21.09.2015 Views

Manufacturing of functional micro- and nanostructured plastic components

Nanostructured Surfaces - Innov'Days

Nanostructured Surfaces - Innov'Days

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Manufacturing</strong> <strong>of</strong> <strong>functional</strong> <strong>micro</strong>- <strong>and</strong> <strong>nanostructured</strong><br />

<strong>plastic</strong> <strong>components</strong><br />

CSEM<br />

N.Blondiaux, R.Pugin<br />

Bellignat, 08.12.2011


CSEM pr<strong>of</strong>ile<br />

Privately held Innovation Center, incorporated, not for pr<strong>of</strong>it<br />

since 1984, from watchmaking<br />

about 70 shareholders (mostly private)<br />

2010:<br />

close to 70 Mio. CHF annual turnover, c. 400 employees<br />

30 start‐ups created since 2000<br />

Activities:<br />

Applied research (contract with Swiss Government)<br />

Industrialization <strong>of</strong> technologies, product development<br />

Technologies:<br />

Micro‐ <strong>and</strong> Nanotechnology, Information Technology,<br />

<strong>and</strong> System Engineering<br />

Copyright 2011 CSEM | PEP | NBx | Page 1


CSEM pr<strong>of</strong>ile<br />

CSEM centres in Switzerl<strong>and</strong><br />

Thin films optics<br />

(27)<br />

(26)<br />

(21)<br />

Photonics<br />

(285)<br />

Microelectronics<br />

Microsystems technology<br />

Nanotechnology & Life Sciences<br />

System Engineering<br />

Time & Frequency<br />

Microrobotics<br />

Nanomedicine<br />

Copyright 2011 CSEM | PEP | NBx | Page 2


Nanotechnology <strong>and</strong> Life Sciences<br />

Technology Platforms <strong>and</strong> Applications<br />

Nanostructured Surfaces<br />

‐Systems for Life Sciences<br />

Copyright 2011 CSEM | PEP | NBx | Page 3


Nanotechnology <strong>and</strong> Life Sciences<br />

Nanostructured Surfaces<br />

• surface structures from 10 nm to 10 m<br />

• broad range <strong>of</strong> materials (incl SiX, metals)<br />

• inexpensive, scalable processes<br />

• tunable properties: chemical, optical, …<br />

• security features from r<strong>and</strong>om nanometric patterns<br />

• solar cells with light harvesting molecular layers<br />

• self cleaning surfaces<br />

• surfaces with enhanced specific area<br />

Copyright 2011 CSEM | PEP | NBx | Page 4


Nanotechnology <strong>and</strong> Life Sciences<br />

Strategy <strong>and</strong> Technology Bricks developed<br />

• Origination <strong>of</strong> surface/films nanostructures using molecular self-assembly (SA) <strong>and</strong> solgel<br />

processes<br />

• <strong>Manufacturing</strong> by combining SA with high throughput techniques (e.g. large area<br />

coating, <strong>micro</strong>-fabrication or replication techniques) : tooling & replication<br />

• Surface <strong>functional</strong>ization for added <strong>functional</strong>ities<br />

• Integration : the valorization <strong>of</strong> the technologies will depend on the capacity to integrate<br />

them into <strong>functional</strong> devices<br />

Self assembly<br />

Size: 40nm-200nm<br />

Copyright 2011 CSEM | PEP | NBx | Page 5


Nanotechnology <strong>and</strong> Life Sciences<br />

Strategy <strong>and</strong> Technology Bricks developed<br />

• Origination <strong>of</strong> surface/films nanostructures using molecular self-assembly (SA) <strong>and</strong> solgel<br />

processes<br />

• <strong>Manufacturing</strong> by combining SA with high throughput techniques (e.g. large area<br />

coating, <strong>micro</strong>-fabrication [etching] or replication techniques) → tooling & replication<br />

• Surface <strong>functional</strong>ization for added <strong>functional</strong>ities<br />

• Integration : the valorization <strong>of</strong> the technologies will depend on the capacity to integrate<br />

them into <strong>functional</strong> devices<br />

Copyright 2011 CSEM | PEP | NBx | Page 6


Nanotechnology <strong>and</strong> Life Sciences<br />

Strategy <strong>and</strong> Technology Bricks developed<br />

• Origination <strong>of</strong> surface/films nanostructures using molecular self-assembly (SA) <strong>and</strong> solgel<br />

processes<br />

• <strong>Manufacturing</strong> by combining SA with high throughput techniques (e.g. large area<br />

coating, <strong>micro</strong>-fabrication or replication techniques) : tooling & replication<br />

• Surface <strong>functional</strong>ization for added <strong>functional</strong>ities / enhanced properties<br />

