution (Cemagref 1982).<br />

Saprobic <strong>in</strong>dex <strong>in</strong>dicated oligosaprobia for <strong>the</strong> lakes,<br />

exclud<strong>in</strong>g Shuonijaur that was on mesosaprobic level.<br />

The number <strong>of</strong> diatom species <strong>in</strong> Shuonijaur was low,<br />

22 species, which was similar to Jarfjord. Shuonijaur<br />

copper concentration has, at times, exceeded <strong>the</strong> potentially<br />

toxic levels to diatom growth.<br />

Jarfjord lakes had <strong>the</strong> lowest species diversity: on<br />

average 27 species. The difference <strong>in</strong> species diversity<br />

<strong>in</strong> relation to Vätsäri is statistically significant (see<br />

Chapter 2). Tabellaria flocculosa or similarly oligotrophic<br />

Brachysira styriaca dom<strong>in</strong>ated <strong>in</strong> Jarfjord lakes.<br />

All <strong>the</strong> lakes were oligosaprobic by saprobic <strong>in</strong>dex.<br />

The Jarfjord lakes all had elevated sulphate levels<br />

(see Chapter 4, Water quality). This <strong>in</strong>dicates that <strong>the</strong><br />

lakes might have experienced some degree <strong>of</strong> acidification<br />

<strong>in</strong> <strong>the</strong> past. As a result diatom community would<br />

have suffered a loss <strong>of</strong> species. Moreover, all <strong>the</strong> lakes<br />

had copper <strong>and</strong> nickel concentrations higher than<br />

<strong>in</strong> <strong>the</strong> o<strong>the</strong>r regions. Biological impact is <strong>the</strong> comb<strong>in</strong>ed<br />

effect <strong>of</strong> both metal pollution <strong>and</strong> acid deposition.<br />

It should be noted that catchment structure or soil<br />

quality was not controlled <strong>in</strong> <strong>the</strong> study. Sampl<strong>in</strong>g differences,<br />

catchment size <strong>and</strong> soil quality <strong>and</strong> thickness<br />

may also expla<strong>in</strong> species diversity. In addition,<br />

<strong>the</strong> Jarfjord lakes are slightly more north compared to<br />

Vätsäri, which could also contribute to <strong>the</strong> result.<br />

Conclusions<br />

There were fewer species <strong>in</strong> Jarfjord lakes compared<br />

to <strong>the</strong> o<strong>the</strong>r two regions. The ma<strong>in</strong> chemical differences<br />

to o<strong>the</strong>r lakes are elevated levels <strong>of</strong> sulphate <strong>and</strong><br />

heavy metals. Chemical quality <strong>in</strong> Jarfjord does not<br />

imply acidification, but heavy metal pollution <strong>and</strong> past<br />

changes <strong>in</strong> alkal<strong>in</strong>ity may expla<strong>in</strong> <strong>the</strong> difference. Similarly<br />

Lake Shuonijaur <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> Nikel has notably<br />

low diatom species diversity <strong>and</strong> elevated levels <strong>of</strong><br />

copper <strong>and</strong> nickel.<br />

Periphytic diatoms are quick <strong>and</strong> straightforward to<br />

sample. It is found to be a relatively effective monitor<strong>in</strong>g<br />

target for <strong>the</strong> current environmental impacts <strong>and</strong><br />

<strong>the</strong>refore recommended for future monitor<strong>in</strong>g.<br />

References<br />

Bar<strong>in</strong>ova, S.S., Medvedeva, L.A., Anisimova, O.V. 2006: Diversity <strong>of</strong> algal <strong>in</strong>dicators <strong>in</strong> environmental assessment. Pilies<br />

Studio. Tel-Aviv. 498 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Cemagref 1982: Etude des méthodes biologiques d´appréciation quantitative de la qualité des eaux., Rapport Q.E. Lyon-<br />

A.F.Bassion Rhône-Méditeranée-Corse: 218 p. (<strong>in</strong> French)<br />

Davydova, N.N. 1985: Diatom algae – <strong>in</strong>dicators <strong>of</strong> <strong>the</strong> natural conditions <strong>in</strong> <strong>the</strong> reservous <strong>in</strong> Holocene. Nauka. Len<strong>in</strong>grad.<br />

244 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Denisov, D. 2007: Changes <strong>in</strong> <strong>the</strong> hydrochemical composition <strong>and</strong> diatomic flora <strong>of</strong> bottom sediments <strong>in</strong> <strong>the</strong> zone <strong>of</strong> <strong>in</strong>fluence<br />

<strong>of</strong> metal m<strong>in</strong><strong>in</strong>g production (Kola Pen<strong>in</strong>sula). Water Resources 34(6): 682-692.<br />

Gaiser, E. 2010: Diatoms as <strong>in</strong>dicators <strong>in</strong> wetl<strong>and</strong>s <strong>and</strong> peatl<strong>and</strong>s. In Gaiser, E., Rühl<strong>and</strong>, K.: The Diatoms: Applications for<br />

<strong>the</strong> <strong>Environmental</strong> <strong>and</strong> Earth Sciences. 2 nd ed. Cambridge: Cambridge University Press, p. 473-496.<br />

Eloranta, P. 1990: Periphytic diatoms <strong>in</strong> <strong>the</strong> acidification project lakes. In Kauppi, P., Anttila, P. & Kenttämies, K. (eds.).<br />

Acidification <strong>in</strong> F<strong>in</strong>l<strong>and</strong>. Spr<strong>in</strong>ger Verlag. Berl<strong>in</strong>. 1237 p.<br />

Eloranta, P., Karjala<strong>in</strong>en, S.M., Vuori, K-M. 2007: Piileväyhteisöt jokivesien ekologisen tilan luokittelussa ja seurannassa:<br />

menetelmäohjeet. 58 p. (<strong>in</strong> F<strong>in</strong>nish with an abstract <strong>in</strong> English)<br />

Kelly, M.G., Adams, C., Graves, A.C., Jamieson, J., Krokowski, J., Lycett, E.B., Murray-Bligh, J., Pritchard, S., Wilk<strong>in</strong>s, C.<br />

2001: The trophic diatom <strong>in</strong>dex: a user’s manual. Revised edition. Research & Development, Technical report E2/TR2.<br />

135 p. http://botany.natur.cuni.cz/neustupa/trophic-diatom-<strong>in</strong>dex.pdf [accessed 6.3.2014]<br />

Krammer, K. & Lange-Bertalot, H. 1986. Bacillariophyceae, volume 1: Naviculaceae. In: Ettl, H., Gerl<strong>of</strong>f, J., Heynig, H.<br />

& Mollenhauer D. (ed.). Süsswasserflora von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer Verlag, Jena. 876 p. (<strong>in</strong><br />

German)<br />

Krammer, K. & Lange-Bertalot, H. 1988. Bacillariophyceae, volume 2: Bacillariaceae, Epi<strong>the</strong>miaceae, Surirellaceae. In: Ettl,<br />

140


H., Gerl<strong>of</strong>f J., Heynig, H. & Mollenhauer, D. (ed.). Süsswasserflora von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer<br />

Verlag, Jena. 596 p. (<strong>in</strong> German)<br />

Krammer, K. & Lange-Bertalot, H. 1991. Bacillariophyceae, volume 3: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H.,<br />

Gerl<strong>of</strong>f, J., Heynig, H. & Mollenhauer, D. (ed.), Süsswasserflora von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer<br />

Verlag, Jena. 576 p. (<strong>in</strong> German)<br />

Krammer, K. & Lange-Bertalot, H. 1991. Bacillariophyceae, volume 4: Achnanthaceae. Kritishce Ergänzungen zu Navicula<br />

(L<strong>in</strong>eolatae) und Gomphonema. In: Ettl, H., Gärtner, G., Gerl<strong>of</strong>f, J., Heynig, H. & Mollenhauer, D. (ed.), Süsswasserflora<br />

von Mitteleuropa, B<strong>and</strong> 2. Stuttgart, Gustav Fischer Verlag, Jena. 437 p. (<strong>in</strong> German)<br />

Moiseenko T.I., Razumovskii, L.V. 2009: The New Methodic <strong>of</strong> Reconstruction Cation–Anion Balance <strong>in</strong> Lakes by Diatom<br />

Analysis. Achiev<strong>in</strong>g Academy <strong>of</strong> Sciences. 427(1): 132-135. (<strong>in</strong> <strong>Russia</strong>n)<br />

Pantle, R., Buck H. 1955: Die biologische Uberwachung der Gewasser und die Darstellung der Ergebnisse. Gas- und Wasserfach.<br />

Wasser und Abwasser 96: 609-620. (<strong>in</strong> German)<br />

Patrick, R. 1977: Ecology <strong>of</strong> freshwater diatoms <strong>and</strong> diatom communities. In Werner, D. (ed.): Biology <strong>of</strong> diatoms. University<br />

<strong>of</strong> California Press. Berkeley. p. 284–332.<br />

Patrick, R., Bott, T., Larson, R. 1975: The role <strong>of</strong> trace elements <strong>in</strong> management <strong>of</strong> nuisance growths. U.S. <strong>Environmental</strong><br />

Protection Agency. 248 p.<br />

Sladecek, V. 1973: System <strong>of</strong> water quality from biological po<strong>in</strong>t <strong>of</strong> view. Archiv für Hydrobiologie – Beiheft Ergebnisse der<br />

Limnologie 7: 1-128.<br />

So<strong>in</strong><strong>in</strong>en, J., Paavola, R., Muotka, T. 2004: Benthic diatom communities <strong>in</strong> boreal streams: community structure <strong>in</strong> relation<br />

to environmental <strong>and</strong> spatial gradients. Ecography 27(3): 330-342.<br />

USEPA. 1986: Ambient aquatic life water quality criteria for nickel. U.S. <strong>Environmental</strong> Protection Agency. 93 p.<br />

USEPA. 1980: Ambient water quality criteria for copper. U.S. <strong>Environmental</strong> Protection Agency. 84 p.<br />

Van Dam, H., Mertens, A., S<strong>in</strong>keldam, J. 1994: A coded checklist <strong>and</strong> ecological <strong>in</strong>dicator values <strong>of</strong> freshwater diatoms from<br />

<strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s. Ne<strong>the</strong>rl<strong>and</strong>s Journal <strong>of</strong> Aquatic Ecology 28(1): 117–133.<br />

Zhuze, A.P., Proshk<strong>in</strong>a-Lavrenko, A.I., Sheshukova, V.S. 1949: Diatom analyses, volume 1. Len<strong>in</strong>grad. 240 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Zhuze, A.P., Kiselev, A.I., Poretsky, V.S., Proshk<strong>in</strong>a-Lavrenko, A.I., Sheshukova, V.S 1949: Diatom analyses, volume 2.<br />

Len<strong>in</strong>grad. 238 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Photo: Helén Andersen<br />

141


4.3 Zoobenthos<br />

Zoobenthos, or benthic macro<strong>in</strong>vertebrates, were<br />

studied <strong>in</strong> littoral <strong>and</strong> pr<strong>of</strong>undal zones. Littoral zoobenthos<br />

responds to multiple environmental pressures<br />

due its community’s diverse feed<strong>in</strong>g adaptations<br />

<strong>and</strong> life cycles. North boreal streams are much studied<br />

<strong>and</strong> <strong>the</strong>y have been reported to susta<strong>in</strong> lower<br />

species richness <strong>and</strong> abundance relative to south<br />

boreal region (eg. S<strong>and</strong><strong>in</strong> & Johnson 2000). This is<br />

expected to be true also for lake habitats. Indicator<br />

taxa for eutrophication, organic pollution (saproby)<br />

<strong>and</strong> acidification may be recognized <strong>in</strong> zoobenthos<br />

communities. <strong>Environmental</strong> changes are reflected to<br />

species diversity, abundance <strong>and</strong> community composition.<br />

The pr<strong>of</strong>undal zoobenthos is most <strong>of</strong> all prone<br />

to oxygen depletion, which is similarly studied through<br />

community metrics.<br />

The effect <strong>of</strong> sulphate on <strong>in</strong>vertebrate biota depends<br />

on <strong>the</strong> compound it is bound to. Water alkal<strong>in</strong>ity<br />

<strong>and</strong> chloride content alleviate sulphate toxicity (Meays<br />

& Nord<strong>in</strong> 2013). The level <strong>of</strong> sulphate measured <strong>in</strong><br />

project lakes is not high enough to necessarily cause<br />

direct effects <strong>in</strong> zoobenthos but it may <strong>in</strong>directly alter<br />

<strong>the</strong> communities through acidification.<br />

Invertebrate sensitivity to heavy metals is specific<br />

to each group <strong>and</strong> life-stage. The nickel <strong>and</strong> copper<br />

concentrations that can directly affect <strong>in</strong>vertebrate viability<br />

are higher than what was measured <strong>in</strong> <strong>the</strong> study<br />

lakes (USEPA 2007, 1980). The bioavailable fraction<br />

<strong>of</strong> a metal <strong>in</strong> nature depends primarily on <strong>the</strong> dissolved<br />

organic carbon content. In a previous study <strong>in</strong> <strong>the</strong><br />

project area (Nøst et al. 1997) sensitive Ephemeroptera,<br />

Trichoptera <strong>and</strong> Plecoptera species were fewer<br />

or altoge<strong>the</strong>r miss<strong>in</strong>g <strong>in</strong> <strong>the</strong> most acidified <strong>and</strong> heavily<br />

polluted lakes (Nøst et al. 1997).<br />

Materials <strong>and</strong> methods<br />

Littoral zoobenthos was collected us<strong>in</strong>g a kick-net on<br />

rocky bottom substrate ca. 20–40 cm deep. Kick-net<br />

samples were sieved with 0.5 mm mesh. Each lake<br />

was sampled once between August <strong>and</strong> October <strong>in</strong><br />

2012 <strong>and</strong> 2013. Sampl<strong>in</strong>g procedures are summarized<br />

<strong>in</strong> Table 5. The F<strong>in</strong>nish method is described <strong>in</strong><br />

detail <strong>in</strong> Meissner et al. (2013, <strong>in</strong> F<strong>in</strong>nish) <strong>and</strong> <strong>Russia</strong>n<br />

method <strong>in</strong> state st<strong>and</strong>ard (GOST 17.1.3.07-82). Norwegian<br />

sampl<strong>in</strong>g time is 20 seconds per 1 m <strong>and</strong> <strong>the</strong><br />

net is emptied after 1 m<strong>in</strong> sampl<strong>in</strong>g time. Total kick<strong>in</strong>g<br />

time is 3 m<strong>in</strong>, dur<strong>in</strong>g which a total <strong>of</strong> 9 m is moved.<br />

Pr<strong>of</strong>undal zoobenthos was collected us<strong>in</strong>g a st<strong>and</strong>ard<br />

Ekman grab from <strong>the</strong> deepest bas<strong>in</strong> <strong>in</strong> each lake.<br />

Samples were sieved with 0.5 mm mesh. Pr<strong>of</strong>undal<br />

sampl<strong>in</strong>g was conducted at <strong>the</strong> same time with littoral<br />

sampl<strong>in</strong>g. Sampl<strong>in</strong>g procedures are summarized<br />

<strong>in</strong> Table 6.<br />

Table 5. Littoral zoobenthos sampl<strong>in</strong>g month <strong>and</strong> <strong>the</strong> number <strong>of</strong> sampled stations <strong>and</strong><br />

replicates.<br />

Month Sampl<strong>in</strong>g time (s.) Stations Replicates<br />

F<strong>in</strong>l<strong>and</strong> September-October 20 3* 2<br />

<strong>Russia</strong> August 10-15 3 1<br />

<strong>Norway</strong> September-November 20 3 2<br />

* Harrijärvi has 2 stations <strong>and</strong> 3 replicates.<br />

Table 6. Pr<strong>of</strong>undal zoobenthos sampl<strong>in</strong>g time <strong>and</strong> <strong>the</strong><br />

number <strong>of</strong> replicate Ekman grab samples.<br />

Month<br />

Replicates<br />

F<strong>in</strong>l<strong>and</strong> September-October 6<br />

<strong>Russia</strong> August 2<br />

<strong>Norway</strong> August 6<br />

142


Results <strong>and</strong> discussion<br />

Littoral community<br />

The observed littoral macrozoobenthos represented<br />

typical taxa for nutrient-poor, clear-watered lakes <strong>in</strong><br />

cold climate.<br />

In <strong>the</strong> <strong>Russia</strong>n lakes <strong>the</strong>re were altoge<strong>the</strong>r 34 species.<br />

In Vätsäri <strong>and</strong> Jarfjord lakes were total <strong>of</strong> 36 <strong>and</strong><br />

23 species, respectively. Chironomid species were<br />

<strong>the</strong> most numerous <strong>in</strong> all <strong>of</strong> <strong>the</strong> regions. The number<br />

<strong>of</strong> all <strong>the</strong> recorded families was consistently lower <strong>in</strong><br />

Jarfjord (Figure 10). The difference between Jarfjord<br />

lakes’ number <strong>of</strong> families <strong>in</strong> contrast to <strong>the</strong> o<strong>the</strong>r two<br />

regions was found statistically significant (See Chapter<br />

2).<br />

0 5 10 15 20<br />

Jarfjord<br />

Gardsjøen<br />

Holmvatnet<br />

Rabbvatnet<br />

0<br />

1<br />

3<br />

4<br />

5<br />

8<br />

lighter = total number<br />

<strong>of</strong> families<br />

darker = EPT families<br />

Durvatn<br />

4<br />

9<br />

Lampi 222<br />

2<br />

11<br />

Vätsäri<br />

Harrijärvi<br />

Pitkä-Surnujärvi<br />

4<br />

5<br />

10<br />

12<br />

Sierramjärvi<br />

6<br />

16<br />

Shuonijaur<br />

2<br />

8<br />

Ala-Nautsijarvi<br />

3<br />

11<br />

<strong>Russia</strong><br />

Toartesjaur<br />

Virtuovoshjaur<br />

Riuttikjaure<br />

Kochejaur<br />

5<br />

5<br />

6<br />

9<br />

10<br />

10<br />

13<br />

18<br />

Figure 10. The number <strong>of</strong> littoral zoobenthic<br />

families (lighter color) <strong>and</strong> <strong>the</strong> number Ephemeroptera,<br />

