01.10.2015 Views

GS FLX/Junior Titanium Technology

GS FLX/Junior Titanium Technology

GS FLX/Junior Titanium Technology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

www.454.com<br />

<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Titanium</strong> <strong>Technology</strong>


<strong>GS</strong> – <strong>FLX</strong> and <strong>GS</strong> <strong>Junior</strong>


Process Steps<br />

Overview<br />

gDNA<br />

1. DNA Library Construction *<br />

4h<br />

2. emPCR<br />

3. Sequencing<br />

8 h 10 h<br />

Data output<br />

DNA Library Preparation<br />

• Prepare single-stranded<br />

DNA library with adapters<br />

• Ready for titration<br />

sequencing run**<br />

emPCR<br />

• sstDNA with adaptors<br />

attached to bead<br />

• Clonally amplified<br />

sstDNA in emulsion<br />

• sstDNA ready to<br />

sequence<br />

Sequencing<br />

• Quality filtered<br />

bases<br />

*One library provides enough DNA for thousands of sequencing runs..


Process Steps<br />

1. DNA library Construction Overview<br />

gDNA<br />

1. DNA Library Construction *<br />

5.5 h<br />

2. emPCR<br />

3.<br />

Sequencing<br />

8 h 9 h<br />

Data output<br />

gDNA<br />

sstDNA<br />

library


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Nebulization<br />

• Nebulization shears double-stranded DNA into fragments<br />

ranging from 50 to 1000 base pairs<br />

• High-pressure nitrogen gas is used to force the sample<br />

into small droplets of liquid which shears the DNA


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Fragment End Polishing, A tailing<br />

Bluntingoffrayedends+ A tailingforligationofadaptors<br />

Filling of 3’ recessed ends<br />

Removal of 3’ overhang ends<br />

A<br />

A<br />

A tailing


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Rapid Library Adaptor<br />

Quantify FAM<br />

T<br />

A<br />

A<br />

T<br />

A<br />

A<br />

Ligase &<br />

Adaptor<br />

SPRI with<br />

Sizing Solution<br />

T<br />

A<br />

A<br />

T<br />

T<br />

T<br />

Feature<br />

Protocol Time<br />

Protocol Steps<br />

DNA Input Requirement<br />

Bioanalyzer Chips Required<br />

Columns Required<br />

Optional MID Adaptors Kit<br />

Library Quantification<br />

Automation Friendly<br />

Number of Preps per Kit<br />

Rapid Library<br />

2 - 3 hours<br />

7<br />

500 ng<br />

1<br />

1<br />

Yes<br />

1 step<br />

(integrated)<br />

Yes<br />

12


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Example of a Library Sample Run on a Bioanalyzer High<br />

Sensitivity Chip


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Emulsion PCR<br />

gDNA<br />

1. DNA Library Construction *<br />

2.5 h<br />

2. emPCR<br />

8 h 9 h<br />

3. Sequencing<br />

Data output<br />

Anneal sstDNA to an<br />

excess of DNA<br />

Capture beads<br />

Emulsify DNA Capture<br />

beads and PCR<br />

reagents in water-in-oil<br />

microreactors<br />

Clonal amplification<br />

occurs inside<br />

microreactors<br />

Break microreactors<br />

and enrich for DNApositive<br />

beads<br />

sstDNA library<br />

Clonally-amplified sstDNA attached to bead


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Annealing of single-stranded to DNA capture beads<br />

