06.12.2012 Views

NON-PIPELINE TRANSPORT OF NATURAL GAS - NTNU

NON-PIPELINE TRANSPORT OF NATURAL GAS - NTNU

NON-PIPELINE TRANSPORT OF NATURAL GAS - NTNU

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>NON</strong>-<strong>PIPELINE</strong> <strong>NON</strong> <strong>PIPELINE</strong> <strong>TRANSPORT</strong> <strong>OF</strong><br />

<strong>NATURAL</strong> <strong>GAS</strong><br />

Jón Steinar Gudmundsson<br />

TPG4140 NATUR<strong>GAS</strong>S<br />

<strong>NTNU</strong><br />

September 12, 2012


Associated Gas Problem<br />

� World-wide, oil fields cannot be developed<br />

unless the associated gas problem can be<br />

solved (”stranded oil”)<br />

� The term ”stranded gas” is used in situations<br />

where the oil/gas field is remote or located in<br />

deep water<br />

� The term ”marginal gas” is used in situations<br />

where the oil/gas field is too small to justify a<br />

gas pipeline


Associated Gas Solutions<br />

Gas-to-Flare (burning)<br />

Gas-to-Well (injection)<br />

Gas-to-Liquid (LNG, MOH etc.)<br />

Gas-to-Wire (electricity)<br />

Gas-to-Tank (CNG)<br />

Gas-to-Solid (NGH)


Non-Pipeline<br />

Non Pipeline Technologies<br />

� CNG Compressed Natural Gas<br />

� GTL Gas-to-Liquid (incl. MOH)<br />

� GTW Gas-to-Wire (DC and AC)<br />

� LNG Liqufied Natural Gas<br />

� NGH Natural Gas Hydrate


Capacity (BCM/year)<br />

CAPACITY-DISTANCE CAPACITY DISTANCE DIAGRAM<br />

10,0<br />

1,0<br />

0,1<br />

Gudmundsson and Mork (2001)<br />

PIPE<br />

100 1000 10000<br />

Distance (km)<br />

ALL<br />

LNG<br />

CNG, GTW, NGH GTL


Khalipour et al. 2009, IPTC 14083


NGH<br />

Size and Technology<br />

Non-Pipeline<br />

Technology<br />

LNG<br />

Syncrude<br />

MOH<br />

Hove et al. (1999)<br />

Nominal Plant<br />

Capacity<br />

3 MTPY<br />

20,000 bbl/d<br />

2500 MTPD<br />

1.6 MSm3/d<br />

Field<br />

Size<br />

2.75 TCF<br />

1.36 TCF<br />

0.54 TCF<br />

0.38 TCF


Norwegian Fields and Plants<br />

Field Name<br />

Ormen Lange<br />

Hammerfest LNG*<br />

Reserves<br />

(gas, LPG, cond.)<br />

400 BCM (=14.1 TCF)<br />

190 BCM (=6.7 TCF)<br />

1 Sm3 = 35.314 ft3<br />

Plant Size<br />

(gas prod.)<br />

20 BCM/year<br />

4.3 BCM/year<br />

* Feed flow 6.9 BCM/year, Products 6.0 BCM/year,<br />

LPG 0.2 MTPY, Condensate 0.7 MTPY (Heiersted 2005)


Natural Gas Resources<br />

BP (2001) and Hove et al. (1999)<br />

� World reserves 150 TCM (=5295 TCF)<br />

� 38% in FSU, 35% Middle East, 9% OECD<br />

and 18% other regions<br />

� 80% new gas fields less than 0.25 TCF<br />

(=7 BCM) in size<br />

� Assuming 20 years, gives delivery<br />

0.35 BCM/year (=12.5 BCF/year)


Natural Gas Monetisation Routes<br />

5 TCF field size, size,<br />

600 MMscfd (=6.2 BCM/year) BCM/year<br />

Non-Pipeline<br />

Technology<br />

MOH<br />

LNG<br />

GTL<br />

Klein Nagervoort (2000)<br />

Global<br />

Demand<br />

30 MTPA<br />

(corrected)<br />

100 MTPA<br />

3,000 MTPA<br />

Plant Size<br />

6 MTPA<br />

4 MTPA<br />

3 MTPA<br />

Plant %<br />

Global<br />

Demand<br />

20%<br />

4%<br />

0.1%


Shell Middle Distillate Synthesis Process<br />

Klein Nagervoort (2000)


