18.09.2015 Views

a-collection-of-research-articles-on-the-medical-potential-of-cow-urine

a-collection-of-research-articles-on-the-medical-potential-of-cow-urine

a-collection-of-research-articles-on-the-medical-potential-of-cow-urine

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Raad et al., IJPSR, 2013; Vol. 4(4): 1534-1539. ISSN: 0975-8232<br />

IJPSR (2013), Vol. 4, Issue 4<br />

(Research Article)<br />

Received <strong>on</strong> 04 June, 2012; received in revised form, 26 February, 2013; accepted, 13 March, 2013<br />

ANTIBACTERIAL ACTIVITY OF COW URINE AGAINST SOME PATHOGENIC AND NON-<br />

PATHOGENIC BACTERIA<br />

S. Raad 1 , D.V. Deshmukh* 2 , S. N. Harke 2 and M.S. Kachole 1<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry, Dr. Babasaheb Amberdkar Marathwada University 1 , Aurangabad, Maharashtra,<br />

India<br />

MGM’s, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences and Technology 2 , Auranagabad, Maharashtra, India<br />

Keywords:<br />

Cow <strong>urine</strong>, Antibacterial activity, Z<strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong>, Antimicrobial Peptides<br />

Corresp<strong>on</strong>dence to Author:<br />

Dr. Devendra V. Deshmukh<br />

Assistant Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, MGM’s, Institute<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences and Technology, N-6,<br />

CIDCO, Aurangabad, India<br />

E-mail: devcyano@gmail.com<br />

INTRODUCTION: It is widely accepted am<strong>on</strong>g<br />

clinicians, <strong>medical</strong> <str<strong>on</strong>g>research</str<strong>on</strong>g>ers, microbiologists and<br />

pharmacologists, that antibiotic resistance will, in <strong>the</strong><br />

very near future, leave healthcare pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als<br />

without effective <strong>the</strong>rapies for bacterial infecti<strong>on</strong>s.<br />

QUICK RESPONSE CODE<br />

ABSTRACT: Cow <strong>urine</strong> <strong>the</strong>rapy and all traditi<strong>on</strong>al practices from<br />

Indian systems <str<strong>on</strong>g>of</str<strong>on</strong>g> medicine have a str<strong>on</strong>g scientific base. The <strong>cow</strong> has<br />

proved to be a bo<strong>on</strong> in <strong>the</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture, science and technology,<br />

industry, energy, medicine etc for <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> any nati<strong>on</strong>, in<br />

additi<strong>on</strong> being eco-friendly in nature. In <strong>the</strong> present study <strong>the</strong><br />

antibacterial <strong>potential</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> were investigated. Total 14<br />

pathogenic and n<strong>on</strong>-pathogenic bacterial cultures were used as test<br />

organism against 10 different <strong>cow</strong> <strong>urine</strong> samples. The highest z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inhibiti<strong>on</strong> was shown by sample G against P aeruginosa NCIM 2945<br />

(1.8cm) while <strong>the</strong> smallest z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> was shown against E. coli<br />

NCIM 2065(0.3 cm) by sample A. Based <strong>on</strong> cumulative effect against<br />

<strong>the</strong> test organism, <strong>the</strong> <strong>urine</strong> sample G was found to be <strong>the</strong> most efficient<br />

inhibiting all <strong>the</strong> 14 test cultures. The antibacterial activity reported by<br />

sample G was comparable with standard antibiotics. A higher z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inhibiti<strong>on</strong> was observed by sample G against P aeruginosa NCIM 2945<br />

as compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g> Gentamicin, Oxacillin and vancomycin. Though<br />

<strong>the</strong> <strong>urine</strong> sample G showed a str<strong>on</strong>g antibacterial activity against all <strong>the</strong><br />

test organisms, but <strong>the</strong> activity was reported low against <strong>the</strong> entire Gram<br />

positive bacteria compared to Gram negative bacteria. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

proline which is c<strong>on</strong>sidered as a major amino acid in antimicrobial<br />

peptides was also observed in <strong>the</strong> <strong>urine</strong> sample G.<br />

IJPSR:<br />

ICV (2011)- 5.07<br />

Article can be accessed<br />

<strong>on</strong>line <strong>on</strong>:<br />

www.ijpsr.com<br />

As an example, it is now estimated that about half <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all Staphylococcus aureus strains found in many<br />

<strong>medical</strong> instituti<strong>on</strong>s are resistant to antibiotics such<br />

as methicillin 1 .<br />

Presently we face a global public health crisis, as<br />

infectious diseases top <strong>the</strong> list for causes <str<strong>on</strong>g>of</str<strong>on</strong>g> death<br />

worldwide.<br />

While it is likely that antibiotic resistance c<strong>on</strong>tributes<br />

significantly to this problem, data <strong>on</strong> c<strong>on</strong>sumpti<strong>on</strong><br />

and resistance to antibiotics are limited for most<br />

countries 2 and <strong>the</strong> relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance to<br />

morbidity and mortality is quantitatively unclear.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmaceutical Sciences and Research 1534


Raad et al., IJPSR, 2013; Vol. 4(4): 1534-1539.<br />

Cow, Bos indicus is a most valuable animal in all<br />

community. The <strong>cow</strong> <strong>urine</strong> is useful in number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease particularly in gulma, filaria, cancer ets. It is<br />

also used with herbs to cure diseases like fever,<br />

epilepsy, anemia, abdominal pain, c<strong>on</strong>stipati<strong>on</strong>, etc<br />

by <strong>the</strong> traditi<strong>on</strong>al healers 3 4 . Immunomodulatory 5 ,<br />

hypoglycemic 6 and cardio-respiratory effects 7 .<br />

Recently <strong>the</strong> <strong>cow</strong> <strong>urine</strong> has been granted U.S. Patents<br />

(No. 6,896,907 and 6,410,059) for its medicinal<br />

properties, particularly for its use al<strong>on</strong>g with<br />

antibiotics for <strong>the</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial infecti<strong>on</strong> and<br />

fight against cancers. Medicinal usage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

are extensively searched and scientifically endorsed<br />

8 .<br />

In <strong>the</strong> Present study <strong>the</strong> antibacterial <strong>potential</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>cow</strong> <strong>urine</strong> have been investigated against 14 different<br />

pathogenic and n<strong>on</strong>pathogenic bacteria.<br />

MATERIALS AND METHODS:<br />

Collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>urine</strong> sample: 10 <strong>urine</strong> samples<br />

were collected from different <strong>cow</strong>s from <strong>the</strong> farm; all<br />

<strong>the</strong> samples were collected from milking <strong>cow</strong>s.<br />

Random sampling was a method <str<strong>on</strong>g>of</str<strong>on</strong>g> choice for<br />

<str<strong>on</strong>g>collecti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples. Samples were collected in<br />

sterile c<strong>on</strong>tainers, 20 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> middle stream <strong>urine</strong> was<br />

collected and brought to <strong>the</strong> laboratory and stored in<br />

fridge until fur<strong>the</strong>r use. The samples were designated<br />

as sample A, B, C to Sample J.<br />

Qualitative test for proteins: The qualitative test <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

protein was performed as according to Martin and<br />

Mittelman 9 . The <strong>urine</strong> Samples were centrifuged at<br />

3000 rpm for 10 mins for <strong>the</strong> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments.<br />

After centrifugati<strong>on</strong> <strong>the</strong> supernatant was collected<br />

and heat test for proteins was performed to observe<br />

<strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> protein.<br />

Quantitative estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Protein: The Folin<br />

Lowry method was a method <str<strong>on</strong>g>of</str<strong>on</strong>g> choice for estimati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protein. Aliquots <str<strong>on</strong>g>of</str<strong>on</strong>g> protein standard soluti<strong>on</strong> were<br />

pipetted out as into a series <str<strong>on</strong>g>of</str<strong>on</strong>g> tubes as 0.1, 0.2….1.0<br />

ml and <strong>the</strong> total volume was made to 4 ml with<br />

distilled water. To each tube 5.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> alkaline mix<br />

(reagent C) was pipetted out, mixed well and allowed<br />

to stand for 15 min, at room temperature. 0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

FC reagent was pipetted out into each tube, mixed<br />

thoroughly and kept in dark for 30 min. The blue<br />

color formed was measured at 650 nm against a<br />

proper blank. The same was c<strong>on</strong>ducted for <strong>the</strong><br />

samples 10 .<br />

Antimicrobial activity:<br />

Test bacterial cultures: Fourteen bacterial cultures<br />

from laboratory repository viz. Escherichia coli<br />

NCIM 2345, Escherichia coli NCIM 2065,<br />

Escherichia coli NCIM 2310, Bacillus subtilis NCIM<br />

2113, Bacillus licheniformis NCIM 2015, Bacillus<br />

megaterium NCIM 2083, Staphylococcus aureus<br />

NCIM 2124, Staphylococcus aureus NCIM 2079,<br />

Staphylococcus aureus NCIM 2125, Pseudom<strong>on</strong>as<br />

aeruginosa NCIM 2945, Pseudom<strong>on</strong>as aeruginosa<br />

NCIM 2053, Proteus vulgaris NCIM 2857, Kebshella<br />

pneum<strong>on</strong>ie NCIM 2957 and Salm<strong>on</strong>ella typhimurium<br />

NCIM 2501 were used in <strong>the</strong> study. Freshly grown<br />

12 h old cultures in nutrient broth were used as <strong>the</strong><br />

inoculum in antibacterial assays.<br />

Disc Preparati<strong>on</strong>: Paper disc <str<strong>on</strong>g>of</str<strong>on</strong>g> filter paper<br />

Whattman No. 1 were prepared. The discs were<br />

sterilized by autoclave at 121°C. After <strong>the</strong><br />

sterilizati<strong>on</strong> <strong>the</strong> moisture discs were dried <strong>on</strong> hot air<br />

oven at 50°C. The sterile discs were kept in a<br />

presetrilized c<strong>on</strong>tainer until fur<strong>the</strong>r use.<br />

Disc diffusi<strong>on</strong> assay: Antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>urine</strong><br />

samples against <strong>the</strong> test organisms was d<strong>on</strong>e by disc<br />

diffusi<strong>on</strong> assay 11 . Petri plate c<strong>on</strong>taining 15 ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solidified nutrient agar was spread inoculated with<br />

100 μl <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 h old test bacterial cultures. Presterilized<br />

Whatman No.1 paper discs (6 mm) were saturated<br />

with 50 µl <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>urine</strong> and dried to be used in assays.<br />

The plates were kept at 4 o C for 10 min before <strong>the</strong>y<br />

were incubated at 37 o C for 24 h. Anti-bacterial was<br />

assessed by measuring <strong>the</strong> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> growth<br />

inhibiti<strong>on</strong> z<strong>on</strong>e around <strong>the</strong> discs. Sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> test<br />

organisms was also checked against commercial<br />

discs (Hi Media, India) c<strong>on</strong>taining standard<br />

antibiotics.<br />

Paper chromatography: The <strong>urine</strong> sample showing<br />

highest protein c<strong>on</strong>tent and antibacterial activity was<br />

analyzed for <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> amino acids using paper<br />

chromatography technique . A strip <str<strong>on</strong>g>of</str<strong>on</strong>g> wattman’s<br />

filter paper No. 1. was used, approximately 1 cm<br />

from <strong>on</strong>e end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> length a line was drawn with <strong>the</strong><br />

help <str<strong>on</strong>g>of</str<strong>on</strong>g> a pencil. At <strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> line a tiny spot<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample was placed. The spot was allowed to<br />

dry and <strong>the</strong>n placed in <strong>the</strong> chamber c<strong>on</strong>taining <strong>the</strong><br />

saturated solvent system (Butanol : Acetic acid :<br />

Water, 4 : 1 : 5). The chromatogram was allowed to<br />

run upto ¾ th <strong>the</strong> paper and <strong>the</strong>n taken out and dried<br />

in an oven and <strong>the</strong>n spayed with locating reagent<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmaceutical Sciences and Research 1535


Raad et al., IJPSR, 2013; Vol. 4(4): 1534-1539.<br />

(Ninhydrine). The Rf value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spot that appeared<br />

was calculated.<br />

RESULTS:<br />

Qualitative test for proteins: All <strong>the</strong> <strong>urine</strong> samples<br />

tested for <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> protein gave a positive<br />

result. All <strong>the</strong> test tubes c<strong>on</strong>tain <strong>the</strong> <strong>urine</strong> sample<br />

showed cloudiness with granules which gave a<br />

positive test for protein in <strong>the</strong> <strong>urine</strong> sample.<br />

Protein estimati<strong>on</strong> by Lowry method: The<br />

qualitative estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein gave mixed results.<br />

Sample G gave <strong>the</strong> highest protein c<strong>on</strong>tent 520<br />

µgm/ml while sample J showed <strong>the</strong> lowest<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein (Table 1).<br />

Antibacterial assay: Antibacterial activities <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

<strong>the</strong> <strong>urine</strong> samples were tested using disc diffusi<strong>on</strong><br />

method. On <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> cumulative antibacterial<br />

effect against all cultures under test, sample G<br />

appeared as most effective. A highest cumulative<br />

inhibiti<strong>on</strong> against all <strong>the</strong> fourteen bacterial cultures<br />

was 15 cm for <strong>the</strong> <strong>urine</strong> sample G while <strong>the</strong> lowest<br />

effect was shown by sample A (Table 2).<br />

TABLE 1: PROTEIN ESTIMATED FROM ALL THE 10<br />

URINE SAMPLES USING FOLIN LOWRY METHOD<br />

Sample<br />

Absorbance at C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

660 nm protein in µgm/ml<br />

A 0.4420 250<br />

B 0.7230 420<br />

C 0.6830 400<br />

D 0.7055 410<br />

E 0.5882 330<br />

F 0.8063 460<br />

G 0.9490 550<br />

H 0.8641 510<br />

I 0.4990 290<br />

J 0.4412 250<br />

TABLE 2: ZONE OF INHIBITIONS (IN CM) OBSERVED AGAINST 14 BACTERIAL CULTURES FROM 10<br />

DIFFERENT COW URINE SAMPLES<br />

Bacterial<br />

Urine samples<br />

cultures A B C D E F G H I J<br />

E. coli<br />

NCIM 2345<br />

0.5*(0.25) 1.2(0.30) R R 1.0(0.15) 1.5(0.5) 1.5(0.30) 1.0 (0.45) 1.5 (0.5) 0.5(0.12)<br />

E. coli<br />

NCIM 2065<br />

0.3 (0.5) 1.0(0.45) 0.5(0.15) 1.5(0.15) 0.9(0.12) 0.5(0.15) 1.2(0.27) 1.0(0.5) 1.0(0.12) 1.2(0.35)<br />

E. coli<br />

NCIM 2015<br />

0.8 (0.30) 0.7(0.15) 1.5(0.20) 0.5(0.20) 0.7(0.20) 0.5(0.75) 0.8(0.36) 0.7 (0.30) 0.7 (0.55) R<br />

B subtilis<br />

NCIM 2113<br />

R 0.5(1.0) 0.8(0.30) R 0.5(0.15) 0.7(0.30) 1.0(0.15) 0.5 (0.12) 0.5 (0.35) R<br />

B licheniformis<br />

NCIM 2015<br />

0.5 (1.0) R 0.8(0.15) R R 0.7(0.12) 1.2(0.30) 0.5 (0.5) 1.0 (0.36) 0.5<br />

B megaterium<br />

0.9<br />

R R<br />

NCIM 2083<br />

(0.30)<br />

R R 1.0 (0.5) 1.1 (0.5) R 0.5 (0.34) 0.3<br />

S aureus<br />

0.5<br />

R R R R R<br />

NCIM 2124<br />

(0.75)<br />

0.9(0.11) R R R<br />

S aureus<br />

NCIM 2125<br />

R R R R 0.6(0.12) R 0.8(0.25) R R R<br />

S aureus<br />

NCIM 2079<br />

R R R R R R 0.5(0.45) R 0.6 (0.22) 0.6<br />

P aeruginosa<br />

NCIM 2945<br />

R 1.0(0.30) 1.2(0.15) 0.6(0.12) R 1.0(0.15) 1.8(0.12) 1.0 (0.15) 1.0 (0.45) 0.7<br />

P aeruginosa<br />

NCIM 2053<br />

0.4(0.4) 0.5(0.12) R 0.8(0.30) 0.5(0.5) 0.7(0.12) 1.0(0.36) 0.7 (0.25) 0.5 (0.12) 1.0<br />

P vulgaris<br />

NCIM 2857<br />

0.8 (0.75) R 1.1(0.25) 1.0(0.12) 1.0(0.12) 1.5 (0.5) 0.8(0.47) 0.6 (0.12) R 0.4<br />

K pneum<strong>on</strong>ie<br />

NCIM 2957<br />

0.5 (1.0) R 0.5(0.30) 0.5 (0.5) 1.1 (0.5) 0.8(0.30) 0.9(0.12) R 0.5 (0.45) 1.2<br />

S typhimurium<br />

NCIM 2501<br />

1.0 (0.5) R R 0.5(0.15) 0.5(0.12) 0.6(0.25) 1.5(0.12) R R 0.6<br />

Cumulative<br />

Inhibiti<strong>on</strong><br />

4.8 4.9 7.3 5.4 6.8 10 15 6 7.8 7<br />

* Z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong>s in centimeters, Values in <strong>the</strong> paren<strong>the</strong>sis is standard deviati<strong>on</strong>s, R- Resistant.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmaceutical Sciences and Research 1536


Raad et al., IJPSR, 2013; Vol. 4(4): 1534-1539.<br />

TABLE 3: ZONE OF INHIBITION SHOWN BY 14 BACTERIAL CULTUTRES AGAINST STANDARD ANTIBIOTICS<br />

Standard Antibiotics<br />

Bacterial cultures<br />

Methicillin<br />

(5mcg/disc).<br />

Gentamicin<br />

(10 mcg/disc)<br />

Oxacillin<br />

(5mcg/disc)<br />

Vancomycin<br />

(30mcg/disc)<br />

E. coli NCIM 2345 1.5* 1.2 1.5 1.0<br />

E. coli NCIM 2065 1.3 1.5 1.2 1.5<br />

E. coli NCIM 2015 2.8 1.6 1.5 1.5<br />

B subtilis NCIM 2113 2.0 2.5 2.4 1.8<br />

B licheniformis NCIM 2015 1.5 1.0 2.0 1.3<br />

B megaterium NCIM 2083 1.5 2.8 1.7 1.7<br />

S aureus NCIM 2124 1.3 1.5 1.5 1.3<br />

S aureus NCIM 2125 1.4 1.4 1.9 2.0<br />

S aureus NCIM 2079 1.9 1.8 1.7 2.3<br />

P aeruginosa NCIM 2945 2.6 1.4 1.5 1.5<br />

P aeruginosa NCIM 2053 2.3 1.5 1.8 1.5<br />

P vulgaris NCIM 2857 1.8 2.0 2.5 1.0<br />

K pneum<strong>on</strong>ie NCIM 2957 1.5 1.8 2.0 1.7<br />

S typhimurium NCIM 2501 1.0 2.8 2.7 1.5<br />

Paper Chromatography: The chromatogram after<br />

development was observed for <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> spot<br />

and <strong>the</strong> Rf value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spot reveled <strong>the</strong> amino acid<br />

present in <strong>the</strong> <strong>urine</strong> sample. From <strong>the</strong> calculated Rf<br />

value it was clear that amino acid proline was<br />

prominent amino acid and was c<strong>on</strong>firmed with <strong>the</strong> Rf<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> standard proline.<br />