Plecoptera <strong>and</strong> Trichoptera families<br />

(darker color) <strong>in</strong> each lake <strong>and</strong> region.<br />

Table 7. The number <strong>of</strong> species, Woodiwiss biotic <strong>in</strong>dex <strong>and</strong> Shannon diversity <strong>in</strong>dex values for <strong>the</strong> <strong>Russia</strong>n,<br />

Vätsäri <strong>and</strong> Jarfjord lake’s littoral zoobenthos communities. The consequent ecological state is assessed by<br />

<strong>the</strong> <strong>Russia</strong>n state st<strong>and</strong>ard limit values.<br />

Lake Number <strong>of</strong> species Woodiwiss <strong>in</strong>dex Shannon <strong>in</strong>dex Ecological state<br />

<strong>Russia</strong><br />

Virtuovoshjaur 22 10 3.81 clean<br />

Kochejaur 25 10 4.01 clean<br />

Ilja-Nautsijarvi 19 8 3.55 clean<br />

Shuonijaur 12 7 2.54 clean<br />

Ala-Nautsijarvi 14 8 3.34 clean<br />

Toartesjaur 13 8 3.21 clean<br />

Pikkujärvi 17 7 3.31 clean<br />

Riuttikjaure 16 8 3.40 clean<br />

Vätsäri<br />

Pitkä-Surnujärvi 24 9 2.61 clean<br />

Sierramjärvi 23 9 2.64 clean<br />

Harrijärvi 17 9 2.84 clean<br />

Lampi 222 13 9 2.86 clean<br />

Jarfjord<br />

Holmvatn 3 4 1.50 polluted<br />

Durvatn 10 6 2.04 moderately polluted<br />

Gardsjøen 7 3 0.60 dirty<br />

Rabbvatn 14 8 2.16 clean<br />

143


The Ephemeroptera, Plecoptera <strong>and</strong> Trichoptera<br />

(so called ‘EPT’) families are considered pollutionsensitive<br />

<strong>and</strong> <strong>the</strong>refore specifically <strong>the</strong> number <strong>of</strong><br />

<strong>the</strong>ir families is used as an <strong>in</strong>dicator <strong>of</strong> environmental<br />

status. The EPT families were aga<strong>in</strong> fewer <strong>in</strong> Jarfjord<br />

lakes, but <strong>the</strong> difference was not significant at 95 %<br />

confidence level.<br />

Analysis <strong>of</strong> ecological state us<strong>in</strong>g Woodiwiss biotic<br />

<strong>in</strong>dex for organic pollution <strong>and</strong> Shannon diversity<br />

<strong>in</strong>dex aga<strong>in</strong>st <strong>the</strong> <strong>Russia</strong>n state limit values (GOST<br />

17.1.3.07-82) is summarized <strong>in</strong> Table 7. All <strong>the</strong> <strong>Russia</strong>n<br />

<strong>and</strong> Vätsäri littoral zoobenthos communities yield<br />

clean water status. Three Jarfjord lakes classify as<br />

polluted at some degree. The three polluted lakes have<br />

notably few taxa <strong>of</strong> zoobenthos. No chemical factor<br />

separates <strong>the</strong> three from o<strong>the</strong>r lakes <strong>in</strong> Jarfjord.<br />

It is assumable that <strong>the</strong> comb<strong>in</strong>ed effect <strong>of</strong> <strong>in</strong>dustrial<br />

pollution, namely sulphate, copper <strong>and</strong> nickel, play<br />

a role <strong>in</strong> shap<strong>in</strong>g <strong>the</strong> Jarfjord littoral zoobenthic communities<br />

<strong>and</strong> lower <strong>the</strong>ir diversity. In comparison to<br />

Vätsäri <strong>the</strong> lakes have <strong>the</strong> same trophic state <strong>and</strong> thus<br />

should not express significant differences. However,<br />

<strong>the</strong> latitude <strong>and</strong> catchment characteristics were not<br />

controlled <strong>in</strong> <strong>the</strong> study: <strong>the</strong> Jarfjord lakes are generally<br />

more north <strong>and</strong> tend to have smaller catchments<br />

with th<strong>in</strong>ner soils, both <strong>of</strong> which could have negative<br />

impact on diversity.<br />

Pr<strong>of</strong>undal community<br />

Pr<strong>of</strong>undal macrozoobenthos densities <strong>and</strong> biomasses<br />

were found to be low. In <strong>the</strong> <strong>Russia</strong>n lakes <strong>the</strong>re was<br />

high variance from no zoobenthos (Virtuovoshjaur,<br />

Kochejaur) to 1938 <strong>in</strong>dividuals/m 2 (Toartesjaur) (Table<br />

8). The lakes <strong>in</strong> Vätsäri <strong>and</strong> Jarfjord had lower densities<br />

<strong>of</strong> zoobenthos: 0–329 <strong>in</strong>d./m 2 <strong>and</strong> 52–456 <strong>in</strong>d./<br />

m 2 , respectively (Table 8). The cause <strong>of</strong> empty samples<br />

is probably <strong>the</strong> naturally sparse distribution <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>dividuals. Chironomidae <strong>and</strong> Oligochaeta comprise<br />

majority <strong>of</strong> <strong>the</strong> lake pr<strong>of</strong>undal taxa.<br />

The <strong>Russia</strong>n pr<strong>of</strong>undal zoobenthos communities<br />

ma<strong>in</strong>ly <strong>in</strong>dicate oligotrophy or mesotrophy on Kitaev’s<br />

(2007) trophic scale based on zoobenthos biomass.<br />

Lake Toartesjaur classified as eutrophic because more<br />

than 70 % <strong>of</strong> <strong>the</strong> community was composed <strong>of</strong> eutrophy<br />

<strong>in</strong>dicator chironomid Limnochironomus gr. tritomus.<br />

Vätsäri communities <strong>in</strong>dicate oligotrophy. Jarfjord<br />

communities <strong>in</strong>dicate oligotrophy, apart from Lake<br />

Durvatn, where <strong>the</strong> benthos made up mostly by Mic-<br />

Table 8. The mean values <strong>of</strong> number <strong>and</strong> biomass, Shannon diversity <strong>in</strong>dex values, trophic states accord<strong>in</strong>g to Kitaev (2007) <strong>and</strong><br />

status <strong>of</strong> <strong>the</strong> community based on F<strong>in</strong>nish national zoobenthos metrics (PMA, PICM) for <strong>the</strong> <strong>Russia</strong>n, Vätsäri <strong>and</strong> Jarfjord lake’s<br />

pr<strong>of</strong>undal zoobenthos communities. Some lakes could not be classified due to low abundance <strong>of</strong> <strong>in</strong>vertebrates.<br />

Lake<br />

Mean values <strong>of</strong><br />

number (<strong>in</strong>d./m 2 )<br />

Mean values <strong>of</strong><br />

biomass (g/m 2 )<br />

Shannon<br />

<strong>in</strong>dex<br />

Trophic state<br />

Community status<br />

(PMA, PICM)<br />

<strong>Russia</strong><br />

Virtuovoshjaur - - - - -<br />

Kochejaur - - - - -<br />

Ilja-Nautsijarvi 190.1 1.0 1.87 oligotrophy -<br />

Shuonijaur 576.7 2.9 2.76 mesotrophy high<br />

Ala-Nautsijarvi 415.2 2.1 2.42 oligotrophy high<br />

Toartesjaur 1937.6 9.7 1.12 eutrophy high<br />

Pikkujärvi 622.8 3.1 3.08 mesotrophy -<br />

Riuttikjaure 692.0 3.5 2.50 mesotrophy high<br />

Vätsäri<br />

Pitkä-Surnujärvi 155.7 1.3 2.60 oligotrophy good<br />

Sierramjärvi 328.7 2.7 1.50 oligotrophy high<br />

Harrijärvi 196.1 1.6 3.00 oligotrophy good<br />

Lampi 222 - - - - -<br />

Jarfjord<br />

Holmvatn 103.8 0.9 3.09 oligotrophy -<br />

Durvatn 455.6 3.8 1.93 mesotrophy -<br />

Gardsjøen 184.5 1.5 1.92 oligotrophy high<br />

Rabbvatn 51.9 0.4 1.89 oligotrophy high<br />

144


asema sp. (Trichoptera) <strong>and</strong> mussel Pisidium (Euglesa)<br />

sp.<br />

The F<strong>in</strong>nish community metrics faced difficulties<br />

with low abundance <strong>of</strong> <strong>in</strong>vertebrates. Some lakes had<br />

so few taxa that PMA (Percent Model Aff<strong>in</strong>ity) would<br />

have been 0, which is not a useful result. Pr<strong>of</strong>undal Invertebrate<br />

Community Metric (PICM) requires certa<strong>in</strong><br />

<strong>in</strong>dicator Chironomidae <strong>and</strong> Oligochaeta on species<br />

level to assess benthos status. Lakes that were possible<br />

to classify, ga<strong>in</strong>ed at least good status class. The<br />

presence <strong>of</strong> relatively sensitive Sergentia <strong>and</strong> Cladotanytarsus<br />

resulted <strong>in</strong> mostly high status class for<br />

PICM. PMA gave variable results from poor to high.<br />

The <strong>in</strong>dex reacted to low <strong>in</strong>vertebrate density, which<br />

is considered natural <strong>in</strong> <strong>the</strong> nutrient-poor, cold lakes.<br />

F<strong>in</strong>al pr<strong>of</strong>undal status was classified as good or high.<br />

Dendrogram analysis<br />

In relatively deep water bodies (e.g. Shuonijaur, 15-<br />

20 m) <strong>the</strong> psychrophilic, oligo-mesotrophic larvae <strong>of</strong><br />

Sergentia corac<strong>in</strong>a (Chironom<strong>in</strong>ae) dom<strong>in</strong>ate <strong>in</strong> <strong>the</strong><br />

structure <strong>of</strong> <strong>the</strong> pr<strong>of</strong>undal communities <strong>and</strong> cold water<br />

oligotrophic Arctopelopia sp. (Tanypod<strong>in</strong>ae) dom<strong>in</strong>ate<br />

<strong>in</strong> <strong>the</strong> littoral area. Chironomidae Procladius choreus<br />

gr. (Tanypod<strong>in</strong>ae), widely spread <strong>in</strong> <strong>the</strong> Palearctic, are<br />

encountered everywhere. The portion <strong>of</strong> Cricotopus<br />

silvestris gr. (Orthocladi<strong>in</strong>ae) is <strong>in</strong>creased <strong>in</strong> shallow,<br />

quickly warm<strong>in</strong>g water bodies with well developed<br />

aquatic vegetation <strong>and</strong> periphyton cover. Increase <strong>of</strong><br />

anthropogenic impact leads to <strong>the</strong> reduction <strong>of</strong> relative<br />

density <strong>of</strong> oligotrophic species <strong>and</strong> to <strong>the</strong> <strong>in</strong>crease<br />

<strong>of</strong> eurybiontic larvae <strong>of</strong> Chironomus spp.<br />

Four isolated groups were dist<strong>in</strong>guished by similarity<br />

<strong>in</strong> <strong>the</strong> pr<strong>of</strong>undal macrozoobenthos. Eutrophic<br />

Lake Toartesjaur is separate from <strong>the</strong> o<strong>the</strong>rs, as is<br />

Lake Riuttikjaure, where Oligochaeta dom<strong>in</strong>ate <strong>in</strong><br />

<strong>the</strong> benthos fauna. Lakes Virtuovoshjaur <strong>and</strong> Kochejaur,<br />

characterized by <strong>the</strong> lowest diversity <strong>in</strong>dicators<br />

<strong>and</strong> zoobenthos density, form a group <strong>of</strong> <strong>the</strong>ir own. A<br />

separate cluster unites lakes Gardsjøen, Shuonijaur,<br />

Sierramjärvi <strong>and</strong> Durvatn: <strong>the</strong> common feature is <strong>the</strong><br />

dom<strong>in</strong>ation <strong>of</strong> one group <strong>of</strong> <strong>in</strong>vertebrates <strong>in</strong> <strong>the</strong> pr<strong>of</strong>undal<br />

zoobenthos composition: for example, larvae<br />

<strong>of</strong> Micrasema genus (Trichoptera) dom<strong>in</strong>ate <strong>in</strong> Lake<br />

Durvatn whereas <strong>in</strong> Lake Shuonijaur Chironomidae<br />

were <strong>the</strong> most abundant.<br />

For <strong>the</strong> littoral macrozoobenthos <strong>the</strong> clusters were<br />

somewhat different (Figure 11). Lakes Harrijarvi, Sierramjarvi<br />

<strong>and</strong> Pitkä-Surnujärvi, where various species<br />

<strong>of</strong> Chironomidae dom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> macrozoobenthos,<br />

form one cluster <strong>and</strong> Holmvatn <strong>and</strong> Durvatn o<strong>the</strong>r<br />

cluster. O<strong>the</strong>r water bodies are positioned on <strong>the</strong> dendrogram<br />

<strong>in</strong> <strong>the</strong> order <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g biodiversity <strong>of</strong> littoral<br />

macrozoobenthos.<br />

Figure 11. The dendrogram <strong>of</strong> <strong>the</strong> similarity <strong>of</strong> <strong>the</strong> macrozoobenthos <strong>of</strong> <strong>the</strong> studied lakes. (littoral<br />

benthic communities, method: S<strong>in</strong>gle L<strong>in</strong>kage, Euclidean distance).<br />

145


Conclusions<br />

The results from macrozoobenthos littoral communities<br />

<strong>in</strong>dicate mostly natural ecological status with<br />

sensitive taxa present <strong>in</strong> <strong>Russia</strong> <strong>and</strong> Vätsäri, F<strong>in</strong>l<strong>and</strong>.<br />

However, certa<strong>in</strong> lakes <strong>in</strong> Jarfjord <strong>in</strong>dicate pollution <strong>of</strong><br />

moderate or high degree. In addition <strong>the</strong>re were differences<br />

<strong>in</strong> biodiversity between <strong>the</strong> areas so that Jarfjord<br />

lakes expressed consistently <strong>the</strong> lowest diversity.<br />

The pr<strong>of</strong>undal communities had low density <strong>of</strong> <strong>in</strong>dividuals<br />

but <strong>the</strong> community <strong>in</strong>dices gave normal results<br />

when <strong>the</strong>re were zoobenthos <strong>in</strong> <strong>the</strong> samples.<br />

Littoral zoobenthos is recommended for future monitor<strong>in</strong>g<br />

due to long history <strong>of</strong> monitor<strong>in</strong>g <strong>and</strong> feasibility<br />

as pollution <strong>in</strong>dicator. Pr<strong>of</strong>undal benthic community<br />

assessment was troubled by empty samples <strong>and</strong> naturally<br />

very low densities <strong>and</strong> <strong>the</strong>refore pr<strong>of</strong>undal monitor<strong>in</strong>g<br />

should not be placed high priority <strong>in</strong> <strong>the</strong> future.<br />

References<br />

Kitaev, S. P. 2007: Foundations <strong>of</strong> Limnology for Hydrobiology <strong>and</strong> Ichthyology. Karelian Research Center RAS. Petrozavodsk. 395<br />

p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Meays, C., Nord<strong>in</strong>, R. 2013: Ambient Water Quality Guidel<strong>in</strong>es For Sulphate. Technical Appendix. British Columbia M<strong>in</strong>istry<br />

<strong>of</strong> Environment. 55p.<br />

Nøst, T., Anatoli, L., Schartau, A.K., Kashul<strong>in</strong>, N., Berger, H.M., Yakolev, V., Sharov, A., Dauvalter, V. 1997: Impacts <strong>of</strong> pollution<br />

on freshwater communities <strong>in</strong> <strong>the</strong> border region between <strong>Russia</strong> <strong>and</strong> <strong>Norway</strong> III. Results <strong>of</strong> <strong>the</strong> 1990-96 monitor<strong>in</strong>g<br />

programme. NINA Norsk <strong>in</strong>stitutt for naturforskn<strong>in</strong>g. 37p.<br />

S<strong>and</strong><strong>in</strong>, L., Johnson, R.K. 2000: Ecoregions <strong>and</strong> benthic macro<strong>in</strong>vertebrate assemblages <strong>of</strong> Swedish streams. Journal <strong>of</strong><br />

<strong>the</strong> North American Benthological Society 19(3):462-474.<br />

USEPA 1980: Ambient aquatic life water quality criteria for nickel. U.S. <strong>Environmental</strong> Protection Agency. 93 p. http://water.<br />

epa.gov/scitech/swguidance/st<strong>and</strong>ards/criteria/upload/AWQC-for-Nickel_1986.pdf.<br />

USEPA 2007: Aquatic life ambient freshwater quality criteria - copper. 2007 revision. U.S. <strong>Environmental</strong> Protection Agency.<br />

204 p. http://water.epa.gov/scitech/swguidance/st<strong>and</strong>ards/criteria/aqlife/copper/upload/2009_04_27_criteria_copper_2007_criteria-full.pdf<br />

Kick-net sampl<strong>in</strong>g <strong>of</strong> zoobenthos. Photo: Jukka<br />