• from DNA quantitation:<br />

calculate a DNA molecule to bead<br />

ratio<br />

• Anneal:<br />

one DNA molecule<br />

to each Capture bead<br />

Annealing of single-stranded<br />

template to DNA capture beads


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Emulsion PCR<br />

• Add PCR reagents to<br />

DNA+Capture bead<br />

,<br />

• Transfer sample to tube or<br />

cup with oil<br />

• Shake to emulsify<br />

• 1 starting effective fragment<br />

per microreactor<br />

• ~10 6 microreactors per ml<br />

• All processed in parallel<br />

• Microreactors contain<br />

complete amplification mix


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Emulsion formation<br />

Emulsion oil and PCR mix containing capture<br />

beads are mixed using a high-speed shaker.<br />

15


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Emulsion PCR<br />

• Emulsion oil – Before and After for<br />

Small Volume Emulsions (SVE)<br />

• After emulsions are created, dispense<br />

into PCR tubes/plates<br />

Titanimu kits – 4x PCR plate<br />

<strong>Junior</strong> - 1x PCR plate


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Emulsion PCR<br />

DNA Capture Beads


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Emulsion PCR<br />

Before PCR<br />

After PCR<br />

• All samples processed in parallel<br />

• “B” attached to capture bead<br />

• “A” primer is in solution<br />

• Microreactors are amplified simultaneously<br />

• Each capture bead will contain ~30 million clonal copies


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Breaking the Emulsion<br />

• LARGE VOLUME EMULSION BREAKING<br />

• Large Volume Breaking kit will include:<br />

– Transfer pipette for aspirating emulsions from<br />

plate<br />

– 50mL conical tube cap adaptors<br />

– Tubing shown in image<br />

• Breaking apparatus is connected to a vacuum<br />

source supplied by the customer<br />

• SMALL VOLUME EMULSION<br />

BREAKING<br />

• Load Emulsion into Syringe<br />

• Pass Emulsion through Filter (beads are<br />

retained)<br />

• Wash Beads using filterwith isopropanol<br />

• Recover beads from filter<br />

• Emulsion is aspirated from plate using apparatus<br />

• Plate is washed using isopropanol<br />

• After collection samples undergo washes using<br />

centrifugation to complete breaking procedure


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Enrichment (<strong>Titanium</strong> kits)<br />

melt<br />

solution<br />

+<br />

• Melt Solution added to create single stranded fragments bound to control beads<br />

• Biotinylated Enrichment primer is annealed to fragments on capture beads<br />

• Enrichment beads are added<br />

• Beads with DNA product are extracted using streptavidin coated, magnetic Enrichment<br />

Beads<br />

Approximately 10% of beads have bound product


Process Steps<br />

3. Sequencing<br />

gDNA<br />

1. DNA Library Construction *<br />

2.5 h<br />

2. emPCR<br />

3. Sequencing<br />

8 h 10 h<br />

Data output<br />

• Well diameter average for<br />

PicoTiterPlate is 29 µm<br />

• A single clonally amplified sstDNA<br />

bead is deposited per well.<br />

• Layers of packing, enzyme and PPiase<br />

Beads are deposited<br />

• Plate is loaded into instrument for<br />

sequencing<br />

Amplified sstDNA library beads<br />

Packed PTP


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Anneal Sequencing Primer<br />

• Sequencing primer is annealed<br />

• Excess primer is removed through a series of washes<br />

• Beads are counted<br />

Beads are ready to run!


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Depositing DNA beads into the PicoTiterPlate<br />

Load beads into<br />

PicoTiterPlate TM<br />

<strong>Titanium</strong> PicoTiter plate<br />

• 34 micron center to center<br />

• 29 micron diameter<br />

• 3,200,000 wells per 60 x 60mm<br />

23


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Assembling the jig for bead deposition<br />

The PTP is placed on the jig<br />

bottom, a gasket is applied, the<br />

jig top is placed over top and<br />

clamped securely in place.<br />

24


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Load Beads into PicoTiterPlate<br />

Each chamber is filled with<br />

- DNA beads<br />

- sequencing beads<br />

- packing beads<br />

25


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Depositing beads into the PicoTiterPlate<br />

Load enzyme beads<br />

Load paking beads<br />

DNA beads packed into<br />

wells with surrounding<br />

beads and sequencing<br />

enzymes.<br />

26


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Depositing beads into the PicoTiterPlate<br />

34 µm pitch, 29 µm diameter wells


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Sequencing instrument<br />

29


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Sequencing-by-synthesis<br />

