29.09.2015 Views

BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI

buletinul institutului politehnic din iaşi - Universitatea Tehnică ...

buletinul institutului politehnic din iaşi - Universitatea Tehnică ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

16 Ion Crăciun<br />

where the scalar Laplace operator of a scalar f , denoted by<br />

and<br />

2 2<br />

2 1 f 1 f f<br />

f<br />

∂ ⎛<br />

r<br />

∂ ⎞<br />

∇ = + ∂ +<br />

∂<br />

2 2 2<br />

⎜ ⎟<br />

r ∂r⎝<br />

∂r ⎠ r ∂θ ∂z<br />

,<br />

2<br />

∇ f , is<br />

(29)<br />

2 2 1<br />

∇<br />

0<br />

=∇ −<br />

2 .<br />

(30)<br />

r<br />

By starting with (9), and by taking into account (26)-(28) we arrive to the<br />

differential system of steady vibrations of micropolar elasticity in cylindrical<br />

coordinates<br />

⎧ ⎛ 0 2 ∂uθ<br />

⎞ ∂( ∇· u) ⎛1∂φz<br />

∂φθ<br />

⎞<br />

⎪( μ+ α) ⎜ 2<br />

ur<br />

− ( λ μ α) 2 X 0,<br />

2<br />

r<br />

r θ<br />

⎟+ + − + α<br />

r<br />

⎜ −<br />

r θ z<br />

⎟+ =<br />

⎪ ⎝ ∂ ⎠ ∂ ⎝ ∂ ∂ ⎠<br />

⎪<br />

⎪ ⎛ 0 2 ∂ur<br />

⎞ 1 ∂( ∇· u)<br />

⎛∂φr<br />

∂φz<br />

⎞<br />

( μ+ α) 2<br />

uθ<br />

+ + ( λ+ μ− α) + 2α<br />

− + X 0,<br />

2<br />

θ<br />

=<br />

⎪<br />

⎜<br />

r θ<br />

⎟<br />

r θ<br />

⎜<br />

z r<br />

⎟<br />

⎝ ∂ ⎠ ∂ ⎝ ∂ ∂ ⎠<br />

⎪<br />

⎪<br />

∂( ∇· u) 2α<br />

⎛ ∂ ∂φr<br />

⎞<br />

⎪( μ+ α) 2uz<br />

+ ( λ+ μ− α) + ⎜ ( rφθ<br />

) − ⎟+ X<br />

z<br />

= 0,<br />

⎪<br />

∂z r ⎝∂r ∂θ<br />

⎠<br />

⎨<br />

⎪ ⎛ 0 2 ∂φθ<br />

⎞ ∂( ∇ϕ · ) ⎛1∂uz<br />

∂uθ<br />

⎞<br />

⎪<br />

( γ+<br />

ε)<br />

⎜ 4<br />

φr<br />

− + ( β+ γ− ε) + 2α − + Y 0,<br />

2<br />

r<br />

=<br />

r ∂θ ⎟<br />

∂r ⎜<br />

r ∂θ<br />

∂z<br />

⎟<br />

⎪<br />

⎝ ⎠ ⎝ ⎠<br />

⎪<br />

⎛ 0 2 ∂φur<br />

⎞ 1 ∂( ∇· φ)<br />

⎛∂ur<br />

∂uz<br />

⎪<br />

⎞<br />

( γ+ ε) ⎜ 4<br />

φθ<br />

+ ( β γ ε) 2α Y 0,<br />

2 ⎟+ + − + ⎜ − ⎟+ θ<br />

=<br />

⎪ ⎝ r ∂θ ⎠ r ∂θ ⎝ ∂z ∂r<br />

⎠<br />

⎪<br />

⎪<br />

∂( ∇· φ) 2α<br />

⎛ ∂ ∂ur<br />

⎞<br />

⎪( γ+ ε) 4φz<br />

+ ( β+ γ− ε) + ⎜ ( ruθ<br />

) − ⎟+ Yz<br />

= 0,<br />

⎩<br />

∂z r ⎝∂r ∂θ<br />

⎠<br />

(31)<br />

where u= urer + uθeθ + uzez,<br />

φ = φrer + φθeθ + φze<br />

z.<br />

are the amplitudes of the<br />

displacement vector and rotation vector, and X = X<br />

rer + Xθeθ + Xze z<br />

and<br />

Y= Ye<br />

+ Y e + Ye<br />

are the amplitudes of body and couple-body loadings,<br />

r r θ θ z z .<br />

respectively, while the operators<br />

0 0<br />

2,<br />

4<br />

are determined by<br />

4. Axially-symmetric Problems<br />

2 2 1<br />

∇<br />

0<br />

=∇ −<br />

2 .<br />

r<br />

Consider now the case of axially-symmetric deformations of the body B<br />

assuming that all the causes and effects are independent of the variable θ .<br />

Consequently, we find that system (28) splits into two independent systems.<br />

The first of them contains the displacement u= urer + uzezand the rotation<br />

φ = φ θ<br />

e θ<br />

, while in the second system there appears the displacement u= uθeθ<br />

and the rotation φ = φre+ φze<br />

z.<br />

The first system is

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!