Ylikörkkö<br />

146


4.4 Fish<br />

PETR TERENTJEV, HELÉN ANDERSEN, GUTTORM CHRISTENSEN, GEIR DAHL-HANSEN, KATJA MÄÄTTÄNEN,<br />

MARTTI RASK, JUKKA RUUHIJÄRVI, SAMULI SAIRANEN, ERNO SALONEN, ARI SAVIKKO<br />

Fish communities <strong>of</strong> small border area lakes <strong>in</strong> F<strong>in</strong>l<strong>and</strong>,<br />

<strong>Russia</strong> <strong>and</strong> <strong>Norway</strong> were studied <strong>in</strong> 2013 <strong>and</strong><br />

2014 <strong>and</strong> <strong>the</strong> ecological status was evaluated based<br />

on fish community variables. The f<strong>in</strong>al aim was to<br />

evaluate <strong>the</strong> usefulness <strong>of</strong> fish community variables<br />

(community structure, growth rate, maturation age,<br />

longevity) <strong>in</strong> assessment <strong>of</strong> impacts <strong>of</strong> climate change<br />

<strong>and</strong> hazardous substance deposition <strong>and</strong> possible<br />

effects <strong>of</strong> acidification on fish communities <strong>of</strong> survey<br />

lakes.<br />

There are several possible methods for collect<strong>in</strong>g<br />

<strong>in</strong>formation for do<strong>in</strong>g a classification depend<strong>in</strong>g on type<br />

<strong>of</strong> <strong>the</strong> river or lake system. The ma<strong>in</strong> methods for<br />

lakes are <strong>in</strong>terviews with locals, historical data, gillnet<br />

fish<strong>in</strong>g, mapp<strong>in</strong>g by echo sound<strong>in</strong>g or electr<strong>of</strong>ish<strong>in</strong>g.<br />

The lakes <strong>in</strong> <strong>the</strong> border region all potentially <strong>in</strong>fluenced<br />

by acidification. Gillnet fish<strong>in</strong>g was carried out accord<strong>in</strong>g<br />

EU st<strong>and</strong>ards <strong>in</strong> order to evaluate <strong>the</strong> status<br />

<strong>of</strong> <strong>the</strong> fish populations <strong>in</strong> <strong>the</strong> lakes<br />

F<strong>in</strong>nish lakes Harrijärvi <strong>and</strong> Pitkä Surnujärvi were<br />

test fished <strong>in</strong> summer 2013. <strong>Russia</strong>n lakes Shuonijaur,<br />

Ilja-Nautsijarvi, Virtuovoshjaur, Riuttikjaure <strong>and</strong><br />

Toartesjaur were also test fished <strong>in</strong> summer 2013 but<br />

also additional, older data from previous years was<br />

used <strong>in</strong> <strong>the</strong> case <strong>of</strong> some lakes to determ<strong>in</strong>e changes<br />

<strong>in</strong> fish community structure. Also some results<br />

from Lake Kochejaur, which has been a subject <strong>of</strong> fish<br />

community research for decades, are <strong>in</strong>cluded here.<br />

The Norwegian lakes Durvatn, Gardsjøen, Holmvatn<br />

<strong>and</strong> Rabbvatn were test fished <strong>in</strong> August 2013 <strong>and</strong><br />

Rundvatn <strong>in</strong> August 2014.<br />

Materials <strong>and</strong> methods<br />

Test fish<strong>in</strong>g was carried out with us<strong>in</strong>g a stratified r<strong>and</strong>om<br />

sampl<strong>in</strong>g method <strong>in</strong> <strong>the</strong> littoral, sub-littoral <strong>and</strong><br />

pr<strong>of</strong>undal zones (Kurkilahti 1999, CEN 2005). The<br />

sampl<strong>in</strong>g was carried out by us<strong>in</strong>g st<strong>and</strong>ard NOR-<br />

DIC multimesh gillnets (30 x 1.5 m) with 12 different<br />

mesh size between 5–55 mm (mesh sizes 5, 6.25, 8,<br />

10, 12.5, 15.5, 19.5, 24, 29, 35, 43 <strong>and</strong> 55 mm). The<br />

NORDIC multimesh gillnet is <strong>the</strong> st<strong>and</strong>ard method <strong>in</strong><br />

<strong>the</strong> EU Water Framework Directive. The number <strong>of</strong><br />

gillnets that are recommended accord<strong>in</strong>g to EU st<strong>and</strong>ards<br />

<strong>in</strong> <strong>the</strong> survey depends on size <strong>and</strong> depth <strong>of</strong> <strong>the</strong><br />

lake (Table 1). The lake size varied from 0.4 km 2 to 8.5<br />

km 2 <strong>and</strong> <strong>the</strong> depth from 10 to 25 meters which lead to<br />

different numbers <strong>of</strong> gillnets used (Table 2).<br />

The nets were set <strong>in</strong> <strong>the</strong> even<strong>in</strong>g <strong>and</strong> hauled <strong>the</strong><br />

next morn<strong>in</strong>g after a catch<strong>in</strong>g period <strong>of</strong> 12–15 hours.<br />

All lakes were sampled dur<strong>in</strong>g one night. The catch <strong>of</strong><br />

each net was h<strong>and</strong>led separately by mesh size <strong>and</strong><br />

sorted by species, counted <strong>and</strong> weighted.<br />

Total catches, catches <strong>of</strong> species groups <strong>and</strong><br />

catches <strong>of</strong> each fish species were calculated as catch<br />

per unit effort (CPUE, g/net <strong>and</strong> CPUE, number/net).<br />

The catch <strong>of</strong> each net was h<strong>and</strong>led separately <strong>and</strong><br />

by mesh size. Each catch was sorted by species <strong>and</strong><br />

<strong>the</strong>n counted <strong>and</strong> weighed. For size distributions, <strong>the</strong><br />

total length <strong>of</strong> every fish was measured at 1 cm accuracy<br />

<strong>in</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Russia</strong> <strong>and</strong> <strong>in</strong> <strong>Norway</strong> <strong>the</strong> fork<br />

length was measured at 1 mm accuracy. Also <strong>the</strong> total<br />

number <strong>and</strong> weight <strong>of</strong> potentially piscivorous perch<br />

(Perca fluviatilis) (≥ 15 cm) was calculated separately<br />

for <strong>the</strong> proportion <strong>of</strong> predatory fishes.<br />

Hectares I II III IV<br />

< 20 6 10 16 24<br />

21–50 10 16 25 37<br />

51–100 15 21 30 42<br />

101–250 20 26 35 47<br />

251–500 24 30 39 51<br />

501–1000 28 36 48 64<br />

> 1000 32 40 52 68<br />

Table 1. Recommended number <strong>of</strong> gillnets accord<strong>in</strong>g to size<br />

<strong>and</strong> depth <strong>of</strong> <strong>the</strong> lake. Depth is divided <strong>in</strong>to four categories<br />

(I–IV). Category I <strong>in</strong>cludes lakes with a maximum depth <strong>of</strong><br />

3 m <strong>and</strong> one depth zone (0–3 m). category II <strong>in</strong>cludes lakes<br />

with a maximum depth <strong>of</strong> 10 m <strong>and</strong> two depth zones (0–3<br />

m, 3–10 m), category III <strong>in</strong>cludes lakes with a maximum<br />

depth <strong>of</strong> 20 m <strong>and</strong> three depth zones (0–3 m, 3–10 m,<br />

10–20 m) <strong>and</strong> category IV <strong>in</strong>cludes lakes with a maximum<br />

depth <strong>of</strong> > 20 m <strong>and</strong> four depth zones (0–3 m, 3–10 m,<br />

10–20 m, > 20 m).<br />

147


Table 2. Lake area (km 2 ), depth (m) <strong>and</strong> number <strong>of</strong> gillnets used <strong>in</strong> <strong>the</strong> test fish<strong>in</strong>g.<br />

Lake <strong>Area</strong> (km 2 ) Depth (m) Number <strong>of</strong> gillnets<br />

F<strong>in</strong>l<strong>and</strong> Harrijärvi 0.96 11 21<br />

Pitkä Surnujärvi 0.69 11.3 22<br />

<strong>Norway</strong> Durvatn 0.37 16 16<br />

Gardsjøen 0.67 25 21<br />

Holmvatn 0.80 >20 21<br />

Rabbvatn 0.40 23 16<br />

Rundvatn 0.45 15 23<br />

<strong>Russia</strong> Shuonijaur 8.5 10 40<br />

Ilja-Nautsijarvi 3.5 30<br />

Virtuovoshjaur 1.16 13 26<br />

Riuttikjaure 0.9 21<br />

Toartesjaur 0.6 21<br />

Table 3. Determ<strong>in</strong>ation <strong>of</strong> ecological status for trout <strong>in</strong> acidified lakes based on <strong>the</strong> catch per unit effort (CPUE, number <strong>of</strong> fish per<br />

100 m 2 ) <strong>and</strong> quality <strong>of</strong> <strong>the</strong> spawn<strong>in</strong>g <strong>and</strong> feed<strong>in</strong>g habitat (OR) (S<strong>and</strong>lund et al. 2013).<br />

CPUE, number <strong>of</strong> fish per 100 m 2<br />

Gillnet type OR Very good Good Moderate Bad Very Bad<br />

NORDIC ≥ 50 > 20 20–5 15–10 < 10 < 5<br />

NORDIC 25–50 > 15 15–10 10–5 5–2 < 2<br />

NORDIC ≤ 25 > 10 10–5 5–2 < 2 0<br />

Age determ<strong>in</strong>ation was based on operculum<br />

(perch), otoliths (trout <strong>and</strong> char <strong>in</strong> <strong>Norway</strong>), cleithrum<br />

(pike <strong>in</strong> <strong>Russia</strong>) or scales (o<strong>the</strong>rs). For <strong>the</strong> F<strong>in</strong>nish<br />

lakes <strong>the</strong> back-calculation <strong>of</strong> growth is based on <strong>the</strong><br />

formula <strong>of</strong> Monastyrsky (Bagenal & Tesch 1978). For<br />

<strong>the</strong> <strong>Russia</strong>n lakes <strong>the</strong> growth <strong>of</strong> perch <strong>and</strong> pike was<br />

back-calculated with <strong>the</strong> Lea formula <strong>and</strong> <strong>the</strong> growth<br />

<strong>of</strong> whitefish was back-calculated with <strong>the</strong> Lee formula<br />

(Chugunova 1959, Bryuzg<strong>in</strong> 1969).<br />

For <strong>the</strong> F<strong>in</strong>nish lakes <strong>the</strong> ecological status was<br />

evaluated by us<strong>in</strong>g <strong>the</strong> F<strong>in</strong>nish EQR4 <strong>in</strong>dex (Tammi et<br />

al. 2006, Ol<strong>in</strong> et al. 2013). Fish community variables<br />

used <strong>in</strong> evaluat<strong>in</strong>g <strong>the</strong> ecological status were biomass<br />

(CPUE, g/net), number (CPUE, number/net) <strong>and</strong> appearance<br />

<strong>of</strong> <strong>in</strong>dicator species. Ecological quality ratio<br />

(EQR) was calculated by divid<strong>in</strong>g <strong>the</strong> observed value<br />

<strong>of</strong> each variable with lake type specific reference value.<br />

Average from <strong>the</strong> EQR values <strong>of</strong> each variable describes<br />

<strong>the</strong> fish community based on evaluated ecological<br />

status <strong>of</strong> <strong>the</strong> lake.<br />

For <strong>the</strong> Norwegian lakes <strong>the</strong> ecological status <strong>of</strong><br />

trout populations was evaluated based on a classification<br />

system that takes <strong>in</strong>to account <strong>the</strong> quality <strong>of</strong> <strong>the</strong><br />

available spawn<strong>in</strong>g <strong>and</strong> feed<strong>in</strong>g habitats (OR = oppvekstratio)<br />

<strong>and</strong> <strong>the</strong> ratio between <strong>the</strong>ir surface areas<br />

(m 2 ) <strong>and</strong> <strong>the</strong> lake’s surface area (ha). In this study <strong>the</strong><br />

quality <strong>of</strong> spawn<strong>in</strong>g <strong>and</strong> feed<strong>in</strong>g habitat was evaluated<br />

from satellite pictures. Ecological status is evaluation<br />

also dependent on catch per unit effort (CPUE,<br />

as number <strong>of</strong> fish per 100 m 2 ) (Table 3). The classification<br />

system describes <strong>the</strong> fish community on a<br />

five step scale: Very good, Good, Moderate, Bad <strong>and</strong><br />

Very Bad. Quality <strong>of</strong> trout <strong>and</strong> char was also evaluated<br />

based on muscle colour, presence <strong>of</strong> parasites <strong>and</strong><br />

condition factor.<br />

For <strong>Russia</strong>n lakes <strong>the</strong> ecological status was evaluated<br />

based on expert assesment method <strong>in</strong> which <strong>the</strong><br />

studied lakes were compared to reference ecosystems.<br />

Also <strong>the</strong> frequency <strong>of</strong> malformations <strong>in</strong> fish <strong>and</strong><br />

heavy metal accumulation <strong>in</strong> fish tissues was studied.<br />

148


Results <strong>and</strong> discussion<br />

Community structure<br />

The community structures <strong>of</strong> <strong>the</strong> studied lakes were<br />

quite similar <strong>in</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Russia</strong> (Figure 1).<br />

The dom<strong>in</strong>ant fish groups overall were salmonids<br />

<strong>and</strong> percids. The common salmonids were whitefish<br />

(sparsely-rakered (SR) form <strong>in</strong> <strong>Russia</strong>, form was not<br />

determ<strong>in</strong>ed <strong>in</strong> F<strong>in</strong>l<strong>and</strong>) <strong>and</strong> grayl<strong>in</strong>g, some <strong>of</strong> <strong>the</strong> lakes<br />

also had trout <strong>and</strong> char. The only percid present<br />

was perch. Pike, cypr<strong>in</strong>ids, m<strong>in</strong>now <strong>and</strong> burbot were<br />

caught <strong>in</strong> some <strong>of</strong> <strong>the</strong> lakes but <strong>the</strong> numbers were<br />

low. In <strong>the</strong> Norwegian lakes that were sampled <strong>in</strong><br />

2013 trout <strong>and</strong> char were <strong>the</strong> ma<strong>in</strong> species (Figure 1)<br />

but also <strong>the</strong> presence <strong>of</strong> stickleback was suspected <strong>in</strong><br />

most lakes. However, after <strong>the</strong> first field work <strong>in</strong> 2013<br />

it was decided to <strong>in</strong>clude one more lake <strong>in</strong> <strong>the</strong> survey,<br />

<strong>in</strong> order to compare community structure <strong>of</strong> perch<br />

across borders. An additional “perch lake” was <strong>the</strong>refore<br />

chosen <strong>in</strong> <strong>Norway</strong>.<br />

The fish communities <strong>in</strong> <strong>the</strong> lakes are different between<br />

<strong>Russia</strong>, F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Norway</strong> due to <strong>the</strong> historical<br />

immigration <strong>of</strong> fish after <strong>the</strong> previous ice age<br />

(Økl<strong>and</strong> 1966). After <strong>the</strong> ice age (8 000 years ago)<br />

<strong>the</strong> big Ancylus lake was established. This lake covered<br />

<strong>the</strong> Baltic Sea <strong>and</strong> parts <strong>of</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong> Sweden.<br />

Fish species like perch, pike <strong>and</strong> whitefish emigrated<br />

from <strong>the</strong> Ancylus Lake <strong>in</strong>to rivers <strong>and</strong> lakes <strong>in</strong> <strong>the</strong> <strong>in</strong>l<strong>and</strong><br />

part <strong>of</strong> F<strong>in</strong>nmark, Nor<strong>the</strong>rn F<strong>in</strong>l<strong>and</strong>, Sweden <strong>and</strong><br />

Northwest <strong>Russia</strong>. Trout <strong>and</strong> char immigrated to <strong>the</strong><br />

coastal lakes <strong>and</strong> rivers along <strong>the</strong> Norwegian coast.<br />

CPUE <strong>in</strong> F<strong>in</strong>l<strong>and</strong><br />

The total CPUEs as g/net <strong>and</strong> number/net <strong>of</strong> each<br />

study lake were evaluated (Table 4, Figure 2 <strong>and</strong> Figure<br />

3). Lake Harrijärvi had a higher g/net CPUE <strong>of</strong><br />

<strong>the</strong> F<strong>in</strong>nish lakes <strong>and</strong> Lake Pitkä Surnujärvi had more<br />

<strong>in</strong>dividuals per net. Fish community <strong>of</strong> Lake Harrijärvi<br />

consisted ma<strong>in</strong>ly <strong>of</strong> large-sized <strong>in</strong>dividuals <strong>of</strong> grayl<strong>in</strong>g.<br />

Dom<strong>in</strong>ation <strong>of</strong> salmonids is typical <strong>of</strong> <strong>the</strong> oligotrophic<br />

lakes <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn F<strong>in</strong>l<strong>and</strong>. In Lake Pitkä Surnujärvi<br />

<strong>the</strong> biomass was dom<strong>in</strong>ated by perch, but <strong>in</strong> numbers<br />

more salmonids were caught. Fish community <strong>of</strong> Lake<br />

Pitkä Surnujärvi ma<strong>in</strong>ly consisted <strong>of</strong> large perches<br />

<strong>and</strong> small whitefish.<br />

CPUE <strong>in</strong> <strong>Norway</strong><br />

Most <strong>of</strong> <strong>the</strong> Norwegian lakes had CPUEs similar to<br />

F<strong>in</strong>nish lakes <strong>and</strong> <strong>the</strong> catch consisted <strong>of</strong> trout <strong>and</strong> Arctic<br />

char. The highest CPUEs <strong>of</strong> all study lakes were <strong>in</strong><br />