DISCUSSION: Comm<strong>on</strong>ly, antibiotics are widely as<br />

c<strong>on</strong>servative treatment in various microbial<br />

infecti<strong>on</strong>s and diseases 12 . C<strong>on</strong>sidering <strong>the</strong> enormous<br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics used, <strong>the</strong> situati<strong>on</strong> should have<br />

been that <strong>the</strong>re would be no infectious diseases. But,<br />

<strong>the</strong> fact is that <strong>the</strong> problems <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases are<br />

increasing day‐by‐day. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> major hindrances<br />

are that bacteria have genetic ability to transmit and<br />

acquire resistance towards <strong>the</strong> drugs 13 and <strong>the</strong>re are<br />

also adverse effects <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs <strong>on</strong> <strong>the</strong> host. 14 Therefore<br />

to combat such problems many natural products have<br />

been explored. The nature is an almost infinite<br />

resource for drug development and discovery. It has<br />

endowed with a complete repository <str<strong>on</strong>g>of</str<strong>on</strong>g> remedies to<br />

cure all ailments <str<strong>on</strong>g>of</str<strong>on</strong>g> mankind, as it has always been a<br />

first rate drug store with enormous range <str<strong>on</strong>g>of</str<strong>on</strong>g> plants,<br />

micro organisms and animals. 15<br />

The ancient literature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> has always<br />

focused <strong>on</strong> preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disease and maintaining <strong>the</strong><br />

health and treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases. Cow <strong>urine</strong> acts like<br />

a magical poti<strong>on</strong> for <strong>the</strong> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> disease like<br />

cancer, asthma, chr<strong>on</strong>ic renal failure, hepatitis ABC,<br />

urological disorders, respiratory diseases and also<br />

plays its part as antimicrobial against disease like<br />

Eczema, Psoriasis, acne vulgaris, scabies and o<strong>the</strong>r<br />

various kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> allergies. Urine c<strong>on</strong>tains volatile<br />

salts which are beneficial to <strong>the</strong> human body because<br />

<strong>the</strong>se salts destroy acidity and get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> pain in<br />

kidney, intestine, and womb; fur<strong>the</strong>rmore <strong>urine</strong>, a<br />

natural t<strong>on</strong>ic, eliminates giddiness, tensi<strong>on</strong> in nerves,<br />

lazy feeling, hemicrama, paralysis, comm<strong>on</strong> cold,<br />

diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> brain, nerves and joints.<br />

In <strong>the</strong> present study <strong>the</strong> antibacterial <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10<br />

different <strong>urine</strong> samples from <strong>cow</strong>s at <strong>the</strong> MGM’s<br />

farm house was revealed. The variati<strong>on</strong> in <strong>the</strong> color<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>urine</strong> samples may be due to <strong>the</strong> amount and<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> fodder c<strong>on</strong>sumed and <strong>the</strong> protein c<strong>on</strong>tent in<br />

<strong>the</strong>m.<br />

FIGURE 1: COLOR VARIATION IN THE 10 URINE<br />

SAMPLES TAKEN FROM COWS.<br />

According to Figure 3, 50% showed yellow color ,<br />

weak yellow for 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>urine</strong> samples, while<br />

20% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>urine</strong> samples showed deep yellow<br />

colorati<strong>on</strong>.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmaceutical Sciences and Research 1537


Raad et al., IJPSR, 2013; Vol. 4(4): 1534-1539.<br />

Cow <strong>urine</strong> c<strong>on</strong>tains different c<strong>on</strong>stituents; it is rich in<br />

potassium, chloride, calcium, estrogen, phosphorous,<br />

urinary proteins 16 . Various <str<strong>on</strong>g>research</str<strong>on</strong>g> have also found<br />

different comp<strong>on</strong>ents like urea, uric acid, nitrogen,<br />

sulfur, copper, ir<strong>on</strong>, sodium, o<strong>the</strong>r salts, carbolic<br />

acid, amm<strong>on</strong>ia, sugar lactose, Vitamin-A,B,C,D,E,<br />

g<strong>on</strong>adotropin, phenols and also some anticancer<br />

substances.<br />

All <strong>the</strong> <strong>cow</strong> <strong>urine</strong> samples showed <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

protein. Vats and Kanupriya 17 has reported that <strong>the</strong><br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> are resp<strong>on</strong>sible for<br />

showing antimicrobial activity.<br />

The gram negative bacteria were more efficiently<br />

inhibited than gram positive bacteria. Sathasivam et<br />

al 20 has also reported <strong>the</strong> antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>cow</strong> <strong>urine</strong> distillate against 4 gram negative bacteria.<br />

A synergistic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Azadirachta indica and <strong>cow</strong><br />

<strong>urine</strong> against some gram negative bacteria and yeast<br />

was observed by Vats and Miglan 17 . Though all <strong>the</strong><br />

<strong>urine</strong> samples showed <strong>the</strong> antibacterial activity,<br />

sample G was a promising candidate showing<br />

antibacterial activity against all given test organisms.<br />

The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> protein in all <strong>the</strong> samples was clear<br />

evidence that all <strong>the</strong> samples do c<strong>on</strong>tain <strong>the</strong> presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bioactive compounds. Marshall and Arenas 18<br />

pointed out <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> naturally<br />

occurring peptides and <strong>the</strong>ir use as an alternative to<br />

chemical antibiotics and <strong>the</strong>ir role as antimicrobials.<br />

The antibacterial <strong>potential</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>cow</strong> <strong>urine</strong> was<br />

tested against some pathogenic and n<strong>on</strong> pathogenic<br />

bacteria (Table 2). The highest z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong><br />

was shown by sample G against P aeruginosa NCIM<br />

2945 (1.8cm) while <strong>the</strong> smallest z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibit<strong>on</strong><br />

was shown against E. coli NCIM 2065(0.3 cm) by<br />

sample A.<br />

FIGURE 3: ZONE OF INHIBITION (in cm) RECORDED<br />

BY SAMPLE G AGAINST ALL THE 14 BACTERIAL<br />

CULTURES<br />

As according to figure 3, <strong>the</strong> sample G gave <strong>the</strong><br />

highest z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> against P aeruginosa<br />

NCIM 2945(1.8 cm) followed by inhibiti<strong>on</strong> against<br />

E.coli NCIM 2345 and S typhimurium NCIM 2501<br />

(1.5). The antibacterial activity shown by <strong>the</strong> <strong>urine</strong><br />

sample G was comparable with <strong>the</strong> antibacterial<br />

activity by standard antibiotics.<br />

FIGURE 2: SENSITIVITY PATTERN OF THE TEST<br />

CULTURES AGAINST 10 URINE SAMPLES<br />

All <strong>the</strong> samples showed <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> antibacterial<br />

activity. From <strong>the</strong> Figure 2, it was observed that <strong>the</strong><br />

maximum activity <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong> 10 <strong>urine</strong> samples was<br />

against Gram negative bacteria than gram positive<br />

bacteria. Similar results were obtained by Edwin et<br />

al 19 . Where <strong>the</strong>y have reported <strong>the</strong> antibacterial<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> against gram negative and gram<br />

positive bacteria.<br />

A higher z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> was observed by sample<br />

G against P aeruginosa NCIM 2945 as compared to<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> Gentamicin, Oxacillin and vancomycin.<br />

Though <strong>the</strong> <strong>urine</strong> sample G showed a str<strong>on</strong>g<br />

antibacterial activity against all <strong>the</strong> test organisms,<br />

but <strong>the</strong> activity was reported low against all <strong>the</strong> S<br />

aureus cultures, specifically S aureus NCIM 2079,<br />

(0.5 cm).<br />

The chromatography <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample revealed <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> proline. The amino acid proline is<br />

c<strong>on</strong>sidered as a major amino acid in antimicrobial<br />

peptides 21 .<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmaceutical Sciences and Research 1538


Raad et al., IJPSR, 2013; Vol. 4(4): 1534-1539.<br />

CONCLUSION: The Antibacterial property <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<strong>cow</strong> <strong>urine</strong> was reveiled using biological assay. Total<br />

10 <strong>urine</strong> samples were tested against 14 different<br />

strains <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria. The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>cow</strong> <strong>urine</strong><br />

sample was more to inhibit <strong>the</strong> gram negative<br />

bacteria than that <str<strong>on</strong>g>of</str<strong>on</strong>g> gram positive bacteria. The<br />

highest z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> that was observed was<br />

1.8cm by sample G. Thus sample G was <strong>the</strong> <strong>on</strong>ly <strong>on</strong>e<br />

which has inhibited <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong> test<br />

organism and when compared with standard<br />

antibiotic proved to be more promising. The presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> amino acid proline in <strong>the</strong> sample G has proved its<br />

<strong>potential</strong> similar to peptide antibiotics.<br />

REFERENCES:<br />

1. Roder BL, Wandall DA, Frimodt-Moller N, Espersen F,<br />

Skinhoj P, Rosdahl VT. Clinical features <str<strong>on</strong>g>of</str<strong>on</strong>g> Staphylococcus<br />

aureus endocarditis: a 10-year experience in Denmark.<br />

Archives Internal Medicine, 1999; 159(5):462-469.<br />

2. Col NF, O’C<strong>on</strong>nor RW. Estimating worldwide current<br />

antibiotic usage: report <str<strong>on</strong>g>of</str<strong>on</strong>g> Task Force 1. Rev Infect Dis<br />

1987; 9: S232–243.<br />

3. Pathak ML, Kumar A. Cow praising and importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anchyagavya as medicine. Sachitra Ayurveda 2003, 5: 56-59.<br />

4. Krishnamurthi, K, Dutta D, Devi SS, Chakrabarti T.<br />

Protective effect <str<strong>on</strong>g>of</str<strong>on</strong>g> diatillate and redistillate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>,s <strong>urine</strong> in<br />

human polymorph<strong>on</strong>uclear leukocytes challenged with<br />

established genotoxic chemicals. Biomed. Envir<strong>on</strong>. Sci 2001;<br />

17: 57-66.<br />

5. Chauhan RS, Singh BP, Singhal LK. Immunomodulati<strong>on</strong><br />

with kamdhenu Ark in mice. J. Immunol. Immunopathol<br />

2001; 71: 89-92.<br />

6. Ojewole JA, Olusi SO. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> c<strong>on</strong>cocti<strong>on</strong><br />

<strong>on</strong> plasma glucose c<strong>on</strong>centrati<strong>on</strong> in fasted rats R. Soc.<br />

Trop. Med. Hyg 1976; 241-245.<br />

7. Elegbe RA, Oyebola DDO. Cow’s <strong>urine</strong> pois<strong>on</strong>ing in<br />

Nigeria: <strong>the</strong> cardiotoxic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> in dogs.<br />

Trans. R. Soc. Trop. Med. Hyg 1976; 127-132.<br />

8. Somvanshi R. Veterinary medicine and animal keeping in<br />

ancient India. Asian Agri-History 2006 ;10(2) :133–146.<br />

9. Martin AJP , Mittelman R Quantitative Micro-analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Amino-acid Mixtures <strong>on</strong> Paper Partiti<strong>on</strong> Chromatograms'<br />

1948. Biochem ; 43: 353- 358.<br />

10. Setsuro M, Nobuko I, Yuki N. Colorimetric estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amino acids and peptides with folin phenol reagent,<br />

Analytical Biochemistry 1996; 16(2): 365-371.<br />

11. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic<br />

susceptibility testing by a standardized single disc method.<br />

American. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical. Pathology 1966; 45: 493-496.<br />

12. Daniel B, Alexander R, Ehud IA. Changing bacterial isolates<br />

and antibiotic sensitivities <str<strong>on</strong>g>of</str<strong>on</strong>g> purulent dacryocystitis. Orbit;<br />

2005: 24 (2): 95‐98.<br />

13. Cohen ML. Epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> drug resistance: implicati<strong>on</strong>s<br />

for a post‐antimicrobial era, Science 1992; 257: 1050‐1055.<br />

14. Ahmad I, Mehmood Z, Mohammad F. Screening <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

Indian medicinal plants for <strong>the</strong>ir antimicrobial properties. J<br />

Ethnopharmacol 1998; 62: 183‐193.<br />

15. Sujata MB, Charles HB. New agents for Gram‐positive<br />

bacteria. Current Opini<strong>on</strong> in Microbiology. 2000; 3(5):<br />

528‐534.<br />

How to cite this article:<br />

Raad S, Deshmukh DV, Harke SN and Kachole MS: Antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow <strong>urine</strong> against some Pathogenic and N<strong>on</strong>pathogenic<br />

Bacteria. Int J Pharm Sci Res 2013; 4(4); 1534-1539.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmaceutical Sciences and Research 1539


Pharmaceutical Biology<br />

ISSN: 1388-0209 (Print) 1744-5116 (Online) Journal homepage: http://www.tandf<strong>on</strong>line.com/loi/iphb20<br />

Antidiabetic Activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow Urine and a Herbal<br />

Preparati<strong>on</strong> Prepared Using Cow Urine<br />

E. Edwin Jarald, S. Edwin, V. Tiwari, R. Garg & E. Toppo<br />

To cite this article: E. Edwin Jarald, S. Edwin, V. Tiwari, R. Garg & E. Toppo (2008) Antidiabetic<br />

Activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow Urine and a Herbal Preparati<strong>on</strong> Prepared Using Cow Urine, Pharmaceutical<br />

Biology, 46:10-11, 789-792<br />

To link to this article: http://dx.doi.org/10.1080/13880200802315816<br />

Published <strong>on</strong>line: 05 Jan 2009.<br />

Submit your article to this journal<br />

Article views: 19<br />

View related <str<strong>on</strong>g>articles</str<strong>on</strong>g><br />

Full Terms & C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> access and use can be found at<br />

http://www.tandf<strong>on</strong>line.com/acti<strong>on</strong>/journalInformati<strong>on</strong>?journalCode=iphb20<br />

Download by: [University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<strong>the</strong>nburg] Date: 17 September 2015, At: 21:45


Pharmaceutical Biology<br />

2008, Vol. 46, Nos. 10–11, pp. 789–792<br />

Antidiabetic Activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow Urine and a Herbal Preparati<strong>on</strong><br />

Prepared Using Cow Urine<br />

E. Edwin Jarald, 1 S. Edwin, 1 V. Tiwari, 1 R. Garg, and E. Toppo 1<br />

1 Herbal Drug Research Lab, B. R. Nahata College <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacy and Research Centre, Mandsaur, Madhya Pradesh, India<br />

Downloaded by [University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<strong>the</strong>nburg] at 21:45 17 September 2015<br />

Abstract<br />

An herbal preparati<strong>on</strong> prepared by <strong>the</strong> traditi<strong>on</strong>al healers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mandsaur using <strong>cow</strong> <strong>urine</strong> and Gymnema sylvestre<br />

R. Br. (Asclepiadaceae), Momordica charantia L. (Cucurbitaceae),<br />

Eugenia jambolana Lam. (Myrtaceae), Aegle<br />

marmelos Correa (Rutaceae), Cinnamomum tamala<br />

Buch.-Ham. (Lauraceae), Aloe barbadensis Linn. (Liliaceae),<br />

and Trig<strong>on</strong>ella foenum-graecum L. (Leguminosae)<br />

is being used in <strong>the</strong> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes. In order to scientifically<br />

appraise <strong>the</strong> claim, this preparati<strong>on</strong> was studied<br />

for antidiabetic activity and also compared with <strong>the</strong><br />

herbal preparati<strong>on</strong> prepared using water. Fresh <strong>cow</strong> <strong>urine</strong><br />

was also used in <strong>the</strong> study to identify <strong>the</strong> synergistic effect.<br />

The preparati<strong>on</strong>s were tested for antidiabetic activity<br />

in alloxan-induced diabetic rats at two dose level, 200 and<br />

400 mg/kg, respectively. The study was d<strong>on</strong>e for a period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

21 days. The activity was compared with reference standard,<br />

insulin (1 unit/kg, i.p.) and c<strong>on</strong>trol. The herbal preparati<strong>on</strong>s<br />

significantly (P< 0.05, P < 0.01) lowered <strong>the</strong> blood sugar<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperglycemic rats in a dose-dependent manner.<br />

Comparatively, <strong>the</strong> <strong>cow</strong> <strong>urine</strong> preparati<strong>on</strong> showed better activity<br />

than did <strong>the</strong> preparati<strong>on</strong> prepared using water. Fresh<br />

<strong>cow</strong> <strong>urine</strong> also exhibited significant antidiabetic effect. This<br />

study supports <strong>the</strong> claim <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> local traditi<strong>on</strong>al healers.<br />

Keywords: Alloxan m<strong>on</strong>ohydrate, antidiabetic, <strong>cow</strong> <strong>urine</strong>,<br />

herbal preparati<strong>on</strong>.<br />

Introducti<strong>on</strong><br />

Diabetes mellitus is a group <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic diseases characterized<br />

by hyperglycemia, hypertriglyceridemia, and hypercholesterolemia,<br />

resulting from defects in insulin se-<br />

creti<strong>on</strong> or acti<strong>on</strong> or both (Nyholm et al., 2000). Diabetes<br />

mellitus is a metabolic disease as old as mankind, and its<br />

incidence is c<strong>on</strong>sidered to be high (4–5%) all over <strong>the</strong><br />

world. Oral hypoglycemic drugs, such as sulf<strong>on</strong>ylureas and<br />

biguanides, have been used in <strong>the</strong> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes<br />

mellitus (Okinea et al., 2005). In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> introducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hypoglycemic agents, diabetes and related complicati<strong>on</strong>s<br />

c<strong>on</strong>tinue to be a major <strong>medical</strong> problem. Since time<br />

immemorial, patients with n<strong>on</strong>–insulin-dependent diabetes<br />

have been treated orally in folk medicine with a variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plant extracts. In India, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> plants are menti<strong>on</strong>ed in<br />

ancient literature (Ayurveda) for <strong>the</strong> cure <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetic c<strong>on</strong>diti<strong>on</strong>s<br />

known as “madhumeha,” and some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>m have been<br />

experimentally evaluated and <strong>the</strong> active principles isolated<br />

(Som et al., 2001).<br />

Cow <strong>urine</strong> is used al<strong>on</strong>g with herbs to treat various diseases<br />

like fever, epilepsy, anemia, abdominal pain, c<strong>on</strong>stipati<strong>on</strong>,<br />

and so forth, by traditi<strong>on</strong>al healers all over India<br />

(Pathak & Kumar, 2003a; Krishnamurthi et al., 2004). The<br />

traditi<strong>on</strong>al healers (“Gayathri Parivar”) in Mandsaur use an<br />

herbal preparati<strong>on</strong> prepared using <strong>cow</strong> <strong>urine</strong> for <strong>the</strong> treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes. The traditi<strong>on</strong>al healers prepare a decocti<strong>on</strong><br />

using <strong>cow</strong> <strong>urine</strong> instead <str<strong>on</strong>g>of</str<strong>on</strong>g> water that c<strong>on</strong>tains <strong>the</strong> following<br />

herbs: Gymnema sylvestre R. Br. (Asclepiadaceae), Momordica<br />

charantia L. (Cucurbitaceae), Eugenia jambolana<br />

Lam. (Myrtaceae), Aegle marmelos Correa (Rutaceae),<br />

Cinnamomum tamala Buch.-Ham. (Lauraceae), Aloe barbadensis<br />

Linn. (Liliaceae), and Trig<strong>on</strong>ella foenum-graecum<br />

L. (Leguminosae). The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this work was to validate <strong>the</strong><br />

folk claim. In order to create a logic base behind this treatment,<br />

<strong>the</strong> preparati<strong>on</strong> using <strong>cow</strong> <strong>urine</strong> was compared with<br />

<strong>the</strong> preparati<strong>on</strong> using water. Fresh <strong>cow</strong> <strong>urine</strong> was also used<br />

in this antidiabetic study to investigate <strong>the</strong> synergistic effect<br />

if any.<br />

Accepted: April 2, 2008<br />

Address corresp<strong>on</strong>dence to: E. Edwin Jarald, Assistant Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Herbal Drug Research Lab, B. R. Nahata College <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacy &<br />

C<strong>on</strong>tract Research Centre, Mhow Neemuch Road, Mandsaur 458001, Madhya Pradesh, India. E-mail: ejeru@rediffmail.com<br />

DOI: 10.1080/13880200802315816<br />

C○ 2008 Informa UK Ltd.


