22.09.2015 Views

Association

Magnetic Oxide Heterostructures: EuO on Cubic Oxides ... - JuSER

Magnetic Oxide Heterostructures: EuO on Cubic Oxides ... - JuSER

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

54 3. Experimental details<br />

Fig. 3.19a,<br />

I rl (c,d,λ)=e −<br />

I sub (c,d,λ)=e −<br />

∫<br />

d d+c<br />

λcap cosα<br />

e −<br />

d<br />

∫ ∞<br />

d+c<br />

λcap cosα<br />

e −<br />

d+c<br />

x<br />

λ rl cosα<br />

dz, and (3.13)<br />

x<br />

λ sub cosα<br />

dz. (3.14)<br />

In the next step, we express the fraction of spectral contribution of the reaction layer f rl with<br />

respect to the bulk intensity. Here, the measured intensities I have to be normalized by λ and<br />

the density n of contributing atoms in the particular layer,<br />

I rl (c,d,λ) calc meas<br />

= f<br />

I sub (c,d,λ) rl = I rl<br />

· λsubnsub<br />

. (3.15)<br />

I sub λ rl n rl<br />

This equation (3.15) contains the thickness of the buried reaction layer c. Because it is not<br />

analytically solvable, a Taylor expansion of c to the 2nd order is applied which lets c be<br />

expressed as<br />

λ<br />

λ rl λ cap ∗λ sub cosα<br />

e rl cosα<br />

λ sub cosα √ λ rl λ cap ∗<br />

c =<br />

+<br />

·<br />

λ sub λ cap ∗ − 2λ sub λ rl − 2λ rl λ cap ∗ λ sub λ cap ∗ − 2λ sub λ rl − 2λ rl λ cap ∗<br />

d<br />

d<br />

λ<br />

√2f rl λ cap ∗λ sub e rl cosα λ<br />

− 4f rl λ rl λ sub e rl cosα λ<br />

− 4f rl λ rl λ cap ∗e rl cosα λ<br />

− λ rl λ cap ∗e sub cosα<br />

( )<br />

d<br />

d 2<br />

.<br />

λ<br />

−e sub cosα λ<br />

e rl cosα<br />

d<br />

d<br />

d<br />

(3.16)<br />

In order to determine the thickness of possible reaction layers of EuO on a silicon surface<br />

(SiO x or EuSi 2 ), this expression is applied to Si 1s or Si 2p HAXPES spectra of EuO/Si heterostructures<br />

investigated in this work.<br />

A consistent chemical characterization of the reaction layer at the functional EuO/Si interface<br />

can be achieved by the additional evaluation of HAXPES spectra from the magnetic oxide<br />

layer in direct contact with the Si substrate. Here, the photoelectrons from the bottom layer<br />

in the EuO oxide (ox) layer carry information about the electronic structure of a possible<br />

reaction layer (rl). Hence, the HAXPES intensities are modeled according to Fig. 3.19b as<br />

I rl (a,b,c,λ)=e −<br />

I ox (a,b,λ)=e −<br />

∫<br />

a+b a+b+c<br />

λ cap ∗ cosα<br />

e − x<br />

a+b<br />

∫<br />

a a+b<br />

λcap cosα<br />

e − x<br />

a<br />

λ rl cosα<br />

dz, and (3.17)<br />

λox cosα<br />

dz. (3.18)<br />

The measured photoelectron spectra have to be normalized (similar to eq. (3.15)), and this<br />

fraction is compared with the modeled fraction, so that I rl(a,b,c,λ) calc meas<br />

= f<br />

I ox (a,b,λ) rl = I rl<br />

I · λoxn ox<br />

ox λ rl n<br />

can be<br />

rl<br />

solved analytically to extract the thickness c of the reaction layer as<br />

⎛<br />

⎞<br />

c = −λ rl ln⎜⎝ f λ ox<br />

rl e − aλox+aλcap+bλcap<br />

λcapλox cosα<br />

+ e − (a+b)(λ cap ∗ +λ rl)<br />

λ rl λ cap ∗ cosα<br />

λ<br />

− f ox<br />

λ rl e − a(λox+λcap)<br />

λcapλox cosα<br />

rl λ rl<br />

⎟⎠ · cosα<br />

(3.19)<br />

+ aλ rl + bλ rl + aλ cap ∗ + bλ cap ∗<br />

.<br />

−λ cap ∗

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!