FPSO<br />

Overview of Alternatives


FPSO + Methanol<br />

UT-769


Oil<br />

Water<br />

Gas<br />

Choke<br />

Manifold<br />

Water<br />

Separation<br />

Produced water<br />

treatment<br />

FPSO + Methanol<br />

Gas<br />

Discharge<br />

Crude oil<br />

Desulphurisation<br />

Steam<br />

TCR reforming<br />

Crude Oil Storage tanks<br />

Methanol<br />

Synthesis<br />

Stabilisation/<br />

Distillation<br />

Crude Methanol<br />

Methanol Storage<br />

tanks<br />

Grade AA<br />

Methanol<br />

To shuttle<br />

Tanker


54 bar<br />

27 o C<br />

Process, Marine CNG<br />

compress<br />

refrigerate<br />

Discharge - $5%<br />

200 bar<br />

10 o C<br />

15.5 knots<br />

200 bar<br />

5 o C<br />

expand<br />

scavenge<br />

heat<br />

Load - $10%<br />

Sail - $85%<br />

47 bar<br />

5 o C<br />

10 bar<br />

-30 o C


T ariff, $/mmBtu<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

Pipe, CNG and LNG, 400 MMscfd<br />

LNG One Train<br />

Ship 1<br />

Ship 3<br />

Ship 2<br />

Ship 1<br />

Compression & Marine<br />

Ship 2<br />

Continental Shelf Pipeline<br />

CNG Conservative Tech<br />

CNG Achievable Tech<br />

Ship 10<br />

0 500 1000 1500 2000 2500 3000<br />

Distance, Kilometers


T ariff, $/mmBtu<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

4<br />

5<br />

Pipe vs. CNG<br />

$55,000 per dia.inch.mi, 900 miles<br />

No intermediate compressor stations<br />

30" pipeline<br />

Two 30" pipelines<br />

Standard CNG Carriers (Cons)<br />

0 2 4 6 8 10 12<br />

DCQ bcmy


Hydrate Equilibrium quilibrium Curve urve<br />

Pressure [bar]<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Methane<br />

1 m 3 of hydrate<br />

Natural gas<br />

0 5 10 15 20 25<br />

Temperature [°C]<br />

180 Sm 3 of gas


STANDARDIZED PELLETS<br />

Mitsui Engineering & Shipbuilding


Capital cost of NGH and LNG chains for 400 MMscf/d production and<br />

transport over 3500 nautical miles. Million US dollars mid-1995. mid 1995.<br />

Chain LNG NGH Difference<br />

Production 1220 (51%) 792 (44%) 428 (35%)<br />

Carriers 750 (32% ) 704 (39% ) 46 (6% )<br />

Regasification 400 (17%) 317 (17%) 83 (21%)<br />

Total 2370 (100%) 1813 (100%) 557 (24%)


PIPE, GTL, LNG, NGH<br />

Capex vs. Distance


Images of NGH carriers<br />

Source; 2001-03 JRTT/Phase-1, Conceptual design on NGH carrier


Natural Gas<br />

Water<br />

Natural gas sea transport chain with NGH pellets<br />

NGH formation Storage Tank<br />

Storage Tank<br />

Pelletizer<br />

NGH Carrier<br />

Load Unload<br />

Re-gasification<br />

Powdery Pellets<br />

Pellets to fire<br />

Natural Gas<br />

Water


CONCLUSIONS<br />

1. There is a need for non-pipeline technologies that can capture stranded<br />

gas and transport to market. NGH technology is being developed for this<br />

purpose and is considered an attractive alternative. Several groups have<br />

worked on developing NGH technology world-wide (<strong>NTNU</strong> was the first,<br />

now Mitsui of Japan has pilot-scale production and transport).<br />

2. LNG technology is recognised as the technology of choice for largevolume,<br />

long-distance transport of natural gas. However, about 80% of<br />

the natural gas resources yet to be developed world-wide are too small<br />

for state-of-the-art LNG technology and about one-half of these (40% of<br />

total) are stranded.<br />

3. The cost of transporting stranded gas to market using non-pipeline<br />

technologies has been estimated in the range 1.5 to 3.0 US$ per million<br />

BTU (ca. 1.5-3.0 US$/GJ), depending on the scale of development and<br />

distance to market. CNG and NGH are probably competing in similar<br />

stranded gas situations.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!