21.09.2015 Views

Diversity of weeds in sorghum.pdf - ResearchGate

Diversity of weeds in sorghum.pdf - ResearchGate

Diversity of weeds in sorghum.pdf - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J.Res. ANGRAU 37(3&4)1-12, 2009<br />

ISOLATION AND CHARACTERIZATION OF MICROSATELLITES IN<br />

OIL PALM (Elaeis gu<strong>in</strong>eensis)<br />

P CHERUKU, K MANORAMA and S. SIVARAMAKRISHNAN<br />

Department <strong>of</strong> Agricultural Biotechnology<br />

College <strong>of</strong> Agriculture, Acharya N.G. Ranga Agricultural University<br />

Rajendranagar, Hyderabad-500030<br />

ABSTRACT<br />

Microsatellites were isolated from Oil Palm (Elaeis gu<strong>in</strong>eensis) by selective hybridization which<br />

<strong>in</strong>volved captur<strong>in</strong>g DNA fragments conta<strong>in</strong><strong>in</strong>g repeat motifs. Two biot<strong>in</strong>ylated oligonucleotides conta<strong>in</strong><strong>in</strong>g Di<br />

and Tr<strong>in</strong>ucleotide repeats were used as probes <strong>in</strong> <strong>in</strong>dividual hybridization reactions, for captur<strong>in</strong>g microsatellites.<br />

Genomic DNA isolated from flush<strong>in</strong>g tender leaves <strong>of</strong> oil palm and digested with RsaI was ligated to Super SNX<br />

ds l<strong>in</strong>kers, hybridized with biot<strong>in</strong>ylated repeat oligonucleotides, and the eluted microsatellite enriched DNA<br />

fragments were amplified by PCR us<strong>in</strong>g Super SNX primer. Enriched DNA fragments were cloned <strong>in</strong> a TA<br />

clon<strong>in</strong>g vector and transformed <strong>in</strong>to E. coli DH-5á competent cells. White colonies were screened and the<br />

clones hav<strong>in</strong>g <strong>in</strong>sert size above 300 bp were selected and sequenced. Of the 30 clones sequenced, 9 were<br />

positive for microsatellites, <strong>of</strong> which, 5 were d<strong>in</strong>ucleotide repeats, 4 were tr<strong>in</strong>ucleotide and imperfect repeats.<br />

SSR primers were designed from the flank<strong>in</strong>g regions <strong>of</strong> microsatellites and PCR conditions were standardized.<br />

Oil palm, is reported to be the highest yielder with the potential <strong>of</strong> 4-6 tonnes <strong>of</strong><br />

vegetable oil per ha (Mielke, 1996). It produces two dist<strong>in</strong>ct oils, palm oil and palm kernel oil,<br />

used for cul<strong>in</strong>ary and <strong>in</strong>dustrial purposes respectively.<br />

Oil palm is a monocotyledonous plant belong<strong>in</strong>g to the palm family (Arecaceae). It is<br />

a s<strong>in</strong>gle stemmed plant i.e., it possesses a s<strong>in</strong>gle shoot apical meristem and grows to 20<br />

metres height. Established trees over 10 years produce about 20 leaves a year. The flowers<br />

are produced <strong>in</strong> dense clusters; each <strong>in</strong>dividual flower is small, with 3 sepals and 3 petals.<br />

Fruit takes 5 to 6 months to mature from poll<strong>in</strong>ation to maturity; it comprises an oily, fleshy<br />

outer layer (the pericarp), with a s<strong>in</strong>gle seed (kernel), also rich <strong>in</strong> oil. Unlike its relative, the<br />

coconut palm, the oil palm does not produce <strong>of</strong>f shoots. It has 16 pairs <strong>of</strong> chromosomes<br />

(2n=32). The genome size is reported to be 3.42 X 10 9 bp, a medium sized genome when<br />

compared with that <strong>of</strong> rice (Rival et al., 1997).<br />

As Oil Palm is a tree crop, breed<strong>in</strong>g selection is slow, with a typical round <strong>of</strong> selection<br />

tak<strong>in</strong>g around 10 years. By develop<strong>in</strong>g genetic markers for this species, the management <strong>of</strong><br />

germplasm can be improved and it helps to <strong>in</strong>vestigate new sources <strong>of</strong> variation for <strong>in</strong>troduction<br />

<strong>in</strong>to breed<strong>in</strong>g programmes, eventually allow<strong>in</strong>g selection <strong>of</strong> traits us<strong>in</strong>g markers before the<br />

E-Mail: makanuri@yahoo.com<br />

1


CHERUKU et al.<br />

trait itself is expressed. This could significantly decrease the breed<strong>in</strong>g cycle time. RFLP<br />

markers were used to assess genetic diversity with<strong>in</strong> palms <strong>of</strong> a specific oil palm breed<strong>in</strong>g<br />

programme by Jack and Mayes (1993). Rival et al.(1998) employed RAPD analysis for the<br />

detection <strong>of</strong> somaclonal variants <strong>in</strong> oil palm . Isoenzymes and AFLP markers were used for<br />

genetic diversity <strong>of</strong> oil palm by Purba et al., (2000). Barcelos et al., (2002) used RFLP and<br />

AFLP to evaluate the genetic diversity, its organisation and the genetic relationships with<strong>in</strong><br />

oil palm (Elaeis oleifera kunth) from America and E. gu<strong>in</strong>eensis (Jacq.), from Africa. Morentzon<br />

et al., (2000) identified two RAPD markers l<strong>in</strong>ked to shell thickness. Work on genetic diversity<br />

and palm identification has been <strong>in</strong>itiated us<strong>in</strong>g RAPD markers, STMS markers at NRCOP<br />

(National research center for Oil Palm) by Mandal and Pillai, (2005).<br />

One <strong>of</strong> the most recent advances <strong>in</strong> molecular genetics is the <strong>in</strong>troduction <strong>of</strong><br />

microsatellite markers to <strong>in</strong>vestigate the genetic diversity <strong>of</strong> natural and hybrid, as well as<br />

transformed populations <strong>of</strong> crops (Balloux and Moul<strong>in</strong>, 2002). Microsatellites are a tandem<br />

array <strong>of</strong> short stretches <strong>of</strong> 2-6 base pairs length, normally repeated about 15 to 30 times and<br />

scattered randomly throughout the genome, found <strong>in</strong> both prokaryotes and eukaryotes<br />

(Bennett, 2000). Their presence <strong>in</strong> genomes <strong>of</strong> all liv<strong>in</strong>g organisms, high level <strong>of</strong> allelic<br />

variation, co-dom<strong>in</strong>ant <strong>in</strong>heritance pattern and potential for automated analysis make them<br />

excellent molecular markers for a number <strong>of</strong> applications. They have been used for a variety<br />

<strong>of</strong> applications like genetic mapp<strong>in</strong>g, level <strong>of</strong> <strong>in</strong>breed<strong>in</strong>g, positional clon<strong>in</strong>g <strong>of</strong> genes, etc<br />

(Schulter et al., 1996). Their flank<strong>in</strong>g regions are usually genetically conserved (Bennet,<br />

2000). Microsatellite primers developed for one species frequently amplify loci <strong>in</strong> related<br />

species.<br />

The major challenge with microsatellites is that they need to be isolated de novo<br />

from most species be<strong>in</strong>g exam<strong>in</strong>ed for the first time. Selective hybridization method is the<br />

most successful method used until now (Karagyozov et al., 1993).<br />

The present study has therefore been undertaken to isolate microsatellites from oil<br />

palm and characterize the isolated microsatellites.<br />

MATERIAL AND METHODS<br />

Flush<strong>in</strong>g tender leaves <strong>of</strong> oil palm ( Elaeis gu<strong>in</strong>eensis Jacq ) were collected from<br />

green house farm <strong>of</strong> College <strong>of</strong> Agriculture, Rajendranagar, ANGRAU, Hyderabad.<br />

2


ISOLATION AND CHARACTERIZATION OF MICROSATELLITES<br />

Oligonucleotides and primers<br />

Two primer sets were used for isolation <strong>of</strong> microsatellites, one for the preparation <strong>of</strong><br />

double strand l<strong>in</strong>ker (ds) named as ‘superSNX24’ and ‘superSNX24 + 4P’, and the other for<br />

confirm<strong>in</strong>g the presence <strong>of</strong> <strong>in</strong>serts, M13 universal forward and reverse primers (sigma). Two<br />

Biot<strong>in</strong>ylated repeat primers (CT, TCG) were also synthesized based on their frequency <strong>in</strong><br />

plant genome. Primer sequences adopted <strong>in</strong> the study are listed <strong>in</strong> Table 1.<br />

Genomic DNA was extracted by modified CTAB method (Sambrook and Russel,<br />

2001). Flush<strong>in</strong>g tender oil palm leaves were extracted with DNA extraction buffer (2% CTAB,<br />

100 mM Tris, 20 mM EDTA, 1.4 M NaCl) preheated at 60ÚC and 200 mg <strong>of</strong> PVP<br />

(Polyv<strong>in</strong>ylpyrolidone). The quality and quantity <strong>of</strong> extracted DNA was judged by compar<strong>in</strong>g it<br />

with uncut ë DNA <strong>in</strong> agarose gel electrophoresis. DNA quantification and purity was checked<br />

by measur<strong>in</strong>g the O.D at 260 nm and 280 nm us<strong>in</strong>g a UV visible spectrophotometer.<br />

Microsatellite capture was performed accord<strong>in</strong>g to the method described by Glenn<br />

and Schable (2005), <strong>in</strong>volv<strong>in</strong>g different steps, namely, restriction digestion us<strong>in</strong>g Rsa I,<br />

preparation and ligation <strong>of</strong> double stranded Super SNX l<strong>in</strong>kers to size selected Rsa1 digest.<br />

After PCR confirmation <strong>of</strong> ligated ds l<strong>in</strong>kers repeat-enrichment was done us<strong>in</strong>g Biot<strong>in</strong>ylated<br />

Oligonucleotides described <strong>in</strong> Table 1, <strong>in</strong>dividually with the two oligonucleotides at their<br />

respective hybridization temperatures . Repeat enrichment was carried out <strong>in</strong> 5 steps, namely,<br />

preparation <strong>of</strong> streptavid<strong>in</strong> magnetic beads, hybridization <strong>of</strong> l<strong>in</strong>ker-ligated genomic DNA with<br />

biot<strong>in</strong>ylated repeat oligo, conjugation <strong>of</strong> biot<strong>in</strong> - streptavid<strong>in</strong> beads, wash<strong>in</strong>g and elution, as<br />

described <strong>in</strong> detail by Glenn and Schable, 2005. Then, amplification <strong>of</strong> repeat enriched DNA<br />

was done us<strong>in</strong>g PCR for each <strong>of</strong> the eluted samples. Each 25 µl reaction volume conta<strong>in</strong>ed<br />

about 2.0 µl <strong>of</strong> eluted DNA, 1 x PCR buffer (Invitrogen), 1.5 mM MgCl 2<br />

(Invitrogen), 0.1 mM<br />

dNTPs (Amersham), 0.5 p moles <strong>of</strong> super SNX24 primer, 0.3 units Taq polymerase (Invitrogen)<br />

and programmed for an <strong>in</strong>itial denaturation step <strong>of</strong> 2 m<strong>in</strong> at 95ÚC followed by 30 cycles <strong>of</strong> 20<br />

sec denaturation at 95ÚC, 20 sec anneal<strong>in</strong>g at 60ÚC, 1.5 m<strong>in</strong> extension at 72ÚC and f<strong>in</strong>al<br />

extension at 72ÚC for 30 m<strong>in</strong> and a hold temperature <strong>of</strong> 15ÚC at the end. All the 5 PCR<br />

reaction products were pooled and stored at 4 0 C until further use.<br />

The repeat enriched DNA fragments obta<strong>in</strong>ed by us<strong>in</strong>g two biot<strong>in</strong>ylated repeat<br />

oligonucleotides were cloned <strong>in</strong>to TA clon<strong>in</strong>g vector (Promega) and transformed <strong>in</strong>to E. coli<br />

DH 5a competent cells as per standard methods (Sambrook and Russel, 2001).<br />

White colonies were screened for the presence <strong>of</strong> the <strong>in</strong>sert by colony PCR and<br />

plasmid DNA from positive clones was isolated for sequenc<strong>in</strong>g us<strong>in</strong>g standard dideoxy<br />

3


CHERUKU et al.<br />

sequenc<strong>in</strong>g protocol (Sanger et al., 1977). The colonies that had <strong>in</strong>serts with more than 300<br />

bp were selected. Plasmid PCR was conducted to further confirm the presence <strong>of</strong> the 300 bp<br />

band and the positive samples were sent for sequenc<strong>in</strong>g us<strong>in</strong>g an automated sequencer.<br />

The sequences were screened for the presence <strong>of</strong> microsatellites manually.<br />

The sequences conta<strong>in</strong><strong>in</strong>g microsatellites with sufficient flank<strong>in</strong>g regions on either<br />

side were submitted <strong>in</strong> primer 3 s<strong>of</strong>tware (http://frodo.wi.mit.edu/cgi-b<strong>in</strong>/primer3/<br />

primer3_www.cgi), for design<strong>in</strong>g primers <strong>of</strong> length 18-22 base length and product sizes <strong>of</strong><br />

150-250 bp.<br />

Standardization <strong>of</strong> primers<br />

Primers were diluted to a concentration <strong>of</strong> 10 picomoles/ml. Fifteen PCR reactions<br />

were set up for each primer <strong>in</strong> a total reaction volume <strong>of</strong> 10 ml conta<strong>in</strong><strong>in</strong>g a f<strong>in</strong>al concentration<br />

<strong>of</strong> 1 X PCR buffer (Invitrogen), 1.5 mM MgCl 2<br />

(Invitrogen), 0.1mM dNTPs (Invitrogen), 20 ng<br />

template DNA, 10 picomoles <strong>of</strong> each forward and reverse primers. As per the primer melt<strong>in</strong>g<br />

temperature [Tm] different anneal<strong>in</strong>g temperatures were programmed <strong>in</strong> eppendorf mastercycler<br />

gradient thermal cycler. Amplified products were detected on 2.5 % agarose gel. The <strong>in</strong>tensity<br />

<strong>of</strong> bands was <strong>in</strong>creased by us<strong>in</strong>g different concentrations <strong>of</strong> MgCl 2.<br />

RESULTS AND DISCUSSION<br />

Rsa1 be<strong>in</strong>g a 4 base cutter, on an average cuts DNA every 256 bases. Digestion <strong>of</strong><br />

genomic DNA was found to be successful, as <strong>in</strong>dicated by a uniform smear visualized on a<br />

1.5% agarose gel (Figure 1). Ligation <strong>of</strong> ds l<strong>in</strong>kers to size selected Rsa1 digest (between 500<br />

to 1000 bp) was confirmed by PCR amplification with l<strong>in</strong>ker specific primer SuperSNX24<br />

(Fig. 2). The l<strong>in</strong>kers will provide the primer b<strong>in</strong>d<strong>in</strong>g site for subsequent PCR steps. They also<br />

provide sites to ease clon<strong>in</strong>g <strong>of</strong> fragments <strong>in</strong>to the vectors that will subsequently be used.<br />

The l<strong>in</strong>kers are compatible with the restriction sites <strong>in</strong> the vector’s multiple clon<strong>in</strong>g site. The<br />

Super SNX primer also <strong>in</strong>corporates a GTTT “pigtail” to facilitate non template ‘A’ addition by<br />

Taq DNA polymerase dur<strong>in</strong>g PCR, which can be used for clon<strong>in</strong>g (Glenn and Schable, 2005).<br />

Efficient attachment <strong>of</strong> ds l<strong>in</strong>kers to Rsa I digest was atta<strong>in</strong>ed at a molar ratio <strong>of</strong> 1:10.<br />

Ligation <strong>of</strong> ds l<strong>in</strong>ker gave a thick smear between 300-1000 bp after confirmation us<strong>in</strong>g PCR<br />

with 2 ìl <strong>of</strong> l<strong>in</strong>ker ligated DNA, which <strong>in</strong>dicated the successful ligation <strong>of</strong> ds l<strong>in</strong>kers to all size<br />

selected Rsa1 digested DNA fragments (Fig. 2).<br />

Hybridization <strong>of</strong> DNA fragments with biot<strong>in</strong>ylated repeat oligonucleotides<br />

was achieved by <strong>in</strong>cubat<strong>in</strong>g the mixture at respective hybridization temperatures, followed<br />

by confirmation by PCR us<strong>in</strong>g l<strong>in</strong>ker specific Super SNX24 primer. A smear was formed<br />

4


ISOLATION AND CHARACTERIZATION OF MICROSATELLITES<br />

between 300-500 bp region <strong>in</strong>dicated the successful hybridization <strong>of</strong> repeat conta<strong>in</strong><strong>in</strong>g DNA<br />

fragments. (Figure 3). To capture the repeat motifs <strong>in</strong> oil palm genome (CT)<br />

10 and (TCG) 10<br />

biot<strong>in</strong>ylated oligo repeats were used as probes, because <strong>of</strong> their high frequency <strong>in</strong> plant<br />

genome, to isolate microsatellite repeats. Hybridization <strong>of</strong> biot<strong>in</strong>ylated oligo aga<strong>in</strong>st Super<br />

SNX l<strong>in</strong>ker ligated genomic digest was carried out separately as it <strong>in</strong>creases the efficiency<br />

<strong>of</strong> isolation at a specific hybridization temperature (Table 2) for each probe. This was done to<br />

ensure a higher efficiency <strong>of</strong> isolation at a specific hybridization temperature for each probe,<br />

which also allows control over hybridization and gives more products for repeats with different<br />

melt<strong>in</strong>g temperatures or repeats that are rare.<br />

The enriched fragments were cloned <strong>in</strong>to pGEM-T easy clon<strong>in</strong>g vector (Promega).<br />

The ligated products were used to transform DH5á competent cells. The presence <strong>of</strong> both<br />

blue and white colonies after transformation <strong>in</strong>dicated the presence <strong>of</strong> <strong>in</strong>serts <strong>in</strong> the vector.<br />

Totally, 100 white colonies were screened for the presence <strong>of</strong> <strong>in</strong>serts by conduct<strong>in</strong>g colony<br />

PCR. Among these 60 colonies were found to be positive for <strong>in</strong>serts, as visualized on a<br />

1.5% agarose gel. The amplification pr<strong>of</strong>iles <strong>of</strong> colony PCR results are shown <strong>in</strong> Figure 4.<br />

Sequenc<strong>in</strong>g<br />

30 positive colonies were randomly selected from the 60 which were found positive<br />

for the <strong>in</strong>serts, as sequenc<strong>in</strong>g is an expensive process. They were grown <strong>in</strong> LB culture<br />

medium and plasmid DNA was isolated for sequenc<strong>in</strong>g <strong>of</strong> the microsatellite repeat conta<strong>in</strong><strong>in</strong>g<br />

regions. Of the 10 microsatellites captured five were GA/CT type, and imperfect repeats like<br />

(CTT) 2<br />

GTT(CTT) 2<br />

(CCT) 3<br />

(CTT) (AAT) (GAA) CAA(GAA) are obta<strong>in</strong>ed with (CT) biot<strong>in</strong>ylated<br />

3, 5, 2 4 10<br />

repeat oligo. With (TCG) biot<strong>in</strong>ylated repeat oligo, (GTC) ATC(ATT) microsatellite was<br />

10 6 9<br />

captured. The types <strong>of</strong> microsatellite repeats captured are listed <strong>in</strong> Table 2. Overall efficiency<br />

<strong>of</strong> the protocol was found to be 30%, as 9 microsatellites were isolated from 30 positive<br />

clones sequenced which is similar when compared to previous reports on selective<br />

hybridization. In Coconut (Cocos nucifera) 1341 microsatellites were captured from 1880<br />

clones (Rivera et al.,1999), and <strong>in</strong> another study 8 microsatellites were captured <strong>in</strong> Oenocarpus<br />

bacaba (Billotte et al., 2005). In Bactris gasipaes 27 clones were show<strong>in</strong>g microsatellite<br />

sequences from 62 positive colones sequenced (Mart<strong>in</strong>ez et al.,2002). Honsho et al., (2005)<br />

reported 6 mango microsatellite loci and Viruel et al., (2005) reported 16 mango microsatellite<br />

loci. Two different repeat conta<strong>in</strong><strong>in</strong>g probes were used <strong>in</strong> hybridization reactions separately.<br />

This <strong>in</strong>dicates that the protocol used is best suited for captur<strong>in</strong>g the di-nucleotide repeat<br />

motifs rather than tri nucleotide repeat motifs. Imperfect repeats were also obta<strong>in</strong>ed <strong>in</strong> coconut<br />

(Rivera et al.,1999), Geum urbanum (Rosaceae) (Arens et al., 2004).<br />

5


CHERUKU et al.<br />

The microsatellite repeats captured were submitted to the Vector Screen s<strong>of</strong>tware <strong>in</strong><br />

NCBI web site (http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html) to remove the vector<br />

sequences. Seven microsatellite sequences hav<strong>in</strong>g sufficient flank<strong>in</strong>g regions were used<br />

for primer design<strong>in</strong>g, us<strong>in</strong>g Primer 3 s<strong>of</strong>tware. Primer designation and product sizes are<br />

given <strong>in</strong> the Table 3.<br />

Primers were standardized with different anneal<strong>in</strong>g temperatures and MgCl 2<br />

concentrations (Figure 5), PCR conditions for the respective primers are given <strong>in</strong> the<br />

Table 3.<br />

N<strong>in</strong>e captured microsatellite conta<strong>in</strong><strong>in</strong>g sequences with flank<strong>in</strong>g regions were<br />

submitted <strong>in</strong> the NCBI (National Center for Biotechnology Information) web site for BLAST-<br />

N (http://www.ncbi.nlm.nih.gov/BLAST/)<br />

Most <strong>of</strong> the microsatellites showed high homology with Prochilodus argenteus<br />

microsatellite sequence, Acacia mellifera subspp. mellifera microsatellite sequence, Oryza<br />

sativa (japonica cultivar- group) genomic DNA, chromosome 12, complete sequence. The<br />

microsatellite (GA) 12<br />

was show<strong>in</strong>g high homology with Elaeis gu<strong>in</strong>eensis microsatellite DNA,<br />

clone mEgCIRO219 and Cocos nucifera microsatellite DNA, clone CncirB6. (AAT) 5<br />

microsatellite was show<strong>in</strong>g high homology with Ostertagia ostertagi mRNA for heat shock<br />

prote<strong>in</strong> 20 (hsp 20).<br />

This work represents the first Indian effort <strong>in</strong> the isolation <strong>of</strong> microsatellites from Oil<br />

palm (Elaeis gu<strong>in</strong>eensis Jacq.). Marker based characterization <strong>of</strong> genomes is generally done<br />

for phylogenetic studies and gene discovery. Elaeis gu<strong>in</strong>eensis microsatellites can serve as<br />

a powerful tool for genetic studies <strong>of</strong> the genus Elaeis, <strong>in</strong>clud<strong>in</strong>g variety identification and<br />

<strong>in</strong>tra or <strong>in</strong>ter-specific genetic mapp<strong>in</strong>g. Phylogenetic <strong>in</strong>formation based on SSR flank<strong>in</strong>g<br />

region sequences makes Elaeis gu<strong>in</strong>eensis SSR markers a potentially useful molecular<br />

resource for any researcher study<strong>in</strong>g the phylogeny <strong>of</strong> palm taxa.<br />

Table 1. List <strong>of</strong> primer sequences<br />

S.No Primer Name Primer Sequence (5’ 3’)<br />

1. Super Snx24 5’GTTTAAGGCCTAGCTAGCAGAATC<br />

2. Super Snx24 +4p 5’pGATTCTGCTAGCTAGGCCTTAAACAAAA<br />

3. M13 F CCCAGTCACGACGTTGTAAAACG<br />

4. M13 R AGCGGATAACAATTTCACACAGG<br />

5. (CT)<br />

10<br />

CTCTCTCTCTCTCTCTCTCT<br />

6. (TCG)<br />

10<br />

TCGTCGTCGTCGTCGTCGTCGTCGTCGTCG<br />

6


ISOLATION AND CHARACTERIZATION OF MICROSATELLITES<br />

Table 2. List <strong>of</strong> microsatellite repeat motifs captured<br />

S.No Clone Insert size( bp ) Repeat motif Biot<strong>in</strong>ylated oligo<br />

1. E 4<br />

376 (GA) 16<br />

(CT)<br />

10<br />

2. B 4<br />

489 (CT) 9<br />

(CG) 3<br />

(CA) 6<br />

(CT)<br />

10<br />

3. C 2<br />

489 (CT) 9<br />

(CG) 3<br />

(CA) 6<br />

(CT)<br />

10<br />

4. E 9<br />

209 (CT) 6<br />

(CT)<br />

10<br />

5. H 4<br />

511 (AAT) 5<br />

(CT)<br />

10<br />

6. C 4<br />

374 (CTT)<br />

2 GTT(CTT) 2<br />

(CT)<br />

10<br />

(CCT)<br />

3 (CTT) 3<br />

7. E 5<br />

362 (GA) 12<br />

(CT)<br />

10<br />

8. B 10<br />

546 (GAA) 2<br />

CAA(GAA) 4<br />

(CT)<br />

10<br />

9 A 6<br />

- (GTC)<br />

6 ATC(ATT) 9<br />

(TCG)<br />

10<br />

Table 3. List <strong>of</strong> standardized conditions for captured microsatellites.<br />

S. Anneal<strong>in</strong>g MgCl2<br />

Repeat motif<br />

Primer sequences<br />

No Temperature (mM)<br />

(oC)<br />

1 (GA)16 5’CTTGATTGGATGGCGGATAG3’5 58.5 1.5<br />

’GGAATGAACATAGAGCTTTTTCC3’<br />

2 (CT)9(CG)3(CA)6 5’GGACTGCTAGGGTGCCACT3’ 58.5 1.5<br />

CCCCTATAGATGGGGCTGAT<br />

3 (CT)9(CG)3(CA)6 5’GGACTGCTAGGGTGCCACT3’5’ 58.5 1.5<br />

CCCCTATAGATGGGGCTGAT3’<br />

4 (CT)6 5’AATCACATGGGCTTGGGTTA3’ 58.5 2<br />

5’GCAAGAGGGAGAAGAGAGAGAG3’<br />

5 (AAT)5 5’TGGATCCTGGAGATTGCTTT3’ 46.1 2<br />

5’CTCAAGCTATGCATCCAACG3’<br />

6 (CTT) 2 GTT(CTT) 2 5’ATGGCAAAGCTGGAGAAGTG3’ 46.1 2<br />

(CCT) 3 (CTT) 3 5’AGCAGAATCACAGTCACAGCA3’<br />

7 (GA)12 5’CGCGAATTCACTAGTGATT3’ 47.5 2<br />

5’GGTGCTAACAGGTTGAGTTGG3’<br />

7


CHERUKU et al.<br />

1000 bp<br />

500 bp<br />

RD M<br />

M: 100 bp marker RD: Restriction digest <strong>of</strong> genomic<br />

FIGURE 1. Rsa I digested genomic DNA <strong>of</strong> Elaeis gu<strong>in</strong>eensis Jacq.<br />

1000 bp<br />

500 bp<br />

M A N<br />

FIGURE 2. Amplification <strong>of</strong> l<strong>in</strong>ker ligated Rsa I digest<br />

M: 100 bp marker<br />

A: 2ml <strong>of</strong> l<strong>in</strong>ker ligated DNA template<br />

N: Negative control without l<strong>in</strong>ker ligated DNA<br />

8


ISOLATION AND CHARACTERIZATION OF MICROSATELLITES<br />

M A B<br />

M:100bp marker<br />

A: DNA fragments enriched with (CT) 10 repeat oligo<br />

B: DNA fragments enriched with (TCG) 10 repeat oligo<br />

FIGURE 3. Amplification <strong>of</strong> DNA fragments enriched with repeat oligos<br />

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

M:100 bp marker<br />

1: Blue colony<br />

2:16: White colonies<br />

FIGURE 4. Colony PCR <strong>of</strong> transformed colonies<br />

9


CHERUKU et al.<br />

M<br />

______________A______________ ______________B____________<br />

M: 100 bp ladder<br />

A: 3 mM MgCl 2<br />

B: 2 mM MgCl 2<br />

FIGURE 5. Standardization <strong>of</strong> SSR primers for optimization <strong>of</strong> MgCl 2<br />

concentration<br />

REFERENCES<br />

Arens, P., Durka, W., Wernke, J. H and Smulders, J. M. 2004. Isolation and characterization<br />

<strong>of</strong> microsatellite loci <strong>in</strong> Geum urbanun (Rosaceae) and their transferability with<strong>in</strong> the<br />

genus Geum. Moleculor Ecology Notes, 4: 209-212<br />

Balloux, F and Lugon-Moul<strong>in</strong>, N. 2002. The estimation <strong>of</strong> population differentiation with<br />

microsatellite markers. Molecular Ecology, 11(2): 155-165.<br />

Barcelos, E., Amblard, P., Berthaud, J and Segu<strong>in</strong>, M. 2002. Genetic diversity and relationship<br />

<strong>in</strong> American and African oil palm as revealed by RFLP and AFLP molecular markers.<br />

Pesq. agropec. bras.37: 1105-1114.<br />

Bennett, P. 2000. Microsatellites. Journal <strong>of</strong> Cl<strong>in</strong>ical Pathology, 53: 177-183.<br />

Billotte, N., Marseillac, N., Risterucci, A. M., Adon, B., Brottier, P., Baurens, F. C and<br />

Charrier, A. 2005. Microsatellite based high density l<strong>in</strong>kage map <strong>in</strong> oil palm (Elaeis<br />

gu<strong>in</strong>eensis Jacq.). Theory & Applied Genetics110: 754-765.<br />

Glenn, T.C and Schable, N.A. 2005. Isolat<strong>in</strong>g microsatellite DNA loci. Methods <strong>in</strong> Enzymology,<br />

395: 202-222.<br />

Honsho, C., Nishiyama, K., Eiadthong, W and Yonemori, K. 2005. Isolation and<br />

characterization <strong>of</strong> new microsatellite markers <strong>in</strong> mango (Mangifera <strong>in</strong>dica L.). Molecular<br />

Ecology Notes, 5: 152-154.<br />

10


ISOLATION AND CHARACTERIZATION OF MICROSATELLITES<br />

Jack, P. L and Mayes, S. 1993. Use <strong>of</strong> molecular markers for oil palm breed<strong>in</strong>g. II. Use <strong>of</strong><br />

DNA markers (RFLPs). Oleag<strong>in</strong>eux, 48: 1-8.<br />

Karagyozov, L., Kalcheva, I. D and Chapman, V. M. 1993. Construction <strong>of</strong> random small<strong>in</strong>sert<br />

genomic libraries highly enriched for simple sequence repeats. Nucleic Acids<br />

Research, 21: 3911-3912.<br />

Mandal, P. K and Pillai, R. S. N. 2005. Screen<strong>in</strong>g <strong>of</strong> PCR primers for oil palm (Elaeis<br />

gu<strong>in</strong>eensis Jacq.) shell thickness marker. In: Proceed<strong>in</strong>gs <strong>of</strong> the ICAR National<br />

Symposium on Biotechnological Interventions for Improvement <strong>of</strong> Horticultural Crops:<br />

Issues and Strategies. College <strong>of</strong> Horticulture, Kerala Agricultural University, Thrissur,<br />

India. pp. 280-281.<br />

Mart<strong>in</strong>ez, A. K., Gaitan-Solis, E., Duque, M. C., Bernal, R. S and Tohme J, 2002. Microsatellite<br />

loci <strong>in</strong> Bactris gasipaes ( Arecaceae) their isolation and characterization. Molecular<br />

Ecology Notes, 2: 408-410.<br />

Mielke, T. 1996. Outlook for oils and fats from 1996 onwards with special emphasis on oil<br />

palm and kernel oil. PAC sem<strong>in</strong>ars <strong>of</strong> the Palm Oil Research Institute <strong>of</strong> Malaysia<br />

(PORIM), Kuala Lumpur. 28 March 1996.<br />

Moretzsohn, M. C., Nunes, C. D. M., Ferreira, M. E and Grattapagliad 2000. RAPD l<strong>in</strong>kage<br />

mapp<strong>in</strong>g <strong>of</strong> the shell thickness <strong>of</strong> the shell thickness locus <strong>in</strong> oil palm (Elaeis gu<strong>in</strong>eensis<br />

Jacq.). Theory & Applied Genetics, 100: 63-70.<br />

Purba, A. R., Noyer, J. L., Baudou<strong>in</strong>, L., Perrier, X. Hamon, S and Lagoda, P. J. L. 2000.<br />

A new aspect <strong>of</strong> genetic diversity <strong>of</strong> Indonesian oil palm (Elaeis gu<strong>in</strong>eensis Jacq.)<br />

revealed by isoenzyme and AFLP markers and its consequences for breed<strong>in</strong>g. Theory<br />

& Applied Genetics, 101: 956-961.<br />

Rival, A. Beule, T. Barre, P. Hamon, S. Duval, Y and Noirot, M. 1997. Comparative flow<br />

cytometric estimation <strong>of</strong> nuclear DNA content <strong>in</strong> oil palm (Elaeis gu<strong>in</strong>eensis Jacq.)<br />

tissue cultures and seed derived plants. Plant Cell Report, 16: 884-887.<br />

Rival, A., Bertrand, C., Beule, T., Combes M. C., Trouslot, P and Lashermes, P. 1998.<br />

Suitability <strong>of</strong> RAPD analysis for the detection <strong>of</strong> somaclonal variants <strong>in</strong> oil palm (Elaeis<br />

gu<strong>in</strong>eensis Jacq.). Plant Breed<strong>in</strong>g,117 (1): 73-76<br />

Rivera, R., Edwards, K. J., Barker, J. H.A., Arnold, G. M., Ayad, G., Hodgk<strong>in</strong>, T and Karp,<br />

A. 1999. Isoaltion and characterization <strong>of</strong> polymorphic microsatellites <strong>in</strong> Cocos nucifera<br />

L. Genome, 42: 668-675.<br />

11


CHERUKU et al.<br />

Sambrook, J and Russel, D.W. 2001. “Molecular Clon<strong>in</strong>g: A Laboratory Manula.” Cold Spr<strong>in</strong>g<br />

harbor Laboratory Press, Cold Spr<strong>in</strong>g Harbor, Newyark.<br />

Sanger, F., Nicklen, S and Coulson, A.R. 1977. DNA sequenc<strong>in</strong>g with cha<strong>in</strong>-term<strong>in</strong>at<strong>in</strong>g<br />

<strong>in</strong>hibitors, Proceed<strong>in</strong>gs <strong>of</strong> National Academy <strong>of</strong> Sciences, 74: 5463-5467.<br />

Schulter, G. D., Boguski, M. S and Stewart, E. 1996. A gene map <strong>of</strong> the human genome.<br />

Science, 274: 540-546.<br />

Viruel, M. A., Escribano, P., Barbieri, M., Ferri, M and Hormaza, J. I. 2005. F<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g,<br />

embryo type and geographic differentiation <strong>in</strong> Mango (Mangifera <strong>in</strong>dica L.,<br />

Anacardiaceae) with microsatellites. Molecular breed<strong>in</strong>g, 15: 383-393.<br />

12


J.Res. ANGRAU 37(3&4)13-21, 2009<br />

COMBINING ABILITY ANALYSIS FOR PRODUCTIVITY AND FIBRE<br />

QUALITY TRAITS IN INTRA-HERBACEUM AND INTERSPECIFIC<br />

(G. herbaceum L. x G. arboreum L.) CROSSES OF<br />

DIPLOID COTTON<br />

VEMANNA IRADDI and S. T. KAJJIDONI<br />

Department <strong>of</strong> Genetics and Plant Breed<strong>in</strong>g<br />

University <strong>of</strong> Agricultural Sciences, Dharwad -580 005<br />

ABSTRACT<br />

The study was conducted at Ma<strong>in</strong> Agricultural Research Station, Dharwad dur<strong>in</strong>g kharif 2006-07 to<br />

estimate comb<strong>in</strong><strong>in</strong>g ability <strong>in</strong>volv<strong>in</strong>g four female parents <strong>of</strong> Gossypium herbaceum L. and four male parents<br />

<strong>of</strong> each <strong>of</strong> G. herbaceum L. and G. arboreum L. These were evaluated to select donor parents and hybrids for<br />

seed cotton yield and fibre quality traits along with agronomically superior varieties which were used <strong>in</strong> l<strong>in</strong>e x<br />

tester analysis for yield and yield components, economic traits and fibre quality traits. Analysis <strong>of</strong> variance for<br />

comb<strong>in</strong><strong>in</strong>g ability revealed that magnitude <strong>of</strong> SCA variance was greater than GCA variance for all the traits.<br />

This <strong>in</strong>dicated predom<strong>in</strong>ance <strong>of</strong> non-additive gene action, which is important <strong>in</strong> exploitation <strong>of</strong> heterosis<br />

through hybrid breed<strong>in</strong>g. The l<strong>in</strong>e ´ tester analysis for comb<strong>in</strong><strong>in</strong>g ability <strong>of</strong> four l<strong>in</strong>es and eight testers are<br />

crossed to produce 32 F 1<br />

s. The parents KS-16, 9747 and DLSA-17 for seed cotton yield and boll weight,<br />

RAHS-14, RAHS-131, MB-3200 and RDC-53 for 2.5 per cent span length and fibre strength were observed to<br />

be good general comb<strong>in</strong>ers. The crosses KS-16 ´ BLACH-1, RDC-53 ´ MB-3200, RDC-88 ´ DLSA-17, RAHS-<br />

14 ´ MDL-2601, KS-16 ´ MDL-2582, RDC-53 ´ MDL-2582 and RDC-88 ´ DLSA-17 exhibited significant sca<br />

effects for seed cotton yield per plant. In general, RAHS-14, KS-16 and RDC-88 exhibited good general<br />

comb<strong>in</strong><strong>in</strong>g ability for most <strong>of</strong> the yield and fibre quality traits.<br />

Cotton, “The k<strong>in</strong>g <strong>of</strong> apparel fibre” is the most important commercial crop <strong>of</strong> India,<br />

cultivated ma<strong>in</strong>ly for its fibre and other byproducts such as nutritionally desirable oil quality.<br />

Yield be<strong>in</strong>g a complex character and components which contribute towards high yield<strong>in</strong>g<br />

potential <strong>in</strong> cotton needs careful study. Several studies revealed the utility <strong>of</strong> comb<strong>in</strong><strong>in</strong>g<br />

ability analysis <strong>in</strong> cotton <strong>in</strong> predict<strong>in</strong>g the pre-potency on the basis <strong>of</strong> genetic <strong>in</strong>formation. In<br />

any breed<strong>in</strong>g programme, the proper choice <strong>of</strong> parents depend<strong>in</strong>g upon their comb<strong>in</strong><strong>in</strong>g ability<br />

is a pre-requisite. The present <strong>in</strong>vestigation l<strong>in</strong>e x tester design was used to obta<strong>in</strong> <strong>in</strong>formation<br />

on comb<strong>in</strong><strong>in</strong>g ability for yield and yield components, economic traits, and fibre quality traits<br />

<strong>of</strong> genotypes obta<strong>in</strong>ed from lead<strong>in</strong>g centres work<strong>in</strong>g on diploid cotton.<br />

MATERIALS AND METHODS<br />

All the 45 entries consist<strong>in</strong>g <strong>of</strong> four females RAHS-14, KS-16, RDC-53 and RDC-88;<br />

eight males RAHS-131, 9747, MB-3200, BLACH-1, AK-235, DLSA-17, MDL-2601, MDL-<br />

2582 and 32 F 1<br />

s along with agronomically superior variety Jayadhar as check were grown <strong>in</strong><br />

email.id: vemanraddi@gmail.com<br />

13


IRADDI and KAJJIDONI<br />

randomized block design with two replications dur<strong>in</strong>g kharif 2006-07 at Ma<strong>in</strong> Agricultural<br />

Research Station, Dharwad. The crop was planted at 90 and 30 cm distance apart between<br />

row and plant to plant, respectively. Data were recorded for number <strong>of</strong> bolls per plant, boll<br />

weight, seed cotton yield per plant, g<strong>in</strong>n<strong>in</strong>g out turn, l<strong>in</strong>t <strong>in</strong>dex, seed <strong>in</strong>dex, 2.5 per cent span<br />

length, uniformity ratio, fibre strength and micronaire value. The data were averaged and<br />

analysed accord<strong>in</strong>g to the method outl<strong>in</strong>ed by Kempthorne (1957).<br />

RESULTS AND DISCUSSION<br />

Among <strong>in</strong>tra-herbaceum crosses, mean square due to tester were higher <strong>in</strong> magnitude<br />

for boll weight, 2.5 per cent span length and fibre strength. The l<strong>in</strong>es exhibited significant<br />

differences for boll weight and seed cotton yield per plant, whereas l<strong>in</strong>e x tester <strong>in</strong>teractions<br />

were significant for most <strong>of</strong> the traits. In <strong>in</strong>terspecific crosses, the mean squares due to<br />

testers were significant for number <strong>of</strong> bolls per plant and uniformity ratio. The l<strong>in</strong>es exhibited<br />

significant differences for 2.5 per cent span length, uniformity and fibre strength and l<strong>in</strong>e x<br />

tester <strong>in</strong>teractions were significant for most <strong>of</strong> the traits. The estimates <strong>of</strong> gca and sca<br />

variance component revealed that non-additive components were predom<strong>in</strong>ant for all the<br />

characters (Table 1 to 4). The predom<strong>in</strong>ance <strong>of</strong> sca variance <strong>in</strong> diploid cotton for yield and its<br />

component characters were also reported by Neelima (2002) and Laxman and Ganesh (2003).<br />

Yield and yield components<br />

Seed cotton yield is a complex trait, dependent on many other component traits.<br />

Boll number and boll weight <strong>in</strong> <strong>in</strong>traspecific hybrids and boll number <strong>in</strong> <strong>in</strong>terspecific hybrids<br />

were reported as major components <strong>of</strong> yield heterosis <strong>in</strong> diploid cotton (Bhatade, 1983 and<br />

S<strong>in</strong>gh et al., 1995). Hence, <strong>in</strong> the present study, the results <strong>of</strong> these traits are discussed as<br />

component characters <strong>of</strong> seed cotton yield. Among <strong>in</strong>traspecific crosses, parents, KS-16<br />

and 9747 exhibited significant gca effects for seed cotton yield per plant and boll weight.<br />

Hence they are the best general comb<strong>in</strong>ers. Three crosses viz., KS-16xBLACH-1, RDC-53 x<br />

MB-3200 and RDC-88 x RAHS-131 exhibited significant sca effects <strong>in</strong> desirable direction for<br />

seed cotton yield per plant. Out <strong>of</strong> these crosses, KS-16 x BLACH-1 exhibited significant<br />

sca effects for seed cotton yield per plant and number <strong>of</strong> bolls per plant. All the crosses<br />

exhibited negative sca effects for boll weight.<br />

Among <strong>in</strong>terspecific crosses, parent KS-16 had significant gca effects for seed<br />

cotton yield and boll weight <strong>in</strong>dicat<strong>in</strong>g it is best general comb<strong>in</strong>er for these two traits. AK-235<br />

was the good general comb<strong>in</strong>er for seed cotton yield per plant, boll weight and number <strong>of</strong><br />

bolls per plant. The parent DLSA-17 was the good general comb<strong>in</strong>er for seed cotton yield per<br />

plant and boll weight. Five crosses exhibited significant sca effects <strong>in</strong> desirable direction for<br />

seed cotton yield per plant. Out <strong>of</strong> these four crosses viz., RAHS-14xMDL-2601,<br />

14


COMBINING ABILITY ANALYSIS FOR PRODUCTIVITY<br />

KS-16xMDL-2582, RDC-53xMDL-2582 and RDC-88xDLSA-17 exhibited significant positive<br />

sca effects for seed cotton yield per plant and boll weight. These f<strong>in</strong>d<strong>in</strong>gs are <strong>in</strong> accordance<br />

with Neelima (2002). Only one cross viz., RAHS-14 xDLSA-17 exhibited significant positive<br />

sca effects for seed cotton yield per plant and number <strong>of</strong> bolls per plant. The results <strong>of</strong> sca<br />

effects are <strong>in</strong> agreement with the reports <strong>of</strong> Kajjidoni (1982) and Neelima (2002). In contrast<br />

to this, the cross comb<strong>in</strong>ation RDC-53xAK-235 exhibited significant positive sca effects for<br />

only boll weight. This <strong>in</strong>dicates predom<strong>in</strong>ance <strong>of</strong> additive gene effect for number <strong>of</strong> bolls per<br />

plant. Similar f<strong>in</strong>d<strong>in</strong>gs were also reported by Wilson (1991) and Neelima (2002).<br />

Economic traits<br />

Among three economic traits, g<strong>in</strong>n<strong>in</strong>g out turn primarily depends on seed and l<strong>in</strong>t<br />

weight. L<strong>in</strong>t <strong>in</strong>dex is directly governed by g<strong>in</strong>n<strong>in</strong>g per cent and higher estimate <strong>of</strong> l<strong>in</strong>t <strong>in</strong>dex is<br />

desirable. The present f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicated that among <strong>in</strong>tra-herbaceum crosses, RAHS-14<br />

had significant gca effects for g<strong>in</strong>n<strong>in</strong>g out turn, l<strong>in</strong>t <strong>in</strong>dex and seed <strong>in</strong>dex. Hence it is the best<br />

general comb<strong>in</strong>er for these three traits. Similarly, MB-3200 was the good general comb<strong>in</strong>er<br />

for g<strong>in</strong>n<strong>in</strong>g out turn and l<strong>in</strong>t <strong>in</strong>dex. The parents KS-16, RDC-88 and BLACH-1 were good<br />

general comb<strong>in</strong>er for seed <strong>in</strong>dex. The study <strong>of</strong> sca effects <strong>of</strong> economic traits revealed that<br />

two <strong>in</strong>tra-herbaceum crosses viz., RAHS-14xMB-3200 and KS-16x9747 exhibited significant<br />

sca effect for g<strong>in</strong>n<strong>in</strong>g out turn, l<strong>in</strong>t <strong>in</strong>dex and seed <strong>in</strong>dex <strong>in</strong> desirable direction. While two<br />

cross comb<strong>in</strong>ations viz., RDC-53xRAHS-131 and RDC-88xBLACH-1 were good specific<br />

comb<strong>in</strong>ers for g<strong>in</strong>n<strong>in</strong>g out turn and l<strong>in</strong>t <strong>in</strong>dex <strong>in</strong> desirable direction. In contrast to this, four<br />

crosses viz., RAHS-14xBLACH-1, KS-16xRAHS-131, RDC-53x9747 and RDC-88xMB-3200<br />

exhibited significant sca effects for seed <strong>in</strong>dex. These f<strong>in</strong>d<strong>in</strong>gs are <strong>in</strong> conformity with Maisuria<br />

et al. (2006).<br />

In <strong>in</strong>terspecific crosses, RAHS-14 female was good general comb<strong>in</strong>er for g<strong>in</strong>n<strong>in</strong>g<br />

out turn, l<strong>in</strong>t <strong>in</strong>dex and seed <strong>in</strong>dex, while RDC-88, AK-235 and DLSA-17 were good general<br />

comb<strong>in</strong>ers for g<strong>in</strong>n<strong>in</strong>g out turn and l<strong>in</strong>t <strong>in</strong>dex. In contrast to this, RDC-53 and MDL-2582<br />

exhibited significant gca effect for seed <strong>in</strong>dex. Similar f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> sca effects were reported<br />

by Pavasia et al. (1999) and Karande et al. (2004).The study <strong>of</strong> sca effects <strong>of</strong> economic<br />

traits revealed that two <strong>in</strong>terspecific crosses viz., RAHS-14xDLSA-17 and RDC-88xAK-235<br />

exhibited significant sca effect for g<strong>in</strong>n<strong>in</strong>g out turn, l<strong>in</strong>t <strong>in</strong>dex and seed <strong>in</strong>dex <strong>in</strong> desirable<br />

direction. Three crosses viz., KS-16xMDL-2582, KS-16xMDL-2601 and RDC-53xAK-235<br />

exhibited significant sca effect for g<strong>in</strong>n<strong>in</strong>g out turn and l<strong>in</strong>t <strong>in</strong>dex. Two crosses viz.,<br />

KS-16x DLSA-17 and RDC-53xMDL-2582 exhibited significant sca effects for seed <strong>in</strong>dex.<br />

The f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> sca effects are <strong>in</strong> agreement with the results <strong>of</strong> Laxman and Ganesh (2003)<br />

and Maisuria et al. (2006).<br />

15


IRADDI and KAJJIDONI<br />

Fibre quality traits<br />

Among the <strong>in</strong>tra-herbaceum crosses, RAHS-14 was good general comb<strong>in</strong>er for 2.5<br />

per cent span length, uniformity ratio, and fibre strength. But, KS-16 was a good general<br />

comb<strong>in</strong>er for 2.5 per cent span length and micronaire value. The parent RDC-88 was good<br />

comb<strong>in</strong>er for uniformity ratio and fibre strength. The results <strong>of</strong> gca effects are <strong>in</strong> agreement<br />

with the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Neelima (2002) and McCarthy et al. (2004). The parent RDC-53 was a<br />

good general comb<strong>in</strong>er for 2.5 per cent span length and micronaire value. Among male<br />

parents, RAHS-131 and MB-3200 were good general comb<strong>in</strong>ers for 2.5 per cent span length,<br />

fibre strength and micronaire value. Parent BLACH-1 was a good general comb<strong>in</strong>er for fibre<br />

strength. Seven crosses exhibited significant sca effects <strong>in</strong> desirable direction for 2.5 per<br />

cent span length. Out <strong>of</strong> which, five crosses viz., RAHS-14xRAHS-131, RAHS-14x9747,<br />

KS-16xMB-3200, RDC-53x9747 and RDC-88xRAHS-131 exhibited significant sca effects for<br />

2.5 per cent span length and fibre strength. These f<strong>in</strong>d<strong>in</strong>gs are <strong>in</strong> agreement with Muthuswamy<br />

et al. (2003) and Manickam and Gururajan (2004). Five crosses exhibited significant sca<br />

effects for micronaire value. Out <strong>of</strong> which, three crosses viz., RAHS-14xRAHS-131,<br />

KS-16xMB-3200 and RDC-53x9747 exhibited sca effects <strong>in</strong> desirable direction for 2.5 per<br />

cent span length and fibre strength .<br />

In <strong>in</strong>terspecific crosses, RDC-53 female was good general comb<strong>in</strong>er for all the fibre<br />

quality traits viz., 2.5 per cent span length, uniformity ratio, fibre strength, and micronaire<br />

value. The results <strong>of</strong> gca effects are <strong>in</strong> agreement with the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Neelima (2002) and<br />

McCarthy et al. (2004). The parent RDC-88 was good general comb<strong>in</strong>er for some traits except<br />

micronaire value. Among male parents, DLSA-17 was a good general comb<strong>in</strong>er for 2.5 per<br />

cent span length, MDL-2601 was good general comb<strong>in</strong>er for 2.5 per cent span length and<br />

fibre strength while, MDL-2582 was good general comb<strong>in</strong>er for fibre strength. Seven<br />

<strong>in</strong>terspecific crosses exhibited significant sca effects <strong>in</strong> desirable direction for fibre strength.<br />

Out <strong>of</strong> which five crosses viz., RAHS-14xAK-235, KS-16xDLSA-17, KS-16xMDL-2601,<br />

RDC-53xAK-235 and RDC-88xDLSA-17 exhibited significant sca effects for 2.5 per cent<br />

span length and fibre strength. A total <strong>of</strong> n<strong>in</strong>e crosses exhibited significant sca effect for<br />

micronaire value. Out <strong>of</strong> which RAHS-14xAK-235 and KS-16xMDL-2601 exhibited sca effect<br />

<strong>in</strong> desirable direction for 2.5 per cent span length, fibre strength and micronaire value.<br />

