22.09.2015 Views

Association

Magnetic Oxide Heterostructures: EuO on Cubic Oxides ... - JuSER

Magnetic Oxide Heterostructures: EuO on Cubic Oxides ... - JuSER

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

List of Figures<br />

2.1. Phase diagram of single crystal EuO synthesis ................... 6<br />

2.2. Schematics of an Ellingham diagram ........................ 7<br />

2.3. The rare earth electronic structure as a shell scheme for Eu metal. ....... 9<br />

2.4. Band structure of EuO calculated in the LSDA+U approximation ........ 10<br />

2.5. Temperature-dependent scheme of the EuO band gap .............. 10<br />

2.6. Calculated Eu 5d conduction bands ......................... 11<br />

2.7. Ionic radii of Lanthanide ions ............................ 11<br />

2.8. Ferromagnetism in ultrathin EuO films ....................... 15<br />

2.9. Schematics of spin filter tunneling into a semiconductor ............. 16<br />

2.10. Schematic band structure of EuO for different directions k ............ 18<br />

2.11. The three step model of photoemission ....................... 19<br />

2.12. Momentum conservation during photoexcitation ................. 21<br />

2.13. Photoemission from a solid .............................. 22<br />

2.14. Schematics of photoemission spectroscopy ..................... 23<br />

2.15. Photoemission cross-sections of hard X-ray excitation ............... 26<br />

2.16. Comparison of the intensity profiles of elastic photoelectron forward diffraction 27<br />

2.17. Calculated Debye-Waller factors for valence-level photoemission ........ 27<br />

2.18. Universal curve of photoemission from solids ................... 28<br />

2.19. MCD components m J for 2p level photoemission with dominant SO interaction 31<br />

2.20. Reduced m j sublevel energies for p-shells and d-shells dependent on spin–<br />

orbit or exchange coupling .............................. 32<br />

3.1. Surface tensions between substrate and deposited film .............. 36<br />

3.2. Transmission electron micrograph of SiO 2 grown by low temperature silicon<br />

dry oxidation ...................................... 38<br />

3.3. RHEED working principle .............................. 39<br />

3.4. Illustration of the layer-by-layer growth observed by RHEED .......... 39<br />

3.5. LEED working principle ............................... 40<br />

3.6. Cylindrical mirror analyzer ............................. 41<br />

3.7. Details of the Oxide-MBE setup at PGI-6 ...................... 42<br />

3.8. Geometrical arrangement of oxygen nozzles in the Oxide-MBE ......... 43<br />

3.9. Thermal hydrogen cracker .............................. 44<br />

3.10. Measurement principle of a SQUID ......................... 45<br />

3.11. The measurement geometry of a two-axis X-ray diffraction ............ 47<br />

3.12. Reciprocal space mapping and its interpretation ................. 47<br />

3.13. An extra-wide photoemission survey by HAXPES ................. 48<br />

3.14. HAXPES experiment at KMC1 with HIKE endstation ............... 49<br />

3.15. Schematics of the beamline P09 at PETRA III ................... 50<br />

3.16. HAXPES experiment at the P09 beamline (PETRA III) .............. 51<br />

3.17. Photoelectron excitation and damping in a three-layer heterostructure ..... 52<br />

ix

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!