Lake Rundvatn (3846 g/net <strong>and</strong> 38.3 <strong>in</strong>dividuals/net)<br />

(Table 5, Figure 2 <strong>and</strong> Figure 3). The catch <strong>in</strong> Lake<br />

Rundvatn was clearly dom<strong>in</strong>ated by perch. The quality<br />

<strong>of</strong> <strong>the</strong> trout <strong>in</strong> Rundvatn was very good with a condition<br />

rate <strong>of</strong> 1.1 <strong>and</strong> <strong>the</strong> color <strong>of</strong> <strong>the</strong> muscle tissue is<br />

ma<strong>in</strong>ly red or p<strong>in</strong>k. Trout larger than 25 cm are considered<br />

as piscivorous <strong>and</strong> <strong>the</strong>refore have plenty <strong>of</strong> small<br />

perch to feed upon. There are only small tributaries to<br />

Lake Rundvatn <strong>and</strong> <strong>the</strong> spawn<strong>in</strong>g possibilities for trout<br />

are considered as poor. The perch population is very<br />

dense but <strong>the</strong> fish still grow to lengths <strong>of</strong> > 15 cm.<br />

CPUE <strong>in</strong> <strong>Russia</strong><br />

The CPUEs <strong>of</strong> <strong>Russia</strong>n lakes were similar to, or lower<br />

than <strong>in</strong> <strong>the</strong> F<strong>in</strong>nish <strong>and</strong> Norwegian lakes (Table 6, Figure<br />

2 <strong>and</strong> Figure 3). Lake Shuonijaur had low CPU-<br />

Es. Percids dom<strong>in</strong>ated <strong>in</strong> <strong>the</strong> catch but <strong>in</strong> a previous<br />

test fish<strong>in</strong>g <strong>in</strong> 2005 trout <strong>and</strong> Arctic char were <strong>the</strong> ma<strong>in</strong><br />

species. This k<strong>in</strong>d <strong>of</strong> change is typical <strong>of</strong> <strong>the</strong> water<br />

reservoirs <strong>in</strong> <strong>the</strong> Murmansk Region. The ratio <strong>of</strong> mature<br />

<strong>and</strong> immature Arctic char specimens <strong>in</strong> different<br />

age groups testifies <strong>of</strong> a significant number miss<strong>in</strong>g<br />

spawn<strong>in</strong>g. It is evident that <strong>in</strong> Lake Shuonijaur effective<br />

reproduction <strong>of</strong> char is impeded by anthropogenic<br />

load, lack <strong>of</strong> favorable food reserves <strong>and</strong> competition<br />

from perch.<br />

In lakes Ilja-Nautsijarvi, Virtuovoshjaur <strong>and</strong> Toartesjaur<br />

percids dom<strong>in</strong>ated <strong>in</strong> <strong>the</strong> catch <strong>of</strong> 2013. However,<br />

earlier test fish<strong>in</strong>gs <strong>in</strong> Virtuovoshjaur <strong>in</strong> 1992<br />

<strong>and</strong> 2005 <strong>in</strong>dicated that whitefish was <strong>the</strong> dom<strong>in</strong>ant<br />

species. Present whitefish population <strong>in</strong> Virtuovoshjaur<br />

consists ma<strong>in</strong>ly <strong>of</strong> younger age groups for which<br />

early maturity is common.<br />

In Virtuovoshjaur <strong>the</strong> average weight <strong>of</strong> perch was<br />

100–150 g <strong>and</strong> length 18–24 cm In Ilja-Nautsijarvi<br />

perch were <strong>of</strong> a smaller size (up to 100 g <strong>and</strong> 10–15<br />

cm). In Lake Toartesjaur <strong>the</strong>re were quite a lot <strong>of</strong> juvenile<br />

perch but also mature fish <strong>of</strong> all size classes were<br />

caught. In Lake Riuttikjaure <strong>the</strong> biomass was dom<strong>in</strong>ated<br />

<strong>of</strong> salmonids but small-sized percids were more<br />

abundant <strong>in</strong> numbers.<br />

CPUE values for most <strong>of</strong> <strong>the</strong> study lakes can be<br />

deemed low. A high proportion <strong>of</strong> predatory fish was<br />

also noted <strong>in</strong> <strong>the</strong> structure <strong>of</strong> <strong>Russia</strong>n fish populations.<br />

The biomass <strong>of</strong> predators <strong>in</strong> some lakes reached 64<br />

% (Virtuovoshjaur), 84 % (Ilja-Nautsijarvi) <strong>and</strong> even<br />

92 % (Toartesjaur).<br />

In Lake Kochejaur <strong>in</strong> <strong>Russia</strong> <strong>the</strong> fish community<br />

has been studied <strong>in</strong> <strong>the</strong> period from 1989 to 2010.<br />

The proportion <strong>of</strong> perch was small <strong>in</strong> 1989 <strong>and</strong> whitefish<br />

has historically been <strong>the</strong> dom<strong>in</strong>ant species. New<br />

studies revealed an elevated proportion <strong>of</strong> perch. In<br />

149


0.3<br />

4.3<br />

10.3<br />

8.7<br />

49.9<br />

24.4<br />

7.8<br />

29.9<br />

whitefish<br />

grayl<strong>in</strong>g<br />

pike<br />

perch<br />

trout<br />

81.1<br />

Harrijärvi<br />

17.9<br />

Pitkä Surnujärvi<br />

Pitkä Surnujärvi<br />

5.1<br />

60.4<br />

char<br />

burbot<br />

31.4<br />

22.3<br />

46<br />

Shuonijaur<br />

12<br />

68.8<br />

77.7<br />

54<br />

88<br />

Durvatn<br />

Holmvatn<br />

Rabbvatn<br />

Rundvatn<br />

0.3<br />

4.3<br />

9.5<br />

26.4<br />

19.8<br />

1.9<br />

5.6<br />

5.1<br />

29.9<br />

60.4<br />

62.2<br />

28.3<br />

60.7<br />

12.6<br />

0.3<br />

23.5<br />

56.7<br />

82.5<br />

Shuonijaur<br />

Ilja-Nautsijarvi<br />

Virtuovoshjaur<br />

Riuttikjaure<br />

Toartesjaur<br />

Figure 1. The proportions (biomass %) <strong>of</strong> different fish species <strong>in</strong> <strong>the</strong> studied lakes. M<strong>in</strong>nows were caught <strong>in</strong> lakes Pitkä-Surnujärvi<br />

<strong>and</strong> Ilja-Nautsijarvi, but <strong>the</strong>ir biomass proportions were so low that <strong>the</strong>y rounded to zero.<br />

Table 4. Summary <strong>of</strong> <strong>the</strong> results from <strong>the</strong> gillnet fish<strong>in</strong>g <strong>in</strong> <strong>the</strong> F<strong>in</strong>nish lakes.<br />

Lake<br />

Harrijärvi<br />

Pitkä Surnujärvi<br />

Fish species<br />

Total catch<br />

(number)<br />

Number<br />

%<br />

Total catch<br />

(g)<br />

Biomass<br />

%<br />

CPUE<br />

g/net<br />

CPUE<br />

number/net<br />

CPUE (per<br />

100 m 2 )<br />

Pike 9 12 2699 10.3 128.5 0.4 0.9<br />

Whitefish 28 40.6 2285 8.7 108.8 1.3 2.9<br />

Grayl<strong>in</strong>g 32 46,4 21352 81.1 1016.8 1.5 3.3<br />

Total 69 100 26336 100 1254.1 3.2 9.8<br />

Perch 50 41.3 6936 49.9 315.3 2.3 5.1<br />

Pike 9 7.4 2494 17.9 113.4 0.4 09<br />

Whitefish 55 45.5 3390 24.4 154.1 2.5 4.9<br />

Grayl<strong>in</strong>g 6 5.0 1084 7.8 49.3 0.3 0.7<br />

M<strong>in</strong>now 1 0.8 3 0.0 0.1 0.1 0.2<br />

Total 121 100 13907 100 632.2 5.6 11.8<br />

150


CPUE g/net<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500<br />

F<strong>in</strong>l<strong>and</strong><br />

Harrijärvi<br />

Pitkä Surnujärvi<br />

632<br />

1254<br />

<strong>Norway</strong><br />

Durvatn<br />

Holmvatn<br />

Rabbvatn<br />

Gardsjøen<br />

Rundvatn<br />

481<br />

742<br />

1063<br />

1210<br />

3846<br />

<strong>Russia</strong><br />

Shuonijaur<br />

Ilja-Nautsijarvi<br />

Virtuovoshjaur<br />

Riuttikjaure<br />

Toartesjaur<br />

259<br />

203<br />

459<br />

1355<br />

1599<br />

Figure 3. The total CPUE g/net <strong>in</strong><br />

<strong>the</strong> study lakes.<br />

F<strong>in</strong>l<strong>and</strong><br />

<strong>Norway</strong><br />

Harrijärvi<br />

Pitkä Surnujärvi<br />

Durvatn<br />

Holmvatn<br />

Rabbvatn<br />

Gardsjøen<br />

Rundvatn<br />

3,3<br />

5,5<br />

5,2<br />

3,6<br />

7,7<br />

9,7<br />

CPUE number/net<br />

0 5 10 15 20 25 30 35 40 45<br />

38,3<br />

<strong>Russia</strong><br />

Shuonijaur<br />

Ilja-Nautsijarvi<br />

Virtuovoshjaur<br />

Riuttikjaure<br />

Toartesjaur<br />

1,9<br />

5,6<br />

7,1<br />

9,0<br />

12,1<br />

Figure 2. The total CPUE number/<br />

net <strong>in</strong> <strong>the</strong> study lakes.<br />

Table 5. Summary <strong>of</strong> <strong>the</strong> results from <strong>the</strong> gillnet fish<strong>in</strong>g <strong>in</strong> <strong>the</strong> Norwegian lakes.<br />

Lake<br />

Durvatn<br />

Holmvatn<br />

Rabbvatn<br />

Gardsjøen<br />

Rundvatn<br />

Fish species<br />

Total catch<br />

(number)<br />

Number<br />

%<br />

Total<br />

catch (g)<br />

Biomass<br />

%<br />

CPUE<br />

g/net<br />

CPUE<br />

number/net<br />

Trout 90 73.2 11666 68.6 729 5.6 12.5<br />

Arctic char 33 26.8 5340 31.4 334 2.1 4.6<br />

Total 123 100 17006 100.0 1063 7.7 17.1<br />

Trout 126 61.8 19725 77.7 939 6.0 13.3<br />

Arctic char 78 38.2 5678 22.3 270 3.7 8.2<br />

Total 204 100 25403 100 1210 9.7 21.6<br />

Trout 34 41.0 4151 54.0 259 2.1 4.7<br />

Arctic char 49 59.0 3542 46.0 221 3.1 6.8<br />

Total 83 100 7693 100 481 5.2 11.5<br />

Trout 76 100 15590 100 742 3.6 8.0<br />

Total 76 100 15590 100 742 3.6 8.0<br />

Trout 30 3.8 9100 12.0 446 1.5 3.3<br />

Perch 750 96.2 69000 88.0 3400 36.8 81.8<br />

Total 780 100 78100 100 3846 38.3 95.1<br />

CPUE (per<br />

100 m 2 )<br />

151


Table 6. Summary <strong>of</strong> <strong>the</strong> results from <strong>the</strong> gillnet fish<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>Russia</strong>n lakes.<br />

Lake<br />

Fish species<br />

Total catch<br />

(number)<br />

Number<br />

%<br />

Total catch<br />

(g)<br />

Biomass<br />

%<br />

CPUE<br />

g/net<br />

CPUE<br />

number/net<br />

CPUE (per<br />

100 m 2 )<br />

Trout 3 1.3 525 5.1 13.1 0.1 0.2<br />

Perch 208 88.9 6256 60.4 156 5.2 11.6<br />

Shuonijaur<br />

Ilja-Nautsijarvi<br />

Virtuovoshjaur<br />

Riuttkijaure<br />

Toartesjaur<br />

Arctic char 20 8.5 3096 29.9 77.4 0.5 1.2<br />

Pike 1 0.4 441 4.3 11 0.03 0.1<br />

Burbot 2 0.9 32 0.3 0,8 0.1 0.2<br />

Total 234 100 10350 100 259 5.93 13.3<br />

Perch 231 85.5 25293 62.2 843 7.7 17.1<br />

Whitefish 25 9.3 3859 9.5 129 0.8 1.8<br />

Pike 12 4.4 11495 28.3 383 0.4 0.9<br />

M<strong>in</strong>now 2 0.7 3 0.0 0.1 0.1 0.2<br />

Total 270 100 40650 100 1355 9 20<br />

Perch 205 65.1 25228 60.7 970 7.9 17..5<br />

Whitefish 103 32.7 10963 264 422 4.0 8.9<br />

Pike 6 1.9 5241 126 202 0.2 0.4<br />

Grayl<strong>in</strong>g 1 0.3 130 0.3 5.0 0.04 0.1<br />

Total 315 100 41562 100 1599 12.14 26.9<br />

Perch 31 795 1001 23.5 47.7 1.5 3.3<br />

Whitefish 6 15.4 2415 56.7 115 0.3 0.7<br />

Trout 2 5.1 843 19.8 40.1 0.1 0.2<br />

Total 39 100 4259 100 203 1.9 4.2<br />

Perch 145 97.3 8578 82.5 409 6.9 15.2<br />

Pike 3 2.0 582 5.6 27.7 0.1 0.2<br />

Burbot 1 0.7 1235 11.9 58.8 0.05 0.1<br />

Total 149 100 10395 100 495 7.15 15.5<br />

<strong>the</strong> last test fish<strong>in</strong>g perch formed <strong>the</strong> majority <strong>of</strong> <strong>the</strong><br />

fish population. The whitefish population had only<br />

s<strong>in</strong>gle specimens <strong>of</strong> younger age groups. The majority<br />

was 4–7 year old fish, which is associated with a<br />

high degree <strong>of</strong> fish migration from o<strong>the</strong>r water reservoirs,<br />

us<strong>in</strong>g Lake Kochejaur ma<strong>in</strong>ly as a feed<strong>in</strong>g area.<br />

Absence <strong>of</strong> juvenile specimens is caused by silt<strong>in</strong>g<br />

up <strong>of</strong> <strong>the</strong> water reservoir <strong>and</strong> absence <strong>of</strong> spawn<strong>in</strong>g<br />

grounds.<br />

Growth rate<br />

F<strong>in</strong>l<strong>and</strong><br />

The growth <strong>of</strong> grayl<strong>in</strong>g <strong>in</strong> Lake Harrijärvi was quite fast<br />

(on average, <strong>the</strong> total length <strong>of</strong> 30 cm was exceeded<br />

dur<strong>in</strong>g <strong>the</strong> fourth grow<strong>in</strong>g season) whereas <strong>in</strong> Lake<br />

Pitkä Surnujärvi 30 cm length was not exceeded before<br />

<strong>the</strong> age <strong>of</strong> six. The growth rate seemed to be quite<br />

constant <strong>in</strong> Lake Harrijärvi <strong>and</strong> <strong>in</strong> Pitkä Surnujärvi<br />

dur<strong>in</strong>g <strong>the</strong> first four grow<strong>in</strong>g seasons, but seemed to<br />

slow down after <strong>the</strong> <strong>in</strong>dividuals exceeded <strong>the</strong> length<br />

<strong>of</strong> 25 cm.<br />

The growth <strong>of</strong> whitefish <strong>in</strong> Lake Harrijärvi was quite<br />

fast as <strong>the</strong> total length <strong>of</strong> 30 cm was exceeded on<br />

average dur<strong>in</strong>g <strong>the</strong> third grow<strong>in</strong>g season but <strong>in</strong> Lake<br />

Pitkä Surnujärvi <strong>the</strong> growth was fairly slow. The<br />

growth rate <strong>in</strong> Harrijärvi was quite constant dur<strong>in</strong>g <strong>the</strong><br />

first three grow<strong>in</strong>g seasons but seemed to slow down<br />

after fish exceeded <strong>the</strong> length <strong>of</strong> 30 cm, whereas <strong>in</strong><br />

Pitkä Surnujärvi <strong>the</strong> growth rate seemed to stay <strong>the</strong><br />

same dur<strong>in</strong>g all grow<strong>in</strong>g seasons.<br />

The growth <strong>of</strong> perch <strong>in</strong> Lake Pitkä Surnujärvi was<br />

moderate when compared to o<strong>the</strong>r nor<strong>the</strong>rn lakes<br />

(Sairanen et al. 2007) as <strong>the</strong> total length <strong>of</strong> 20 cm was<br />

exceeded dur<strong>in</strong>g <strong>the</strong> sixth or seventh grow<strong>in</strong>g season,<br />

on average.<br />

<strong>Norway</strong><br />

The growth rates for trout <strong>and</strong> Arctic char were relatively<br />

good <strong>the</strong> first 4–5 years <strong>in</strong> Lake Durvatn <strong>and</strong><br />

Lake Gardsjøen. In lakes Rabbvatn <strong>and</strong> Holmvatn <strong>the</strong><br />

152


growth rate for trout <strong>and</strong> Arctic char was lower compared<br />

to lakes Durvatn <strong>and</strong> Gardsjøen. In all <strong>the</strong> lakes<br />

<strong>the</strong> growth slowed considerably when <strong>the</strong> fish matured,<br />

which is normal. The age for maturity varied between<br />

<strong>the</strong> different lakes but both trout <strong>and</strong> Arctic char<br />

population <strong>in</strong> all <strong>the</strong> lakes started to mature at <strong>the</strong> age<br />

<strong>of</strong> four or five years old.<br />

<strong>Russia</strong><br />

In <strong>the</strong> small <strong>Russia</strong>n lakes short lifetime <strong>and</strong> early maturity<br />