790 E.E. Jarald et al.<br />

Downloaded by [University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<strong>the</strong>nburg] at 21:45 17 September 2015<br />

Materials and Methods<br />

Procurement <str<strong>on</strong>g>of</str<strong>on</strong>g> materials<br />

The <strong>urine</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a 2-year-old virgin Gujarati Indian <strong>cow</strong> known<br />

as “Geer <strong>cow</strong>” was used in <strong>the</strong> study. The study was performed<br />

after getting a certificate from <strong>the</strong> veterinary doctor<br />

stating that <strong>the</strong> <strong>cow</strong> was free from diseases. Fresh <strong>cow</strong> <strong>urine</strong><br />

was collected daily and used after filtrati<strong>on</strong>. The plant drugs<br />

were collected from <strong>the</strong> Gayathri Parivar (local traditi<strong>on</strong>al<br />

healers) in order to minimize <strong>the</strong> variati<strong>on</strong> in <strong>the</strong> claimed<br />

<strong>the</strong>rapeutic effect. The collected plant materials were positively<br />

identified by Dr. H.S. Chatree, Botanist, Govt. Arts<br />

and Science College, Mandsaur, and <strong>the</strong> voucher specimens<br />

were retained in our department for future reference.<br />

Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracts<br />

The herbal preparati<strong>on</strong>s using <strong>cow</strong> <strong>urine</strong> and distilled water<br />

were made using <strong>the</strong> above-menti<strong>on</strong>ed different plant<br />

species. Equal quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> air-dried samples <str<strong>on</strong>g>of</str<strong>on</strong>g> each plant<br />

species were ground and mixed with 10-times <strong>the</strong> equivalent<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> and water separately and boiled<br />

for 4 h. The extracts were filtered and evaporated in a distillati<strong>on</strong><br />

assembly to get <strong>the</strong> residue. The percentage yield <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extracts prepared using <strong>cow</strong> <strong>urine</strong> and distilled water was<br />

12.5% and 11.0%, w/w, respectively. Preliminary chemical<br />

investigati<strong>on</strong> was carried out in <strong>the</strong> extracts to identify<br />

<strong>the</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituents present in <strong>the</strong> extracts (Brain &<br />

Turner, 1975; Khandelwal, 2005).<br />

Animals and treatment<br />

After getting approval from <strong>the</strong> instituti<strong>on</strong>al animal ethical<br />

committee (reg. no. – 918/ac/05/CPCSEA), male Wistar<br />

strain rats (weighing between 150 and 200 g) procured<br />

from <strong>the</strong> animal house <str<strong>on</strong>g>of</str<strong>on</strong>g> B. R. Nahata College <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacy,<br />

Mandsaur, were used for <strong>the</strong> investigati<strong>on</strong>. The animals<br />

were housed in standard envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature (21 ± 2 ◦ C), humidity (55 ± 10%), and a 12-h<br />

light-dark cycle. Rats were supplied with standard pellet<br />

diet and water ad libitum.<br />

Acute toxicity studies<br />

The acute toxicity test <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> preparati<strong>on</strong>s and <strong>cow</strong> <strong>urine</strong> was<br />

determined according to <strong>the</strong> OECD guidelines (No. 420,<br />

Organizati<strong>on</strong> for Ec<strong>on</strong>omic Cooperati<strong>on</strong> and Development).<br />

Female albino mice (20–25 g) were used for this<br />

study. Dosing amounts for sample in liquid form were calculated<br />

with <strong>the</strong> help <str<strong>on</strong>g>of</str<strong>on</strong>g> density or specific gravity. After<br />

<strong>the</strong> sighting study, a starting dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 2000 mg/kg (p.o.) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> test samples was given to various groups <str<strong>on</strong>g>of</str<strong>on</strong>g> five animals<br />

each. The treated animals were m<strong>on</strong>itored for 14 days for<br />

mortality and general behavior. No deaths were observed<br />

through <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> study. The test samples were found<br />

to be safe up to <strong>the</strong> dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 2000 mg/kg, and doses <str<strong>on</strong>g>of</str<strong>on</strong>g> 200<br />

and 400 mg/kg were chosen for fur<strong>the</strong>r experimentati<strong>on</strong>.<br />

Antihyperglycemic activity<br />

Diabetes was induced in rats by injecting 150 mg/kg<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> alloxan m<strong>on</strong>ohydrate intraperit<strong>on</strong>eally in 0.9% w/v<br />

NaCl (Ainapure et al., 1985; Porchezian et al., 2000).<br />

Seventy-two hours after injecti<strong>on</strong>, blood glucose level was<br />

measured, and <strong>the</strong> diabetic rats were divided into eight<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> six animals each. Insulin [1 unit/kg (i.p.)] was<br />

used as standard drug (Mukherjee, 2002). The first group<br />

was kept as vehicle c<strong>on</strong>trol, <strong>the</strong> sec<strong>on</strong>d was treated with<br />

insulin, and <strong>the</strong> third to eighth groups were treated with<br />

herbal preparati<strong>on</strong>s prepared using <strong>cow</strong> <strong>urine</strong>, distilled<br />

water, and pure <strong>cow</strong> <strong>urine</strong> at two dose levels, 200 and 400<br />

mg/kg (p.o), respectively. One more group was included<br />

in <strong>the</strong> study to determine <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh <strong>cow</strong> <strong>urine</strong> in<br />

<strong>the</strong> blood glucose level <str<strong>on</strong>g>of</str<strong>on</strong>g> normal rats. Fresh <strong>cow</strong> <strong>urine</strong> at<br />

a dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 400 mg/kg was given to <strong>the</strong> rats in this group for<br />

21 days. The treatment was given <strong>on</strong>ce daily for 21 days.<br />

Blood samples were collected at regular intervals after<br />

fasting overnight, before treatment, from rat-tail vein under<br />

mild anes<strong>the</strong>sia and m<strong>on</strong>itored. The blood sugar level was<br />

m<strong>on</strong>itored using Accu-chek Active Test strips in Accu-chek<br />

Active Test meter (Roche Diagnostics, Germany).<br />

Statistical analysis<br />

Data were expressed as mean ± SEM, and <strong>the</strong> obtained data<br />

were subjected to <strong>on</strong>e-way ANOVA followed by Dunnet’s<br />

test. The p values less than 0.05 were c<strong>on</strong>sidered as significant.<br />

Results<br />

The phytochemical investigati<strong>on</strong>s performed in <strong>the</strong> extracts<br />

revealed <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> alkaloids, tannins, flav<strong>on</strong>oids, carbohydrates,<br />

and sap<strong>on</strong>ins in both <strong>the</strong> extracts. The results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> antidiabetic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> and herbal preparati<strong>on</strong>s<br />

prepared using <strong>cow</strong> <strong>urine</strong> and water are presented in Table 1.<br />

The basal blood glucose levels <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong> groups were<br />

statistically not different from each o<strong>the</strong>r. Three days after<br />

alloxan administrati<strong>on</strong>, blood glucose values were 5-fold<br />

higher in all <strong>the</strong> groups and were not statistically different<br />

from each o<strong>the</strong>r. After 21 days, values <str<strong>on</strong>g>of</str<strong>on</strong>g> blood glucose were<br />

decreased in all <strong>the</strong> treatment groups (P < 0.05, P < 0.01).<br />

The value in diabetic c<strong>on</strong>trol group remained stable. The<br />

preparati<strong>on</strong>s exhibited activity in a dose-dependent manner.<br />

The activities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> preparati<strong>on</strong>s were found significant<br />

from <strong>the</strong> 7th day <strong>on</strong>wards, whereas <strong>the</strong> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

was found significant <strong>on</strong>ly after 21 days <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment. Normal<br />

rats treated with <strong>cow</strong> <strong>urine</strong> for 21 days did not show any<br />

elevati<strong>on</strong> in <strong>the</strong>ir blood glucose levels. Comparatively, <strong>the</strong><br />

preparati<strong>on</strong>s c<strong>on</strong>taining <strong>cow</strong> <strong>urine</strong> were found to be better<br />

than <strong>the</strong> herbal preparati<strong>on</strong> prepared using distilled water.


Antidiabetic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> and <strong>cow</strong> <strong>urine</strong> preparati<strong>on</strong> 791<br />

Table 1.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> various preparati<strong>on</strong>s in alloxan-induced diabetic rats.<br />

Blood glucose c<strong>on</strong>centrati<strong>on</strong> (mg/dL)<br />

Treatment Daily dose (mg/kg) 0th day 3rd day (alloxan) 7th day 14th day 21st day<br />

Insulin 1 unit/kg 83.2 ± 3.01 451.22 ± 19.30 349.42 ± 19.2 ∗∗ 201.44 ± 12.50 ∗∗ 133.10 ± 16.52 ∗∗∗<br />

Diabetic c<strong>on</strong>trol — 93.4 ± 4.23 439.54 ± 15.90 538.22 ± 20.40 517.98 ± 22.21 530.54 ± 15.20<br />

CUP 200 79.50 ± 2.01 451.22 ± 13.40 380.44 ± 12.42 ∗∗ 318.60 ± 11.30 ∗∗ 235.55 ± 12.25 ∗<br />

CUP 400 84.00 ± 3.04 458.80 ± 14.00 360.45 ± 11.18 ∗∗ 279.80 ± 11.08 ∗∗ 203.34 ± 15.10 ∗∗<br />

AP 200 84.10 ± 3.54 478.44 ± 12.16 399.12 ± 13.03 ∗∗ 330.45 ± 13.55 ∗∗ 240.86 ± 18.22 ∗∗<br />

AP 400 88.50 ± 4.65 439.42 ± 14.18 369.72 ± 10.90 ∗∗ 298.24 ± 14.50 ∗∗ 220.67 ± 17.55 ∗∗<br />

CU 200 84.62 ± 5.00 480.42 ± 16.22 490.88 ± 10.30 465.45 ± 13.82 380.20 ± 18.00 ∗<br />

CU 400 80.92 ± 7.01 430.45 ± 17.92 450.88 ± 17.89 410.12 ± 12.56 ∗ 262.40 ± 17.92 ∗∗<br />

CU c<strong>on</strong>trol 400 85.20 ± 3.46 88.54 ± 2.40 84.22 ± 4.80 87.70 ± 3.40 84.92 ± 4.20<br />

Downloaded by [University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<strong>the</strong>nburg] at 21:45 17 September 2015<br />

CUP, <strong>cow</strong> <strong>urine</strong> Preparati<strong>on</strong>; AP, aqueous preparati<strong>on</strong>; CU, fresh <strong>cow</strong> <strong>urine</strong>; CU c<strong>on</strong>trol, n<strong>on</strong> diabetic rats treated with fresh <strong>cow</strong> <strong>urine</strong>.<br />

Values are expressed as mean ± SEM for six observati<strong>on</strong>s.<br />

Statistical analysis was d<strong>on</strong>e by <strong>on</strong>e-way ANOVA followed by Dunnet’s multiple comparis<strong>on</strong> test. Significant at ∗ p < 0.05, ∗∗ p < 0.01,<br />

∗∗∗ p < 0.001 versus c<strong>on</strong>trol.<br />

Discussi<strong>on</strong><br />

Cow, Bos indicus is a most valuable animal in all Veda;<br />

it is called “<strong>the</strong> Mo<strong>the</strong>r <str<strong>on</strong>g>of</str<strong>on</strong>g> all.” A compositi<strong>on</strong> c<strong>on</strong>taining<br />

<strong>cow</strong>s excreti<strong>on</strong>s—<strong>urine</strong>, dung, milk, curd, and ghee—five<br />

ingredients toge<strong>the</strong>r known as “panchagawya,” is given to<br />

women after delivering a baby. Panchagawya is <strong>the</strong> main ingredient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many Ayurvedic preparati<strong>on</strong>s (Pathak & Kumar,<br />

2003b). Cow <strong>urine</strong>, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ingredients in panchagawya,<br />

is believed to have many <strong>the</strong>rapeutic values. In India, <strong>cow</strong><br />

<strong>urine</strong> is used by <strong>the</strong> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> rural populati<strong>on</strong> as a<br />

folklore remedy in almost all <strong>the</strong> states. Agencies in Gujarat<br />

have been marketing <strong>cow</strong> <strong>urine</strong> preparati<strong>on</strong>s from multiple<br />

outlets, advertising that <strong>the</strong>y are sterilized and completely<br />

fresh, with prices ranging from Rs. 20 to Rs. 30 per bottle.<br />

Keeping in view <strong>the</strong> enormous role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> in<br />

medicinal and veterinary medicine, a scientific experiment<br />

was performed in rats to elucidate <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

and <strong>cow</strong> <strong>urine</strong> c<strong>on</strong>taining preparati<strong>on</strong> as an antidiabetic.<br />

Alloxan produces hyperglycemia by a selective cytotoxic<br />

effect <strong>on</strong> pancreatic beta cells. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> intracellular<br />

phenomena for its cytotoxicity is through generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

free radicals dem<strong>on</strong>strated both in vivo and in vitro (Yadav<br />

et al., 2002). Our investigati<strong>on</strong>s indicate <strong>the</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> herbal preparati<strong>on</strong>s in maintaining blood glucose levels<br />

in alloxan-induced diabetic rats. The glucose-lowering<br />

activity observed in diabetic animals may be due to stimulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> beta cells <str<strong>on</strong>g>of</str<strong>on</strong>g> pancreatic islets or stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glycogenesis (Miura et al., 2001). This may be due to <strong>the</strong><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> some hypoglycemic principles in <strong>the</strong> plants<br />

used in <strong>the</strong>se preparati<strong>on</strong>s because all <strong>the</strong>se plants are well<br />

known for <strong>the</strong>ir antidiabetic acti<strong>on</strong> (Grover et al., 2002;<br />

Kar et al., 2003; Mohamed et al., 2006; Pulok et al., 2006),<br />

and <strong>the</strong>se plants have different types <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanisms in<br />

reducing blood glucose levels. Comparatively, <strong>the</strong> preparati<strong>on</strong><br />

using <strong>cow</strong> <strong>urine</strong> was found to exhibit better activity<br />

than did <strong>the</strong> <strong>on</strong>e prepared using distilled water. This could<br />

not be correlated with <strong>the</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phytoc<strong>on</strong>stituents<br />

present in <strong>the</strong> extracts because both extracts c<strong>on</strong>tains <strong>the</strong><br />

same nature <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituents. The interesting observati<strong>on</strong> in<br />

our study was <strong>the</strong> antidiabetic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <strong>cow</strong> <strong>urine</strong>.<br />

The hypoglycemic effect was not observed in <strong>the</strong> normal<br />

rats treated with fresh <strong>cow</strong> <strong>urine</strong>, and this indicates that <strong>the</strong><br />

possible mechanism behind <strong>the</strong> antidiabetic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh<br />

<strong>cow</strong> <strong>urine</strong> may be due to its stimulati<strong>on</strong> in peripheral use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glucose. According to literature, <strong>cow</strong> <strong>urine</strong> was found to exhibit<br />

an antioxidant effect (Krishnamurthi et al., 2004). Free<br />

radicals are implicated in wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases including<br />

diabetes; <strong>the</strong> antioxidant activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> also may be<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reas<strong>on</strong>s for its observed antidiabetic effect.<br />

Chemopr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> in our laboratory c<strong>on</strong>firmed<br />

<strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> protein, urea, uric acid, creatinine, phenol,<br />

aromatic acids, enzymes such as acid phosphatase, alkaline<br />

phosphatase, amylase, and vitamins (Gowenlock &<br />

McMurray, 1988). Al<strong>on</strong>g with <strong>the</strong>se, <strong>the</strong>re may be some<br />

o<strong>the</strong>r c<strong>on</strong>stituents that may be resp<strong>on</strong>sible for <strong>the</strong> observed<br />

activity. From <strong>the</strong>se observati<strong>on</strong>s, it was clear that <strong>the</strong> better<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> herbal preparati<strong>on</strong> prepared using <strong>cow</strong> <strong>urine</strong> may<br />

be due to its synergistic effect with <strong>cow</strong> <strong>urine</strong> or, according<br />

to ancient literature, <strong>cow</strong> <strong>urine</strong> is a w<strong>on</strong>derful solvent for<br />

extracti<strong>on</strong>, and so it is <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> to extract out<br />

more active c<strong>on</strong>stituents from <strong>the</strong> herbal drugs and <strong>the</strong>reby<br />

increase antidiabetic activity.<br />

Fur<strong>the</strong>r pharmacological investigati<strong>on</strong>s are needed to<br />

elucidate <strong>the</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> observed antihyperglycemic<br />

effect. This study supports <strong>the</strong> claim <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> traditi<strong>on</strong>al healers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mandsaur.<br />

Acknowledgement<br />

The authors are thankful to Gayathri Parivar (local traditi<strong>on</strong>al<br />

healers) for providing <strong>the</strong> necessary informati<strong>on</strong> to<br />

carry out this <str<strong>on</strong>g>research</str<strong>on</strong>g> work.