• Integration : the valorization <strong>of</strong> the technologies will depend on the capacity to integrate<br />

them into <strong>functional</strong> devices<br />

Copyright 2011 CSEM | PEP | NBx | Page 7


Nanotechnology <strong>and</strong> Life Sciences<br />

Strategy <strong>and</strong> Technology Bricks developed<br />

• Origination <strong>of</strong> surface/films nanostructures using molecular self-assembly (SA) <strong>and</strong> solgel<br />

processes<br />

• <strong>Manufacturing</strong> by combining SA with high throughput techniques (e.g. large area<br />

coating, <strong>micro</strong>-fabrication or replication techniques) : tooling & replication<br />

• Surface <strong>functional</strong>ization for added <strong>functional</strong>ities<br />

• Integration : the valorization <strong>of</strong> the technologies will depend on the capacity to integrate<br />

them into <strong>functional</strong> devices<br />

PCR diagnostic device Biosensor Inserts for replication Filtration membranes<br />

Copyright 2011 CSEM | PEP | NBx | Page 8


Objective <strong>and</strong> Strategy<br />

• Objective:<br />

Develop processes <strong>and</strong> process chains for the low-cost fabrication <strong>of</strong><br />

<strong>micro</strong>-<strong>nanostructured</strong> <strong>components</strong>.<br />

• Strategy:<br />

Origination<br />

Tooling &<br />

replication<br />

Surface<br />

<strong>functional</strong>isation<br />

Integration<br />

Self assembly<br />

processes<br />

Top down<br />

processes<br />

Micr<strong>of</strong>abrication<br />

Electr<strong>of</strong>orming<br />

Hot embossing<br />

Injection molding<br />

MVD: molecular<br />

vapor deposition<br />

For molds <strong>and</strong> final<br />

parts<br />

Combination with<br />

other technologies<br />

(bio, electronics,<br />

robotics)<br />

Copyright 2011 CSEM | PEP | NBx | Page 9


Outline<br />

• Why <strong>nanostructured</strong> surfaces?<br />

• Self assembly<br />

• Polymer self assembly<br />

• Bead self-assembly<br />

• Fabrication <strong>of</strong> µ-<strong>nanostructured</strong> inserts<br />

• Mold-surface <strong>functional</strong>ization<br />

• Replication by hot embossing<br />

• Applications<br />

• Anti-counterfeiting<br />

• PCR diagnostic device<br />

• Conclusion<br />

Copyright 2011 CSEM | PEP | NBx | Page 10


Why <strong>nanostructured</strong> surfaces?<br />

Nanotopography<br />

Optical<br />

properties<br />

Adhesion &<br />

wettability<br />

Biological cell<br />

growth<br />

Specific<br />

surface-area<br />

CSEM’s DID<br />

• Anti-reflective properties<br />

• Structural colours<br />

• Plasmonic<br />

• Superhydrophobicity<br />

• Hemiwicking<br />

• Dry-adhesion<br />

• Cell adhesion<br />

• Cell migration<br />

• Cell differentiation<br />

• Enhanced properties<br />

• More sensitive<br />

sensors<br />

Copyright 2011 CSEM | PEP | NBx | Page 11


Self-assembly<br />

Bottom-up approach<br />

• Three bottom-up techniques:<br />

• Block copolymer self assembly<br />

• Polymer demixing<br />

• Bead self assembly<br />

• Fabrication <strong>of</strong> solutions / formulations <strong>and</strong><br />

deposition <strong>of</strong> the polymer/beads as thin films<br />

• The tunability <strong>of</strong> the process allows the fabrication <strong>of</strong> a wide range <strong>of</strong><br />

structures with lateral sizes from few tens <strong>of</strong> nm to tens <strong>of</strong> μm<br />