<strong>of</strong> fish was noted despite <strong>the</strong>ir apparent remoteness<br />

from <strong>in</strong>dustrial pollution (Chapter 4, Introduction,<br />

Figure 1). Fish older than seven years are encountered<br />

<strong>in</strong> s<strong>in</strong>gle specimens. The growth rates have decreased<br />

compared to earlier research <strong>in</strong> most lakes. In<br />

Lake Shuonijaur perch has higher growth rate than<br />

char. The growth rate <strong>of</strong> perch is high until <strong>the</strong> length<br />

<strong>of</strong> 20 cm but is <strong>the</strong>n reduced, which can be expla<strong>in</strong>ed<br />

by <strong>the</strong> transition to <strong>the</strong> comb<strong>in</strong>ed <strong>and</strong> predatory type<br />

<strong>of</strong> feed<strong>in</strong>g. The growth rate <strong>of</strong> char seemed to be quite<br />

constant at all ages. In Lake Ilja-Nautsijarvi <strong>the</strong> growth<br />

rates <strong>of</strong> all <strong>the</strong> fish species are low, for example <strong>the</strong><br />

whitefish reach <strong>the</strong> size <strong>of</strong> 30 cm only at <strong>the</strong> age <strong>of</strong><br />

7–8 years. In Lake Virtuovoshjaur <strong>and</strong> Lake Riuttkijaure<br />

<strong>the</strong> growth rates <strong>of</strong> whitefish <strong>and</strong> perch are even<br />

somewhat lower than <strong>in</strong> Lake Ilja-Nautsijarvi.<br />

In all <strong>of</strong> <strong>the</strong> <strong>Russia</strong>n study lakes <strong>the</strong> whitefish (SR)<br />

grows fastest dur<strong>in</strong>g <strong>the</strong> first year <strong>of</strong> life <strong>and</strong> <strong>the</strong> growth<br />

decreases when <strong>the</strong>y reach <strong>the</strong> age <strong>of</strong> 2+. Whitefish<br />

<strong>of</strong> lakes Virtuovoshjaur <strong>and</strong> Ilja-Nautsijarvi have periods<br />

<strong>of</strong> even slower growth at <strong>the</strong> age <strong>of</strong> 7+ which<br />

accords with literature (Reshetnikov, 1966, 1980). The<br />

growth rate <strong>of</strong> <strong>the</strong> perch was noted to slow at <strong>the</strong> age<br />

<strong>of</strong> n<strong>in</strong>e. In Lake Toartesjaur <strong>the</strong> growth rate <strong>of</strong> perch is<br />

average until <strong>the</strong> age <strong>of</strong> four <strong>and</strong> <strong>the</strong>n it drops until <strong>the</strong><br />

age <strong>of</strong> seven when it seems to start grow<strong>in</strong>g aga<strong>in</strong>.<br />

Ecological status<br />

Accord<strong>in</strong>g to test fish<strong>in</strong>g results 2013 <strong>the</strong> fish community<br />

based ecological status <strong>of</strong> Lake Harrijärvi was<br />

good <strong>and</strong> Lake Pitkä Surnujärvi high. In <strong>the</strong> case <strong>of</strong><br />

Lake Harrijärvi <strong>the</strong> number catch <strong>and</strong> <strong>in</strong>dicator species<br />

<strong>in</strong>dicated high ecological status whereas <strong>the</strong> biomass<br />

catch <strong>in</strong>dicated only moderate ecological status.<br />

The high biomass catch compared to lake type<br />

(F<strong>in</strong>nish lake type Vh = Small <strong>and</strong> medium sized clear<br />

water lakes) specific reference value resulted from too<br />

high biomass catch <strong>of</strong> grayl<strong>in</strong>g that lead only to good<br />

overall ecological status. However, because grayl<strong>in</strong>g<br />

is one <strong>of</strong> <strong>the</strong> <strong>in</strong>dicator species, Lake Harrijärvi should<br />

also be considered <strong>in</strong> <strong>the</strong> highest class (Table 7).<br />

The ecological status <strong>of</strong> trout populations <strong>in</strong> <strong>the</strong><br />

Norwegian lakes was classified as good <strong>in</strong> Durvatn,<br />

Holmvatn <strong>and</strong> Gardsjøen <strong>and</strong> moderate <strong>in</strong> Rabbvatn<br />

<strong>and</strong> Rundvatn. In <strong>Norway</strong> a method for ecological<br />

classification <strong>of</strong> fish communities o<strong>the</strong>r than trout has<br />

not been developed yet.<br />

The method <strong>of</strong> lake ecological status classification<br />

based on <strong>the</strong> fish communities’ condition is not developed<br />

<strong>in</strong> <strong>Russia</strong>. However, long-time experience <strong>of</strong><br />

<strong>the</strong> researchers (INEP) made possible to assess <strong>the</strong><br />

status <strong>of</strong> <strong>the</strong> studied <strong>Russia</strong>n lakes based on comparisons<br />

with “reference water ecosystems”. Accord<strong>in</strong>g to<br />

this expert assessment method, <strong>the</strong> ecological status<br />

<strong>of</strong> Lake Virtuovoshjaur was high <strong>and</strong> Lake Ilja-Nautsijarvi<br />

good. The o<strong>the</strong>r lakes´ status was classified as<br />

moderate.<br />

Table 7. Ecological status <strong>of</strong> <strong>the</strong> fish populations <strong>in</strong> lakes <strong>in</strong> <strong>the</strong> border region<br />

accord<strong>in</strong>g to national st<strong>and</strong>ards.<br />

Country Lake Ecological status<br />

F<strong>in</strong>l<strong>and</strong><br />

<strong>Russia</strong><br />

<strong>Norway</strong><br />

Harrijärvi<br />

Pitkä Surnujärvi<br />

Shuonijaur<br />

Ilja-Nautsijarvi<br />

Virtuovoshjaur<br />

Riuttikjaure<br />

Toartesjaur<br />

Durvatn<br />

Gardsjøen<br />

Holmvatn<br />

Rabbvatn<br />

Rundvatn<br />

High (very good)<br />

High (very good)<br />

Moderate<br />

Good<br />

High (very good)<br />

Moderate<br />

Moderate<br />

Good<br />

Good<br />

Good<br />

Moderate<br />

Moderate<br />

153


Malformations <strong>in</strong> fish <strong>and</strong> assessment <strong>of</strong> anthropogenic<br />

load<br />

Malformations due to environmental pollution were<br />

noted <strong>in</strong> different species <strong>of</strong> fish <strong>in</strong> all <strong>the</strong> <strong>Russia</strong>n lakes,<br />

as fish muscle, liver, kidneys <strong>and</strong> gills were analyzed<br />

for copper, nickel, mercury <strong>and</strong> z<strong>in</strong>c. The ma<strong>in</strong><br />

affected organs were liver <strong>and</strong> kidneys but also changes<br />

<strong>in</strong> gonads <strong>and</strong> gills were detected. The common<br />

changes <strong>in</strong>cluded pale color <strong>of</strong> liver (fatty degenerations),<br />

formation <strong>of</strong> excess connective tissue <strong>in</strong> kidneys<br />

<strong>and</strong> gonads, segmented structure <strong>and</strong> asynchronous<br />

maturity <strong>of</strong> reproductive products <strong>and</strong> distortion<br />

<strong>of</strong> gill rakers <strong>in</strong> whitefish. In general, <strong>the</strong> frequency <strong>of</strong><br />

occurrence <strong>and</strong> <strong>in</strong>tensiveness <strong>of</strong> fish pathologies stay<br />

on <strong>the</strong> same level with <strong>in</strong>significant changes throughout<br />

<strong>the</strong> whole term <strong>of</strong> observations (Figure 4). The<br />

malformations are caused by toxic impact <strong>of</strong> heavy<br />

metals.<br />

Copper concentrations have ei<strong>the</strong>r grown <strong>in</strong> <strong>the</strong> last<br />

decades (more common) or stayed at <strong>the</strong> same level.<br />

Concentrations are highest <strong>in</strong> whitefish, especially <strong>in</strong><br />

<strong>the</strong> bottom-feed<strong>in</strong>g sparsely-rakered type, <strong>and</strong> <strong>in</strong> all<br />

studied species it accumulates most <strong>in</strong> <strong>the</strong> liver <strong>and</strong><br />

kidneys. Nickel, <strong>in</strong> difference to copper, demonstrates<br />

a reduction <strong>of</strong> accumulation <strong>in</strong> fish over <strong>the</strong> last years.<br />

The differences between species <strong>and</strong> organs are not<br />

as clear as with copper but it seems that whitefish is<br />

<strong>the</strong> most affected species <strong>and</strong> kidneys <strong>and</strong> gills <strong>the</strong><br />

most accumulat<strong>in</strong>g organs.<br />

Mercury tends to accumulate more <strong>in</strong> <strong>the</strong> liver <strong>and</strong><br />

kidneys than <strong>in</strong> <strong>the</strong> muscle <strong>and</strong> highest contents <strong>of</strong><br />

mercury were naturally recorded <strong>in</strong> predatory fish. Exceeded<br />

maximum allowable concentrations <strong>of</strong> mercury<br />

were noted <strong>in</strong> muscle tissue <strong>of</strong> perch <strong>and</strong> pike<br />

throughout <strong>the</strong> whole observation period <strong>in</strong> <strong>the</strong> most<br />

distant lakes Kochejaur <strong>and</strong> Virtuovoshjaur (Figure 5).<br />

Z<strong>in</strong>c enhances <strong>the</strong> toxicity <strong>of</strong> many o<strong>the</strong>r metals.<br />

Its concentrations did not exhibit time trends or <strong>in</strong>terspecies<br />

trends <strong>in</strong> any <strong>of</strong> <strong>the</strong> water reservoirs <strong>and</strong> <strong>the</strong>re<br />

is also a significant variability <strong>of</strong> z<strong>in</strong>c accumulation <strong>in</strong><br />

fish organs with<strong>in</strong> each species.<br />

High variability <strong>of</strong> <strong>the</strong> heavy metal content with<strong>in</strong><br />

one species was recorded practically <strong>in</strong> all <strong>the</strong> water<br />

reservoirs. For some specimens <strong>the</strong> levels <strong>of</strong> copper,<br />

nickel <strong>and</strong> z<strong>in</strong>c accumulation were comparable to<br />

<strong>and</strong> exceeded <strong>the</strong> maximum values <strong>of</strong> metals’ concentrations<br />

<strong>in</strong> <strong>the</strong> fish <strong>of</strong> Lake Kuetsjarvi, which is regarded<br />

as <strong>the</strong> most polluted water body <strong>of</strong> <strong>the</strong> Pasvik<br />

watercourse. This can testify <strong>of</strong> <strong>the</strong> reta<strong>in</strong><strong>in</strong>g airborne<br />

anthropogenic load <strong>in</strong> <strong>the</strong> border area <strong>and</strong> impact <strong>of</strong><br />

<strong>the</strong> secondary pollution from bottom sediments.<br />

Malformations were not studied <strong>in</strong> F<strong>in</strong>nish <strong>and</strong> Norwegian<br />

lakes’ fish. Norwegian lakes have suffered<br />

from acidification quite recently but <strong>the</strong> situation has<br />

improved. The quality <strong>of</strong> trout <strong>and</strong> char was evaluated<br />

based on <strong>the</strong> color <strong>of</strong> muscle <strong>and</strong> presence <strong>of</strong> parasites.<br />

The quality was good <strong>in</strong> Holmvatn <strong>and</strong> Rundvatn,<br />

moderate <strong>in</strong> Gardsjøen <strong>and</strong> relatively poor <strong>in</strong> Rabbvatn.<br />

Kochejaur<br />

Virtuovoshjaur<br />

frequency occurance, %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

frequency occurance, %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

changes <strong>of</strong> gonads<br />

changes <strong>of</strong> kidneys<br />

changes <strong>of</strong> liver<br />

changes <strong>of</strong> gills<br />

0<br />

0<br />

1991 2002 2005 2007<br />

1992 2005 2007 2013<br />

Figure 4. Frequency <strong>of</strong> malformations <strong>of</strong> whitefish <strong>in</strong> lakes Kochejaur <strong>and</strong> Virtuovoshjaur.<br />

154


4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

muscle<br />

MPC for Hg<br />

Wh Wh Pe Pi Wh Pe Pi Wh Pe Pi<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

muscle<br />

MPC for Hg<br />

Wh Pe Pi Wh Pe Pi Wh Pe Pi<br />

2002 2005 2007 2009<br />

2005 2007 2013<br />

Kochejaur Lake<br />

Virtuovoshjaur Lake<br />

Figure 5. Mercury <strong>in</strong> fish muscle <strong>in</strong> lakes Kochejaur <strong>and</strong> Virtuovoshjaur over various periods <strong>of</strong> research (µg/g dry weight<br />

/ppm). MPC =<br />

maximum permissible concentration, Wh = whitefish, Pe = perch, Pi = pike.<br />

Summary <strong>and</strong> f<strong>in</strong>d<strong>in</strong>gs<br />

Fish communities <strong>of</strong> small border area lakes <strong>in</strong> F<strong>in</strong>l<strong>and</strong>,<br />

<strong>Russia</strong> <strong>and</strong> <strong>Norway</strong> were studied <strong>in</strong> 2013 <strong>and</strong><br />

2014 <strong>and</strong> <strong>the</strong> ecological status was evaluated based<br />

on fish community variables. The f<strong>in</strong>al aim was to<br />

evaluate <strong>the</strong> usefulness <strong>of</strong> fish community variables<br />

(community structure, growth rate, maturation age,<br />

longevity) <strong>in</strong> assessment <strong>of</strong> environmental impacts.<br />

Based on earlier studies carried out <strong>in</strong> small lakes<br />

<strong>in</strong> <strong>the</strong> border area, several new variables were <strong>in</strong>cluded<br />

<strong>in</strong> order to assess impacts <strong>of</strong> climate change, hazardous<br />

substance deposition <strong>and</strong> possible effects <strong>of</strong><br />

acidification. One <strong>of</strong> <strong>the</strong> ma<strong>in</strong> reasons to conduct fish<br />

community studies was to carry out a basel<strong>in</strong>e study<br />

us<strong>in</strong>g <strong>the</strong> methods required <strong>in</strong> <strong>the</strong> EU Water Framework<br />

Directive.<br />

Fish community studies give <strong>in</strong>formation on how<br />

<strong>the</strong> community structure changes over time. Fish community<br />

variables measured <strong>in</strong> this study give a clear<br />

<strong>in</strong>dication <strong>of</strong> how fish communities change across<br />

borders <strong>and</strong> over a long time period.<br />

Lakes <strong>of</strong> Arctic <strong>and</strong> subarctic latitudes, as a rule,<br />

do not have a variety <strong>of</strong> fish species as species<br />

richness decreases as latitude <strong>in</strong>creases (Hillebr<strong>and</strong><br />

2004). Arctic char, trout, whitefish <strong>and</strong> perch are <strong>the</strong><br />

most common species <strong>in</strong> <strong>the</strong> border area <strong>of</strong> F<strong>in</strong>l<strong>and</strong>,<br />

<strong>Russia</strong> <strong>and</strong> <strong>Norway</strong>.<br />

Community structure<br />

F<strong>in</strong>nish <strong>and</strong> Norwegian lakes are highly oligotrophic<br />

clear water lakes <strong>and</strong> <strong>the</strong>ir water quality is generally<br />

high. The fish communities represent <strong>the</strong> typical<br />

fish community <strong>of</strong> small sized lakes <strong>in</strong> nor<strong>the</strong>rn areas<br />

where <strong>the</strong> number <strong>of</strong> species is low <strong>and</strong> salmonid fishes<br />

are dom<strong>in</strong>ant. No signs <strong>of</strong> environmental degradation<br />

were detected <strong>and</strong> occurrence <strong>of</strong> several yearclasses<br />

<strong>of</strong> most species <strong>in</strong>dicated no signs <strong>of</strong> failure<br />

<strong>in</strong> reproduction. No harmful effects <strong>of</strong> acidification on<br />

<strong>the</strong> fish communities <strong>of</strong> surveyed lakes were observed.<br />

M<strong>in</strong>now, which is highly sensitive to acidification,<br />

existed <strong>in</strong> Lake Pitkä Surnujärvi For fur<strong>the</strong>r monitor<strong>in</strong>g,<br />

electr<strong>of</strong>ish<strong>in</strong>g <strong>of</strong> stony shores could be <strong>in</strong>cluded<br />

to obta<strong>in</strong> a more reliable figure <strong>of</strong> m<strong>in</strong>now population.<br />

The studied <strong>Russia</strong>n lakes are all oligotrophic <strong>and</strong><br />

<strong>the</strong> composition <strong>of</strong> fish community is typical for such<br />

arctic lakes even though <strong>the</strong> predom<strong>in</strong>ant species are<br />

chang<strong>in</strong>g from coregonids <strong>and</strong> o<strong>the</strong>r salmonids to<br />

perch. A fast restructur<strong>in</strong>g <strong>of</strong> fish community <strong>of</strong> water<br />

reservoirs <strong>of</strong> <strong>the</strong> Murmansk Region <strong>in</strong> <strong>the</strong> last decade<br />

was noted: perch <strong>and</strong> cypr<strong>in</strong>ids <strong>of</strong>ten replace salmonids.<br />

The number <strong>of</strong> perch <strong>in</strong> <strong>the</strong> lakes over <strong>the</strong><br />

last decade has a constant tendency to grow, <strong>and</strong> <strong>in</strong><br />

a number <strong>of</strong> lakes its proportion can reach over 90 %.<br />

This change <strong>in</strong> <strong>the</strong> fish community is evident <strong>in</strong> <strong>Norway</strong>,<br />