792 E.E. Jarald et al.<br />

Downloaded by [University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<strong>the</strong>nburg] at 21:45 17 September 2015<br />

References<br />

Ainapure SS, Arjaria PD, Sawant VR, Baid PS, Maste SS, Varda<br />

AB (1985): Hypoglycemic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> an indigenous preparati<strong>on</strong>.<br />

Indian J Pharmacol 17: 238–239.<br />

Brain KR, Turner TD (1975): The Practical Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Phytopharmaceuticals. Bristol, Wright-Scientechnica,<br />

pp. 10–30.<br />

Gowenlock AH, McMurray RJ (1988): Varley’s Practical Clinical<br />

Biochemistry. New Dehli, CBS Publishers and Distributors,<br />

pp. 149–153.<br />

Grover JK, Yadav S, Vats V (2002): Medicinal plants <str<strong>on</strong>g>of</str<strong>on</strong>g> India with<br />

anti-diabetic <strong>potential</strong>. J Ethnopharmacol 81: 81–100.<br />

Kar A, Choudhary BK, Bandyopadhyay NG (2003): Comparative<br />

evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hypoglycaemic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> some Indian medicinal<br />

plants in alloxan diabetic rats. J Ethnopharmacol 84:<br />

105–108.<br />

Khandelwal KR (2005): Practical Pharmacognosy. Pune,Nirali<br />

Prakashan, pp. 152–154.<br />

Krishnamurthi K, Dutta D, Devi SS, Chakrabarti T (2004): Protective<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> distillate and redistillate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> in human<br />

polymorph<strong>on</strong>uclear leukocytes challenged with established<br />

genotoxic chemicals. Biomed Envir<strong>on</strong> Sci 17: 57–66.<br />

MiuraT,ItohC,IwamotoN,AatoM,KawaiM,ParkSR,SuzikiI<br />

(2001): Hypoglycemic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fruit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Momordica<br />

charantia in Type 2 diabetic mice. J Nutr Sci Vitaminol<br />

(Tokyo) 47: 340–344.<br />

Mohamed B, Abderrahim Z, Hassane M, Abdelhafid T,<br />

Abdelkhaleq L (2006): Medicinal plants with <strong>potential</strong> antidiabetic<br />

activity—A review <str<strong>on</strong>g>of</str<strong>on</strong>g> ten years <str<strong>on</strong>g>of</str<strong>on</strong>g> herbal medicine<br />

<str<strong>on</strong>g>research</str<strong>on</strong>g> (1990–2000): Int J Diabetes Metab 14: 1–25.<br />

Mukherjee KP (2002): Quality C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Herbal Drugs.<br />

New Delhi, New Business Horriz<strong>on</strong>s, p. 525.<br />

Nyholm B, Porksen N, Juhl CB, Gravholt CH, Butler PC, Weeke<br />

J, Veldhuis JD, Pincus S, Schmitz O (2000): Assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> insulin secreti<strong>on</strong> in relatives <str<strong>on</strong>g>of</str<strong>on</strong>g> patients with type 2 (n<strong>on</strong>insulin-dependent)<br />

diabetes mellitus: evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> early β-cell<br />

dysfuncti<strong>on</strong>. Metabolism 49: 896–905.<br />

Okinea LKN, Nyarkob AK, Osei-Kwabenaa N, Opp<strong>on</strong>gc IV,<br />

Barnesa F, Ofosuheneb M (2005): The antidiabetic activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> herbal preparati<strong>on</strong> ADD-199 in mice: A comparative<br />

study with two oral hypoglycaemic drugs. J Ethnopharmacol<br />

97: 31–38.<br />

Pathak ML, Kumar A (2003a): Cow praising and importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Panchyagawya as medicine. Sachitra Ayurveda 5: 56–<br />

59.<br />

Pathak ML, Kumar A (2003b): Gomutra a descriptive study. SachitraAyurveda7:<br />

81–84.<br />

Porchezian E, Ansari SH, Shreedharan NKK (2000): Antihyperglycemic<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Euphrasia <str<strong>on</strong>g>of</str<strong>on</strong>g>ficinale leaves. Fitoterapia<br />

71: 522–526.<br />

Pulok KM, Kuntal M, Kakali M, Peter JH (2006): Leads<br />

from Indian medicinal plants with hypoglycemic <strong>potential</strong>s.<br />

J Ethnopharmacol 106: 1–28.<br />

Som NS, Praveen V, Shoba S, Radhey S, Kumria MML,<br />

Ranganathan S, Sridharan K (2001): Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> an antidiabetic<br />

extract <str<strong>on</strong>g>of</str<strong>on</strong>g> Catharanthus roseus <strong>on</strong> enzymic activities in<br />

streptozotocin induced diabetic rats. J Ethnopharmacol 76:<br />

269–277.<br />

Yadav S, Vats V, Dhunnoo Y, Grover JK (2002): Hypoglycemic<br />

and antihyperglycemic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Murraya koenigii leaves in<br />

diabetic rats. J Ethnopharmacol 82: 111–116.


Global Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacology 4 (1): 41-44, 2010<br />

ISSN 1992-0075<br />

© IDOSI Publicati<strong>on</strong>s, 2010<br />

Antimicrobial Activities <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow Urine Distillate Against Some Clinical Pathogens<br />

1 2 1<br />

Arunkumar Sathasivam, M. Muthuselvam and Rajasekran Rajendran<br />

1<br />

Muthaiyah Research Foundati<strong>on</strong>, Thanjavur, Tamilnadu, India - 613 005<br />

2<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Microbiology, Marudupandiyar College, Thanjavur, Tamilnadu, India<br />

Abstract: From <strong>the</strong> ancient period <strong>cow</strong>’s <strong>urine</strong> has been used as a medicine. In India, drinking <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> has<br />

been practiced for thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> years. Panchagavya is a term used in Ayurveda to describe five important<br />

substances obtained from <strong>cow</strong> namely Urine, Dung, Milk, Ghee and Curd. The present study analyzes <strong>the</strong><br />

antibacterial and antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow Urine Distillate against <strong>the</strong> clinical pathogenic microorganisms.<br />

Antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow Urine Distillate (5, 10 and 15µl) was analyzed against <strong>the</strong> Bacillus subtilis,<br />

Pseudom<strong>on</strong>as aeruginosa, Klebsiella pneum<strong>on</strong>iae and Salm<strong>on</strong>ella typhi. Maximum antibacterial activity was<br />

observed in Pseudom<strong>on</strong>as aeruginosa (7.06±0.05, 8.08±0.18 and 10.4±1.23, mm in diameter, respectively) and<br />

Salm<strong>on</strong>ella typhi (6.3±1.23, 8.06±0.17 and 10.4±1.2, mm in diameter, respectively). Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong> distillate was analysed against Aspergillus niger and Aspergillus flavus. When <strong>the</strong> two fungal organisms<br />

were compared, maximum growth suppressi<strong>on</strong> was observed in Aspergillus niger (3±0.14, 6.3±1.2 and 7.06±0.04,<br />

mm in diameter) than Aspergillus flavus (2.03±0.25, 4.9±0.26 and 6.3±1.2, mm in diameter, respectively).<br />

Finally c<strong>on</strong>cluded that <strong>the</strong> <strong>cow</strong> <strong>urine</strong> distillate has antibacterial and antifungal activities and <strong>the</strong> inhibitory<br />

activity can be used in <strong>the</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria and fungi <str<strong>on</strong>g>of</str<strong>on</strong>g> various origins.<br />

Key words: Cow Urine Distillate<br />

Antibacterial and Antifungal Activity<br />

INTRODUCTION<br />

treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> falling body parts, discharging lymphs and<br />

organism infested organs, use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> (al<strong>on</strong>g with<br />

In Veda, <strong>cow</strong>’s <strong>urine</strong> was compared to <strong>the</strong> nectar. In some o<strong>the</strong>r ingredients) has been recommended for bath,<br />

substrata, several medicinal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> anointing and intake [2]. The <strong>cow</strong> <strong>urine</strong> distillate has been<br />

have been menti<strong>on</strong>ed and are known to cause weight loss, patented as activity enhancer and availability facilitator<br />

reversal <str<strong>on</strong>g>of</str<strong>on</strong>g> certain cardiac and kidney problems, for bioactive molecules including anti- infective and<br />

indigesti<strong>on</strong>, stomach ache, edema, etc. Cow <strong>urine</strong> has a anti-cancer agents (US Patent No 6410 059/2002) [3].<br />

unique place in Ayurveda and has been described in Chakra pani mishra in vishva vallabba recommends using<br />

‘Sushrita Sumhita’ and Ashtanga Sangraha’ to be <strong>the</strong> extracts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> in herbal insecticides [4]. Feeding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

most effective substance secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> animal origin with <strong>cow</strong> <strong>urine</strong> increased <strong>the</strong> feed intake in white legborn<br />

innumerable <strong>the</strong>rapeutic values. It has been recognized as layers [5]. The present study was carried out to prepare<br />

water <str<strong>on</strong>g>of</str<strong>on</strong>g> life or “Amrita” (Beverages <str<strong>on</strong>g>of</str<strong>on</strong>g> immortality), <strong>the</strong> <strong>cow</strong> <strong>urine</strong> distillate and to determine <strong>the</strong> antibacterial and<br />

nectar <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> God. In India, drinking <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> has been antifungal activities.<br />

practiced for thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> years. Panchagavya is a term<br />

used in Ayurveda to describe five important substances<br />

MATERIALS AND METHODS<br />

obtained from <strong>cow</strong> namely Urine, Dung, Milk, Ghee and<br />

Curd. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> formulati<strong>on</strong>s menti<strong>on</strong>ed in Ayurveda Collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sample: Cow <strong>urine</strong> sample was collected<br />

describe <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> Panchagavya comp<strong>on</strong>ents ei<strong>the</strong>r al<strong>on</strong>e from <strong>cow</strong> farm (at Avanam, Thanjavur Dt) using sterile<br />

or in combinati<strong>on</strong> with drugs <str<strong>on</strong>g>of</str<strong>on</strong>g> herbal, animal or mineral c<strong>on</strong>tainer and stored for fur<strong>the</strong>r uses.<br />

origin [1].<br />

An exhaustive reference <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> having CUD Preparati<strong>on</strong>: Cow <strong>urine</strong> was distilled at 100°C using<br />

curative properties in skin diseases, especially leprosy, distillati<strong>on</strong> apparatus [6]. The single distilled <strong>cow</strong> <strong>urine</strong><br />

is referred to in Caraka samhita. Fur<strong>the</strong>rmore, in <strong>the</strong> was acidified by lowering <strong>the</strong> pH below 2.0 with <strong>the</strong><br />

Corresp<strong>on</strong>ding Author: Arunkumar Sathasivam, Muthaiyah Research Foundati<strong>on</strong>, Thanjavur, Tamilnadu, India-613 005.<br />

Mob: 09486131235, Email: microbiologyarun@yahoo.com<br />

41


Global J. Pharmacol., 4 (1): 41-44, 2010<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 85% orthophosphoric acid. The <strong>cow</strong> <strong>urine</strong> was plates with equal distance positive c<strong>on</strong>trol disc was<br />

again distilled at 100°C using a distillati<strong>on</strong> apparatus to also maintain. All <strong>the</strong> bacterial plates were incubated at<br />

remove amm<strong>on</strong>ia. The distillate was stored in sterile glass 37°C for 24hrs and fungal plates at 24°C for 72 hrs.<br />

flask at refrigerator (4°C).<br />

After incubati<strong>on</strong> <strong>the</strong> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> minimum z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inhibiti<strong>on</strong> was measured in mm. For each test, three<br />

Test Organisms: Bacterial and fungal cultures were replicates were performed.<br />

used as test organisms Bacillus subtilis (MTCC 7415)<br />

Pseudom<strong>on</strong>as aeruginosa (MTCC 7436), Klebsiella Statistical Analysis: Mean and standard deviati<strong>on</strong> were<br />

pneum<strong>on</strong>iae (MTCC 7407), Salm<strong>on</strong>ella typhi, Aspergillus calculated to facilitate <strong>the</strong> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data [8].<br />

niger and Aspergillus flavus were collected form microbial<br />

type culture <str<strong>on</strong>g>collecti<strong>on</strong></str<strong>on</strong>g> centre (MTCC) at Chandigarh.<br />

RESULTS AND DISCUSSION<br />

Disc Preparati<strong>on</strong>: 5 mm (diameter) discs were prepared Antibacterial Activity: Antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

from whattman No.1 filter paper. The discs were distillate was analyzed against <strong>the</strong> Bacillus subtilis,<br />

sterilized by autoclave at 121°C. After <strong>the</strong> sterilizati<strong>on</strong> Pseudom<strong>on</strong>as aeruginosa, Klebsiella pneum<strong>on</strong>iae and<br />

<strong>the</strong> moisture discs were dried <strong>on</strong> hot air oven at 50°C. Salm<strong>on</strong>ella typhi (Table 1, Fig. 1 and Plate 1). 5, 10 and<br />

The sterile discs were rinsed in <strong>cow</strong> <strong>urine</strong> distillate at 15µl c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> distillate discs were<br />

different c<strong>on</strong>centrati<strong>on</strong> (5, 10, 15µl).<br />

taken for <strong>the</strong> study. Am<strong>on</strong>g <strong>the</strong> three c<strong>on</strong>centrati<strong>on</strong>s<br />

highest antibacterial activity was noted in 15µl<br />

Antibacterial and Antifungal Activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow Urine c<strong>on</strong>centrati<strong>on</strong> when compared with 5 and 10µl. Maximum<br />

Distillate: The antimicrobial and antifungal activity antibacterial activity was observed in Pseudom<strong>on</strong>as<br />

studies were carried out by disc diffusi<strong>on</strong> technique [7]. aeruginosa (12.6±0.05, 13.8±0.18 and 15.4±1.23, mm in<br />

The sterile Mueller Hint<strong>on</strong> agar plates were prepared. The diameter, respectively) and Salm<strong>on</strong>ella typhi (12.3±1.23,<br />

test organisms like Bacillus subtilis, Pseudom<strong>on</strong>as 13.6±0.17 and 15.4±1.23, mm in diameter, respectively)<br />

aeruginosa, Klebsiella pneum<strong>on</strong>ia, Salm<strong>on</strong>ella typhi, when compared with o<strong>the</strong>r bacterial species and <strong>the</strong><br />

Aspergillus niger and Aspergillus flavus were standard antibiotic (Ampicillin). US patent was obtained<br />

spreaded over <strong>the</strong> Mueller Hint<strong>on</strong> ager plates by by CSIR (Counsil for Scientific Industrial Research) India<br />

using separate sterile cott<strong>on</strong> swabs. After <strong>the</strong> which claimed a novel pharmaceutical compositi<strong>on</strong><br />

spreading <strong>the</strong> different c<strong>on</strong>centrated <strong>cow</strong> <strong>urine</strong> distillate present in <strong>cow</strong> <strong>urine</strong> distillate and is effective as an<br />

discs were placed separately <strong>on</strong> <strong>the</strong> organism inoculated antifungal and antibacterial [6].<br />

Table 1: Antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> distillate<br />

Z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> (mm in diameter) (M±SD) (n=3)<br />

-----------------------------------------------------------------------------------------------------------------------------------------<br />

C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CUD (µl)<br />

-----------------------------------------------------------------------------------------------------------------------------------------<br />

S.NO. Bacteria 5 10 15 (Amp*)<br />

1. Bacillus subtilis 7.6±0.04 8.6±0.17 8.8±0.17 7.1±0.01<br />

2. Pseudom<strong>on</strong>as aeruginosa 12.6±0.04 13.6±0.17 15.4±1.23 11.2±0.01<br />

3. Klebsiella pneum<strong>on</strong>iae 7.3±0.25 7.3±0.25 11±0.14 9.5±0.05<br />

4. Salm<strong>on</strong>ella typhi 12±1.23 13.6±0.17 15.4±1.23 9.6±0.02<br />

Values are triplicate mean ± Standard deviati<strong>on</strong><br />

Amp* - Standard antibiotic disc Ampicillin (30mg/disc)<br />

Table 2: Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> distillate<br />

Z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> (mm in diameter) (M±SD) (n=3)<br />

-------------------------------------------------------------------------------------------------------------------------------------------<br />

C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CUD (µl)<br />

-------------------------------------------------------------------------------------------------------------------------------------------<br />

S.NO. Fungi 5 10 15<br />

1. Aspergillus niger 8±0.14 11.3±1.2 12.6±0.04<br />

2. Aspergillus flavus 7.3±0.25 10±0.25 11±1.2<br />

Values are triplicate mean ± Standard deviati<strong>on</strong><br />

42


Global J. Pharmacol., 4 (1): 41-44, 2010<br />

16<br />

Z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> (mm in diameter)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Bacillus subtilis<br />

Pseudom<strong>on</strong>as<br />

aeruginosa<br />

Klebsiella<br />

pneum<strong>on</strong>iae<br />

Salm<strong>on</strong>ella<br />

typhi<br />

5µl<br />

10µl<br />

15µl<br />

Amp*<br />

Fig. 1: Antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> distillate<br />

14<br />

Z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> (mm in diameter)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Aspergillus niger<br />

Aspergillus flavus<br />

5µl<br />

10µl<br />

15µl<br />

Fig. 2: Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> distillate<br />

Plate 1: Antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> CUD against Pathogenic bacteria<br />

Plate 2= Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> CUD against Pathogenic fungi<br />

43


Global J. Pharmacol., 4 (1): 41-44, 2010<br />

Antifungal Activity: Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

REFERENCES<br />

distillate was analysed against Aspergillus niger and<br />

Aspergillus flavus. The investigated results were 1. Shah, E., 1997. Herbal compositi<strong>on</strong> in <strong>cow</strong> <strong>urine</strong><br />

presented in Table 2, Fig. 2 and Plate 2. When <strong>the</strong> two distillate. US 5693327. Dec 2.<br />

fungal organisms were compared, maximum growth 2. Basham, A.L., 1998. Practices <str<strong>on</strong>g>of</str<strong>on</strong>g> medicine in ancient<br />

suppressi<strong>on</strong> was observed in Aspergillus niger India in Asian Medical systems: A Comparative<br />

(8±0.14, 11.3±1.2 and 12.6±0.04, mm in diameter, study. (Ed) by Charles leslie, Motilal Banarsidass,<br />

respectively) than Aspergillus flavus (7.3±0.25, 10±0.26 Delhi, pp: 22.<br />

and 11±1.2, mm in diameter, respectively). A similar 3. Sarman Singh, 2001. Cow <strong>urine</strong> has anti Leshmania<br />

result reported by Prashith Kekuda et al. [9] Cow Urine d<strong>on</strong>ovani effect in vitro. Internati<strong>on</strong>al J. Cow Sci.,<br />

Distillate at various c<strong>on</strong>centrati<strong>on</strong>s was tested for 1(2): 72-73.<br />

antifungal activity. The growth reducti<strong>on</strong> in percentage 4. Sadhale, N., 2004. Vishvallabba Agri History Bulletin<br />

was taken into c<strong>on</strong>siderati<strong>on</strong> and antifungal effect was 5. Asian agri-History Foundati<strong>on</strong>, Secunderabadevaluated.<br />

5% <strong>cow</strong> <strong>urine</strong> distillate was more effective 500009. pp: 134.<br />

against Mucor sp. (37.1%) followed by A.oryzae (10.2%) 5. Garg, N., Ashok Kumar and R.S.Chauhan, 2005.<br />

and A. niger (5.4%).<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> indigenous <strong>cow</strong> <strong>urine</strong> <strong>on</strong> nutrient utilizati<strong>on</strong><br />

It was c<strong>on</strong>cluded that <strong>the</strong> <strong>cow</strong> <strong>urine</strong> distillate has <str<strong>on</strong>g>of</str<strong>on</strong>g> white leghorn layers. Internati<strong>on</strong>al J. Cow Sci.,<br />

antibacterial and antifungal activities <strong>the</strong> inhibitory 1: 36-38.<br />

activity can be used in <strong>the</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria and fungi 6. Khanuja, S.P.S., 2002. Pharmaceutical compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> various origins. The test was d<strong>on</strong>e in vitro. Same c<strong>on</strong>taining <strong>cow</strong> <strong>urine</strong> distillate and an Antibiotic.<br />

result may be obtained in vivo also. Now a day’s US patent 6410059. June 25.<br />

urino<strong>the</strong>rapy treatment was developed in <strong>the</strong> <strong>medical</strong> 7. Bauer, R.W., M.D.K. Kirby, J.C. Sherris and<br />

sectors. Fur<strong>the</strong>r studies analyze which comp<strong>on</strong>ents are M. Turck, 1966. Antibiotic susceptibility testing by<br />

resp<strong>on</strong>sible for antimicrobial activity and animal model standard single disc diffusi<strong>on</strong> method. American<br />

could reveal antibacterial and antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> J. Clinical Pathol., 45: 493-496.<br />

<strong>urine</strong> distillate in vivo. 8. Salil Bose, 1982. Biostatistics in Elementary<br />

ACKNOWLEDGMENTS 9.<br />

Biophysics. Jytoi Book, Madurai, pp: 127-128.<br />

Prashith Kekuda, T.R., R. Kavya, R.M. Shrungashree<br />

and S.V. Suchitra, 2007. Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

The authors are thankful to Muthaiyah Research <strong>urine</strong> distillate. (http://www.microbiocare.com/).<br />