Copyright 2011 CSEM | PEP | NBx | Page 12


Self-assembly<br />

Fomulation<br />

Self assembly<br />

Polymer<br />

+ solvent<br />

Size: 40nm-200nm<br />

Dispersion<br />

Stabilisation<br />

Particles<br />

+ solvent<br />

+additives<br />

Steric stabilisation<br />

Size: 100nm-1µm<br />

Copyright 2011 CSEM | PEP | NBx | Page 13


Self-assembly<br />

Deposition<br />

• The polymer solution/bead suspension is then deposited on surfaces as a<br />

thin film<br />

Structured thin film<br />

Polymer blend solution<br />

Block copolymer solution<br />

Bead suspension<br />

- Spin coating<br />

- Dip coating<br />

- Slot die coating?<br />

Copyright 2011 CSEM | PEP | NBx | Page 14


Self-assembly<br />

Examples <strong>of</strong> <strong>micro</strong>-nanopatterns<br />

Block copolymer self assembly<br />

Bead self assembly<br />

Feature size: 30nm-200nm<br />

Feature size: 100nm-1000nm<br />

Polymer demixing<br />

Ref: Bead interference self assembly lithography<br />

2μm<br />

Feature size: 300nm-10µm<br />

Copyright 2011 CSEM | PEP | NBx | Page 15


Self-assembly<br />

Up-scale <strong>of</strong> the processes<br />

Copyright 2011 CSEM | PEP | NBx | Page 16


Self-assembly<br />

Repeatability<br />

Number <strong>of</strong> dots per µm 2<br />

Copyright 2011 CSEM | PEP | NBx | Page 17


Outline<br />

• Why <strong>nanostructured</strong> surfaces?<br />

• Self assembly<br />

• Polymer self assembly<br />

• Bead self-assembly<br />

• Fabrication <strong>of</strong> µ-<strong>nanostructured</strong> inserts<br />

• Mold-surface <strong>functional</strong>ization<br />

• Replication by hot embossing<br />

• Applications<br />

• Anti-counterfeiting<br />

• PCR diagnostic device<br />

• Conclusion<br />

Copyright 2011 CSEM | PEP | NBx | Page 18


Fabrication <strong>of</strong> µ-<strong>nanostructured</strong> inserts<br />

Combination with micr<strong>of</strong>abrication processes<br />

• Self assembled structures are used as etch<br />

masks<br />

• The structures are transferred into hard<br />

materials by RIE/DRIE<br />

• This combination allows the fabrication <strong>of</strong> high<br />

aspect ratio (up to 1:4) in various materials<br />

(polymers, silicon-based materials)<br />

• The dry etching procedure has been optimized<br />

to control the sidewalls <strong>of</strong> the structures<br />

transferred<br />

Copyright 2011 CSEM | PEP | NBx | Page 19


Fabrication <strong>of</strong> µ-<strong>nanostructured</strong> inserts<br />

Combination with micr<strong>of</strong>abrication processes<br />

Copyright 2011 CSEM | PEP | NBx | Page 20


Fabrication <strong>of</strong> µ-<strong>nanostructured</strong> inserts<br />

Fabrication <strong>of</strong> structured inserts<br />

• Integration <strong>of</strong> self assembly processes<br />

in CD/DVD stamper manufacturing<br />

chain<br />

• Fabrication <strong>of</strong> silicon master having<br />

patterns <strong>of</strong> <strong>micro</strong>-nanostructure<br />

• Electr<strong>of</strong>orming <strong>of</strong> nickel shims that can<br />

be integrated in replication tools<br />

• Fabrication <strong>of</strong> polymer «s<strong>of</strong>t shims» for<br />

hot embossing<br />

Copyright 2011 CSEM | PEP | NBx | Page 21


Outline<br />

• Why <strong>nanostructured</strong> surfaces?<br />

• Self assembly<br />

• Polymer self assembly<br />

• Bead self-assembly<br />

• Fabrication <strong>of</strong> µ-<strong>nanostructured</strong> inserts<br />

• Mold-surface <strong>functional</strong>ization<br />

• Replication by hot embossing<br />

• Applications<br />

• Anti-counterfeiting<br />

• PCR diagnostic device<br />

• Conclusion<br />

Copyright 2011 CSEM | PEP | NBx | Page 22


Mold‐surface <strong>functional</strong>ization<br />

How to solve demolding issues?<br />

• Parameters affecting demolding:<br />

• Structure-shapes (draft angle)<br />

• Surface chemistry (release coatings)<br />

• Problem:<br />

Due to the small size <strong>and</strong> high aspect-ratio <strong>of</strong> the structures, very thin<br />

(


Mold‐surface <strong>functional</strong>ization<br />

Mold-surface <strong>functional</strong>ization using MVD<br />

• MVD: Molecular vapor deposition<br />

• in‐situ deposition <strong>of</strong> (in)organic layers (SAMs)<br />

<strong>and</strong> multilayers (laminates) – self limiting process<br />

• low temperature process (35‐100°C)<br />

• coatings with anti‐stiction, hydrophobic, hydrophilic,<br />

biocompatible, protective, etc properties<br />

• MEMS, BioMEMS<br />

• <strong>micro</strong>‐fluidic devices, bio‐chips<br />

• optical sensors, pressure sensors<br />

• inkjet print heads<br />

Copyright 2011 CSEM | PEP | NBx | Page 24


Outline<br />

• Why <strong>nanostructured</strong> surfaces?<br />

• Self assembly<br />

• Polymer self assembly<br />

• Bead self-assembly<br />

• Fabrication <strong>of</strong> µ-<strong>nanostructured</strong> inserts<br />

• Mold-surface <strong>functional</strong>ization<br />

• Replication by hot embossing<br />

• Applications<br />

• Anti-counterfeiting<br />

• PCR diagnostic device<br />

• Conclusion<br />

Copyright 2011 CSEM | PEP | NBx | Page 25


Replication by hot embossing<br />

Fabrication <strong>of</strong> <strong>micro</strong>-<strong>nanostructured</strong> <strong>plastic</strong> parts<br />