<strong>in</strong> <strong>the</strong> Pasvik River lakes, where an <strong>in</strong>crease <strong>of</strong><br />

perch most likely is related to observed temperature<br />

<strong>in</strong>creases (Chapter 3, Long-term effects <strong>of</strong> metal contam<strong>in</strong>ations,<br />

water regulations, species <strong>in</strong>vasions <strong>and</strong><br />

climate change on <strong>the</strong> fish community <strong>of</strong> <strong>the</strong> Pasvik<br />

River). In addition to climate change, also high level<br />

<strong>of</strong> load<strong>in</strong>g from <strong>the</strong> <strong>in</strong>dusrty, <strong>the</strong> catchments <strong>and</strong> bottom<br />

sediments may <strong>in</strong>fluence this change <strong>in</strong> species<br />

communities (Kashul<strong>in</strong> et al. 2012, Terentjev & Kashul<strong>in</strong><br />

2012).<br />

Growth rate <strong>and</strong> maturation age<br />

In <strong>the</strong> F<strong>in</strong>nish lakes <strong>the</strong> growth rates were quit fast<br />

<strong>and</strong> constant <strong>in</strong> both lakes. The growth rates <strong>in</strong> most<br />

lakes <strong>in</strong> <strong>Russia</strong> have decreased compared to earlier<br />

studies. In <strong>Norway</strong> <strong>the</strong> growth rate <strong>of</strong> trout was normal.<br />

The growth rate <strong>and</strong> maturation age varied for<br />

155


fish <strong>in</strong> <strong>the</strong> Norwegian lakes. In all <strong>the</strong> lakes <strong>the</strong> growth<br />

rate slowed considerably when <strong>the</strong> fish became mature<br />

at <strong>the</strong> age <strong>of</strong> four to six years. There seems to<br />

be a good correlation between growth rate, population<br />

density <strong>and</strong> lake morphology.<br />

The studied <strong>Russia</strong>n lakes are all oligotrophic <strong>and</strong><br />

<strong>the</strong> composition <strong>of</strong> fish community is typical for such<br />

arctic lakes even though <strong>the</strong> predom<strong>in</strong>ant species are<br />

chang<strong>in</strong>g from coregonids <strong>and</strong> o<strong>the</strong>r salmonids to<br />

perch. The levels <strong>of</strong> priority toxicants copper, nickel,<br />

z<strong>in</strong>c <strong>and</strong> mercury are all elevated, which shows especially<br />

<strong>in</strong> whitefish through changes <strong>in</strong> life cycle <strong>and</strong><br />

multiple malformations.<br />

For future studies <strong>of</strong> <strong>the</strong> fish communities <strong>of</strong> small<br />

border area lakes it is recommended that monitor<strong>in</strong>g<br />

should be cont<strong>in</strong>ued with <strong>the</strong> NORDIC nets <strong>and</strong> same<br />

methods. Monitor<strong>in</strong>g should be conducted at a threeyear<br />

<strong>in</strong>terval. Electr<strong>of</strong>ish<strong>in</strong>g <strong>of</strong> stony shores could be<br />

<strong>in</strong>cluded to obta<strong>in</strong> a more reliable figure <strong>of</strong> m<strong>in</strong>now population<br />

<strong>and</strong> o<strong>the</strong>r species or size classes liv<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

shorel<strong>in</strong>e <strong>in</strong> all <strong>of</strong> <strong>the</strong> study lakes. Monitor<strong>in</strong>g <strong>of</strong> heavy<br />

metal levels <strong>and</strong> especially mercury <strong>in</strong> fish is recommended.<br />

The evaluation <strong>of</strong> <strong>the</strong> ecological status <strong>of</strong> <strong>the</strong><br />

lakes based on fish communities should be done <strong>in</strong> an<br />

as uniform way as possible.<br />

References<br />

Bagenal, T.B. & Tesch, F.W. 1978: Age <strong>and</strong> growth. In: Bagenal T.(ed.): Methods for assessment <strong>of</strong> fish production <strong>in</strong> fresh<br />

waters. Blackwell, Oxford. p. 101–136.<br />

Bryuzg<strong>in</strong> V.L. 1969: Methods <strong>of</strong> study <strong>of</strong> fish growth by scales, bones <strong>and</strong> otoliths. Naukova Dumka. Kiev. 188 p.<br />

Chugunova N.I. 1959: Fish age <strong>and</strong> growth study guide. Publisher <strong>of</strong> USSR Academy <strong>of</strong> Science. 164 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Hillebr<strong>and</strong>, H. 2004: On <strong>the</strong> generality <strong>of</strong> <strong>the</strong> latitud<strong>in</strong>al diversity gradient. The American Naturalist 163 (2): 192–211.<br />

Kashul<strong>in</strong> N.A., Denisov D.B., Valkova S.А., V<strong>and</strong>ysh O.I., Terentjev P.M. 2012: The modern tendencies <strong>of</strong> modification <strong>of</strong><br />

fresh water ecosystems <strong>of</strong> <strong>the</strong> Euro-Arctic region. Proceed<strong>in</strong>gs <strong>of</strong> Kola science center. Applied ecology <strong>of</strong> <strong>the</strong> North. 1:<br />

7-54. Kola Science Center RAS. (<strong>in</strong> <strong>Russia</strong>n).<br />

Kurkilahti, M. 1999: Nordic multimesh gillnet – robust gear for sampl<strong>in</strong>g fish populations. Academic dissertation, Department<br />

<strong>of</strong> Biology, University <strong>of</strong> Turku.<br />

Ol<strong>in</strong>, M., Rask, M., Ruuhijärvi, J. & Tammi, J. 2013: Development <strong>and</strong> evaluation <strong>of</strong> <strong>the</strong> F<strong>in</strong>nish fish-based lake classification<br />

method. Hydrobiologia 713: 149–166.<br />

Reshetnikov Yu. S. 1966: Peculiarities <strong>of</strong> growth <strong>and</strong> matur<strong>in</strong>g <strong>of</strong> whitefish <strong>in</strong> Nor<strong>the</strong>rn water bas<strong>in</strong>s. In: Nikolsky, G.V.,<br />

Lap<strong>in</strong>, J.E. (ed.) Regularities <strong>of</strong> fish population dynamics <strong>in</strong> <strong>the</strong> White Sea <strong>and</strong> its bas<strong>in</strong>. Nauka. Moscow. p. 93–155. (<strong>in</strong><br />

<strong>Russia</strong>n)<br />

Reshetnikov, Yu 1980: Ecology <strong>and</strong> systematics <strong>of</strong> coregonid fish. Nauka. Moscow. 300 p. (<strong>in</strong> <strong>Russia</strong>n)<br />

Sairanen, S., Rask, M., Stridsman, S. & Holmgren, K. 2007: TRIWA II work report, Fish communities <strong>of</strong> 15 lakes <strong>in</strong> River<br />

Torne bas<strong>in</strong>: aspects <strong>of</strong> lake typology <strong>and</strong> ecological status. Work report. 45 p.<br />

S<strong>and</strong>lund, O.T. 2013: Vannforskriften og fisk – forslag til klassifiser<strong>in</strong>gssystem. Miljødirektoratet Rapport M22-2013. (<strong>in</strong><br />

Norwegian)<br />

Tammi, J., Rask, M. & Ol<strong>in</strong>, M. 2006: Kalayhteisöt järvien ekologisen tilan arvio<strong>in</strong>nissa ja seurannassa. Alustavan luokittelujärjestelmän<br />

perusteet. Kala- ja riistaraportteja 383. 51 p. (<strong>in</strong> F<strong>in</strong>nish)<br />

Terentjev P.M., Kashul<strong>in</strong> N.A. 2012: The transformation <strong>of</strong> fish communities <strong>in</strong> <strong>the</strong> waterbodies <strong>of</strong> <strong>the</strong> Murmansk region.<br />

Proceed<strong>in</strong>gs <strong>of</strong> Kola science center. Applied ecology <strong>of</strong> <strong>the</strong> North 2: 61–100. Kola Science Center RAS. (<strong>in</strong> <strong>Russia</strong>n).<br />

Økl<strong>and</strong>, J. 1966. Elg og stor damsnegl levde i Løten for 8 000 år siden. Fauna 19:158-25. (<strong>in</strong> Norwegian)<br />

156


Photos: Helén Johanne Andersen<br />

157


158


Chapter 5: Influence <strong>of</strong> pollution <strong>and</strong><br />

climate variation <strong>in</strong> small rivers <strong>in</strong>dicated<br />

by freshwater pearl mussels<br />

PAUL ERIC ASPHOLM, MICHAEL CARROLL, GUTTORM N. CHRISTENSEN, HELÉN JOHANNE ANDERSEN, WILL<br />

AMBROSE<br />

Freshwater pearl mussels. Photo: Helén Johanne Andersen.<br />

159


1 Freshwater pearl mussel –<br />

The environmental storyteller<br />

The objectives <strong>of</strong> this <strong>in</strong>vestigation are to establish a<br />

method <strong>of</strong> reveal<strong>in</strong>g <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> climate parameters<br />

<strong>and</strong> heavy metal pollutants <strong>in</strong> rivers us<strong>in</strong>g shells<br />

<strong>of</strong> freshwater pearl mussels for long time series. The<br />

effects <strong>of</strong> climate change on <strong>the</strong> hydrological regime<br />

<strong>of</strong> <strong>the</strong> rivers <strong>and</strong> fur<strong>the</strong>r on <strong>the</strong> ecological status <strong>of</strong><br />

<strong>the</strong> EU Water Framework Directive bio<strong>in</strong>dicator <strong>and</strong><br />

flagship species Margaritifera margaritifera have been<br />

evaluated from three rivers <strong>in</strong> two different climatic zones<br />

<strong>in</strong> Sør-Varanger County <strong>in</strong> <strong>Norway</strong>.<br />

The freshwater pearl mussel (Margaritifera margaritifera)<br />

is a long-lived aquatic organism, which may<br />

reach an age up to 150–200 years (Bauer 1992, Ziuganov<br />

et al. 2000, Schöne et al. 2004, Helama & Valovirta<br />

2008). It occurs <strong>in</strong> clear, flow<strong>in</strong>g streams <strong>and</strong> rivers<br />

throughout nor<strong>the</strong>rn Europe (Sk<strong>in</strong>ner et al. 2003).<br />

Overall abundances <strong>and</strong> populations have decl<strong>in</strong>ed<br />

dramatically over <strong>the</strong> past century due to harvest<strong>in</strong>g<br />

(for <strong>the</strong> shell <strong>and</strong> pearls) <strong>and</strong> habitat degradation<br />

(Bauer 1986, 1988), <strong>and</strong> <strong>the</strong> mussel is currently listed<br />

on <strong>the</strong> IUCN red list as severely threatened.<br />

The hard parts <strong>of</strong> aquatic organisms (e.g. coral<br />

skeletons, shells <strong>of</strong> clams, fish otoliths) are deposited<br />

sequentially as <strong>the</strong> organism grows (Morrongiello et<br />

al. 2012). Consequently, <strong>the</strong> sequential deposition <strong>of</strong><br />

hard parts by an animal records a biological <strong>and</strong> environmental<br />

chronology dur<strong>in</strong>g its life, <strong>and</strong> <strong>the</strong> study<br />

<strong>of</strong> this record, sclerochronology, has been fundamental<br />

<strong>in</strong> reconstruct<strong>in</strong>g past environments (Hudson et al.<br />

1976, Wanamaker et al. 2012).<br />

The freshwater pearl mussel shell grows through<br />

sequential accretion <strong>of</strong> calcium carbonate material deposited<br />

at <strong>the</strong> shell marg<strong>in</strong> (Mutvei et al. 1994, Dunca<br />

1999). Seasonal changes <strong>in</strong> growth result <strong>in</strong> annual<br />

growth <strong>in</strong>crements <strong>in</strong> <strong>the</strong> shell structure (similar to<br />

tree-r<strong>in</strong>gs). The size <strong>of</strong> <strong>the</strong> annual r<strong>in</strong>gs is affected by<br />

nutrients, pH, availability <strong>of</strong> food, availability <strong>of</strong> calcium<br />

<strong>and</strong> climatic <strong>and</strong> environmental factors such as<br />

water temperature <strong>and</strong> turbidity. This allows us to use<br />

<strong>the</strong> growth <strong>of</strong> <strong>the</strong> mussel as a proxy for different environmental<br />

conditions (Mutvei et al. 1996, Dunca et<br />

al. 2005, Black et al. 2010). The shells are excellent<br />

archive <strong>in</strong>dicators <strong>of</strong> environmental changes, as <strong>the</strong>y<br />

have solid <strong>and</strong> impermeable shells that reta<strong>in</strong> <strong>in</strong>corporated<br />

elements from <strong>the</strong> ambient water without spatial<br />

relocation. This allows reconstruction <strong>the</strong> history <strong>of</strong><br />

impacts like climate <strong>and</strong> pollution experienced over lifespans<br />

that can be well <strong>in</strong> excess <strong>of</strong> 100 years (Westermark<br />

et al. 1996), predat<strong>in</strong>g <strong>in</strong>strumental records<br />

<strong>in</strong> <strong>the</strong> area. The analysis <strong>of</strong> shell <strong>in</strong>crements makes<br />

it possible to establish long-term growth chronologies<br />

<strong>and</strong> assess environmental conditions <strong>in</strong> different years<br />

(Jones et al. 1989, Schöne et al. 2003, Ambrose et<br />

al. 2006).<br />

The freshwater pearl mussel is a key species <strong>in</strong><br />

nor<strong>the</strong>rn Norwegian rivers, especially <strong>in</strong> those conta<strong>in</strong><strong>in</strong>g<br />

Atlantic salmon <strong>and</strong> brown trout. The mussels<br />

are natural biological filters <strong>and</strong> one mussel can filter<br />

up to 50 liters <strong>of</strong> water per day (Hendelberg 1961).<br />

This reduces organic matter <strong>in</strong> <strong>the</strong> system, <strong>and</strong> hence<br />

helps to ma<strong>in</strong>ta<strong>in</strong> oxygen levels <strong>in</strong> <strong>the</strong> <strong>in</strong>terstitial<br />

water, which would be reduced through bacterial degradation<br />

<strong>of</strong> excess organic material on <strong>the</strong> bottom.<br />

Therefore, M. margaritifera is an effective <strong>in</strong>dicator <strong>of</strong><br />

<strong>the</strong> temporal variation <strong>in</strong> local pollution levels (Mutvei<br />

et al. 1996, Mutvei & Westermark 2001).<br />

High levels <strong>of</strong> bioaccumulated metals have been<br />

found <strong>in</strong> <strong>the</strong> shells <strong>of</strong> M. margaritifera from several<br />

European countries, <strong>and</strong> toxic heavy metals (copper<br />

(Cu), lead (Pb), arsenic (As), nickel (Ni), <strong>and</strong> chromium<br />

(Cr)) are regarded to have contributed to <strong>the</strong><br />

decl<strong>in</strong>e <strong>of</strong> freshwater pearl mussel populations. The<br />

same applies to <strong>the</strong> essential metals iron (Fe), manganese<br />

(Mn), <strong>and</strong> z<strong>in</strong>c (Zn). Cadmium (Cd) <strong>and</strong> Cu<br />

are predom<strong>in</strong>antly found <strong>in</strong> <strong>the</strong> viscera; Mn, Ni, Pb,<br />

Mg, <strong>and</strong> Zn are ma<strong>in</strong>ly found <strong>in</strong> <strong>the</strong> comb<strong>in</strong>ed o<strong>the</strong>r<br />

tissues, while Fe, As <strong>and</strong> Cr are evenly distributed<br />

between both fractions. Cu is a toxic metal to all<br />

aquatic organisms <strong>and</strong> is bioaccumulated to a ra<strong>the</strong>r<br />

high degree. Cu, Fe, Pb, Mg <strong>and</strong> As all <strong>in</strong>terfere with<br />

calcium metabolism by different mechanisms. These<br />

heavy metals are also stored <strong>in</strong> <strong>the</strong> shell as it is secreted.<br />

Hence, simultaneously analyz<strong>in</strong>g shell metal<br />

concentrations <strong>and</strong> growth patterns can lead to better<br />

constra<strong>in</strong>ts on <strong>the</strong> temporal history <strong>of</strong> metal <strong>in</strong>puts to<br />

<strong>the</strong> environment <strong>and</strong> ecosystem (Carroll et al. 2009).<br />

160


Methods <strong>and</strong> key f<strong>in</strong>d<strong>in</strong>gs<br />

30 liv<strong>in</strong>g mussels were collected <strong>in</strong> 2012–2013 from<br />

each <strong>of</strong> <strong>the</strong> three rivers; Karpelva, Skjellbekken <strong>and</strong><br />

Spruvbekken. The rivers are located <strong>in</strong> different climatic<br />

zones, enabl<strong>in</strong>g a comparison <strong>of</strong> growth <strong>of</strong> <strong>the</strong><br />

mussel under variable climatic conditions. The M.<br />

margaritifera populations occur at various distances<br />

<strong>and</strong> directions from <strong>the</strong> Nikel comb<strong>in</strong>e at <strong>the</strong> Kola Pen<strong>in</strong>sula<br />