Foundati<strong>on</strong>, Thanjavur for <str<strong>on</strong>g>of</str<strong>on</strong>g>fering facilities to carry out<br />

this study.<br />

44


Review Article<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Intercultural Ethnopharmacology<br />

www.jicep.com<br />

DOI: 10.5455/jice.2015022210032<br />

Chemo<strong>the</strong>rapeutic <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong>: A review<br />

Gurpreet Kaur Randhawa 1 , Rajiv Sharma 2<br />

1<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pharmacology,<br />

Government Medical<br />

College, Amritsar, Punjab,<br />

India, 2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Medicine, Guru Nanak<br />

Dev Hospital, attached<br />

to Government Medical<br />

College, Amritsar, Punjab,<br />

India<br />

Address for corresp<strong>on</strong>dence:<br />

Gurpreet Kaur Randhawa,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pharmacology, Government<br />

Medical College,<br />

Amritsar, Punjab, India.<br />

E-mail: kullar.g@gmail.com<br />

ABSTRACT<br />

In <strong>the</strong> grim scenario where presently about 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogenic bacteria are resistant to at least <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

drugs for <strong>the</strong> treatment, cue is to be taken from traditi<strong>on</strong>al/indigenous medicine to tackle it urgently. The Indian<br />

traditi<strong>on</strong>al knowledge emanates from ayurveda, where Bos indicus is placed at a high pedestal for numerous<br />

uses <str<strong>on</strong>g>of</str<strong>on</strong>g> its various products. Urine is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> products <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>cow</strong> with many benefits and without toxicity.<br />

Various studies have found good antimicrobial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> (CU) comparable with standard drugs such<br />

as <str<strong>on</strong>g>of</str<strong>on</strong>g>loxacin, cefpodoxime, and gentamycin, against a vast number <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogenic bacteria, more so against<br />

Gram-positive than negative bacteria. Interestingly antimicrobial activity has also been found against some<br />

resistant strains such as multidrug-resistant (MDR) Escherichia coli and Klebsiella pneum<strong>on</strong>iae. Antimicrobial<br />

acti<strong>on</strong> is enhanced still fur<strong>the</strong>r by it being an immune-enhancer and bioenhancer <str<strong>on</strong>g>of</str<strong>on</strong>g> some antibiotic drugs.<br />

Antifungal activity was comparable to amphotericin B. CU also has an<strong>the</strong>lmintic and antineoplastic acti<strong>on</strong>. CU<br />

has, in additi<strong>on</strong>, antioxidant properties, and it can prevent <strong>the</strong> damage to DNA caused by <strong>the</strong> envir<strong>on</strong>mental<br />

stress. In <strong>the</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases, CU can be used al<strong>on</strong>e or as an adjunctive to prevent <strong>the</strong><br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance and enhance <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> standard antibiotics.<br />

Received: January 16, 2015<br />

Accepted: February 22, 2015<br />

Published: March 07, 2015<br />

KEY WORDS:Antibiotic, antifungal, antineoplastic, bioenhancer, Bos indicus, immune-enhancer<br />

INTRODUCTION<br />

Infectious diseases remain a major threat to <strong>the</strong> public<br />

health despite tremendous progress in human medicine.<br />

Emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> widespread drug resistance to <strong>the</strong> currently<br />

available antimicrobials is a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> deep c<strong>on</strong>cern. A high<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> nosocomial infecti<strong>on</strong>s are caused by highly<br />

resistant bacteria such as methicillin-resistant Staphylococcus<br />

aureus or multidrug-resistant (MDR) Gram-negative bacteria.<br />

Each year in <strong>the</strong> United States, about 2 milli<strong>on</strong> people<br />

become infected with antibiotic resistant bacteria and at<br />

least 23,000 people die every year as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se<br />

infecti<strong>on</strong>s. Many more people die from o<strong>the</strong>r c<strong>on</strong>diti<strong>on</strong>s that<br />

are complicated by an antibiotic-resistant infecti<strong>on</strong> [1]. In<br />

2012, <strong>the</strong>re were about 450000 new cases <str<strong>on</strong>g>of</str<strong>on</strong>g> MDR tuberculosis.<br />

Extensively drug-resistant tuberculosis has been identified<br />

in 92 countries. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance to oral drug <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

choice fluoroquinol<strong>on</strong>es, for urinary tract infecti<strong>on</strong>s caused<br />

by Escherichia coli is very widespread, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten sensitivity<br />

remains <strong>on</strong>ly for injectables [2]. Infecti<strong>on</strong>s caused by<br />

resistant microorganisms <str<strong>on</strong>g>of</str<strong>on</strong>g>ten fail to resp<strong>on</strong>d to <strong>the</strong> standard<br />

treatment, resulting in prol<strong>on</strong>ged illness, higher health care<br />

expenditures, and a greater risk <str<strong>on</strong>g>of</str<strong>on</strong>g> death. There is a dire<br />

need for <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> new antimicrobial agents with<br />

sensitivity intact against microorganisms [3,4]. The rati<strong>on</strong>al<br />

designing <str<strong>on</strong>g>of</str<strong>on</strong>g> novel drugs from traditi<strong>on</strong>al medicines to treat<br />

<strong>the</strong>se difficult to treat infecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a new prospect for <strong>the</strong><br />

modern health-care system.<br />

Ayurvedic texts (Sushruta Samhita, Ashtanga Sangrah and Bhav<br />

Prakash Nighantu) describe <strong>cow</strong> <strong>urine</strong> (CU) (gomutra) as an<br />

effective medicinal substance/secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> animal origin with<br />

innumerable <strong>the</strong>rapeutic uses. Cow (Kamadhenu) has been<br />

c<strong>on</strong>sidered as a sacred animal in India. In Rigveda (10/15),<br />

CU is compared to nectar. In Susruta (45/221) and in Charak<br />

(sloka-100) several medicinal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> CU have been<br />

menti<strong>on</strong>ed such as weight loss, reversal <str<strong>on</strong>g>of</str<strong>on</strong>g> certain cardiac and<br />

renal diseases, indigesti<strong>on</strong>, stomach ache, diarrhea, edema,<br />

jaundice, anemia, hemorrhoids and skin diseases including<br />

vitiligo. Gomutra is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> removing all <strong>the</strong> imbalances in<br />

<strong>the</strong> body, thus maintaining <strong>the</strong> general health [5]. CU c<strong>on</strong>tains<br />

95% water, 2.5% urea, minerals, 24 types <str<strong>on</strong>g>of</str<strong>on</strong>g> salts, horm<strong>on</strong>es,<br />

and 2.5% enzymes. It also c<strong>on</strong>tains ir<strong>on</strong>, calcium, phosphorus,<br />

carb<strong>on</strong>ic acid, potash, nitrogen, amm<strong>on</strong>ia, manganese, ir<strong>on</strong>,<br />

sulfur, phosphates, potassium, urea, uric acid, amino acids,<br />

enzymes, cytokine and lactose [6].<br />

CU is an effective antibacterial agent against a broad spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Gram-negative and Gram-positive bacteria and also against<br />

some drug-resistant bacteria. It acts as a bio-enhancer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some antimicrobial drugs. It has antifungal, an<strong>the</strong>lmintic,<br />

antineoplastic acti<strong>on</strong>, is useful in hypersensitivity reacti<strong>on</strong>s and<br />

180 J Intercult Ethnopharmacol ● Apr-Jun 2015 ● Vol 4 ● Issue 2


Randhawa and Sharma: Chemo<strong>the</strong>rapeutic <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

in numerous o<strong>the</strong>r diseases including increasing <strong>the</strong> life-span <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a pers<strong>on</strong>. Recent <str<strong>on</strong>g>research</str<strong>on</strong>g>es have shown that CU is an immuneenhancer<br />

also [7-9]. Therapeutic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> CU have been<br />

validated by modern science also.<br />

MECHANISM OF ACTION OF CU<br />

Different fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CU possess antimicrobial activity due to<br />

<strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> certain comp<strong>on</strong>ents like volatile and n<strong>on</strong>volatile<br />

<strong>on</strong>es [10-13]. Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> urea, creatinine, swarn kshar (aurum<br />

hydroxide), carbolic acid, phenols, calcium, and manganese has<br />

str<strong>on</strong>gly explained <strong>the</strong> antimicrobial and germicidal properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CU [14-16]. Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> amino acids and urinary peptides may<br />

enhance <strong>the</strong> bactericidal effect [17] by increasing <strong>the</strong> bacterial<br />

cell surface hydrophobicity. CU enhances <strong>the</strong> phagocytic activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> macrophages. Higher amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> phenols in fresh CU than<br />

CU distillate (CUD) makes it more effective against microbes.<br />

After photo-activati<strong>on</strong>, few biogenic volatile inorganic and<br />

organic compounds such as CO 2<br />

, NH3, CH4, methanol,<br />

propanol and acet<strong>on</strong>e, and some metabolic sec<strong>on</strong>dary<br />

nitrogenous products are also formed [18]. Photo-activated<br />

CU (PhCU) becomes highly acidic in comparis<strong>on</strong> to fresh CU.<br />

An increase in bactericidal acti<strong>on</strong> may be due to a significant<br />

decrease in pH [12], presence <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic phosphorus, chloride<br />

and dimethylamine may also play an important role [19],<br />

al<strong>on</strong>g with increased formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some reactive compounds<br />

like formaldehyde, sulfinol, ket<strong>on</strong>es and some amines during<br />

photo-activati<strong>on</strong> and l<strong>on</strong>g term storage [20]. CU prevents <strong>the</strong><br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> antibacterial resistance by blocking <strong>the</strong> R-factor,<br />

a part <str<strong>on</strong>g>of</str<strong>on</strong>g> plasmid genome <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria [21].<br />

CU c<strong>on</strong>tains phenolic acids (gallic, caffeic, ferulic, o-coumaric,<br />

cinnamic, and salicylic acids) which have antifungal<br />

characteristics [22].<br />

Antioxidant property <str<strong>on</strong>g>of</str<strong>on</strong>g> uric acid and allantoin present in CU<br />

correlates with its anticancer effect. CU reduces apoptosis in<br />

lymphocytes and helps <strong>the</strong>m to survive better [5]. This acti<strong>on</strong><br />

may be due to <strong>the</strong> free radical scavenging activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>urine</strong><br />

comp<strong>on</strong>ents, and <strong>the</strong>se comp<strong>on</strong>ents may prevent <strong>the</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aging [10]. It efficiently repairs <strong>the</strong> damaged DNA [5].<br />

Daily c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CU improves immunity due to <strong>the</strong> presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> swarn kshar and fastens <strong>the</strong> wound healing process, which<br />

is due to allantoin [8]. CU enhances <strong>the</strong> immunocompetence<br />

by facilitating <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> interleukin-1 and -2 [23,24],<br />

augments B - and T- lymphocyte blastogenesis, and IgA, IgM<br />

and IgG antibody titers [25].<br />

Early morning first voided CU is more sterile and have more<br />

macro and micr<strong>on</strong>utrients al<strong>on</strong>g with o<strong>the</strong>r enzyme/urea<br />

c<strong>on</strong>tent could be more effective [26].<br />

AS ANTIMICROBIAL AGENT<br />

Antimicrobial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> CU from both indigenous and hybrid<br />

breeds against E. coli, Salm<strong>on</strong>ella typhi, Proteus vulgaris,<br />

S. aureus, Bacillus cereus, Staphylococcus epidermidis, Klebsiella<br />

pneum<strong>on</strong>ia, Pseudom<strong>on</strong>as aeruginosa, Pseudom<strong>on</strong>as fragi,<br />

Streptococcus agalactiae, Enterobacter aerogenes, Aerom<strong>on</strong>as<br />

hydrophila, Micrococcus luteus, Streptococcus pyogenes,<br />

Streptomyces aure<str<strong>on</strong>g>of</str<strong>on</strong>g>aciens, Lactobacillus acidophilus and<br />

Bacillus subtilis, and Leishmania d<strong>on</strong>ovani has been observed<br />

in various studies. In <strong>the</strong>se studies <strong>the</strong> antimicrobial activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CU was found to be comparable with <str<strong>on</strong>g>of</str<strong>on</strong>g>loxacin, cipr<str<strong>on</strong>g>of</str<strong>on</strong>g>loxacin,<br />

ampicillin, chloramphenicol, nalidixic acid, rifampicin,<br />

tetracycline, streptomycin, cefpodoxime and gentamycin in<br />

different studies [27-36].<br />

Studies with Indigenous Bos indicus Breeds <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow<br />

Fresh CU (FCU), Sterile, PhCU and CUD from a healthy<br />

Geer <strong>cow</strong>, was used to assess <strong>the</strong> antibacterial effect against<br />

different strains <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria. Against E. coli, FCU had <strong>the</strong><br />

bigger mean <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> z<strong>on</strong>e (15 mm) than Sterile, PhCU,<br />

and CUD (~10 mm). FCU had good activity <str<strong>on</strong>g>of</str<strong>on</strong>g> 15, 16 and<br />

20 mm <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> against E. coli, B. subtilis, and S. typhi,<br />

respectively. O<strong>the</strong>r forms <str<strong>on</strong>g>of</str<strong>on</strong>g> CU showed activity against E. coli,<br />

S. typhi, P. vulgaris, S. aureus and B. subtilis [27].<br />

Rana and De [28] observed a greater activity against Grampositive<br />

than Gram-negative bacteria with CU obtained from<br />

Geer <strong>cow</strong>. The minimum inhibitory c<strong>on</strong>centrati<strong>on</strong> (MIC) in<br />

all <strong>the</strong> four tested Gram-positive bacteria was 134 mg/ml.<br />

Am<strong>on</strong>g Gram-negative organisms, P. aeruginosa was more<br />

sensitive (MIC 134 mg/ml) than P. vulgaris (MIC 268 mg/ml).<br />

Mean z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> (mm)± standard error <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean<br />

against B. subtilis was found to be 18.67±1.15, which was less<br />

than 27 for Gentamycin 10 mcg and cefpodoxime 10 mcg.<br />

Activity (18.67±1.15) against B. cereus and was similar to<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> cefpodoxime (19) but less than with gentamycin (26).<br />

Activity (16) against S. aureus and S. epidermidis was


Randhawa and Sharma: Chemo<strong>the</strong>rapeutic <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

Table 1: Antimicrobial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> CU, CUD (Gujrati Geer <strong>cow</strong>) in comparis<strong>on</strong> to standard drug Ofloxacin [10]<br />

E. coli S. epidermidis S. aureus K. pneum<strong>on</strong>iae P. vulgaris B. subtilis<br />

FCU 23 22 24 25 23 24<br />

CUD 20 20 18 20 20 21<br />

Ofloxacin 30 28 25 28 28 32<br />

E. coli: Escherichia coli, K. pneum<strong>on</strong>ia: Klebsiella pneum<strong>on</strong>ia, P. vulgaris: Proteus vulgaris, B. subtilis: Bacillus subtilis, S. epidermidis: Staphylococcus<br />

epidermidis, FCU: Fresh <strong>cow</strong> <strong>urine</strong>, CUD: Cow <strong>urine</strong> distillate, CU: Cow <strong>urine</strong><br />

mahal was comparable with Streptomycin <strong>on</strong> B subtilis (16:18),<br />

S. aureus (16:19), E. coli (14:18) and E. aerogenes (15:18) using<br />

Disc diffusi<strong>on</strong> method [30].<br />

In an in vitro study, 30 μL <str<strong>on</strong>g>of</str<strong>on</strong>g> PhCU <str<strong>on</strong>g>of</str<strong>on</strong>g> Hariana breed was<br />

found to be comparable in efficacy to Tetracycline (30 μg mL).<br />

Antimicrobial activity (mean z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> in mm) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PhCU and Tetracycline, respectively against B. cereus was 17<br />

and 22, S. aureus was 18 and 21, S. typhimurium was 21 and<br />

22, A. hydrophila was 22 and 24, E. aerugenes was 13 and 18<br />

and M. luteus was 15 and 17 [31]. Similar results were found<br />

in ano<strong>the</strong>r study with PhCU <str<strong>on</strong>g>of</str<strong>on</strong>g> Hariana breed against <strong>the</strong>se<br />

bacteria [32].<br />

Studies where breed <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> is not menti<strong>on</strong>ed<br />

In an in-vitro test, activity <str<strong>on</strong>g>of</str<strong>on</strong>g> FCU was comparable to<br />

Streptomycin. Similar mean z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> (mm) was<br />

seen against gram positive organisms E. coli (16:16:13),<br />

K. pneum<strong>on</strong>ia (15:17:12) and P. aeruginosa (17:19:15) with<br />

FCU and Streptomycin and lesser with PhCU (by keeping<br />

<strong>urine</strong> in sunlight in sealed glass bottles for 72 h), respectively.<br />

Comparatively lesser antibacterial activity against gram negative<br />

organisms S. aureus (18:26:17), coagulase negative Staphylococci<br />

(18:29:15), B. subtilis (20:29:15), and S. pyogenes (20:26:14)<br />

was seen for FCU than streptomycin, and still lesser than with<br />

PhCU [33]. No antibacterial activity was seen for CUD, which<br />

is c<strong>on</strong>tradictory to some previous reports [34].<br />

Vats et al. [35] studied <strong>the</strong> synergistic antimicrobial effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PhCU and herbs against bacterial and fungal strains. PhCU<br />

and Azadirachta indica combinati<strong>on</strong> showed a remarkable<br />

synergistic antimicrobial activity against Candida tropicalis,<br />

Candida glabrata, P. aeruginosa, and S. aure<str<strong>on</strong>g>of</str<strong>on</strong>g>aciens. PhCU<br />

and Terminalia chebula showed maximum activity against<br />

S. auere<str<strong>on</strong>g>of</str<strong>on</strong>g>aciens (45 mm), and P. aeruginosa (z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 40 mm). Piper nigrum, T. chebula and PhCU in combinati<strong>on</strong><br />

were most effective against C. glabrata (35 mm) and<br />

C. tropicalis (45) mm.<br />

Upadhyay et al. [18] found in in-vitro tests that PhCU has better<br />

bactericidal activity against S. aureus, B. cereus, L. acidophilus,<br />

M. luteus, K. pneum<strong>on</strong>ia, S. pneum<strong>on</strong>ia and E. coli, when<br />

compared with Tetracycline, Ampicillin and Cipr<str<strong>on</strong>g>of</str<strong>on</strong>g>loxacin.<br />

PhCU showed MIC value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.25 μl/ml against S. aureus,<br />

B. cereus, L. acidophilus and M. luteus, while it was found to<br />

be 0.125 μl/ml against E. coli, which was less than that for<br />

antibiotics. A combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CU with Neem (A. indica) oil and<br />

Bavchi (Psoralea coryfolia) oil showed a synergistic effect (MIC<br />

0.125-0.25 μl/ml), which was less than that for antibiotics. Neem<br />

oil and CU showed 33-35 mm inhibiti<strong>on</strong> z<strong>on</strong>es against B. cereus,<br />

L. acidophilus, M. luteus, K. pneum<strong>on</strong>iae and S. pneum<strong>on</strong>ia.<br />

Sathasivam et al. reported <strong>the</strong> antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> CUD (5, 10<br />

and 15 μl) against <strong>the</strong> B. subtilis, P. aeruginosa, K. pneum<strong>on</strong>iae<br />

and S. typhi. Antibacterial activity (mean z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> in<br />

mm) was observed against B. subtilis (7.6 ± 0.04, 8.6 ± 0.17,<br />

8.8 ± 0.17, respectively) P. aeruginosa (12.6 ± 0.04, 13.6 ±<br />

0.17, 15.4 ± 1.23, respectively) and S. typhi (12 ± 1.23, 13.6 ±<br />

0.17, 15.4 ± 1.23, respectively). This antibacterial activity was<br />

more than <strong>the</strong> positive c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> ampicillin (30 mg/disc), which<br />

was 7.1 ± 0.01 mm against B. subtilis, 11.2 ± 0.01 mm against<br />

P. aeruginosa and 9.6 ± 0.02 mm <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> z<strong>on</strong>e against<br />