Simultaneous sequencing of the entire<br />

genome in hundreds of thousands of<br />

picoliter-size wells.<br />

Pyrophosphate signal generation upon<br />

complementary nucleotide<br />

incorporation — dark otherwise.<br />

•Polymerase adds nucleotide (dATP)<br />

•Pyrophosphate is released (PPi)<br />

luciferin<br />

•Sulfurylase creates ATP from PPi<br />

•Luciferase hydrolyses ATP and<br />

uses luciferin to make light


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Sequencing-by-synthesis<br />

Repeated dNTP flow sequence:<br />

G<br />

T<br />

C<br />

A<br />

A A T C G G C A T G C T A A A A G T C A<br />

T T A G C C G T A C G CA T T T AGT GTC TCA CA<br />

G TG<br />

Anneal Primer<br />

Simultaneous sequencing in hundreds of thousands of picoliter-size wells<br />

Pyrophosphate signal generation upon complimentary nucleotide incorporation<br />

— dark otherwise.


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> <strong>Technology</strong><br />

Massive parallelization<br />

<strong>FLX</strong> <strong>Titanium</strong><br />

<strong>Junior</strong><br />

400 – 500 bases read length<br />

x<br />

~ 1 000 000 reads<br />

400 – 500 bases read length<br />

x<br />

~ 100 000 reads<br />

~ 450 Million Bases / run<br />

~ 40 Million Bases / run<br />

34


What is the <strong>GS</strong> <strong>Junior</strong> System?<br />

5922160001<br />

<strong>GS</strong> <strong>Junior</strong> Complete<br />

<strong>GS</strong> <strong>Junior</strong> Sequencer<br />

<strong>GS</strong> <strong>Junior</strong> Monitor and Accessories<br />

<strong>GS</strong> <strong>Junior</strong> Computer and Accessories<br />

<strong>GS</strong> <strong>Junior</strong> Installation Kit


Performance Summary<br />

<strong>GS</strong> <strong>Junior</strong> System<br />

Throughput<br />

Read Length<br />

HQ Reads per Run<br />

Accuracy<br />

Run Time<br />

Sample Input<br />

Computing<br />

Physical Dimensions<br />

Robustness<br />

> 35 million high-quality, filtered bases per run average<br />

400 bases average (<strong>GS</strong> <strong>FLX</strong> <strong>Titanium</strong> Series)<br />

100,000 shotgun, 70,000 amplicon average<br />

Q20 read length of 400 bases (99% accuracy at 400 bases)<br />

10 hours sequencing, 2 hours data processing<br />

Purified gDNA, amplicons, cDNA, depending on application<br />

Linux-based OS on desktop PC, included. Point-and-click<br />

software<br />

40 cm high x 40 cm wide x 60 cm deep (size of a laser printer)<br />

No complex optics or lasers; long-life reagents<br />

*Per run specifications is for shotgun libraries, and can vary based on the organism and genomic<br />

content. Reference organism is E. coli.


<strong>GS</strong> <strong>FLX</strong>/<strong>Junior</strong> System Flexibility<br />

Multiplex Identifiers (MIDs)<br />

www.roche-applied-science.com<br />

40


Unique combination of read length & reads<br />

The broadest applications portfolio<br />

De Novo Sequencing<br />

• Microorganisms (genome plasticity)<br />

• Complex eukaryotic genomes (Plants, Animals)<br />

• BACs, YACs, Fosmids, Viruses etc.<br />

• Long and short paired-end sequencing available<br />

Resequencing<br />

• Whole Genomes<br />

• Disease associated regions<br />

•Structural variations of the human genome<br />

• Somatic mutations (cancer research via amplicon sequencing)<br />

Transcriptome Analysis<br />

• Expression profiling (e.g. SAGE-like, CAGE-like, GIS-PET)<br />

• EST-sequencing<br />

• Full length cDNA sequencing<br />

Gene Regulation Studies<br />

• Identification of transcription factor binding sites (ChIP-Sequencing)<br />

• Identification and quantification of sncRNAs sequences<br />

Epigenetic Changes<br />

• DNA-Methylation patterns<br />

Metagenomes & Microbial Diversity<br />

• Shotgun sequencing of the metagenome<br />

• 16S amplicon sequencing<br />

Ancient DNA<br />

• Neanderthals, Mammoths and many more<br />

Over 1000 high-profile publications

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!