In general, the parents RAHS-14, KS-16 and RDC-88 exhibited good general<br />

comb<strong>in</strong><strong>in</strong>g ability for most <strong>of</strong> the yield and fibre quality traits. They can be exploited for<br />

further recomb<strong>in</strong>ation breed<strong>in</strong>g programme to isolate superior segregants for both seed cotton<br />

and fibre quality traits.<br />

16


COMBINING ABILITY ANALYSIS FOR PRODUCTIVITY<br />

Table 1. gca effects <strong>of</strong> female and male parents for yield and yield components and fibre quality traits <strong>of</strong><br />

G. herbaceum L. cotton.<br />

Source<br />

Female parent<br />

Number<br />

<strong>of</strong> bolls<br />

per<br />

plant<br />

Boll<br />

weight<br />

(g)<br />

Seed<br />

cotton<br />

yield<br />

per<br />

plant<br />

(g)<br />

G<strong>in</strong>n<strong>in</strong>g<br />

out turn<br />

(%)<br />

L<strong>in</strong>t<br />

<strong>in</strong>dex<br />

(g)<br />

Seed<br />

<strong>in</strong>dex<br />

(g)<br />

2.5%<br />

span<br />

length<br />

(mm)<br />

Uniformity<br />

ratio (%)<br />

Fibre<br />

strength<br />

(g/tex)<br />

Micronaire<br />

value<br />

(g/<strong>in</strong>)<br />

RAHS-14 0.33 0.10 3.08 1.12** 0.22** 0.11** 0.24**<br />

1.50** 0.59** -0.27**<br />

KS-16 1.27 0.16** 10.27** -1.56** -0.19** 0.09* 0.39** -1.47** -1.06** 0.18**<br />

RDC-53 -0.87 -0.02 -2.73 0.11 -0.09 -0.25** -0.47* -1.19** 0.00 0.15**<br />

RDC-88 -0.73 -0.24** -10.61** 0.33 0.06 0.04* -0.16** 1.18**<br />

0.46** -0.06<br />

GCA l<strong>in</strong>es<br />

CD at 5 % 3.08 0.15 4.64 1.00 0.13 0.04 0.04 0.10 0.10 0.11<br />

Male parent<br />

RAHS-131 2.71* -0.09 0.70 0.61 -0.01 -0.21** 0.36**<br />

1.58** 1.34** 0.10*<br />

9747 0.08 0.28** 8.45** -1.65** -0.23** 0.02 -1.33** -1.82** -2.07** 0.27**<br />

MB-3200 0.02 -0.09 -2.23 1.75** 0.23** -0.03* 2.04**<br />

-0.01 0.64** 0.30**<br />

BLACH-1 -2.81* -0.09 -6.92** -0.71* 0.01 0.22** -1.07**<br />

0.25** 0.10* -0.07<br />

GCA testers<br />

CD at 5 % 3.08 0.15 4.64 1.00 0.13 0.04 0.04 0.10 0.10 0.11<br />

17


IRADDI and KAJJIDONI<br />

Crosses<br />

RAHS-14 RAHS-<br />

131<br />

Table 2. sca effects <strong>of</strong> hybrids for yield and yield components and fibre quality<br />

traits <strong>of</strong> Intra-herbaceum cotton<br />

Number<br />

<strong>of</strong> bolls<br />

per plant<br />

Boll<br />

weight (g)<br />

Seed<br />

cotton<br />

yield per<br />

plant (g)<br />

G<strong>in</strong>n<strong>in</strong>g<br />

out turn<br />

(%)<br />

L<strong>in</strong>t <strong>in</strong>dex<br />

(g)<br />

Seed<br />

<strong>in</strong>dex (g)<br />

2.5% span<br />

length<br />

(mm)<br />

Uniformity<br />

ratio (%)<br />

Fibre<br />

strength<br />

(g/tex)<br />

Micronaire<br />

value<br />

(g/<strong>in</strong>)<br />

-1.21 -0.04 -1.45 -1.81* -0.32** -0.15** 0.54** -1.28** 0.88** 0.26**<br />

RAHS-14 9747 1.42 -0.01 3.30 -0.96 -0.18 -0.14** 0.40** 1.08** 1.12** 0.15<br />

RAHS-14 MB-3200 0.86 0.10 2.98 1.96** 0.35** 0.13** -1.77** 1.07** -1.43** -0.50**<br />

RAHS-14 BLACH-1 -1.07 -0.05 -4.83 0.86 0.15 0.16** 0.83** -0.87** -0.57** 0.09<br />

KS-16 RAHS-131 -0.64 -0.14 -7.14* 0.52 0.15 0.14** -1.80** 0.68**<br />

-1.24 0.01<br />

KS-16 9747 -0.52 0.02 -2.89 2.56** 0.23* 0.12** -0.30** 0.68** 0.82** -0.36**<br />

KS-16 MB-3200 -4.68 0.00 -5.45 0.14 0.03 0.00 3.24** -4.91** 0.25** 0.17*<br />

KS-16 BLACH-1 5.24* 0.12 15.48** -3.23** -0.41** -0.02 -1.14** 3.56**<br />

0.17* 0.17*<br />

RDC-53 RAHS-131 0.24 -0.03 -1.39 1.69* 0.21* -0.02 -0.08** -0.53* -0.81** -0.22<br />

RDC-53 9747 -2.63<br />

0.09 -1.89 -2.27** -0.11 0.37** 0.24* 0.20** 1.45** 0.49**<br />

RDC-53 MB-3200 3.06 0.09 8.30* 0.55 -0.07 -0.28** -0.81** 0.72** -0.49** 0.03<br />

RDC-53 BLACH-1 -0.67 -0.15 -5.02 0.03 -0.04 -0.07* 0.66** -0.39** -0.16* -0.30**<br />

RDC-88 RAHS-131 1.61<br />

0.21 9.98** -0.41 -0.04 0.03 1.34** 1.14** 1.17** -0.05<br />

RDC-88 9747 1.73 -0.10 1.48 0.67 0.06 -0.12** -0.34** -1.96** -3.40** -0.28**<br />

RDC-88 MB-3200 0.17 -0.19 -5.83 -2.65** -0.31** 0.15** -0.66** 3.13** 1.66** 0.30**<br />

RDC-88 BLACH-1 -3.51 0.07 -5.64 2.40** 0.29** -0.06 -0.34** -2.30**<br />

0.56** 0.04<br />

sca effects<br />

CD at 5 % 6.17 0.30 9.29 2.00 0.26 0.09 0.09 0.20 0.21 0.22<br />

18


COMBINING ABILITY ANALYSIS FOR PRODUCTIVITY<br />

Table 3. gca effects <strong>of</strong> female and male parents for yield and yield components and fibre quality traits <strong>in</strong><br />

<strong>in</strong>ter-specific crosses (G. herbaceum L. G. arboreum L.) <strong>of</strong> diploid cotton<br />

Source<br />

Number<br />

<strong>of</strong> bolls<br />

per<br />

plant<br />

Boll<br />

weight<br />

(g)<br />

Seed<br />

cotton<br />

yield<br />

per<br />

plant (g)<br />

G<strong>in</strong>n<strong>in</strong>g<br />

out turn<br />

(%)<br />

L<strong>in</strong>t<br />

<strong>in</strong>dex<br />

(g)<br />

Seed<br />

<strong>in</strong>dex<br />

(g)<br />

2.5%<br />

span<br />

length<br />

(mm)<br />

Uniformity<br />

ratio (%)<br />

Fibre<br />

strength<br />

(g/tex)<br />

Micronaire<br />

value<br />

(g/<strong>in</strong>)<br />

Female parent<br />

RAHS-14 -0.45 -0.09* -3.29* 0.40** 0.07** 0.06** -1.79** -0.38** -3.38** -0.11**<br />

KS-16 1.29 0.18** 6.84** -0.05 0.00 0.02 0.09 -3.20** 0.27** 0.27**<br />

RDC-53 -1.14 -0.00 -2.07 -1.44** -0.14** 0.11**<br />

1.05** 2.28** 1.67** 0.16**<br />

RDC-88 0.30 -0.09* -1.48 1.09** 0.06** -0.19** 0.65** 1.30** 1.44** -0.32**<br />

GCA l<strong>in</strong>es<br />

CD at 5 % 2.92 0.10 4.32 0.40 0.06 0.05 0.18 0.07 0.12 0.06<br />

Male parent<br />

AK-235 3.67** 0.08* 9.09** 0.97** 0.08** -0.12** -0.60** 0.01 -0.18** -0.01<br />

DLSA-17 0.05 0.17** 4.40** 0.43** 0.06** 0.02 0.39** 0.05 -1.69** -0.02<br />

MDL-2582 -2.48* -0.05 -5.73** -1.36** -0.12** 0.13**<br />

-0.04 2.18** 1.31** 0.11**<br />

MDL-2601 -1.24<br />

-0.21** -7.76** -0.04 -0.02 -0.03 0.25** -2.24** 0.56** -0.07**<br />

GCA testers<br />

CD at 5 % 2.98 0.10 4.32 0.40 0.06 0.0586 0.18 0.07 0.12 0.06<br />

19


IRADDI and KAJJIDONI<br />

Table 4. sca effects <strong>of</strong> hybrids for yield and yield mponents co and fibre quality traits <strong>in</strong> <strong>in</strong>ter-specific<br />

crosses (G. herbaceum L. G. arboreum L.) <strong>of</strong> diploid cotton<br />

Crosses<br />

Number<br />

<strong>of</strong> bolls<br />

per plant<br />

Boll<br />

weight (g)<br />

Seed<br />

cotton<br />

yield per<br />

plant (g)<br />

G<strong>in</strong>n<strong>in</strong>g<br />

out turn<br />

(%)<br />

L<strong>in</strong>t <strong>in</strong>dex<br />

(g)<br />

Seed<br />

<strong>in</strong>dex (g)<br />

2.5% span<br />

length<br />

(mm)<br />

Uniformity<br />

ratio (%)<br />

Fibre<br />

strength<br />

(g/tex)<br />

Micronaire<br />

value<br />

(g/<strong>in</strong>)<br />

RAHS-14 AK-235 -4.33* 0.01 -6.09<br />

-0.67* -0.14** -0.11* 0.35* -1.27** 1.54** 0.15**<br />

RAHS-14 DLSA-17 4.17*<br />

-0.05 8.98** 2.11** 0.33** 0.12** 0.57** 0.17** -4.07** 0.25**<br />

RAHS-14MDL-2582 -0.80 -0.23** -13.40**<br />

-0.39 -0.08 -0.08* -0.01 1.65** 2.59** 0.18**<br />

RAHS-14MDL-2601 0.96 0.28** 10.51** -1.05** -0.10* 0.07 -0.91** -0.55**<br />

-0.06 -0.59**<br />

KS-16 AK-235 1.68 -0.24**<br />

-3.21 -3.32** -0.48** -0.22** -1.59** 0.80** -1.90** -0.72**<br />

KS-16 DLSA-17 -1.82 0.12 -4.65<br />

-0.94** -0.06 0.17** 1.03** -0.30** 1.10** -0.51**<br />

KS-16 MDL-2582 2.83 0.24** 15.23** 2.64** 0.36** 0.08 -0.49**<br />

-0.76** -0.19* 0.37**<br />

KS-16 MDL-2601 -2.69<br />

-0.11 -7.37* 1.61** 0.19** 0.02 1.05** 0.26** 0.99* 0.86**<br />

RDC-53 AK-235 1.48 0.17* 4.57 2.13* 0.26** 0.01 1.80** 0.56** 0.49** -0.05<br />

RDC-53 DLSA-17 -2.27<br />

-0.26** -11.99** -0.13 -0.10* -0.22** -1.99** -3.46** 0.53** 0.26**<br />

RDC-53 MDL-2582 -1.36<br />

0.21** 7.13* -1.17** -0.06 0.23** 0.18 1.31** -0.89** 0.26**<br />

RDC-53 MDL-2601 2.15 -0.12 0.29 -0.83** -0.10*<br />

-0.02 0.00 1.59** -0.13 -0.48**<br />

RDC-88 AK-235 1.17 0.06 4.73<br />

1.85** 0.36** 0.33** -0.57** -0.10 -0.13 0.61**<br />

RDC-88 DLSA-17 -0.08<br />

0.20* 7.66* -1.04** -0.16** -0.07 0.39** 3.59** 2.44** 0.00<br />

RDC-88 MDL-2582 -0.67<br />

-0.21** -8.96** -1.08** -0.21** -0.23** 0.33* -2.19** -1.57** -0.82**<br />

RDC-88 MDL-2601 -0.42 -0.05 -3.43 0.28 0.02 -0.03 -0.15 -1.30 -0.80** 0.21**<br />

sca effects<br />

CD at 5 % 5.85<br />

0.20 8.64 0.80 0.12 0.11 0.37 0.14 0.24 0.12<br />

20


COMBINING ABILITY ANALYSIS FOR PRODUCTIVITY<br />

REFERENCES<br />

Bhatade, S. S. 1983. Environmental <strong>in</strong>fluence on the magnitude <strong>of</strong> heterosis <strong>in</strong> G. arboreum<br />

L. Indian Journal <strong>of</strong> Agricultural Science. 53 (8): 627-633.<br />

Kajjidoni, S. T. 1982. Heterosis, comb<strong>in</strong><strong>in</strong>g ability and gene action for earl<strong>in</strong>ess, yield and<br />

yield components <strong>in</strong> 2x10 crosses <strong>of</strong> G. arboreum L. ´ G. herbaceum cotton. M. Sc.<br />

(Agri.) Thesis submitted to University <strong>of</strong> Agricultural Sciences, Bangalore.<br />

Karande, S. S., Wandhare, M. R., Ladole, M. Y., Waode, M. M and Meshram, L. D. 2004.<br />

Heterosis and comb<strong>in</strong><strong>in</strong>g ability studies <strong>in</strong> <strong>in</strong>terspecific diploid cotton hybrids for fibre<br />

quality parameters. International Symposiam on Strategies for Susta<strong>in</strong>able Cotton<br />

Production – A Global Vision 1. Crop Improvement, Dharwad, 23-25 November, 2004.<br />

Kempthorne, O. 1957. An Introduction to Genetic Statistics. John Wiley and Sons, 1 st Edn.,<br />

New York, USA. pp. 456-471.<br />

Laxman, S and Ganesh, M. 2003. Comb<strong>in</strong><strong>in</strong>g ability for yield components and fibre characters<br />

<strong>in</strong> cotton (Gossypium hirsutum L.). The Journal <strong>of</strong> Research ANGRAU. 31 (4): 19-23.<br />

Maisuria, A. T., Patel, J. C., Patel, K. G and Solanki, B. G. 2006. Study <strong>of</strong> best per se<br />

performance, heterosis and comb<strong>in</strong><strong>in</strong>g ability effects for seed cotton yield and its<br />

component characters through GMS system <strong>in</strong> Asiatic cotton. Journal <strong>of</strong> Indian Society<br />

for Cotton Improvement. 31 (2): 88-91.<br />

Manickam, S and Gururajan, K. N. 2004. Comb<strong>in</strong><strong>in</strong>g ability analysis for fibre quality <strong>in</strong><br />

upland cotton (Gossypium hirsutum L.). Journal <strong>of</strong> Indian Society for Cotton<br />

Improvement. 29 (2): 86-91.<br />

McCarthy, J., Jenk<strong>in</strong>s, J. N and Wu, J. 2004. Primitive accession derived germplasm by<br />

cultivar crosses as sources for cotton improvement: II Genetic effects and genotypic<br />

values. Crop Science. 44 (4): 1231-1235.<br />

Muthuswamy, A., Vivekanandan, P and Jayaramachandram, M. 2003. Comb<strong>in</strong><strong>in</strong>g ability<br />

and gene action for fibre characters <strong>in</strong> upland cotton (Gossypium hirsutum L.). Journal<br />

<strong>of</strong> Indian Society for Cotton Improvement. 28 (3): 127-131.<br />

Neelima, S. 2002. Heterosis and comb<strong>in</strong><strong>in</strong>g ability analysis for yield and yield components<br />

<strong>in</strong> cotton (Gossypium hirsutum L.). M. Sc. (Agri.) Thesis submitted to Acharya N. G.<br />

Ranga Agricultural University, Hyderabad.<br />

Pavasia, M. J., Shukla, P. T and Patel, U. G. 1999. Comb<strong>in</strong><strong>in</strong>g ability analysis over<br />

environments for fibre characters <strong>in</strong> upland cotton. Indian Journal <strong>of</strong> Genetics and<br />

Plant Breed<strong>in</strong>g. 59 (1): 77-81.<br />

S<strong>in</strong>gh, H., S<strong>in</strong>gh, S and Omprakash, 1995. Heterotic response <strong>of</strong> ten American cotton hybrids<br />

for some quality traits. Journal <strong>of</strong> Cotton Research and Development. 9 (1): 13-16.<br />

Wilson, F. D. 1991. Comb<strong>in</strong><strong>in</strong>g ability for yield characteristics and earl<strong>in</strong>ess <strong>of</strong> p<strong>in</strong>k boll<br />

worm resistant cotton. Crop Science. 31: 922-925.<br />

21


J.Res. ANGRAU 37(3&4)22-34, 2009<br />

WEED AND CROP RESISTANCE TO HERBICIDES<br />

A. S. RAO<br />

Integrated Weed Management Unit, Regional Agricultural Research Station<br />

Acharya N.G.Ranga Agricultural University<br />

Lam Farm, GUNTUR- 522 034, A.P.<br />

ABSTRACT<br />

Weeds cont<strong>in</strong>ually pose a serious threat to pr<strong>of</strong>itable crop production, and the extent <strong>of</strong> loss depends<br />

on the degree <strong>of</strong> <strong>in</strong>festation. Due to shortage and <strong>in</strong>creased costs <strong>of</strong> labour, use <strong>of</strong> herbicides became <strong>in</strong>tegral<br />

part <strong>of</strong> weed management <strong>in</strong> different crops and cropp<strong>in</strong>g systems even <strong>in</strong> develop<strong>in</strong>g countries. However,<br />

their <strong>in</strong>tensive use poses alarm<strong>in</strong>g threat to the mank<strong>in</strong>d <strong>in</strong> the form <strong>of</strong> environmental pollution, shift <strong>in</strong> weed<br />

flora and evolution <strong>of</strong> herbicide resistance <strong>in</strong> <strong>weeds</strong>. Herbicide resistant <strong>weeds</strong>, causes and mechanisms <strong>of</strong><br />

resistance, types <strong>of</strong> resistance, characteristics <strong>of</strong> resistance, management <strong>of</strong> herbicide resistant <strong>weeds</strong>,<br />

herbicide resistant crops, their advantages and disadvantages <strong>in</strong> effective weed management have been<br />

discussed <strong>in</strong> this review paper.<br />

INTRODUCTION<br />

Due to the high population growth rate, every endeavour is be<strong>in</strong>g made to produce<br />

more gra<strong>in</strong> per unit area per unit time. Of the several methods be<strong>in</strong>g adopted, <strong>in</strong>tensive<br />

cropp<strong>in</strong>g, efficient water and fertilizer use, breed<strong>in</strong>g photo <strong>in</strong>sensitive short statured crop<br />

varieties responsive to higher levels <strong>of</strong> fertilizer, chemical control <strong>of</strong> <strong>weeds</strong> are some <strong>of</strong> the<br />

important agronomic practices <strong>in</strong>tended for <strong>in</strong>creas<strong>in</strong>g the exist<strong>in</strong>g level <strong>of</strong> food production.<br />

Use <strong>of</strong> selective herbicides disturbs the micro-environment <strong>of</strong> the weed population. Such a<br />

tremendous pressure (80 to 90% weed kill with a s<strong>in</strong>gle spray) on a weed species, <strong>in</strong>duces<br />

some diversity (genetic, physiological or any other) <strong>in</strong> the weed species that show adequate<br />

resistance to the herbicides. The manifestation <strong>of</strong> this behaviour <strong>in</strong> weed species and its<br />

implications and use <strong>of</strong> herbicide resistant crops are reviewed <strong>in</strong> this article. Accord<strong>in</strong>g to<br />

Whitehead and Switzer (1963), resistance <strong>in</strong> a weed population is usually def<strong>in</strong>ed as adequate<br />

tolerance to a concentration <strong>of</strong> herbicide which at agriculture rates <strong>of</strong> application would normally<br />

kill susceptible plants. Such resistance usually develops by natural selection, as a result <strong>of</strong><br />

repeated application <strong>of</strong> a herbicide over a number <strong>of</strong> years and operates at the <strong>in</strong>tra species<br />

level ,resistance is then passed on to the mutant biotype’s progeny.<br />

E mail:sraoatluri@yahoo.co.<strong>in</strong><br />

22


WEED AND CROP RESISTANCE TO HERBICIDES<br />

Herbicide Resistant Weeds<br />

The repeated use <strong>of</strong> herbicides with similar modes <strong>of</strong> action on the same site over a<br />

period <strong>of</strong> years (rang<strong>in</strong>g from 5 to 12 years) has resulted <strong>in</strong> weed biotypes that are resistant<br />

to such herbicides.S<strong>in</strong>ce1970, follow<strong>in</strong>g the discovery <strong>of</strong> resistance <strong>of</strong> a biotype <strong>of</strong> common<br />

groundsel (Senecio vulgaris) to the s- triaz<strong>in</strong>e herbicides simaz<strong>in</strong>e and atraz<strong>in</strong>e, the<br />

phenomenon <strong>of</strong> herbicide resistance <strong>in</strong> <strong>weeds</strong> have become well known. Prior to 1970, the<br />

only confirmed <strong>in</strong>stance <strong>of</strong> herbicide resistance, attributed to selection by repeated use <strong>of</strong><br />

the same herbicide was the differential susceptibility <strong>of</strong> wild carrot (Daucus carota) to 2,4-D.<br />

(Anderson, 1996). The follow<strong>in</strong>g weed species were reported to be resistant for different<br />

herbicides (Table1)<br />

Table 1. Weed species with resistance to different herbicides<br />

Weed species<br />

Herbicide (s) to which resistance observed<br />

(1) (2)<br />

Agropyron repens<br />

Agrotis stolonifera<br />

Alopercurus myosuroides<br />

Amaranthus hybridus<br />

Amaranthus palmeri<br />

Amaranthus powelli<br />

*Amaranthus retr<strong>of</strong>lexus<br />

Amaranthus rudi<br />

Ambrosia artemissifolia<br />

Ambrosia trifida<br />

*Aristolochia bractesta<br />

*Avena fatua<br />

Cardaria chalepensis<br />

Chenopodium album<br />

Chenopodium polyspermum<br />

*Chrozhophora rotteleri<br />

Dalapon Phenoxy acetic acid herbicides<br />

2,4-D<br />

Pendimethal<strong>in</strong>, chlorosulfurondiclfopmethyl and<br />

several triaz<strong>in</strong>es<br />

Triaz<strong>in</strong>es<br />

Glyphosate<br />

Triaz<strong>in</strong>es<br />

Atraz<strong>in</strong>e<br />

Glyphosate<br />

Atraz<strong>in</strong>e,glyphosate<br />

Glyphosate<br />

Pendimethal<strong>in</strong><br />

Proham, diallate,isoproturon, Triallate ,barban<br />

2,4-D<br />

Atraz<strong>in</strong>e<br />

Atraz<strong>in</strong>e<br />

Pendimethal<strong>in</strong><br />

23


Table1. contd..<br />

RAO<br />

Weed species<br />

Herbicide (s) to which resistance observed<br />

(1) (2)<br />

Cirisium arvense<br />

*Convolvulus arvensis<br />

Conyza Canadensis<br />

*Cressa critica<br />

*Cucumis trigonus<br />

*Cynodon dactylon<br />

Daucos carota<br />

Digitaria sangu<strong>in</strong>alis<br />

Digitaria sps.<br />

Ech<strong>in</strong>ocloa crusgalli<br />

Erechtites hieracifolia<br />

Euphorbia heterophylla<br />

*Ischaemum rugosum<br />

Kochia scoparia<br />

Lolium multiflorum<br />

Myosotis arvensis<br />

Phalaris arund<strong>in</strong>acea<br />

Phalaris m<strong>in</strong>or<br />

*Phyllantus maderas patensis<br />

Picea abies<br />

*Poa annua<br />

Polygonum persicaria<br />

Polygonum lapathifolium<br />

Polygonum lapathifolium<br />

Sencio vulgaris<br />

Setaria viridis<br />

Setaria spp.<br />

Setaria spp.<br />

2,4-D and amitrol<br />

2,4-D<br />

Paraquat,glyphosate<br />

Paraquat,oxyfluorfen<br />

2,4-D<br />

Dalapon<br />

2,4 – D<br />

Atraz<strong>in</strong>e<br />

TCA<br />

Dalapon, propanil, metoxuron atraz<strong>in</strong>e<br />

2,4-D<br />

Glyphosate<br />

Anil<strong>of</strong>os<br />

Chlorosulfuron<br />

Glyphosate<br />

MCPA<br />

Glysophate<br />

Isoproturon,fenoxaprop,clod<strong>in</strong>afop,sulfosulfuron<br />

Pendimethal<strong>in</strong><br />

Glysophate<br />

Metoxuron<br />

Atraz<strong>in</strong>e<br />

Dichlorprop<br />

Atraz<strong>in</strong>e<br />

Atraz<strong>in</strong>e<br />

Metoxuron<br />

Atraz<strong>in</strong>e<br />

Dalapon<br />

24


WEED AND CROP RESISTANCE TO HERBICIDES<br />

Table1. contd..<br />

Weed species<br />

Herbicide (s) to which resistance observed<br />

(1) (2)<br />

*Solanum nigrum<br />

*Sorghum halepense<br />

Sonchus arvensis<br />

Stellaria media<br />

Tripleuro spermum <strong>in</strong>odorum<br />

Veronica persica<br />

Atraz<strong>in</strong>e<br />

MSMA, dalapon, glyphosate<br />

Am<strong>in</strong>e salt <strong>of</strong> 2,4-D<br />

Atraz<strong>in</strong>e<br />

MCPA<br />

Atraz<strong>in</strong>e<br />

(Source: Gill et al.,1986: Anderson1996;Das and Duary,1999; Heap,2007;Reddy,2007;Yadav and Malik,2007)<br />

*Weeds <strong>of</strong> local importance<br />

There is no evidence that any herbicide resistant weed biotypes has occurred through<br />

mutations caused by herbicide, nor is there any evidence to show whether or not these<br />

resistant biotypes were already present prior to herbicide treatment at the sites when they<br />

were detected. Herbicide resistant weed biotypes are presumed to arise through naturally<br />

occur<strong>in</strong>g mutations, form small, pre exist<strong>in</strong>g populations <strong>of</strong> the species. Resistance becomes<br />

apparent when herbicide selection kills <strong>of</strong>f the herbicide susceptible plants, leav<strong>in</strong>g the herbicide<br />

resistant biotype.<br />

Factors regulat<strong>in</strong>g the development <strong>of</strong> resistance<br />

Over reliance /overdependence on herbicides as the only and the pr<strong>in</strong>cipal means <strong>of</strong><br />

controll<strong>in</strong>g <strong>weeds</strong> and cont<strong>in</strong>uous use <strong>of</strong> a herbicide(s) hav<strong>in</strong>g same mechanism <strong>of</strong> action <strong>in</strong><br />

<strong>in</strong>tensive agriculture <strong>in</strong>dulg<strong>in</strong>g only crop monoculture and m<strong>in</strong>imum tillage have been major<br />

causes <strong>of</strong> herbicide resistance <strong>in</strong> most weed species (Das and Duary,1999). The factors<br />

regulat<strong>in</strong>g the rate <strong>of</strong> development <strong>of</strong> resistance are<br />

1. Initial frequency : Herbicide resistance is not entirely due to the mutation caused by<br />

herbicides. In the naturally-exist<strong>in</strong>g population <strong>of</strong> a weed species, the resistant genotypes<br />

are present <strong>in</strong> vary<strong>in</strong>g frequency, may be very low-one <strong>in</strong> a lakh population. This is its <strong>in</strong>itial<br />

frequency. The development <strong>of</strong> resistance at the field level depends upon the <strong>in</strong>crease on<br />

the proportion <strong>of</strong> the resistant genotypes with<strong>in</strong> population. Repeated use <strong>of</strong> same herbicide(s)<br />

hav<strong>in</strong>g same mechanism <strong>of</strong> action results <strong>in</strong> kill<strong>in</strong>g the susceptible biotypes allow<strong>in</strong>g the<br />

resistant <strong>in</strong>dividuals to multiply and produce seeds year after year, and thus with<strong>in</strong> few<br />

seasons/years <strong>of</strong> application the population becomes dom<strong>in</strong>ated by resistant biotypes. The<br />

more the <strong>in</strong>itial frequency, the quicker is the appearance <strong>of</strong> the resistance. This is the start<strong>in</strong>g<br />

po<strong>in</strong>t <strong>of</strong> resistance<br />

25


RAO<br />

2. Use <strong>of</strong> herbicide(s) : Herbicide(s) hav<strong>in</strong>g higher efficacy, used as pre/post emergence<br />

and applied frequently over several grow<strong>in</strong>g seasons without rotat<strong>in</strong>g, alternat<strong>in</strong>g or comb<strong>in</strong><strong>in</strong>g<br />

with other types <strong>of</strong> herbicides favour selective evolution <strong>of</strong> resistant biotypes <strong>of</strong> <strong>weeds</strong>.<br />

3. Soil seed bank : The seed bank acts as a buffer, <strong>in</strong>fluenc<strong>in</strong>g the rate <strong>of</strong> appearance <strong>of</strong><br />

resistance. The appearance <strong>of</strong> resistance will be delayed by the recruitment <strong>of</strong> susceptible<br />

<strong>in</strong>dividuals from the seed bank. This depends on the germ<strong>in</strong>ation dynamics, tillage and<br />

cultivation practices followed. For example zero or no tillage enhance the rate <strong>of</strong> development<br />

<strong>of</strong> resistance, as the herbicide applied <strong>in</strong> this practice kill all the susceptible <strong>in</strong>dividuals on<br />

the surface and thus allow<strong>in</strong>g the resistant weed seeds which are deposited <strong>in</strong> previous<br />

season to germ<strong>in</strong>ate <strong>in</strong> greater proportion. Deep tillage otherwise bury these seeds.<br />

4. Other factors : Mode <strong>of</strong> <strong>in</strong>heritance <strong>of</strong> resistance ,gene flow, mode <strong>of</strong> poll<strong>in</strong>ation, relative<br />

fitness etc. are other factors which are also responsible for regulat<strong>in</strong>g the rate <strong>of</strong> evolution <strong>of</strong><br />

resistance.<br />

Mechanism <strong>of</strong> Resistance<br />

There are three ma<strong>in</strong> mechanisms <strong>of</strong> resistance viz.<br />

1. Altered site <strong>of</strong> action : Refers to the modification <strong>in</strong> the b<strong>in</strong>d<strong>in</strong>g site <strong>of</strong> action <strong>of</strong> a<br />

herbicide due to some genetic changes <strong>in</strong> biotypes show<strong>in</strong>g resistance compared to the<br />

susceptible ones and thus rema<strong>in</strong>s unaffected when the same herbicide is applied to them.<br />

Eg. Resistance <strong>in</strong> many <strong>weeds</strong> species/biotypes to most <strong>of</strong> the triaz<strong>in</strong>es, sulfonyl ureas,<br />

d<strong>in</strong>itro anil<strong>in</strong>es and <strong>in</strong> some cases <strong>of</strong> ACCase <strong>in</strong>hibitors (fenoxprop, fluazifop etc) is developed<br />

through this mechanism<br />

2. Enhanced metabolism : Refers to the rapid degradation and /or conjugation <strong>of</strong> herbicide<br />

molecules <strong>in</strong>to non –toxic or less toxic metabolites/forms is a major mechanism <strong>of</strong> resistance<br />

<strong>in</strong> several weed species Eg. Phalaris m<strong>in</strong>or resistance to isoproturon<br />

3. Sequestration and Compartmentation : Refers to the stor<strong>in</strong>g/accumulation <strong>of</strong> the<br />

herbicides or its metabolites <strong>in</strong> the cell vacuole or gett<strong>in</strong>g sequestered <strong>in</strong> cells or tissues and<br />

thus gets prevented from reach<strong>in</strong>g to its site <strong>of</strong> action, is the other mechanism operat<strong>in</strong>g<br />

under sequestration and compartmentation. Eg.Resistance to paraquat, a photosynthesis<br />

<strong>in</strong>hibit<strong>in</strong>g herbicide, <strong>in</strong> some biotypes <strong>of</strong> Lolium rigidum (Mathews,1997)<br />

Extent <strong>of</strong> Resistance<br />

Ryan (1970) observed that resistant biotypes <strong>of</strong> Senecio vulgaris were not controlled<br />

by pre emergence application <strong>of</strong> simaz<strong>in</strong>e or atraz<strong>in</strong>e at the rate <strong>of</strong> up to 17.92 kg/ha; while<br />

this limit was found to be only 2.8 kg/ha <strong>in</strong> experiments conducted by Holliday & Putwa<strong>in</strong>(1977).<br />

26


WEED AND CROP RESISTANCE TO HERBICIDES<br />

A resistant biotype <strong>of</strong> Chenopodium album was not killed with a dose as high as 40 kg<br />

atraz<strong>in</strong>e/ha (Souza Machado et al., 1977) and 20 kg/ha (Souza Machado and Bandeen,<br />

1978). Kees (1978) reported a biotype <strong>of</strong> Stellaria media to be unaffected by atraz<strong>in</strong>e 9 kg/<br />

ha.<br />

Types <strong>of</strong> Resistance :<br />

Three types <strong>of</strong> resistance as it relates to herbicides and <strong>weeds</strong>, namely:<br />

1. Herbicide resistance : Refers to a weed biotype that is resistant to one specific herbicide,<br />

as <strong>in</strong> case <strong>of</strong> amitrole or glyphosate. However, the term may also be used to denote the<br />

phenomenon <strong>of</strong> herbicide resistance <strong>in</strong> weed biotypes.<br />

2. Cross resistance : Refers to a weed biotype that is resistant to two or more chemically<br />

similar herbicides, as those grouped <strong>in</strong> the same herbicide family, and that have the same<br />

mode <strong>of</strong> action. For example, a powell amaranth biotype is cross resistant to the uracil<br />

herbicides, bromacil and terbacil.<br />

3. Multiple resistance : Refers to weed biotypes resistant two or more <strong>in</strong>dividual or series <strong>of</strong><br />

chemically unrelated herbicides, as are those <strong>in</strong> different herbicide families, which have<br />

different modes <strong>of</strong> action.<br />

Characteristics <strong>of</strong> resistance biotypes:<br />

(i)<br />

(ii)<br />

(iii)<br />

(iv)<br />

(v)<br />

Plant resistant to atraz<strong>in</strong>e show some degree <strong>of</strong> resistance to other herbicides<br />

tested (Barralis et al., 1979).<br />

Resistant biotypes emerged late and flower late than the susceptible<br />

(S-biotypes) ones (Souza Machado & Bandeen, 1978).<br />

Resistant Amaranthus have been suggested to be hybrids between two<br />

closely related species (Gasquez and Compo<strong>in</strong>t, 1980).<br />

Nitrate reductase activity <strong>in</strong> resistant biotypes <strong>of</strong> Chenopodium album is not<br />

affected by atraz<strong>in</strong>e (whereas there is 35% reduction <strong>in</strong> susceptible biotypes)<br />

as reported by Foster et al., (1980) and Lawrence et al., (1980). Similarly<br />

paraquat- resistant biotypes <strong>of</strong> Conyza possessed significantly higher<br />

superoxide dismutase activity than the susceptible types (Youngman and<br />

Dodge, 1980). Also a high frequency <strong>of</strong> esterase has been reported from the<br />

triaz<strong>in</strong>e resistant Chenopodium album (Gasquez and Compo<strong>in</strong>t, 1981).<br />

Triaz<strong>in</strong>e-tolerant parent plants <strong>of</strong> Amaranthus retr<strong>of</strong>lexus were found to have<br />

small cotyledons.<br />

27


RAO<br />

(vi)<br />

Resistant and susceptible biotypes <strong>of</strong> Senecio vulgaris have also been<br />

reported (Jodie and Radosevich, 1983) to differ on the basis <strong>of</strong> growth<br />

depend<strong>in</strong>g on the light <strong>in</strong>tensities they are exposed to eg. dry matter<br />

production, height, number <strong>of</strong> leaves and leaf area <strong>of</strong> the resistant biotypes<br />

were lower under both the low and high light regimes. Roots/shoot ratios<br />

were lower <strong>in</strong> the resistant biotype only under high light regimes. Lower<br />

values <strong>of</strong> these parameters <strong>in</strong> resistant plants were due to lowered photo<br />

synthetic capacity. Net assimilation rate (NAR) was true for mean leaf area<br />

ratio over a harvest <strong>in</strong>terval. Shad<strong>in</strong>g lowered dry weight production, height,<br />

number <strong>of</strong> leaves, Leaf area (LA), Net assimilation rate (NAR), Relative<br />

growth rate (RGR), Plastachron <strong>in</strong>dex (PI) and root/shoot ratio <strong>of</strong> both<br />

biotypes. Values for these growth parameters for resistant plants were either<br />

similar to or lower than for susceptible plants when grown under low light.<br />

Management <strong>of</strong> Herbicide Resistant Weeds:<br />

The Herbicide Resistance Action Committee (HRAC) has developed the follow<strong>in</strong>g<br />

list <strong>of</strong> strategies for avoid<strong>in</strong>g and manag<strong>in</strong>g problems with herbicide resistant weed biotypes<br />

(Abraham et al.,1993; Timothy et al,2000 and David vitolo,2001). Keep <strong>in</strong> m<strong>in</strong>d that reliance<br />

upon any one strategy is not likely to be effective. The crop grower must use the follow<strong>in</strong>g<br />

strategies <strong>in</strong> carefully selected comb<strong>in</strong>ations, if herbicide resistant weed problems are to be<br />

avoided or properly managed.<br />

• Use Herbicides only when necessary. Where available, herbicide applications should be<br />

based on economic thresholds. Cont<strong>in</strong>ued development <strong>of</strong> effective economic threshold<br />

models should be helpful.<br />

• Use <strong>of</strong> rapidly degradable herbicides<br />

• Rotate herbicides (sites <strong>of</strong> action). Do not make more than two consecutive applications<br />

<strong>of</strong> herbicides with the same site <strong>of</strong> action to the same field unless other effective control<br />

practices are also <strong>in</strong>cluded <strong>in</strong> the management system. Two consecutive applications<br />

could be s<strong>in</strong>gle annual applications for two years, or two split applications <strong>in</strong> one year.<br />

• Apply herbicides <strong>in</strong> tank-mixed, prepackaged, or sequential mixtures that <strong>in</strong>clude multiple<br />

sites <strong>of</strong> action. Both herbicides, however, must have substantial activity aga<strong>in</strong>st potentially<br />

resistant <strong>weeds</strong> for this strategy to be effective.<br />

• Rotate crops, particularly those with different life cycles (e.g. rice-pulse). At the same<br />

time, remember not use herbicides with the same site <strong>of</strong> action <strong>in</strong> these different crops<br />

aga<strong>in</strong>st the same weed unless other effective control practices are also <strong>in</strong>clude <strong>in</strong> the<br />

management system.<br />

28


WEED AND CROP RESISTANCE TO HERBICIDES<br />

• IWM approach/Comb<strong>in</strong>e, where feasible, mechanical weed control practices such as<br />

rotary hoe<strong>in</strong>g and cultivation with herbicide treatment.<br />

• Include, where soil erosion potential is m<strong>in</strong>imal, primary tillage as a component <strong>of</strong> the<br />

weed management programme.<br />

• Scout/survey fields regularly and identify <strong>weeds</strong> present. Respond quickly to changes <strong>in</strong><br />

weed populations to restrict spread <strong>of</strong> <strong>weeds</strong> that may have been selected for resistance.<br />

• Clean tillage and harvest equipment before mov<strong>in</strong>g from fields <strong>in</strong>fested with resistant<br />

weed to those that are not.<br />

• Germ<strong>in</strong>ation stimulators<br />

• Encourage rail roads, public utilities, highways departments and similar organizations<br />

that use total vegetation control programmes should be encouraged to use vegetation<br />

management systems that do not lead to selection <strong>of</strong> herbicide resistant <strong>weeds</strong>.<br />

• Introduction <strong>of</strong> Herbicide Resistant Crops (HRCs) and Plant<strong>in</strong>g new herbicide resistant<br />

crop varieties should not result <strong>in</strong> more than two consecutive applications <strong>of</strong> herbicides<br />

with the same site <strong>of</strong> action aga<strong>in</strong>st the same weed unless other effective control practices<br />

are also <strong>in</strong>cluded <strong>in</strong> the management system.<br />

Herbicide Resistant Crops (GM Crops /Transgenic Crops)<br />

Modern agriculture is dependent upon crop selective herbicides for effective control.<br />

However, it is becom<strong>in</strong>g extremely difficult and costly to f<strong>in</strong>d out and develop new herbicide<br />

with favourable weed control properties and friendly environmental characteristics. An alternate<br />

approach is to develop crop resistance to the exist<strong>in</strong>g herbicides with desirable properties<br />

(Sankaran, 2001; Yaduraj et al., 2005 and Rao, 2006).To generate herbicide resistance crop<br />

plants, the major approaches used are<br />

1. Conventional breed<strong>in</strong>g-with herbicide resistant biotypes<br />

2. Invitro-mutation selection- by cultur<strong>in</strong>g cells or tissues <strong>in</strong> normally toxic concentrations<br />

<strong>of</strong> herbicides<br />

3. Mutant selection by somatic hybridization-fusion <strong>of</strong> prootoplasts <strong>in</strong> culture from different<br />

plants to comb<strong>in</strong>e genetic <strong>in</strong>formation to create a new hybrid<br />

4. Genetic transformation-transfer <strong>of</strong> clone genes <strong>in</strong>to susceptible crop plants.<br />

29


RAO<br />

Table 2. Some <strong>of</strong> the herbicide resistant crops grouped accord<strong>in</strong>g to the techniques<br />

<strong>of</strong> development (Duke, 1998)<br />

Technique Resistance Crops<br />

Traditional selection triaz<strong>in</strong>e-resistance Canola<br />

Seed Mutagenesis terbutyn-resistance Wheat<br />

sulfonyl urea- resistance Soybean<br />

imidazol<strong>in</strong>one- resistance Wheat<br />

Cell selection sulfonyl urea- resistance Canola<br />

atraz<strong>in</strong>e- resistance<br />

Soybean<br />

Genetic Eng<strong>in</strong>eer<strong>in</strong>g sulfonyl urea- resistance Cotton<br />

glufos<strong>in</strong>ate (basta) resistance Rice, Canola<br />

Glyfosate resistance Cotton, Soybean, Maize, Wheat<br />

bromoxynil- resistance Cotton, Sub clover<br />

2,4-D resistance<br />

Cotton<br />

In this regard, it has been reported that several laboratories around the world have<br />

eng<strong>in</strong>eered crop plants that harbour genes for resistance to known potent herbicides (Hatzios,<br />

1987 and Manju Sharma et al.,2003). In crops such as rice, wheat, corn, sugarcane and<br />

soybeans herbicide resistant genotypes may be useful where it is difficult to control <strong>weeds</strong><br />

or environmental conditions dictate the use <strong>of</strong> specific herbicides to which the crop is normally<br />

susceptible. Some <strong>of</strong> the commercialized transgenic crops with herbicide resistance are<br />

given below.<br />

Table 3. Commercialized transgenic crops with herbicide resistance<br />

S.No Transgenic Herbicide Trademark Agrochemical<br />

crop resistant Designation seed company<br />

1 Rice Glufos<strong>in</strong>ate ammonium Liberty l<strong>in</strong>k rice AgrEvo<br />

2 Corn Glufos<strong>in</strong>ate ammonium Liberty l<strong>in</strong>k corn AgrEvo<br />

Glyphosate Roundup ready corn Monsanto<br />

Dekalb Genetics<br />

Imidazol<strong>in</strong>ones IMICorn American cynamid<br />

Pioneeretc<br />

Sethoxydim SRCorn BASF/DeKalb<br />

Genetics<br />

30


WEED AND CROP RESISTANCE TO HERBICIDES<br />

Table 2. contd...<br />

S.No Transgenic Herbicide Trademark Agrochemical<br />

crop resistant Designation seed company<br />

3 Cotton Bromoxynil BXN Cotton Rhone–poulene<br />

Glufos<strong>in</strong>ate ammonium Liberty l<strong>in</strong>k cotton Agro Evo<br />

Glyphosate Roundup ready cotton Monsanto<br />

Sulfonylureas 19-51a cotton Dupont<br />

4 Soybean Glufos<strong>in</strong>ate ammonium Liberty l<strong>in</strong>k soybeans AgrEvo<br />

Glyphosate Roundup readysoybeans MonsantoAsgowseeds<br />

Sulfonylureas STS soybeans DuPont<br />

5 Canola(Bras Glyphosate Roundup readyrape Monsanto<br />

sica napus) Glufos<strong>in</strong>ate ammonium Liberty l<strong>in</strong>k canola AgrEvo<br />

Bromoxynil BXN Canola Rhone poulene<br />

6 Tobacco Bromoxynil BXN Tobacco Rhone poulene<br />

7 Sugar Beet Glyphosate Roundup ready beet Monsanto<br />

Advantages<br />

(WSSA,1998)<br />

1. Transgenic herbicide resistant crops decrease the risk <strong>of</strong> crop <strong>in</strong>jury<br />

2. Decreas<strong>in</strong>g herbicide carry over problem<br />

3. Broaden<strong>in</strong>g the spectrum <strong>of</strong> <strong>weeds</strong> controlled<br />

4. Us<strong>in</strong>g the herbicides that present less risk to the environment<br />

5. The available herbicide can be used <strong>in</strong> large number <strong>of</strong> crops<br />

6. Limitations <strong>in</strong> the choice <strong>of</strong> rotation crops can be reduced<br />

7. Farmer will have to know about limited number <strong>of</strong> herbicides to fulfill weed management<br />

needs (simplicity <strong>of</strong> weed control programme)<br />

8. Use <strong>of</strong> environmentally safe herbicides that can be used <strong>in</strong> a cost effective manner<br />

9. Flexibility <strong>in</strong> application rate and tim<strong>in</strong>g<br />

Limitations<br />

1. Herbicide resistant crops(HRCs) promotes <strong>in</strong>creased use <strong>of</strong> herbicides<br />

2. Exclusive and repetitive use <strong>of</strong> a specific herbicide may well allow to develop resistant<br />

<strong>weeds</strong> <strong>in</strong> course <strong>of</strong> time<br />

31


RAO<br />

3. Herbicide resistant crops may transfer resistance to related <strong>weeds</strong> and possibility <strong>of</strong><br />

creat<strong>in</strong>g ‘super <strong>weeds</strong>’<br />

4. HRCs may lead to abandonment <strong>of</strong> alternative weed control practices<br />

5. Loss <strong>of</strong> farm biodiversity<br />

6. Over reliance on HRCs may <strong>in</strong>crease potential for shift <strong>in</strong> weed species<br />

7. Increased herbicide residues <strong>in</strong> food, feed and water<br />

8. Fear <strong>of</strong> consumers aga<strong>in</strong>st adverse effects <strong>of</strong> HRCs<br />

9. Every year farmer has to purchase seeds from seed developer<br />

10. Abandonment <strong>of</strong> IWM approach<br />

Conclusion<br />

From the literature reviewed, it could be concluded that cont<strong>in</strong>uous use <strong>of</strong> same<br />

herbicide for longer periods leads to development <strong>of</strong> resistant <strong>weeds</strong>. For management <strong>of</strong><br />

herbicide resistant weed population, no s<strong>in</strong>gle weed control method is likely to provide effective<br />

control when used exclusively. Therefore, weed control <strong>in</strong> crop lands should be long term<br />

strategy <strong>in</strong>volv<strong>in</strong>g a range <strong>of</strong> management techniques (i.e. IWM approach).In India, the use<br />

<strong>of</strong> herbicide resistant crops is still <strong>in</strong> test<strong>in</strong>g stage, and it may take time for their commercial<br />

use.<br />

REFERENCES<br />

Abraham, C.T., Neer, B. Sar<strong>in</strong> and Mahesh Ja<strong>in</strong>.1993.Application <strong>of</strong> biotechnology for weed<br />

management. Proc. <strong>of</strong> International Symposium, Indian Society <strong>of</strong> Weed Science,<br />

Hisar, November,18-20, Vol.1:209-219<br />

Anderson,W.P.1996. Weed Science Pr<strong>in</strong>ciples and Practices. West Publish<strong>in</strong>g Co. New<br />

York, pp.125-128<br />

Barralis,G. J., Gasquez, J., Jan and S<strong>of</strong>fietti, S. 1979.Physiological and ecological behaviour<br />

<strong>of</strong> broad leaved <strong>weeds</strong> resistant to atraz<strong>in</strong>e <strong>in</strong> France. Proc.EWRS symposiumon<br />

the <strong>in</strong>fluence <strong>of</strong> different factors on development and control <strong>of</strong> <strong>weeds</strong>,Ma<strong>in</strong>z.pp.217-<br />

224.(c.f. Weed Abstr.29:1177)<br />

Das,T. K and Duary, B.1999.Herbicide resistance <strong>in</strong> <strong>weeds</strong>. Annals <strong>of</strong> Agricultural<br />

Research.20(4):393-398<br />

Duke, S.O. 1998.Herbicide resistant crops-their <strong>in</strong>fluence on weed science. Journal <strong>of</strong> Weed<br />

Science and Technology (Zasso-Kenkuyu, Japan) 43:94-100.<br />

32


WEED AND CROP RESISTANCE TO HERBICIDES<br />

David Vitolo. 2001.Guide l<strong>in</strong>es to the management <strong>of</strong> herbicide resistant <strong>weeds</strong> The Herbicide<br />

Resistance Action Committee (HRAC). http://www.gcpf.org/<br />

Foster, R. J., Lawerence, J. M and Herrick, H. E.1980.Nitrate reductase <strong>in</strong>roots <strong>of</strong> lamb’s<br />

quarters biotypes resistant and susceptible to atraz<strong>in</strong>e Plant Physiology.65(6<br />

supplement):112<br />

Gill, H.S., Krishna Kumar and Kolar, J.S.1986. Resistance <strong>in</strong> weed biotypes to herbicides a<br />

review.Indian Journal <strong>of</strong> Weed Science.18(2):90-105<br />

Gasquez, J and Compo<strong>in</strong>t, J. P.1980.The new atraz<strong>in</strong>e-resistant <strong>weeds</strong> <strong>in</strong> France: Amaranthus<br />

retr<strong>of</strong>lexusS.I.ChenopodiumpolyspermumL.Polygonupersicaria L. Chemosphere 9:39-<br />

43 (c.f. Weed Abstr.29:4207)<br />

Gasquez, Jand Compo<strong>in</strong>t, J.P.1981. Isoenzymatic variations <strong>in</strong> populations <strong>of</strong> Chenopodium<br />

album L. resistant to and susceptible to triaz<strong>in</strong>es. Agro-Ecosystems 7:1-10.(c.f. Weed<br />

Abstr.31:611)<br />

Hatzios, K. K. 1987.Biotechnology applications <strong>in</strong> weed management:Now and <strong>in</strong> the future.<br />

Advances <strong>in</strong> Agronomy.41:325-375<br />

Heap, I. M. 2007.International survey <strong>of</strong> herbicide resistant <strong>weeds</strong> on l<strong>in</strong>e s.Weed science<br />

Society <strong>of</strong> America.www.Weed science.org./<strong>in</strong>.asp.<br />

Holliday, R. Jand Putwa<strong>in</strong>, P.D. 1977.Evolution <strong>of</strong> resistance to simaz<strong>in</strong>e <strong>in</strong> Senecio<br />

vulgarisL.Weed Research.17:291-296<br />

Jodie, S. H and Radosevich,S. R.1983. Differential growth <strong>of</strong> two common groundsel(Senecio<br />

vulgaris)biotypes Weed Science.31: 112-120<br />

Kees, H.1978.Observations on the resistance <strong>of</strong> Chickweed (Stellaria media) to atraz<strong>in</strong>e <strong>in</strong><br />

maize.Gesunde Pflanzen.30:137-139(c.f Weed Abstr.28:55)<br />

Lawerence, J. M., Foster, R. J and Herrick, H. E. 1980.Reduction <strong>of</strong> nitrate and nitrite <strong>in</strong><br />

lamb’s quarters biotypes resistant and susceptible to atraz<strong>in</strong>e toxicity. Plant<br />