S. typhi. Antibacterial activity against K. pneum<strong>on</strong>ia was 11 ±<br />

0.14 mm with 15 μl <str<strong>on</strong>g>of</str<strong>on</strong>g> CUD, which was more than <strong>the</strong> activity<br />

(9.5 ± 0.05 mm) with Ampicillin [34].<br />

Yadav et al. reported <strong>the</strong> antimicrobial property <str<strong>on</strong>g>of</str<strong>on</strong>g> a herbal<br />

formulati<strong>on</strong> c<strong>on</strong>taining CU, Dalbergia sissoo, and Datura<br />

stram<strong>on</strong>ium. The antimicrobial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> CU al<strong>on</strong>e was also<br />

found to be significant (P > 0.001). It was found that CU extract<br />

showed <strong>the</strong> highest inhibiti<strong>on</strong> in gram-positive S. aureus (CI,<br />

213%) and comparable activity in S. pneumoiae (95%) compared<br />

to chloramphenicol (30 μg), nalidixic acid (10 μg), rifampicin<br />

(30 μg), and ampicillin (10 μg). In gram-negative bacteria all<br />

antibiotics were inactive, except chloramphenicol (30 μg), while<br />

CU extract showed significant (P < 0.05) activity (35% and 37%,<br />

respectively) against E. coli and K. pneum<strong>on</strong>ia as compared to<br />

Chloramphenicol [36].<br />

CU has anti-Leishmania d<strong>on</strong>ovani effect (Kala-azar) in an<br />

in-vitro study [37]. This fact can be fur<strong>the</strong>r validated by more<br />

intensive studies.<br />

PREVENTION OF ANTIBIOTIC RESISTANCE<br />

Pathogenic bacteria are remarkably resilient and have developed<br />

several ways to resist antimicrobial drugs. Due to increasing<br />

use and rampant misuse <str<strong>on</strong>g>of</str<strong>on</strong>g> existing antibiotics in human<br />

and veterinary medicine, and also in agriculture, threat from<br />

antimicrobial resistance is increasing. Resistant strains like<br />

Penicillin- and Methicillin- resistant S. aureus, vancomycin<br />

resistant Enterococcus, and cipr<str<strong>on</strong>g>of</str<strong>on</strong>g>loxacin resistance P. aeruginosa<br />

are an ever increasing global threat. After photoactivati<strong>on</strong> and<br />

purificati<strong>on</strong>, CU has been found to be effective against certain<br />

drug resistant bacterial strains [38]. CU extract <str<strong>on</strong>g>of</str<strong>on</strong>g> A. indica<br />

showed better MIC values than <strong>the</strong> organic fracti<strong>on</strong>s for MDR<br />

E. coli (12.68 mm) and K. pneum<strong>on</strong>ia (9 mm). CU extracts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A. indica showed >8.66 mm z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> for MDR<br />

S. aureus, P. aeruginosa and P. vulgaris [39].<br />

182 J Intercult Ethnopharmacol ● Apr-Jun 2015 ● Vol 4 ● Issue 2


Randhawa and Sharma: Chemo<strong>the</strong>rapeutic <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

FUNGICIDE AND BIOFUNGICIDE<br />

Fungicidal effect against Aspergillus fumigatus, Aspergillus<br />

flavus, Aspergillus niger, Aspergillus, Malassezia, C. tropicalis<br />

and C. glabrata has been observed in various studies. CU was<br />

highly stable and capable in inhibiting <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Malassezia<br />

fungi (90-95%) resp<strong>on</strong>sible for causing dandruff for a l<strong>on</strong>ger time<br />

(4-5 days), than rice water (due to B. cereus growth in rice water)<br />

which was stably capable <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiting 85-90% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> growth for<br />

3-4 days. Neem leaves extract and Lem<strong>on</strong> Juice extract were<br />

comparatively less effective in this study [40].<br />

15% CU was most active against Aspergillus, Rhizophus and<br />

<strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> obtained with it was 85% [41].<br />

5% CUC showed maximum antifungal activity against A. niger<br />

(93%), followed by A. oryzae (92.67%) and A. flavus (83%)[30].<br />

CUD showed better antifungal activity against A. fumigatus<br />

and C. albicans with mean z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 and 11 mm<br />

than PhCU [27]. More fungal growth suppressi<strong>on</strong> (as mm in<br />

diameter) was observed with CUD in A. niger (8 ± 0.14, 11.3<br />

± 1.2 and 12.6 ± 0.04, respectively) than A. flavus (7.3 ± 0.25,<br />

10 ± 0.26 and 11 ± 1.2, respectively) with <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> 5, 10 and<br />

15 μl <str<strong>on</strong>g>of</str<strong>on</strong>g> CUD [34].<br />

In vitro antifungal activity (in mm) <str<strong>on</strong>g>of</str<strong>on</strong>g> Geer CU against A. flavus<br />

(17.33 ± 0.57) was in between 50 μg <str<strong>on</strong>g>of</str<strong>on</strong>g> amphotericin B (15)<br />

and 10 μg <str<strong>on</strong>g>of</str<strong>on</strong>g> clotrimazole (24) and against C. albicans, activity<br />

was similar with CU (18.67 ± 1.15) and amphotericin B (19),<br />

but less than clotrimazole (30) [28]. Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Geer CU is better than <strong>the</strong> o<strong>the</strong>rs where source <str<strong>on</strong>g>of</str<strong>on</strong>g> CU is not<br />

menti<strong>on</strong>ed.<br />

In an in vitro study, it was found that <strong>the</strong> <strong>urine</strong> samples <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

outdoor feeding <strong>cow</strong> (OCU) was more effective and inhibited<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> fungi more str<strong>on</strong>gly as compared to indoor feeding<br />

CU (ICU). This inhibiti<strong>on</strong> was c<strong>on</strong>centrati<strong>on</strong> dependent.<br />

No growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Penicillium notatum, Trichoderma viridae, and<br />

Alternaria solanii was observed with 10% OCU and with 20%<br />

ICU and that <str<strong>on</strong>g>of</str<strong>on</strong>g> Claviceps purpurea, Rhizopus oligosporius, C.<br />

albicans and A. candidus, no growth was observed with 20% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

OCU <strong>on</strong>ly [42].<br />

ANTISEPTIC<br />

Sanganal et al. observed <strong>the</strong> enhanced wound healing activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CU in Wistar albino rats [43]. On 4 th day, <strong>the</strong> external<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CU showed significant and progressive increase<br />

in wound healing in rats compared to different c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CU and 1% w/w nitr<str<strong>on</strong>g>of</str<strong>on</strong>g>uraz<strong>on</strong>e ointment locally. Similar<br />

findings were also observed by Maheshwary et al. [44].<br />

ANTHELMINTIC ACTIVITY<br />

CUC was found to be more effective than piperazine citrate<br />

as an<strong>the</strong>lmintic agent at both 1% and 5% c<strong>on</strong>centrati<strong>on</strong>s.<br />

For an<strong>the</strong>lmintic activity, adult Indian earthworm Pheretima<br />

posthuma was studied due to its anatomical and physiological<br />

resemblance with <strong>the</strong> intestinal roundworm parasite <str<strong>on</strong>g>of</str<strong>on</strong>g> human<br />

beings. Paralysis <str<strong>on</strong>g>of</str<strong>on</strong>g> earthworm occurred in 53 and 48 min<br />

with 1% piperazine and CUC, respectively and 16 and 13 min<br />

with 5% piperazine and CUC, respectively. Time taken for<br />

<strong>the</strong> death <str<strong>on</strong>g>of</str<strong>on</strong>g> earthworms decreased from 72 min with 1%<br />

piperazine to 60 min with 1% CUC, respectively. It fur<strong>the</strong>r<br />

decreased from 28 min with 5% piperazine to 18 min with 5%<br />

CUC, respectively [30].<br />

Different compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Panchgavya (five products <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

namely milk, curd, ghee, <strong>urine</strong> and dung) al<strong>on</strong>e and combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Panchgavya and ethanolic extract <str<strong>on</strong>g>of</str<strong>on</strong>g> Bauhinia variegata<br />

Linn (10%, 50%, 75% in Panchgavya) were found to have<br />

excellent an<strong>the</strong>lmintic activity against adult Indian earthworm<br />

(P. posthuma) when we compared to c<strong>on</strong>trol Piperazine (50 and<br />

100 mg/ml). In combinati<strong>on</strong>, <strong>the</strong> an<strong>the</strong>lmintic activity was<br />

synergistic and with increasing doses, time (in minutes) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> paralysis and death in earthworm decreased [45].<br />

BIOENHANCER<br />

A ‘bioenhancer’/‘biopotentiator’ is an agent capable <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enhancing <strong>the</strong> bioavailability and efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> a drug with which<br />

it is co-administered, without any pharmacological activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its own at <strong>the</strong> <strong>the</strong>rapeutic dose used. In ayurveda, this c<strong>on</strong>cept<br />

is known as ‘yogvahi’ and is used to increase <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

medicines by increasing <strong>the</strong> oral bioavailability (especially <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

medicines with poor oral bioavailability), decreasing <strong>the</strong>ir dose<br />

and adverse effects, and were used to circumvent <strong>the</strong> parentral<br />

routes <str<strong>on</strong>g>of</str<strong>on</strong>g> drug administrati<strong>on</strong>. We can develop more such useful<br />

and ec<strong>on</strong>omically viable drug combinati<strong>on</strong>s, by integrating <strong>the</strong><br />

knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> time tested ayurveda with modern methods <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>research</str<strong>on</strong>g> [8]. CU is <strong>the</strong> <strong>on</strong>ly agent <str<strong>on</strong>g>of</str<strong>on</strong>g> animal origin which acts<br />

as bioenhancer <str<strong>on</strong>g>of</str<strong>on</strong>g> antimicrobial, antifungal, and anticancer<br />

agents [30]. The indigenous CU c<strong>on</strong>tains ‘Rasayana’ tatva,<br />

which is resp<strong>on</strong>sible for modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> immune system and<br />

also act as a bioenhancer [21].<br />

CUD is more effective bioenhancer than CU [30,46].<br />

CUD enhances <strong>the</strong> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> antibiotics like rifampicin,<br />

tetracycline and ampicillin across <strong>the</strong> gut wall by 2-7 folds<br />

[47]. It also enhances <strong>the</strong> potency <str<strong>on</strong>g>of</str<strong>on</strong>g> taxol against MCF-7 cell<br />

lines [48]. It enhances <strong>the</strong> bioavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> rifampicin by 80<br />

fold in 0.05 microgm/ml c<strong>on</strong>centrati<strong>on</strong>s, ampicillin by 11.6<br />

fold in 0.05 μ g/ml c<strong>on</strong>centrati<strong>on</strong>s and clotrimazole by 5 fold<br />

in 0.88 μ g/ml c<strong>on</strong>centrati<strong>on</strong> [49]. The activity <str<strong>on</strong>g>of</str<strong>on</strong>g> rifampicin<br />

increases by about 5-7 folds against E. coli and 3-11 folds against<br />

Gram-positive bacteria, when used al<strong>on</strong>g with CU [50]. Potency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> paclitaxel has been observed to increase against MCF-7,<br />

a human breast cancer cell line in in-vitro assays [49]. The<br />

bioenhancing ability is by facilitating <strong>the</strong> absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs<br />

across <strong>the</strong> cell membrane. The CU has been granted US Patents<br />

for its medicinal properties, particularly as a bioenhancer al<strong>on</strong>g<br />

with antibiotics, antifungal and anticancer drugs (6896907,<br />

6410059).<br />

CUD al<strong>on</strong>e caused more inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gram-positive bacteria.<br />

Inhibiti<strong>on</strong> caused by streptomycin (1 mg/ml) al<strong>on</strong>e was higher<br />

(31-34 mm) than that <str<strong>on</strong>g>of</str<strong>on</strong>g> CUD al<strong>on</strong>e (19-22 mm). With <strong>the</strong><br />

J Intercult Ethnopharmacol ● Apr-Jun 2015 ● Vol 4 ● Issue 2 183


Randhawa and Sharma: Chemo<strong>the</strong>rapeutic <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pinguicula l<strong>on</strong>gifolia, CUD and streptomycin<br />

toge<strong>the</strong>r, S. aureus was inhibited to a more extent (38 mm)<br />

followed by P. aeruginosa (37 mm) and an equal inhibiti<strong>on</strong> was<br />

exhibited by B. subtilis and E. coli (36 mm) [51]. S. aureus and<br />

P. aeuroginosa have been recognized as most comm<strong>on</strong> bacteria,<br />

which have developed resistance against several antibiotics<br />

and is a major hospital borne pathogen, which is particularly<br />

dangerous to immunocompromised patients. This study is <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

importance in this scenario.<br />

This bioenhancing activity <str<strong>on</strong>g>of</str<strong>on</strong>g> CU has been aptly and<br />

widely used in various ayurvedic formulati<strong>on</strong>s. It is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> Hingwadh ghrita, Lashunadh ghrita,<br />

Sidhartak ghrita for psychiatric illness used in abdominal<br />

tumors and in o<strong>the</strong>r formulati<strong>on</strong>s like Mandurvatak, Darvi<br />

ghrita, and Punnarvamandur. CU is used as yogvahi al<strong>on</strong>g with<br />

Hareetakyadi yog, Swarnkshiryad yog, Swarnmakshik bhasma<br />

and Gvakshyadi churana. These preparati<strong>on</strong>s are commercially<br />

available in <strong>the</strong> Indian market. Ghritas are available as semisolid<br />

preparati<strong>on</strong>s while bhasms, yogs, and churans are in <strong>the</strong> powder<br />

form.<br />

ANTICANCER PROPERTIES<br />

CU has antioxidant properties and is a free radical scavenger,<br />

and thus it neutralizes <strong>the</strong> oxidative stress. Scientists proved<br />

that <strong>the</strong> pesticides even at very low doses cause apoptosis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lymphocytes and tissues through fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA<br />

while CU helps <strong>the</strong> lymphocytes to survive by inhibiting <strong>the</strong>ir<br />

apoptosis and by repairing <strong>the</strong> damaged DNA and is, <strong>the</strong>refore,<br />

effective as anti-cancer <strong>the</strong>rapy [52,53].<br />

Chemopreventive <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CU was observed in a study,<br />

which was c<strong>on</strong>ducted <strong>on</strong> 70 Swiss albino mice for 16 weeks.<br />

Papillomas were induced by 7, 12 dimethyl benzanthracene and<br />

later promoted by repeated applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crot<strong>on</strong> oil. In mice<br />

treated with CU, <strong>the</strong> incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor (papillomas), tumor<br />

yield, and its burden was statistically less than <strong>the</strong> untreated<br />

group [54].<br />

Jain et al. studied <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> CU <strong>the</strong>rapy <strong>on</strong> various types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cancers in Mandsaur area. The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> symptoms (pain,<br />

inflammati<strong>on</strong>, burning sensati<strong>on</strong>, difficulty in swallowing, and<br />

irritati<strong>on</strong>) decreased from day 1 to day 8 with CU <strong>the</strong>rapy.<br />

Percent <str<strong>on</strong>g>of</str<strong>on</strong>g> patients with severe symptoms decreased from 82.16<br />

to 7.9 <strong>on</strong> day 8, patients with moderate symptoms increased<br />

from 15.8 to 55.3 and with mild symptoms, patients increased<br />

from 1.58 to 36.34. The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> symptoms decreased fur<strong>the</strong>r<br />

with c<strong>on</strong>tinued CU <strong>the</strong>rapy [15].<br />

Dutta et al. reported <strong>the</strong> anti-clastogenic and anti-genotoxic<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> redistilled CUD (RCUD) in human peripheral<br />

lymphocytes, which have been challenged with manganese<br />

dioxide (MnO 2<br />

) and hexavalent chromium (Cr+6). Protecti<strong>on</strong><br />

in number <str<strong>on</strong>g>of</str<strong>on</strong>g> chromosomal aberrati<strong>on</strong>s and frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

micr<strong>on</strong>uclei were more prominent when <strong>the</strong>se cells were<br />

pretreated with CU than simultaneous treatment with<br />

CU [55].<br />

IMMUNOSTIMULANT<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> herbs and minerals (like chavanprash and<br />

panchgavya) for improving <strong>the</strong> overall resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> body<br />

against comm<strong>on</strong> infecti<strong>on</strong>s and pathogens has been a guiding<br />

principal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ayurveda. Ancient books <strong>on</strong> Ayurveda state that<br />

c<strong>on</strong>suming CU daily increases <strong>the</strong> resistance to diseases by<br />

up to 104%. CU enhances <strong>the</strong> humoral, and cell-mediated<br />

immune resp<strong>on</strong>se in mice [5]. CUD was found to augment<br />

B- and T-lymphocyte blastogenesis; IgG, IgA and IgM antibody<br />

titers in mice. It has been observed that CU also increases <strong>the</strong><br />

phagocytic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophages and is thus helpful in <strong>the</strong><br />

preventi<strong>on</strong> and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial infecti<strong>on</strong>s. The level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both interleukins -1 and - 2 in mice was increased by 30.9%<br />

and 11.0%, respectively, and in rats <strong>the</strong>se levels were increased<br />

significantly by 14.75% and 33.6%, respectively [52]. CUD<br />

has been reported to be a potent and safe immunomodulator,<br />

which increases both humoral, and cell-mediated immunity<br />

in mice.<br />

Cell-mediated immune resp<strong>on</strong>se was evaluated <strong>on</strong> various<br />

parameters in a study by Verma et al. using CU for 30 days.<br />

There was a 55% increase in phagocytic index, and a significant<br />

increase (16%) in neutrophil adhesi<strong>on</strong> <strong>on</strong> regular use <str<strong>on</strong>g>of</str<strong>on</strong>g> whole<br />

freeze dried CU. CU has <strong>the</strong> <strong>potential</strong> to boost <strong>the</strong> immune<br />

functi<strong>on</strong>s by increasing <strong>the</strong> white blood cells counts and<br />

subsequently reducing <strong>the</strong> red blood cells count to a certain<br />

extent [56].<br />

Traditi<strong>on</strong>al uses <str<strong>on</strong>g>of</str<strong>on</strong>g> CU<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> traditi<strong>on</strong>al uses <str<strong>on</strong>g>of</str<strong>on</strong>g> CU are in fever, where CU al<strong>on</strong>g<br />

with pepper, curd and ghee is used; in leprosy, CU is used al<strong>on</strong>g<br />

with dhruhardi and in deformities associated with leprosy, it is<br />

used with Nimbuchal, whereas in chr<strong>on</strong>ic leprosy, CU is used<br />

al<strong>on</strong>g with leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> Vasaka and kanar, and bark <str<strong>on</strong>g>of</str<strong>on</strong>g> kuraila and<br />

neem [11]. Local traditi<strong>on</strong>al healers in Mandsaur prescribe CU<br />

for worm infestati<strong>on</strong>s, to develop immunity and to avoid aging.<br />