<strong>in</strong> <strong>Russia</strong>. The freshwater pearl mussel is currently<br />

listed by <strong>the</strong> IUCN red list as severely threatened<br />

<strong>and</strong> it is <strong>the</strong>refore a challenge to collect mussels<br />

for <strong>in</strong>vestigation. However, this study has also taken<br />

<strong>in</strong>to consideration <strong>the</strong> use dead shells to reveal new<br />

knowledge about pollution <strong>and</strong> climate variations.<br />

The bivalve shells were sectioned dorso-ventrally<br />

along <strong>the</strong> axis <strong>of</strong> m<strong>in</strong>imum growth start<strong>in</strong>g at <strong>the</strong> h<strong>in</strong>ge<br />

po<strong>in</strong>t <strong>of</strong> <strong>the</strong> shell. Then <strong>the</strong>se cross sections were<br />

imaged <strong>and</strong> advanced imag<strong>in</strong>g microscopy s<strong>of</strong>tware<br />

was used to enumerate growth l<strong>in</strong>es for growth rates<br />

<strong>in</strong> order to identify placement <strong>of</strong> sample sites for m<strong>in</strong>eral,<br />

<strong>in</strong>clud<strong>in</strong>g heavy metal, analysis (Figure 1). Growth<br />

<strong>and</strong> age were calculated from <strong>the</strong> growth r<strong>in</strong>gs, <strong>and</strong><br />

contam<strong>in</strong>ant levels can be related to <strong>the</strong> <strong>in</strong>crements,<br />

provid<strong>in</strong>g an absolute time marker. Shells exhibited<br />

annual growth dist<strong>in</strong>guished from dist<strong>in</strong>ct l<strong>in</strong>es signify<strong>in</strong>g<br />

<strong>the</strong> w<strong>in</strong>ter period <strong>of</strong> little or no growth (Figure 1).<br />

This study determ<strong>in</strong>ed that <strong>in</strong>dividuals from Karpelva<br />

(N=30) ranged <strong>in</strong> age from 60 to 220 years. Prelim<strong>in</strong>ary<br />

growth chronology was developed, which exhibits<br />

a variable shell growth pattern among years (Figure<br />

2). The role <strong>of</strong> different environmental factors regulat<strong>in</strong>g<br />

<strong>the</strong>se growth patterns (e.g. river temperature, air<br />

temperature, precipitation, w<strong>in</strong>d etc.) will be studied<br />

fur<strong>the</strong>r.<br />

Tissue was dissected from shells <strong>and</strong> frozen for<br />

analysis <strong>of</strong> contam<strong>in</strong>ants <strong>and</strong> stable isotopes.<br />

Figure 1. The growth <strong>in</strong>crements <strong>of</strong> <strong>the</strong> M. margaritifera,<br />

which are produced with an annual cycle. These<br />

<strong>in</strong>crements form <strong>the</strong> temporal basis <strong>of</strong> <strong>the</strong> chronology.<br />

Figure 2. Growth chronology <strong>of</strong> <strong>the</strong> freshwater pearl mussels from <strong>the</strong> collection po<strong>in</strong>t <strong>in</strong> 2012 back to 1860, spann<strong>in</strong>g<br />

some 150 years. Oscillatory periods <strong>of</strong> higher <strong>and</strong> lower growth are evident.<br />

161


Shell <strong>and</strong> tissue isotopic ratios (δ 18 O, δ 13 C <strong>and</strong><br />

δ 15 N) can be proxies for water temperatures <strong>and</strong> food<br />

sources, respectively. Heavy metal concentrations <strong>in</strong><br />

tissues <strong>and</strong> shells varied among <strong>in</strong>dividuals (Figure<br />

3), but overall exhibited higher levels at Karpelva<br />

compared to o<strong>the</strong>r river systems far<strong>the</strong>r afield from<br />

<strong>the</strong> Nikel plant (Figure 4).<br />

Th<strong>in</strong> (1 mm) sections <strong>of</strong> <strong>the</strong> shell were prepared for<br />

geochemical analysis, followed by measurement <strong>of</strong><br />

elemental ratios with<strong>in</strong> <strong>the</strong> prismatic layer (Figure 5).<br />

The heavy metal concentrations <strong>in</strong> <strong>the</strong> shell material<br />

varied among time-periods with elevated concentrations<br />

<strong>of</strong> some elements after <strong>the</strong> Nikel plant came <strong>in</strong>to<br />

operation (<strong>in</strong> <strong>the</strong> 1930s), compared with earlier (Figure<br />

6). Iron <strong>and</strong> manganese particularly have trends<br />

<strong>of</strong> <strong>in</strong>creased concentrations <strong>in</strong> growtn <strong>in</strong>crements formed<br />

dur<strong>in</strong>g <strong>the</strong> plant operation compared to before.<br />

Nickel<br />

Copper<br />

Iron<br />

Concentration (ug/g)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Shell<br />

Tissue<br />

40<br />

30<br />

20<br />

10<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 5 10 15 20 25 30<br />

0<br />

0 5 10 15 20 25 30<br />

0<br />

0 5 10 15 20 25 30<br />

Sample Number<br />

Sample Number<br />

Sample Number<br />

Figure 3. Heavy metal concentrations (Ni, Cu, Fe) <strong>in</strong> bulk shell <strong>and</strong> tissues from Karpelva.<br />

16<br />

Nickel<br />

14<br />

12<br />

Shell<br />

Tissue<br />

Concentration (ug/g)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Karpelva SkjellbekkenSpurvbekken Føllelva Juojoki<br />

Figure 4. Comparison <strong>of</strong> nickel concentration (mean +SErr) <strong>in</strong> bulk<br />

shell <strong>and</strong> tissues from Karpelva <strong>and</strong> o<strong>the</strong>r river systems.<br />

162


Conclusions<br />

The results from this study show that <strong>the</strong> freshwater<br />

pearl mussel (Margaritifera margaritifera) can be<br />

used to <strong>in</strong>vestigate climate parameters <strong>and</strong> heavy<br />

metal pollutants for long time series <strong>in</strong> rivers. However,<br />

more <strong>in</strong>vestigation is needed to harmonize <strong>and</strong><br />

calibrate <strong>the</strong> annual growth chronology <strong>and</strong> to relate<br />

growth differences among years to local climate <strong>and</strong><br />

large-scale climate <strong>in</strong>dices.<br />

The project has also evaluated <strong>the</strong> possibilities to<br />

use mussels that have died <strong>of</strong> natural causes for monitor<strong>in</strong>g<br />

<strong>of</strong> contam<strong>in</strong>ants <strong>and</strong> climatic variations. It is<br />

possible, but it is beneficial that <strong>the</strong> mussels are relatively<br />

fresh <strong>and</strong> that <strong>the</strong> approximate time <strong>of</strong> death<br />

is known.<br />

Figure 5. Image <strong>of</strong> <strong>the</strong> shell marg<strong>in</strong> area <strong>of</strong> a freshwater pearl mussel after laboratory process<strong>in</strong>g (section<strong>in</strong>g <strong>and</strong> polish<strong>in</strong>g).<br />

(Image: W. Locke)<br />

Figure 6. Concentration <strong>of</strong> various metals <strong>in</strong> <strong>the</strong><br />

M. margaritifera shells from Karpelva (site 1 =<br />

upper figure, site 2 = lower figure), separated <strong>in</strong><br />

periods before <strong>and</strong> after <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> operation<br />

<strong>of</strong> <strong>the</strong> Nikel plant <strong>in</strong> <strong>Russia</strong> <strong>in</strong> 1946.<br />

163


References<br />

Ambrose, W.G., Carroll, M.L., Greenacre, M., Thorrold, S., McMahon, K. 2006: Variation <strong>in</strong> bivalve growth <strong>in</strong> a Norwegian<br />

high-Arctic fjord: Evidence for local- <strong>and</strong> large-scale climatic forc<strong>in</strong>g. Global Change Biology 12: 1595–1607.<br />

Bauer, G. 1986: The status <strong>of</strong> <strong>the</strong> freshwater pearl mussel Maragritfera margaritifera L. <strong>in</strong> <strong>the</strong> south European range. Biological<br />

Conservation 38: 1–9.<br />

Bauer, G.1988: Threats to <strong>the</strong> freshwater pearl mussel Maragritfera margaritifera L. <strong>in</strong> <strong>the</strong> Central Europe. Biological Conservation<br />

45: 239–253.<br />

Bauer, G. 1992: Variation <strong>in</strong> <strong>the</strong> life span <strong>and</strong> size <strong>of</strong> <strong>the</strong> freshwater pearl mussel. Journal <strong>of</strong> Animal Ecology 61: 425–436.<br />

Black, B.A., Dunham, J.B, Blundon, B.W., Raggon, M.F., Zima, D. 2010: Spatial variability <strong>in</strong> <strong>the</strong> growth-<strong>in</strong>crement chronologies<br />

<strong>of</strong> long-lived freshwater mussels: Implications for climate impacts <strong>and</strong> reconstructions. Ecoscience 17: 240–250.<br />

Carroll, M.L., Johnson, B., Henkes, G.A., McMahon, K.W., Voronkov, A., Ambrose, W.G., Denisenko, S.G. 2009: Bivalves<br />

as <strong>in</strong>dicators <strong>of</strong> environmental variation <strong>and</strong> potential anthropogenic impacts <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn Barents Sea over multiple<br />

time scales. Mar<strong>in</strong>e Pollution Bullet<strong>in</strong>, 59: 193–206.<br />

Dunca, E. 1999: Bivalve shells as archives for changes <strong>in</strong> water environment. Vatten 55: 279–290.<br />

Dunca, E., Schöne, B., Mutvei, H. 2005: Freshwater bivalves tell <strong>of</strong> past climates: But how clearly do shells from polluted<br />

rivers speak? Palaeogeography, Palaeoclimatology, Palaeoecology 228: 43–57.<br />

Hendelberg, J. 1961: The freshwater pearl mussel Margaritifera margaritifera (L.). Report <strong>of</strong> <strong>the</strong> Institute <strong>of</strong> Freshwater<br />

Research Drottn<strong>in</strong>gholm 41: 149–171.<br />

Helama, S., Valovirta, I. 2008: The oldest recorded animal <strong>in</strong> F<strong>in</strong>l<strong>and</strong>: ontogenetic age <strong>and</strong> growth <strong>in</strong> Margaritifera margaritifera<br />

(L. 1758) based on <strong>in</strong>ternal shell <strong>in</strong>crements. Memor<strong>and</strong>a Societatis pro Fauna et Flora Fennica 84: 20–30.<br />

Hudson, I., Sh<strong>in</strong>n, E., Halley, R., Lidz, B. 1976: Sclerochronology: a new Tool for <strong>in</strong>terpret<strong>in</strong>g past environment. Geology 4:<br />

361–364.<br />

Jones, D.S., Arthus, M.A., Allard, D.J. 1989: Sclerochronological record <strong>of</strong> temperature <strong>and</strong> growth from shells <strong>of</strong> Mercenaria<br />

mercenaria from Narragansett Bay, Rhode Isl<strong>and</strong>. Mar<strong>in</strong>e Biology 102: 225–234.<br />

Morrongiello, J.R., Thresher, R.E., Smith, D.C. 2012: Aquatic biochronologies <strong>and</strong> climate change. Nature Climate Change<br />

2: 849–857.<br />

Mutvei, H., Westermark, T., Dunca, E., Carell, B., Forberg, S., Bignert, A. 1994 : Methods for <strong>the</strong> study <strong>of</strong> environmental<br />

changes us<strong>in</strong>g <strong>the</strong> structural <strong>and</strong> chemical <strong>in</strong>formation <strong>in</strong> molluscan shells. Past <strong>and</strong> Present Biom<strong>in</strong>eralization Processes,<br />

Considerations about <strong>the</strong> Carbonate Cycle. Bullet<strong>in</strong> de L'Institute Océanographique de Monaco 13: 163–168.<br />

Mutvei, H., Dunca, E., Timm, H., Slepukh<strong>in</strong>a, T., 1996: Structure <strong>and</strong> growth rates <strong>of</strong> bivalve shells as <strong>in</strong>dicators <strong>of</strong> environmental<br />

changes <strong>and</strong> pollution. Bullet<strong>in</strong> de L'Institut Océanographique de Monaco 14: 65–72.<br />

Mutvei, H., Westermark, T. 2001: I How environmental <strong>in</strong>formation can be obta<strong>in</strong>ed from naiad shells. In: Bauer, G.,<br />

Wächtler, K. (Eds.), Ecology <strong>and</strong> Evolution <strong>of</strong> <strong>the</strong> Freshwater Mussels Unionoidea. Ecological Studies, vol. 145. Spr<strong>in</strong>ger.<br />

Berl<strong>in</strong>. p. 367–379.<br />

Schöne BR, Oschmann W., Rössler, J.; Freyre Castro, A.D., Houk, S.D., Kröncke, I., Dreyer, W., Janssen, R., Rumohr,<br />

H., Dunca, E. 2003: North Atlantic Oscillation dynamics recorded <strong>in</strong> shells <strong>of</strong> a long-lived bivalve mollusk. Geology 31:<br />

1037–1042.<br />

Schöne B.R., Dunca, E., Mutvei, H., Norlund, U. 2004: A 217-year record <strong>of</strong> summer air temperature reconstructed from<br />

freshwater pearl mussels (M. margarifitera, Sweden). Quaternary Science Reviews 23: 1803–1816<br />

Sk<strong>in</strong>ner, A., Young, M., Hastie, L. 2003: Ecology <strong>of</strong> <strong>the</strong> Freshwater Pearl Mussel. Conserv<strong>in</strong>g Natura 2000 Rivers. Conserv<strong>in</strong>g<br />

Natura 2000 Rivers Ecology Series No. 2 English Nature, Peterborough.<br />

Wanamaker, A.D., Kreutz, K.J., Schöne, B.R., Pettigrew, N., Borns, H.W., Introne, D.S., Belknap, D., Maasch, K.A., Fe<strong>in</strong>del,<br />

S. 2008: Coupled North Atlantic Slope Water forc<strong>in</strong>g on Gulf <strong>of</strong> Ma<strong>in</strong>e temperatures over <strong>the</strong> past millennium. Climate<br />

Dynamics 31: 183–194.<br />

Westermark, T., Carell, B., Forberg, S., Mutvei, H., Kulakowski, E. 2001: Freshwater unionid shells as environmental archives:<br />

methodology <strong>and</strong> observations. Bullet<strong>in</strong> de L'Institute Océanographique de Monaco 14: 73–81.<br />

Ziuganov, V., San Miguel, E., Neves, R.J., Longa, A., Fernández, C., Amaro, R., Beletsky, V., Popkovitch, E., Kaliuzh<strong>in</strong>, S.,<br />

Johnson, T. 2000: Life span variation <strong>of</strong> <strong>the</strong> freshwater pearlshell: a model species for test<strong>in</strong>g longevity mechanisms <strong>in</strong><br />

animals. Ambio 29: 102–105.<br />

164


Freshwater pearl mussel <strong>in</strong>vestigations. Photos: Helén Johanne Andersen.<br />

165


D O C U M E N T A T I O N P A G E<br />

Publication series <strong>and</strong> numbers<br />

Reports 41/2015<br />

<strong>Area</strong>(s) <strong>of</strong> responsibility<br />

Environment <strong>and</strong> Natural Resources<br />

Author(s)<br />

Jukka Ylikörkkö<br />

Guttorm, N. Christensen<br />

Nikolay Kashul<strong>in</strong><br />

Dmitrii Denisov<br />

Helén Johanne Andersen<br />

Elli Jelkänen<br />

Date<br />

May 2015<br />

Publisher<br />

Centre for Economic Development, Transport <strong>and</strong> <strong>the</strong> Environment for Lapl<strong>and</strong><br />

F<strong>in</strong>ancier/commissioner<br />

Kolarctic ENPI CBC Programme<br />

Centre for Economic Development, Transport <strong>and</strong> <strong>the</strong> Environment for Lapl<strong>and</strong><br />

Title <strong>of</strong> publication<br />

<strong>Environmental</strong> <strong>Challenges</strong> <strong>in</strong> <strong>the</strong> Jo<strong>in</strong>t <strong>Border</strong> <strong>Area</strong> <strong>of</strong> <strong>Norway</strong>, F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Russia</strong><br />

Abstract<br />

This report exam<strong>in</strong>es <strong>the</strong> human impact on <strong>the</strong> subarctic environment <strong>of</strong> <strong>the</strong> jo<strong>in</strong>t border area <strong>of</strong> <strong>Norway</strong>, F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Russia</strong>. The aim is<br />

to present <strong>the</strong> current state <strong>and</strong> recent changes that have taken place <strong>in</strong> <strong>the</strong> region.<br />

The ma<strong>in</strong> threat to <strong>the</strong> environment is <strong>the</strong> Pechenganikel m<strong>in</strong><strong>in</strong>g <strong>and</strong> metallurgical <strong>in</strong>dustrial comb<strong>in</strong>e <strong>in</strong> <strong>the</strong> towns <strong>of</strong> Nikel <strong>and</strong> Zapolyarny<br />

<strong>in</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula. Emissions from this complex <strong>in</strong>clude high levels <strong>of</strong> heavy metals, persistent organic pollutants <strong>and</strong> sulfur<br />

dioxide. Pollution, along with climate change, water level regulation <strong>and</strong> o<strong>the</strong>r anthropogenic effects, has affected <strong>the</strong> aquatic ecosystems<br />

<strong>in</strong> <strong>the</strong> jo<strong>in</strong>t border area.<br />

The ma<strong>in</strong> heavy metals <strong>in</strong> <strong>the</strong> area are copper <strong>and</strong> nickel, <strong>the</strong> highest concentrations <strong>of</strong> which are measured near <strong>the</strong> comb<strong>in</strong>e. Direct discharge<br />

<strong>of</strong> sewage <strong>in</strong>to <strong>the</strong> river cont<strong>in</strong>ues <strong>and</strong> airborne heavy metal particles are also deposited to areas far<strong>the</strong>r away. Climate change<strong>in</strong>duced<br />