Physiology.65:984-989<br />

Manju Sharma, Charak, K.S and Ramaiah, T.V. 2003.Agricultural biotechnology research <strong>in</strong><br />

India:Status and policies. Current Science. 84(3):297-302<br />

33


RAO<br />

Mathews, J.M.1997. Herbicide resistance.Ed.Stephen B.Powles and Joseph A.M.Hotur. Lewis<br />

Publisher.London pp.317-315<br />

Rao, A.S. 2006. Biotechnology applications <strong>in</strong> weed management. Proc.National symposium<br />

on ‘Conservation <strong>of</strong> Biodiversity and Applications <strong>of</strong> biotechnology’Andhra Loyola<br />

College,Vijayawada,11-12thAug,2006,pp.63<br />

Reddy, K.N. 2007.Herbicide–resistant crop and glyphosate–resistant <strong>weeds</strong> Abstracts <strong>of</strong><br />

papers.’New and emerg<strong>in</strong>g issues <strong>in</strong> Weed Science’,Biennial conference.ISWS/<br />

HAU,HisarNov.2-3,2007.pp.67<br />

Ryan,G.F. 1970. Resistanc <strong>of</strong> common groundsel to simaz<strong>in</strong>e and atraz<strong>in</strong>e. Weed<br />

Science.18:614-616<br />

Sankaran, S. 2001.Eco-friendly weed management options for susta<strong>in</strong>able agriculture.<br />

Keynote address. First Biennial Conference<strong>in</strong> the new millenium, Indian Society <strong>of</strong><br />

Weed Science Bangalore, May,23-24.2001 pp.18-19<br />

Souza Machado, V. and Bandeen, J., Stephenson, G.R and Jensen, K.I.N.1977. Differetial<br />

atraz<strong>in</strong>e <strong>in</strong>terfereance with Hill reaction <strong>of</strong> isolated chloroplasts from Chenopodium<br />

albumL biotypes. Weed Research. 17:407-413<br />

Souza Machado, V and Bandeen, J.D.1978.Atraz<strong>in</strong>e-resistant lamb’s quarters. Weeds Today<br />

9(2):11<br />

Timothy, S. Prather., Joseph, M and Ditomaso, 2000. Herbicide Resistance: Def<strong>in</strong>ition and<br />

Management Strategies, Publication 8012, Division <strong>of</strong> Agriculture and Natural<br />

Resources, University <strong>of</strong> California.pp.21<br />

WSSA (Weed Science Society <strong>of</strong> America ).1998.Herbicide Hand book .Supplement to seventh<br />

edition, WSSA, Lawrence, Kansas, USA. pp.79-80<br />

Whitehead,C.W and Switzer. C.M 1963.The differential response <strong>of</strong> stra<strong>in</strong>s <strong>of</strong> wild carrot to<br />

2,4-Dand related herbicides. Canadian Journal <strong>of</strong> Plant Sciences.43:255-262<br />

Yadav, A and Malik,R. K. 2007.Herbicide resistance <strong>in</strong> Phalaris m<strong>in</strong>or and management<br />

options.Abstracts <strong>of</strong> papers’New and emerg<strong>in</strong>g issues <strong>in</strong> Weed Science’,Biennial<br />

conference.ISWS/HAU,HisarNov.2-3,2007.pp. b73<br />

Yaduraju, N.T., Chandrabhanu and Sushilkumar, 2005.Biological control <strong>of</strong> <strong>weeds</strong>:potential<br />

and prospects.Abstract book.First International Weed Science Sem<strong>in</strong>ar. West Bengal<br />

Weed Science Society,Kolkata,Jan.21-24.pp.ItoXII<br />

Youngman, R. J and Dodge, A.D.1980. Paraquat resistance <strong>in</strong> Conyza.Plant Physiology.65(6<br />

supplement):12<br />

34


J.Res. ANGRAU 37(3&4)35-43, 2009<br />

A COMPARATIVE STUDY ON HETEROSIS FOR PRODUCTIVITY AND<br />

FIBRE QUALITY TRAITS IN INTRA-HERBACEUM AND<br />

INTERSPECIFIC(G. herbaceum L. × G. arboreum L.) CROSSES OF<br />

DIPLOID COTTON<br />

VEMANNA IRADDI and S. T. KAJJIDONI<br />

Department <strong>of</strong> Genetics and Plant Breed<strong>in</strong>g<br />

University <strong>of</strong> Agricultural Sciences, Dharwad -580 005<br />

ABSTRACT<br />

A comparative study <strong>of</strong> heterosis was made <strong>in</strong>volv<strong>in</strong>g four female parents <strong>of</strong> Gossypium herbaceum<br />

L. and four male parents <strong>of</strong> each <strong>of</strong> G. herbaceum L. and G. arboreum L. These were evaluated to select donor<br />

parents for the exploitation <strong>of</strong> heterosis for different seed cotton yield, fibre quality traits and seed oil content.<br />

In the present study, superiority <strong>of</strong> the hybrids was observed over better parent and standard check Jayadhar<br />

for all the characters. The hybrids identified for high yield viz., RDC-53xMB-3200, KS-16xMB-3200,<br />

KS-16xMDL-2582, RAHS-14xMDL-2601, RAHS-14xDLSA-17 and RDC-88 DLSA-17 exhibited significant<br />

positive heterosis for seed cotton yield and fibre quality traits. However, hybrids failed to account heterosis<br />

over check Jayadhar for l<strong>in</strong>t <strong>in</strong>dex and g<strong>in</strong>n<strong>in</strong>g out turn except few crosses viz., RAHS-14xMB-3200,<br />

RAHS-14xBLACH-1, RDC-88xBLACH-1, RAHS-14xDLSA-17, RDC-88xAK-235. Although superiority <strong>of</strong><br />

<strong>in</strong>traspecific crosses for seed cotton yield was due to cumulative action <strong>of</strong> component traits like boll weight and<br />

number <strong>of</strong> bolls per plant, whereas boll number <strong>in</strong> <strong>in</strong>terspecific crosses for better expression <strong>of</strong> heterosis <strong>of</strong><br />

seed cotton yield <strong>in</strong> diploid cotton. However, <strong>in</strong> the present <strong>in</strong>vestigation for seed cotton yield <strong>in</strong> both sets <strong>of</strong><br />

hybrids contribution <strong>of</strong> boll weight is relatively more than number <strong>of</strong> bolls per plant.<br />

Cotton the ‘white gold’ enjoys a pre-em<strong>in</strong>ent status among all cash crops <strong>in</strong> the<br />

country, be<strong>in</strong>g the pr<strong>in</strong>cipal raw material for a flourish<strong>in</strong>g textile <strong>in</strong>dustry. In India, <strong>in</strong>spite <strong>of</strong><br />

severe competition from synthetic fibres <strong>in</strong> recent years, it is occupy<strong>in</strong>g the premier position<br />

with as much as 70 per cent share <strong>in</strong> the textile <strong>in</strong>dustry. Presently, cultivation <strong>of</strong> varieties<br />

and hybrids <strong>of</strong> tetraploid cotton is more risky and non-remunerative. The <strong>in</strong>creased cost <strong>of</strong><br />

cultivation <strong>of</strong> these cotton hybrids is due to high seed cost, more plant protection as they are<br />

susceptible types and needs higher fertilizer dose. On the contrary, diploid cottons virtually<br />

<strong>in</strong>volve low seed cost, low or no cost for plant protection and require comparatively less crop<br />

nutrition.<br />

Look<strong>in</strong>g to this, one will really be optimistic for cultivation <strong>of</strong> diploid cotton provided<br />

they yield at least on par with varieties and hybrids <strong>of</strong> tetraploid cotton and must possess<br />

equivalent fibre quality. For development <strong>of</strong> superior and heterotic hybrids <strong>in</strong> cotton, it is<br />

essential to have <strong>in</strong>formation about the extent <strong>of</strong> heterosis present <strong>in</strong> the hybrid comb<strong>in</strong>ation.<br />

Besides this, the quality <strong>of</strong> fibre plays major role <strong>in</strong> pric<strong>in</strong>g and market<strong>in</strong>g the produce. There<br />

email.id: vemanraddi@gmail.com<br />

35


IRADDI and KAJJIDONI<br />

is need to have more quality consciousness <strong>in</strong> addition to yield. While evolv<strong>in</strong>g new hybrids/<br />

varieties, it is more so particular <strong>in</strong> diploid cotton which are severely suffer<strong>in</strong>g from short<br />

staple length and coarse nature.<br />

Apart from this, one <strong>of</strong> the most important current scientific paradox with respect to<br />

cotton breed<strong>in</strong>g which has evoked the attention <strong>of</strong> plant breeder is the diversification <strong>of</strong><br />

cotton crop as an oil seed crop besides its fibre because <strong>of</strong> its nutritionally desirable oil<br />

quality and it can become one <strong>of</strong> the avenues for shorten<strong>in</strong>g the quantum <strong>of</strong> edible oil import.<br />

MATERIALS AND METHODS<br />

The experimental material for the present study was selected from lead<strong>in</strong>g centres<br />

work<strong>in</strong>g on diploid cotton and were evaluated to select donor parents and hybrids for different<br />

seed cotton yield, fibre quality traits and seed oil content along with agronomically superior<br />

varieties. Out <strong>of</strong> the promis<strong>in</strong>g collections, 12 parents <strong>of</strong> two diploid species viz., Gossypium<br />

herbaceum L. and Gossypium arboreum L. were selected. Four females (Gossypium herbaceum<br />

L.) viz., RAHS-14, KS-16, RDC-53, RDC-88 and eight males (Gossypium herbaceum L. and<br />

Gossypium arboreum L.) viz., RAHS-131, 9747, MB-3200, BLACH-1, AK-235, DLSA-17,<br />

MDL-2601 and MDL-2582 were crossed to produce 32 F 1<br />

s.<br />

The 32 F 1<br />

s along with their parents were grown <strong>in</strong> a randomized block design at Ma<strong>in</strong><br />

Agricultural Research Station, Dharwad dur<strong>in</strong>g kharif 2006-07 at 90x30 cm spac<strong>in</strong>g.<br />

Observations were recorded on 12 characters <strong>in</strong>clud<strong>in</strong>g seed cotton yield, yield contribut<strong>in</strong>g<br />

characters and fibre quality traits from five randomly selected plants <strong>in</strong> each replication for<br />

each treatment. The data was analysed as per the procedure given by Kempthrone (1957)<br />

and heterosis was calculated <strong>in</strong> percentage.<br />

RESULTS AND DISCUSSION<br />

Yield and yield components<br />

The magnitude <strong>of</strong> heterosis was high for seed cotton yield compared to rema<strong>in</strong><strong>in</strong>g<br />

traits. Among two sets <strong>of</strong> hybrids, the <strong>in</strong>tra-herbaceum crosses exhibited better heterosis<br />

than <strong>in</strong>terspecific crosses for seed cotton yield and its component characters (Table 1 and<br />

2). Although, superiority <strong>of</strong> <strong>in</strong>traspecific crosses for seed cotton yield was due to the cumulative<br />

action <strong>of</strong> components traits like boll weight and number <strong>of</strong> bolls per plant, whereas boll<br />

number <strong>in</strong> <strong>in</strong>terspecific crosses for better expression <strong>of</strong> heterosis <strong>of</strong> seed cotton yield (Bhatade,<br />

1983 and S<strong>in</strong>gh et al., 1995). However <strong>in</strong> the present <strong>in</strong>vestigation <strong>in</strong> both sets <strong>of</strong> crosses for<br />

seed cotton yield, contribution <strong>of</strong> boll weight was relatively more than number <strong>of</strong> bolls per<br />

plant.<br />

Ten <strong>in</strong>tra herbaceum crosses exhibited heterobeltiosis and three crosses standard<br />

heterosis for seed cotton yield. They also exhibited significant heterosis for seed cotton<br />

36


A COMPARATIVE STUDY ON HETEROSIS FOR PRODUCTIVITY<br />

yield and boll weight. Out <strong>of</strong> 16 <strong>in</strong>tra herbaceum crosses, the cross comb<strong>in</strong>ation KS-16 ´<br />

BLACH-1 exhibited high mean seed cotton yield <strong>of</strong> 82.5 g per plant, with high standard<br />

heterosis <strong>of</strong> 38.66 per cent over Jayadhar and moderately high boll weight <strong>of</strong> 1.98 g. The<br />

f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> heterosis are <strong>in</strong> agreement with the studies <strong>of</strong> Reddy (2001) and Neelima (2002).<br />

Out <strong>of</strong> 16 crosses, four crosses KS-16 xMB-3200, KS-16xBLACH-1, RDC-53xMB-3200 and<br />

RDC-88x9747 were identified based on seed cotton yield per plant, seed cotton yield per plot<br />

and fibre quality traits. Among these crosses, two <strong>of</strong> them viz., KS-16xMB-3200 and<br />

RDC-53xMB-3200 also exhibited significant positive heterosis for fibre quality trait 2.5 per<br />

cent span length.<br />

Seven <strong>in</strong>terspecific crosses exhibited significant standard heterosis for seed cotton<br />

yield. Out <strong>of</strong> 16 <strong>in</strong>terspecific crosses, the cross comb<strong>in</strong>ation KS-16xMDL-2582 exhibited<br />

high mean seed cotton yield <strong>of</strong> 78.25 g per plant, with high standard heterosis <strong>of</strong> 31.57 per<br />

cent over Jayadhar, it has medium to high boll number and high boll weight <strong>of</strong> 2.02 g. Four<br />

crosses viz., KS-16xDLSA-17, KS-16xMDL-2582, RDC-53xAK-235 and RDC-88xDLSA-17<br />

exhibited significant positive heterosis for seed cotton yield per plant and boll weight. The<br />

cross KS-16xAK-235 exhibited heterosis for seed cotton yield and number <strong>of</strong> bolls per plant.<br />

These f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> heterosis are <strong>in</strong> agreement with the studies <strong>of</strong> Reddy (2001) and Neelima<br />

(2002). Five crosses RAHS-14xDLSA-17, KS-16xAK-235, KS-16xMDL-2582, RDC-53x<br />

MDL-2582 and RDC-88xDLSA-17 were identified based on seed cotton yield and yield<br />

components and fibre quality traits. The crosses identified for high seed cotton yield viz.,<br />

KS-16xMDL-2582, KS-16xAK-235 and RDC-88xDLSA-17 exhibited significant positive<br />

heterosis for majority <strong>of</strong> quality traits like 2.5 per cent span length, uniformity ratio, fibre<br />

strength and seed cotton yield.<br />

Economic traits<br />

Among the economic traits <strong>in</strong>cluded <strong>in</strong> the study g<strong>in</strong>n<strong>in</strong>g out turn per cent, primarily<br />

depends on seed weight and l<strong>in</strong>t weight. L<strong>in</strong>t <strong>in</strong>dex represents the absolute weight <strong>of</strong> the l<strong>in</strong>t<br />

produced per seed. This character can be considered as more important <strong>in</strong> breed<strong>in</strong>g work<br />

rather g<strong>in</strong>n<strong>in</strong>g percentage as it is highly correlated with the l<strong>in</strong>t yield. L<strong>in</strong>t <strong>in</strong>dex is a<br />

complementation <strong>of</strong> high seed <strong>in</strong>dex and high g<strong>in</strong>n<strong>in</strong>g out turn per cent.<br />

In both sets <strong>of</strong> hybrids, most <strong>of</strong> the crosses failed to record significant positive<br />

heterosis for g<strong>in</strong>n<strong>in</strong>g out turn and l<strong>in</strong>t <strong>in</strong>dex, but exhibited significant standard heterosis for<br />

seed <strong>in</strong>dex. Similar f<strong>in</strong>d<strong>in</strong>gs were also reported by Kajjidoni (1997), Laxman and Ganesh<br />

(2003) and Manickam and Gururajan (2004). Among <strong>in</strong>tra-herbaceum crosses,<br />

RAHS-14x MB-3200 exhibited heterosis for g<strong>in</strong>n<strong>in</strong>g out turn per cent, seed <strong>in</strong>dex and l<strong>in</strong>t<br />

<strong>in</strong>dex. Among <strong>in</strong>terspecific crosses, RAHS-14xDLSA-17 and RDC-88xAK-235 exhibited<br />

significant positive heterosis for l<strong>in</strong>t <strong>in</strong>dex, seed cotton yield and seed <strong>in</strong>dex.<br />

37


IRADDI and KAJJIDONI<br />

Fibre quality traits<br />

In recent years, more emphasis is laid on quality traits apart from seed cotton yield.<br />

For 2.5 per cent span length, six crosses exhibited heterobeltiosis and eight crosses accounted<br />

significant standard heterosis. Among <strong>in</strong>tra herbaceum crosses, RDC-53xMB-3200 identified<br />

for high heterosis for seed cotton yield also exhibited significant standard heterosis for 2.5<br />

per cent span length. The results <strong>of</strong> heterosis are <strong>in</strong> conformity with the reports <strong>of</strong> Reddy<br />

(2001), Neelima (2002) and Tuteja et al. (2005). Four crosses manifested heterobeltiosis and<br />

three crosses viz., RAHS-14xRAHS-131, RDC-88xRAHS-131 and RDC-88xMB-3200 recorded<br />

significant standard heterosis for fibre strength. They also recorded significant positive<br />

heterosis over check Jayadhar for 2.5 per cent span length. The present f<strong>in</strong>d<strong>in</strong>gs corroborate<br />

with Tuteja et al. (2005).<br />

For 2.5 per cent span length, n<strong>in</strong>e crosses recorded high heterobeltiosis while all the<br />

16 crosses were superior over check Jayadhar. The <strong>in</strong>terspecific crosses viz., KS-16x<br />

MDL-2582, KS-16xAK-235, RDC-88xDLSA-17 and RDC-53xAK-235 recorded high heterosis<br />

for seed cotton yield and the quality traits 2.5 per cent span length, uniformity ratio and fibre<br />

strength. The results <strong>of</strong> heterosis are <strong>in</strong> conformity with the reports <strong>of</strong> Reddy (2001), Neelima<br />

(2002) and Tuteja et al. (2005). Ten crosses recorded significant positive heterosis over<br />

better parent and 15 crosses over the check Jayadhar for fibre strength.<br />

Oil content<br />

None <strong>of</strong> the <strong>in</strong>tra-herbaceum crosses exhibited significant heterosis over standard<br />

check Jayadhar. However seven crosses recorded significant heterobeltiosis for oil content.<br />

Out <strong>of</strong> these, two crosses viz., KS-16xBLACH-1 and RDC-53xMB-3200 recorded significant<br />

positive heterosis for seed cotton yield and oil content. None <strong>of</strong> the <strong>in</strong>terspecific crosses,<br />

exhibited significant heterosis over standard check Jayadhar. But, seven crosses exhibited<br />

significant heterobeltiosis. Out <strong>of</strong> these crosses, KS-16xMDL-2601 exhibited significant<br />

positive heterosis for seed <strong>in</strong>dex, 2.5 per cent span length, uniformity ratio, and fibre strength.<br />

The best cross comb<strong>in</strong>ation for seed cotton yield was KS-16xBLACH-1 among <strong>in</strong>traherbaceum<br />

crosses. Among these crosses, RDC-53xMB-3200 exhibited significant positive<br />

heterosis for 2.5 per cent span length and seed cotton yield. The best comb<strong>in</strong>ation for fibre<br />

quality traits was KS-16xMB-3200.<br />

The best cross comb<strong>in</strong>ation for seed cotton yield among <strong>in</strong>terspecific crosses was<br />

KS-16xMDL-2582. Among these, four crosses KS-16xMDL-2582, RAHS-14xMDL-2601 and<br />

RDC-88xDLSA-17 exhibited significant positive heterosis for seed cotton yield, 2.5 per cent<br />

span length, uniformity ratio, and fibre strength. The best comb<strong>in</strong>ation for fibre quality traits<br />

was RDC-88xDLSA-17. Among these crosses, RDC-88xDLSA-17 exhibited significant positive<br />

heterosis for 2.5 per cent span length, uniformity ratio and fibre strength.<br />

38


A COMPARATIVE STUDY ON HETEROSIS FOR PRODUCTIVITY<br />

Table 1. Per cent heterosis for yield, yield components and fibre quality traits <strong>of</strong> Intraherbaceum<br />

Cotton.<br />

Number <strong>of</strong> bolls<br />

per plant<br />

Boll weight (g)<br />

Seed cotton yield<br />

per plant (g)<br />

Seed cotton yield<br />

per plot (g)<br />

G<strong>in</strong>n<strong>in</strong>g outturn<br />

(%)<br />

L<strong>in</strong>t <strong>in</strong>dex (g)<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Crosses<br />

RAHS-14 RAHS-131 1.74 -2.01 -3.42 6.02 1.15 10.92 32.08* 27.85*<br />

3.21 -6.86* 15.75 0.43<br />

RAHS-14 9747 1.74 -2.01 18.49* 30.08** 20.31** 31.93** 18.87 15.07 1.63 -11.32** 1.98 -2.96<br />

RAHS-14 MB-3200 0.00 -3.68 4.11 14.29 3.45 13.45 -3.77 -6.85 21.33** 8.65* 36.24** 34.58**<br />

RAHS-14 BLACH-1 -13.19 -16.39* -4.11 5.26 -15.71* -7.56 0.00 -3.20 0.44 2.80<br />

19.03* 18.78**<br />

KS-16 RAHS-131 20.55*<br />

2.01 10.63 3.31 36.36** 13.45 19.70 44.29** -4.31 -7.97* 1.09 2.64<br />

KS-16 9747 12.65 -4.68 24.14** 35.34** 60.61** 33.61** -7.88 11.42 -5.03<br />

--8.66* -4.41 -2.96<br />

KS-16 MB-3200 1.19 -14.38 7.97 13.03 33.84** 11.34<br />

14.39 37.90** -1.84 -5.60 5.39 7.00<br />

KS-16 BLACH-1 21.74* 3.01 27.86** 19.40* 66.67** 38.66** 75.76** 111.87** -21.50** -24.03** -19.00* -17.77*<br />

RDC-53 RAHS-131 20.41* -1.34 8.55 -0.75 33.89** 1.26<br />

-4.88 -28.77* 5.66 1.01 20.05* 8.53<br />

RDC-53 9747 2.45<br />

-16.05* 18.62* 29.32** 43.62** 13.45 30.61 -2.19 -14.93** -18.67** -7.42 -11.90*<br />

RDC-53 MB-3200 20.82* -1.00 2.90 6.77 39.58** 12.61 82.93** 36.99*<br />

5.62 0.98 8.30 7.00<br />

RDC-53 BLACH-1 -0.57 -18.53* 1.15 -7.52 8.89 -17.65* 58.54**<br />

18.72 -5.39 -8.44* 0.08 -0.13<br />

RDC-88 RAHS-131 8.10 2.68 22.94* 0.75 30.10* 7.14 33.70* 12.3 -0.60<br />

-4.93 1.99 4.89<br />

RDC-88 9747 1.06 -4.01 -4.14 4.51 28.57** 5.88<br />

45.65* 22.37 -4.50 -8.66* -2.43 0.34<br />

RDC-88 MB-3200 -3.52 -8.36 -26.09** -23.31* -8.16 -24.37** -17.39 -30.59* -4.27 -8.44* 1.10 3.97<br />

RDC-88 BLACH-1 -21.83* -25.75** 7.89 -7.52 -17.35* -31.93** -23.91 -36.07* 3.07 -0.25 14.84* 18.11**<br />

SE+ 4.02<br />

2.81 0.17 0.13 5.28 4.24 89.08 70.73 1.95 0.95 0.25 0.13<br />

CD at 5 % 8.34 5.95 0.36 0.29 10.94 9.02 184.52 150.17<br />

Contd….1 st page<br />

4.04 2.02 0.54 0.27<br />

39


IRADDI and KAJJIDONI<br />

Table1. contd…..<br />

Seed <strong>in</strong>dex (g)<br />

2.5% span length<br />

(mm)<br />

Uniformity ratio (%)<br />

Fibre strength<br />

(g/tex)<br />

Micronaire value<br />

(g/<strong>in</strong>)<br />

Oil content (%)<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Crosses<br />

RAHS-14 RAHS-131 10.53** 11.14** 12.05** 7.60** 11.20** 2.15** 22.29** 10.07** -13.12** -6.98** 8.16** 1.60<br />

RAHS-14 9747 -9.14** 15.3** 3.71** -0.42 7.88** -0.90** 3.32** -7.00** -11.87** -5.64** 3.57 1.92<br />

RAHS-14 MB-3200 2.92 19.04** -1.51* 4.83** 2.66** 4.40** -7.09** -6.14** -33.57** -28.87** 2.04 -4.15<br />

RAHS-14 BLACH-1 18.20** 23.88** 0.95 2.57** 2.21** -0.54 -0.73 -4.44** -19.20** -13.48** 8.50** 1.92<br />

KS-16 RAHS-131 7.48** 15.76** 2.65** -2.06** 10.90** -0.88** 11.55** -10.93** 0.70 -3.06 -3.59 -5.75*<br />

KS-16 9747 -9.14** 15.33** 1.82** -2.86** 0.82** -10.89** 2.51** -17.51** -4.79** -6.79** 2.60 0.96<br />

KS-16 MB-3200 0.67 16.44** 19.77** 27.48** -23.32** -22.02** -6.90** -5.95** -3.97* -7.55** 3.59 1.28<br />

KS-16 BLACH-1 11.82** 20.44** -6.96** -5.47** 6.55** 3.68** -5.79** -9.32** 0.50 -3.25 6.21* 3.83<br />

RDC-53 RAHS-131 6.43**<br />

7.02** 2.91** 1.74** -1.61** -3.56** -3.56** -2.15** -2.24 -8.03** 7.28** 3.51<br />

RDC-53 9747 -7.19** 17.80** -3.15** -4.26** -9.61** -11.41** -9.69* -8.38** 11.04** 8.70** 3.25 1.60<br />

RDC-53 MB-3200 -8.74** 5.56** -0.47 5.93** -6.64** -4.55** -5.57** -4.20** -5.28** -10.90** 5.30* 1.60<br />

RDC-53 BLACH-1 8.29** 13.56** -2.55** -1.30** -5.18** -7.07** -6.74** -5.39** -7.42** -12.91** 0.99 -2.56<br />

RDC-88 RAHS-131 3.40*<br />

12.98** -2.08** 9.36** 1.88** 8.33** -3.35** 10.96** -2.15 -8.80** 4.24 -5.75*<br />

RDC-88 9747 -9.88** 14.39** -15.34** -5.45** -16.13** -10.82** -40.79* -32.02** -7.91** -9.85** -0.97 -2.56<br />

RDC-88 MB-3200 2.13<br />

18.13** -3.36** 7.93** 2.99** 9.51** -4.32** 9.86** -2.48 -9.66** 11.43** -0.32<br />

RDC-88 BLACH-1 8.74** 18.82** -14.36** -4.35** -11.32** -5.71** -12.03** 1.00 -4.19*<br />

-10.42** 10.00** 1.92<br />

SE+ 0.14<br />

0.04 0.18 0.06 0.16 0.10 0.13 0.10 0.11 0.10 0.52 0.37<br />

CD at 5 % 0.29<br />

0.09 0.40 0.13 0.32 0.21 0.27 0.21 0.24 0.21 1.10 0.79<br />

40


A COMPARATIVE STUDY ON HETEROSIS FOR PRODUCTIVITY<br />

Table 2. Per cent heterosis for yield, yield components and fibre quality traits <strong>in</strong> <strong>in</strong>ter-specific crosses<br />

(G. herbaceum L. G. arboreum L.) <strong>of</strong> diploid cotton.<br />

Number <strong>of</strong> bolls per<br />

plant<br />

Boll weight (g)<br />

Seed cotton yield<br />

per plant (g)<br />

Seed cotton yield<br />

per plot (g)<br />

G<strong>in</strong>n<strong>in</strong>g outturn (%) L<strong>in</strong>t <strong>in</strong>dex (g)<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Crosses<br />

RAHS-14 AK-235 0.35 -3.34 -8.90 0.00 -5.56 3.57 24.53 20.55 -18.03** -11.40** -11.05 -7.30**<br />

RAHS-14 DLSA-17 13.89 9.70 -7.53 1.50 10.34 21.01** 1.89 -1.37 -9.61** -4.33** 5.73 9.49**<br />

RAHS-14 MDL-2582 -6.94 -10.37 -29.45 -22.56** -39.46** -33.61** -60.38** -61.64** -5.91 -17.90** 5.30 -12.80**<br />

RAHS-14 MDL-2601 1.39 -2.34 -10.27 -1.50 -5.94 3.15 -15.09 -17.81 -18.55** -15.84** -2.62 -9.77**<br />

KS-16 AK-235 32.45** 17.39* 7.89 0.75 50.76** 25.42** 7.58 29.68 -27.09** -21.19** -25.92** -22.79**<br />

KS-16 DLSA-17 5.38 -1.67 36.88** 27.82** 37.00** 15.13* -27.27 -12.33 -20.03** -15.37** -10.91 -7.74**<br />

KS-16 MDL-2582 22.92* 4.01 18.25** 21.80** 58.08** 31.57** 15.15 38.81 -6.12 -9.71** -0.32 1.20<br />

KS-16 MDL-2601 9.41 -7.42 -2.58 -9.02 8.33 -9.87 -34.85* -21.46 -11.75** -8.82** -2.87 -1.38<br />

RDC-53 AK-235 24.53* 10.37 25.82** 15.04* 61.54** 23.53** 36.59 2.28 -15.23** -8.36** -4.21 0.17<br />

RDC-53 DLSA-17 -2.87 -9.36 2.80 -6.02 4.50 -17.18 17.07 -12.33 -21.80** -17.23** -17.45** -14.51**<br />

RDC-53 MDL-2582 5.31 -13.75 5.84 9.02 23.74** 2.94 -12.20 -34.25 -22.80** -26.20** -11.72 -20.20**<br />

RDC-53 MDL-2601 20.82* -1.00 -12.83* -20.30** 16.39 -11.97 43.90 7.76 -23.49** -20.95** -11.25 -17.77**<br />

RDC-88 AK-235 19.37* 13.38 34.31** 3.01 51.53** 24.79** -23.90 -36.07 -8.66* -1.26 6.84 11.35**<br />

RDC-88 DLSA-17 5.63 0.33 28.10** 16.54** 45.00** 21.85** 32.61 11.42 -16.97** -12.13** -12.43* -9.32**<br />

RDC-88 MDL-2582 -3.17 -8.03 -23.50** -21.20** -7.58 -23.11** 13.04 -5.02 -14.15** -17.90** -20.41** -18.14**<br />

RDC-88 MDL-2601 1.06 -4.01 -11.02 -21.05** 0.51 -17.23* 50.00 26.03 -12.36** -9.45** -8.24 -5.63*<br />

SE+ 4.32 2.78 0.11 0.08 5.42 4.07 128.52 105.38 1.61 0.42 0.21 0.07<br />

CD at 5 % 8.95 5.89 0.26 0.19 11.24 8.62 266.20 223.75 3.33 0.90 0.45 0.14<br />

41


IRADDI and KAJJIDONI<br />

Table 2. contd….<br />

Seed <strong>in</strong>dex (g)<br />

2.5% span length<br />

(mm)<br />

Uniformity ratio (%)<br />

Fibre strength<br />

(g/tex)<br />

Micronaire value<br />

(g/<strong>in</strong>)<br />

Oil content (%)<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Heterobeltiosis<br />

Standard<br />

Heterosis<br />

Crosses<br />

RAHS-14 AK-235 12.84* 10.29** -5.38** 10.78** -4.31** 11.42** -9.65** 6.19** -30.45** -25.53** 9.46** 3.51<br />

RAHS-14 DLSA-17 19.53** 16.83** -3.89** 16.10** -4.86** 15.78** -43.84** -32.16** -28.84** -23.80** 2.86 3.51<br />

RAHS-14 MDL-2582 6.99** 15.08** -1.17 11.68** 19.05** 26.41** 6.79** 19.85** -27.68** -22.56** 8.50** 1.92<br />

RAHS-14 MDL-2601 17.74** 15.08** -3.03** 9.03** -7.95** 6.90** -6.73** 1.56** -44.73** -40.82** 6.10* 0.00<br />

KS-16 AK-235 -0.03 7.67** -5.57** 10.56** -6.21** 9.21** -8.64** 7.38** -32.27** -34.80** 3.27 0.96<br />

KS-16 DLSA-17 8.47** 16.83** 4.64** 26.40** -12.78** 6.68** -4.50** 15.35** -28.50** -31.17** 1.90 2.56<br />

KS-16 MDL-2582 8.87** 17.26** 4.30** 17.86** 4.52** 10.98** 11.02** 24.59** -8.14** -11.57** 1.63 -0.64<br />

KS-16 MDL-2601 4.60** 12.66** 11.99** 25.92** -13.05** 0.97** 16.55** 26.91** -2.28* -5.93** 4.90* 2.56<br />

RDC-53 AK-235 17.17** 13.23** 10.75** 29.67** 7.05** 24.65** 8.68** 27.74** -19.31** -24.09** -2.32 -5.75*<br />

RDC-53 DLSA-17 15.48** 11.60** -2.874** 17.37** -7.16** 12.91** -0.80 19.82** -13.31** -18.45** -12.06** -11.50**<br />

RDC-53 MDL-2582 12.82** 21.36**<br />

10.67** 25.06** 25.46** 33.22** 14.37** 28.36** -10.47** -15.77** -5.30* -8.63**<br />

RDC-53 MDL-2601 18.19** 14.21** 11.64** 25.52** 4.25** 21.06** 17.88** 28.36** -29.27** -33.46** 6.20* 2.56<br />

RDC-88 AK-235 3.92** 13.55** 0.34 17.48** 2.91** 19.83** 4.81** 23.19** -14.34** -20.65** 2.70 -2.88<br />

RDC-88 DLSA-17 -0.26** 8.98** 4.33** 26.03** 7.53** 30.78** 6.73** 28.93** -27.14** -32.50** 1.27 1.92<br />

RDC-88 MDL-2582 -1.06** 8.11** 9.64** 23.90** 12.89** 20.03** 7.83** 23.81** -4.28** -45.60** 6.92** -1.28<br />

RDC-88 MDL-2601 -0.32** 8.92** 9.47** 23.08** -5.56 9.67** 7.62** 23.57** -23.94** -29.54** 6.78** 0.64<br />

SE+ 0.11<br />

0.06 0.24 0.17 0.13 0.07 0.13 0.11 0.07 0.06 0.49 0.38<br />

CD at 5 % 0.25<br />

0.12 0.49 0.36 0.26 0.14 0.28 0.24 0.15 0.12 1.03 0.81<br />

42


A COMPARATIVE STUDY ON HETEROSIS FOR PRODUCTIVITY<br />

REFERENCES<br />

Bhatade, S. S. 1983. Environmental <strong>in</strong>fluence on the magnitude <strong>of</strong> heterosis <strong>in</strong> G. arboreum<br />

L. Indian Journal <strong>of</strong> Agricultural Science. 53 (8): 627-633.<br />

Kajjidoni, S. T. 1997. Histological basis <strong>of</strong> genetic male sterility and its utilization <strong>in</strong> hybrid<br />

development <strong>in</strong> diploid cottons. Ph. D. Thesis submitted to University <strong>of</strong> Agricultural<br />

Sciences, Dharwad.<br />

Kempthrone, O. 1957. An Introduction to Genetic Statistics. John Wiley and Sons, 1 st Edn.,<br />

New York, USA. pp. 456-471.<br />

Laxman, S and Ganesh, M. 2003. Comb<strong>in</strong><strong>in</strong>g ability for yield components and fibre characters<br />

<strong>in</strong> cotton (Gossypium hirsutum L.). The Journal <strong>of</strong> Research ANGRAU. 31 (4): 19-23.<br />

Manickam, S and Gururajan, K. N. 2004. Comb<strong>in</strong><strong>in</strong>g ability analysis for fibre quality <strong>in</strong> upland<br />

cotton (Gossypium hirsutum L.). Journal <strong>of</strong> Indian Society for Cotton Improvement.<br />

29 (2): 86-91.<br />

Neelima, S. 2002. Heterosis and comb<strong>in</strong><strong>in</strong>g ability analysis for yield and yield components <strong>in</strong><br />

cotton (Gossypium hirsutum L.). M. Sc. (Agri.) Thesis submitted to Acharya N. G.<br />

Ranga Agricultural University, Hyderabad.<br />

Reddy, A. N. 2001. Heterosis, comb<strong>in</strong><strong>in</strong>g ability and stability analysis <strong>of</strong> hybrids for yield and<br />

yield components <strong>in</strong> cotton (Gossypium hirsutum L.). Ph. D. Thesis submitted to<br />

Acharya N. G. Ranga Agricultural University, Hyderabad.<br />

S<strong>in</strong>gh, H., S<strong>in</strong>gh, S and Omprakash, 1995. Heterotic response <strong>of</strong> ten American cotton hybrids<br />

for some quality traits. Journal <strong>of</strong> Cotton Research and Development. 9 (1): 13-16.<br />

Tuteja, O. P., Kumar, S., Hasan, H and S<strong>in</strong>gh, M. 2005, Heterosis and <strong>in</strong>terrelationship<br />

between seed cotton yield and qualitative characters <strong>in</strong> upland cotton (Gossypium<br />

hirsutum L.). Indian Journal <strong>of</strong> Agricultural Science. 75 (3): 167-171.<br />

43


J.Res. ANGRAU 37(3&4)44-51, 2009<br />

DIVERSITY OF WEEDS IN THE SORGHUM (Sorghum bicolor (L.)<br />

Moench.) FIELDS OF ANDHRA PRADESH<br />

P. KIRAN BABU, M. ELANGOVAN and J. S. MISHRA<br />

Directorate <strong>of</strong> Sorghum Research (DSR)<br />

Rajendranagar, Hyderabad – 500030, AP<br />

ABSTRACT<br />

The study was conducted dur<strong>in</strong>g 2007-2009 to identify major <strong>weeds</strong> <strong>of</strong> <strong>sorghum</strong> <strong>in</strong> different regions<br />

<strong>of</strong> Andhra Pradesh. Results revealed that the fields were <strong>in</strong>fested with 105 weed species. They belonged to 82<br />

genera and 32 families <strong>of</strong> which 90 were dicotyledons and 15 monocotyledons. The dom<strong>in</strong>ant weed <strong>of</strong> the<br />

regions belonged to the families amaranthaceae, poaceae, fabaceae, asteraceae, euphorbiaceae and<br />

solanaceae <strong>of</strong> the regions, Celosia argentea, Digera muricata, Trichodesma <strong>in</strong>dicum, Euphorbia hirta, Tribulus<br />

terrestris, Parthenium hysterophorus, Chloris <strong>in</strong>flata, Portulaca oleracea, Boerhavia diffusa and Cleome viscosa<br />

were dom<strong>in</strong>ant <strong>weeds</strong>. The most dom<strong>in</strong>ant weed species <strong>in</strong> Rayalaseema region were Digera muricata<br />

(37.87), Celosia argentea (32.85), and Cleome viscosa (21.20). In the Telangana region dom<strong>in</strong>ant species<br />

were Digera muricata (42.49), Celosia argentea (38.01) and Parthenium hysterophorus (22.61). In Coastal<br />

Andhra, the dom<strong>in</strong>ant species were Digera muricata (41.38), Cleome viscosa (33.06) and Portulaca oleracea<br />

(30.48).<br />

Sorghum (Sorghum bicolor (L.) Moench) is an important cereal crop grown <strong>in</strong> ra<strong>in</strong>y<br />

and post ra<strong>in</strong>y seasons <strong>in</strong> semi-arid regions <strong>of</strong> the country on the marg<strong>in</strong>al lands. In India,<br />

the crop is mostly grown <strong>in</strong> Maharashtra, Karnataka, Andhra Pradesh, Madhya Pradesh,<br />

Rajasthan, Uttar Pradesh, Gujarat and Tamil Nadu. In Andhra Pradesh, <strong>sorghum</strong> is cultivated<br />

ma<strong>in</strong>ly <strong>in</strong> Rayalaseema and Telangana zones dur<strong>in</strong>g the ra<strong>in</strong>y season and <strong>in</strong> coastal pla<strong>in</strong>s<br />

dur<strong>in</strong>g post – ra<strong>in</strong>y season as rice fallows. The <strong>sorghum</strong> fields <strong>of</strong> these zones are <strong>in</strong>fested<br />

heavily with large number <strong>of</strong> <strong>weeds</strong>, caus<strong>in</strong>g heavy losses to the crop yields. Uncontrolled<br />

<strong>weeds</strong> <strong>in</strong> <strong>sorghum</strong> reduces crop yield by 15-65% depend<strong>in</strong>g on the nature and <strong>in</strong>tensity <strong>of</strong><br />

weed flora, agro-ecological situations and management practices (Okafor and Zitta, 1991<br />

and Mishra, 1997). The losses due to <strong>weeds</strong> are more dur<strong>in</strong>g ra<strong>in</strong>y than post-ra<strong>in</strong>y season.<br />

The nature and <strong>in</strong>tensity <strong>of</strong> weed flora varies depend<strong>in</strong>g on agro – ecological conditions and<br />

management practices. To develop effective and economical weed management practices<br />

<strong>in</strong> <strong>sorghum</strong>, it is necessary to identify the weed flora, their nature and <strong>in</strong>tensity. Hence, the<br />

present <strong>in</strong>vestigation was undertaken to study the diversity <strong>of</strong> <strong>weeds</strong> <strong>in</strong> <strong>sorghum</strong> <strong>in</strong> different<br />

regions <strong>of</strong> Andhra Pradesh.<br />

MATERIALS AND METHODS<br />

The study was carried dur<strong>in</strong>g 2007-2009 to identify major <strong>weeds</strong> <strong>of</strong> <strong>sorghum</strong> <strong>in</strong> different<br />

regions <strong>of</strong> Andhra Pradesh The state <strong>of</strong> Andhra Pradesh has 23 districts which are grouped<br />

<strong>in</strong>to three zones: 1). Circar or Coastal Andhra compris<strong>in</strong>g the districts <strong>of</strong> Srikakulam,<br />

Vijayanagaram, Visakhapatnam, East Godavari, West Godavari, Krishna, Guntur, Prakasam<br />

E-mail: elangovan@<strong>sorghum</strong>.res.<strong>in</strong><br />

44


DIVERSITY OF WEEDS IN THE SORGHUM<br />

and Nellore. 2). Rayalaseema region consists <strong>of</strong> Kurnool, kadapa, Anantapur and Chittoor<br />

districts and 3). Telangana region <strong>in</strong>cludes Adilabad, Hyderabad, Karimnagar, Khammam,<br />

Mahbubnagar, Medak, Nalgonda, Nizamabad, Rangareddy and Warangal districts. The<br />

diversity <strong>of</strong> <strong>weeds</strong> <strong>in</strong> the <strong>sorghum</strong> fields <strong>in</strong> all the three regions was studied. All the <strong>weeds</strong><br />

encountered <strong>in</strong> the <strong>sorghum</strong> fields <strong>of</strong> each district. In each district hav<strong>in</strong>g 3-5 field site<br />

villages. In Rayalaseema, Kurnool (Nandikotkur, Nandyal, Atmakur, Kodumur, Yemmiganur),<br />

Kadapa (Badvel, B.Matam, Pulivendula, Jyothi, Rayachoti), Chittoor (Kanipakam, Puttur,<br />

Kambakkam, Satyavedu, Mangalam), Anantapur (Uravakonda, Peddamushtur, Tadipatri,<br />

Gorantla, Vajrakarur). In Telangana region Mahbubnagar (Appapur, vanaparthi, Kollapur, Ija,<br />

Mannanur), Hyderabad (Rajendranagar, Shamsabad), Warangal (Hanmakonda, Khazipet,<br />

Pakal, Warangal). In Coastal Andhra, Prakasam (Giddalur, Kambam, Markapuram, Dornala,<br />

Podili), Nellore (Atmakur, B.Palem, Somasila), Guntur (Macherla, Karempudi, V<strong>in</strong>ugonda,<br />

Sattenapalli), East Godavari (Draksharamam, Yanam, Ramachandrapuram, Mummidivaram),<br />

Srikakulam (Amudalavalasa, Vemulada, Tekkali, Ichapuram). All the <strong>weeds</strong> encountered <strong>in</strong><br />

the <strong>sorghum</strong> fields were carefully collected and identified. Random quadrat method was<br />

adopted for study<strong>in</strong>g phyto-sociological attributes <strong>of</strong> <strong>weeds</strong>. In each field site quadrat <strong>of</strong> 1m<br />

x 1m was laid down <strong>in</strong> each village and a sum <strong>of</strong> 20 quadrats for each region. These studies<br />

were carried <strong>in</strong> the flower<strong>in</strong>g stage <strong>of</strong> the crop.<br />

Vegetation composition was evaluated by analyz<strong>in</strong>g the frequency, density and<br />

Importance Value Index (IVI) accord<strong>in</strong>g to Mishra (1968) and Curtis and McIntosh (1950). IVI<br />

(Importance Value Index) = Relative Density + Relative Frequency + Relative Dom<strong>in</strong>ance.<br />

All the <strong>weeds</strong> from each quadrat were collected separately <strong>in</strong> polythene bags. Every<br />

specimen was carefully studied regard<strong>in</strong>g vegetative and reproductive features. Provisional<br />

identification was made follow<strong>in</strong>g ‘Flora <strong>of</strong> Presidency <strong>of</strong> Madras’ (Gamble and Fischer,<br />

1915-1935) and other state, regional and local floras. All the plant families were arranged <strong>in</strong><br />

sequence follow<strong>in</strong>g Bentham and Hooker’s classification (1862-83) with certa<strong>in</strong> exceptions<br />

to accommodate recent modifications adopted after Cronquist (1968).<br />

RESULTS AND DISCUSSION<br />

A total number <strong>of</strong> 105 <strong>weeds</strong> species belong<strong>in</strong>g to 82 genera and 32 families were<br />

recorded, <strong>of</strong> which 90 were dicotyledonous and 15 monocotyledonous species. Six families<br />

amaranthaceae, poaceae, fabaceae, asteraceae, euphorbiaceae and solanaceae were<br />

represented by more than 5 weed species. In Andhra Pradesh, the major <strong>weeds</strong> were Digera<br />

muricata, Trichodesma <strong>in</strong>dicum, Celosia argentea, Euphorbia hirta, Parthenium hysterophorus,<br />

Tribulus terrestris, Commel<strong>in</strong>a benghalensis, and Cyperus rotundus. A critical study on the<br />

flora <strong>of</strong> Andhra Pradesh (Pullaiah,1997; Pullaiah and Alimoulali, 1997; Pullaiah and Chennaiah,<br />

1997) revealed the presence <strong>of</strong> 715 taxa as <strong>weeds</strong> <strong>in</strong> crop fields <strong>of</strong> the state. The <strong>weeds</strong> <strong>of</strong><br />

<strong>sorghum</strong> comprised <strong>of</strong> 14.68% <strong>of</strong> the total <strong>weeds</strong> encountered <strong>in</strong> the state crop fields.<br />

45


BABU et al.<br />

Results depicted <strong>in</strong> table.1 show the acquired density <strong>of</strong> <strong>weeds</strong> <strong>in</strong> these regions.<br />

Euphorbia hirta (1.95 plants/m 2 ) followed by Digera muricata (1.9 plants/m 2 ) Portulaca oleracea<br />

(1.8 plants/m 2 ) and were dom<strong>in</strong>ant <strong>in</strong> the Rayalaseema region. Where as Euphorbia hirta<br />

(2.15 plants/m 2 ), Digera muricata (2.05 plants/m 2 ), and Portulaca oleracea (1.95 plants/m 2 ) <strong>in</strong><br />

the Telangana region and Portulaca oleracea (2.10 plants/m 2 ), Euphorbia hirta (2.0 plants/<br />

m 2 ) and Digera muricata (1.80 plants/m 2 ) <strong>in</strong> the Coastal Andhra region maximum density<br />

were recorded.<br />

The Important Value Index was 37.87 for Digera muricata, 32.87 for Celosia argentea,<br />

and 21.20 for Cleome viscosa <strong>in</strong> Rayalaseema region. Whereas <strong>in</strong> Telangana region dom<strong>in</strong>ance<br />

<strong>of</strong> Digera muricata (42.49), Celosia argentea (38.01) and Parthenium hysterophorus (22.61)<br />

was observed. In Coastal Andhra, the dom<strong>in</strong>ant species were Digera muricata (41.38),<br />

Cleome viscosa (33.06) and Portulaca oleracea (30.48). These results shows that Digera<br />

muricata <strong>in</strong> three regions, Celosia argentea <strong>in</strong> Rayalaseema amd Telangana region, Cleome<br />

viscosa <strong>in</strong> Rayalaseema and Coastal Andhra were dom<strong>in</strong>ant <strong>in</strong> the <strong>sorghum</strong> fields. Based on<br />

the presence <strong>of</strong> <strong>weeds</strong> <strong>in</strong> <strong>sorghum</strong> fields <strong>of</strong> Rayalaseema hav<strong>in</strong>g 102 species, Telangana<br />

103 species and coastal Andhra 94 species, these results show that Telangana region weed<br />

<strong>in</strong>festation was very high it may be due to the availability <strong>of</strong> abundant nutrient content less<br />

competition with <strong>sorghum</strong> plants. Telangana region is heavily <strong>in</strong>fected and Coastal Andhra is<br />

low and Rayalaseema is medium.<br />

REFERENCES<br />

Bentham, G and Hooker, J. D. 1862-1883. Genera Plantarum. 3 vols. London.<br />

Cronquist, A. J. 1968. The Evolution and Classification <strong>of</strong> Flower<strong>in</strong>g plants. London.<br />

Curtis, J. T and Mclntosh, R. P. 1950. The <strong>in</strong>terrelationships <strong>of</strong> certa<strong>in</strong> analytic and synthetic<br />

phytosociological characters. Ecology 31 : 434-455.<br />

Gamble, J. S and Fischer, C. E. C. 1915-35. Flora <strong>of</strong> the Presidency <strong>of</strong> Madras. London<br />

(repr. ed. 1957, Calcutta).<br />

Mishra, J.S. 1997. Critical period <strong>of</strong> crop – weed competition and losses due to <strong>weeds</strong> <strong>in</strong><br />

major field crops. Farmers and Parliament. XXXIII (6) : 19-20.<br />

Misra, R. 1968. Ecology Workbook. Oxford and IBH Publish<strong>in</strong>g Company Ltd., New Delhi.<br />

Okafor, L.I and Zitta, C. 1991. The <strong>in</strong>fluence on nitrogen on <strong>sorghum</strong> weed competition <strong>in</strong> the<br />

tropics. Tropical Pest Management. 37 (2) : 138-143.<br />

Pullaiah, T. 1997. Flora <strong>of</strong> Andhra Pradesh, India. Vol.III. Scientific publishers, Jodhpur.<br />

Pullaiah, T and Alimoulali, D.A. 1997. Flora <strong>of</strong> Andhra Pradesh, India. Volume. II. Scientific<br />

Publishers, Jodhpur.<br />

Pullaiah, T and Chennaiah, E. 1997. Flora <strong>of</strong> Andhra Pradesh, India. Volume. I. Scientific<br />