They suggest 10-25 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> CU to be taken <strong>on</strong> an empty stomach<br />

for <strong>the</strong> same [15].<br />

CONCLUSIONS<br />

On analyzing <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different preparati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CU, FCU<br />

had better activity than CUD [27-32]. Activity <str<strong>on</strong>g>of</str<strong>on</strong>g> FCU and<br />

CUD from indigenous <strong>cow</strong>s was similar to streptomycin and<br />

tetracycline. Ayurveda also menti<strong>on</strong>s that FCU <str<strong>on</strong>g>of</str<strong>on</strong>g> indigenous<br />

<strong>cow</strong>s’ is <strong>the</strong> best.<br />

More well-planned studies in human subjects are required to<br />

fully assess its <strong>potential</strong> as an effective antimicrobial agent as<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> studies quoted are in vitro studies. Comparative<br />

studies between CU obtained from indigenous breeds and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inbred strains may be undertaken, as ayurveda was written when<br />

inbred strains <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>s were not present. Future development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

newer drugs can involve CU in its repository.<br />

184 J Intercult Ethnopharmacol ● Apr-Jun 2015 ● Vol 4 ● Issue 2


Randhawa and Sharma: Chemo<strong>the</strong>rapeutic <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

REFERENCES<br />

1. Available from: http://www.cdc.gov/drugresistance/threatreport-2013/pdf/ar-threats-2013-508.pdf#page=11.<br />

[Last accessed<br />

<strong>on</strong> 2015 Jan 15].<br />

2. Available from: http://www.who.int/mediacentre/factsheets/fs194/<br />

en/. [Last accessed <strong>on</strong> 2015 Jan 15].<br />

3. Murray CK. Infectious disease complicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> combat-related<br />

injuries. Crit Care Med 2008;36:S358-64.<br />

4. Shafer RW, Rhee SY, Bennett DE. C<strong>on</strong>sensus drug resistance<br />

mutati<strong>on</strong>s for epidemiological surveillance: Basic principles and<br />

<strong>potential</strong> c<strong>on</strong>troversies. Antivir Ther 2008;13 Suppl 2:59-68.<br />

5. Chauhan RS, Singh BP, Singhal LK. Immunomodulati<strong>on</strong> with<br />

Kamdhenu ark in mice. J Immunol Immunopathol 2001;3:74-7.<br />

6. Bhadauria H. Cow <strong>urine</strong>- A magical <strong>the</strong>rapy. Int J Cow Sci 2002;1:32-6.<br />

7. Chauhan RS, Garg N. Cow Therapy as an Alternative to Antibiotic.<br />

Banglore, Karnataka: Indian Science C<strong>on</strong>gress; 2003.<br />

8. Randhawa GK. Cow <strong>urine</strong> distillate as bioenhancer. J Ayurveda Integr<br />

Med 2010;1:240-1.<br />

9. Randhawa GK, Kullar JS, Rajkumar. Bioenhancers from mo<strong>the</strong>r nature<br />

and <strong>the</strong>ir applicability in modern medicine. Int J Appl Basic Med Res<br />

2011;1:5-10.<br />

10. Jarald E, Edwin S, Tiwari V, Garg R, Toppo E. Antioxidant and<br />

antimicrobial activities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong>. Glob J Pharmacol 2008;2:20-2.<br />

11. Mohanty I, Senapati MR, Jena D, Pallai S. Diversified uses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong>. Int J Pharm Pharm Sci 2014;6:20-2.<br />

12. Hu W, Murphy MR, C<strong>on</strong>stable PD, Block E. Dietary cati<strong>on</strong>-ani<strong>on</strong><br />

difference effects <strong>on</strong> performance and acid-base status <str<strong>on</strong>g>of</str<strong>on</strong>g> dairy<br />

<strong>cow</strong>s postpartum. J Dairy Sci 2007;90:3367-75.<br />

13. Shaw SL, Mitloehner FM, Jacks<strong>on</strong> W, Depeters EJ, Fadel JG,<br />

Robins<strong>on</strong> PH, et al. Volatile organic compound emissi<strong>on</strong>s from dairy<br />

<strong>cow</strong>s and <strong>the</strong>ir waste as measured by prot<strong>on</strong>-transfer-reacti<strong>on</strong> mass<br />

spectrometry. Envir<strong>on</strong> Sci Technol 2007;41:1310-6.<br />

14. Achliya GS, Meghre VS, Wadodkar SG, Dorle AK. Antimicrobial activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong>. Indian J Nat Prod 2004;20:14-6.<br />

15. Jain NK, Gupta VB, Garg R, Silawat N. Efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> <strong>the</strong>rapy<br />

<strong>on</strong> various cancer patients in Mandsaur District, India -A survey. Int<br />

J Green Pharm 2010;4:29-35.<br />

16. Kumar AA. Study <strong>on</strong> Various Biochemical C<strong>on</strong>stituents in <strong>the</strong> Urine<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cow, Buffalo and Goat. Thesis Submitted to <strong>the</strong> C.S.A. Univ Agr<br />

Techn, Kanpur (U.P.); 2001. p. 13.<br />

17. Badadani M, SureshBabu SV, Shetty KT. Optimum c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autoclaving for hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins and urinary peptides <str<strong>on</strong>g>of</str<strong>on</strong>g> prolyl<br />

and hydroxyprolyl residues and HPLC analysis. J Chromatogr B Analyt<br />

Technol Biomed Life Sci 2007;847:267-74.<br />

18. Upadhyay RK, Dwivedi P, Ahmad S. Antimicrobial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> photoactivated<br />

<strong>cow</strong> <strong>urine</strong> against certain pathogenic bacterial strains. Afr<br />

J Biotechnol 2010;9:518-22.<br />

19. Naotoshi K, Osamu Y, Yoshihiko S, Fuminobu M, Masahiro Y,<br />

Yoshimitsu M. Clinico-pathological findings in peripartum dairy<br />

<strong>cow</strong>s fed ani<strong>on</strong> salts lowering <strong>the</strong> dietary cati<strong>on</strong>-ani<strong>on</strong> difference:<br />

Involvement <str<strong>on</strong>g>of</str<strong>on</strong>g> serum inorganic phosphorus, chloride and plasma<br />

estrogen c<strong>on</strong>centrati<strong>on</strong>s in milk fever. Jpn J Vet Res 2007;55:3-12.<br />

20. Türi M, Türi E, Kõljalg S, Mikelsaar M. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous extracts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> medicinal plants <strong>on</strong> surface hydrophobicity <str<strong>on</strong>g>of</str<strong>on</strong>g> Escherichia coli<br />

strains <str<strong>on</strong>g>of</str<strong>on</strong>g> different origin. APMIS 1997;105:956-62.<br />

21. Chauhan RS, Singhal L. Harmful effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Pesticides and <strong>the</strong>ir c<strong>on</strong>trol<br />

through <strong>cow</strong>pathy. Int J Cow Sci 2006;2:61-70.<br />

22. Singh UP, Maurya S, Singh A, Nath G, Singh M. Antimicrobial<br />

efficacy, disease inhibiti<strong>on</strong> and phenolic acid-inducing <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong>. Arch Phytopathol Plant Protect<br />

2012;45:1546-57.<br />

23. Chauhan RS. Panchagavya <strong>the</strong>rapy (<strong>cow</strong> pathy)- Current status and<br />

future directi<strong>on</strong>s. Indian Cow 2004;1:3-7.<br />

24. Singla S, Garg R. Cow <strong>urine</strong>: An elixir. Innov J Ayur Sci 2013;1:31-5.<br />

25. Kumar S. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> for detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipase activity and<br />

anti-microbial properties. J Pharm Biol Sci 2013;7:1-8.<br />

26. Pescheck-Böhmer F, Schreiber G. Healing yourself using <strong>urine</strong>. Urine<br />

Therapy: Nature’s Elixir for Good Health. Rochester: Inner Traditi<strong>on</strong>s,<br />

Bear & Company; 1999. p. 152.<br />

27. Minocheherhomji FP, Vyas BM. Study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> antimicrobial activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> and medicinal plant extracts <strong>on</strong> pathogenic human<br />

microbial strains. Int J Adv Pharm Biol Chem 2014;3:836-40.<br />

28. Rana R, De S. In vitro antimicrobial screening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> – A<br />

<strong>potential</strong> natural anti-microbial agent. Int J Bioassays 2013;2:436-9.<br />

29. Ahuja A, Kumar P, Verma A, Tanwar R. Antimicrobial activities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong> against various bacterial strains. Int J Recent Adv Pharm Res<br />

2012;2:84-7.<br />

30. Kekuda PT, Nishanth BC, Kumar PS, Kamal D, Sandeep M,<br />

Megharaj HK. Cow <strong>urine</strong> c<strong>on</strong>centrati<strong>on</strong>: A potent agent with<br />

antimicrobial and an<strong>the</strong>lmintic activity. J Pharm Res 2010;3:1025-7.<br />

31. Tyagi PK, Tyagi S, Sarsar V, Pannu R. Cow <strong>urine</strong>: An antimicrobial<br />

activity against pathogens and <strong>the</strong>ir possible uses. Int J Pharm Res<br />

Sch 2013;2:427-33.<br />

32. Sarsar V, Selwal KK, Selwal MK, Pannu R, Tyagi PK. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> photoactivated <strong>cow</strong> <strong>urine</strong> against human<br />

pathogenic strains. Envir<strong>on</strong> Exp Biol 2013;11:201-3.<br />

33. Shah CP, Patel DM, Dhami PD, Kakadia J, Bhavsar D, Vachhani UD,<br />

et al. In vitro screening <str<strong>on</strong>g>of</str<strong>on</strong>g> antibacterial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> against<br />

pathogenic human bacterial strains. Int J Curr Pharm Res 2011;3:91-2.<br />

34. Sathasivam A, Muthuselvam M, Rajendran R. Antimicrobial activities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> distillate against some clinical pathogens. Glob J<br />

Pharmacol 2010;4:41-4.<br />

35. Vats S, Kumar R, Negi S. Natural food that meet antibiotics resistance<br />

challenge: In vitro synergistic antimicrobial activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Azadirachta<br />

indica, Terminalia chebula, Piper nigrum and photoactivated <strong>cow</strong><br />

<strong>urine</strong>. Asian J Pharm Biol Res 2012;2:122-6.<br />

36. Yadav H, Yadav M, Jain S, Bhardwaj A, Singh V, Parkash O, et al.<br />

Antimicrobial property <str<strong>on</strong>g>of</str<strong>on</strong>g> a herbal preparati<strong>on</strong> c<strong>on</strong>taining Dalbergia<br />

sissoo and Datura tram<strong>on</strong>ium with <strong>cow</strong> <strong>urine</strong> against pathogenic<br />

bacteria. Int J Immunopathol Pharmacol 2008;21:1013-20.<br />

37. Singh S. Cow <strong>urine</strong> has anti-leishmania d<strong>on</strong>ovani effect in vitro. Int<br />

J Cow Sci 2005;1(2):72-3.<br />

38. Biddle S, Teale P, Robins<strong>on</strong> A, Bowman J, Hought<strong>on</strong> E. Gas<br />

chromatography-mass spectrometry/mass spectrometry analysis<br />

to determine natural and post-administrati<strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> oestrogens<br />

in bovine serum and <strong>urine</strong>. Anal Chim Acta 2007;586:115-21.<br />

39. Rajapandiyan K, Shanthi S, Murugan AM, Muthu GA, Singh AJ.<br />

Azadirachta indica - Cow <strong>urine</strong> extract, a novel c<strong>on</strong>trolling agent<br />

towards clinically significant multi drug resistant pathogens. J Appl<br />

Pharm Sci 2011;1:107-13.<br />

40. Kumar S. Analysis <strong>on</strong> <strong>the</strong> natural remedies to cure dandruff/skin<br />

disease-causing fungus - Malassezia furfur. Adv BioTech 2013;12:1-5.<br />

41. Vijayalakshmi R, Saranya VT. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> “Go-Mutra” <strong>on</strong> plant growth and<br />

its antifungal and antibacterial activity. J Herb Sci Technol 2010;6:6-11.<br />

42. Deshmukh SS, Rajgure SS, Ingole SP. Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong>.<br />

IOSR J Pharm 2012;2(5):27-30.<br />

43. Sanganal JS, Jayakumar K, Jayaramu GM, Tikare VP, Paniraj K,<br />

Swetha R. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> <strong>on</strong> wound healing property in wister<br />

albino rats. Vet World 2011;4:317-21.<br />

44. Maheshwari AK, Gupta AK, Das AK. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> <strong>on</strong> wounds.<br />

Indian Cow 2004;1:19-24.<br />

45. Kumar R, Kumar A, Kumar K, Gupta V, Shrivas T, Tripathi K. Synergistic<br />

an<strong>the</strong>lmintic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> different compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> panchagavya and<br />

Bauhinia variegate Linn. Int J Phytopharmacol 2014;5:120-2.<br />

46. Tambekar DH, Kerhalkar SA. Cow <strong>urine</strong>: A bioenhancer for antibiotic.<br />

Asian J Microbiol Biotechnol Envir<strong>on</strong> Sci 2006;8:329-33.<br />

47. Khanuja SP, Kumar S, Shasany AK, Arya JS, Darokar MP. Use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bioactive fracti<strong>on</strong> from <strong>cow</strong> <strong>urine</strong> distillate (‘Go-mutra’) as a<br />

bioenhancer <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-infective, anti-cancer agents and nutrients. US<br />

Patent US 7235262; 2007.<br />

48. Khanuja SPS, Kumar S, Shasany AK, Arya JS, Darokar MP, Singh M,<br />

et al. Pharmaceutical compositi<strong>on</strong> c<strong>on</strong>taining <strong>cow</strong> <strong>urine</strong> distillate and<br />

an antibiotic. US Patent US 6410059 B1; 2002.<br />

49. Tatiraju DV, Bagade VB, Karambelkar PJ, Jadhav VM, Kadam V. Natural<br />

bioenhancers: An overview. J Pharmacogn Phytochem 2013;2:55-60.<br />

50. Chawla PC. Resorine a novel CSIR drug curtails TB treatment. CSIR<br />

News 2010;60:52-4.<br />

51. Poornima G, Abhipsa V, Rekha C, Manasa M, Kekuda PT. Antibacterial<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polyalthia l<strong>on</strong>gifolia thw. extract, <strong>cow</strong> <strong>urine</strong><br />

distillate and Streptomycin. Res J Pharm Tech 2012;5:927-30.<br />

52. Kumar A, Kumar P, Singh LK, Agrawal DK. Pathogenic effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

free radicals and <strong>the</strong>ir preventi<strong>on</strong> through <strong>cow</strong>pathy. Indian Cow<br />

2004;6:27-34.<br />

53. Ambwani S. Molecular studies <strong>on</strong> apoptosis in avian lymphocytes<br />

induced by pesticides. PhD Thesis Submitted to Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Biotechnology and Molecular Biology, College <str<strong>on</strong>g>of</str<strong>on</strong>g> Basic Sciences<br />

and Humanities, GBPAUT, Pantnagar, India; 2004.<br />

54. Raja W, Agrawal RC. Chemopreventive <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> against<br />

J Intercult Ethnopharmacol ● Apr-Jun 2015 ● Vol 4 ● Issue 2 185


Randhawa and Sharma: Chemo<strong>the</strong>rapeutic <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

7, 12 dimethyl benz(a) anthracene-induced skin papillomasgenesis<br />

in mice. Acad J Cancer Res 2010;3(1):7-10.<br />

55. Dutta D, Devi SS, Krishnamurthi K, Chakrabarti T. Anticlastogenic<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> redistilled <strong>cow</strong>’s <strong>urine</strong> distillate in human peripheral<br />

lymphocytes challenged with manganese dioxide and hexavalent<br />

chromium. Biomed Envir<strong>on</strong> Sci 2006;19:487-94.<br />

56. Verma A, Kumar B, Manish KS, Kharya MD. Immunomodulatory<br />

<strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong>. Der Pharm Lettre 2011;3:507-13.<br />

© SAGEYA. This is an open access article licensed under <strong>the</strong> terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Creative Comm<strong>on</strong>s Attributi<strong>on</strong> N<strong>on</strong>-Commercial License (http://<br />

creativecomm<strong>on</strong>s.org/licenses/by-nc/3.0/) which permits unrestricted,<br />

n<strong>on</strong>commercial use, distributi<strong>on</strong> and reproducti<strong>on</strong> in any medium, provided<br />

<strong>the</strong> work is properly cited.<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g> Support: Nil, C<strong>on</strong>flict <str<strong>on</strong>g>of</str<strong>on</strong>g> Interest: N<strong>on</strong>e declared.<br />

186 J Intercult Ethnopharmacol ● Apr-Jun 2015 ● Vol 4 ● Issue 2


Mol Biol Rep (2014) 41:1967–1976<br />

DOI 10.1007/s11033-014-3044-6<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> ‘‘Gomutra’’ and antioxidants<br />

in alleviating <strong>the</strong> lindane-induced oxidative stress in kidney<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Swiss mice (Mus musculus)<br />

Girima Nagda • Devendra Kumar Bhatt<br />

Received: 5 December 2012 / Accepted: 4 January 2014 / Published <strong>on</strong>line: 16 January 2014<br />

Ó Springer Science+Business Media Dordrecht 2014<br />

Abstract The study aimed to evaluate <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong> and combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants against lindane<br />

induced oxidative stress in Swiss mice. Male healthy mice,<br />

8–10 weeks old, weighing 30 ± 5 g were randomly selected<br />

and divided into eight groups, namely, c<strong>on</strong>trol (C); lindane<br />

(L); antioxidant (A), antioxidant?lindane (A?L), <strong>cow</strong> <strong>urine</strong><br />

(U), <strong>cow</strong> <strong>urine</strong>?lindane (U?L), <strong>cow</strong> <strong>urine</strong>?antioxidants<br />

(U?A) and <strong>cow</strong> <strong>urine</strong>?antioxidants?lindane (U?A?L).<br />

Group C animals were administered <strong>on</strong>ly <strong>the</strong> vehicle (olive<br />

oil); doses selected for o<strong>the</strong>r treatments were: lindane:<br />

40 mg/kg b.w.; antioxidants: 125 mg/kg b.w. (vitamin C:<br />

50 mg/kg b.w., vitamin E: 50 mg/kg b.w., a-lipoic acid:<br />

25 mg/kg b.w.) and <strong>cow</strong> <strong>urine</strong>: 0.25 ml/kg b.w. In group<br />

A?L and U?L antioxidants and <strong>cow</strong> <strong>urine</strong> were administered<br />

1 h prior to lindane administrati<strong>on</strong> and in group U?A<br />

and U?A?L <strong>cow</strong> <strong>urine</strong> was administered 10 min before<br />

antioxidants. All treatments were administered orally c<strong>on</strong>tinuously<br />

for 60 days. Lindane treated group showed<br />

increased lipid peroxidati<strong>on</strong>, whereas glutathi<strong>on</strong>e, glutathi<strong>on</strong>e<br />

peroxidase, superoxide dismutase, catalase, protein and<br />

endogenous levels <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin C and E were significantly<br />

decreased compared to c<strong>on</strong>trol. Administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong><br />

and antioxidants alleviated <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se biochemical<br />

parameters.<br />

Keywords Antioxidants Cow <strong>urine</strong> Kidney Lindane <br />

Oxidative stress<br />

G. Nagda (&) D. K. Bhatt<br />

Cancer Biology and Toxicology Research Laboratory,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, University College <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

M L Sukhadia University, Udaipur 313 001, India<br />

e-mail: girima10@gmail.com<br />

Introducti<strong>on</strong><br />

Kidney is vital organ <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> body resp<strong>on</strong>sible for segregating<br />