<strong>in</strong>crease <strong>in</strong> temperature <strong>and</strong> precipitation <strong>in</strong> <strong>the</strong> Kola Pen<strong>in</strong>sula is evident. Water level regulation with seven hydropower plants<br />

<strong>in</strong> <strong>the</strong> Pasvik River have changed it <strong>in</strong>to a series <strong>of</strong> lakes <strong>and</strong> lake-like reservoirs.<br />

This report discusses modell<strong>in</strong>g, which was enabled to estimate <strong>the</strong> effect <strong>of</strong> climate change on Lake Inarijärvi <strong>and</strong> <strong>the</strong> Pasvik River hydrology,<br />

water level fluctuation <strong>and</strong> ecology <strong>and</strong> to follow <strong>the</strong> sulfur dioxide emissions emitted from <strong>the</strong> Pechenganikel. Effects <strong>of</strong> pollution<br />

on <strong>the</strong> nature <strong>and</strong> concentrations <strong>of</strong> <strong>the</strong> ma<strong>in</strong> pollutants were studied <strong>and</strong> climate change <strong>in</strong> <strong>the</strong> border area <strong>and</strong> its effects on <strong>the</strong> ecology<br />

were estimated. Also <strong>the</strong> effects <strong>of</strong> water level regulation on <strong>the</strong> ecological status <strong>of</strong> <strong>the</strong> aquatic ecosystems were addressed.<br />

Keywords<br />

Environment, monitor<strong>in</strong>g, air quality, climate change, water quality, aquatic, ecosystems, <strong>the</strong> Pasvik River, heavy metals, POPs<br />

ISBN (pr<strong>in</strong>t)<br />

978-952-314-258-9<br />

www<br />

www.doria.fi/ely-keskus<br />

ISBN (PDF)<br />

978-952-314-259-6<br />

ISSN-L<br />

2242-2846<br />

ISSN (pr<strong>in</strong>t)<br />

2242-2846<br />

URN<br />

URN:ISBN:978-952-314-259-6<br />

Distributor<br />

Centre for Economic Development, Transport <strong>and</strong> <strong>the</strong> Environment for Lapl<strong>and</strong><br />

P..O. Box 8060, FI-96101 Rovaniemi, F<strong>in</strong>l<strong>and</strong><br />

Tel. +358 40 526 2821. Fax +358 16 310 340<br />

Publication is also available <strong>in</strong> <strong>in</strong>ternet: www.doria.fi<br />

Place <strong>of</strong> publication <strong>and</strong> date<br />

Rovaniemi 2015<br />

Pr<strong>in</strong>t<strong>in</strong>g place<br />

Juvenes Pr<strong>in</strong>t<br />

ISSN (onl<strong>in</strong>e)<br />

2242-2854<br />

Language<br />

English<br />

Number <strong>of</strong> pages<br />

165<br />

166


K U V A I L U L E H T I<br />

Julkaisusarjan nimi ja numero<br />

Raportteja 41/2015<br />

Vastuualue<br />

Ympäristö ja luonnonvarat<br />

Tekijät<br />

Jukka Ylikörkkö<br />

Guttorm, N. Christensen<br />

Nikolay Kashul<strong>in</strong><br />

Dmitrii Denisov<br />

Helén Johanne Andersen<br />

Elli Jelkänen<br />

Julkaisuaika<br />

Toukokuu 2015<br />

Kustantaja /Julkaisija<br />

Lap<strong>in</strong> el<strong>in</strong>ke<strong>in</strong>o-, liikenne- ja ympäristökeskus<br />

Hankkeen rahoittaja / toimeksiantaja<br />

Kolarctic ENPI CBC -ohjelma<br />

Lap<strong>in</strong> el<strong>in</strong>ke<strong>in</strong>o-, liikenne- ja ympäristökeskus<br />

Julkaisun nimi<br />

<strong>Environmental</strong> <strong>Challenges</strong> <strong>in</strong> <strong>the</strong> Jo<strong>in</strong>t <strong>Border</strong> <strong>Area</strong> <strong>of</strong> <strong>Norway</strong>, F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Russia</strong><br />

(Ympäristöhaasteet Norjan, Suomen ja Venäjän yhteisellä raja-alueella)<br />

Tiivistelmä<br />

Tässä raportissa tarkastellaan ihmisten aiheuttamia haittoja Norjan, Suomen ja Venäjän yhteisellä, subarktisella raja-alueella. Raportissa<br />

esitetään ympäristön nykytila ja alueella tapahtuneet viime-aikaiset muutokset.<br />

Suur<strong>in</strong> uhka ympäristölle on Nikkelissä ja Zapolyarnyissa Kuolan niemimaalla sijaitseva Petsenganikel<strong>in</strong> kaivos- ja metalliteollisuuskomb<strong>in</strong>aatti.<br />

Laitoksesta leviää ympäristöön suuria määriä raskasmetalleja, pysyviä orgaanisia yhdisteitä ja rikkidioksidia. Saasteet, yhdessä<br />

ilmastonmuutoksen, säännöstelyn ja muiden ihmisvaikutusten kanssa, ovat vaikuttaneet yhteisen raja-alueen vesiekosysteemeih<strong>in</strong>.<br />

Alueen tärkeimmät raskasmetallit ovat kupari ja nikkeli, joiden ptioisuudet ovat korkeimmillaan komb<strong>in</strong>aat<strong>in</strong> lähellä. Suorat jätevesipäästöt<br />

jokeen jatkuvat ja raskasmetallihiukkaset kulkeutuvat ilman mukana myös kaukaisemmille alueille. Kuolan niemimaalla on havaittavissa<br />

ilmastonmuutoksen aiheuttama lämpötilan ja sademäärän nousu. Paatsjoen säännöstely seitsemällä vesivoimalalla on muuttanut joen<br />

järvien ja järvimäisten patoaltaiden jatkumoksi.<br />

Tässä raportissa käsitellään mallitusta, jolla arvioiti<strong>in</strong> ilmastonmuutoksen vaikutuksia Inarijärven ja Paatsjoen hydrologiaan ja veden<br />

p<strong>in</strong>nankorkeuden vaihteluih<strong>in</strong> ja seuratti<strong>in</strong> Petsenganikel<strong>in</strong> rikkidioksidipäästöjen leviämistä. Saasteiden vaikutuksia luontoon ja päähaittaa<strong>in</strong>eiden<br />

pitoisuuksia tutkitti<strong>in</strong> ja ilmastonmuutosta raja-alueella ja sen vaikutuksia ekologiaan arvioiti<strong>in</strong>. Lisäksi hava<strong>in</strong>noiti<strong>in</strong> vedenkorkeuden<br />

säännöstelyn vaikutuksia vesiekosysteemien ekologiseen tilaan.<br />

Asiasanat (YSA:n mukaan)<br />

Ympäristö, seuranta, ilmanlaatu, ilmastonmuutokset, vedenlaatu, vesiekosysteemi, raskasmetallit, pysyvät orgaaniset yhdisteet<br />

ISBN (Pa<strong>in</strong>ettu)<br />

978-952-314-258-9<br />

ISBN (PDF)<br />

978-952-314-259-6<br />

ISSN-L<br />

2242-2846<br />

ISSN (pa<strong>in</strong>ettu)<br />

2242-2846<br />

ISSN (verkkojulkaisu)<br />

2242-2854<br />

www<br />

www.doria.fi/ely-keskus<br />

URN<br />

URN:ISBN:978-952-314-259-6<br />

Kieli<br />

englanti<br />

Sivumäärä<br />

165<br />

Julkaisun tilaukset<br />

Lap<strong>in</strong> el<strong>in</strong>ke<strong>in</strong>o-, liikenne- ja ympäristökeskus<br />

PL 8060, 96101 Rovaniemi<br />

Puh. +358 40 526 2821. faksi +358 16 310 340<br />

Julkaisu saatavana myös verkossa: www.doria.fi<br />

Kustannuspaikka ja -aika<br />

Rovaniemi 2015<br />

Pa<strong>in</strong>otalo<br />

Juvenes Pr<strong>in</strong>t<br />

167


С Т Р А Н И Ц А Д О К У М Е Н Т А Ц И И<br />

Название и номер серии публикации<br />

Reports 41/2015<br />

Ansvarsområde<br />

Окружающая среда и природные ресурсы<br />

Авторы<br />

Юкка Юликоркко<br />

Гутторм Н. Кристинсен<br />

Николай Кашулин<br />

Дмитрий Денисов<br />

Хелен Йоханне Андерсен<br />

Элли Йелканен<br />

Дата публикации<br />

Май 2015<br />

Издатель<br />

Центр экономического развития, транспорта и окружающей среды Лапландии<br />

Финансирование/Заказчик<br />

Программа Коларктик ИЕСП ПС<br />

Центр экономического развития, транспорта и окружающей среды Лапландии<br />

Название публикации<br />

<strong>Environmental</strong> <strong>Challenges</strong> <strong>in</strong> <strong>the</strong> Jo<strong>in</strong>t <strong>Border</strong> <strong>Area</strong> <strong>of</strong> <strong>Norway</strong>, F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Russia</strong><br />

(Экологические проблемы общей приграничной территории Норвегии, Финляндии и России)<br />

Резюме<br />

Данный отчёт является обзором настоящего состояния окружающей среды и произошедших за последние годы изменений в<br />

приграничном районе Норвегии, Финляндии и России. Основное внимание уделяется антропогенному воздействию на водную<br />

среду.<br />

Горно-металлургический комбинат ”Печенганикель”, расположенный на северо-западе Мурманской области, является одним<br />

из самых крупных объектов, влияющих на состояние природной среды в приграничном районе. Выбросы комбината содержат<br />

высокие концентрации тяжелых металлов, стойких органических загрязняющих веществ и диоксида серы. Загрязнение в<br />

сочетании с климатическими изменениями, регулирование уровня воды и другие антропогенные факторы оказывают негативное<br />

воздействие на водные экосистемы общей приграничной территории.<br />

Из тяжелых металлов наиболее значимыми загрязнителями в этом районе являются медь и никель, самые высокие<br />

концентрации которых наблюдаются вблизи комбината. Продолжаются сбросы токсических веществ в притоки реки Паз. Свой<br />

вклад в загрязнение региона привносит и трансграничный перенос поллютантов. В связи с климатическими изменениями<br />

отмечается рост температуры и количества осадков на Кольском полуострове. Семь ГЭС на реке Паз превратили ее в цепь озер<br />

и водохранилищ озерного типа.<br />

В публикации помещена информация о моделировании, позволяющем проследить за перемещениями выбросов диоксида серы<br />

и оценить воздействие климатических изменений на гидрологический режим, колебание уровня воды озера Инари и реки Паз,<br />

на их экологическое состояние. Продолжается изучение влияния регулирования на состояние водных экосистем в условиях<br />

изменения климата.<br />

Ключевые слова<br />

Окружающая среда, мониторинг, качество воздуха, климатические изменения, качество воды, водный, экосистемы, река Паз,<br />

тяжёлые металлы, СОЗ<br />

ISBN (pr<strong>in</strong>ted)<br />

978-952-314-258-9<br />

ISBN (PDF)<br />

978-952-314-259-6<br />

ISSN-L<br />

2242-2846<br />

ISSN (pr<strong>in</strong>t)<br />

2242-2846<br />

ISSN (onl<strong>in</strong>e)<br />

2242-2854<br />

www<br />

www.doria.fi/ely-keskus<br />

URN<br />

URN:ISBN:978-952-314-259-6<br />

Язык<br />

Английский<br />

Количество<br />

165<br />

Распространитель<br />

Центр экономического развития, транспорта и окружающей среды Лапландии<br />

а/я 8060, FI-96101 Рованиеми, Финляндия<br />

Телефон: +358 40 562 2821, Fax +358 16 310 340<br />

Публикация также доступна в Интернете по адресу: www.doria.fi<br />

Место и год издания<br />

Рованиеми, 2015<br />

Издательство<br />

Juvenes Pr<strong>in</strong>t<br />

168


P R E S E N T A T I O N S B L A D<br />

Publikationens serie och nummer<br />

Report 41/2015<br />

Ansvarsområde<br />

Miljø og naturresurser<br />

Forfattere<br />

Jukka Ylikörkkö<br />

Guttorm, N. Christensen<br />

Nikolay Kashul<strong>in</strong><br />

Dmitrii Denisov<br />

Helén Johanne Andersen<br />

Elli Jelkänen<br />

Utgivelsedato<br />

Mai 2015<br />

Utgiver<br />

Lappl<strong>and</strong> nær<strong>in</strong>sutvikl<strong>in</strong>g, samferdsel og miljøsentral<br />

Prosjektet er f<strong>in</strong>ansier av / oppdragsgiver<br />

Kolarctic ENPI CBC program<br />

Lappl<strong>and</strong> nær<strong>in</strong>sutvikl<strong>in</strong>g, samferdsel og miljøsentral<br />

Tittel / Publikasjonens tittel<br />

<strong>Environmental</strong> <strong>Challenges</strong> <strong>in</strong> <strong>the</strong> Jo<strong>in</strong>t <strong>Border</strong> <strong>Area</strong> <strong>of</strong> <strong>Norway</strong>, F<strong>in</strong>l<strong>and</strong> <strong>and</strong> <strong>Russia</strong><br />

(Miljøutfordr<strong>in</strong>ger i grenseområdet mellom Norge, F<strong>in</strong>l<strong>and</strong> og Russl<strong>and</strong>)<br />

Sammendrag<br />

Denne rapporten tar for seg miljøtilst<strong>and</strong>en i grenseområdet mellom Norge, F<strong>in</strong>l<strong>and</strong> og Russl<strong>and</strong>, på bakgrunn av <strong>in</strong>dustriell<br />

aktivitet i området. Målet er å slå fast den nåværende miljøtilst<strong>and</strong>en og eventuelle nylige endr<strong>in</strong>ger.<br />

Den største trusselen mot miljøet er gruve- og fabrikkanleggene i Nikel og Zapoljarnij. De forurensede utslippene fra smelteverkene<br />

er tungmetaller, persistente organiske forb<strong>in</strong>delser (POPs), og svoveldioksid (SO 2<br />

). Forurensn<strong>in</strong>g, klimaendr<strong>in</strong>ger, vannreguler<strong>in</strong>g,<br />

og <strong>and</strong>re menneskeskapte påvirkn<strong>in</strong>ger har konsekvenser for det akvatiske økosystemet i grenseområdet.<br />

Kobber og nikel er de mest framtredende tungmetallene som slippes ut fra smelteverkene, hvor de høyeste nivåene er målt<br />

nærmest smelteverket. Smelteverket slipper ut avløpsvann til nærliggende elver og tungmetaller til luft som kan langtransporters<br />

i atmosfæren. Det er tydelige tegn til klimaendr<strong>in</strong>ger, høyere temperaturer og mer nedbør på Kolahalvøya. Vannst<strong>and</strong>en i Pasvikelva<br />

blir regulert med syv vannkraftverk, dette har resultert i at elva har fått et <strong>in</strong>nsjøliknende preg.<br />

Denne rapporten tar også for seg modeller<strong>in</strong>g for å kunne anslå effektene av klimaendr<strong>in</strong>ger i Enaresjøen og Pasvikelva.<br />

Modeller<strong>in</strong>gen vil også kunne anslå i hvilken grad endr<strong>in</strong>ger i vannst<strong>and</strong>en, økologi og SO 2<br />

sluppet ut fra Penchenganikel har<br />

på miljøet i regionen. På bakgrunn av en rekke miljøundersøkelser er konsekvensene av forurensede utslipp og klimaendr<strong>in</strong>ger<br />

estimert. Hvilke konsekvenser vannreguler<strong>in</strong>g har på miljøtilst<strong>and</strong>en og det akvatiske miljøet er også blitt undersøkt.<br />

Emneord<br />

Miljø, overvåkn<strong>in</strong>g, luftkvalitet, klimaendr<strong>in</strong>ger, vannkvalitet, akvatisk, økosystem, Pasvikelva, tungmetaller, POPs<br />

ISBN (trykk)<br />

978-952-314-258-9<br />

ISBN (PDF)<br />

978-952-314-259-6<br />

ISSN-L<br />

2242-2846<br />

ISSN (trykk)<br />

2242-2846<br />

ISSN (webbpublikasjon)<br />

2242-2854<br />

www<br />

www.doria.fi/ely-keskus<br />

URN<br />

URN:ISBN:978-952-314-259-6<br />

Språk<br />

engelsk<br />

Antal sider<br />

165<br />

Salg / Distributør av utgivelsen<br />

Lappl<strong>and</strong> nær<strong>in</strong>sutvikl<strong>in</strong>g, samferdsel og miljøsentral<br />

PL 8060, FI-96101 Rovaniemi<br />

Tel.+358 40 526 2821. Fax +358 16 310 340<br />

Reporten f<strong>in</strong>nes på Internet: www.doria.fi<br />

Utgiversted og -år<br />

Rovaniemi 2015<br />

Trykksted<br />

Juvenes Pr<strong>in</strong>t<br />

169


REPORTS 41 | 2015<br />

ENVIRONMENTAL CHALLENGES IN THE JOINT BORDER AREA OF NORWAY, FINLAND<br />

AND RUSSIA<br />

Centre for Economic Development, Transport <strong>and</strong> <strong>the</strong> Environment for Lapl<strong>and</strong><br />

ISBN 978-952-314-258-9 (pr<strong>in</strong>t)<br />

ISBN 978-952-314-259-6 (PDF)<br />

ISSN-L 2242-2846<br />

ISSN 2242-2846 (pr<strong>in</strong>t)<br />

ISSN 2242-2854 (onl<strong>in</strong>e)<br />

URN:ISBN:978-952-314-259-6<br />

www.doria.fi/ely-keskus | www.ely-keskus.fi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!