Publishers, Jodhpur.<br />

46


DIVERSITY OF WEEDS IN THE SORGHUM<br />

Table1. Weed density and Importance value Index<br />

Sl. Name <strong>of</strong> the taxon Family Rayala Telangana Coastal<br />

No. seema Andhra<br />

D IVI D IVI D IVI<br />

1. Cleome aspera Koenig ex DC. Cleomaceae 0.6 2.16 0.4 1.17 0.75 3.67<br />

2. C. viscosa L. Cleomaceae 1.4 21.20 1.25 16.63 1.6 33.06<br />

3. Hybanthus enneaspermus(L.) F.Muell. Violaceae 0.95 7.99 0.6 3.48 0.4 2.18<br />

4. Polygala elongata Kle<strong>in</strong> ex Willd. Polygalaceae 1.05 5.26 0.95 4.36 0.6 2.59<br />

5. Portulaca oleracea (L.) Portulacaceae 1.8 18.95 1.95 21.34 2.1 30.48<br />

6. P. quadrifida L. Portulacaceae 0.95 6.05 0.85 4.88 0.55 2.92<br />

7. Sida acuta Burm. f., Malvaceae 1.05 15.61 1.15 17.99 0.85 12.72<br />

8. S. cordata (Brum.f.) Borssum Walkes Malvaceae 0.75 6.68 0.85 8.16 0.4 2.68<br />

9. Melochia corchorifolia (L.) Sterculiaceae 0.6 6.74 1.15 22.24 0.95 19.30<br />

10. Waltheria <strong>in</strong>dica (L.) Sterculiaceae 0.45 3.31 0.45 3.22 0.35 2.57<br />

11. Corchorus aestuans (L.) Tiliaceae 0.55 6.86 0.55 6.67 0.35 3.62<br />

12. C. trilocularis (L.) Tiliaceae 0.65 9.38 0.75 11.93 0.55 8.30<br />

13. Tribulus terrestris (L.) Zygophyllaceae 1.6 20.79 1.45 16.81 0.45 2.65<br />

14. Alysicarpus bupleurifolius (L.) DC. Fabaceae 0.9 4.09 1.05 5.14 0.65 2.93<br />

15. Indig<strong>of</strong>era l<strong>in</strong>ifolia (L.f.) Retz. Fabaceae 0.6 2.16 0.65 2.39 0.4 1.42<br />

16. I. l<strong>in</strong>naei Ali Fabaceae 0.9 4.09 0.8 3.31 0.95 5.37<br />

17. Macroptilium atropurpureum (DC.) Urb. Fabaceae 0.3 0.96 0.25 0.72 - -<br />

18. Rhynchosia m<strong>in</strong>ima (L.) DC. Fabaceae 0.6 2.80 0.65 3.11 0.5 2.50<br />

19. Tephrosia pumila (Lam.) Pers. Fabaceae 0.45 3.98 0.5 4.69 0.35 3.07<br />

20. T. purpurea (L.) Pers. Fabaceae 0.65 9.38 0.55 6.67 0.45 5.73<br />

21. Vigna aconitifolia (Jacq.) Marechal Fabaceae 0.5 2.62 0.45 2.15 0.1 0.29<br />

47


BABU et al.<br />

Table 1. contd...<br />

Sl. Name <strong>of</strong> the taxon Family Rayala Telangana Coastal<br />

No. seema Andhra<br />

D IVI D IVI D IVI<br />

22. Cassia pumila Lam. Caesalp<strong>in</strong>iaceae 0.15 0.41 0.1 0.24 0.15 0.49<br />

23. Mimosa pudica (L.) Mimosaceae 0.1 0.36 0.05 0.13 0.65 11.36<br />

24. Ammania baccifera (L.) var. baccifera Lythraceae - - - - 0.2 1.77<br />

25. Citrullus colyc<strong>in</strong>thus (L.) Schrad. Cucurbitaceae 0.6 11.17 0.45 6.29 0.1 0.54<br />

26. Cocc<strong>in</strong>ia grandis (L.) Voight. Cucurbitaceae 0.45 3.98 0.4 3.14 - -<br />

27. Cucumis melo (L.) Cucurbitaceae 0.2 1.47 0.35 3.94 0.1 0.54<br />

28. C. sativus (L.) Cucurbitaceae 0.3 3.49 0.45 7.25 0.15 1.21<br />

29. Mollugo nudicaulis Lam. Mollug<strong>in</strong>aceae 0.6 1.67 0.75 2.25 0.45 1.35<br />

30. M. pentaphylla (L.) Mollug<strong>in</strong>aceae 0.65 1.87 0.4 0.96 0.25 0.64<br />

31. Centella asiatica (L.,) Urban Apiaceae - - - - 0.4 1.42<br />

32. Borreria articularis (L.f.) F. Will. Rubiaceae 0.5 4.82 0.55 5.58 0.25 1.71<br />

33. B. pusilla (Wall.) DC. Rubiaceae 0.95 15.93 0.75 9.91 0.7 10.85<br />

34. Hedyotis corymbosa (L.) Lam. Rubiaceae 0.65 1.87 0.6 1.64 0.5 1.55<br />

35. H. puberula (G.Don) Arn. Rubiaceae 0.6 2.16 0.45 1.38 0.65 2.93<br />

36. Ageratum conyzoides (L.) Asteraceae 0.6 5.54 0.85 10.21 0.55 5.72<br />

37. Blumea mollis D.Don) Merr. Asteraceae 0.2 0.73 0.25 1.01 0.4 2.86<br />

38. Ech<strong>in</strong>ops ech<strong>in</strong>atus Roxb. Asteraceae 0.45 3.98 0.45 3.87 0.35 3.07<br />

39. Eclipta prostrata (L.) L. (= E. alba) Asteraceae 0.25 1.21 0.1 0.29 0.6 6.69<br />

40. Parthenium hysterophorus (L.) Asteraceae 1.35 15.16 1.7 22.61 1.3 17.10<br />

41. Tridax procumbens (L.) Asteraceae 1.15 11.30 1.4 15.76 1.25 15.91<br />

42. Vernonia c<strong>in</strong>eria (L.,) Less. Asteraceae 0.9 11.69 0.75 8.10 0.8 11.36<br />

43. Xanthium strumarium (L.) Asteraceae 0.1 0.61 0.05 0.19 - -<br />

44. Catheranthus pusillus (Murr.) G. Apocyanaceae 0.4 2.69 0.55 4.61 - -<br />

48


DIVERSITY OF WEEDS IN THE SORGHUM<br />

Table 1. contd...<br />

IVI<br />

Coastal<br />

Andhra<br />

45. Calotropis gigantia (L.) R. Br. Asclepiadaceae 0.1 1.03 0.1 1.00 0.05 0.36<br />

46. C. procera (W.T. Aiton) R. Br. Asclepiadaceae 0.15 2.01 0.25 5.16 0.1 1.15<br />

47. Coldenia procumbens (L.) Borag<strong>in</strong>aceae 0.2 0.62 0.15 0.41 0.15 0.49<br />

48. Heliotropium <strong>in</strong>dicum (L.) Borag<strong>in</strong>aceae 0.25 1.42 0.2 0.95 0.3 2.34<br />

49. H. ovalifolium Forssk. Borag<strong>in</strong>aceae 0.35 2.13 0.35 2.08 0.1 0.35<br />

50. Trichodesma <strong>in</strong>dicum (L.) R.Br. Borag<strong>in</strong>aceae 1.6 15.28 1.85 19.37 1.45 15.45<br />

51. Evolvulus als<strong>in</strong>oides (L.) Convolvulaceae 0.95 2.35 0.9 2.16 1 2.99<br />

52. Ipomoea pes-tigridis (L.) Convolvulaceae 0.2 0.62 0.35 1.43 - -<br />

53. Merremia gangetica (L.) Cufod. Convolvulaceae 0.95 4.47 1.05 5.14 0.65 2.93<br />

54. M. tridentata (L.) Hallier f. Convolvulaceae 0.7 2.07 0.6 1.64 0.75 2.73<br />

55. Datura metel (L.) Solanaceae 0.25 2.49 0.3 3.39 0.05 0.20<br />

56. D. stramonium (L.) Solanaceae 0.1 0.45 0.15 0.87 - -<br />

57. Physalis m<strong>in</strong>ima (L.) Solanaceae 0.15 0.79 0.1 0.40 0.1 0.49<br />

58. Solanum nigrum (L.) Solanaceae 0.25 1.42 0.25 1.38 0.55 6.94<br />

59. S. surattense Burm. Solanaceae 0.8 9.39 0.65 6.23 - -<br />

60. Scoparia dulcis (L.) Scrophulariaceae 0.1 0.22 0.05 0.09 0.25 0.88<br />

61. Striga asiatica (L.) O. Kuntze Scrophulariaceae 0.65 2.44 0.6 2.12 0.4 1.42<br />

62. S. gesneroides (Willd.) Vatke Scrophulariaceae 0.25 0.73 0.15 0.36 - -<br />

63. Verbascum ch<strong>in</strong>ense (L.) Santapau Scrophulariaceae 0.25 1.21 0.25 1.18 0.05 0.14<br />

64. Sesamum alatum Thonn. Pedaliaceae 0.2 0.84 0.15 0.53 - -<br />

65. Asystasia gangetica (L.) T. Acanthaceae - - 0.05 0.10 0.35 1.76<br />

66. Indoneesiella echioides (L.) Sreemadh. Acanthaceae 0.35 2.54 0.45 3.87 0.45 4.81<br />

67. Lepidagathis cristata Willd. Acanthaceae 0.15 0.37 0.15 0.36 - -<br />

49


BABU et al.<br />

Table 1. contd...<br />

IVI<br />

Coastal<br />

Andhra<br />

68. Rungia repens Nees Acanthaceae 0.35 0.99 0.45 1.38 0.55 2.27<br />

69. Hyptis suaveolens (L.) Poit. Lamiaceae 0.2 1.47 0.35 3.94 0.1 0.54<br />

70. Leucas aspera (willd.) L<strong>in</strong>k Lamiaceae 0.55 3.08 0.65 3.99 0.4 2.18<br />

71. L. cephalotes (Roth) Spreng. Lamiaceae 0.65 4.10 0.75 5.12 0.45 2.65<br />

72. Ocimum americanum (L.) Lamiaceae 0.7 3.60 0.6 2.73 0.3 1.14<br />

73. Boerhavia diffusa L. Nyctag<strong>in</strong>aceae 1.45 17.31 1.35 14.74 1.2 14.76<br />

74. B. erecta (L.) Nyctag<strong>in</strong>aceae 0.6 2.80 0.45 1.73 0.25 0.88<br />

75. Achyranthus aspera (L.) Amaranthaceae 0.7 8.97 0.45 3.87 0.3 2.34<br />

76. Aerva javanica (Burm.f.) Juss. Amaranthaceae 0.15 0.47 0.1 0.26 - -<br />

77. A. lanata (L.,) A.L. Juss. Amaranthaceae 0.4 1.81 0.35 1.43 0.55 3.71<br />

78. Allmania nodiflora (L.,) R.Br. Amaranthaceae 0.65 3.19 0.6 2.73 0.45 2.12<br />

79. Alternanthera pungens Kunth, Amaranthaceae 0.85 5.00 0.95 5.90 0.55 2.92<br />

80. A. sessilis (L.) R.Br. Amaranthaceae 1.05 9.58 0.85 6.38 0.95 9.66<br />

81. Amaranthus viridis (L.) Amaranthaceae 1.3 14.14 1.15 10.98 1 10.59<br />

82. Celosia argentea (L.) Amaranthaceae 1.05 32.85 1.15 38.01 0.55 11.47<br />

83. Digera muricata (L.) C. Martius, Amaranthaceae 1.9 37.87 2.05 42.49 1.8 41.38<br />

84. Gomphrena serrata (L.) Amaranthaceae 0.45 2.20 0.35 1.43 0.35 1.76<br />

85. Acalypha <strong>in</strong>dica (L.) Euphorbiaceae 0.25 1.03 0.4 2.17 0.3 1.66<br />

86. Croton bonplandianum Baill. Euphorbiaceae 0.75 5.25 0.95 7.78 0.65 4.94<br />

87. Euphorbia hirta (L.) Euphorbiaceae 1.95 15.27 2.15 17.69 2 19.29<br />

88. Phyllanthus amarus Schum. & Thonn. Euphorbiaceae 0.6 1.67 0.5 1.28 0.45 1.35<br />

89. P. maderaspatensis (L.) Euphorbiaceae 0.3 0.80 0.15 0.32 0.25 0.74<br />

90. Tragia <strong>in</strong>volucrata (L.) Euphorbiaceae 0.45 2.20 0.35 1.43 0.5 3.16<br />

50


DIVERSITY OF WEEDS IN THE SORGHUM<br />

Table 1. contd...<br />

IVI<br />

Coastal<br />

Andhra<br />

91. Commel<strong>in</strong>a benghalensis (L.) Commel<strong>in</strong>aceae 0.95 10.29 0.9 9.06 1.15 17.74<br />

92. Cyanotis fasciculata (Roth.) Commel<strong>in</strong>aceae 0.6 4.48 0.85 8.16 1.1 16.33<br />

Schultes& Schultes<br />

93. Tonn<strong>in</strong>gia axillaris (L.,) O. Kuntze, Commel<strong>in</strong>aceae 0.75 6.68 0.7 5.74 0.95 12.44<br />

94. Cyperus compressus (L.) ssp. Cyperaceae 0.2 0.84 0.25 1.18 0.9 14.15<br />

compressus<br />

95. C. difformis (L.) Cyperaceae 0.35 1.46 0.35 1.43 0.55 3.71<br />

96. C. rotundus (L.) Cyperaceae 0.45 2.20 0.55 3.00 0.7 5.62<br />

97. Apluda mutica (L.) Poaceae 0.95 6.05 1.05 7.02 0.75 4.87<br />

98. Aristida hystrix (L.) Poaceae 0.65 2.44 0.6 2.12 0.5 1.97<br />

99. Arund<strong>in</strong>ella setosa Tr<strong>in</strong>.Gram. Poaceae 0.7 4.66 0.55 3.00 0.45 2.65<br />

100. Chloris <strong>in</strong>flata L<strong>in</strong>k. Poaceae 1.45 12.79 1.35 10.94 1.6 18.47<br />

101. Chrysopogon fulvus (Sprengel) Chiov. Poaceae 0.65 3.19 0.9 5.38 0.6 3.36<br />

102. Heteropogon contortus (L.) P. Beauv. Poaceae 0.65 3.19 0.75 3.95 0.35 1.44<br />

103. Perotis <strong>in</strong>dica (L.) O. Kuntze. Poaceae 1.15 4.32 0.95 3.17 0.4 1.16<br />

104. Setaria verticillata (L.) Beauv. Poaceae 0.55 2.43 0.4 1.44 0.45 2.12<br />

105. Urochloa panicoides P. Beauv. Poaceae 0.25 0.73 0.35 1.18 0.3 1.14<br />

D = Density, IVI = Importance Value Index<br />

51


J.Res. ANGRAU 37(3&4)52-58, 2009<br />

EFFECT OF INCREMENTAL DOSE OF PHOSPHORUS IN RICE ON<br />

THE YIELD OF BLACKGRAM IN RICE (Oryza sativa) – BLACKGRAM<br />

(Phaseolus mungo) CROPPING SEQUENCE<br />

I. USHA RANI and V. SANKAR RAO<br />

Department <strong>of</strong> Soil Science, Agricultural College<br />

Acharya N.G.Ranga Agricultural University, Bapatla – 522101<br />

ABSTRACT<br />

A field experiment on rice-black gram relay cropp<strong>in</strong>g was conducted at Agricultural College Farm,<br />

Bapatla dur<strong>in</strong>g 2004-05 to study the need <strong>of</strong> additional dose <strong>of</strong> phosphorus for the system over the recommended<br />

dose <strong>of</strong> 60 kg P 2<br />

O 5<br />

ha -1 to rice. The soil was sandy loam <strong>in</strong> texture. It was low <strong>in</strong> available nitrogen (218 kg ha -<br />

1<br />

), medium <strong>in</strong> available P 2<br />

O 5<br />

(23.2 kg ha -1 ) and rich <strong>in</strong> available K 2<br />

O (407 kg ha -1 ). The results <strong>in</strong>dicated that the<br />

additional dose <strong>of</strong> 10, 20 or 30 kg P 2<br />

O 5<br />

ha -1 at tiller<strong>in</strong>g and 10, 20 or 30 kg P 2<br />

O 5<br />

ha -1 at primordial <strong>in</strong>itiation stage<br />

significantly <strong>in</strong>creased the soil available phosphorus at maturity stage <strong>of</strong> rice but there was no effect on soil<br />

available N, K, Fe, Cu, Zn and Mn. There was no direct effect on additional dose <strong>of</strong> phosphorus on gra<strong>in</strong> or<br />

straw yield <strong>of</strong> rice but its residual effect significantly <strong>in</strong>creased the seed and haulm yield <strong>of</strong> black gram. The<br />

most beneficial effect was to apply additional 20 kg P 2<br />

O 5<br />

ha -1 at primordial <strong>in</strong>itiation stage <strong>of</strong> rice for maximum<br />

productivity with the added advantage <strong>of</strong> substantial improvement <strong>in</strong> soil available nitrogen and phosphorus<br />

from the <strong>in</strong>itial 218 to 287 kg N ha -1 and 23.2 kg P 2<br />

O 5<br />

to 38.6 kg P 2<br />

O 5<br />

ha -1 but the soil available potassium<br />

reduced from the <strong>in</strong>itial 407 kg to 369 kg K 2<br />

O ha -1 . The Fe, Cu, Zn and Mn content also recorded slight<br />

reduction.<br />

Relay cropp<strong>in</strong>g <strong>of</strong> black gram <strong>in</strong> rice on residual moisture and fertility is a common<br />

practice <strong>in</strong> Krishna- Godavari agro climatic zone <strong>of</strong> Andhra Pradesh. Fertilizer recommendations<br />

are based on the nutrient requirement <strong>of</strong> <strong>in</strong>dividual crops. The dynamics <strong>of</strong> nutrient availability<br />

is ignored. Among the major nutrients phosphorus is highly expensive and its utilization by<br />

the crops is <strong>of</strong>ten low as it gets immobilized. However, substantial quantity <strong>of</strong> this nutrient <strong>in</strong><br />

the puddled rice fields is available <strong>in</strong> the soluble form after the harvest <strong>of</strong> the crop (Gill and<br />

Meelu 1983 and Kundu et al. 1986). Residual nutrient is best exploited by the legum<strong>in</strong>ous<br />

crops for their better root development, nodule formation and nitrogen fixation. Information is<br />

not available on the quantity <strong>of</strong> phosphorus application to rice which exhibit maximum residual<br />

<strong>in</strong>fluence on the performance <strong>of</strong> relay cropped black gram. Hence, this experiment was<br />

conducted.<br />

MATERIALS AND METHODS<br />

A Field experiment was conducted dur<strong>in</strong>g 2004-05 at Agricultural college farm,<br />

Bapatla. The soil was sandy loam <strong>in</strong> texture and the pH was 7.92. It was low <strong>in</strong> fertility with<br />

0.38 percent organic carbon, 218 kg ha -1 available nitrogen, and medium (23.2 kg P 2<br />

O 5<br />

ha -1 )<br />

E-mail: <strong>in</strong>eediu@gmail.com<br />

52


EFFECT OF INCREMENTAL DOSE OF PHOSPHORUS IN RICE<br />

<strong>in</strong> available phosphorus but high <strong>in</strong> potassium with 407 kg K 2<br />

O ha -1 and the layout was RBD.<br />

There were seven treatments which <strong>in</strong>cluded the basal application <strong>of</strong> phosphorus to rice at<br />

60 kg P 2-<br />

O 5<br />

ha -1 with the additional quantity <strong>of</strong> 10, 20 and 30 kg P 2-<br />

O 5<br />

ha -1 applied at tiller<strong>in</strong>g<br />

and primordial <strong>in</strong>itiation stage. A uniform dose <strong>of</strong> 120 kg nitrogen, 60 kg P 2<br />

O 5<br />

and 60 kg K 2<br />

O<br />

ha -1 was applied to the crop. Entire dose <strong>of</strong> P and K with 1/3 rd dose <strong>of</strong> nitrogen was applied<br />

as basal. Rest <strong>of</strong> the nitrogen was top dressed <strong>in</strong> two equal splits at maximum tiller<strong>in</strong>g and<br />

panicle <strong>in</strong>itiation stage. Rice nursery <strong>of</strong> variety BPT 5204 was transplanted on 28 th August<br />

2004 and harvested on 4 th December 2004. The seed <strong>of</strong> black gram variety LBG-645 was<br />

broadcast four days before the harvest <strong>of</strong> rice and allowed to grow on the residual moisture<br />

and fertility. Initial soil sample and those from different treatments <strong>in</strong> the rice field at the time<br />

<strong>of</strong> sow<strong>in</strong>g black gram and after the harvest <strong>of</strong> this relay crop were analyzed by follow<strong>in</strong>g<br />

standard procedures (Jackson, 1973).<br />

RESULTS AND DISCUSSIONS<br />

Performance <strong>of</strong> rice:<br />

The data on soil available nutrients after the harvest <strong>of</strong> rice due to the <strong>in</strong>fluence <strong>of</strong><br />

different treatments is presented <strong>in</strong> Table 1. The results showed that the soil available N<br />

<strong>in</strong>creased from the <strong>in</strong>itial 218 kg ha -1 to 264 kg ha -1 at the time <strong>of</strong> harvest <strong>in</strong> response to the<br />

application <strong>of</strong> recommended dose <strong>of</strong> fertilizers. The soil available phosphorus <strong>in</strong>creased<br />

almost twice. The <strong>in</strong>itial test value was 23.2 kg P 2<br />

O 5<br />

ha -1 while it is <strong>in</strong>creased to 44.9 kg P 2<br />

O 5<br />

ha -1 at the time <strong>of</strong> harvest. On the other hand the soil available potassium reduced from the<br />

<strong>in</strong>itial 407 kg K 2<br />

O ha -1 to 390 kg K 2<br />

O ha -1 . The <strong>in</strong>itial test values <strong>of</strong> micronutrients <strong>of</strong> Fe, Cu,<br />

Zn and Mn are <strong>in</strong> the range <strong>of</strong> 9.58 ppm, 3.68 ppm, 234 ppm and 40.2 ppm, respectively and<br />

they also tended to reduce sharp. The additional dose <strong>of</strong> 10, 20 and 30 kg P 2<br />

O 5<br />

ha -1 at<br />

tiller<strong>in</strong>g or 10, 20 and 30 kg P 2<br />

O 5<br />

ha -1 at primordial <strong>in</strong>itiation stage significantly <strong>in</strong>creased the<br />

soil available phosphorus compared to the availability due to the application <strong>of</strong> recommended<br />

dose <strong>of</strong> 60 kg P 2<br />

O 5<br />

ha -1 . The enrichment <strong>of</strong> soil available phosphorus was not fixed nor it was<br />

entirely absorbed by the crop (S<strong>in</strong>garam and Kothandaraman, 1994). Initial flood<strong>in</strong>g <strong>in</strong> rice is<br />

also known to decrease the Al-P and Fe-P, which result <strong>in</strong> more availability <strong>of</strong> this nutrient<br />

(Tiwari, 2002). The additional dose <strong>of</strong> phosphorus did not br<strong>in</strong>g a significant change <strong>in</strong> the<br />

availability <strong>of</strong> other nutrients compared to the recommended dose <strong>of</strong> phosphorus.<br />

The gra<strong>in</strong>, straw yield <strong>of</strong> rice and 1000 gra<strong>in</strong> weight were not altered by the additional<br />

dose <strong>of</strong> 10, 20 and 30 kg P 2<br />

O 5<br />

ha -1 applied either at tiller<strong>in</strong>g or at primordial <strong>in</strong>itiation stage<br />

compared to the recommended dose <strong>of</strong> 60 kg P 2<br />

O 5<br />

ha -1 (Table 2). This result implied that the<br />

application <strong>of</strong> 60 kg P 2<br />

O 5<br />

ha -1 to rice is sufficient and the improvement <strong>in</strong> the soil available<br />

phosphorus content due to the application <strong>of</strong> additional dose <strong>of</strong> phosphorus may benefit the<br />

relay crop (Rao, 1975).<br />

53


RANI and RAO<br />

Table 1. Effect <strong>of</strong> additional dose <strong>of</strong> phosphorus app lied to rice on the available N, P, K and micronutrient<br />

status after harvest <strong>of</strong> rice<br />

Recommended<br />

Treatment Nitrogen<br />

(kg ha -1 )<br />

dose <strong>of</strong><br />

phosphorus (60 kg P2O5 ha -1 )<br />

as basal<br />

Recommended dose <strong>of</strong><br />

phosphorus as basal +10 kg<br />

P2O5 ha -1 at tiller<strong>in</strong>g stage<br />

Recommended<br />

dose <strong>of</strong><br />

phosphorus as basal +20 kg<br />

P2O5 ha -1 at tiller<strong>in</strong>g stage<br />

Recommended dose <strong>of</strong><br />

phosphorus as basal +30 kg<br />

P2O5 ha -1 at tiller<strong>in</strong>g stage<br />

Recommended dose <strong>of</strong><br />

phosphorus as basal +10 kg<br />

P2O5 ha-1 at primordial<br />

<strong>in</strong>itiation stage<br />

Recommended dose <strong>of</strong><br />

phosphorus as basal +20 kg<br />

P2O5 ha-1 at primordial<br />

<strong>in</strong>itiation stage<br />

Recommended dose <strong>of</strong><br />

phosphorus as basal +30 kg<br />

P2O5 ha-1 at primordial<br />

<strong>in</strong>itiation stage<br />

Phosphorus<br />

(kg P2O5<br />

ha -1 )<br />

Potassium<br />

(kg K2O<br />

ha -1 )<br />

Iron<br />

(ppm)<br />

Copper<br />

(ppm)<br />

Z<strong>in</strong>c<br />

(ppm)<br />

Manganese<br />

(ppm)<br />

264 44.9 390 9.29 3.49 2.22 39.4<br />

257 51.4 388 9.23 3.45 2.19 38.7<br />

252 56.3 387 9.20 3.42 2.18 38.5<br />

259 62.7 386 9.14 3.37 2.15 37.4<br />

250 53.8 384 9.06 3.33 2.10 37.1<br />

256 58.5 382 9.05 3.31 2.09 36.7<br />

254 64.4 380 8.98 3.23 2.05 35.8<br />

SE± 7.5 3.5 11.5 0.70 0.45 0.04 1.69<br />

CD at 5 % NS 7.5 NS NS NS NS NS<br />

54


EFFECT OF INCREMENTAL DOSE OF PHOSPHORUS IN RICE<br />

Table 2. Effect <strong>of</strong> additional dose <strong>of</strong> phosphorus applied to rice on the test weight,<br />

gra<strong>in</strong> and straw yield <strong>of</strong> rice.<br />

Treatment 1000 Gra<strong>in</strong> Straw<br />

gra<strong>in</strong> yield yield<br />

weight (g) (kg ha- -1 ) (kg ha- -1 )<br />

Recommended dose <strong>of</strong> phosphorus(60 kg P 2<br />

O 5<br />

14.8 4183 5019<br />

ha -1 ) as basal<br />

Recommended dose <strong>of</strong> phosphorus as basal+ 15.0 4195 5064<br />

10 kg P 2<br />

O 5<br />

ha -1 at tiller<strong>in</strong>g stage<br />

Recommended dose <strong>of</strong> phosphorus as basal+ 15.2 4220 5117<br />

20 kg P 2<br />

O 5<br />

ha -1 at tiller<strong>in</strong>g stage<br />

Recommended dose <strong>of</strong> phosphorus as basal + 15.3 4242 5172<br />

30 kg P 2<br />

O 5<br />

ha -1 at tiller<strong>in</strong>g stage<br />

Recommended dose <strong>of</strong> phosphorus as basal + 15.1 4257 5228<br />

10 kg P 2<br />

O 5<br />

ha -1 at primordial <strong>in</strong>itiation stage<br />

Recommended dose <strong>of</strong> phosphorus as basal + 15.3 4276 5271<br />

20 kg P 2<br />

O 5<br />

ha -1 at primordial <strong>in</strong>itiation stage<br />

Recommended dose <strong>of</strong> phosphorus as basal + 15.4 4299 5318<br />

30 kg P 2<br />

O 5<br />

ha -1 at primordial <strong>in</strong>itiation stage<br />

SE± 0.3 14 14<br />

CD at 5 % NS NS NS<br />

Performance <strong>of</strong> black gram:<br />

The relay crop black gram transformed the low available nitrogen status <strong>of</strong> the soil<br />

to medium. This improvement is expected due to the atmospheric nitrogen fixation by legumes<br />

(Thakuria and Saharia, 1990). But, the soil available phosphorus reduced substantially after<br />

the harvest <strong>of</strong> blackgram compared to the available quantity after the harvest <strong>of</strong> preced<strong>in</strong>g<br />

rice <strong>in</strong> all treatments. Hence it is probable that this residual nutrient might have been utilized<br />

by blackgram. Yet the soil was high <strong>in</strong> available phosphorus <strong>in</strong> all the treatments than the<br />

<strong>in</strong>itial value (Table 3). The additional dose <strong>of</strong> 30 kg P 2<br />

O 5<br />

ha -1 at tiller<strong>in</strong>g or primordial <strong>in</strong>itiation<br />

stage to rice was not only sufficient to meet the requirement <strong>of</strong> the two crops but also left<br />

beh<strong>in</strong>d substantially large quantity <strong>of</strong> 38.8 and 41.3 kg P 2<br />

O 5<br />

ha -1 but the potassium, Fe, Cu,<br />

Zn and Mn content were less than the <strong>in</strong>itial level. The additional dose <strong>of</strong> phosphorus had no<br />

significant <strong>in</strong>fluence on any nutrient except phosphorus. S<strong>in</strong>garam and Kothandaraman (1992)<br />

also reported that the application <strong>of</strong> higher doses <strong>of</strong> phosphorus to rice leave beh<strong>in</strong>d larger<br />

residues <strong>of</strong> this nutrient.<br />

55


RANI and RAO<br />

Table 3. Effect <strong>of</strong> additional dose <strong>of</strong> Phosphorus app lied to rice on the available N, P, K and micronutrien<br />

statusafter harvest <strong>of</strong> black gram<br />

Treatment Nitrogen<br />

(kg ha -1 )<br />

Phosphorus<br />

(kg P2O5 ha -1 )<br />

Potassium<br />

(kg K2O ha -1 )<br />

Iron<br />

(ppm)<br />

Copper<br />

(ppm)<br />

Z<strong>in</strong>c<br />

(ppm)<br />

Manganese<br />

(ppm)<br />

Recommended dose <strong>of</strong><br />

phosphorus (60 kg P2O5 ha -1 )<br />

as basal 312 28.7 373 7.63 3.39 1.76 37.9<br />

Recommended dose <strong>of</strong><br />

phosphorus as basal +10<br />

kg P 2O5 ha-1 at tiller<strong>in</strong>g<br />

stage 305 34.3 372 7.62 3.36 1.75 37.2<br />

Recommended dose <strong>of</strong><br />

phosphorus as basal +20<br />

kg P 2O5 ha-1 at tiller<strong>in</strong>g<br />

stage 297 37.9 371 7.69 3.33 1.75 37.1<br />

Recommended dose <strong>of</strong><br />

phosphorus as basal +30<br />

kg P 2O5 ha-1 at tiller<strong>in</strong>g<br />

stage 292 38.8 370 7.61 3.29 1.74 36.0<br />

Recommended dose <strong>of</strong><br />

kg P2O5 ha -1 at primordial<br />

kg P2O5 ha -1 at primordial<br />

phosphorus as basal +10<br />

kg P2O5 ha -1 at primordial<br />

<strong>in</strong>itiation stage 293 35.1 369 7.59 3.25 1.71 35.8<br />

Recommended dose <strong>of</strong><br />

phosphorus as basal +20<br />

<strong>in</strong>itiation stage 287 38.6 369 7.60 3.23 1.71 35.4<br />

Recommended dose <strong>of</strong><br />

phosphorus as basal +30<br />

<strong>in</strong>itiation stage 283 41.3 368 7.56 3.17 1.69 34.6<br />

SE± 9.8 1.3 11.3 0.07 0.05 0.07 1.69<br />

CD at 5 % NS 2.8 NS NS NS NS NS<br />

56


EFFECT OF INCREMENTAL DOSE OF PHOSPHORUS IN RICE<br />

Black gram produced significantly larger quantity <strong>of</strong> seed and haulm yield <strong>in</strong> response<br />

to the additional dose <strong>of</strong> 10, 20 and 30 kg P 2<br />

O 5<br />

ha -1 applied to the preced<strong>in</strong>g crop <strong>of</strong> rice at<br />

tiller<strong>in</strong>g or primordial <strong>in</strong>itiation stage (Table 4). Maximum residual advantage was harvested<br />

by the application <strong>of</strong> additional 30 kg P 2<br />

O 5<br />

ha -1 to rice at primordial <strong>in</strong>itiation stage. Black<br />

gram produced gra<strong>in</strong> yield <strong>of</strong> 984 kg ha -1 and haulm yield <strong>of</strong> 1828 kg ha -1 . This was on par<br />

with the response due to the additional 20 kg P 2<br />

O 5<br />

ha -1 applied to rice at primordial <strong>in</strong>itiation<br />

stage. Its residual effect enabled the black gram crop to yield 973 kg ha -1 gra<strong>in</strong> and 1783 kg<br />

ha -1 haulm yield. Patel and Thakur (1997) also obta<strong>in</strong>ed significant yield response ow<strong>in</strong>g to<br />

substantial improvement <strong>in</strong> gra<strong>in</strong> parameters <strong>of</strong> black gram ow<strong>in</strong>g to the <strong>in</strong>creased availability<br />

<strong>of</strong> phosphorus <strong>in</strong> the soil and its absorption by the crop.<br />

That is else to highlight the need to apply additional 20 kg P 2<br />

O 5<br />

ha -1 at primordial<br />

<strong>in</strong>itiation stage <strong>in</strong> puddled rice to enhance the residual effect <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g the gra<strong>in</strong> yield <strong>of</strong><br />

relay cropped black gram <strong>in</strong> sandy loam soil medium <strong>in</strong> available phosphorus status.<br />

Table 4. Effect <strong>of</strong> additional dose <strong>of</strong> Phosphorus applied to rice on the seed and<br />

haulm yield <strong>of</strong> black gram<br />

Treatment Seed yield Haulm yield<br />

(kg ha -1 ) (kg ha -1 )<br />

Recommended dose <strong>of</strong> phosphorus(60 kg P 2<br />

O 5<br />

ha -1 )<br />

as basal 845 1454<br />

Recommended dose <strong>of</strong> phosphorus as basal +<br />

10 kg P 2<br />

O 5<br />

ha -1 at tiller<strong>in</strong>g stage 898 1580<br />

Recommended dose <strong>of</strong> phosphorus as basal +<br />

20 kg P 2<br />

O 5<br />

ha -1 at tiller<strong>in</strong>g stage 937 1686<br />

Recommended dose <strong>of</strong> phosphorus as basal +<br />

30 kg P 2<br />

O 5<br />

ha -1 at tiller<strong>in</strong>g stage 951 1735<br />

Recommended dose <strong>of</strong> phosphorus as basal +<br />

10 kg P 2<br />

O 5<br />

ha -1 at primordial <strong>in</strong>itiation stage 936 1691<br />

Recommended dose <strong>of</strong> phosphorus as basal +<br />

20 kg P 2<br />

O 5<br />

ha -1 at primordial <strong>in</strong>itiation stage 973 1783<br />

Recommended dose <strong>of</strong> phosphorus as basal +<br />

30 kg P 2<br />

O 5<br />

ha -1 at primordial <strong>in</strong>itiation stage 984 1828<br />

SE± 20 41<br />

CD at 5% 42 87<br />

57


RANI and RAO<br />

REFERENCES<br />

Gill, H.S and Meelu, O.P. 1983. Studies on utilization <strong>of</strong> P and causes for its differential<br />

response to rice-wheat. Plant and Soil. 74: 211-222.<br />

Jackson, M.L.1973. Soil Chemical Analysis. Prentice- Hall <strong>of</strong> India pvt. Ltd., New Delhi. pp:<br />

40.<br />

Kundu, S., Kamath, M.B and Goswami, N.N.1986. Evaluation <strong>of</strong> residual effect <strong>of</strong> phosphate<br />

<strong>in</strong> rice-wheat-blackgram-rice cropp<strong>in</strong>g sequence us<strong>in</strong>g 32 P as a tracer. Journal <strong>of</strong> Nuclear<br />

and Agricultural Biology. 15(2): 115-119.<br />

Patel, S.R and Thakur, D.S. 1997. Influence <strong>of</strong> phosphorus and rhizobium on yield attributes,<br />

yield and nutrient uptake <strong>of</strong> groundnut (Arachis hypogea L.). Journal <strong>of</strong> Oil Seeds<br />

Research. 14(2): 189-193.<br />

Rao, I.V.S. 1975. Nutritional disorder <strong>of</strong> crops <strong>in</strong> Andhra Pradesh. Andhra Pradesh Agricultural<br />

University Publication, Hyderabad, Andhra Pradesh.<br />

S<strong>in</strong>garam, P and Kothandaraman, G.V. 1992. Residual effect <strong>of</strong> different phosphatic fertilizers<br />

on available phosphorus <strong>of</strong> soil <strong>in</strong> a cropp<strong>in</strong>g sequence. Journal <strong>of</strong> Indian Society <strong>of</strong><br />

Soil Science. 40: 213-215.<br />

S<strong>in</strong>garam, P and Kothandaraman, G.V. 1994 Studies on residual, direct and cumulative<br />

effect <strong>of</strong> phosphorus sources on the availability, content, and uptake <strong>of</strong> phosphorus<br />

and yield <strong>of</strong> maize. Madras Agricultural Journal. 81 (8): 425-429.<br />

Thakuria, K and Saharia, P. 1990. Response <strong>of</strong> green gram genotypes to plant density and<br />

phosphorus levels <strong>in</strong> summer. Indian Journal <strong>of</strong> Agronomy. 35(4): 431-432.<br />

Tiwari, K.N. 2002 Phosphorus In: Fundamentals <strong>of</strong> soil science (Ed. Sekhon G. S.). Indian<br />

Society <strong>of</strong> Soil Science, New Delhi. pp.353-368.<br />

58


J.Res. ANGRAU 37(3&4)59-64, 2009<br />

PROBABILITY OF OCCURRENCE OF WET AND DRY SPELLS BY<br />

MARKOV CHAIN MODEL AND ITS APPLICATION TO CASTOR<br />

(Ric<strong>in</strong>us communis L.) CULTIVATION IN RANGA REDDY DISTRICT<br />

M.A.BASITH and SHAIK MOHAMMAD<br />

Department <strong>of</strong> Agronomy, College <strong>of</strong> Agriculture<br />

Acharya N.G. Ranga Agricultural University<br />

Rajendranagar, Hyderabad-500 030<br />

ABSTRACT<br />

Initial and conditional probabilities for expected threshold limits <strong>of</strong> ra<strong>in</strong>fall are provided for different<br />

weeks to plan cultural operations dur<strong>in</strong>g the grow<strong>in</strong>g period <strong>of</strong> castor <strong>in</strong> Ranga Reddy district <strong>of</strong> Andhra<br />

Pradesh. Threshold ra<strong>in</strong>fall <strong>of</strong> ≥ 20 mm was estimated to be optimum for land preparation as the soils are<br />

partially moist and ra<strong>in</strong>fall <strong>of</strong> ≥ 15 mm per week between 25th to 26 th standard weeks ensures good germ<strong>in</strong>ation<br />

<strong>of</strong> castor. The <strong>in</strong>itial probability <strong>of</strong> ra<strong>in</strong>fall occurrence dur<strong>in</strong>g 22 nd and 23 rd weeks was 6 and 9% whereas it was<br />

50 and 62% for the 25 th and 26 th weeks. The probability <strong>of</strong> ra<strong>in</strong>fall ≥ 10 mm dur<strong>in</strong>g seedl<strong>in</strong>g establishment was<br />

56, 26, 21 and 68% for the 30 th , 31 st , 32 nd and 33 rd weeks. The <strong>in</strong>itial probabilities for occurrence <strong>of</strong> ra<strong>in</strong>fall dur<strong>in</strong>g<br />

reproductive phase were 29, 35, 32, 24 and 35% dur<strong>in</strong>g the 39 th , 40 th , 41 st , 42 nd and 43 rd weeks respectively.<br />

The conditional probabilities for the follow<strong>in</strong>g weeks to be wet were 100, 92, 73, 100 and 100% respectively.<br />

The <strong>in</strong>itial probability <strong>of</strong> ra<strong>in</strong>fall for a low threshold limit <strong>of</strong> 10 mm for the 48 th standard week dur<strong>in</strong>g start<strong>in</strong>g <strong>of</strong><br />

maturity phase was 56% and conditional probability for the subsequent week to be wet was 100%.<br />

Castor (Ricnus communis L.) is an important and the most dependable non-edible<br />

oilseed crop <strong>of</strong> poor farmers with poor resource base. It has great <strong>in</strong>dustrial and commercial<br />

value. It br<strong>in</strong>gs considerable amount <strong>of</strong> foreign exchange to the country. In India, it is cultivated<br />

over an area <strong>of</strong> 8.70 lakh hectares produc<strong>in</strong>g 11.15 lakh tonnes beans. In Andhra Pradesh,<br />

it is cultivated on 1.57 lakh hectares with a production <strong>of</strong> 0.8 lakh tonnes. The national<br />

productivity <strong>of</strong> castor is 1282 kg ha -1 while the average yield <strong>in</strong> A.P. is 510 kg ha -1 (CMIE,<br />

2009).<br />

Andhra Pradesh ranks second <strong>in</strong> area and production <strong>of</strong> this crop next only to Gujarat.<br />

In Andhra Pradesh, it is ma<strong>in</strong>ly cultivated ra<strong>in</strong>fed <strong>in</strong> the districts <strong>of</strong> Nalgonda, Mahbubnagar<br />

and Rangareddy. Andhra Pradesh has a tropical climate with moderate overlapp<strong>in</strong>g <strong>of</strong><br />

subtropical weather conditions. The normal annual ra<strong>in</strong>fall <strong>of</strong> the state is 925 mm with major<br />

portion <strong>of</strong> 68.5% be<strong>in</strong>g contributed by South – West monsoon. The state has a history <strong>of</strong><br />

droughts <strong>of</strong> vary<strong>in</strong>g degrees <strong>in</strong> 3 out <strong>of</strong> 5 years and ra<strong>in</strong>fed farm<strong>in</strong>g is prone for risk (Babu<br />

and Padmaja, 2003).<br />

First order Markov cha<strong>in</strong> model gives the <strong>in</strong>formation on <strong>in</strong>itial and conditional<br />

probabilities for various threshold limits <strong>of</strong> ra<strong>in</strong>fall. Under <strong>in</strong>itial probabilities, the probability<br />

E mail: basith@naarm.ernet.<strong>in</strong><br />

59


BASITH and MOHAMMAD<br />

<strong>of</strong> a given period to be wet or dry is estimated while <strong>in</strong> the case <strong>of</strong> conditional probabilities,<br />

if given period is wet or dry, then the chances <strong>of</strong> follow<strong>in</strong>g week to be wet or dry and given as<br />

wet/wet or wet/dry are estimated. A period is said to be wet when the weather parameter <strong>of</strong><br />

that period exceeds a threshold limit.<br />

Markov cha<strong>in</strong> probability model has been extensively used to f<strong>in</strong>d out the wet and<br />

dry spells (Victor and Sastry,1979) and for computation <strong>of</strong> probability <strong>of</strong> occurrence <strong>of</strong> daily<br />

precipitation (Stern,1982). Earlier Agarwal et al. (1984), Pandar<strong>in</strong>ath (1991) and Dalabehara<br />

and Sahoo (1993) used Markov cha<strong>in</strong> probability model for dry and wet spell analysis <strong>in</strong><br />

terms <strong>of</strong> shortest period like week and demonstrated its practical utility <strong>in</strong> agricultural plann<strong>in</strong>g.<br />

Such studies are lack<strong>in</strong>g for Ranga Reddy district to plan and execute the agricultural<br />

operations for the cultivation <strong>of</strong> castor.<br />

MATERIALS AND METHODS<br />

The experimental site selected is a ra<strong>in</strong>fed belt <strong>of</strong> Ranga Reddy district. It is located<br />

at an altitude <strong>of</strong> 542.6 m above mean sea level on 17 o 19' North latitude and 78 o 23' East<br />

longitude. In the National Agricultural Research Project Zonation, it comes under the Southern<br />

Telangana region <strong>of</strong> Andhra Pradesh. The water hold<strong>in</strong>g capacity <strong>of</strong> the soil is 92 mm per<br />

meter depth. Weekly ra<strong>in</strong>fall data for the past 34 years from 1975 to 2008 was collected from<br />

meteorological observatory <strong>of</strong> Agricultural Research Institute, Rajendranagar, Ranga Reddy<br />

district.<br />

The method <strong>of</strong> comput<strong>in</strong>g <strong>in</strong>itial and conditional probabilities <strong>of</strong> occurrence <strong>of</strong> ra<strong>in</strong>fall<br />

us<strong>in</strong>g the first order Markov cha<strong>in</strong> model described by Gabriel and Neumann (1962); Gates<br />

and Tong (1976) and Hann et al. (1976) was followed.<br />

Step - 1:<br />

Compute for each week the number <strong>of</strong> occasions the weekly ra<strong>in</strong>fall <strong>of</strong> week i (Ri) ≥<br />

the threshold limit x. If this condition is satisfied <strong>in</strong> ‘n’ years out <strong>of</strong> the total N years then the<br />

probability <strong>of</strong> a given week i is wet (Wi) is given as<br />

þWi = (n/N) x 100, % and thus a given week is dry (Di) is given as<br />

þDi = 100 - Wi, %<br />

These estimates present the <strong>in</strong>itial probabilities <strong>of</strong> a given week i is wet or dry.<br />

Step - 2:<br />

Compute for each week, the number <strong>of</strong> occasions<br />

R i<br />

≥ x and R i+k<br />

≥ x<br />

60


PROBABILITY OF OCCURRENCE OF WET AND DRY SPELLS<br />

It is seen <strong>in</strong> step - 1 that <strong>of</strong> the N years <strong>in</strong> n years Ri ≥ x <strong>in</strong> week i and thus if <strong>in</strong> n’<br />

years out <strong>of</strong> n years, R ≥ x, then the probability <strong>of</strong> gett<strong>in</strong>g a wet on week i and week i + k,<br />

i+k<br />

namely a wet week followed by a wet week (if k = 1 [cw/w]) is given as<br />

þ(W/W)i = (n’/n) x 100, %<br />

and thus a dry week followed by a wet week, (D/W) is given as<br />

þ(D/W)i = 100 - (W/W)i, %<br />

These two estimates present the conditional probabilities <strong>of</strong> a wet or dry week (i + 1)<br />

followed by a wet week (i).<br />

Step - 3:<br />

Compute for each week, the number <strong>of</strong> occasions, R i<br />

< x but R i+k<br />

≥ x.<br />

It is seen <strong>in</strong> step - 1 that <strong>of</strong> the N years <strong>in</strong> N-n years Ri < x <strong>in</strong> week i and thus <strong>in</strong> n” years out<br />

<strong>of</strong> N - n years R i+k<br />

≥ x, then the probability <strong>of</strong> gett<strong>in</strong>g dry spell on week i and wet on week i+k,<br />

namely a wet week followed by a dry week (if k = 1) [(W/D)i ] is given as<br />

þ(W/D)i = [n”/(N-n)] x 100, %<br />

and thus a dry week followed by a dry week. (D/D) is given as<br />

þ(D/D)i = 100 - (W/D)i, %<br />

These two estimates present the conditional probabilities <strong>of</strong> a wet or dry week (i + 1)<br />

followed by a dry week (i).<br />

RESULTS AND DISCUSSION<br />

The first order Markov cha<strong>in</strong> analysis for the estimates <strong>of</strong> <strong>in</strong>itial and conditional<br />

probabilities <strong>of</strong> ra<strong>in</strong>fall occurrence dur<strong>in</strong>g the crop grow<strong>in</strong>g period was worked out to assess<br />

the likely wet and dry weeks for any two consecutive weeks for effective field operations.<br />

The probabilities <strong>of</strong> ra<strong>in</strong>fall occurrence for m<strong>in</strong>imum threshold ra<strong>in</strong>fall per week<br />

follow<strong>in</strong>g the Markov cha<strong>in</strong> model dur<strong>in</strong>g the ra<strong>in</strong>y season for Ranga Reddy district is presented<br />

<strong>in</strong> table 1. This will help <strong>in</strong> plann<strong>in</strong>g agricultural operations for probable risk alertness. The<br />

<strong>in</strong>itial probability for ≥ 20 mm ra<strong>in</strong>fall due to summer showers <strong>in</strong> the 22 nd meteorological<br />

standard week is 6%. In the next week, the probability <strong>of</strong> this limit improved to 9%. The<br />

conditional probability for this week to be followed by wet week is 100%. The sow<strong>in</strong>g season<br />

spans from 2 nd week <strong>of</strong> June to 2 nd week <strong>of</strong> July. Ra<strong>in</strong>fall <strong>of</strong> ≥ 15 mm is considered as the<br />

m<strong>in</strong>imum threshold per week dur<strong>in</strong>g this period for good germ<strong>in</strong>ation <strong>of</strong> seed. The <strong>in</strong>itial<br />

probability for this limit was 50% for the 25th and 62% for 26 th standard week. The conditional<br />

61


BASITH and MOHAMMAD<br />

probabilities for the present and next week to be wet were 100%. The <strong>in</strong>itial probability for ≥<br />

15 mm was 38% <strong>in</strong> the 27 th standard week but a high probability <strong>of</strong> 74% was <strong>in</strong> the 28 th<br />

standard week with a conditional probability <strong>of</strong> wet-wet be<strong>in</strong>g 100%. Ra<strong>in</strong>fall requirement <strong>of</strong><br />

≥ 10 mm per week was considered as the threshold limit for the emergence and establishment<br />

<strong>of</strong> seedl<strong>in</strong>gs. The <strong>in</strong>itial probability for this limit was 56, 26, 21 and 68% for the 30, 31, 32 and<br />

33 rd standard weeks. The probability <strong>of</strong> ra<strong>in</strong>fall occurrence for the threshold limit <strong>of</strong> ≥ 15 mm<br />

for seedl<strong>in</strong>g growth and development was 12, 3 and 68% for 34,35 and 36 th standard weeks.<br />

The conditional probabilities for the two weeks to be wet were 100 and 96% <strong>in</strong> the 36 and 37 th<br />

standard week. Water requirement <strong>of</strong> crop <strong>in</strong>crease dur<strong>in</strong>g the reproductive development and<br />

growth. Threshold limit was, therefore, <strong>in</strong>creased <strong>in</strong> the subsequent weeks. The <strong>in</strong>itial<br />

probabilities for occurrence <strong>of</strong> ra<strong>in</strong>fall dur<strong>in</strong>g the 39 th , 40 th , 41 st , 42 nd and 43 rd weeks were 29,<br />

35, 32, 24 and 35 % respectively. The conditional probabilities for the follow<strong>in</strong>g weeks to be<br />

wet were 100, 92, 73, 100 and 100 % respectively. The crop water requirement is relatively<br />

low dur<strong>in</strong>g its maturity and senile phase. Hence, the threshold limit was scheduled ≥ 10 mm<br />

from 48th standard week. The <strong>in</strong>itial probability <strong>of</strong> this week to be wet was 56% and conditional<br />

probability for the subsequent week to be wet was 100%.<br />

The first order Markov cha<strong>in</strong> analysis for the estimates <strong>of</strong> <strong>in</strong>itial and conditional<br />

probabilities <strong>of</strong> m<strong>in</strong>imum threshold ra<strong>in</strong>fall required for castor crop will help <strong>in</strong> tak<strong>in</strong>g up<br />

effective field operations and risk avoidance.<br />

Table 1. First order Markov cha<strong>in</strong> model for <strong>in</strong>itial and conditional probability <strong>of</strong><br />

ra<strong>in</strong>fall occurrence for castor <strong>in</strong> Ranga Reddy district<br />