• Preliminary results:<br />

Hot embossing in polycarbonate using <strong>micro</strong>-<strong>nanostructured</strong> s<strong>of</strong>t shims<br />

Copyright 2011 CSEM | PEP | NBx | Page 26


Outline<br />

• Why <strong>nanostructured</strong> surfaces?<br />

• Self assembly<br />

• Polymer self assembly<br />

• Bead self-assembly<br />

• Fabrication <strong>of</strong> µ-<strong>nanostructured</strong> inserts<br />

• Mold-surface <strong>functional</strong>ization<br />

• Replication by hot embossing<br />

• Applications<br />

• Anti-counterfeiting<br />

• Diagnostic PCR assay<br />

• Conclusion<br />

Copyright 2011 CSEM | PEP | NBx | Page 27


Application<br />

Anticounterfeiting<br />

• Concept: R<strong>and</strong>om <strong>micro</strong>- <strong>and</strong> nano-structures are fabricated <strong>and</strong> used as<br />

fingerprints for traceability <strong>and</strong> authentification<br />

Few cm<br />

few μm<br />

to<br />

few mm<br />

Human fingerprint<br />

Possibility to injection mold (PE)<br />

Copyright 2011 CSEM | PEP | NBx | Page 28


Application<br />

Anticounterfeiting<br />

• Integration:<br />

Characterization<br />

tools<br />

• Markets:<br />

Pharmaceutics ID documents Luxury goods<br />

Copyright 2011 CSEM | PEP | NBx | Page 29


Application<br />

PCR diagnostic device<br />

• Make PCR to determine the genome <strong>of</strong> the<br />

cell<br />

• Create patterns <strong>of</strong> cells (several cells per<br />

spot)<br />

• Fabricate a <strong>plastic</strong> <strong>micro</strong>scope slide with<br />

patterns <strong>of</strong> cell-repellent structures<br />

Structured: cell repellent<br />

Flat: cell adhesion<br />

Copyright 2011 CSEM | PEP | NBx | Page 30


Human osteosarcoma cells (SaOs-2) on Si pillars<br />

Flat 120nm<br />

200nm 500nm<br />

1m 2 m<br />

3m 4m<br />

Copyright 2011 CSEM | PEP | NBx | Page 31


Conclusion<br />

• Three different self assembly approaches, up-scaled (hundreds <strong>of</strong> cm 2 ), to<br />

create <strong>micro</strong> <strong>and</strong> nanopatterns<br />

• Combination with state <strong>of</strong> the art dry etching techniques to create high aspect<br />

ratio structures<br />

• Integration into CD/DVD stamper manufacturing chain to create replication<br />

tools<br />

• MVD technology used to make conformal release layers<br />

• Applications:<br />

• Anti-counterfeiting: fabrication <strong>of</strong> «nano»fingerprint for traceability <strong>and</strong><br />

authentication<br />

• Diagnostics: fabrication <strong>of</strong> a platform for PCR tests<br />

Copyright 2011 CSEM | PEP | NBx | Page 32


Acknowledgment<br />

• People:<br />

V. Monnier, G. Franc, I. Zhurminsky, B. Satilmis, M. Giazzon, M. Liley,<br />

H. Heinzelmann, R. Pugin<br />

• Funding: FP7 European project<br />

• Contact:<br />

Nicolas Blondiaux: nbx@csem.ch<br />

Raphaël Pugin: rpu@csem.ch<br />

Copyright 2011 CSEM | PEP | NBx | Page 33


Thank you for your attention!


Superhydrophic surfaces<br />

Superhydrophic surfaces<br />

• Lotus leaf • High aspect ratio Si pillars with chemical<br />

surface <strong>functional</strong>isation<br />

10 μm 2 μm<br />

Copyright 2011 CSEM | PEP | NBx | Page 35


Superhydrophic surfaces<br />

Investigation <strong>of</strong> rolling angles<br />

• High hysteresis<br />

Sticky drops<br />

2 μm<br />

• Low hysteresis<br />

Self-cleaning surfaces<br />

2 μm<br />

Jin et al., Advanced Materials 17 (2005).<br />

Copyright 2011 CSEM | PEP | NBx | Page 36


Superhydrophobic surfaces using silicon <strong>micro</strong>pillars<br />

• The wettability <strong>of</strong> the surfaces was also investigated<br />

using wet-mode ESEM.<br />

Problem:<br />

The electron-beam affects<br />

surface-chemistry <strong>and</strong> makes<br />

the surface hydrophilic<br />

Copyright 2011 CSEM | PEP | NBx | Page 37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!