Date-Month MSW MTRF<br />

(mm)<br />

Initial Conditional probability %<br />

probability %<br />

Wet- Dry- Wetwet<br />

dry Wet Wet Dry<br />

1 2 3 4 5 6 7 8 9<br />

28 May -3 June 22 20 6 94 100 0 15 85<br />

4-10 June 23 20 9 91 100 0 97 3<br />

11-17 June 24 15 9 91 100 0 10 90<br />

18-24 June 25 15 50 50 100 0 55 45<br />

25 June- 1 July 26 15 62 38 100 0 100 0<br />

2-8 July 27 15 38 62 62 38 100 0<br />

9-15 July 28 15 74 26 100 0 100 0<br />

Dry-<br />

Dry<br />

62


PROBABILITY OF OCCURRENCE OF WET AND DRY SPELLS<br />

1 2 3 4 5 6 7 8 9<br />

16-22 July 29 15 3 97 4 96 11 89<br />

23-29 July 30 10 56 44 100 0 58 42<br />

30 July- 5 Aug 31 10 26 74 47 53 60 40<br />

6-12 Aug 32 10 21 79 78 22 28 72<br />

13-19 Aug 33 10 68 32 100 0 85 15<br />

20-26 Aug 34 15 12 88 30 70 36 64<br />

27 Aug- 2 Sep 35 15 3 97 25 75 3 97<br />

3-9 Sep 36 15 68 32 100 0 70 30<br />

10-16 Sep 37 25 56 44 96 4 100 0<br />

17-23 Sep 38 25 12 88 100 0 27 73<br />

24-30 Sep 39 30 29 71 100 0 43 57<br />

1-7 Oct 40 30 35 65 100 0 50 50<br />

8-14 Oct 41 30 32 68 92 8 50 50<br />

15-21 Oct 42 30 24 76 73 27 35 65<br />

22-28 Oct 43 30 35 65 100 0 46 54<br />

29 Oct-4 Nov 44 20 62 38 100 0 77 23<br />

5-11 45 20 32 68 52 48 85 15<br />

12-18 46 20 53 47 100 0 78 22<br />

19-25 47 20 18 82 33 67 38 62<br />

26-2 Dec 48 10 56 44 100 0 46 54<br />

3-9 49 10 76 24 100 0 100 0<br />

10-16 50 10 29 71 38 62 100 0<br />

17-23 51 10 74 26 100 0 100 0<br />

24-31 Dec 52 10 65 35 88 12 100 0<br />

1-7Jan 1 10 3 97 5 95 8 92<br />

MSW : Meteorological standard week;<br />

MTRF : M<strong>in</strong>imum threshold ra<strong>in</strong>fall<br />

63


BASITH and MOHAMMAD<br />

REFERENCES<br />

Agarwal, A., S<strong>in</strong>gh, R.V and Chauhan, H.S. 1984. Probability <strong>of</strong> sequences <strong>of</strong> wet and dry<br />

days <strong>in</strong> Na<strong>in</strong>ital Tarai Region. Journal <strong>of</strong> Agricultural Eng<strong>in</strong>eer<strong>in</strong>g 21 (4): 61-70<br />

Babu, S.N and Padmaja, K. V. 2003. Evaluation <strong>of</strong> <strong>in</strong>tercropp<strong>in</strong>g systems <strong>in</strong> Ranga Reddy<br />

district <strong>of</strong> Andhra Pradesh with reference to castor. Indian journal <strong>of</strong> Dryland Agriculture<br />

and Development. 18 (1): 75-83<br />

CMIE. 2009. Economic <strong>in</strong>telligence service, agriculture. Centre for Monitor<strong>in</strong>g Indian Economy<br />

Private Limited. www.cmie.com<br />

Dalabehara, M and Sahoo, J. 1993. On the chances <strong>of</strong> occurrence <strong>of</strong> wet and dry days at<br />

regional research station, Bhawanipatna <strong>of</strong> Kalahandi district <strong>of</strong> Orissa. Indian Journal<br />

<strong>of</strong> Power and River valley Development.44 (Feb-March): 37-40<br />

Gabriel, K. R and Neumann, J. 1962. A Markov cha<strong>in</strong> model for daily ra<strong>in</strong>fall occurrence at<br />

Tel Aviv. Quarterly Journal Royal Meteorological Society 88: 90-95.<br />

Gates, P. R and Tong, H. 1976. On Markov cha<strong>in</strong> model<strong>in</strong>g to some weather data. Journal<br />

<strong>of</strong> Applied Meteorology 15: 1145-1151.<br />

Hann, T., Allen, P. M and Street, J. D.1976. A Markov cha<strong>in</strong> model for daily ra<strong>in</strong>fall. Water<br />

Resources Research 12: 433.<br />

Pandar<strong>in</strong>ath,N.1991. Markov cha<strong>in</strong> model probability <strong>of</strong> dry and wet weeks dur<strong>in</strong>g monsoon<br />

periods over Andhra Pradesh. Mausam. 42(4): 393-400<br />

Stern, R.D.1982. Comput<strong>in</strong>g a probability distribution for the start <strong>of</strong> ra<strong>in</strong>s from a Markov<br />

cha<strong>in</strong> model for precipitation. Journal <strong>of</strong> applied Meteorology. 21(3): 420-423<br />

Victor, V.S and Sastry, P.S.N. 1979. Dry spell probability by Markov cha<strong>in</strong> model and its<br />

application to crop development stage. Mausam. 30: 479-484<br />

64


J.Res. ANGRAU 37(3&4)65-70, 2009<br />

IDENTIFICATION OF PARENTS AND HYBRIDS FOR YIELD AND ITS<br />

COMPONENTS USING LINE X TESTER ANALYSIS IN PIGEONPEA<br />

(Cajanus cajan L. Millsp)<br />

C.V.SAMEER KUMAR, CH.SREELAKSHMI, D.SHIVANI AND M.SURESH<br />

Agricultural Research Station<br />

Acharya N. G. Ranga Agricultural University<br />

Tandur, Ranga Reddy - 501 141<br />

ABSTRACT<br />

Six well adapted l<strong>in</strong>es and four testers <strong>of</strong> pigeonpea (Cajanus cajan L. Millsp) were crossed <strong>in</strong> l<strong>in</strong>e x<br />

tester design to elicit <strong>in</strong>formation regard<strong>in</strong>g the desirable parents and crosses for their use <strong>in</strong> crop improvement<br />

programmes. The material was raised <strong>in</strong> a randomized block design with three replications. Sufficient genetic<br />

variability was observed among the parents, l<strong>in</strong>es and crosses for all quantitative traits. Non – additive gene<br />

action predom<strong>in</strong>ated for all the traits studied. The estimates <strong>of</strong> gca effects revealed that the genotypes PRG-<br />

158 and LRG-30 among the l<strong>in</strong>es and among the testers ICP 8863 and ICPL 87119 were the best general<br />

comb<strong>in</strong>ers for seed yield and its components and could be utilized <strong>in</strong> future breed<strong>in</strong>g programme. Significant<br />

sca effect was exhibited by LRG 30 x ICP 8863, PRG 100 x ICP 8863, LRG 30 x ICPL 87119, ICPL 85063 x<br />

ICPL 87119 and PRG 100 x ICPL 87119 for seed yield and could be used for exploitation <strong>of</strong> heterosis to<br />

achieve high yields.<br />

Pigeonpea (Cajanus cajan (L) Millsp.) is an important pulse crop grown <strong>in</strong> India with 76% <strong>of</strong><br />

global acreage. Possibilities <strong>of</strong> commercial exploitation <strong>of</strong> hybrid vigour <strong>in</strong>creased s<strong>in</strong>ce the<br />

reports <strong>of</strong> genetic male sterility <strong>in</strong> pigeonpea and presence <strong>of</strong> considerable degree <strong>of</strong> natural<br />

out cross<strong>in</strong>g. Comb<strong>in</strong><strong>in</strong>g ability analysis is frequently employed to identify the desirable<br />

parents and crosses. Therefore, the present study was undertaken to estimate comb<strong>in</strong><strong>in</strong>g<br />

ability for some yield contribut<strong>in</strong>g components <strong>in</strong> pigeonpea.<br />

MATERIALS AND METHODS<br />

The experimental material consist<strong>in</strong>g <strong>of</strong> twenty four crosses <strong>in</strong> l<strong>in</strong>e x tester design<br />

<strong>in</strong>volv<strong>in</strong>g six diverse l<strong>in</strong>es and four well adapted testers were grown along with parents <strong>in</strong> the<br />

randomized block design with three replications at Agricultural Research Station, Tandur<br />

dur<strong>in</strong>g kharif 2006-07. Each treatment <strong>in</strong> a replication had a s<strong>in</strong>gle row <strong>of</strong> 5 m length, with 90<br />

x 20 cm spac<strong>in</strong>g. All the recommended crop management practices were followed. Data<br />

were recorded on five random competitive plants from each genotype / replication for days to<br />

cv_sameerkumar@yahoo.com<br />

65


KUMAR et al.<br />

50% flower<strong>in</strong>g, days to maturity, plant height, number <strong>of</strong> primary branches per plant, number<br />

<strong>of</strong> pod clusters per plant, number <strong>of</strong> pods per plant, 100 seed weight and seed yield per plant.<br />

The statistical analysis was done as per procedure given by Kempthorne (1957).<br />

RESULTS AND DISCUSSION<br />

Analysis <strong>of</strong> variance for comb<strong>in</strong><strong>in</strong>g ability revealed significant differences <strong>of</strong> the l<strong>in</strong>e<br />

x tester component for all the characters, <strong>in</strong>dicat<strong>in</strong>g that the material chosen was variable<br />

with respect to traits under <strong>in</strong>vestigation. The l<strong>in</strong>es showed significant differences for days<br />

to 50% flower<strong>in</strong>g, days to maturity and 100 seed weight, while the testers exhibited significant<br />

differences for days to 50% flower<strong>in</strong>g, days to maturity, plant height, number <strong>of</strong> primary<br />

branches per plant, 100-seed weight and seed yield per plant (Table 1).<br />

Partition<strong>in</strong>g <strong>of</strong> comb<strong>in</strong><strong>in</strong>g ability variances <strong>in</strong>to fixable additive genetic variance and<br />

non-fixable dom<strong>in</strong>ance variance <strong>in</strong>dicated that non-additive gene action play a significant<br />

role <strong>in</strong> <strong>in</strong>heritance <strong>of</strong> all the traits. Therefore, it would be beneficial to build up a population by<br />

<strong>in</strong>ter mat<strong>in</strong>g these parents <strong>in</strong>ter se before <strong>in</strong>itiat<strong>in</strong>g random mat<strong>in</strong>g <strong>in</strong> F 2<br />

to allow higher<br />

recomb<strong>in</strong>ation (Rawat, 1982). Preponderance <strong>of</strong> non-additive gene action for majority <strong>of</strong><br />

traits observed was found <strong>in</strong> agreement with Kumar et al., (2003) and Reddy et al., (2004).<br />

The estimates <strong>of</strong> gca effect revealed that, the genotypes PRG 100 and LRG 30<br />

among the l<strong>in</strong>es and ICP 8863 and ICPL 87119 among the testers proved as good general<br />

comb<strong>in</strong>ers for seed yield per plant (Table 2). The parent PRG 100 was a good general comb<strong>in</strong>er<br />

for all the characters except days to 50% flower<strong>in</strong>g and plant height while LRG 30 was good<br />

general comb<strong>in</strong>er for number <strong>of</strong> primary branches per plant, number <strong>of</strong> pods cluster per plant,<br />

number <strong>of</strong> pods per plant and seed yield per plant.<br />

The l<strong>in</strong>es ICPL 85063 and LRG 38 were the best general comb<strong>in</strong>ers for earl<strong>in</strong>ess.<br />

Among the testers ICP 8863 was good general comb<strong>in</strong>er for days to 50% flower<strong>in</strong>g, days to<br />

maturity, number <strong>of</strong> pods per plant, 100 seed weight and seed yield per plant and ICP 84063<br />

and ICP 89044 were good general comb<strong>in</strong>ers for earl<strong>in</strong>ess. The tester ICPL 87119 was good<br />

general comb<strong>in</strong>er for number <strong>of</strong> pod clusters per plant, number <strong>of</strong> pods per plant, 100 seed<br />

weight and seed yield per plant but not for earl<strong>in</strong>ess. Crosses <strong>in</strong>volv<strong>in</strong>g these parents might<br />

produce heterotic hybrids with high mean performance for respective traits.<br />

High sca effects mostly from the additive and dom<strong>in</strong>ant effects existed between the<br />

hybridiz<strong>in</strong>g parents. In the present study, significant sca effects were exhibited by five crosses<br />

viz, PRG 100 x ICP 8863, PRG 100 x ICPL 87119, LRG 30 x ICP 8863, LRG 30 x ICPL<br />

87119 and ICPL 85063 x ICPL 87119 for seed yield per plant (Table 3). These crosses could<br />

be used for isolat<strong>in</strong>g superior genotypes from segregat<strong>in</strong>g generation. It was observed that,<br />

66


IDENTIFICATION OF PARENTS AND HYBRIDS<br />

these crosses also exhibited significant sca effects for number <strong>of</strong> pods per plant and 100<br />

seed weight. The cross comb<strong>in</strong>ations for high gca l<strong>in</strong>es x high gca testers manifested <strong>in</strong> to<br />

higher sca comb<strong>in</strong>ations except <strong>in</strong> the cross ICPL 85063 x ICPL 87119. These results are <strong>in</strong><br />

agreement with the earlier reports <strong>of</strong> Kumar et al., (2003).<br />

It is evident from the present study that non-additive gene effects were important <strong>in</strong><br />

the <strong>in</strong>heritance <strong>of</strong> most <strong>of</strong> the traits. The good general comb<strong>in</strong>er parents viz, PRG 158, LRG<br />

30 and ICP 8863 and ICPL 87119 could be utilized <strong>in</strong> future breed<strong>in</strong>g programmes.<br />

REFERENCES<br />

Kempthorne, O. 1957. An <strong>in</strong>troduction <strong>of</strong> Genetic statistics. John Wiley and sons, New<br />

York, pp: 458-471.<br />

Rawat, D. S. 1982. Analysis <strong>of</strong> reciprocal differences <strong>in</strong> Indian mustard. Acta Agronomica<br />

Hungarice. 41: 227-233.<br />

Reddy, S. M. S<strong>in</strong>gh, S. P. Mehra, R. B and Govil, J. N. 2004. Comb<strong>in</strong><strong>in</strong>g ability and heterosis<br />

<strong>in</strong> early matur<strong>in</strong>g pigeonpea (Cajanus cajan L. Millsp) hybrids. Indian Journal <strong>of</strong> Genetics<br />

and Plant Breed<strong>in</strong>g 64 (3): 212-216.<br />

Kumar, S. Lohit Aswa, H and Dharamaraj, P. 2003. Comb<strong>in</strong><strong>in</strong>g ability analysis for gra<strong>in</strong><br />

yield, prote<strong>in</strong> content and other quantitative traits <strong>in</strong> Pigeonpea. Journal <strong>of</strong> Maharashtra<br />

Agricultural Universities 28: 141-144.<br />

Kumar, K. Ramdhari and Tomar, Y. S. 2003. Comb<strong>in</strong><strong>in</strong>g ability analysis for seed yield and its<br />

attributes <strong>in</strong> Pigeonpea. National journal <strong>of</strong> Plant Improvement 5: 124-126.<br />

67


KUMAR et al.<br />

Table 1. Analysis <strong>of</strong> variance for comb<strong>in</strong> <strong>in</strong>g ability <strong>of</strong> the characters <strong>in</strong> pigeonpea<br />

Source <strong>of</strong> variation df<br />

Days to<br />

50%<br />

flower<strong>in</strong>g<br />

Days<br />

to<br />

maturity<br />

Plant<br />

height<br />

(cm)<br />

No. <strong>of</strong><br />

primary<br />

branches<br />

No. <strong>of</strong><br />

clusters /<br />

plant<br />

No. <strong>of</strong><br />

pods /<br />

plant<br />

100 seed<br />

weight (g)<br />

Seed yield<br />

Plant (g)<br />

Replications 2 6.39 2.61 46.39 0.66 18.02 610.53 0.35 14.29<br />

Treatments 33 372.69** 373.08** 403.50** 13.50** 403.21** 6157.64** 5.73** 99.22**<br />

Parents 9 499.55** 522.09** 652.73** 12.64** 412.48** 5837.42** 9.47** 79.98**<br />

Parents vs. Crosses 1 634.09** 453.96** 1815.07** 56.74** 15.66 11835.38** 3.32** 226.97**<br />

Crosses 23 311.68** 311.26** 244.61 11.96** 416.44** 6036.12** 4.38** 101.19**<br />

L<strong>in</strong>es 5 551.06** 837.14** 367.28 11.70 447.21 9226.47 11.95** 63.79<br />

Testers 3 1010.28** 514.98* 541.38* 38.83** 644.99 9420.85 7.67** 385.40**<br />

L<strong>in</strong>es x Testers 15 92.16** 95.23** 144.38 6.67** 360.47** 4295.74** 1.19** 56.82*<br />

Error 66 3.42 2.71 194.44 1.31 28.10 1586.31 0.22 25.61<br />

68


IDENTIFICATION OF PARENTS AND HYBRIDS<br />

Table 2. Estimates <strong>of</strong> general comb<strong>in</strong><strong>in</strong>g abilit y effects for l<strong>in</strong>es and testers <strong>in</strong> pigeonpea<br />

Days to<br />

50%<br />

flower<strong>in</strong>g<br />

Days to<br />

maturity<br />

Plant<br />

height<br />

(cm)<br />

No. <strong>of</strong> primary<br />

branches/plant<br />

No. <strong>of</strong><br />

clusters/plant<br />

No. <strong>of</strong><br />

pods/plant<br />

100 seed<br />

weight (g)<br />

Seed<br />

yield/plant<br />

(g)<br />

L<strong>in</strong>es<br />

PRG-100 -0.22 -2.76** 1.24 1.60** 6.05** 33.79** 1.27** 3.48*<br />

PRG-88 -0.06 -5.68** -0.78 -0.57 -7.64** -1.88 0.74** -2.15<br />

LRG-30 10.03** 15.99** 5.15 0.76* 6.23** 32.62** 0.20 3.68*<br />

LRG-38 -1.89** -1.68** -5.28 -0.87* -3.20* -41.20** -0.90** -2.13<br />

ICPL-85034 -10.81** -7.01** -7.12 -0.80* -5.27** -22.48 -1.40** -2.87<br />

ICPL-85063 2.94** 1.15* 6.77 -0.12 3.83* -0.85 0.10 -0.02<br />

SE (gi) 0.53 0.47 4.02 0.33 1.53 11.49 0.14 1.46<br />

Testers<br />

ICP-8863 -3.36** -1.04** 0.94 0.36 -0.38 20.41* 0.54** 4.28**<br />

ICPL-84036 -1.03* -3.38** -3.56 -1.09** -3.65** -20.67* -0.62** -5.32**<br />

ICPL-87119 10.75** 7.85** 7.36* 1.93** 8.57** 19.19* 0.59** 3.44**<br />

ICPL-89044 -6.36** -3.43** -4.74 -1.19** -4.54** -18.93* -0.51** -2.40*<br />

SE (gj) 0.44 0.39 3.29 0.27 1.25 9.39 0.11 1.19<br />

69


KUMAR et al.<br />

Table 3. Estimates <strong>of</strong> specific comb<strong>in</strong><strong>in</strong>g ability effects <strong>in</strong> pigeonpea<br />

Cross Days to<br />

50%<br />

flower<strong>in</strong>g<br />

Days to<br />

maturity<br />

Plant<br />

height<br />

(cm)<br />

No. <strong>of</strong><br />

primary<br />

branches<br />

No. <strong>of</strong><br />

clusters/<br />

plant<br />

No. <strong>of</strong><br />

pods /<br />

plant<br />

100 seed<br />

weight(g)<br />

Seed<br />

yield/plant<br />

(g)<br />

1 PRG-100 x ICP-8863 1.78 4.71** 1.80 1.36* 13.54** 47.10* 0.65* 6.74*<br />

2 PRG-100 x ICP-84036 -5.89** -5.96** -4.14 -2.26** -13.88** -14.59 -0.15 -6.32*<br />

3 PRG-100 x ICP-87119 3.67** 0.82 6.00 0.79 7.80* 48.35* 0.65* 6.76*<br />

4 PRG-100 x ICP-89044 0.44 0.43 -3.66 0.11 -7.46* -45.86 0.60* -1.18<br />

5 PRG-88 x ICP-8863 4.28** 5.29** -0.95 -0.81 0.86 -15.49 -0.50 -2.26<br />

6 PRG-88 x ICP-84036 0.28 0.29 -3.92 1.11 7.90* -10.41 0.12 2.79<br />

7 PRG-88 x ICP-87119 -1.17 -7.60** 3.95 0.62 -4.12 20.92 -0.08 0.86<br />

8 PRG-88 x ICP-89044 -3.39** 2.01* 0.93 -0.92 -4.64 -0.02 0.02 -0.81<br />

9 LRG-30 x ICP-8863 4.53** -0.38 4.22 2.16** 14.79** 49.54* 0.63* 6.77*<br />

10 LRG-30 x ICP-84036 2.19* 4.29** -2.78 -1.01 -8.47** -35.61 0.78** 0.45<br />

11 LRG-30 x ICP-87119 -2.25* 1.07 6.26 0.90 4.48 52.52* 0.64* 6.96*<br />

12 LRG-30 x ICP-89044 -4.47** -4.99** -7.70 -2.05** -10.81** -25.45 -0.95** -4.18<br />

13 LRG-38 x ICP-8863 5.11** 6.62** 6.88 -0.74 -15.35** -36.67 -0.51 -2.95<br />

14 LRG-38 x ICP-84036 -7.56** -3.38** 4.71 0.35 4.12 -11.69 -0.80** -1.01<br />

15 LRG-38 x ICP-87119 2.33* -2.26* -9.91 -0.14 2.57 -56.83* -0.07 -5.14<br />

16 LRG-38 x ICP-89044 0.11 -0.99 -1.67 0.52 8.65** 47.19* -0.17 2.10<br />

17 ICPL-85034 x ICP-8863 -8.31** -6.38** -10.14 -0.38 0.19 -11.29 -0.29 0.46<br />

18 ICPL-85034 x ICP-84036 3.03** 4.96** 7.55 0.34 3.70 18.28 -0.02 -4.94<br />

19 ICPL-85034 x ICP-87119 1.25 1.07 -7.37 -0.61 -7.78* -54.15* -0.17 -1.16<br />

20 ICPL-85034 x ICP-89044 4.03** 0.35 9.97 0.64 3.89 17.17 -0.22 -4.36<br />

21 ICPL-85063 x ICP-8863 -7.39** -9.88** -1.80 -1.59* -14.04** -41.19 -1.73** -4.76<br />

22 ICPL-85063 x ICP-84036 7.94** -0.21 -1.41 1.46* 6.63* 4.02 0.06 -0.39<br />

23 ICPL-85063 x ICP-87119 -3.83** 6.90** 1.07 -1.56* -2.95 47.19* 0.64* 6.72*<br />

24 ICPL-85063 x ICP-89044 3.28** 3.18** 2.14 1.69* 10.36** 6.98 0.72* 3.42<br />

SE (sij) 1.07 0.95 8.05 0.66 3.06 22.99 0.27 2.92<br />

70


J.Res. ANGRAU 37(3&4)71-76, 2009<br />

GENE EFFECTS FOR YIELD CONTRIBUTING CHARACTERS IN<br />

PIGEONPEA (Cajanus cajan L.Millsp) BY GENERATION MEAN<br />

ANALYSIS<br />

C.V. Sameer Kumar, Ch. Sreelakshmi, D. Shivani and M.Suresh<br />

Agricultural Research Station<br />

Acharya N. G. Ranga Agricultural University<br />

Tandur, Rajendranagar - 501 141<br />

ABSTRACT<br />

Estimates <strong>of</strong> gene effects based on analysis <strong>of</strong> generation mean obta<strong>in</strong>ed for eight characters <strong>in</strong> four<br />

crosses <strong>of</strong> pigeonpea <strong>in</strong>dicated the presence <strong>of</strong> additive, dom<strong>in</strong>ance and epistatic gene effects. Among nonallelic<br />

<strong>in</strong>teractions dom<strong>in</strong>ance x dom<strong>in</strong>ance (l) was <strong>of</strong> greater magnitude than ma<strong>in</strong> gene effects for most <strong>of</strong> the<br />

characters <strong>in</strong>dicat<strong>in</strong>g the importance <strong>of</strong> heterosis breed<strong>in</strong>g to utilize non- additive gene effects. The additive<br />

gene effects (d) also contributed significantly for different traits like plant height, number <strong>of</strong> pods per plant and<br />

seed yield <strong>in</strong> the cross LRG 30 x ICP 8863. Dom<strong>in</strong>ant gene effects (h) contributed significantly for most <strong>of</strong> the<br />

characters <strong>in</strong> the crosses PRG 100 x ICPL 87119 and LRG 30 x ICP 8863. Selection <strong>in</strong> segregat<strong>in</strong>g generations<br />

<strong>of</strong> these crosses will be effective for the development <strong>of</strong> these traits. However, to exploit additive as well as<br />

non- additive gene effects reciprocal recurrent selection procedure may be adopted.<br />

Pigeonpea is an important edible pulse crop <strong>in</strong> India grown <strong>in</strong> ra<strong>in</strong>fed and irrigated<br />

conditions. Multiple path ways <strong>in</strong>volv<strong>in</strong>g different yield contribut<strong>in</strong>g characters <strong>in</strong>fluence seed<br />

yield and hence seed yield can also be improved through improvement <strong>of</strong> yield contribut<strong>in</strong>g<br />

characters (Solanki and Joshi, 2000). The estimation <strong>of</strong> gene effects <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>heritance<br />

<strong>of</strong> yield contribut<strong>in</strong>g or quantitative characters are helpful <strong>in</strong> plann<strong>in</strong>g breed<strong>in</strong>g programmes.<br />

Though gene effects for seed yield and other traits have been estimated <strong>in</strong> pigeonpea,<br />

<strong>in</strong>formation on epistatic gene effects is limited. Thus, <strong>in</strong> the present <strong>in</strong>vestigation, genetic<br />

parameters namely, additive, dom<strong>in</strong>ance and epistatic gene effects were estimated through<br />

generation mean study for eight quantitative traits <strong>in</strong> 4 crosses <strong>of</strong> pigeonpea.<br />

MATERIALS AND METHODS<br />

Experimental material comprised <strong>of</strong> 6 generations i.e., P1, P2, F1, F2, BC1(F1xP1)<br />

and BC2(F1xP2) <strong>of</strong> 4 crosses namely PRG 100 x ICPL 87119, LRG 30 x ICP 8863, PRG<br />

100 x ICP 8863 and LRG 30 x ICPL 87119. The six generations <strong>of</strong> each cross were grown<br />

separately <strong>in</strong> randomized block design with two replications. In each replication parents and<br />

crosses were randomized separately, P1, P2 and F1 were grown <strong>in</strong> two rows <strong>of</strong> 5m length.<br />

The <strong>in</strong>ter and <strong>in</strong>tra row spac<strong>in</strong>g was 1.0 x 0.2 m, respectively. Plant population <strong>in</strong> segregat<strong>in</strong>g<br />

cv_sameerkumar@yahoo.com<br />

71


Kumar et al.<br />

generations varied from 62 to 225 plants. The crop was raised as per standard practices for<br />

ra<strong>in</strong>fed crop. Observations on <strong>in</strong>dividual plants were recorded for eight quantitative traits<br />

(Table 1). The data recorded were subjected to weighted analysis <strong>of</strong> Cavalli (1952) to know<br />

the adequacy <strong>of</strong> additive dom<strong>in</strong>ance model. In the presence <strong>of</strong> epistasis, the data where any<br />

<strong>of</strong> the 4, 5, 6 parameters are found adequate <strong>in</strong> the model <strong>of</strong> J<strong>in</strong>ks and Jones (1958) was<br />

subjected accord<strong>in</strong>gly to sequential model <strong>in</strong> order to obta<strong>in</strong> more precise estimate for these<br />

parameters. The adequacy <strong>of</strong> these sequential models was tested by x 2 test.<br />

RESULTS AND DISCUSSION<br />

Significant scal<strong>in</strong>g test for different traits were observed <strong>in</strong> almost all crosses <strong>in</strong>dicat<strong>in</strong>g<br />

the presence <strong>of</strong> digenic or higher order <strong>in</strong>teractions. The non-significant scal<strong>in</strong>g test (Table1)<br />

<strong>in</strong>dicated the absence <strong>of</strong> non-allelic <strong>in</strong>teractions for number <strong>of</strong> branches per plant <strong>in</strong> all the<br />

crosses except PRG100 x ICP 8863 and number <strong>of</strong> pods per plant <strong>in</strong> the cross LRG 30 x<br />

ICPL 87119. Thus <strong>in</strong>heritance <strong>in</strong> these characters <strong>in</strong> the above referred crosses could be<br />

expla<strong>in</strong>ed on the basis <strong>of</strong> simple additive-dom<strong>in</strong>ance model. The estimates <strong>of</strong> genetic<br />

parameters m, d and h <strong>in</strong> these crosses <strong>in</strong>dicated that both additive (d) and dom<strong>in</strong>ance (h)<br />

gene effects were responsible for <strong>in</strong>heritance <strong>of</strong> traits. Absence <strong>of</strong> non- allelic <strong>in</strong>teractions<br />

for some characters was also reported by Patel (1996).<br />

The estimates <strong>of</strong> genetic parameters for different yield contribut<strong>in</strong>g traits <strong>in</strong> the cross<br />

PRG 100 x ICPL 87119 revealed that dom<strong>in</strong>ance gene effects (h) govern the <strong>in</strong>heritance <strong>of</strong><br />

all the characters. Epistatic gene effects additive x additive (i) was more important <strong>in</strong> the<br />

<strong>in</strong>heritance <strong>of</strong> plant height and number <strong>of</strong> clusters per plant. In the same cross dom<strong>in</strong>ance x<br />

dom<strong>in</strong>ance (l) were more pronounced than additive gene effects for number <strong>of</strong> pods per<br />

plant, 100-seed weight and seed yield. Similar results were observed by earlier workers<br />

(Kandalkar, 2005 and S<strong>in</strong>gh, 2002).<br />

Dom<strong>in</strong>ance gene effects (h) governed the <strong>in</strong>heritance <strong>of</strong> all the traits except number<br />

<strong>of</strong> branches per plant <strong>in</strong> the cross LRG 30 x ICP 8863. Non allelic <strong>in</strong>teractions viz., additive<br />

x additive (i) and additive x dom<strong>in</strong>ance (j) were <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>heritance <strong>of</strong> plant height,<br />

number <strong>of</strong> pods per plant and 100 seed weight. Epistatic <strong>in</strong>teraction like dom<strong>in</strong>ance x<br />

dom<strong>in</strong>ance gene effect (l) was also observed for the expression <strong>of</strong> seed yield. These results<br />

are <strong>in</strong> agreement with the earlier reports <strong>of</strong> Hooda et al., (2000) and Oommen et al., (1994).<br />

Dom<strong>in</strong>ance gene effects (h) governed the <strong>in</strong>heritance <strong>of</strong> mostly yield contribut<strong>in</strong>g<br />

traits <strong>in</strong> the cross PRG 100 x ICP 8863 like days to 50% flower<strong>in</strong>g, days to maturity, plant<br />

height, number <strong>of</strong> clusters per plant, 100 seed weight and seed yield. In this cross additive<br />

x additive gene effects (i) were also responsible for the <strong>in</strong>heritance <strong>of</strong> days to 50% flower<strong>in</strong>g,<br />

72


GENE EFFECTS FOR YIELD CONTRIBUTING CHARACTERS<br />

days to maturity, plant height and number <strong>of</strong> clusters per plant. However, non- allelic gene<br />

effects additive x dom<strong>in</strong>ance (j) also controlled the <strong>in</strong>heritance <strong>of</strong> number <strong>of</strong> branches per<br />

plant and number <strong>of</strong> pods per plant <strong>in</strong> this cross.<br />

Cross LRG 30 x ICPL 87119 exhibited the importance <strong>of</strong> dom<strong>in</strong>ance gene effects (h)<br />

for the <strong>in</strong>heritance <strong>of</strong> most <strong>of</strong> the yield contribut<strong>in</strong>g traits. In epistatic <strong>in</strong>teractions like additive<br />

x additive (i) govern the <strong>in</strong>heritance <strong>of</strong> number <strong>of</strong> clusters per plant. Non allelic <strong>in</strong>teractions<br />

viz., dom<strong>in</strong>ance x dom<strong>in</strong>ance gene effects (l) controlled the <strong>in</strong>heritance <strong>of</strong> number <strong>of</strong> clusters<br />

per plant, 100 seed weight and seed yield.<br />

The role <strong>of</strong> non allelic <strong>in</strong>teractions as <strong>in</strong>dicated by scal<strong>in</strong>g test was not confirmed by<br />

estimates <strong>of</strong> genetic parameters <strong>in</strong> crosses PRG 100 x ICPL87119, LRG 30 x ICP 8863 and<br />

LRG 30 x ICPL87119 for number <strong>of</strong> branches per plant and <strong>in</strong> the cross LRG 30 x ICPL<br />

87119 for number <strong>of</strong> pods per plant. It might be due to presence <strong>of</strong> higher order <strong>in</strong>teractions<br />

for <strong>in</strong>heritance <strong>of</strong> these traits. The magnitude <strong>of</strong> epistatic <strong>in</strong>teraction ma<strong>in</strong>ly dom<strong>in</strong>ance x<br />

dom<strong>in</strong>ance (l) gene effects (l) for most <strong>of</strong> the traits was higher <strong>in</strong> almost all traits under study.<br />

Such non additive gene effects may be exploited by heterosis breed<strong>in</strong>g. Additive gene effects<br />

observed <strong>in</strong> the <strong>in</strong>heritance <strong>of</strong> important yield contribut<strong>in</strong>g characters like plant height, number<br />

<strong>of</strong> clusters per plant, number <strong>of</strong> pods per plant and seed yield <strong>in</strong> the above crosses can be<br />

utilized <strong>in</strong> breed<strong>in</strong>g programme by selection method.<br />

The complementary type <strong>of</strong> gene action observed <strong>in</strong> cross PRG 100 x ICPL 87119<br />

for most <strong>of</strong> the yield contribut<strong>in</strong>g traits and for number <strong>of</strong> branches per plant and number <strong>of</strong><br />

pods per plant for PRG 100 x ICP 8863 can be utilized <strong>in</strong> breed<strong>in</strong>g programme. Duplicate<br />

type <strong>of</strong> gene action observed for other traits is not easy to use <strong>in</strong> breed<strong>in</strong>g programme. It is<br />

there fore concluded that heterosis breed<strong>in</strong>g may be used where large magnitude <strong>of</strong> non<br />

fixable gene effects is observed. A sizable amount <strong>of</strong> additive gene effects observed <strong>in</strong>dicated<br />

that segregat<strong>in</strong>g generations <strong>of</strong> cross LRG 30 x ICP 8863 may be handled to develop <strong>in</strong>bred/<br />

varieties possess<strong>in</strong>g more number <strong>of</strong> pods per plant and 100 seed weight. Such type <strong>of</strong><br />

<strong>in</strong>bred /varieties are likely to provide higher seed yield also. Consider<strong>in</strong>g the importance <strong>of</strong><br />

dom<strong>in</strong>ance as well as non-additive gene effects observed <strong>in</strong> the present study recurrent<br />

selection and diallel selective mat<strong>in</strong>g system may be used to exploit both types <strong>of</strong> gene<br />

effects.<br />

73


Kumar et al.<br />

Table 1. Estimation <strong>of</strong> genetic parameters <strong>in</strong> selected pigeonpea crosses evaluated<br />

at ARS, Tandur, kharif, 2007<br />

Character m d h i j l<br />

Cross: PRG 100 x ICPL 87119<br />

Days to 50% flower<strong>in</strong>g 107.07** -10.03** 25.67** 10.46 2.10 6.27<br />

Days to maturity 165.63** -9.23** 28.60** 14.60 3.50 6.13<br />

Plant height 179.30** -20.34** 40.64** 18.75* -4.71* 3.46<br />

Number <strong>of</strong> branches per plant 14.93** -0.76 2.90 - - -<br />

Number <strong>of</strong> clusters per plant 83.00** -5.56** 35.27** 23.40** 0.30 -10.53<br />

Number <strong>of</strong> pods per plant 417.32** -31.63** 56.47* -26.93 11.90 160.47**<br />

100-seed weight 12.27** 0.84** 4.76** 1.27 0.28 6.93**<br />

Seed yield 55.24** -4.15** 1.19 -9.04** -3.51** 31.49**<br />

Cross: LRG 30 x ICP 8863<br />

Days to 50% flower<strong>in</strong>g 109.95** 3.00* 24.40** 7.26** -1.40 -13.93<br />

Days to maturity 169.95** 3.00* 22.93** 17.27** -2.26 -11.00<br />

Plant height 179.12** 18.87** 43.69** 22.73** 12.35** -3.61<br />

Number <strong>of</strong> branches per plant 16.55** 0.77 0.57 - - -<br />

Number <strong>of</strong> clusters per plant 82.37** -12.20** 17.70** 8.00 -6.43** 4.20<br />

Number <strong>of</strong> pods per plant 417.57** 30.03** 147.00** 72.60* -17.30 -52.53<br />

100-seed weight 10.33** -2.20** 5.66** 3.51** -0.36 -1.06<br />

Seed yield 53.35** 3.16* 23.52** 14.73** 3.88** -11.46**<br />

74


GENE EFFECTS FOR YIELD CONTRIBUTING CHARACTERS<br />

Table1. contd….<br />

Character m d h i j l<br />

Cross: PRG 100 x ICP 8863<br />

Days to 50% flower<strong>in</strong>g 97.95 ** -7.57 ** 20.70 ** 13.73 ** -1.07 -2.80<br />

Days to maturity 158.20 ** -7.57 ** 18.43 ** 12.33 ** -1.07 -0.33<br />

Plant height 168.63 ** -8.29 ** 31.31 ** 15.07 * -3.5* -1.06<br />

Number <strong>of</strong> branches per<br />

plant<br />

14.75 ** -0.67 1.03 -1.80 -0.17 6.40 **<br />

Number <strong>of</strong> clusters per plant 87.47 ** -2.97 ** 23.50 ** 11.27 * 1.07 -10.73<br />

Number <strong>of</strong> pods per plant 419.52 ** -4.60 12.00 -68.60** -0.47 167.00**<br />

100-seed weight 12.98 ** 0.31 2.38* 1.23 -0.13 0.01<br />

Seed yield 53.68 ** 0.69 13.91 ** 5.11 1.36 6.72<br />

Cross: LRG 30 x ICPL 87119<br />

Days to 50% flower<strong>in</strong>g 119.30 ** -3.43 ** 11.57 ** 4.20 -2.20* -2.20<br />

Days to maturity 178.95 ** -1.03 13.16** 5.33 -0.07 6.13<br />

Plant height 191.68 ** -6.59 ** 13.56 * 3.41 -2.29 6.41<br />

Number <strong>of</strong> branches per<br />

plant<br />

15.52**<br />

-1.57** 6.10* - - -<br />

Number 84.73 ** -7.70 ** 33.33 ** 20.73 ** -0.10 -17.60*<br />

<strong>of</strong> clusters per plant Number <strong>of</strong> pods per plant 433.62** -3.30 43.20 - - -<br />

100-seed weight 11.21 ** -1.88 ** 0.91 -1.01 -0.17 3.48*<br />

Seed yield 54.56 ** -1.98 ** 15.39 ** 4.37 -1.28 8.76 *<br />

Seed yield 53.68 ** 0.69 13.91 ** 5.11 1.36 6.72<br />

* Significant at 5% level ** Significant at 1% level<br />

75


Kumar et al.<br />

REFERENCES<br />

Cavalli, L. L. 1952. An analysis <strong>of</strong> l<strong>in</strong>kage <strong>in</strong> quantitative <strong>in</strong>heritance. Ed Reive E CR and<br />

Wadd<strong>in</strong>gton, C. H. pp: 135-144, HMSO, London.<br />

Comstock, R. E. Rob<strong>in</strong>son, H. F and Harvey, P. H. 1949. A breed<strong>in</strong>g procedure designed to<br />

make maximum use <strong>of</strong> both general and specific comb<strong>in</strong><strong>in</strong>g ability. Agronomy Journal<br />

41: 360-367.<br />

Hooda, J. S. Tomar, Y. S. Vashistha, R. D and Phogat, D. S. 2000. Generation mean<br />

analysis <strong>in</strong> Pigeonpea (Cajanus cajan (L.) Millsp). Annals <strong>of</strong> Biology 16: 105-109.<br />

J<strong>in</strong>ks, J. L. and Jones, M. 1958. Estimation <strong>of</strong> components <strong>of</strong> heterosis. Genetics 43: 223-<br />

234.<br />

Kandalkar, V. S. 2005. Genetic analysis <strong>of</strong> early and medium duration pigeonpea hybrids<br />

(Cajanus cajan (L.) Millsp) crosses <strong>in</strong>volv<strong>in</strong>g wilt resistant donor <strong>in</strong> F1 and F2<br />

generations. Indian Journal <strong>of</strong> Genetics and Plant Breed<strong>in</strong>g. 65: 184-187.<br />

Oommen, A. Namboodri, K. M. N and Unnithan, V. K. G. 1994. Genetic analysis <strong>of</strong> some<br />

quantitative characters <strong>in</strong> pigeonpea. Journal <strong>of</strong> Tropical Agriculture 32: 109-111.<br />

Patel, A. A .1996. Genetic analysis <strong>in</strong> castor (Ric<strong>in</strong>us communis L.) M.Sc (Ag.) Thesis<br />

submitted to Gujarat Agricultural University, S K Nagar.<br />

Perera, A. M. Pooni, H. S and Saxena, K. B. 2001. Components <strong>of</strong> genetic variation <strong>in</strong> short<br />

duration pigeonpea crosses under water logged conditions. Indian Journal <strong>of</strong> Genetics<br />

and Plant Breed<strong>in</strong>g 55: 31-38.<br />

S<strong>in</strong>gh, I. P and Srivastava, D. P. 2002. Comb<strong>in</strong><strong>in</strong>g ability analysis <strong>in</strong> <strong>in</strong>ter specific hybrids <strong>of</strong><br />

pigeonpea. Indian Journal <strong>of</strong> Pulses Research 14: 27-30.<br />

76


Research Note<br />

J.Res. ANGRAU 37(3&4)77-81, 2009<br />

EVALUATION OF F 1<br />

HYBRIDS OF TOMATO<br />

(Solanum lycopersicum L.)<br />

P.S.SUDHAKAR and K. PURUSHOTHAM<br />

Department <strong>of</strong> Horticulture, S.V. Agricultural College,<br />

Acharya N.G.Ranga Agricultural University, Tirupati - 517 502.<br />

Tomato (Solanum lycopersicum L.) covers an area <strong>of</strong> about 5.35 lakh hectares <strong>in</strong><br />

India with a production <strong>of</strong> 9.36 million tones rank<strong>in</strong>g second after Potato (NHB, 2006). Recently,<br />

its cultivation is commercialized due to its rapid development <strong>of</strong> high yield<strong>in</strong>g potential F 1<br />

hybrids dur<strong>in</strong>g the last decade. But, it is observed that arrival <strong>of</strong> huge quantity <strong>of</strong> the produce<br />

at a time, leads to glut and price fall <strong>in</strong> the market every season due to lack <strong>of</strong> specific hybrid<br />

suitable for staggered harvest<strong>in</strong>g <strong>in</strong> southern zone <strong>of</strong> Andhra Pradesh. Hence, the present<br />

study was undertaken to evaluate different F 1<br />

hybrids <strong>of</strong> tomato for higher yield and staggered<br />

harvest<strong>in</strong>g.<br />

The present study was carried out dur<strong>in</strong>g spr<strong>in</strong>g-summer season <strong>of</strong> 2005-2006 between<br />

the months <strong>of</strong> December and June at Horticultural garden, S.V. Agricultural College, Tirupati<br />

with 8 hybrids viz., T 1<br />

– JK Asha, T 2<br />

– Lakshmi, T 3<br />

– Lehar, T 4<br />

– Ruchi, T 5<br />

– Ab<strong>in</strong>av, T 6<br />

–<br />

Manisha, T 7<br />

– NS 2535 and T 8<br />

– US 618. The trial was laid out <strong>in</strong> randomized complete block<br />

design with three replications. All hybrids received a common basal dose <strong>of</strong> FYM @<br />

5 t ha -1 , 50% <strong>of</strong> full dose <strong>of</strong> 150 kg N, full dose <strong>of</strong> 60 kg P 2<br />

O 5<br />

and 80 kg K 2<br />

O ha -1 at the time<br />

<strong>of</strong> field preparation. Rema<strong>in</strong><strong>in</strong>g 50% N was top dressed <strong>in</strong> two equal splits, one at 30 and the<br />

other at 60 days after plant<strong>in</strong>g. Recommended package <strong>of</strong> practices were followed to raise<br />

the crop under irrigated conditions. Plant height and number <strong>of</strong> branches per plant were<br />

recorded at 120 days after transplant<strong>in</strong>g. Fruit set (%) was calculated as per formula suggested<br />

by Baruah et al. 1994). The fruit size (cm 2 ) was obta<strong>in</strong>ed by multiply<strong>in</strong>g the maximum length<br />

and breadth <strong>of</strong> the fruit. The fruit size and pericarp thickness were recorded with the help <strong>of</strong><br />

vernier calipers. A hand refractometer was used to measure total soluble solids (TSS).<br />

Ascorbic acid content was determ<strong>in</strong>ed follow<strong>in</strong>g 2, 6 - dichlorophenol - <strong>in</strong>dophenol visual<br />

titration method. Shelf life was estimated as the time taken by fruits to reach 50% shrivell<strong>in</strong>g.<br />

Data were collected on five randomly selected plants <strong>of</strong> each plot to record growth, yield and<br />

quality parameters and were subjected to statistical analysis.<br />

E-mail Id: psshorti@yahoo.co.<strong>in</strong><br />

77


SUDHAKAR and PURUSHOTHAM<br />

The results presented <strong>in</strong> table 1 revealed that growth characters varied significantly<br />

among different tomato hybrids. Ruchi showed the tallest plants grow<strong>in</strong>g to a height <strong>of</strong> 143.7<br />

cm with maximum number <strong>of</strong> 26.0 branches per plant compared to other hybrids. On the<br />

other hand, Lakshmi recorded shortest plants grow<strong>in</strong>g to a height <strong>of</strong> only 103.7 cm produc<strong>in</strong>g<br />

15.67 branches per plant. These growth parameters were on par with Lehar and NS 2535.<br />

Plant height <strong>of</strong> JK Asha was also on par with Lakshmi. This variation <strong>in</strong> plant growth arose<br />

on account <strong>of</strong> growth habit <strong>of</strong> genotypes. Similar k<strong>in</strong>d <strong>of</strong> variation <strong>in</strong> growth characters among<br />

different tomato hybrids was also observed by Mohanty et al. (2001).<br />

The hybrids showed significant differences <strong>in</strong> flower<strong>in</strong>g and maturity. Lakshmi was<br />

the earliest to atta<strong>in</strong> 50% flower<strong>in</strong>g <strong>in</strong> 24.33 days after transplant<strong>in</strong>g and was on par with JK<br />

Asha (25.00 days) which was <strong>in</strong> turn on par with Ruchi (27.33 days). On the contrary, Ab<strong>in</strong>av,<br />

NS 2535, Lehar and Manisha were late to flower. They atta<strong>in</strong>ed 50% flower<strong>in</strong>g <strong>in</strong> 41.00 to<br />

42.00 days. Raymon (1985) reported that early flower<strong>in</strong>g resulted <strong>in</strong> early maturity which<br />

<strong>in</strong>dicates earl<strong>in</strong>ess <strong>of</strong> the genotype. In the present <strong>in</strong>vestigation, it is evident that early<br />

flower<strong>in</strong>g hybrids Lakshmi, JK Asha and Ruchi matured early <strong>in</strong> 71.00, 71.33 and 75.33 days<br />

after transplant<strong>in</strong>g compared to late flower<strong>in</strong>g hybrids.<br />

The data presented <strong>in</strong> the table 2 revealed that highest fruit set <strong>of</strong> 78.6% was observed<br />

<strong>in</strong> Ab<strong>in</strong>av compared to rest <strong>of</strong> the hybrids, while the lowest fruit set <strong>of</strong> 28.1% was recorded<br />

<strong>in</strong> Lakshmi which was on par with Ruchi (34.55%). Thus, the hybrids which atta<strong>in</strong>ed early<br />

and pr<strong>of</strong>use flower<strong>in</strong>g had lower fruit set. These differences <strong>in</strong> flower<strong>in</strong>g characters might be<br />

attributed to changes <strong>in</strong> their genotypic habits as reported by Mangal (1981). The early<br />

matur<strong>in</strong>g hybrid Lakshmi produced the highest number <strong>of</strong> fruits per plant (20.13), yield per<br />

plant (1532 g) and per hectare (567.7q) and was significantly superior over rest <strong>of</strong> the hybrids.<br />

Moreover, pr<strong>of</strong>use flower<strong>in</strong>g and fruit bear<strong>in</strong>g enabled it to produce more fruits and yield <strong>in</strong> 3<br />

- 4 pick<strong>in</strong>gs as observed <strong>in</strong> early matur<strong>in</strong>g hybrids when compared to late matur<strong>in</strong>g hybrids<br />

with 5 – 6 pick<strong>in</strong>gs. On the contrary, late matur<strong>in</strong>g hybrids Manisha, Abh<strong>in</strong>av and Lehar<br />

recorded significantly low yields <strong>of</strong> 395 g, 567 g and 627 g per plant (Table 2). Jasm<strong>in</strong>e and<br />

Ramdas (1993) also reported that early matur<strong>in</strong>g hybrids produced higher yield than late<br />

matur<strong>in</strong>g hybrids. But, synchronization <strong>of</strong> fruit<strong>in</strong>g <strong>in</strong> Lakshmi could not enable it to produce<br />

staggered harvests. Similar observations <strong>in</strong> different tomato genotypes were observed by<br />

Gould (1983) who reported that synchronization <strong>of</strong> fruit<strong>in</strong>g after a period <strong>of</strong> pr<strong>of</strong>use flower<strong>in</strong>g<br />

<strong>in</strong> early matur<strong>in</strong>g cultivars leads to once-over harvest<strong>in</strong>g. The hybrid US618 was the second<br />

best. It yielded 341.0 q ha -1 which was significantly more than rest <strong>of</strong> the hybrids. The fruit<br />

set <strong>of</strong> the hybrid was 60.65%. Its unique characteristic is that it provides cont<strong>in</strong>uous supply<br />

<strong>of</strong> fruits through staggered harvests. The habit <strong>of</strong> <strong>in</strong>determ<strong>in</strong>ate growth, staggered flower<strong>in</strong>g<br />

and fruit<strong>in</strong>g <strong>in</strong> hybrid US 618 enabled it to become suitable hybrid for staggered harvest<strong>in</strong>g.<br />

78


EVALUATION OF F 1<br />

HYBRIDS OF TOMATO<br />

In the present <strong>in</strong>vestigation, all the hybrids showed significant differences <strong>in</strong> their quality<br />

characters (Table 3). The largest fruit size <strong>of</strong> 23.11 cm 2 and weight <strong>of</strong> 80.42 g were recorded<br />

<strong>in</strong> the hybrid Ruchi. These parameters were on par <strong>in</strong> US 618 and Lakshmi. The fruits <strong>of</strong> Jk<br />

Asha and Manisha had maximum TSS content <strong>of</strong> 4.8%. The hybrid Ruchi was on par with<br />

these two hybrids. Lakshmi recorded the lowest TSS content <strong>of</strong> 3.67%. Manisha was very<br />

rich <strong>in</strong> ascorbic acid content <strong>of</strong> 19.71 mg 100g -1 and this was on par with ascorbic acid<br />

content <strong>of</strong> 19.27 mg 100g -1 <strong>in</strong> US 618, 18.63 mg 100g -1 <strong>in</strong> NS 2535, 18.09 mg 100g -1 <strong>in</strong> Ab<strong>in</strong>av<br />

and 16.47 mg 100g -1 <strong>in</strong> Ruchi. The late matur<strong>in</strong>g hybrids were thus rich <strong>in</strong> ascorbic acid<br />

content. Elliptical shape fruited hybrid NS 2535 had the thickest pericarp thickness measur<strong>in</strong>g<br />

0.73 cm and longest shelf life <strong>of</strong> 17.33 days. The pear shape fruited hybrid Abh<strong>in</strong>av also had<br />

thick pericarp <strong>of</strong> 0.70 cm and long shelf life <strong>of</strong> 15 days. The round shape fruited hybrid Ruchi<br />

showed the th<strong>in</strong> pericarp <strong>of</strong> 0.5 cm and short shelf life <strong>of</strong> 9.00 days. Thus, the elliptical or<br />

oblong or pear shaped fruits had thick pericarp thickness and long shelf life than those with<br />

rounded flat and spherical shaped fruits. These f<strong>in</strong>d<strong>in</strong>gs are <strong>in</strong> agreement with those <strong>of</strong><br />

Vanajalatha (1987). Thus, Lakshmi and US618 can be recommended as suitable hybrids for<br />

higher yield and staggered harvest<strong>in</strong>g.<br />

Table 1. Growth performance <strong>of</strong> different tomato hybrids<br />

Hybrids Plant Number <strong>of</strong> Days to 50% Days to<br />

height branches per flower<strong>in</strong>g maturity<br />

at f<strong>in</strong>al<br />

plant at<br />

harvest(cm) f<strong>in</strong>al harvest<br />

JK Asha 112.33 19.67 25.00 71.33<br />

Lakshmi 103.33 15.67 24.33 71.00<br />

Lehar 108.33 17.67 41.00 93.00<br />

Ruchi 143.67 26.00 27.33 75.33<br />

Ab<strong>in</strong>av 110.33 18.67 42.00 95.00<br />

Manisha 118.33 20.67 41.33 94.00<br />

NS2535 109.33 18.33 41.67 94.67<br />

US618 125.00 21.67 39.33 90.67<br />

SE+ 3.10 0.89 0.86 1.60<br />

CD at 5% 9.41 2.71 2.61 3.42<br />

79


SUDHAKAR and PURUSHOTHAM<br />

Table 2. Fruit yield components <strong>of</strong> different tomato hybrids<br />

Hybrids Fruit set (%) Number <strong>of</strong> Yield per Yield<br />

fruits per plant plant (g) q ha -1<br />

JK Asha 41.18 11.75 637.0 236.3<br />

Lakshmi 28.10 20.13 1532.0 567.7<br />

Lehar 53.38 8.51 627.0 232.5<br />

Ruchi 34.55 9.77 785.0 290.9<br />

Ab<strong>in</strong>av 78.60 8.12 567.0 210.1<br />

Manisha 54.37 5.80 395.0 146.3<br />

NS2535 60.14 12.07 865.0 320.5<br />

US618 60.65 12.13 920.0 341.0<br />

SE+ 2.99 1.31 8.0 3.0<br />

CD at 5% 9.08 3.98 24.0 9.1<br />

Table 3. Fruit quality components <strong>of</strong> different tomato hybrids.<br />

Hybrids Fruit Fruit size Pericarp TSS (%) Ascorbic Shelf life<br />

weight (cm 2 ) thickness acid (days)<br />

(g) (cm) content<br />

(mg 100 g -1 )<br />

JK Asha 54.29 7.68 0.53 4.80 14.04 11.00<br />

Lakshmi 76.15 18.21 0.63 3.67 15.06 13.00<br />

Lehar 73.77 16.48 0.57 3.93 12.11 11.00<br />

Ruchi 80.42 23.11 0.50 4.60 16.47 9.00<br />

Ab<strong>in</strong>av 69.87 15.32 0.70 4.07 18.09 15.00<br />

Manisha 68.12 11.37 0.67 4.80 19.71 14.00<br />

NS2535 71.69 16.31 0.73 4.20 18.63 17.33<br />

US618 75.91 18.19 0.60 4.00 19.27 12.00<br />

SE+ 2.30 2.00 0.03 0.18 1.26 0.68<br />

CD at 5% 6.98 6.29 0.10 0.56 3.81 2.07<br />

80


EVALUATION OF F 1<br />

HYBRIDS OF TOMATO<br />

REFERENCES<br />

Baruah, G. K. S., Arora, S. K and Pandita, M. L. 1994. Effect <strong>of</strong> Paclobutrazole and nitrogen<br />

levels on fruit yield <strong>of</strong> Pusa ruby tomato (Lycopersicum esculentum). Indian Journal<br />

<strong>of</strong> Agricultural Sciences 64: 567-569.<br />

Gould, W. A. 1983. Tomato production, process<strong>in</strong>g and quality evaluation. 2 nd edition, AVI<br />

publish<strong>in</strong>g company, Westport, Connecticut.<br />

Jasm<strong>in</strong>e, A. P. J and Ramadas, S. 1993. Evaluation <strong>of</strong> certa<strong>in</strong> F 1<br />

hybrids and cultivars <strong>of</strong><br />

tomato for yield components. South Indian Horticulture 41 (5): 248-250.<br />

Mangal, J. L., Sidhu, A. S and Pandey,V. C. 1981. Effect <strong>of</strong> stak<strong>in</strong>g and prun<strong>in</strong>g on growth,<br />

earl<strong>in</strong>ess and yield <strong>of</strong> tomato varieties. Indian Journal Agricultural Research 15 (2):<br />

103-106.<br />

Mohanty, B. K. 2001. Varietal performance <strong>of</strong> tomato <strong>in</strong> black soils <strong>of</strong> orissa. Journal <strong>of</strong><br />

Research, ANGRAU 29 (4): 22-26<br />

NHB, 2006. Crop wise area, production and productivity <strong>of</strong> major vegetable crops for the<br />

year 2005-2006 <strong>in</strong> India. www.<strong>in</strong>diastat.com. (onl<strong>in</strong>e statistical database).<br />

Raymon, 1985. Vegetable seed production University <strong>of</strong> Bath pr<strong>in</strong>ted <strong>in</strong> Great Brita<strong>in</strong> at the<br />

pitman press Bath.<br />

Vanajalatha, K. 1987. Studies on the performance <strong>of</strong> certa<strong>in</strong> tomato (Lycopersicon esculentum<br />

Mill) hybrids and varieties under Hyderabad conditions, M.Sc.(Ag.) thesis submitted<br />

to Acharya N.G. Ranga Agril. University, Hyderabad.<br />

81


Research Note<br />

J.Res. ANGRAU 37(3&4)82-85, 2009<br />

INFLUENCE OF GROWTH HORMONAL TREATMENTS ON SEED<br />

GERMINATION AND SEEDLING GROWTH OF SIMAROUBA<br />

(Simarouba glauca L.)<br />

L. PRASANTHI, P. MAHESWARA REDDY, P. S. SUDHAKAR,<br />

B. BALAKRISHNA BABU and K. RAJA REDDY<br />

Bi<strong>of</strong>uel Scheme, Regional Agricultural Research Station<br />

Acharya N.G. Ranga Agricultural University, Tirupathi - 517 502<br />

Simarouba glauca commonly known as paradise tree belongs to family<br />

simaroubaceae. It is an ever green multipurpose tree, native <strong>of</strong> EL Salvador, Central America.<br />

It was <strong>in</strong>troduced <strong>in</strong> India <strong>in</strong> 1966, exclusively for soil conservation purpose, especially<br />

earmarked for waste lands, bald hills and degraded lands. In recent years, it has atta<strong>in</strong>ed<br />

greater importance <strong>in</strong> terms <strong>of</strong> its potential for edible oil, <strong>in</strong>dustrial vegetable oil and bi<strong>of</strong>uel<br />

production. It is a versatile oil tree with productivity potential as high as 2000 kg edible oil per<br />

hectare per year with ability to establish well even <strong>in</strong> marg<strong>in</strong>al/ wastelands (Syamasundar<br />

and Hiremath, 2001). It can play an important role not only <strong>in</strong> reduc<strong>in</strong>g the shortage <strong>of</strong> edible<br />

oil/ fat <strong>in</strong> the country but also limit<strong>in</strong>g country’s dependence on oil imports to meet domestic<br />

oil requirement. Simarouba is ma<strong>in</strong>ly propagated through seeds and like other oil seeds,<br />

seeds can be stored only for a limited period with slight reduction <strong>in</strong> germ<strong>in</strong>ation percentage.<br />

Even the fresh seeds have germ<strong>in</strong>ation problems as only 60 percent <strong>of</strong> seeds are able to<br />

produce normal seedl<strong>in</strong>gs. In many <strong>of</strong> the forestry species, seed germ<strong>in</strong>ation and seedl<strong>in</strong>g<br />

growth is enhanced by externally applied growth promoters. Due to lack <strong>of</strong> sufficient literature,<br />

an attempt was made to <strong>in</strong>crease the seed germ<strong>in</strong>ation percentage and seedl<strong>in</strong>g growth<br />

<strong>in</strong> Simarouba glauca with externally applied growth regulators and chemicals.<br />

Freshly harvested Simarouba glauca seeds were collected from Forest Research<br />

Station, BIOTRIM, Tirupati dur<strong>in</strong>g May 2009 for the present study. The seeds were surface<br />

sterilized with 0.1% mercuric chloride for 30 m<strong>in</strong>utes and thoroughly washed with distilled<br />

water. There were eight treatments replicated four times. The seeds were treated by soak<strong>in</strong>g<br />

<strong>in</strong> distilled water and growth regulators viz., IAA and GA at concentrations <strong>of</strong> 150, 200 and<br />

250 ppm for 24 h before sow<strong>in</strong>g and the seeds without any treatment served as control. The<br />

seeds were sown <strong>in</strong> polybags. The experiment was laid out <strong>in</strong> completely randomized design.<br />

The study was conducted under shade net conditions dur<strong>in</strong>g June, 2009 at Regional Agricultural<br />

Research Station, Tirupati. Irrigation was provided by pot water<strong>in</strong>g twice a day. Seed<br />

e mail: prasanthi64@rediffmail.com<br />

82


INFLUENCE OF GROWTH HORMONAL TREATMENTS<br />

germ<strong>in</strong>ation was counted upto 30 days after sow<strong>in</strong>g. The seedl<strong>in</strong>gs started germ<strong>in</strong>at<strong>in</strong>g from<br />

12 th day and cont<strong>in</strong>ued upto 25 th day after sow<strong>in</strong>g. Data on germ<strong>in</strong>ation time (days), germ<strong>in</strong>ation<br />

percentage, root and shoot length (cm), total seedl<strong>in</strong>g length (cm), fresh and dry weight <strong>of</strong><br />

root and shoot (g) and vigour <strong>in</strong>dex were recorded. Seedl<strong>in</strong>g vigour was measured <strong>in</strong> terms <strong>of</strong><br />

vigour <strong>in</strong>dex. It was calculated as vigour <strong>in</strong>dex = germ<strong>in</strong>ation percentage X Total seedl<strong>in</strong>g<br />

length (cm) given by Abdul-Baki and Anderson (1973). The data recorded were subjected to<br />

analysis <strong>of</strong> variance.<br />

The results showed that Simarouba glauca seed germ<strong>in</strong>ated <strong>in</strong> mean 13.45 to 16.45<br />

days. This was not significantly <strong>in</strong>fluenced by different treatments. The untreated seed had<br />

a low germ<strong>in</strong>ation <strong>of</strong> 64.4%. The high concentration <strong>of</strong> IAA @ 250 ppm was deleterious and<br />

had also low seed germ<strong>in</strong>ation <strong>of</strong> 66.6%. The seeds soaked <strong>in</strong> distilled water or treated with<br />

IAA or GA @ 150 and 200 ppm for 24 h recorded 100% germ<strong>in</strong>ation. This could be due to<br />

plant growth regulators which <strong>in</strong>duced metabolization <strong>of</strong> stored reserves dur<strong>in</strong>g germ<strong>in</strong>ation<br />

as reported by Verma and Tandon (1988). Seed treatment with IAA @ 150 ppm significantly<br />

<strong>in</strong>creased not only the length <strong>of</strong> shoot (14.44 cm), root (30.70 cm) and seedl<strong>in</strong>g (45.14 cm)<br />

but also the fresh weight (2.60 g; 1.19 g) and dry weight (0.58 g; 0.26 g) <strong>of</strong> shoot and root<br />

followed by IAA 200 ppm and GA 200 ppm when compared to control. However, soak<strong>in</strong>g <strong>of</strong><br />

seed <strong>in</strong> distilled water did not <strong>in</strong>fluence these variables. The positive response attributed for<br />

enhanced growth <strong>of</strong> seedl<strong>in</strong>gs <strong>in</strong> terms <strong>of</strong> shoot and root length as well as for <strong>in</strong>creased<br />

biomass <strong>of</strong> seedl<strong>in</strong>gs with IAA and GA treatments might be due to diffusion <strong>of</strong> endogenous<br />

aux<strong>in</strong> and gibberell<strong>in</strong>s like substances (Mathur et al., 1971). Enhancement <strong>of</strong> germ<strong>in</strong>ation<br />

and seedl<strong>in</strong>g growth with IAA treatment has been reported earlier <strong>in</strong> Neem by Kumaran et al.,<br />

(1994). The maximum vigour <strong>in</strong>dex <strong>of</strong> 4514 was recorded by treat<strong>in</strong>g the seed with IAA @<br />

150 ppm followed by IAA 200 ppm (4280) and was significantly higher than that <strong>of</strong> control<br />

(2268). Higher germ<strong>in</strong>ation per cent and seedl<strong>in</strong>g length <strong>in</strong>dicated better growth potential <strong>of</strong><br />

the seedl<strong>in</strong>gs, which <strong>in</strong> turn positively <strong>in</strong>creased the vigour <strong>in</strong>dex <strong>in</strong> IAA 150 ppm. These<br />

f<strong>in</strong>d<strong>in</strong>gs are similar to those earlier reported by Radha krishnan and Renganayaki (2008).<br />

Therefore, seed treatment with IAA @ 150 ppm is the best technique to improve the<br />

germ<strong>in</strong>ation percentage <strong>of</strong> the seeds, root and shoot length, total seedl<strong>in</strong>g length, fresh and<br />

dry weight <strong>of</strong> root and shoot and eventually to maximize the seedl<strong>in</strong>g vigour. Farmers who<br />

cannot afford to purchase IAA or <strong>in</strong> the event <strong>of</strong> its non availability can opt seed soak<strong>in</strong>g with<br />

distilled water which is the next best option to improve the germ<strong>in</strong>ation <strong>of</strong> seeds.<br />

83


PRASANTHI et al.<br />

Table 1. Effect <strong>of</strong> growth regulators on seed germ <strong>in</strong>ation and seedl<strong>in</strong>g growth <strong>of</strong> Simarouba glauca<br />

Treatment Germ<strong>in</strong>ation<br />

time (days)<br />

Germ<strong>in</strong>ation<br />

percentage<br />

(%)<br />

Shoot<br />

length<br />

(cm)<br />

Root<br />

length<br />

(cm)<br />

Total<br />

seedl<strong>in</strong>g<br />

length<br />

(cm)<br />

Fresh weight<br />

<strong>of</strong><br />

Shoot<br />

(g)<br />

Root<br />

(g)<br />

Dry weight <strong>of</strong><br />

Shoot<br />

(g)<br />

Root<br />

(g)<br />

Vigour<br />

Index<br />

T1 - Control 16.11 64.5 11.92 23.28 35.20 2.18 0.83 0.45 0.14 2268<br />

T2 - Distilled water 13.45 100.0 13.11 25.69 38.80 2.50 0.90 0.53 0.18 3880<br />

T3 - IAA 150ppm 15.11 100.0 14.44 30.70 45.14 2.60 1.19 0.58 0.26 4514<br />

T4 - IAA 200ppm 14.78 100.0 14.19 28.61 42.80 2.57 1.09 0.55 0.22 4280<br />

T5 - IAA 250ppm 16.22 66.6 11.93 29.75 41.68 2.00 0.80 0.43 0.11 2776<br />

T6 - GA 150ppm 15.11 100.0 14.18 25.78 39.96 2.09 0.73 0.35 0.09 3996<br />

T7 - GA 200ppm 15.22 100.0 13.91 26.13 40.04 2.53 1.00 0.54 0.20 4004<br />

T8 - GA 250ppm 16.45 88.5 12.70 24.33 37.03 2.42 0.89 0.48 0.19 3274<br />

SE+ 0.91 10.5 0.87 1.64 2.13 0.11 0.06 0.03 0.005 470<br />

CD at 5% NS 21.3 2.04 3.53 4.56 0.22 0.12 0.06 0.013 1009<br />

84


INFLUENCE OF GROWTH HORMONAL TREATMENTS<br />

REFERENCES<br />

Abdul baki, A.A and Anderson, J.J. 1973. Vigour determ<strong>in</strong>ation <strong>in</strong> Soyabean seed by multiple<br />

criteria. Crop Science 13: 630-633<br />

Kumaran, K., Palani, M., Jerl<strong>in</strong>, R and Surendran, C.1994. Effects <strong>of</strong> growth regulators on<br />

seed germ<strong>in</strong>ation and seedl<strong>in</strong>g growth <strong>of</strong> Neem (Azadirachta <strong>in</strong>dica). Journal <strong>of</strong> Tropical<br />

forest science 6:529-532.<br />

Mathur, D.D., Cuurillon, G.A., V<strong>in</strong>es, H.M and Hendershoot, C.H. 1971. Stratification effects<br />

on endogenous gibberelic acid <strong>in</strong> peach seed. Horticulture science 6: 538-539<br />

Radhakrishnan, P and Renganayaki, P.R.2008. Effect <strong>of</strong> plant growth regulators on seed<br />

germ<strong>in</strong>ation and seedl<strong>in</strong>g growth <strong>of</strong> stored Simarouba (Simarouba glauca L<strong>in</strong>n) seeds.<br />

Indian forester 134 (7): 947-949<br />

Syamasundar, J and Hiremath, S.2001. Simarouba oil tree. Booklet published by UAS,<br />

Bangalore <strong>in</strong> association with National Oilseeds and Vegetable oils Development Board<br />

(ICAR), Gurgoan.<br />

Verma, A.N and Tandon, P.1988. Effect <strong>of</strong> growth regulators on germ<strong>in</strong>ation and seedl<strong>in</strong>g<br />

growth <strong>of</strong> P<strong>in</strong>us kasiya and Schima khasiana. Indian Journal <strong>of</strong> forestry 11: 32-36.<br />

85


Research Note<br />

J.Res. ANGRAU 37(3&4)86-91, 2009<br />

STUDY OF HETEROSIS FOR YIELD AND ITS COMPONENT TRAITS<br />

IN PIGEONPEA (Cajanus cajan. L. Millsp)<br />

C.V.SAMEER KUMAR, CH.SREELAKSHMI, D.SHIVANI AND M.SURESH<br />

Agricultural Research Station<br />

Acharya N. G. Ranga Agricultural University<br />

Tandur, Ranga Reddy – 501 141<br />

Pigeonpea (Cajanus cajan (L.) Millsp) is an important pulse crop <strong>in</strong> India. Its prote<strong>in</strong><br />

content is approximately 21% which compares well with other important gra<strong>in</strong> legumes.<br />

Exploitation <strong>of</strong> heterosis is one <strong>of</strong> the important breed<strong>in</strong>g options for break<strong>in</strong>g yield barrier. It<br />

<strong>of</strong>fers great possibilities <strong>in</strong> crop improvement programme and is the only effective conventional<br />

means <strong>of</strong> comb<strong>in</strong><strong>in</strong>g desirable characters <strong>of</strong> two or more varieties. Breed<strong>in</strong>g programmes <strong>in</strong><br />

pigeonpea are oriented to develop new varieties which have high yield potential and resistance<br />

to pests and diseases. Thus the ma<strong>in</strong> objective <strong>of</strong> the present <strong>in</strong>vestigation was to estimate<br />

the extent <strong>of</strong> heterosis for seed yield and its component characters and to select better<br />

crosses for further breed<strong>in</strong>g.<br />

The present study comprised <strong>of</strong> six l<strong>in</strong>es, PRG 100, PRG 88, LRG 30, LRG 38, ICPL 85034<br />

and ICPL 85063 and four testers, ICP 8863, ICPL 87119, ICPL 84063 and ICPL 89044 <strong>of</strong><br />

pigeonpea. The hybridization was carried out <strong>in</strong> a l<strong>in</strong>e x tester scheme at Agricultural Research<br />

Station, Tandur dur<strong>in</strong>g kharif 2007. Ten parents along with their 24 hybrids were sown <strong>in</strong> a<br />

randomized block design with three replications dur<strong>in</strong>g kharif 2008 adopt<strong>in</strong>g 100 x 20 cm<br />

spac<strong>in</strong>g. Entire material compris<strong>in</strong>g parents and F 1<br />

s was sown <strong>in</strong> 2 rows <strong>of</strong> each <strong>in</strong> 5 m<br />

length plot. All the recommended package <strong>of</strong> practices were followed for rais<strong>in</strong>g normal crop.<br />

The observations were recorded on five randomlycompetitive plants for plant height, number<br />

<strong>of</strong> primary branches per plant, number <strong>of</strong> pod clusters per plant, number <strong>of</strong> pods per plant,<br />

100- seed weight and seed yield per plant. Days to 50% flower<strong>in</strong>g and days to maturity was<br />

recorded on plot basis. Sample <strong>of</strong> 100 seeds was taken for record<strong>in</strong>g their weight. The data<br />

were subjected to analysis <strong>of</strong> variance for various characters, mean performance <strong>of</strong> parents<br />

and their hybrids and heterosis.<br />

The analysis <strong>of</strong> variance revealed that variation among the genotypes was highly<br />

significant for all the characters. The parents showed significant variation for all the characters<br />

studied. The crosses also showed significant variation for all the characters except plant<br />

height. The overall heterosis as tested by us<strong>in</strong>g parents vs crosses was significant for all the<br />

characters except for number <strong>of</strong> clusters per plant. The range <strong>of</strong> mean performance <strong>of</strong> hybrids<br />

was higher <strong>in</strong>dicat<strong>in</strong>g significant heterosis for all the characters.<br />

cv_sameerkumar@yahoo.com<br />

86


STUDY OF HETEROSIS FOR YIELD AND ITS COMPONENT<br />

The range and mean <strong>of</strong> heterosis, number <strong>of</strong> significant heterotic crosses over better<br />

parent and standard hybrid for eight traits are presented <strong>in</strong> Table 1. Earl<strong>in</strong>ess <strong>in</strong> flower<strong>in</strong>g and<br />

maturity is a highly desirable trait for the crop like pigeonpea. Hence, the crosses exhibit<strong>in</strong>g<br />

heterosis <strong>in</strong> negative direction are <strong>of</strong> immense value. The cross ICPL 85034 x ICP 8863<br />

showed highest negative heterosis for days to flower<strong>in</strong>g (-17.63%) and days to maturity (-<br />

11.02%) over standard check ICPL 87119. The magnitude <strong>of</strong> heterosis was highest for plant<br />

height <strong>in</strong> cross ICPL 85034 x ICPL 84036 over better parent (24.42%), while maximum<br />

heterosis for primary branches per plant (46.28%) was observed <strong>in</strong> cross PRG 100 x ICPL<br />

87119 over standard check, ICPL 87119. Significant and highest positive heterosis over<br />

mid parent, better parent and standard hybrid was observed <strong>in</strong> cross LRG 30 x ICP 8863 for<br />

number <strong>of</strong> pods per plant. Two crosses viz. LRG 30 x ICP 8863 and LRG 38 x ICP 8863<br />

showed significant positive heterosis over mid parent for 100 seed weight. The cross LRG<br />

30 x ICP 8863 exhibited significant and highest positive heterosis for number <strong>of</strong> pods per<br />

plant (58.31%) followed by seed yield per plant (54.14%). These results are <strong>in</strong> agreement<br />

with the earlier f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Rajesh et al., (2005) and Reddy et al., (2004).<br />

Heterosis for seed yield per plant ranged from -1.25 to 54.14% over better parent<br />

and -3.66 to 53.14% over standard check, respectively. Four crosses viz. PRG 100 x ICP<br />

87119, LRG 30 x ICPL 87119, PRG 100 x ICP 8863 and ICPL 85063 x ICPL 87119 exhibited<br />

significant positive heterosis over mid parent, better parent and standard hybrid check for<br />

seed yield per plant(Table 2). These four hybrids also registered higher seed yield per plant.<br />

Such crosses are likely to give better transgressive segregants and could be used for further<br />

improvement.<br />

The magnitude <strong>of</strong> heterosis over better parent and standard check varied from cross<br />

to cross for seed yield and its components <strong>in</strong>dicat<strong>in</strong>g that all the characters dist<strong>in</strong>ctly differed<br />

for mean heterosis and its range <strong>in</strong> desirable direction. Considerable high heterosis <strong>in</strong> certa<strong>in</strong><br />

crosses and low <strong>in</strong> others revealed that, nature <strong>of</strong> gene action varied with the genetic make<br />

up <strong>of</strong> the parents <strong>in</strong>volved <strong>in</strong> the crosses. Such nature <strong>of</strong> heterosis helps <strong>in</strong> identify<strong>in</strong>g<br />

superior cross comb<strong>in</strong>ations and exploitation to select better transgressive segregants (Joshi<br />

et al., 2001)<br />

It will be <strong>of</strong> considerable <strong>in</strong>terest to know the cause <strong>of</strong> heterosis for seed yield <strong>in</strong><br />

pigeonpea. A comparison <strong>of</strong> heterosis for seed yield per plant <strong>in</strong> four most heterotic crosses<br />

over better parent and standard check (PRG 100 x ICPL 87119, LRG 30 x ICPL 87119, PRG<br />

100 x ICP 8863 and ICPL 85063 x ICPL 87119 ) along with heterosis for other related characters<br />

<strong>in</strong>dicated that significant and positive heterosis over better parent and standard check for<br />

seed yield per plant was also accompanied by significant and high positive heterosis for<br />

87


KUMAR et al.<br />

number <strong>of</strong> primary branches per plant, number <strong>of</strong> pods per plant, number <strong>of</strong> pod clusters per<br />

plant and 100 seed weight. The cross PRG 88 x ICP 87119 showed significant positive<br />

heterosis for number <strong>of</strong> primary branches per plant and 100 seed weight over mid parent and<br />

standard check. The cross <strong>in</strong>volv<strong>in</strong>g ICPL 85063 x ICP 87119 recorded significant positive<br />

heterosis for number <strong>of</strong> pods per plant and seed yield per plant over better parent and standard<br />

hybrid check. Similar f<strong>in</strong>d<strong>in</strong>gs were also reported by Wankhade et al, (2005) and Joshi (2001).<br />

Many top heterotic hybrids for different attributes <strong>in</strong>volved parental comb<strong>in</strong>ations <strong>of</strong><br />

high x high, high x low and low x low yielder. The present study further suggested that<br />

heterosis for yield should be through component trait heterosis. Hybrid vigour <strong>of</strong> even small<br />

magnitude for <strong>in</strong>dividual yield components may have additive or synergistic effect on the<br />

end product. Graffius (1959) reported that the yield is the end product <strong>of</strong> multivariable <strong>in</strong>teraction<br />

between yield components. Similar f<strong>in</strong>d<strong>in</strong>gs were also reported by Mehta et al., (1991).<br />

Thus, on the basis <strong>of</strong> per se performance and heterotic response the crosses viz., LRG 30 x<br />

ICP 8863, PRG 100 x ICP 8863, LRG 30 x ICPL 87119, ICPL 85063 x ICPL 87119 and PRG<br />

100 x ICPL 87119 appeared to be more suitable for practical plant breed<strong>in</strong>g programme to<br />

exploit heterosis.<br />

REFERENCES<br />

Graffius, J. E. 1959. Heterosis <strong>in</strong> barley. Agronomy Journal 51: 551-551.<br />

Joshi, H. V., Mehta, D. R and Jadon, B. S. 2001. Heterosis <strong>of</strong> yield and yield components <strong>in</strong><br />

castor hybrids. Journal <strong>of</strong> Oilseeds Research 18: 164-169.<br />

Kempthorne, O. 1957. An <strong>in</strong>troduction <strong>of</strong> genetic statistics. John Wiley and Sons, New York,<br />

pp: 458-471<br />

Mehta, D. R., Vashi, P. S and Kukadia, M. O. 1991. Hybrid vigour <strong>in</strong> castor, Gujarat Agricultural<br />

University Journal 17: 16-22.<br />

Rajesh, R., Wankhade, K. B., Wanjari, G. M., Kadam and Jadhav, B.P. 2005. Heterosis for<br />

yield and yield components <strong>in</strong> pigeonpea <strong>in</strong>volv<strong>in</strong>g male sterile l<strong>in</strong>es. Indian Journal <strong>of</strong><br />

Pulses Research 18: 141-143.<br />

Reddy, S. M., S<strong>in</strong>gh, S. P., Mehra, R. B and Govil, J. N. 2004. Comb<strong>in</strong><strong>in</strong>g ability and<br />

heterosis <strong>in</strong> early matur<strong>in</strong>g pigeonpea (Cajanus cajan (L) Millsp.) hybrids. Indian Journal<br />

<strong>of</strong> Genetics and Plant Breed<strong>in</strong>g 64: 212-216.<br />

88


STUDY OF HETEROSIS FOR YIELD AND ITS COMPONENT<br />

Table 1. Analysis <strong>of</strong> variance for co mb<strong>in</strong><strong>in</strong>g ability <strong>of</strong> the characters stud ied <strong>in</strong> l<strong>in</strong>e x tester analysis <strong>in</strong><br />

pigeonpea<br />

Source <strong>of</strong><br />

variation df<br />

Days to<br />

50%<br />

flower<strong>in</strong>g<br />

Days<br />

to<br />

maturity<br />

Plant<br />

height<br />

(cm)<br />

No. <strong>of</strong><br />

primary<br />

branches<br />

No. <strong>of</strong><br />

clusters/<br />

plant<br />

No. <strong>of</strong><br />

pods /<br />

plant<br />

100 seed<br />

weight<br />

(g)<br />

Seed<br />

yield<br />

Plant (g)<br />

Replications 2 6.39 2.61 46.39 0.66 18.02 610.53 0.35 14.29<br />

Treatments 33 372.69** 373.08** 403.50** 13.50** 403.21** 6157.64** 5.73** 99.22**<br />

Parents<br />

Parents vs.<br />

Crosses<br />

9 499.55** 522.09** 652.73** 12.64** 412.48** 5837.42** 9.47** 79.98**<br />

1 634.09** 453.96** 1815.07** 56.74** 15.66 11835.38** 3.32** 226.97**<br />

Crosses<br />

23<br />

311.68** 311.26** 244.61 11.96** 416.44** 6036.12** 4.38** 101.19**<br />

L<strong>in</strong>es<br />

5 551.06** 837.14** 367.28<br />

11.70 447.21 9226.47 11.95** 63.79<br />

Testers<br />

L<strong>in</strong>es x<br />

Testers<br />

3<br />

1010.28** 514.98* 541.38* 38.83** 644.99 9420.85 7.67** 385.40**<br />

15 92.16** 95.23** 144.38 6.67** 360.47** 4295.74** 1.19** 56.82*<br />

Error 66 3.42 2.71 194.44 1.31 28.10 1586.31 0.22 25.61<br />

** Significant at 1% level, * Significant at 5% level<br />

89


KUMAR et al.<br />

Table 2. Heterosis over mid parent (H1), better parent (H2) and standard check (H3) <strong>in</strong> Pigeonpea<br />

S.No Cross Days to 50% flower<strong>in</strong>g Days to maturity<br />

Plant height (cm)<br />

No. <strong>of</strong> primary<br />

branches/plant<br />

H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3<br />

1 PRG-100 x ICP-8863 5.63** 11.54** 2.24 3.75** 6.87** -1.97* 8.96 14.09* 12.33 27.45** 24.40** 38.30**<br />

2 PRG-100 x ICPL-84036 3.06 5.94** -2.88 -1.29 -1.08 -9.65** 2.51 7.62 5.96 -6.12 -7.54 -2.13<br />

3 PRG-100 x ICPL-87119 13.98** 28.32** 17.63** 1.99* 10.09** 0.98 8.98<br />

20.68** 18.82** 27.31** 18.03** 46.28**<br />

4 PRG-100 x ICPL-89044 4.26** 6.99** -1.92 2.91** 3.24** -5.91** 5.05 7.19 5.53 12.81 9.55 15.96*<br />

5 PRG-88 x ICP-8863 4.98** 7.21** 4.81** 0.31 1.24 -3.35** 5.76 10.32 9.42 12.23 -6.70 3.72<br />

6 PRG-88 x ICPL-84036 6.10** 6.62** 3.21* -1.16 1.08 -7.68** 1.09 5.72 4.86 21.87* 4.66 7.45<br />

7 PRG-88 x ICPL-87119 6.49** 15.74** 13.14** -6.54** -1.24 -5.71** 6.35 17.29* 16.33* 29.21**<br />

3.00 27.66**<br />

8 PRG-88 x ICPL-89044 -2.64 -1.99 -5.45** 0.00 2.38** -6.69** 6.22 7.98 7.10 4.29 -9.33 -9.57<br />

9 LRG-30 x ICP-8863 5.14** 12.58** 14.74** 4.26** 9.11** 6.10** 5.64 7.85 16.19* 24.46** 24.16** 38.03**<br />

10 LRG-30 x ICPL-84036 7.67** 18.54** 14.74** 8.76** 17.67** 7.48** -0.99 0.83 9.17 -5.24 -8.65 1.06<br />

11 LRG-30 x ICPL-87119 5.41** 6.15** 21.79** 5.56** 5.56** 12.20** 4.69 8.12 21.36** 19.73** 13.30* 40.43**<br />

12 LRG-30 x ICPL-89044 -3.01* 6.98** 3.21* 3.29** 11.88** 1.97* -1.77 2.92 5.45 -12.52 -16.83* -7.98<br />

13 LRG-38 x ICP-8863 7.64** 14.08** 3.85* 6.29** 10.22** -0.20 7.44 11.75 11.45 2.96 -8.37 1.86<br />

14 LRG-38 x ICPL-84036 0.00 3.17 -6.09** 1.73 2.17* -7.48** 3.25 7.67 7.38 4.49 -3.63 -1.06<br />

15 LRG-38 x ICPL-87119 11.53** 26.06** 14.74** 1.40 10.22** -0.20 -4.14 5.40 5.13 13.13 -3.86 19.15*<br />

16 LRG-38 x ICPL-89044 2.56 5.63** -3.85* 3.36** 3.70** -6.10** 1.65 3.04 2.77 6.70 -0.27 -0.53<br />

17 ICPL-85034 x ICP-8863 -6.20** 11.74** -17.63** 0.33 11.06** -11.02** 2.75 15.14 -0.06 14.12 -5.26 5.32<br />

18 ICPL-85034 x ICPL-84036 12.03** 29.57** -4.49** 9.99** 17.69** -5.71** 10.72 24.42** 7.99 12.99 -3.11 -0.53<br />

19 ICPL-85034 x ICPL-87119 11.56** 42.61** 5.13** 5.81** 23.10**<br />

-1.38 2.29 21.61** 5.55 17.52* -6.44 15.96*<br />

20 ICPL-85034 x ICPL-89044 7.34** 23.91** -8.65** 6.90** 14.25** -8.46** 14.92* 25.29** 8.75 16.74 1.33 1.06<br />

21 ICPL-85063 x ICP-8863 -7.53** -5.35** -3.53* -5.76** -5.67** -8.27** 5.21 5.36 13.51 -4.28 -9.09 1.06<br />

22 ICPL-85063 x ICPL-84036 11.50** 17.22** 13.46** 1.77* 5.17** -3.94** 2.63 2.75 11.00 12.34 10.88 13.83<br />

23 ICPL-85063 x ICPL-87119 2.46 6.31** 13.46** 4.93** 9.70** 6.89** 4.72 10.32 19.18** 1.66 -8.15 13.83<br />

24 ICPL-85063 x ICPL-89044 2.21 7.64** 3.85* 3.97** 7.56** -1.97* 6.84 9.75 12.45 15.05* 14.89* 14.89*<br />

90


STUDY OF HETEROSIS FOR YIELD AND ITS COMPONENT<br />

Table 2. contd….<br />

Cross No. <strong>of</strong> clusters/plant No. <strong>of</strong> pods/plant 100 seed weight Seed yield/plant<br />

1 PRG-100 x ICP-8863 10.42* 4.87 11.87* 3.15<br />

0.92 3.15 0.92 3.15 0.92 51.70** 50.13** 22.80**<br />

2 PRG-100 x ICPL-84036 -11.97 -21.51** -24.68** -3.09 -10.31** -3.09 -10.31** -3.09 -10.31** 5.41 -0.95 -20.60**<br />

3 PRG-100 x ICPL-87119 10.98* 2.82 15.67** -1.94 -5.02 -1.94 -5.02 -1.94 -5.02 31.31** 28.18** 7.79<br />

4 PRG-100 x ICPL-89044 -4.36 -14.64** -18.10** 1.50 -3.98 1.50 -3.98 1.50 -3.98 -5.81 -8.52 -26.73**<br />

5 PRG-88 x ICP-8863 -18.16** -24.55** -19.52** -1.14 -4.18 -1.14 -4.18 -1.14 -4.18 9.74 4.14 -14.82*<br />

6 PRG-88 x ICPL-84036 2.88 -5.60 -15.04** 0.36 -2.27 0.36 -2.27 0.36 -2.27 8.14 5.92 -22.21**<br />

7 PRG-88 x ICPL-87119 -15.85** -24.27** -14.80** 7.42* 5.17 7.42* 5.17 7.42* 5.17 18.62* 11.11 -6.57<br />

8 PRG-88 x ICPL-89044 -16.56** -23.37** -31.03** -1.99 -2.30 -1.99 -2.30 -1.99 -2.30 7.80 6.34 -19.72**<br />

9 LRG-30 x ICP-8863 15.08** 6.47 13.57* 12.27** -0.31 12.27** -0.31 12.27** -0.31 58.31** 49.67** 37.43**<br />

10 LRG-30 x ICPL-84036 -1.15 -9.62 -18.02** 11.31** 4.21 11.31** 4.21 11.31** 4.21 -4.79 -15.88* -22.76**<br />

11 LRG-30 x ICPL-87119 10.17* -0.49 11.94* 6.19 -4.85 6.19 -4.85 6.19 -4.85 30.43** 24.94** 14.72*<br />

12 LRG-30 x ICPL-89044 -5.88 -13.87* -21.87** -6.34 -14.21** -6.34 -14.21** -6.34 -14.21** -4.75 -13.22 -20.32**<br />

13 LRG-38 x ICP-8863 -27.02** -37.69** -33.53** 12.54** -6.86* 12.54** -6.86* 12.54** -6.86* 0.07 -12.05 -28.06**<br />

14 LRG-38 x ICPL-84036 13.86* 13.62 -14.25** -7.08 -19.30** -7.08 -19.30** -7.08 -19.30** 16.69 9.70 -22.74**<br />

15 LRG-38 x ICPL-87119 4.75 -12.49** -1.55 8.55* -9.41** 8.55* -9.41** 8.55* -9.41** -9.75 -21.61** -34.09**<br />

16 LRG-38 x ICPL-89044 19.47** 19.35** -9.92 -2.37 -16.88** -2.37 -16.88** -2.37 -16.88** 15.57 5.23 -20.56**<br />

17 ICPL-85034 x ICP-8863 -7.89 -22.66** -17.50** -2.67 -19.19** -2.67 -19.19** -2.67 -19.19** 14.23 4.54 -14.49*<br />

18 ICPL-85034 x ICPL-84036 12.15 10.14 -17.22** -4.54 -16.82** -4.54 -16.82** -4.54 -16.82** 11.30 9.32 -23.01**<br />

19 ICPL-85034 x ICPL-87119 -9.55 -25.64** -16.35** 6.87 -10.53** 6.87 -10.53** 6.87 -10.53** -7.50 -16.39* -29.69**<br />

20 ICPL-85034 x ICPL-89044 10.90 8.80 -18.06** -8.07* -21.48** -8.07* -21.48** -8.07* -21.48** 7.55 2.16 -22.88**<br />

21 ICPL-85063 x ICP-8863 -20.49** -28.39** -23.61** -0.84 -10.88** -0.84 -10.88** -0.84 -10.88** 1.01 -1.12 -15.57*<br />

22 ICPL-85063 x ICPL-84036 20.90** 13.60* -2.90 2.28 -3.01 2.28 -3.01 2.28 -3.01 0.77 -8.05 -21.50**<br />

23 ICPL-85063 x ICPL-87119 1.26 -10.90* 0.24 6.62 -3.29 6.62 -3.29 6.62 -3.29 39.88** 31.78** 12.52<br />

24 ICPL-85063 x ICPL-89044 24.98** 17.55** 0.48 6.64 -1.09 6.64 -1.09 6.64 -1.09 -1.20 -6.92 -20.53**<br />

91


ABSTRACTS<br />

Abstracts <strong>of</strong> Theses Accepted for the Award <strong>of</strong> Post-Graduate and<br />

Doctorate Degrees <strong>in</strong> the Acharya N.G. Ranga Agricultural University,<br />

Rajendranagar, Hyderabad - 500 030<br />

Effect <strong>of</strong> carriers on the performance <strong>of</strong> herbicides <strong>in</strong> ra<strong>in</strong>fed castor<br />

and <strong>sorghum</strong><br />

Student: P. Anantha Kumari<br />

Major Advisor: Dr. V. B. Bhanu Murthy<br />

Department <strong>of</strong> Agronomy<br />

The present study was conducted dur<strong>in</strong>g Kharif 2003-04 and 2004-05 at Hayathnagar Research<br />

Farm <strong>of</strong> Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad. In the experiment – I on<br />

castor, alachlor was <strong>in</strong>corporated <strong>in</strong>to the soil before sow<strong>in</strong>g (PPI) and applied on the same day after sow<strong>in</strong>g<br />

as pre-emergence to <strong>weeds</strong> and crop as well along with different carriers. Granular form was also tested for<br />

comparison. In the experiment – II on <strong>sorghum</strong>, atraz<strong>in</strong>e was <strong>in</strong>corporated <strong>in</strong>to the soil (PPI) and applied after<br />

sow<strong>in</strong>g as pre-emergence spray and also with different carries such as soil, sand and urea. In case <strong>of</strong> castor,<br />

PPI <strong>of</strong> alachlor resulted <strong>in</strong> better weed control under vary<strong>in</strong>g soil moisture and ra<strong>in</strong>fall conditions. Application<br />

<strong>of</strong> alachlor granules was also effective dur<strong>in</strong>g both the years. Days to 50% flower<strong>in</strong>g was delayed by 22 days<br />

dur<strong>in</strong>g 2003 and by 20.6 days dur<strong>in</strong>g 2004. Hand weed<strong>in</strong>g coupled with <strong>in</strong>tercultivation at 20, 40 and 70 DAS<br />

resulted <strong>in</strong> weed free conditions for most <strong>of</strong> the crop-grow<strong>in</strong>g period that led to taller plants, more leaves per<br />

plant with higher LAI and higher dry matter production and ultimately higher bean yield <strong>of</strong> 820 kg/ha dur<strong>in</strong>g 2003<br />

and 961 kg/ha dur<strong>in</strong>g 2004. The weed control <strong>in</strong> ra<strong>in</strong>fed <strong>sorghum</strong> <strong>in</strong>dicated that the early post-emergence<br />

application <strong>of</strong> atraz<strong>in</strong>e with soil as carrier was most effective dur<strong>in</strong>g 2003, a good ra<strong>in</strong>fall year and the effect<br />

was slowly improved with passage <strong>of</strong> time dur<strong>in</strong>g 2004 till maturity.<br />

The crop growth was good with hand weed<strong>in</strong>g and also <strong>in</strong> the plots <strong>of</strong> early post-emergence<br />

atraz<strong>in</strong>e. The days to 50% flower<strong>in</strong>g was delayed by 12.6 days to 20 days due to unweeded conditions dur<strong>in</strong>g<br />

2003 and 2004, respectively. The returns per rupee <strong>in</strong>vested on early post-emergence atraz<strong>in</strong>e with soil as<br />

carriers were Rs. 14.4 and Rs. 11.1 as aga<strong>in</strong>st Rs. 2.3 and Rs. 3.7 due to hand weed<strong>in</strong>g. The residues <strong>of</strong><br />

atraz<strong>in</strong>e could not be traced but, 2,4-D was found to persist after 45 days <strong>of</strong> application, based on bioassay<br />

studies. The study clearly showed that PPI <strong>of</strong> alachlor was highly effective <strong>in</strong> caster while early post-emergence<br />

application <strong>of</strong> atraz<strong>in</strong>e with soil was best weed control method <strong>in</strong> <strong>sorghum</strong>. Carriers have shown some effect<br />

on <strong>weeds</strong> and the WCEs were nearly 40-50% <strong>in</strong> case <strong>of</strong> pre-emergence herbicides. But carries did not help<br />

<strong>in</strong> improv<strong>in</strong>g the efficiency <strong>of</strong> post-emergence herbicides. The returns per rupee <strong>in</strong>vested were more with<br />

herbicidal use compared to hand weed<strong>in</strong>g. Ph.D (2007).<br />

92


ABSTRACTS<br />

A Study on impact <strong>of</strong> ANGRAU production technologies<br />

for selected crops<br />

Student: G. Venkata Murali Major Advisor: Dr. P. Ramesh Kumar Reddy<br />

Department <strong>of</strong> Extension Education<br />

In Andhra Pradesh, Acharya N. G. Ranga Agricultural University formerly known as Andhra Pradesh<br />

Agricultural University (APAU) plays a major role <strong>in</strong> agricultural research activities. These research activities<br />

are need based and location specific, which are carried out at RARS as well as at other Research Stations. A<br />

few studies on adoption and performance <strong>of</strong> agricultural technologies have been conducted <strong>in</strong> different parts<br />

<strong>of</strong> the country. The impact <strong>of</strong> ANGRAU production technologies for selected crops was studied us<strong>in</strong>g explorative<br />

research design. Three districts viz., Krishna, Anantapur and Warangal districts, represent<strong>in</strong>g Coastal,<br />

Telangana and Rayalasema were selected as sample area. Two mandals were selected from each <strong>of</strong> the<br />

district. Three villages were selected from each <strong>of</strong> the mandals. A total <strong>of</strong> 12 farmers from each selected<br />

village were selected i.e., for each crop four farmers were selected. Thus, a total sample is 216 farmers and<br />

research scientists from concerned crops and all the extension scientists <strong>of</strong> DAATTCs and KVKs work<strong>in</strong>g <strong>in</strong><br />

sample districts were selected. The data were collected by personal <strong>in</strong>terview method through pre-tested<br />

<strong>in</strong>terview schedule. Adoption, attitude, productivity, pr<strong>of</strong>itability and livelihood improvement <strong>of</strong> the selected<br />

respondents were <strong>in</strong>cluded <strong>in</strong> the study. Statistical procedures like frequency, percentage, standard deviation<br />

and paired‘t’ test were adopted to analyse and <strong>in</strong>terpret the data. Salient f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> the study were a majority<br />

(50%) <strong>of</strong> rice farmers <strong>of</strong> Krishna district possessed favorable attitude and medium (41.67%) level <strong>of</strong> adoption<br />

<strong>of</strong> recommended ANGRAU technologies. Majority <strong>of</strong> the respondents (41.67%) had favorable attitude towards<br />

recommended technologies, whereas, majority <strong>of</strong> the respondents occupied medium category (37.50%) <strong>of</strong><br />

adoption and same number <strong>of</strong> the respondents (37.50%) were fall under low level <strong>of</strong> adoption <strong>of</strong> recommended<br />

technologies. Majority <strong>of</strong> the respondents (45.83%) recorded favorable attitude and low level <strong>of</strong> adoption<br />

(62.50%) <strong>of</strong> recommended technologies. Calculated values <strong>of</strong> the t-test concluded that the‘t’ values were<br />

found to be non-significant for all the impact <strong>in</strong>dicators except physical and natural capital, after adoption <strong>of</strong><br />

recommended technologies by groundnut farmers <strong>of</strong> Warangal district.<br />

Major problems expressed by the research scientists <strong>in</strong> technology generation <strong>of</strong> rice, groundnut<br />

and chilli crops were biotype variation <strong>in</strong> gall midge, lack <strong>of</strong> effective <strong>in</strong>tercropp<strong>in</strong>g system <strong>in</strong> groundnut and low<br />

participation <strong>of</strong> extension scientists and farmers at the time <strong>of</strong> research project proposal suggestions were<br />

given by the research scientists to overcome these problems were more research is needed on different<br />

biotypes, research on specific <strong>in</strong>tercropp<strong>in</strong>g system should be needed and encourage the participation <strong>of</strong><br />

researchers, extension scientists and farmers dur<strong>in</strong>g the project proposal. Major problems expressed by the<br />

extension scientists <strong>in</strong> technology dissem<strong>in</strong>ation <strong>of</strong> rice, groundnut and chilli crop were lack <strong>of</strong> high yield<strong>in</strong>g<br />

and early matur<strong>in</strong>g varieties, ferti-cum seed drillers are unsuitable to ra<strong>in</strong>fed conditions and no hybrids from<br />

the university. Suggestions given by the extension scientists to overcome these problems were research<br />

scientists should work on plant genetic characters, suitable ferti-cum seed drillers should be designed and<br />

university should concentrate on develop<strong>in</strong>g the hybrids. Ph.D (2007).<br />

93


ABSTRACTS<br />

Genetic analysis for yield, its components and fusarium wilt<br />

resistance <strong>in</strong> castor (Ric<strong>in</strong>us communis L.)<br />

Student: V. Sridhar<br />

Major Advisor: Dr. Kuldeep S<strong>in</strong>gh Dangi<br />

Department <strong>of</strong> Genetics and Plant Breed<strong>in</strong>g<br />

The present <strong>in</strong>vestigation was carried out at Regional Agricultural Research Station, Palem and<br />

College Farm, College <strong>of</strong> Agriculture, Rajendranagar, Hyderabad from Kharif, 2005 to rabi 2006-07. Fifty five<br />

germplasm l<strong>in</strong>es/varieties were screened <strong>in</strong> a wilt sick plot <strong>of</strong> Fusarium oxysporum f. sp. Ric<strong>in</strong>i at Regional<br />

Agricultural Research Station, Palem, dur<strong>in</strong>g Kharif, 2005. Of the 55 genotypes screened, n<strong>in</strong>e genotypes<br />

showed resistance to wilt (50% <strong>in</strong>fection). Five l<strong>in</strong>es were crossed with fifteen testers and the resultant seventy<br />

five hybrids along with parents and two standard checks viz., DCH-177 and DCH-32 were evaluated for<br />

comb<strong>in</strong><strong>in</strong>g ability (L<strong>in</strong>e x Tester design) and heterosis. Data were recorded on ten quantitative traits. The<br />

results <strong>of</strong> comb<strong>in</strong><strong>in</strong>g ability analysis revealed the importance <strong>of</strong> additive gene action for the characters viz.,<br />

number <strong>of</strong> nodes upto primary spike, number <strong>of</strong> capsules per primary spike and 100 seed weight while nonadditive<br />

gene action for plant height, primary spike length, seed yield per plant and oil content. Both additive<br />

and non-additive gene actions were important for the characters like days to 50% flower<strong>in</strong>g and days to<br />

maturity. Among the parents VP-1. LRES-17, DPC-9, DCS-5, RG-2374, RG-1713, RG-1719, 48-1, Haritha,<br />

RG-246 and RG-224 were adjudged as the best general comb<strong>in</strong>ers for seed yield per plant, whereas Kranthi,<br />

DPC-9, RG-1417, DCS-9, RG-2724 and RG-224 possessed favourable genes for oil content. Hence, these<br />

female and male parents can be utilized <strong>in</strong> future breed<strong>in</strong>g programmes to evolve potential hybrids. However,<br />

the parents LRES-17 and DCS-9 and RG-2724 were found to be good comb<strong>in</strong>ers for earl<strong>in</strong>ess and dwarfness,<br />

apart from seed yield and oil content, respectively.<br />

S<strong>in</strong>ce L x T design does not provide comprehensive picture on gene action govern<strong>in</strong>g the traits,<br />

generation mean analysis through jo<strong>in</strong>t scal<strong>in</strong>g test was studied <strong>in</strong> four crosses for ten characters. The results<br />

deciphered that, simple additive dom<strong>in</strong>ance model exhibited lack <strong>of</strong> good fit for most <strong>of</strong> the characters <strong>in</strong> all the<br />

four crosses studied. Dom<strong>in</strong>ance and epistic <strong>in</strong>terations were played a major role <strong>in</strong> the <strong>in</strong>heritance <strong>of</strong> yield and<br />

its components <strong>in</strong> castor. It can be categorically stated that, reciprocal recurrent selection or diallel selective<br />

mat<strong>in</strong>g are the need <strong>of</strong> the hour to modify the genetic architecture <strong>of</strong> castor for atta<strong>in</strong><strong>in</strong>g higher yields. In the<br />

present study, on the basis <strong>of</strong> per se performance, comb<strong>in</strong><strong>in</strong>g ability, heterosis and wilt resistance for two<br />

hybrids Kranthi x RG-224 and LRES-17 x RG-224 were found most promis<strong>in</strong>g for seed yield and other<br />

components. These hybrids may be further evaluated for their stability over locations and years <strong>in</strong> contrast<br />

environments for exploitation <strong>of</strong> heterosis on commercial scale. Ph.D (2007).<br />

94


Comparative Studies on Production Potential <strong>of</strong> Model Agr<strong>of</strong>orestry<br />

Systems under Integrated Nutrient Management Practices <strong>in</strong> Drylands<br />

Student: E. Rajanikanth<br />

ABSTRACTS<br />

Major Advisor: Dr. M.V.R. Subrahmanyam<br />

Department <strong>of</strong> Agronomy<br />

The present study was conducted <strong>in</strong> Alfisols at Students’ Farm, College <strong>of</strong> Agriculture, Rajendranagar,<br />

Hyderabad dur<strong>in</strong>g Kharif seasons <strong>of</strong> 2005 and 2006. The present <strong>in</strong>vestigation comprised <strong>of</strong> two agr<strong>of</strong>orestry<br />

models i.e. guava based agrihorticultural system and hardwickia based agrisilvicultural system. The field<br />

experiment was laid out <strong>in</strong> spilt plot design with three replications separately <strong>in</strong> 8 year old guava plantation as<br />

well as <strong>in</strong> 11 years old hardwickia plantation. Among the different cropp<strong>in</strong>g situations studied <strong>in</strong> guava based<br />

agrihorticultural system, growth parameters like number <strong>of</strong> branches per plant, number <strong>of</strong> leaves per plant,<br />

leaf area per plant, leaf area <strong>in</strong>dex per plant, dry matter production per plant and crop growth rate, physiological<br />

parameters like photosynthetically active radiation, leaf temperature and different resistance, yield attribut<strong>in</strong>g<br />

characters like number <strong>of</strong> filled pods per plant, 100 pod weight and shell<strong>in</strong>g percentages, pod and haulm yields,<br />

NPK uptake and gross and net monetary returns from the crop significantly <strong>in</strong>creased under solecropp<strong>in</strong>g <strong>of</strong><br />

groundnut when compared to <strong>in</strong>tercropp<strong>in</strong>g <strong>of</strong> groundnut <strong>in</strong> nutritioned and unnutritioned guava plantations.<br />

Among different <strong>in</strong>tegrated nutrient management practices studied, growth parameters, physiological<br />

parameters, yield attribut<strong>in</strong>g characters, pod and haulm yields, harvest <strong>in</strong>dex, oil content and NPK uptake<br />

were significantly <strong>in</strong>creased to the maximum extent with the application <strong>of</strong> recommended dose <strong>of</strong> NPK <strong>in</strong><br />

comb<strong>in</strong>ation with vermicompost as well as enriched FYM. The next best treatments were application <strong>of</strong><br />

recommended dose <strong>of</strong> NPK either alone or with FYM.<br />

Among the <strong>in</strong>teraction effects between cropp<strong>in</strong>g situations and <strong>in</strong>tegrated nutrient management<br />

practices, solecropp<strong>in</strong>g <strong>of</strong> groundnut with application <strong>of</strong> recommended dose <strong>of</strong> NPK along with vermicompost<br />

as well as enriched FYM showed the best performance <strong>in</strong> yield attributes characters and pod and haulm yields<br />

<strong>in</strong> both the agr<strong>of</strong>orestry models studied. However, <strong>in</strong>tercropp<strong>in</strong>g <strong>of</strong> groundnut <strong>in</strong> pollarded hardwickia trees<br />

proved effective <strong>in</strong> improvement <strong>of</strong> yields <strong>of</strong> groundnut with the same <strong>in</strong>tegrated nutrient management practices<br />

when compared to other <strong>in</strong>tercropp<strong>in</strong>g situation <strong>in</strong> pollarded hardwickia plantation which gave higher monetary<br />

returns than solecropp<strong>in</strong>g situation. Overall groundnut <strong>in</strong>tercropp<strong>in</strong>g either with guava irrespective <strong>of</strong> nutrition<br />

or with hardwickia trees with pollard<strong>in</strong>g showed better performance <strong>of</strong> crop growth, yield attributes and yields<br />

next to solecropped groundnut under ra<strong>in</strong>fed situations. Total monetary returns from the system (tree+crop)<br />

were higher under <strong>in</strong>tercropp<strong>in</strong>g situations either <strong>in</strong> guava trees or pollarded hardwickia trees when compared<br />

to solecropp<strong>in</strong>g situations with the comb<strong>in</strong>ation <strong>of</strong> organic manures especially with enriched FYM or FYM with<br />

the recommended dose <strong>of</strong> <strong>in</strong>organic fertilizers. Ph.D(2007).<br />

95


ABSTRACTS<br />

Studies on genetic divergence, heterosis and comb<strong>in</strong><strong>in</strong>g ability <strong>in</strong><br />

paprika (Capsicum annuam L.)<br />

Student: S. Surya Kumari<br />

Major Advisor: Dr. C. Ravi Shankar<br />

Department <strong>of</strong> Horticulture<br />

The present <strong>in</strong>vestigation was carried out at Regional Agricultural Research Station, Lam Farm,<br />

Guntur, dur<strong>in</strong>g Kharif 2005 to 2007 with 94 paprika accessions to study the genetic variability heritability,<br />

genetic advances as per cent <strong>of</strong> mean, genetic divergence, character association and path analysis, heterosis<br />

and comb<strong>in</strong><strong>in</strong>g ability for several economic characters <strong>in</strong> paprika genotypes. The results <strong>of</strong> multivariate<br />

analysis <strong>in</strong>dicated that, random distribution <strong>of</strong> 94 paprika genotypes <strong>in</strong>to ten clusters <strong>in</strong> case <strong>of</strong> D 2 analysis and<br />

<strong>in</strong>to twelve clusters <strong>in</strong> case <strong>of</strong> pr<strong>in</strong>cipal component analysis, which <strong>in</strong>dicated that there is no association <strong>of</strong><br />

genetic diversity with geographic diversity. By Mahalanobis’ D 2 statistic, it could be <strong>in</strong>ferred that the fresh fruit<br />

weight per plant followed by oleores<strong>in</strong> content and capsanth<strong>in</strong> content, contributed maximum towards genetic<br />

divergence Based on the <strong>in</strong>ter and <strong>in</strong>tra cluster distance among the groups, fourteen parents were selected 3<br />

from cluster X, 3 from cluster IX and one each from clusters, I, II, III, IV, V, VI, VII and VIII respectively keep<strong>in</strong>g<br />

<strong>in</strong> view the characters contributed for divergence to obta<strong>in</strong> better and desirable seggregants. Pr<strong>in</strong>cipal<br />

component analysis identified three pr<strong>in</strong>cipal components (PCs), which contributed 78.47 per cent <strong>of</strong> cumulative<br />

variance. The population with high PCI values was characterize by fresh fruit yield per plant fresh to dry fruit<br />

recovery percentage, number <strong>of</strong> fruits per plant, capsanth<strong>in</strong> content and oleores<strong>in</strong> content. Where as population<br />

with high PC2 value was characterizes by high oleores<strong>in</strong> content, capsanth<strong>in</strong> content, fresh to dry pod<br />

recovery percentage, plant spread and days to 50 per cent flower<strong>in</strong>g. Correlation studies <strong>in</strong>dicated significant<br />

positive association <strong>of</strong> plant height, plant spread, and number <strong>of</strong> fruits per plant. Fruit girth and seeds per fruit<br />

and capsanth<strong>in</strong> content with dry fruit per plant. Path analysis studies revealed high positive direct effect <strong>of</strong><br />

number <strong>of</strong> fruits per plant on dry fruit yield per plant. In addition, weight <strong>of</strong> dry stalkless chillies per plant,<br />

number <strong>of</strong> seeds per fruit and capsanth<strong>in</strong> content, which exerted positive direct effect.<br />

The superiority <strong>of</strong> the hybrids <strong>in</strong> crosses was estimated over mid parent, better parent and standard<br />

check for all the 17 characters studied. The cultivars Byadigi Kaddi was selected as a standard check. For<br />

high productivity the crosses LCA-436 x CA-960, LCA-428 x KTPL-19, LCA-428 x LCA-424, LCA-436 x<br />

KTPL-19, LCA-432 x KTPL-19 were identified as the best heterotic comb<strong>in</strong>ations.<br />

The hybrid LCA-437 x CA-960 is considered to be the best heterotic comb<strong>in</strong>ation, which has<br />

recorded high oleores<strong>in</strong> content (16.7 per cent), maximum capsanth<strong>in</strong> content (7249 EOA units) and m<strong>in</strong>imum<br />

capsaic<strong>in</strong> content (0.09%). For all the 17 characters studied except for fruit length, number <strong>of</strong> seeds per fruit,<br />

and 100 seed weight, about 50 per cent <strong>of</strong> the crosses recorded significant heterosis over the mid parent. For<br />

characters like plant height, fresh fruit per plant, dry fruit yield per plant, days to maturity and number <strong>of</strong> fruits<br />

yield per plant, majority <strong>of</strong> the hybrids showed significant heterosis, whereas for character like seeds mid per<br />

fruit, seed weight, capsaic<strong>in</strong>, less than 50 per cent <strong>of</strong> crosses showed significant mid parent heterosis.. But the<br />

comb<strong>in</strong><strong>in</strong>g ability analysis revealed more <strong>of</strong> SCA variance than GCA variance except for capsanth<strong>in</strong> content<br />

<strong>in</strong>dicat<strong>in</strong>g that non-additive type <strong>of</strong> gene action was predom<strong>in</strong>ant for all the characters studied and additive<br />

gene effect for capsanth<strong>in</strong> content. Among 14 parents, 7 parents have significant positive gca effect for dry<br />

fruit yield per plant with the maximum observed <strong>in</strong> LCA-428 (134.49) followed by LCA-436 (111.51) and LCA-<br />

432 (53.45). In the present study the top five hybrids with high per se performance for fresh fruit yield per plant<br />

were LCA-436 x CA-960 (279.7), LCA-436 x B. Dabbi (207.39), LCA-422 x CA-960 (217.19), LCA-431 x<br />

B.Dabbi (220.3) and LCA-414 x B.Dabbi (175.06). These hybrids also exhibited high sca effects for total yield<br />

96


ABSTRACTS<br />

per plant and yield components. Similarly the crosses LCA-437 x KTPL-19 and LCA-437 x CA-960 had<br />

significant sca effects <strong>in</strong> desirable direction for capsaic<strong>in</strong> content. The parents <strong>of</strong> the crosses were positive x<br />

negative general comb<strong>in</strong>ers. However, it can be observed that the cross LCA-414 x KTPL-19 can be considered<br />

the best as it has desirable sca effects for quality parameters both capsaic<strong>in</strong> and capsanth<strong>in</strong>. Consider<strong>in</strong>g the<br />

total yield and quality parameters <strong>of</strong> paprika <strong>in</strong> the present study the crosses LCA-436 x CA-960, LCA-436 x<br />

B. Dabbi, LCA-422 x CA-960, LCA-414 x B. Dabbi standout for potential yield and quality characters. However,<br />

the present study has resulted <strong>in</strong> F I hybrids with higher yield potential but the same did not have maximum<br />

quality parameters. Ph.D(2007).<br />

Integrated Management <strong>of</strong> Red Rot Disease <strong>in</strong> Sugarcane Incited by<br />

Colletotrichum falcatum Went<br />

Student: K. Krishnamma<br />

Major Advisor: Dr. T. Vithal Reddy<br />

Department <strong>of</strong> Plant pathology<br />

Investigations were carried out on micr<strong>of</strong>lora associate with phylloplane, rhizosphere and <strong>in</strong>ternal<br />

stalk tissue <strong>of</strong> healthy canes <strong>of</strong> red rot susceptible sugarcane varieties. Eight species <strong>of</strong> fungal and eight<br />

bacterial isolates were obta<strong>in</strong>ed. Out <strong>of</strong> them, fungal isolate Trichoderma viride and bacterial isolate<br />

Pseudomonas aerug<strong>in</strong>osa were found superior to <strong>in</strong>hibit the red rot pathogen under <strong>in</strong> vitro conditions. Field<br />

experiments were conducted to f<strong>in</strong>d out the most effective method <strong>of</strong> application <strong>of</strong> T. viride and P. aerog<strong>in</strong>ose<br />

<strong>in</strong> reduc<strong>in</strong>g the red rot diseases <strong>in</strong>tensity. Soil application alone or soil application together with other treatments<br />

were found to be most effective <strong>in</strong> reduction <strong>of</strong> <strong>in</strong>tensity <strong>of</strong> the disease and also improvement <strong>in</strong> quantitative<br />

and qualitative parameters. The fungicide hexaconazole 5% EC at 0.002 per cent concentration <strong>in</strong>hibited the<br />

mycelia growth <strong>of</strong> the fungus. Under field conditions, the fungicide at 0.2 per cent foliar spary was proved to<br />

be the best <strong>in</strong> reduction <strong>of</strong> per cent disease <strong>in</strong>tensity. It also improved the quantitative and qualitative parameters<br />

due to the reduction <strong>in</strong> the pathogen <strong>in</strong> the treated canes. Among the 41 sugarcane genotypes screened, 32<br />

genotypes were found to be resistance and four moderately resistant.<br />

In the <strong>in</strong>tegrated management <strong>of</strong> red rot disease, maximum reduction <strong>in</strong> per cent <strong>in</strong>tensity was<br />

observed when biocontrol agent was applied thrice followed by the treatments received soil application one<br />

time <strong>in</strong> comb<strong>in</strong>ation with other treatments. Improvement <strong>in</strong> quantitative parameters might be due to reduction<br />

<strong>in</strong> per cent disease <strong>in</strong>tensity. Exploitation <strong>of</strong> native potential biocontrol agents and need based foliar spray <strong>of</strong><br />

the fungicide <strong>in</strong> comb<strong>in</strong>ation <strong>of</strong> other cultural, agronomical strategies has high potential to manage the disease<br />

under field conditions <strong>in</strong> the absence <strong>of</strong> resistance genotypes red rot pathogen. Ph.D(2007).<br />

97


ABSTRACTS<br />

Effect <strong>of</strong> Calcium, Plant growth Regulators, Fungicides and package<br />

material on quality and Shelf Life <strong>of</strong> Acid Lime<br />

(Citrus aurantifolia Sw<strong>in</strong>gle)<br />

Student: Meduri Madhavi<br />

Major Advisor: Dr. K. Hari Babu<br />

Department <strong>of</strong> Horticulture<br />

A set <strong>of</strong> four experiments was conducted to f<strong>in</strong>d the effect <strong>of</strong> different pre and post harvest application<br />

<strong>of</strong> calcium compounds, growth regulators and fungicides, packages materials and their comb<strong>in</strong>ations on shelf<br />

life and quality <strong>of</strong> acid lime (Citrus aurantifolia) cv. Balaji at S.V. Agricultural College, Tirupati, Andhra Pradesh.<br />

Physiological loss <strong>in</strong> weight <strong>of</strong> acid lime fruits <strong>in</strong>creased gradually dur<strong>in</strong>g storage. Pre and post harvest<br />

application <strong>of</strong> BA reduced the PLW when compared to other treatment and control. Calcium and <strong>in</strong>crease <strong>in</strong><br />

concentration <strong>of</strong> calcium and growth regulators (BA and GA) <strong>in</strong> pre and post harvest treatments. However,<br />

calcium and magnesium decreased dur<strong>in</strong>g storage whereas potassium <strong>in</strong>creased gradually with a decrease<br />

at the end <strong>of</strong> storage Fruit treated with gungicides and untreated fruits exhibits no <strong>in</strong>fluence on m<strong>in</strong>eral<br />

composition <strong>of</strong> Ca, Mg and K. But fruits treated with BA reta<strong>in</strong>ed better quality and <strong>in</strong>creased shelf life over the<br />

other treatments and control.<br />

With regard to different packages materials, vented polythene l<strong>in</strong>ed CFB boxes were found to<br />

reduce PLW, TSS total sugars, titratable acidity, ascorbic acid content and antioxidant enzyme actively.<br />

Further, ripen<strong>in</strong>g changes like development <strong>of</strong> carotenoids were effectively delayed with better retention on<br />

firmness and <strong>in</strong>crease <strong>in</strong> the shelf life. M<strong>in</strong>eral like Ca, Mg and K were higher <strong>in</strong> fruits stored <strong>in</strong> vented<br />

polythene l<strong>in</strong>ed CFB boxes. The treatmental comb<strong>in</strong>ation with preharvest spray <strong>of</strong> BA at 30 ppm + postharvest<br />

dip with BA 75 ppm and stored <strong>in</strong> vented polythene l<strong>in</strong>ed CFB boxes was found to be effective <strong>in</strong> delay<strong>in</strong>g<br />

postharvest changes, improv<strong>in</strong>g quality and extend<strong>in</strong>g shelf life <strong>of</strong> acid lime fruits. Ph.D(2007).<br />

Studies on development <strong>of</strong> transgenic male sterile and restorer l<strong>in</strong>es<br />

<strong>in</strong> safflower (Carthamus t<strong>in</strong>ctorius L.) us<strong>in</strong>g unedited mitochondrial<br />

gene(s)<br />

Student: K. N. Yam<strong>in</strong>i<br />

Major Advisor: Dr. S. Sokka Reddy<br />

Department <strong>of</strong> Genetic and Plant Breed<strong>in</strong>g<br />

The present <strong>in</strong>vestigation was carried out with aim <strong>of</strong> develop<strong>in</strong>g constructs and us<strong>in</strong>g then for the<br />

development <strong>of</strong> transgenic male sterile and restores l<strong>in</strong>es <strong>in</strong> safflower. In the first phase, studies were taken<br />

up with the aim <strong>of</strong> identify<strong>in</strong>g suitable candidate genes for this approach. Three safflower mitochondrial genes<br />

viz., atp6, atp9 and nad3, were studied. In the next phase, constructs for <strong>in</strong>duction <strong>of</strong> transgenic male sterility<br />

and restoration <strong>of</strong> fertility were developed us<strong>in</strong>g the u-nad 3/u-atp9 genes. Vectors for restoration <strong>of</strong> fertility<br />

based on post-transcriptional gene silenc<strong>in</strong>g (PTGS) approach were developed so that they could down<br />

regulate the expression <strong>of</strong> u-nad/3u-atp9 genes thereby restor<strong>in</strong>g fertility. The full-length antisense constructs<br />

<strong>of</strong> these u-nads3 and u-atp9 genes were developed under both 35S promoter (SANP and SSAP) and TA29<br />

98


ABSTRACTS<br />

promoter (TANP and TAAP). Also the ihp-RNA vectors aga<strong>in</strong>st both these genes under 35S promoter (p-ihp<br />

nad 3 and p-ihp atp-9) and under TA29 promoter (p-T-ihp nad3 and p-T atp9) were developed. As reproducible<br />

regeneration and transformation protocols were not available <strong>in</strong> safflower, attempts were made under the<br />

present <strong>in</strong>vestigation towards regeneration <strong>of</strong> safflower shoots us<strong>in</strong>g immature embryos as explants.<br />

The two constructs for <strong>in</strong>duction <strong>of</strong> male sterility i.e., LBA4404: pB<strong>in</strong>-TCNN-Bar and LBA4404: pB<strong>in</strong>-<br />

TCAN-Bar as well as two constructs for restoration <strong>of</strong> fertility i.e., LBA4404: p-B<strong>in</strong>-T-ihp nad3 and LBA4404:<br />

pB<strong>in</strong>-T-ihp atp9 were used to develop transgenic safflower and tobacco plants. All these transgenic plants<br />

were confirmed by PCR analysis for presence <strong>of</strong> the transgene and by leaf assays for sensitivity to<br />

phosph<strong>in</strong>ithric<strong>in</strong> or hygromyc<strong>in</strong> (depend<strong>in</strong>g on the vector used). The plants and their flowers were observed<br />

for any morphological differences as well as for pollen fertility. Tissue culture derived shoots <strong>of</strong> safflower were<br />

lanky and they did not produce many flowers <strong>in</strong>dicat<strong>in</strong>g the <strong>in</strong>herent problem <strong>of</strong> de novo regenerated shoots.<br />

Among the few transgenic safflower plants that reached flower<strong>in</strong>g, three out <strong>of</strong> the six obta<strong>in</strong>ed with TCNN-Bar<br />

construct and one out <strong>of</strong> five obta<strong>in</strong>ed with TCAN-Bar construct, showed partial sterility (34.2%-69% and 32%<br />

pollens fertility respectively). Of the tobacco transgenic plants that reached flower<strong>in</strong>g, one plant out <strong>of</strong> thirty<br />

obta<strong>in</strong>ed with TCNN-Bar construct was sterile with less that 5% pollen tak<strong>in</strong>g up actetocarm<strong>in</strong>e sta<strong>in</strong> and<br />

these pollen germ<strong>in</strong>ation medium. This study has provided the prelim<strong>in</strong>ary ground work and pro<strong>of</strong>-<strong>of</strong>-concept<br />

that the genes atp9 and nad3 could be used as candidate genes for <strong>in</strong>duction <strong>of</strong> male sterility <strong>in</strong> safflower and<br />

tobacco. The future l<strong>in</strong>e <strong>of</strong> work <strong>in</strong>volves further molecular characterization <strong>of</strong> these transgenic plants along<br />

with development and characterization <strong>of</strong> more number <strong>of</strong> transgenic plants with these constructs to provide<br />

a strong foot<strong>in</strong>g to this approach. This could lead to development <strong>of</strong> a complete poll<strong>in</strong>ation control system, not<br />

only <strong>in</strong> safflower, but also <strong>in</strong> other crops. Ph.D(2007).<br />

Pollution potential <strong>of</strong> sewage sludge and Urban Compost and Their<br />

Evaluation as Manures <strong>in</strong> Tomato – Cabbage Cropp<strong>in</strong>g Sequence<br />

Student: P. Kavitha<br />

Major Advisor: Dr. K. Jeevan Rao<br />

Department <strong>of</strong> Soil Science and Agricultural Chemistry<br />

The present <strong>in</strong>vestigation entitled “Pollution potential <strong>of</strong> sewage sludge and urban compost and their<br />

evaluation <strong>in</strong> tomato – cabbage cropp<strong>in</strong>g sequences” was carried out at both <strong>in</strong> the field (2003 – 04) and<br />

greenhouse conditions simultaneously at College Farm, College <strong>of</strong> Agriculture, Rajendranagar, Hyderabad.<br />

In order to know the m<strong>in</strong>eralization pattern and to understand the changes <strong>in</strong> the status <strong>of</strong> heavy metals <strong>of</strong><br />

organic manures and for organic matter fractions, an <strong>in</strong>cubation study was also carried out. The experimental<br />

soil was low <strong>in</strong> available N (196.3 kg ha -1 ) and P 2<br />

O 5<br />

(21.16 kg ha -1 and medium <strong>in</strong> K 2<br />

O (305.3 kg ha -1 A<br />

laboratory <strong>in</strong>cubation study <strong>in</strong>cubation study was also conducted to know the transformation <strong>of</strong> heavy metals<br />

dur<strong>in</strong>g decomposition <strong>of</strong> organic manures applied. The treatment for tomato crop <strong>in</strong> the Kharif 2003 with four<br />

ma<strong>in</strong> treatments viz., 0, 50, 75 and 100 per cent RDF and seven sub treatments viz., two levels <strong>of</strong> each<br />

sewage sludge, urban compost, FYM (20 and 40 T ha -1 ) and control (without manure) and comb<strong>in</strong>ations <strong>of</strong><br />

fertilizer levels along with organic manorial levels, thus, total <strong>of</strong> 28 treatments, each replicated thrice was laid<br />

out <strong>in</strong> a split plot design. The highest fresh fruit yield (43.12 t ha -1 ) and fruit dry matter (3105 kg ha -1 ) <strong>of</strong> tomato<br />

were resulted <strong>in</strong> treatment with sewage slugde applied @ 40 t ha -1 along with 100 per cent RDF. Greenhouse<br />

99


ABSTRACTS<br />

also showed higher fresh fruit yield (1142 g pot -1 ), plant dry matter (84.84 g pot -1 ) and head dry matter (82.22<br />

g pot -1 ) with sewage sludge applied @ 40 t ha -1 along with 100 percent RDF.<br />

The mean highest concentration and uptake <strong>of</strong> all heavy metals <strong>in</strong> tomato crop resulted with the<br />

application <strong>of</strong> sewage sludge @ 40 t ha -1 followed by 20 t ha -1. . Application <strong>of</strong> manures either alone or <strong>in</strong><br />

comb<strong>in</strong>ation with fertilizers did not have significantly <strong>in</strong>fluence on quality parameters <strong>of</strong> tomato fruit at harvest<br />

but highest prote<strong>in</strong> content (18.31 per cent), ascorbic acid (25.50 mg 100 g -1 ) and total soluble solids (4.71 per<br />

cent) were observed <strong>in</strong> sewage sludge applied @ 40 t ha -1 along with 100 per cent RDF . The highest concentration<br />

<strong>of</strong> major, micronutrients and heavy metals and their uptake <strong>of</strong> cabbage was noticed <strong>in</strong> the sewage sludge<br />

applied@ 40 t ha -1 along with 100 per cent RDF closely followed by sewage sludge applied @ 40 t ha -1 along<br />

with 75 per cent RDF both under field and greenhouse experiments. Whereas the highest Mn concentration<br />

and uptake <strong>in</strong> plant and head were recorded <strong>in</strong> sewage sludge applied @ 40 t ha -1 along with 50 per cent RDF.<br />

The results from organic manures <strong>in</strong>cubation study showed that production <strong>of</strong> humic fractions (humic acid and<br />

fulvic acid) were maximum with sewage sludge (14.23 and 3.42 per cent) followed by urban compost (9.90<br />

and 2.52 per cent) and FYM (9.12 and 2.31 per cent). The HA production <strong>in</strong>creased with <strong>in</strong>crease <strong>in</strong> period <strong>of</strong><br />

<strong>in</strong>cubation from <strong>in</strong>itial to 120 days <strong>in</strong> all the treatments, while FA production <strong>in</strong>itially <strong>in</strong>creased upto 80 days and<br />

decreased thereafter.<br />

The highest benefit : cost ratio obta<strong>in</strong>ed <strong>in</strong> treatment with sewage sludge applied @ 40 t ha -1 along<br />

with 50 per cent RDF for tomato (2.77) and residual sewage sludge applied @ 40 t ha -1 along with 100 per cent<br />

RDF for cabbage crop (5.51). However, applied data <strong>of</strong> economic analysis (from both the crops i.e., tomato<br />

and cabbage) <strong>in</strong>dicated that the highest B:C ratio (3.88) was obta<strong>in</strong>ed with sewage sludge applied @ 40 t ha -<br />

1<br />

along with 75 per cent RDF. To obta<strong>in</strong> higher <strong>in</strong>come and to ma<strong>in</strong>ta<strong>in</strong> better soil conditions, application <strong>of</strong><br />

sewage sludge @ 40 t ha -1 along with 75 per cent RDF for tomato – cabbage cropp<strong>in</strong>g sequence is<br />

recommended. Ph.D(2007).<br />

Studies on the effect <strong>of</strong> Pre and Post Harvest handl<strong>in</strong>g technologies<br />

on Extension <strong>of</strong> vase life <strong>of</strong> carnation flowers (Dianthus caryophyllus<br />

L.)cv. Dom<strong>in</strong>go<br />

Student: N.Sunanda Rani<br />

Major Advisor: Dr. R. Chandra Sekhar<br />

Department <strong>of</strong> Horticulture<br />

The present <strong>in</strong>vestigation entitled “Studies on the effect <strong>of</strong> pre and post harvest handl<strong>in</strong>g techniques<br />

on extension <strong>of</strong> vase life <strong>of</strong> carnation cut flowers, College <strong>of</strong> Agriculture, Acharya N. G. Ranga Agricultural<br />

University, Rajendranagar, Hyderabad, dur<strong>in</strong>g October 2005 to March 2007. A total <strong>of</strong> n<strong>in</strong>e experiments were<br />

conducted, from which the first experiment was conducted to evaluate the appropriate stage <strong>of</strong> harvest and<br />

age <strong>of</strong> mother plant. The flower harvested at pa<strong>in</strong>t brush from 6 months old mother plant recorded maximum<br />

vase life (13.62 days) with maximum flower diameter (5.98 cm) and quality, though the flowers harvested at<br />

tight bud stage recorded highest vase life (15.67 days) they did not open completely as that <strong>of</strong> flowers<br />

harvested at pa<strong>in</strong>t brush stage. Among the different biocides studies, 8-HQS 300 ppm was very effective <strong>in</strong><br />

<strong>in</strong>creas<strong>in</strong>g the vase life <strong>of</strong> carnation cut flowers. Among the different organic extracts, neem extract at 2 per<br />

cent has recorded maximum vase life over other organic extracts studied. From a set <strong>of</strong> six experiments, the<br />

100


ABSTRACTS<br />

best treatments were selected based on their physiological, biochemical and anatomical parameters to prolong<br />

maximum vase life, 8-HQS 300 ppm (biocide), neem extract 2% (organic extract), STS 5.5 mM (ethylene<br />

<strong>in</strong>hibitor) and AgNO 3<br />

50 ppm (m<strong>in</strong>eral salt) were tried <strong>in</strong> different comb<strong>in</strong>ations along with sucrose 5 per cent<br />

commonly for all the treatments to study their comb<strong>in</strong>ed effect. Among the different treatment comb<strong>in</strong>ations<br />

tried, 8-HQS 300 pmm + AgNO 3<br />

50 ppm + sucrose 5 per cent significantly <strong>in</strong>creased the vase life by 209 per<br />

cent over control. Cut carnations were pulsed with best treatment comb<strong>in</strong>ations i.e., 8-HQS 300 pmm +<br />

AgNO 3<br />

50 ppm + sucrose 5 per cent for 24 hours and packed with three different packag<strong>in</strong>g material (polythene<br />

sheet, tissue paper, craft paper) at four levels <strong>of</strong> ventilation (0%, 20%, 40% and 60%) <strong>in</strong> corrugated fibre board<br />

boxes (CFB). Later, they were stored <strong>in</strong> room temperature for 4 days (as prevail<strong>in</strong>g <strong>in</strong> domestic market).<br />

Based on physiological loss <strong>in</strong> weight, per cent spoiled flowers / wilted or faded flowers was subsequently<br />

evaluated for vase life. The treatment <strong>of</strong> tissue paper with 20 per cent ventilation CFB recorded maximum<br />

vase life (9.01 days) followed by polythene sheet with 20 per cent ventilation _ CFB (8. 51 days). These<br />

flowers also ma<strong>in</strong>ta<strong>in</strong>ed moderate levels <strong>of</strong> anthocyan<strong>in</strong> content <strong>in</strong> flower petals (4.82 mg Congo Red/g f wt)<br />

compared to other treatments. Ph.D(2007).<br />

“Studies on propogation, production and post harvest storage <strong>in</strong><br />

Kakrol( Momordica dioicA Roxb.)”<br />

Student: T. S. K. K. Kiran Patro<br />

Major Advisor: Dr. K. Malla Reddy<br />

Department <strong>of</strong> Horticulture<br />

A set <strong>of</strong> seven experiments were conducted to standardize the propagation, production and post<br />

harvest storage methods <strong>in</strong> kakrol fruits at Agriculture Research Institute and Post Harvest Technology<br />

Laboratory, College <strong>of</strong> Agriculture, Rajendranagar, Hyderabad, Andhra Pradesh dur<strong>in</strong>g the period from June<br />

2005 to November 2006.<br />

The experiment on the effect <strong>of</strong> different chemical temperatures and their comb<strong>in</strong>ations on break<strong>in</strong>g<br />

seed dormancy <strong>in</strong> kakrol was studied.<br />

The studies on effect <strong>of</strong> different growth substances and type <strong>of</strong> cutt<strong>in</strong>g on root formation <strong>in</strong> kakrol<br />

v<strong>in</strong>e cutt<strong>in</strong>g revealed that male cutt<strong>in</strong>gs treated with IBA at 1500 ppm recorded early and higher percentage <strong>of</strong><br />

root<strong>in</strong>g (92.60), number <strong>of</strong> roots per cutt<strong>in</strong>g, length <strong>of</strong> the shoot, number <strong>of</strong> leaves per cutt<strong>in</strong>g and percentage<br />

<strong>of</strong> establishment compared with other treatment comb<strong>in</strong>ations.<br />

The studies on the effect <strong>of</strong> different chemicals on shelf <strong>of</strong> kakrol fruits revealed that <strong>in</strong> GA 3<br />

(10 ppm)<br />

physiological loss <strong>in</strong> weight and percentage <strong>of</strong> spoilage was lowest, higher total soluble solids, titrable acidity,<br />

ascorbic acid content, reduc<strong>in</strong>g sugars and organoleptic score compared with all other chemical treatments.<br />

The studies on the effect <strong>of</strong> different gauges <strong>of</strong> polythene bags with different ventilation levels on the<br />

shelf life <strong>of</strong> kakrol fruits recorded significantly lower physiological loss <strong>in</strong> weight at 0 per cent ventilation<br />

irrespective <strong>of</strong> gauges. The spoilage percentage was lower at 0.5 per cent ventilation irrespective <strong>of</strong> gauges.<br />

The studies on effect <strong>of</strong> gamma irradiation on the shelf life <strong>of</strong> kakrol fruits revealed that 0.25 kGy at<br />

room temperature and <strong>in</strong> cold storage recorded lower physiological loss <strong>in</strong> weight and percentage <strong>of</strong> spoilage.<br />

101


ABSTRACTS<br />

Further it also recorded the higher total soluble solids, titrable acidity ascorbic acid content, reduc<strong>in</strong>g sugars<br />

and organoleptic score expects total soluble solids than their rest <strong>of</strong> the irradiation treatments and control. The<br />

number <strong>of</strong> days <strong>of</strong> storage <strong>in</strong> cold storage was 12 days compared to n<strong>in</strong>e days at room temperature storage.<br />

The studies on effect <strong>of</strong> different chemicals for improv<strong>in</strong>g quality <strong>of</strong> dehydrated kakrol fruit revealed<br />

that among all the treatments, blanch<strong>in</strong>g for 30 seconds + 2000 ppm potassium metabisulphite recorded the<br />

higher rehydration ratio and the lower f<strong>in</strong>al moisture content <strong>of</strong> dried pieces, per cent loss <strong>of</strong> total soluble<br />

solids, per cent loss <strong>of</strong> titrable acidity, per cent loss <strong>of</strong> ascorbic acid content and per cent loss reduc<strong>in</strong>g<br />

sugars. The study on storage life and quality parameters <strong>of</strong> rehydrated products revealed a gradual decrease<br />

<strong>in</strong> cook<strong>in</strong>g quality, texture, colour and appearance, taste, flavor and overall acceptability with <strong>in</strong>crease <strong>in</strong><br />

storage period from zero to sixth month except f<strong>in</strong>al moisture content <strong>of</strong> dried pieces which <strong>in</strong>creased with<br />

<strong>in</strong>crease <strong>in</strong> storage period. Ph.D(2007).<br />

Exploitation <strong>of</strong> Diverse cytoplasmic male sterile sources for the<br />

development <strong>of</strong> heterotic hybrids with resistance to Alternaria leaf<br />

blight disease <strong>in</strong> sunflower (Helianthus annus L.)<br />

Student: M. Sujatha<br />

Major Advisor: Dr. K. Hussian Sahib<br />

Department <strong>of</strong> Genetics and Plant Breed<strong>in</strong>g<br />

The present <strong>in</strong>vestigation entitled “Exploitation <strong>of</strong> diverse cytoplasmic male sterile sources for the<br />

development <strong>of</strong> heterotic hybrids with resistance to Alternaria leaf blight disease <strong>in</strong> sunflower (Helianthus<br />

annus L.)”. was conducted us<strong>in</strong>g six different cytoplasmic male sterile l<strong>in</strong>es belong<strong>in</strong>g to diverse cytoplasmic<br />

sources viz., CMS 234A (PET 1), CMS 7-1A(PET 1),DCMS 36 (ARG), DCMA 1 (GIG I), DCMS 15 (GIG 1)<br />

and 20 diverse <strong>in</strong>bred l<strong>in</strong>es,. The study was aimed to identily the effective restorers for the six diverse CMS<br />

l<strong>in</strong>es, genetics <strong>of</strong> fertility restoration, extent ot heterosis, comb<strong>in</strong><strong>in</strong>g ability and to identify a potential donor with<br />

resistance to Alternaria leaf blight disease. The experiment was laid out at Directorate <strong>of</strong> Oil seeds Research,<br />

Rajendranagar, Hyderabad dur<strong>in</strong>g rabi 2004-05, Kharif 2005, rabi 2005-06 and kharif 2006.<br />

Six elite CMS l<strong>in</strong>es possess<strong>in</strong>g four different cytoplasmic sources were crossed with 20 diverse<br />

<strong>in</strong>bred l<strong>in</strong>es. The resultant 120 hybrids were evaluated for fertility restoration / ma<strong>in</strong>ta<strong>in</strong>er pattern <strong>of</strong> <strong>in</strong>bred<br />

l<strong>in</strong>es. Out <strong>of</strong> 20 <strong>in</strong>breds, 16 <strong>in</strong>breds restored fertility for CMS 234A (PET 1) and CMS 7-1A (PET 1), 12 <strong>in</strong>breds<br />

for DCMS 6 (PET 2), 14 <strong>in</strong>breds for DCMS 36 (ARG), 3 <strong>in</strong>breds for DCMS 1 (GIG 1) and DCMA 15 (GIG 1).<br />

Out <strong>of</strong> 120 hybrids, fertility was restored <strong>in</strong> 64 hybrids. These 64 fertile hybrids were evaluated for yield and<br />

yield contribut<strong>in</strong>g traits, diseases reaction aga<strong>in</strong>st Alternaria leaf blight along with parents ad two standard<br />

checks. Data generated on a set <strong>of</strong> 40 F 1<br />

s (4l<strong>in</strong>es x 10 testers) were utilized for estimation <strong>of</strong> comb<strong>in</strong><strong>in</strong>g ability<br />

and heterosis.<br />

The comb<strong>in</strong><strong>in</strong>g ability analysis was studie us<strong>in</strong>g four CMS l<strong>in</strong>es, 10 restorers and 40 hybrids. The<br />

estimates <strong>of</strong> variance components revealed that SCA variance was higher <strong>in</strong> magnitude compared to GCA<br />

variance except head diameter <strong>in</strong>dicat<strong>in</strong>g the predom<strong>in</strong>ance <strong>of</strong> non-additive gene action while additive gene<br />

action for head diameter. Among the l<strong>in</strong>es, DCMA 36 for seeds yield, DCMA 6 for oil content were found to be<br />

good general comb<strong>in</strong>ers and possessed favourble alleles for these traits. Among the testers , DRS 9. DRS<br />

102


ABSTRACTS<br />

102, RHA 340 and DRS 34 were adjudged as good general comb<strong>in</strong>ers for seed yield, oil content and other<br />

contribut<strong>in</strong>g characters. Among the forty cross comb<strong>in</strong>ations DCMS 6 x DRS 22, DCM 36 x DRS 16, DCMS<br />

6 x DRS 45, CMS 7-1A x RHA 340, CMS 234 A x DRS 16 were found to be good specific comb<strong>in</strong>ers and other<br />

yield contribut<strong>in</strong>g characters.<br />

Among the forty hybrids studied for heterosis CMS 7-1A x DRS 45, DCMS 36 x DRS 9 recorded<br />

positive significant heterosis, heterobeltiosis and standard heterosis over two checks (KBSH 1 and PAC<br />

1091) for seed yield and oil content also. These hybrids along with seed yield also recorded significant positive<br />

heterosis for other yield contribut<strong>in</strong>g characters.<br />

The 26 parents and 64 hybrids were screened both under field and laboratory conditions for their<br />

resistance / susceptibility aga<strong>in</strong>st Alternaria leaf blight disease. Four parents CMS 7-1A, DRS 9, DRS 63, DRS<br />

34 and four hybrids CMS 7-1A x DRS 22, CMS 7-1A, DRS 9, DCMS 15 x DRS 9, DCMS 15 x DRS 63 showed<br />

resistance reaction both under fields and laboratory conditions. It was observed that selected l<strong>in</strong>es, testers<br />

and their hybrids showed varied levels <strong>of</strong> resistance and none exhibited either immune or highly resistant<br />

reaction to the disease. Ph.D(2007).<br />

Evaluation <strong>of</strong> stra<strong>in</strong>s <strong>of</strong> Beauveria bassiana vuillem<strong>in</strong> to certa<strong>in</strong><br />

production parameters and virulence aga<strong>in</strong>st Spodoptera litura<br />

fabricius<br />

Student: P. Rajanikanth<br />

Major Advisor: Dr. G. V. Subbaratnam<br />

Department <strong>of</strong> Entomology<br />

Investigation were conducted to evaluate four stra<strong>in</strong>s (Bb-13, Bb-11, Bb-5A and Bb-N) and two local<br />

isolates (Bb-L-1 and Bb-L-2) <strong>of</strong> Beauveria bassiana Vuillem<strong>in</strong> for their pathogenicity aga<strong>in</strong>st third <strong>in</strong>star larvae<br />

<strong>of</strong> Spodoptera litura Fabricius, stability <strong>of</strong> their biological properties at various subcultur<strong>in</strong>g frequencies, mass<br />

production ability on economically viable substrates and their compatibility with commonly used <strong>in</strong>secticides.<br />

The effective stra<strong>in</strong> was further evaluated for its bioefficiency <strong>in</strong> Green house conditions and its genetic<br />

variability was compared with other stra<strong>in</strong>s follow<strong>in</strong>g PCR-based RAPD analysis <strong>in</strong> the Department <strong>of</strong> Entomology<br />

and AICRP on Biological control <strong>of</strong> crop pests and <strong>weeds</strong>, College <strong>of</strong> Agriculture, Rajendranagar, Hyderabad<br />

dur<strong>in</strong>g 2004-06.<br />

In respect <strong>of</strong> biological properties, the stra<strong>in</strong> Bb-5A was superior with significant higher radial growth,<br />

higher conidial concentration, less time taken germ<strong>in</strong>ation <strong>of</strong> spores and high spore viability.<br />

The stra<strong>in</strong> Bb-5A was highly virulent to S.litura followed by stra<strong>in</strong>s Bb-N, Bb-13 and Bb-13 and Bb-<br />

11 <strong>in</strong> decreas<strong>in</strong>g order <strong>of</strong> virulence. The local isolates Bb-L-1 and Bb-L-2 were least virulent to the <strong>in</strong>sect. The<br />

median lethal time (LT 50<br />

) <strong>of</strong> the stra<strong>in</strong> Bb-5A was low closely followed by Bb-13, Bb-11 and Bb-N while the local<br />

isolates recorded higher LT 50<br />

values at all the concentrations. The median lethal time values decreased with<br />

<strong>in</strong>crease <strong>in</strong> concentration for all the stra<strong>in</strong>s.<br />

The conidia obta<strong>in</strong>ed from 14 days old cultures <strong>of</strong> B. bassiana were highly virulent to third <strong>in</strong>star S.<br />

litura larvae compared to the conidia obta<strong>in</strong>ed from 7, 21 and 28 days oil cultures.<br />

103


ABSTRACTS<br />

The effect <strong>of</strong> frequent subcultur<strong>in</strong>g <strong>of</strong> B.bassiana on synthetic medium showed that the reduction <strong>in</strong><br />

radial growth, spore concentration, spore viability and pathogenicity were non significant upto seventh and<br />

tenth subcultur<strong>in</strong>g but there after the stra<strong>in</strong>s recorded low reduction <strong>in</strong> its biological properties compared to<br />

other stra<strong>in</strong>s and was stable.<br />

Sorghum gra<strong>in</strong> was the best substrate and Bb-5A as the effective stra<strong>in</strong> for mass production <strong>of</strong><br />

B.bassiana.<br />

B.bassiana stra<strong>in</strong>s and isolates were compatible with <strong>in</strong>secticides sp<strong>in</strong>osad, imidacloprid, <strong>in</strong>doxiacrab<br />

but not with chloropyriphos.<br />

The analysis <strong>of</strong> genetic variability <strong>of</strong> the six stra<strong>in</strong>s showed that the stra<strong>in</strong>s Bb-13, Bb-11 and Bb-N<br />

formed a s<strong>in</strong>gle cluster with 100 per cent similarity and local isolates Bb-L-1 and Bb-L-2 formed <strong>in</strong>to a separate<br />

group with no variability. The stra<strong>in</strong> Bb-5A exhibited maximum variability, which further confirmed its phenotypic<br />

superiority over others. Ph.D(2007).<br />

Evaluation <strong>of</strong> transgenic chickpea for resistance to pod borer,<br />

Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera)<br />

Student: Rama Krishna Babu Ayyaluri<br />

Major Advisor: Dr. G. V. Subbaratnam<br />

Department <strong>of</strong> Entomology<br />

Evaluation <strong>of</strong> transgenic chickpea for resistance to pod borer H. armigera was carried out <strong>in</strong> Genetic<br />

Transformation and Insect Rear<strong>in</strong>g Laboratory at ICRISAT, Patancheru, Hyderabad.<br />

The transgenic chickpea plants were developed through Agrobacterium-mediated gene<br />

transformation method us<strong>in</strong>g a b<strong>in</strong>ary plasmid vector pBS 2310 carry<strong>in</strong>g Bt cry1Ac gene for <strong>in</strong>sect resistance<br />

and npt II genes a selectable marker constituted with dual enhancer CaMV 35S promoter harbor<strong>in</strong>g <strong>in</strong><br />

Agrobacterium stra<strong>in</strong> C 58. Axillary meristem explants <strong>of</strong> C 235 were <strong>in</strong>fected and co-cultivated with<br />

Agrobacterium.<br />

Molecular analysis <strong>of</strong> these plants through PCR, RT-PCR, and Southern blot <strong>in</strong>dicated the irrigation<br />

<strong>of</strong> transgene cry1Ac <strong>in</strong>to the genomic DNA <strong>of</strong> T 0<br />

, T 1<br />

and T 2<br />

putative transgenic chickpea plants. Variation <strong>in</strong> the<br />

segregation pattern <strong>of</strong> transgene was observed <strong>in</strong> the population <strong>of</strong> T 1<br />

and T 2<br />

generations. RT-PCR <strong>of</strong> cDNA<br />

from randomly selected T0 and T1 plants showed expression at Mrna levels. The ELISA studies <strong>of</strong> T 1,<br />

T 2<br />

and<br />

T 3<br />

generation putative transgenic chickpea plants revealed that accumulation <strong>of</strong> Bt cry1Ac prote<strong>in</strong> which<br />

varied from 0.035 to 1.86 ng/ 100mg <strong>of</strong> leaf tissue as aga<strong>in</strong>st 5-10 ng/ 100mg leaf <strong>in</strong> Bt cotton.<br />

Bioassay <strong>of</strong> putative transgenic cry1Ac and cry1Ac chickpea plants aga<strong>in</strong>st the 1 st <strong>in</strong>star larvae <strong>of</strong><br />

pod borer H. armigera showed considerable variation <strong>in</strong> terms <strong>of</strong> larval survival, leaf damage, and larval weight<br />

ga<strong>in</strong>.<br />

The progeny <strong>of</strong> n<strong>in</strong>e events each <strong>of</strong> cry1Ac (T 2<br />

) and <strong>of</strong> cry1 Ab(T 3<br />

) plants grown <strong>in</strong> conta<strong>in</strong>ed field<br />

trial were evaluated and the entire plants showed variable results <strong>in</strong>terms <strong>of</strong> larval survival, leaf damage and<br />

larval weights at the vegetative and flower<strong>in</strong>g stages. The cry1Ac plants performed better compared with<br />

cry1AbT 3<br />

plants. Pod bioassays <strong>of</strong> cry1Ac transgenic chickpea with 3 rd <strong>in</strong>star larvae <strong>of</strong> H. armigera, the plants<br />

104


ABSTRACTS<br />

CPAC 5-7 and 7-7 <strong>of</strong> T 1<br />

generation and plants CPAC 20-7-7 <strong>of</strong> T 2<br />

generation showed significant reduction <strong>in</strong><br />

larval weight ga<strong>in</strong> compared with non-transformed plants. Some <strong>of</strong> the plants <strong>of</strong> T 1<br />

and T 2<br />

generation <strong>of</strong> cry1Ac<br />

showed resistance and moderately resistance.<br />

In the present study, some <strong>of</strong> the plants <strong>of</strong> the progeny <strong>of</strong> T 0<br />

CPAC 1, 5, 7, 8, 9, 19 and 20 affected the larval<br />

weight ga<strong>in</strong>, but consistency was not observed <strong>in</strong> the antibiosis performance aga<strong>in</strong>st H. armigera larvae <strong>in</strong><br />

subsequent generations. It is presumed that, the physiology <strong>of</strong> the plant, <strong>in</strong>teraction <strong>of</strong> toxic prote<strong>in</strong> with acid<br />

metabolic cycle with <strong>in</strong> the plant and <strong>in</strong>ternal gut environment <strong>of</strong> the larva due to consumption <strong>of</strong> the acid<br />

exudates <strong>of</strong> the plant may <strong>in</strong>fluence the potency <strong>of</strong> the Bt tox<strong>in</strong> <strong>in</strong> the chickpea. Hence, to produce transgenics<br />

with higher level <strong>of</strong> expression <strong>of</strong> Bt tox<strong>in</strong>s <strong>in</strong> chickpea plants, the research need to be oriented with due<br />

consideration to all the above factors. Ph.D(2007).<br />

Studies on <strong>in</strong>sects pests <strong>of</strong> important medic<strong>in</strong>al plants<br />

Student: K. Vijaya Lakshmi<br />

Major Advisor: Dr. J. Satyanarayana<br />

Department <strong>of</strong> Entomology<br />

Studies on <strong>in</strong>sect pests <strong>of</strong> important medic<strong>in</strong>al plants viz., coleus (Coleus forskohli) (Wiild) Briq,<br />

W<strong>in</strong>tercherry (Withanai Somnifera) (L) Dunal, Senna (Cassia angustifolia) Vehl, Kalmegh (Andrographis<br />

paniculata) (Burm.F) Nees and Muskmallow (Abelmoschus moschatus) Medic were carried out at Herbal<br />

garden, College <strong>of</strong> Agriculture, Rajendranagar dur<strong>in</strong>g July 2005-06.<br />

Two peaks <strong>of</strong> spike borer (Helicoverpa armigera) population were seen on Coleus (C.forskohli) and<br />

recorded as major pest due to highest spike damage caused by it dur<strong>in</strong>g the crop growth period.<br />

Nearly five <strong>in</strong>sect pests viz., hadda beetle (Henosepilachna vig<strong>in</strong>tioctopunctata), Fruit borer<br />

(Helicoverpa armigera), red cotton bug (Dysdercus c<strong>in</strong>gulatus), st<strong>in</strong>k bug (Nezara viridula) and cow bug<br />

(Ot<strong>in</strong>otus oneratus) were recorded on W<strong>in</strong>ter cherry. Among them hadda beetle and fruit borer occupied<br />

major pest status as they caused severe leaf and fruit damage, respectively.<br />

Mottled emigrant (Catopsilia pyraanthe) <strong>in</strong>cidence was seen on Senna dur<strong>in</strong>g active vegetative<br />

stage and designated as major pest due to highest damage potential caused by it, and reached its peak<br />

damage 9.52% dur<strong>in</strong>g 38 th std week.<br />

Nearly eleven <strong>in</strong>sect pests recorded on Muskmallow viz., Shoot and fruit borer (Earias vitella), fruit<br />

borer (Helicoverpa armigera), leaf roller (sylepta derogate), semilooper (Anomis flava) red cotton bug<br />

(Dysdercus c<strong>in</strong>gulatus), st<strong>in</strong>k bug (Nezara viridula), leaf hoppers (Amrasca biguttula biguttula), aphids<br />

(Aphisgossypii), dusky cotton bug (Oxycarentus hyal<strong>in</strong>ipenis), grass hopper (Cyrtacanthacris ranaceae)<br />

and blister beetle (Mylabris pustulata). Among them shoot and fruit borer and fruit borer were recorded as<br />

major pests due to highest damage caused by the pest.<br />

Biology experiments on shoot and fruit borer under laboratory conditions revealed the average<br />

fecundity <strong>of</strong> moth was 391.5±0.54 eggs with oviposition period <strong>of</strong> 7.25±0.53 days. The mean duration <strong>of</strong> larval<br />

and pupal periods was 11.6±0.85 days and 6.5±0.74 days. Total developmental period was 21.4±0.46 days.<br />

The female moth lived for 16.6±0.65 days and males for 14.53±0.87 days respectively.<br />

105


ABSTRACTS<br />

The efficacy <strong>of</strong> NSKE, neem oil. Neem aza, Delf<strong>in</strong>, leaf extracts <strong>of</strong> Acorus calamus and Jatropha<br />

gossyfolia and DDVP were tested aga<strong>in</strong>st Sp<strong>in</strong>ghip caterpillar (Deiliphia neiirii) on Serpent<strong>in</strong>e root and leaf<br />

roll<strong>in</strong>g caterpillar (Garcillaria acidula) on Aonla.<br />

Per cent <strong>of</strong> leaf damage due to leaf roll<strong>in</strong>g caterpillar (G.acidula) on Aonla was low (47.49 %) <strong>in</strong> DDVP<br />

treated plot compared to other treatments after one day <strong>of</strong> spray<strong>in</strong>g. The best treatment recorded three days<br />

after spray<strong>in</strong>g was DDVP (45.86%). From five days after spray<strong>in</strong>g up to tenth day <strong>of</strong> spray<strong>in</strong>g DDVP (42.91%)<br />

was found to be the best treatment and Fortune aza (44.73%) recorded as next best treatment <strong>in</strong> reduc<strong>in</strong>g the<br />

per cent leaf damage. M.Sc (Ag). (2007).<br />

Heavy Metal Status <strong>of</strong> Peri-Urban Agricultural Soils and Crops – An<br />

Ecological Risk Assessment<br />

Student: Mr. V. Chanakya<br />

Major Advisor: Dr. K. Jeevan Rao<br />

Department <strong>of</strong> Soil Science and Agricultural Chemistry<br />

A survey entitled “Heavy metal status <strong>of</strong> peri-urban agricultural soils and crops – An ecological risk<br />

assessment” was conducted to assess the long-term effect <strong>of</strong> sewage and <strong>in</strong>dustrial effluents affected water<br />

for irrigation on heavy metal content <strong>in</strong> soils, plants and ground water, and an ecological risk assessment<br />

process was also carried out as a part <strong>of</strong> this survey.<br />

Results <strong>in</strong>dicated that the, concentrations <strong>of</strong> all parameters were higher <strong>in</strong> water samples <strong>of</strong> Musi<br />

river bed area than that <strong>of</strong> Kattedan <strong>in</strong>dustrial area and they were found more <strong>in</strong> water samples collected<br />

dur<strong>in</strong>g the month <strong>of</strong> Feb-06 than those collected dur<strong>in</strong>g Oct-05.<br />

Results from the soils <strong>of</strong> Musi river bed and Kattedan <strong>in</strong>dustrial areas <strong>in</strong>dicated that the values <strong>of</strong> all<br />

soil parameters except sand were found higher than the control soil. Except clay, pH, CEC and BSP, the<br />

values <strong>of</strong> all other parameters decreased with <strong>in</strong>creas<strong>in</strong>g depth <strong>in</strong> both Musi river bed and Kattedan <strong>in</strong>dustrial<br />

area soils.<br />

Results obta<strong>in</strong>ed by analyz<strong>in</strong>g the plant samples <strong>in</strong>dicated that the concentrations <strong>of</strong> N, P and K<br />

were found with<strong>in</strong> the optimum range <strong>in</strong> plants <strong>of</strong> both Musi river bed and Kattedan <strong>in</strong>dustrial areas. While, the<br />

concentrations <strong>of</strong> micronutrients and heavy metals were found with<strong>in</strong> the permissible limits <strong>in</strong> edible parts <strong>of</strong><br />

the plants <strong>of</strong> both Musi river bed and Kattedan <strong>in</strong>dustrial areas except Pb, which was found to be exceed<strong>in</strong>g<br />

the permissible limits <strong>in</strong> plants <strong>of</strong> Musi river bed area <strong>in</strong> their edible parts. The concentration <strong>of</strong> major nutrients,<br />

micronutrients and heavy metals were found to be accumulated least <strong>in</strong> edible parts <strong>of</strong> most <strong>of</strong> the plants <strong>of</strong><br />

both Musi river bed and Kattedan <strong>in</strong>dustrial areas while highest accumulation was found <strong>in</strong> their roots.<br />

Risk assessment <strong>in</strong> respect <strong>of</strong> heavy metal contents <strong>in</strong> crops grown on these waste waters irrigated<br />

peri-urban agricultural soils <strong>of</strong> Musi river bed and Kattedan <strong>in</strong>dustrial areas <strong>in</strong>dicated that, the consumption <strong>of</strong><br />

the produce <strong>of</strong> these crops by human be<strong>in</strong>gs and animals can be safe to present but if consumed cont<strong>in</strong>uously<br />

for longer periods may cause health hazards. M.Sc (Ag). (2007).<br />

106


ABSTRACTS<br />

Integrated Nutrient Management Options for Ra<strong>in</strong>fed Castor<br />

Student: A. Shirisha<br />

Major Advisor: Dr. A. Pratap Kumar Reddy<br />

Department <strong>of</strong> Agriculture<br />

The present study entitled “Integrated nutrient management options for ra<strong>in</strong>fed castor” was conducted<br />

dur<strong>in</strong>g kharif 2005 on sandy clay loam soil <strong>of</strong> College Farm, College <strong>of</strong> Agricultural University.<br />

Primary and secondary spike length was highest with application <strong>of</strong> 75% RDN + 25% N through<br />

poultry manure (T 5<br />

). Whereas tertiary spike length did not vary due to INM practices. Seed yield obta<strong>in</strong>ed from<br />

primary, secondary and tertiary spikes was highest with 75% RDN + 25% N through poultry manure (T 5<br />

) and<br />

this was on par with all other treatments except with control (T 1<br />

).<br />

Stalk yield obta<strong>in</strong>ed with 100% RDN (T 2<br />

) was the highest and this was comparable with 75% RDN +<br />

25% N through poultry manure (T 5<br />

), 50% RDN + N through poultry manure (T 6<br />

) and 75% RDN + 25% N<br />

through castor (T 7<br />

). Harvest <strong>in</strong>dex was not significant due to INM practices. Oil content did not vary significant<br />

due to INM practices. Oil yield was highest with application <strong>of</strong> 75% RDN + 25% N through poultry manure (T 5<br />

).<br />

Nitrogen and phosphorus contents <strong>in</strong> whole plant at maturity was highest with application <strong>of</strong> 75%<br />

RDN _ 25% N through poultry manure (T5). Total potassium content was not significant with the different INM<br />

practices. Among INM practices, gross returns, net returns and benefits: cost ration were highest with 75%<br />

RDN + 25% N through poultry manure (T 5<br />

). M.Sc (Ag). (2007).<br />

Nitrogen and potassium requirement and their effect on flower yield<br />

and quality <strong>of</strong> marigold (Tagetes Erecta L.)<br />

Student: A. Krishna Mohan Major Advisor: Dr. G.09 Padmaja<br />

Department <strong>of</strong> Soil Science and Agricultural Chemistry<br />

With a view to study the “Nitrogen and potassium requirement and their effect on flower yield and<br />

quality <strong>of</strong> marigold (Tagetes erecta L.)”. A field experiment was conducted on an Alfisol at Students’ Farm,<br />

College <strong>of</strong> agriculture, Rajendranagar, Hyderabad dur<strong>in</strong>g Kharif 2005-06. Nitrogen and potassium were<br />

applied as per treatment comb<strong>in</strong>ations, each treatment along with recommenced dose <strong>of</strong> phosphorus (80 kg<br />

P 2<br />

O 5<br />

ha -1 ) . Entire quantity <strong>of</strong> phosphorus and half <strong>of</strong> nitrogen and potassium were applied as basal <strong>in</strong> the form<br />

<strong>of</strong> s<strong>in</strong>gle super phosphate, urea and murate <strong>of</strong> potash, respectively. Rest <strong>of</strong> nitrogen and potassium was<br />

applied <strong>in</strong> two equal splits at 30 and 60 DAT.<br />

The results <strong>in</strong>dicated that with <strong>in</strong>creas<strong>in</strong>g levels <strong>of</strong> nitrogen and potassium application, there was<br />

<strong>in</strong>crease <strong>in</strong> dry matter production, concentrations <strong>of</strong> N, P and K and their uptake at both 60 DAT and at<br />

harvest. Higher quantity <strong>of</strong> dry matter production (9438.6 kg ha -1 ) Concentration <strong>of</strong> N(2.16%), P(0.90%),<br />

K(1.51 %) and their uptake (200.4, 85.32 and 143.6 kg ha -1 ) were recorded at harvest where N was applied at<br />

120 kg ha -1 (N 3<br />

). Similarly, higher dry matter production (5105.5 kg ha -1 ), concentration <strong>of</strong> P and K (0.88 and<br />

107


ABSTRACTS<br />

1.81 %) and their uptake (46.78 and 92.83 kg ha -1 ) was recorded at K 3<br />

level, while the concentration and uptake<br />

<strong>of</strong> N were not found effected by K levels at harvest stage <strong>of</strong> marigold crop.<br />

The changes <strong>in</strong> forms <strong>of</strong> potassium <strong>in</strong> soil at different stages <strong>of</strong> crop growth period clearly <strong>in</strong>dicated<br />

that easily available forms <strong>of</strong> K viz., water soluble NH 4<br />

OAc extractable and exchangeable K were utilized by<br />

the crop, which reflected <strong>in</strong> <strong>in</strong>crease <strong>in</strong> K concentration and uptake from <strong>in</strong>itial to 60 DAT. The slowly available<br />

forms were found depleted at later stages (60-100 DAT), <strong>in</strong>dicat<strong>in</strong>g the existence <strong>of</strong> dynamic equilibrium<br />

among these forms <strong>of</strong> K. With regard to nitrogen, NO 3<br />

N was more utilized by the crop than NH 4<br />

+ N to result<br />

<strong>in</strong> highest DMP, N-Concentration, uptake and <strong>in</strong> turn the flower yield.<br />

Based on the results <strong>of</strong> <strong>in</strong>vestigation, it was concluded that application <strong>of</strong> 120 kg N and 80 kg K 2<br />

O ha -<br />

1<br />

along with 80 kg P 2<br />

O 5<br />

ha -1 is optimum for obta<strong>in</strong><strong>in</strong>g highest flower yield with quality improvement <strong>in</strong> marigold<br />

when grown on light textured Alfisols. M.Sc (Ag). (2007).<br />

Evaluation and standardization <strong>of</strong> shelf life determ<strong>in</strong><strong>in</strong>g parameters<br />

for Bio pesticide formulation <strong>of</strong> Metarhizium anisopliac (Metchnik<strong>of</strong>f)<br />

Sorok<strong>in</strong><br />

Student: G. J. Jayakumari<br />

Major Advisor: Dr. S. J. Rahman<br />

Department <strong>of</strong> Entomology<br />

Investigations were carried out to evaluate certa<strong>in</strong> shelf life determ<strong>in</strong><strong>in</strong>g and other related parameters<br />

<strong>of</strong> the formulation <strong>of</strong> Metarhizium anisopliae (Metsch<strong>in</strong>k<strong>of</strong>f) Sorok<strong>in</strong>. The <strong>in</strong>fluence <strong>of</strong> different carrier materials<br />

viz., Bentonite, Attapulgite, Talc and Kaolonite was tested for the shelf life <strong>of</strong> Metarhizium anisopliae formulation.<br />

Similarly, to f<strong>in</strong>d out an optimum temperature for an effective storage, four different temperatures viz., refrigerated<br />

(5 0 C), room temperature (22 0 C) and high temperature (40 0 C) were evaluated. The output come <strong>of</strong> the studies<br />

<strong>in</strong>dicated that among the carrier material, talc based formulations were found to be more suitable with promis<strong>in</strong>g<br />

conidial concentration/gm and prolonged viability and pathogenicity.<br />

As the Days After Formulation (DAF) were <strong>in</strong>creas<strong>in</strong>g there was a general trend <strong>of</strong> decl<strong>in</strong>e <strong>in</strong> all the<br />

above shelf life determ<strong>in</strong><strong>in</strong>g parameters. As far as storage temperature is concentrated, refrigerated temperature<br />

(5 0 C) found to be more suitable than the other temperature ranges tested with high conidial concentration/gm,<br />

maximum conidial viability and highest pathogenicity towards target pest. Overall results suggested that M<br />

.anisopliae formulation made up <strong>of</strong> talc based powder and packed <strong>in</strong> milky white polythene material is proved<br />

to have better shelf life with quality <strong>of</strong> the product ma<strong>in</strong>ta<strong>in</strong>ed especially when stored <strong>in</strong> refrigerator temperature<br />

(5 0 C) or cool temperature (15 0 C). M.sc (Ag).<br />

108


ABSTRACTS<br />

Nitrogen management <strong>in</strong> Bt Cotton hybrids under ra<strong>in</strong>fed conditions<br />

Student: Dandu Mohan Das<br />

Major Advisor: Dr. M. Gov<strong>in</strong>d Reddy<br />

Department <strong>of</strong> Agronomy<br />

Afield experiment entitled “Nitrogen management <strong>in</strong> Bt Cotton hybrids under ra<strong>in</strong>fed condition” was<br />

conducted <strong>in</strong> the Kharif season dur<strong>in</strong>g 2006 on clay loam soil at the Agricultural Research Station Adilabad.<br />

The experiment was laid out <strong>in</strong> a split plot design. The ma<strong>in</strong> plots were <strong>of</strong> 2 Bt cotton hybrids viz., Bunny and<br />

RCH 2 factorially comb<strong>in</strong>ed with 3 levels <strong>of</strong> N @ 90, 120 and 150 kg N/ha. The sub plot treatments were the<br />

schedule <strong>of</strong> application <strong>of</strong> N <strong>in</strong> 4 splits at three different time schedules viz., 15-45-75-105, 20-50-80-110 and<br />

25-55-85-115 days after sow<strong>in</strong>g. The results showed that Bunny grew significantly taller than RCH 2 from 45<br />

days after sow<strong>in</strong>g until maturity. It produced significantly more number <strong>of</strong> sympodial branches (23.97) than<br />

2068 branches per plant by RCH 2. The two hybrids reached the time <strong>of</strong> square formation and full bloom at the<br />

same time.<br />

The plant height <strong>in</strong>creased significantly from 45 days after sow<strong>in</strong>g until maturity with <strong>in</strong>crease <strong>in</strong> the<br />

level <strong>of</strong> N from 90 to 150 kg/ha. The number <strong>of</strong> sympodial branches per plant, bolls per plant and boll weight<br />

also <strong>in</strong>creased significantly. The days to square formation and full bloom extended significantly by <strong>in</strong>creas<strong>in</strong>g<br />

the level <strong>of</strong> N from 90 to 150 kg/ha at all the growth stages. The uptake <strong>of</strong> P and K was also significantly more.<br />

Maximum yield <strong>of</strong> 2818 kg kapas and 10097 kg stalk was realized by the application <strong>of</strong> 150 kgN/ha. The<br />

uptake <strong>of</strong> N <strong>in</strong>creased significantly by <strong>in</strong>creas<strong>in</strong>g the level <strong>of</strong> N from 90 to 150 kg/ha at all the growth stages.<br />

The uptake <strong>of</strong> P and K was also significantly more. Maximum yield <strong>of</strong> 2818 kg kapas and 10097 kg stalk was<br />

realized by the application <strong>of</strong> 150 kg N/ha. The quality <strong>of</strong> fibre <strong>in</strong> terms <strong>of</strong> g<strong>in</strong>n<strong>in</strong>g percentage and halo length<br />

also improved significantly at this level <strong>of</strong> fertilization. The crop fertilized with 150 kg N/ha fetched maximum<br />

net returns <strong>of</strong> Rs. 48714/ha. But maximum net pr<strong>of</strong>it per Re. <strong>in</strong>vestment was realized at 120 kg N/ha.<br />

Spilt application <strong>of</strong> N <strong>in</strong> four splits at 25-55-115 DAS <strong>in</strong>creased the plant height from 45 DAS until<br />

maturity. Also its <strong>in</strong>creased the number <strong>of</strong> sympodial branches per plant, bolls per plant and boll weight. This<br />

schedule also <strong>in</strong>creased the uptake <strong>of</strong> NPK with additional 118 kg yield <strong>of</strong> kapas than that obta<strong>in</strong>ed by the spilt<br />

application <strong>of</strong> N at 15-45-75-105 DAS. The g<strong>in</strong>n<strong>in</strong>g percent and halo length also improved by this spilt application.<br />

The result <strong>in</strong> a ut shell <strong>in</strong>dicated that the two Bt cotton hybrids Bunny and RCH-2 require 150 kg N/ha to be<br />

applied <strong>in</strong> four splits at 25-55-85-115 DAS to <strong>in</strong>crease the kapas yield per hectare and improved the quality <strong>of</strong><br />

fibre. But it is more pr<strong>of</strong>itable with the application <strong>of</strong> 120 kg N/ha. M.sc (Ag) 2007.<br />

Heterosis and comb<strong>in</strong><strong>in</strong>g ability for yield, yield components and<br />

post – flower<strong>in</strong>g stalk Rot resistance <strong>in</strong> maize (zea mays L.)<br />

Student: Vijaya Bhaskar Reddy. S<br />

Major Advisor: Dr. (Mrs.) Farzana Jabeen<br />

Department <strong>of</strong> Genetics and Plant Breed<strong>in</strong>g<br />

The present <strong>in</strong>vestigation on “Heterosis and comb<strong>in</strong><strong>in</strong>g ability for yield, yield components and Post<br />

– Flower<strong>in</strong>g Stalk Rot resistance <strong>in</strong> maize (Zea mays L.)” was under taken with n<strong>in</strong>e l<strong>in</strong>es (BPPTI-28, BPPTI-<br />

36, BPPTI-38, BPPTI-44, CM-211, CM-210, CM-207, BPPTI-33 and ACM-120) and four testers (BPPTI-29,<br />

109


ABSTRACTS<br />

BPPTI-34, BPPTI-35, and BPPTI-43). The analysis <strong>of</strong> variance revealed significant differences among the<br />

genotypes for all the traits studied. Further, non-additive gene action was found to be preponderant for gra<strong>in</strong><br />

yield, yield components and PFSR disease resistance <strong>in</strong> the present <strong>in</strong>vestigation, favor<strong>in</strong>g a hybrid breed<strong>in</strong>g<br />

programme.<br />

The comb<strong>in</strong><strong>in</strong>g ability analysis revealed importance <strong>of</strong> non-additive gene action <strong>in</strong> govern<strong>in</strong>g the<br />

characters studied. Among the parental l<strong>in</strong>es, BPPTI-44 and BPPTI-33 were good general comb<strong>in</strong>ers for<br />

earl<strong>in</strong>ess viz., days to 50 per cent tassel<strong>in</strong>g, days to 50 per cent silk<strong>in</strong>g and days to maturity. The parents<br />

BPPTI-33 and BPPTI-38 for PFSR disease resistance, CM-211 and BPPTI-33 for gra<strong>in</strong> yield contributed<br />

maximum favorable genes. The parents BPPTI-33, CM-211 and BPPTI-38 were good general comb<strong>in</strong>ers for<br />

both yield and PFSR disease resistance.<br />

Estimates <strong>of</strong> heterosis, heterobeltiosis and standard heterosis were variable among crosses <strong>in</strong><br />

desirable direction and some <strong>of</strong> them turned out to be best specific crosses. The cross comb<strong>in</strong>ations BPPTI-<br />

44 x BPPTI-35 and BPPTI-44 x BPPTI-29 for earl<strong>in</strong>ess, BPPTI-33 x BPPTI-34 and BPPTI-28 x BPPTI-43 for<br />

PFSR disease resistance, CM-211 x BPPTI-29 and CM-211 x BPPTI-43 for yield. Further, the best selected<br />

crosses viz., CM-211 x BPPTI-29, CM-211 x BPPTI-43, CM-120 x BPPTI-29 and BPPTI-33 x BPPTI-43 for<br />

gra<strong>in</strong> yield and PFSR disease resistance may be further exploited <strong>in</strong> multilocation evaluation before releas<strong>in</strong>g<br />

them for commercial cultivation to the farmer.<br />

Studies on heritability, correlation and path analysis emphasized the need for selection, based on<br />

plant type with greater 100 kernal weight, number <strong>of</strong> kernals per row, plant height, ear length, number <strong>of</strong> kernel<br />

rows per ear, ear girth and less disease score s<strong>in</strong>ce these were found to be the important direct contribution<br />

for gra<strong>in</strong> yield. M.sc (Ag) 2007.<br />

Heterosis and comb<strong>in</strong><strong>in</strong>g ability studies us<strong>in</strong>g Pet-1 and ARG<br />

Cytoplasmic sources <strong>in</strong> sunflower (Helianthus annus L.)<br />

Student: A. Sateesh<br />

Major Advisor: Dr. K. Hussa<strong>in</strong> Sahib<br />

Department <strong>of</strong> Genetic and Plant Breed<strong>in</strong>g<br />

The present <strong>in</strong>vestigation was conducted to develop and evaluate hybrids with one <strong>of</strong> the alternate<br />

cyptoplasm i.e., ARG-6 by conduct<strong>in</strong>g appropriate studies <strong>in</strong> the extent <strong>of</strong> heterosis and comb<strong>in</strong><strong>in</strong>g ability <strong>of</strong><br />

the parental l<strong>in</strong>es and the resultant F 1<br />

comb<strong>in</strong>ations and also to study the character association and direct and<br />

<strong>in</strong>direct effects <strong>of</strong> yield attributes on seed yield <strong>in</strong> sunflower (Helianthus annus L.) at the Directorate <strong>of</strong> Oil<br />

seeds Research, Rajndranagar, Hyderabad dur<strong>in</strong>g Rabi, 2006-07. The estimates <strong>of</strong> heterosis, heterobeltiosis<br />

and standard heterosis were found to be significant among the hybrids for different traits. The general<br />

comb<strong>in</strong><strong>in</strong>g ability studies <strong>in</strong>dicated that the CMS l<strong>in</strong>e, CMS 234A recorded highest positive gca effects for seed<br />

yield/ plant, head diameter, oil content, number <strong>of</strong> filled seeds/head, total number <strong>of</strong> seeds/head and oil yield/<br />

plant. The hybrids, CMS 234A x DRS-45 among PET-1 and DCMS-41 x registered highest positive sca effects<br />

for oil content and CMS 234A c 6D-1 among PET-1 and DCMS-41 x RHA 348 among ARG-6 cytoplasmic<br />

source hybrids registered highest positive sca effects for oil yield/plant. The result <strong>in</strong>dicated the preponderance<br />

<strong>of</strong> non-additive gene action for the seed yield and yield contribut<strong>in</strong>g trait. The magnitude <strong>of</strong> average degree <strong>of</strong><br />

dom<strong>in</strong>ance revealed over dom<strong>in</strong>ance is the cause <strong>of</strong> heterosis for all the traits studied.<br />

110


ABSTRACTS<br />

The present <strong>in</strong>vestigation revealed significant correlation among seed yield and yield components<br />

and direct and <strong>in</strong>direct effects <strong>of</strong> yield attributes on seed yield. The traits, number <strong>of</strong> filled seeds/head, total<br />

number <strong>of</strong> seeds/head, head diameter, 100-seed weight, oil content, oil yield/plant and plant height registered<br />

positive correlation with seed yield. The highest direct effects on seed yield were observed for the traits,<br />

number <strong>of</strong> filled seeds/head, total number <strong>of</strong> seeds/head, 100-seed weight and head head diameter. M.sc (Ag)<br />

2007.<br />

Impact <strong>of</strong> contract farm<strong>in</strong>g poultry enterprises <strong>in</strong> RangaReddy and<br />

Mahaboobnagar District <strong>of</strong> A.P<br />

Student: Praveen Vulkundkar<br />

Major Advisor: Dr. K. Suhas<strong>in</strong>i<br />

Department <strong>of</strong> Agricultural Economics<br />

Ranga Reddy and Mahaboobnagar districts were purposively selected for the study. An ultimate<br />

sample <strong>of</strong> 30 contract broiler farms, 30 non-contract broiler layer farms were selected randomly. Returns per<br />

rupee <strong>in</strong>vestment were more on contract farms i.e., 1: 0.48 as aga<strong>in</strong>st non-contract farms 1: 0.009. The gross<br />

<strong>in</strong>come per 1000 birds was found to be less on contract farms, as these farms were paid a given a sum <strong>of</strong><br />

Rs.2.07 on an average per kg <strong>of</strong> bird as major items <strong>of</strong> expenditure like chicks, feed and medic<strong>in</strong>es were borne<br />

by hatcheries.<br />

The <strong>in</strong>puts-puts ration <strong>in</strong>dicates that the returns are more <strong>in</strong> contract farms aga<strong>in</strong>st non-contract<br />

farms. The feed conversion ration <strong>in</strong>dicates that feed efficiency <strong>in</strong>creased <strong>in</strong> contract farms than non-contract<br />

farms. The total costs for 1000 birds were phenomenally higher on non-contract farms over contract farms.<br />

The feed efficiency and performance <strong>of</strong> the flock was appreciable <strong>in</strong> broiler contract farms compared to noncontract<br />

farms. Gross <strong>in</strong>come per 100 birds was dist<strong>in</strong>ctly higher on non-contract farms over contract farm.<br />

But the returns per rupee <strong>of</strong> <strong>in</strong>vestment on contract broiler farms were substantially more over non-contract<br />

farms. There is a need that the small and medium farmers should be encouraged to produce more cycles per<br />

year, so that they can make efficient utilization <strong>of</strong> available resources to earn a reasonably good <strong>in</strong>come.<br />

Integration <strong>of</strong> broiler <strong>in</strong>dustry with greater government <strong>in</strong>tervention by provid<strong>in</strong>g legal status to the farmers will<br />

help farmers to adopt contracts and produce quality output. Further, <strong>in</strong> case <strong>of</strong> sudden out break <strong>of</strong> diseases<br />

<strong>in</strong> large scale farmer as well as <strong>in</strong>tegrators are probe to risk, therefore <strong>in</strong>surance can be <strong>in</strong>troduced for poultry<br />

farmers.M.Sc (Ag) 2007.<br />

Crop yield-Weather Relationship for Certa<strong>in</strong> Ra<strong>in</strong>fed Districts <strong>of</strong><br />

Telangana Region<br />

Student: Rup Narayan Rano<br />

Major Advisor: Dr. K. Subramanyam Reddy<br />

Department <strong>of</strong> Statistics and Mathematics<br />

In fitt<strong>in</strong>g <strong>of</strong> crop yield-weather relationship, estimation <strong>of</strong> time effect or the technology effect is the<br />

basic step. The technology effect is taken as the trend value. The assumption <strong>of</strong> a cont<strong>in</strong>uous time trend yields<br />

was <strong>in</strong> the form <strong>of</strong> quantum jumps over time. There may not be cont<strong>in</strong>uous <strong>in</strong>crease <strong>in</strong> the crop yields over the<br />

years; <strong>in</strong>stead, the yields fluctuate around the jumps. In such situations, the trend value was fixed and it was<br />

111


ABSTRACTS<br />

same for the yields belong<strong>in</strong>g to the sub-periods. These sub-periods were formed with the year <strong>of</strong> quantum<br />

jump as the cut-<strong>of</strong>f po<strong>in</strong>t. The trend value was then taken as the sub-period average for elim<strong>in</strong>ation <strong>of</strong><br />

technology effect. The time effect which assumed fixed values <strong>in</strong>stead <strong>of</strong> a cont<strong>in</strong>uous <strong>in</strong>crease, was analogous<br />

to the behavior <strong>of</strong> a discrete variable and hence it was termed as the discrete time effect.<br />

Qunatum jumps were observed <strong>in</strong> the crop yields, where there was sufficient evidence <strong>of</strong> technological<br />

improvement. These jumps occurred for all the selected crops <strong>in</strong> all the three districts and co<strong>in</strong>cided with the<br />

subjective/collateral evidence about the <strong>in</strong>troduction <strong>of</strong> new technology. Hence for these crops, relationships<br />

were obta<strong>in</strong>ed with the assumption <strong>of</strong> a discrete time trend. I t was observed that an overall relationship has<br />

not appropriate to expla<strong>in</strong> the yield variations as it consisted <strong>of</strong> certa<strong>in</strong> irrelevant repressors. Consider<strong>in</strong>g this<br />

behavior, separate relationship were fitted to the different sub-periods exist<strong>in</strong>g <strong>in</strong> the crop yield data and the<br />

analysis revealed the existence <strong>of</strong> a differential response <strong>of</strong> the yields to weather. The variables identified <strong>in</strong><br />

these relations suitably expla<strong>in</strong> the weather response with respect to the crop growth stages. Hence, it was<br />

concluded that yields under a given technology only could be forecasted (based on weather variables) on the<br />

basis <strong>of</strong> the correspond<strong>in</strong>g sub-periods relationship (equation).M.Sc (Ag) 2007.


CONTENTS<br />

PART I : PLANT SCIENCES<br />

Isolation and characterization <strong>of</strong> microsatellites <strong>in</strong> oil palm (Elaeis gu<strong>in</strong>eensis) 1<br />

P CHERUKU, K MANORAMA and S. SIVARAMAKRISHNAN<br />

Comb<strong>in</strong><strong>in</strong>g ability analysis for productivity and fibre quality traits <strong>in</strong> 13<br />

<strong>in</strong>tra-herbaceum and <strong>in</strong>terspecific (G. herbaceum L. and G. arboreum L.)<br />

crosses <strong>of</strong> diploid cotton<br />

VEMANNA IRADDI and S. T. KAJJIDONI<br />

Weed and crop resistance to herbicides 22<br />

A. S. RAO<br />

A comparative study on heterosis for productivity and fibre quality traits 35<br />

<strong>in</strong> <strong>in</strong>tra-herbaceum and <strong>in</strong>terspecific(G. herbaceum L. and G. arboreum L.)<br />

crosses <strong>of</strong> diploid cotton<br />

VEMANNA IRADDI and S. T. KAJJIDONI<br />

<strong>Diversity</strong> <strong>of</strong> <strong>weeds</strong> <strong>in</strong> the <strong>sorghum</strong> (Sorghum bicolor (L.) Moench.) fields <strong>of</strong> 44<br />

Andhra Pradesh<br />

P. KIRAN BABU, M. ELANGOVAN and J. S. MISHRA<br />

Effect <strong>of</strong> <strong>in</strong>cremental dose <strong>of</strong> phosphorus <strong>in</strong> rice on the yield <strong>of</strong> blackgram 52<br />

<strong>in</strong> rice (Oryza sativa) – blackgram (Phaseolus mungo) cropp<strong>in</strong>g sequence<br />

I. USHA RANI and V. SANKAR RAO<br />

Probability <strong>of</strong> occurrence <strong>of</strong> wet and dry spells by Markov Cha<strong>in</strong> Model 59<br />

and its application to castor (Ric<strong>in</strong>us communis L.) cultivation <strong>in</strong> Ranga Reddy District<br />

M.A.BASITH and SHAIK MOHAMMAD<br />

Identification <strong>of</strong> parents and hybrids for yield and its components us<strong>in</strong>g 65<br />

l<strong>in</strong>e x tester analysis <strong>in</strong> pigeonpea (Cajanus cajan L. Millsp)<br />

C.V.SAMEER KUMAR, CH.SREELAKSHMI, D.SHIVANI and M.SURESH<br />

Gene effects for yield contribut<strong>in</strong>g characters <strong>in</strong> pigeonpea (Cajanus Cajan L.) 71<br />

by generation mean analysis<br />

C.V.SAMEER KUMAR, CH.SREELAKSHMI, D.SHIVANI and M.SURESH<br />

PART II : RESEARCH NOTES<br />

Evaluation <strong>of</strong> F 1<br />

hybrids <strong>of</strong> tomato (Solanum lycopersicum L.) 77<br />

P.S.SUDHAKAR and K. PURUSHOTHAM<br />

Influence <strong>of</strong> growth hormonal treatments on seed germ<strong>in</strong>ation and seedl<strong>in</strong>g 82<br />

growth <strong>of</strong> simarouba (Simarouba glauca L.)<br />

L. PRASANTHI, P. MAHESWARA REDDY, P. S. SUDHAKAR,<br />

B. BALAKRISHNA BABU and K.RAJA REDDY<br />

Study <strong>of</strong> heterosis for yield and its component traits <strong>in</strong> pigeonpea 86<br />

(Cajanus cajan. L. Millsp)<br />

C.V.SAMEER KUMAR, CH.SREELAKSHMI, D.SHIVANI and M.SURESH<br />

Abstracts 92


The Journal <strong>of</strong> Research ANGRAU<br />

(Published quarterly <strong>in</strong> March, June, September and December)<br />

EDITORIAL BOARD<br />

Dr. L.G. Giri Rao<br />

Director <strong>of</strong> Extension<br />

ANGRAU - Rajendranagar<br />

Hyderabad<br />

Dr. G. Laxmikanta Reddy<br />

Director <strong>of</strong> Research<br />

ANGRAU - Rajendranagar<br />

Hyderabad<br />

Dr. Shaik Mohammad<br />

Dean <strong>of</strong> Post Graduate Studies<br />

ANGRAU - Rajendranagar - Hyderabad<br />

EDITORIAL COMMITTEE<br />

Dr. G. Bhupal Raju<br />

Pr<strong>in</strong>cipal Scientist<br />

ARCRP Micro Nutrients<br />

Agricultural Research Institute<br />

Rajendranagar - Hyderabad<br />

Dr. T. Narsi Reddy<br />

Pr<strong>of</strong>essor and Head<br />

Department <strong>of</strong> Plant Pathology<br />

College <strong>of</strong> Agriculture - Rajendranagar<br />

Hyderabad<br />

Dr. A. Sharada Devi<br />

Pr<strong>of</strong>essor & University Head<br />

Dept. <strong>of</strong> Apparel & Textiles,<br />

College <strong>of</strong> Home Science<br />

Hyderabad<br />

EDITOR<br />

Dr. Shaik Mohammad<br />

Dean <strong>of</strong> Post Graduate Studies<br />

ANGRAU - Rajendranagar - Hyderabad<br />

MANAGING EDITOR<br />

Dr. P. Gidda Reddy<br />

Pr<strong>in</strong>cipal Agricultural Information Officer<br />

Agricultural Information & Communication Centre and Press,<br />

Rajendranagar - Hyderabad - 500 030<br />

Annual<br />

Individual : Rs. 250/- author<br />

Institution : Rs. 1000/-<br />

RESEARCH EDITOR<br />

Dr. K.B. Eswari<br />

AI&CC and Press, Rajendranagar, Hyderabad - 500 030<br />

SUBSCRIPTION TARIFF<br />

Dr. G. Sravan Kumar<br />

Associate Pr<strong>of</strong>essor<br />

Department <strong>of</strong> English<br />

College <strong>of</strong> Agriculture - Rajendranagar<br />

Hyderabad<br />

Life<br />

Individual : Rs. 1000/-<br />

(till Retirement)<br />

Repr<strong>in</strong>ts Charges : Rs. 50/-<br />

DDs may be sent to Manag<strong>in</strong>g Editor - Journal <strong>of</strong> Research ANGRAU - Agricultural Information &<br />

Communication Centre and Press - Agricultural Research Institute -Rajendranagar - Hyderabad - 500 030


J. Res. ANGRAU Vol. XXXVII No. 3&4 pp 1- 112, July-Dec., 2009<br />

ANGRAU-Press/722/500/091<br />

Regd. No. 25487/73<br />

Pr<strong>in</strong>ted at ANGRAU Press, Hyderabad and Published by Dr. Shaik Mohammad, Dean <strong>of</strong> Post<br />

Graduate Studies and Editor <strong>of</strong> Journal <strong>of</strong> Research ANGRAU, Adm<strong>in</strong>istrative Office,<br />

Acharya N.G. Ranga Agricultural University, Rajendranagar, Hyderabad - 500 030<br />

AI&CC e-mail: aicc_press@yahoo.co.<strong>in</strong><br />

J. Res. ANGRAU Vol. XXXVII No. 3&4 pp 1- 112, July-Dec., 2009


THE JOURNAL OF RESEARCH ANGRAU<br />

DECLARATION CERTIFICATE TO BE SUBMITTED BY THE AUTHOR(S)<br />

Certified that the article entitled —————————————————— —— — ———<br />

————————————————————————————————————————<br />

1. is based on my / our orig<strong>in</strong>al research work / M.Sc / Ph.D thesis (strike <strong>of</strong>f<br />

whichever is not applicable)<br />

2. The article has been seen by all the authors and the order <strong>of</strong> authorship is agreed.<br />

3. The results presented have not been published or submitted for publication else<br />

where <strong>in</strong> part or full under the same or other title<br />

4. The names <strong>of</strong> the authors are those who made a notable contribution.<br />

5. No authorship is given to anyone who did not make a notable contribution.<br />

S.No. Name/s Present address Permanent address Signature<br />

1.<br />

2.<br />

3.<br />

CERTIFICATE BY THE COMPETENT AUTHORITY<br />

( Pr<strong>of</strong>essor & Head <strong>of</strong> the Department/ Pr<strong>in</strong>cipal Scientist <strong>of</strong> the station/ Associate<br />

Director <strong>of</strong> Research).<br />

Certified that the article —————————————————————————<br />

————————————————————————————————————————<br />

———————————————authored by ———————————————————<br />

—————————————————————————— is fit for publication. It fulfills<br />

all the requirements for publication <strong>in</strong> the Journal <strong>of</strong> Research ANGRAU.<br />

Name :<br />

Signature :<br />

Office seal :<br />

Note: In case it is not possible to obta<strong>in</strong> the signature <strong>of</strong> a particular author for reasons<br />

beyond his/her reach, the reasons there<strong>of</strong> should be expla<strong>in</strong>ed.


Statement about ownership and other particulars about<br />

THE JOURNAL OF RESEARCH ANGRAU<br />

Form IV (See Rule 8)<br />

1. Place <strong>of</strong> Publication : The Acharya N.G. Ranga Agricultural University,<br />

Rajendranagar, Hyderabad - 500 030<br />

2. Periodicity <strong>of</strong> Publication : Quarterly<br />

3. Pr<strong>in</strong>ter’s Name : Dr. Shaik Mohammad<br />

Nationality : Indian<br />

Address : Dean <strong>of</strong> Post Graduate Studies and Editor <strong>of</strong> Journal <strong>of</strong><br />

Research, ANGRAU<br />

Acharya N.G. Ranga Agricultural University<br />

Rajendranagar, Hyderabad.<br />

4. Publisher’s Name : Dr. Shaik Mohammad<br />

Nationality : Indian<br />

Address : Dean <strong>of</strong> Post Graduate Studies and Editor <strong>of</strong> Journal <strong>of</strong><br />

Research, ANGRAU<br />

Acharya N.G. Ranga Agricultural University<br />

Rajendranagar, Hyderabad.<br />

5. Editor’s Name : Dr. Shaik Mohammad<br />

Nationality : Indian<br />

Address : Dean <strong>of</strong> Post Graduate Studies and Editor <strong>of</strong> Journal <strong>of</strong><br />

Research, ANGRAU<br />

Acharya N.G. Ranga Agricultural University<br />

Rajendranagar, Hyderabad.<br />

6. Name and address <strong>of</strong> the : The Acharya N.G. Ranga Agricultural University,<br />

<strong>in</strong>dividuals who own the Rajendranagar, Hyderabad - 500 030 (A.P.)<br />

newspaper & partners or<br />

share holders hold<strong>in</strong>g more<br />

than one per cent <strong>of</strong> the<br />

total capital<br />

I, Dr. Shaik Mohammad hereby declare that the particulars given above are true to<br />

the best <strong>of</strong> my knowledge and belief.<br />

Dated :<br />

Signature <strong>of</strong> Publisher


SUBSCRIPTION ENROLLING FORM<br />

I/we, herewith enclose D.D. No............................................<br />

.......................................dated..................................<br />

for Rs. ............................... drawn <strong>in</strong> favour <strong>of</strong> Manag<strong>in</strong>g Editor, Journal <strong>of</strong><br />

Research ANGRAU, Agricultural Information & Communication Centre, ARI Campus,<br />

Acharya N.G. Ranga Agricultural University, Rajendranagar, Hyderabad - 500 030<br />

as <strong>in</strong>dividual annual/<strong>in</strong>dividual life/Institutional annual Membership for Journal <strong>of</strong><br />

Research ANGRAU for the calendar year (January - December) ..................<br />

S.No. Name <strong>of</strong> the Address for Name <strong>of</strong> the article Signature<br />

authors Correspondence contributed<br />

1.<br />

2.<br />

3.<br />

4.<br />

Note : The receipt <strong>of</strong> payment will be sent only if a self addressed and stamped envelope<br />

is enclosed along with your DD.


GUIDELINES FOR THE PREPARATION OF MANUSCRIPT<br />

1. Title <strong>of</strong> the article should be short, specific, phrased to identify the content and <strong>in</strong>dicate<br />

the nature <strong>of</strong> study.<br />

2. Names should be <strong>in</strong> capitals prefixed with <strong>in</strong>itials and separated by commas. For more<br />

than two authors the names should be followed by ‘and’ <strong>in</strong> small letters before the end<br />

<strong>of</strong> last name. Full address <strong>of</strong> the place <strong>of</strong> research <strong>in</strong> small letters should be typed<br />

below the names. Present address and E-mail ID <strong>of</strong> the author may be given as foot<br />

note.<br />

3. The full length paper should have the titles ABSTRACT, MATERIALS AND METHODS,<br />

RESULTS AND DISCUSSION, REFERENCES-all typed <strong>in</strong> capitals and bold font - 12.<br />

The research note will have only one title REFERENCES.<br />

4. ABSTRACT: The content should <strong>in</strong>clude the year, purpose, methodology and salient<br />

f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> the experiment <strong>in</strong> brief not exceed<strong>in</strong>g 200 words. It should be so framed<br />

that the reader need not refer to the article except for details.<br />

5. INTRODUCTION : Should be without title and <strong>in</strong>dicate the reasons which prompted the<br />

research, objectives and the likely implication. The review <strong>of</strong> recent literature should<br />

be pert<strong>in</strong>ent to the problem. The content must be brief and precise.<br />

6. MATERIALS AND METHODS : Should <strong>in</strong>clude very clearly the experimental techniques<br />

and the statistical methods adopted. Citation <strong>of</strong> standard work is sufficient for the well<br />

known methods.<br />

7. RESULTS AND DISCUSSION : Great care should be taken to highlight the important<br />

f<strong>in</strong>d<strong>in</strong>gs with support <strong>of</strong> the data well dist<strong>in</strong>guished by statistical measures like CD, r,<br />

Z test etc. Too descriptive explanation for the whole data is not desirable. The treatments<br />

should be briefly expressed <strong>in</strong>stead <strong>of</strong> abbreviations like T 1<br />

, T 2<br />

etc. The discussion<br />

should be crisp and relate to the limitations or advantages <strong>of</strong> the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> comparison<br />

with the work <strong>of</strong> others.<br />

8. REFERENCES : Literature cited should be latest. References dat<strong>in</strong>g back to more<br />

than 10 years are not desirable. Names <strong>of</strong> authors, their spell<strong>in</strong>g and year <strong>of</strong><br />

publication should co<strong>in</strong>cide both <strong>in</strong> the text and references. The follow<strong>in</strong>g examples<br />

should be followed while list<strong>in</strong>g the references from different sources.<br />

Journals and Bullet<strong>in</strong>s<br />

Abdul Salam, M and Mazrooe, S.A. 2007. Water requirement <strong>of</strong> maize (Zea mays L.) as<br />

<strong>in</strong>fluenced by plant<strong>in</strong>g dates <strong>in</strong> Kuwait. Journal <strong>of</strong> Agrometeorology. 9 (1) : 34-41


Hu, J., Yue, B and Vick, B.A. 2007. Integration <strong>of</strong> trap makers onto a sunflower SSR<br />

marker l<strong>in</strong>kage map constructed from 92 recomb<strong>in</strong>ant <strong>in</strong>bred l<strong>in</strong>es. Helia.<br />

30 (46) :25-36.<br />

Books<br />

AOAC. 1990. Official methods <strong>of</strong> analysis. Association <strong>of</strong> <strong>of</strong>ficial analytical chemists.<br />

15 th Ed. Wash<strong>in</strong>gton DC. USA. pp. 256<br />

Federer, W.T. 1993. Statistical design and analysis for <strong>in</strong>tercropp<strong>in</strong>g experiments. Volume<br />

I: two crops. Spr<strong>in</strong>ger – Verlag, Cornell University, Ithaca, New York, USA.<br />

pp. 298-305<br />

Thesis<br />

Ibrahim, F. 2007. Genetic variability for resistance to <strong>sorghum</strong> aphid (Melanaphis sacchari,<br />

Zentner) <strong>in</strong> <strong>sorghum</strong>. Ph.D. Thesis submitted to Acharya N.G. Ranga Agricultural<br />

University, Hyderabad.<br />

Sem<strong>in</strong>ars / Symposia / Workshops<br />

Naveen Kumar, P.G and Shaik Mohammad 2007. Farm<strong>in</strong>g Systems approach – A way<br />

towards organic farm<strong>in</strong>g. Paper presented at the National symposium on <strong>in</strong>tegrated<br />

farm<strong>in</strong>g systems and its role towards livelihood improvement. Jaipur, 26 – 28<br />

October 2007. pp.43-46<br />

Proceed<strong>in</strong>gs <strong>of</strong> Sem<strong>in</strong>ars / Symposia<br />

B<strong>in</strong>d, M and Howden, M. 2004. Challenges and opportunities for cropp<strong>in</strong>g systems <strong>in</strong> a<br />

chang<strong>in</strong>g climate. Proceed<strong>in</strong>gs <strong>of</strong> International crop science congress. Brisbane –<br />

Australia. 26 September – 1 October 2004. pp. 52-54<br />

(www.cropscience 2004.com 03-11-2004)<br />

Tables and Graphs : The data <strong>in</strong> tables should not be duplicated <strong>in</strong> graphs and vice versa.<br />

Mean data for ma<strong>in</strong> treatment effects should be presented with appropriate SE± and<br />

CD values wherever necessary. The 2 or 3 way tables should be furnished only if<br />

the results are consistent over years and are dist<strong>in</strong>guished to have consideration <strong>of</strong><br />

significant practical value. SE± and CD values however, should be furnished <strong>in</strong> the<br />

tables for all <strong>in</strong>teractions and should be expla<strong>in</strong>ed <strong>in</strong> the results and discussion. The<br />

treatments should be mentioned atleast <strong>in</strong> short forms if they are lengthy, but not<br />

abbreviated as T 1<br />

, T 2<br />

and T 3<br />

etc. The weights and measures should be given <strong>in</strong> the<br />

metric system follow<strong>in</strong>g the latest units eg. kg ha -1 , kg ha –1 cm, mg g -1 , ds m -1 ,<br />

g m -3 , C mol kg -1 etc.


Typ<strong>in</strong>g : The article should be typed <strong>in</strong> 12 pt font on A 4<br />

size paper leav<strong>in</strong>g a marg<strong>in</strong> <strong>of</strong> 5 cm<br />

on all sides. There should be a s<strong>in</strong>gle l<strong>in</strong>e space between the rows <strong>in</strong> abstract and<br />

double l<strong>in</strong>e <strong>in</strong> rest. Check up the manuscript thoroughly for errors before submitt<strong>in</strong>g<br />

it for publication.<br />

Note : Latest issue <strong>of</strong> the Journal may be consulted. Further details can be obta<strong>in</strong>ed from<br />

the book “Editors style Manual, edn 4. American Institute <strong>of</strong> Biological Sciences,<br />

Wash<strong>in</strong>gton DC”.<br />

Website : www.angrau.net<br />

ESSENTIAL REQUIREMENTS FOR CONSIDERATION OF PUBLICATION OF ARTICLES<br />

1. Research <strong>of</strong> not less than 2 years and <strong>of</strong> high standard will be considered as full<br />

length paper. If necessary, it will be considered for short communication.<br />

2. Research <strong>of</strong> one year should be submitted <strong>in</strong> the style and format <strong>of</strong> short<br />

communication.<br />

3. The total number <strong>of</strong> pages should not exceed 10 for full paper and 5 pages for short<br />

communication <strong>in</strong>clud<strong>in</strong>g tables and figures. The figures should be legible.<br />

4. Old research which term<strong>in</strong>ated 5 years before the date <strong>of</strong> submission will not be<br />

considered.<br />

5. All the authors should subscribe for the Journal<br />

6. The manuscript should be submitted <strong>in</strong> triplicate as per the guidel<strong>in</strong>es <strong>of</strong> the Journal<br />

to The Dean <strong>of</strong> Post Graduate Studies and Editor, The Journal <strong>of</strong> Research ANGRAU,<br />

Adm<strong>in</strong>istrative Office, Rajendranagar, Hyderabad – 500 030.<br />

7. The manuscript should accompany the declaration certificate and subscription<br />

enrolment form.<br />

8. The authors should accept the editorial / referees comments until the quality <strong>of</strong><br />

the paper is improved.<br />

9. The revised manuscript should be submitted <strong>in</strong> duplicate along with a compact disk.<br />

REVIEW PROCESS<br />

The articles will be <strong>in</strong>itially screened by the editors. It will be sent to an expert<br />

for peer review only if it conta<strong>in</strong>s adequate orig<strong>in</strong>al <strong>in</strong>formation and is prepared as per<br />

the guidel<strong>in</strong>es. The author, then, may also be asked to revise it if the expert desires.<br />

After gett<strong>in</strong>g the article suitably revised and edited, it will be placed before the editor for<br />

a f<strong>in</strong>al decision. The accepted article will be f<strong>in</strong>ally checked for language and grammar<br />

by the English editor before be<strong>in</strong>g sent to the press. The decision however to publish<br />

the paper lies with the editor even if the article is approved by the expert. Any article<br />

which is not able to meet the expected standard or is not prepared <strong>in</strong> conformity with<br />

guidel<strong>in</strong>es will be rejected without assign<strong>in</strong>g any reason.


2<br />

2<br />

2<br />

N<br />

The orig<strong>in</strong>al research articles are<br />

<strong>in</strong>vited from all over the globe<br />

The Global users can now retrieve<br />

the articles from Journal on the<br />

repository <strong>of</strong> Commonwealth<br />

Agricultural Bureaux<br />

International(CABI) on<br />

www.cabi.org<br />

and<br />

our website<br />

www.angrau.net<br />

REMEMBER<br />

A FOOL COLLECTS THE DATA<br />

A WISE MAN SELECTS THE DATA<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!