<strong>the</strong> metabolic waste products from <strong>the</strong> blood.<br />

Accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolites <str<strong>on</strong>g>of</str<strong>on</strong>g> xenobiotics c<strong>on</strong>tributes<br />

significantly to its susceptibility to damage kidney [24].<br />

Any nephrotoxic insult would result in accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

waste materials in <strong>the</strong> blood which in turn may lead to<br />

o<strong>the</strong>r toxic manifestati<strong>on</strong>s in <strong>the</strong> body. Toxic injury to <strong>the</strong><br />

kidney is known to occur as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> exposures to halogenated<br />

hydrocarb<strong>on</strong>s, such as lindane, carb<strong>on</strong> tetrachloride<br />

and trichloroethylene, and <strong>the</strong> heavy metals cadmium<br />

and lead [3, 35, 36, 48, 59]. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se toxicants cause<br />

acute injury to <strong>the</strong> kidney, while o<strong>the</strong>rs produce chr<strong>on</strong>ic<br />

changes that can lead to end-stage renal failure or cancer.<br />

Lindane, <strong>the</strong> gamma isomer <str<strong>on</strong>g>of</str<strong>on</strong>g> HCH possesses <strong>the</strong> property<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> persistence, bioaccumulati<strong>on</strong> and l<strong>on</strong>g term toxicity<br />

[32] and fulfills <strong>the</strong> criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> POPs i.e., persistent organochlorine<br />

pesticides. India has total installed capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane<br />

(technical) producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,300 t<strong>on</strong>nes per annum (tpa),<br />

with two companies producing: Kanoria Chemicals and<br />

Industries Ltd with a capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,000 tpa, and India Pesticides<br />

Limited with 300 tpa capacity. According to data<br />

available from Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemicals and Petrochemicals,<br />

Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemicals and Fertilizers, between 1995<br />

and 2005, India has produced 5,387 t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> technical grade<br />

lindane. In India, lindane formulati<strong>on</strong>s are registered for use<br />

in pharmaceutical products for c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> head lice and<br />

scabies <strong>on</strong> people, to c<strong>on</strong>trol fly, flea, cockroach, mosquito,<br />

bed bug, and beetle populati<strong>on</strong>s and for <strong>the</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> pests in<br />

cott<strong>on</strong>, sugarcane, pumpkin, cabbage, <strong>on</strong>i<strong>on</strong>, apple, walnut,<br />

maize, okhra, potato, tomato, cauliflower, radish, cucumber<br />

and beans [15]. Lindane is highly lipophilic and absorbed by<br />

<strong>the</strong> respiratory, digestive or cutaneous pathways. Its accumulati<strong>on</strong><br />

depends <strong>on</strong> <strong>the</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> exposure and affect<br />

123


1968 Mol Biol Rep (2014) 41:1967–1976<br />

tissues in <strong>the</strong> following order: fat [ brain [ kidney [<br />

muscle [ lung [ heart [ spleen [ liver [ blood [56]. Toxicity<br />

induced by lindane is attributed to oxidative stress as it<br />

induces <strong>the</strong> release <str<strong>on</strong>g>of</str<strong>on</strong>g> free radicals and generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive<br />

oxygen species (ROS) [67].<br />

Oxidative stress is defined as a disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> prooxidant–antioxidant<br />

balance in favor <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> former, leading<br />

to <strong>potential</strong> damage [37]. It is a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> three<br />

factors: (i) an increase in ROS, (ii) an impairment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antioxidant defence systems, or (iii) an incapacity to repair<br />

oxidative damage.<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> studies indicate <strong>the</strong> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane <strong>on</strong><br />

kidney [22, 48]. It has been c<strong>on</strong>sidered that ROS play an<br />

important role in <strong>the</strong> pathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> renal injury. Since <strong>the</strong><br />

entire range <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic metabolites in <strong>the</strong> body is excreted<br />

mainly from <strong>the</strong> kidney, this organ is endowed with significant<br />

antioxidant defense system next <strong>on</strong>ly to liver. This<br />

is understandable because ROS play a key intermediary<br />

role in <strong>the</strong> pathophysiologic processes <str<strong>on</strong>g>of</str<strong>on</strong>g> a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

clinical and experimental renal diseases [50, 65].<br />

The human body has a str<strong>on</strong>g inherent synergistic and<br />

multilevel defense mechanism, to combat and counteract<br />

<strong>the</strong> damage caused by free radicals [41]. This defense is<br />

mediated by endogenous antioxidant system which ei<strong>the</strong>r<br />

prevent <strong>the</strong>se reactive species from being formed, or cause<br />

<strong>the</strong>ir removal before <strong>the</strong>y can damage vital comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> cell [17]. The excessive free radicals or <strong>the</strong> suppressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidant defense <str<strong>on</strong>g>of</str<strong>on</strong>g> body results into toxicity. In such<br />

c<strong>on</strong>diti<strong>on</strong>s, though <strong>the</strong> body tissue is endowed with enzymatic<br />

and n<strong>on</strong>-enzymatic protective systems, but it seems<br />

that <strong>the</strong> homeostasis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> body fails. In such situati<strong>on</strong>s,<br />

<strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> exogenous substances with antioxidative<br />

<strong>potential</strong> becomes important [64].<br />

Antioxidants have gained immense importance in recent<br />

years. The potency <str<strong>on</strong>g>of</str<strong>on</strong>g> various antioxidants <strong>on</strong> different<br />

organ systems has been investigated against lindane toxicity<br />

[8, 9, 11, 42, 63].<br />

Cow <strong>urine</strong> or Gomutra is c<strong>on</strong>sidered sacred in Hindu<br />

mythology and from ancient times it has been used as a<br />

medicine in India. The medicinal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong><br />

have been menti<strong>on</strong>ed in Sushrut (45/221) and Charak<br />

(sloka-100) where it is c<strong>on</strong>sidered useful in treating renal<br />

colic, jaundice, anemia, diarrhea, gastric infecti<strong>on</strong>, piles<br />

and skin diseases including vitiligo. It is also c<strong>on</strong>sidered as<br />

an appetizer and is known to reverse inflammati<strong>on</strong>, a<br />

diuretic as well as a nephroprotective agent. It also acts at<br />

cellular level and generates bioenergy [31]. The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>cow</strong> <strong>urine</strong> has shown that it c<strong>on</strong>tains nitrogen, sulphur,<br />

phosphate, sodium, manganese, carbolic acid, ir<strong>on</strong>, silic<strong>on</strong>,<br />

chlorine, magnesium, melci, citric, titric, succinic, calcium<br />

salts, vitamin A, B, C, D, E, minerals, lactose, enzymes,<br />

creatinine, horm<strong>on</strong>es and gold acids. The <strong>cow</strong> <strong>urine</strong> c<strong>on</strong>tains<br />

those substances, which are present in <strong>the</strong> human<br />

body and thus its c<strong>on</strong>sumpti<strong>on</strong> maintains <strong>the</strong> balance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>se substances and cures incurable diseases [49]. Cow<br />

<strong>urine</strong> is also used al<strong>on</strong>g with herbs to treat various diseases<br />

like fever, epilepsy, anemia, abdominal pain, c<strong>on</strong>stipati<strong>on</strong><br />

etc. by <strong>the</strong> traditi<strong>on</strong>al healers [34].<br />

There is a paucity <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> regarding <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fresh <strong>cow</strong> <strong>urine</strong> and combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin E, vitamin C<br />

and alpha lipoic acid against lindane toxicity in kidney.<br />

Therefore, in <strong>the</strong> present study <strong>the</strong>ir role in alleviating <strong>the</strong><br />

oxidative stress induced by lindane intoxicati<strong>on</strong> in kidney<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mice has been investigated. Moreover, <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong> from ancient times has shown to be quite effective<br />

but its efficiency against lindane induced toxicity and its<br />

combined effect al<strong>on</strong>g with <strong>the</strong> various antioxidants is<br />

hi<strong>the</strong>rto unreported. Hence, present study was undertaken<br />

to fill <strong>the</strong> lacuna in this regard.<br />

Materials and methods<br />

Chemicals<br />

Lindane (c-HCH) was obtained from Sigma chemicals St.<br />

Louis, Mo, USA (CAS No. 58-89-9 and purity 97 %). vitamin<br />

E, vitamin C, a-lipoic acid, sodium azide, thiobarbituric<br />

acid, dinitrophenylhydrazine (DNPH), 2, 2 dipyridyl, and<br />

phenazine methosulphate were obtained from Himedia,<br />

India. Dithiobisnitro benzene (DTNB), reduced glutathi<strong>on</strong>e<br />

and bovine serum albumin were purchased from Sisco<br />

Research Laboratories, Mumbai, India. All o<strong>the</strong>r chemicals<br />

and solvents used were <str<strong>on</strong>g>of</str<strong>on</strong>g> analytical grade. Cow <strong>urine</strong>: Urine<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> young <strong>cow</strong> was collected from local <strong>cow</strong>shed and stored in<br />

an air tight bottle for fur<strong>the</strong>r use.<br />

Animals and treatment<br />

Male Swiss mice, weighing 30 ± 5 g and 8–10 weeks old<br />

were procured from Cadila Health Care Institute, Ahmedabad.<br />

Animals were maintained <strong>on</strong> sterilized rice husk<br />

bedding in polypropylene cages and kept at a temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> about 23 ± 3 °C with 12 ± 1 h L:D cycle. Animals<br />

were fed <strong>on</strong> standard pelletal diet (Pranav Agro, Baroda).<br />

Food and water were ad libitum. Experimental protocol<br />

was approved by <strong>the</strong> Instituti<strong>on</strong>al Animal Ethics Committee.<br />

Handling <str<strong>on</strong>g>of</str<strong>on</strong>g> animals was according to <strong>the</strong> guidelines <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

123


Mol Biol Rep (2014) 41:1967–1976 1969<br />

Committee for <strong>the</strong> Purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>trol and Supervisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Experiments <strong>on</strong> Animals (CPCSEA), Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment<br />

and Forests, Govt. <str<strong>on</strong>g>of</str<strong>on</strong>g> India.<br />

Dose selecti<strong>on</strong><br />

Dose for lindane was selected after c<strong>on</strong>ducting pilot<br />

experiments in our laboratory. LD50 for lindane was found<br />

to be at 60 mg/kg body wt. c<strong>on</strong>sidering this aspect, a dose<br />

level which may show adverse effect <strong>on</strong> kidney was<br />

selected as <strong>the</strong> dose for <strong>the</strong> present study. Durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

treatment was based <strong>on</strong> occupati<strong>on</strong>al exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> workers<br />

i.e., for 2 m<strong>on</strong>ths during active malaria vector c<strong>on</strong>trol<br />

programme. Dose selected for lindane was 40 mg/kg body<br />

wt. and durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment was for 2 m<strong>on</strong>ths i.e.,<br />

60 days. There was no mortality in exposure group during<br />

<strong>the</strong> study.<br />

Doses for antioxidants were calculated keeping <strong>the</strong><br />

doses prescribed for humans and also in accordance with<br />

<strong>the</strong> previous reports [8, 9, 42]. The combined dose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antioxidants selected was 125 mg/kg body wt. which<br />

included vitamin C 50 mg/kg body wt., vitamin E 50 mg/kg<br />

body wt. and a-lipoic acid 25 mg/kg body wt. Cow <strong>urine</strong><br />

was administered at a dose equivalent to <strong>the</strong> corresp<strong>on</strong>ding<br />

dose for human in ml/kg b.w. i.e., 0.25 ml/kg b.w.<br />

Doses <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane, vitamin E and lipoic acid were prepared<br />

by dissolving in olive oil. Dose <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin C was<br />

prepared in distilled water. Cow <strong>urine</strong> was administered<br />

without any modificati<strong>on</strong>.<br />

Experimental protocol<br />

A sub chr<strong>on</strong>ic study was d<strong>on</strong>e for 60 days and oral route <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dose administrati<strong>on</strong> was chosen for all treatments. Mice<br />

were divided into eight groups with minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 8–10<br />

animals in each group.<br />

In <strong>the</strong> group IV and VIII <strong>the</strong> antioxidants and <strong>cow</strong><br />

<strong>urine</strong> were administered 1 h prior to lindane administrati<strong>on</strong>.<br />

In group VI and VII <strong>cow</strong> <strong>urine</strong> was administered<br />

10 min before <strong>the</strong> antioxidants administrati<strong>on</strong>. All <strong>the</strong><br />

treatments were given c<strong>on</strong>tinuously for a period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

60 days.<br />

Mice were sacrificed by cervical dislocati<strong>on</strong> at <strong>the</strong><br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> scheduled period <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 days and 24 h after<br />

<strong>the</strong> last dose treatment. Both <strong>the</strong> kidneys were blotted<br />

free <str<strong>on</strong>g>of</str<strong>on</strong>g> blood, weighed and to maintain uniformity in<br />

all groups <strong>the</strong> right kidney was used for biochemical<br />

analysis. The right kidney (just to maintain uniformity<br />

am<strong>on</strong>gst animals <str<strong>on</strong>g>of</str<strong>on</strong>g> all groups) was washed with ice<br />

cold physiological saline and a 10 % w/v homogenate<br />

was prepared in 0.1 M phosphate buffer (pH 7.4). The<br />

homogenate was centrifuged at 6,0009g for 10 min<br />

to obtain <strong>the</strong> supernatant. Supernatant was diluted<br />

five times and used for estimating <strong>the</strong> biochemical<br />

parameters.<br />

Biochemical analysis<br />

The kidney tissue homogenate was used for <strong>the</strong> estimati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lipid peroxidati<strong>on</strong> (LPO) [68], superoxide dismutase<br />

(SOD) [30], catalase (CAT) [16], glutathi<strong>on</strong>e peroxidase<br />

(GPx) [54], glutathi<strong>on</strong>e (GSH) [40], protein [38], vitamin E<br />

(a-tocopherol) [18] and vitamin C (ascorbic acid) [45].<br />

Statistical evaluati<strong>on</strong><br />

Values are mean ± SD and <strong>the</strong> results obtained were<br />

analyzed using <strong>on</strong>e way ANOVA. Inter group comparis<strong>on</strong>s<br />

were performed by using <strong>the</strong> least significance difference<br />

(LSD) test. A probability value <str<strong>on</strong>g>of</str<strong>on</strong>g> P \ 0.05, 0.01 was<br />

c<strong>on</strong>sidered as statistically significant.<br />

S. no. Group no. Group code Treatment Dose Durati<strong>on</strong><br />

1 I C C<strong>on</strong>trol: vehicle <strong>on</strong>ly Olive oil <strong>on</strong>ly 60 days<br />

2 II L Lindane 40 mg/kg b.w. 60 days<br />

3 III A Antioxidants al<strong>on</strong>e Combined dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 125 mg/kg b.w. 60 days<br />

4 IV A?L Antioxidants?lindane Antioxidant dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 125 mg/kg b.w. followed<br />

60 days<br />

by lindane at 40 mg/kg b.w.<br />

5 V U Cow <strong>urine</strong> al<strong>on</strong>e 0.25 ml/kg b.w. <strong>cow</strong> <strong>urine</strong> 60 days<br />

6 VI U?L Cow <strong>urine</strong>?lindane 0.25 ml/kg b.w. <strong>cow</strong> <strong>urine</strong> ?40 mg/kg b.w. lindane 60 days<br />

7 VII U?A Cow <strong>urine</strong>?antioxidants 0.25 ml/kg b.w. <strong>cow</strong> <strong>urine</strong> ?125 mg/kg b.w. antioxidants 60 days<br />

8 VIII U?A?L Cow <strong>urine</strong>?antioxidants?lindane 0.25 ml/kg b.w. <strong>cow</strong> <strong>urine</strong> ?125 mg/kg b.w.<br />

antioxidants ?40 mg/kg b.w. lindane<br />

60 days<br />

123


1970 Mol Biol Rep (2014) 41:1967–1976<br />

Results<br />

The changes in various biochemical parameters in different<br />

groups have been presented in Graphs 1, 2, 3, 4, 5, 6, 7, 8.<br />

Effect <strong>on</strong> LPO (Graph 1)<br />

A significant increase (P \ 0.01) <str<strong>on</strong>g>of</str<strong>on</strong>g> 32.21 % was observed in<br />

<strong>the</strong> LPO levels after lindane intoxicati<strong>on</strong> as compared to c<strong>on</strong>trol.<br />

All <strong>the</strong> pretreatment groups showed a significant decline<br />

(P \ 0.01) in <strong>the</strong> LPO levels. 29.21, 27.66, and 29.47 %<br />

decline was observed in <strong>the</strong> A?L, U?L, and U?A?L groups<br />

respectively as compared to lindane group. The increasing<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> LPO levels in various groups was as follow:<br />

L [ C [ U?L [ A?L [ U?A?L [ U?A [ U [ A.<br />

Graph. 3 Mean ± SD values <str<strong>on</strong>g>of</str<strong>on</strong>g> CAT (lmol <str<strong>on</strong>g>of</str<strong>on</strong>g> H 2 O 2 decomposed/<br />

min/mg protein) in various groups (a 60 day assessment). a compared<br />

to c<strong>on</strong>trol, b when compared to lindane, NS n<strong>on</strong> significant,<br />

* significant (P \ 0.05), ** highly significant (P \ 0.01)<br />

Graph. 1 Mean ± SD values <str<strong>on</strong>g>of</str<strong>on</strong>g> LPO (nmoL TBARS/g tissue) in<br />

various groups (a 60 day assessment). a when compared to c<strong>on</strong>trol, b<br />

when compared to lindane, NS n<strong>on</strong> significant, * significant<br />

(P \ 0.05), ** highly significant (P \ 0.01)<br />

Graph. 4 Mean ± SD values <str<strong>on</strong>g>of</str<strong>on</strong>g> GPx (mg <str<strong>on</strong>g>of</str<strong>on</strong>g> GSH c<strong>on</strong>sumed/min/<br />

mg protein) in various groups (A 60 day assessment). a compared to<br />

c<strong>on</strong>trol, b when compared to lindane, NS n<strong>on</strong> significant, * significant<br />

(P \ 0.05), ** highly significant (P \ 0.01)<br />

Graph. 2 Mean ± SD values <str<strong>on</strong>g>of</str<strong>on</strong>g> SOD (50 % inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NBT/min/<br />

mg protein) in various groups (a 60 day assessment). a compared to<br />

c<strong>on</strong>trol, b when compared to lindane, NS n<strong>on</strong> significant, * significant<br />

(P \ 0.05), ** highly significant (P \ 0.01)<br />

Graph. 5 Mean ± SD values <str<strong>on</strong>g>of</str<strong>on</strong>g> glutathi<strong>on</strong>e (GSH) (mg/gm tissue)<br />

in various groups (a 60 day assessment). a compared to c<strong>on</strong>trol,<br />

b when compared to lindane, NS n<strong>on</strong> significant, * significant<br />

(P \ 0.05), ** highly significant (P \ 0.01)<br />

123


Mol Biol Rep (2014) 41:1967–1976 1971<br />

c<strong>on</strong>trol group. The pretreatment groups A?L, U?L and<br />

U?A?L showed a significant increase (P \ 0.01) <str<strong>on</strong>g>of</str<strong>on</strong>g> about<br />

57.74, 77.64, and 98.26 % respectively, as compared to<br />

lindane group. The increasing levels <str<strong>on</strong>g>of</str<strong>on</strong>g> SOD in various<br />

groups were as follow: L \ A?L \ U?L \ C \ U?A?<br />

L \ A \ U?A \ U.<br />

Effect <strong>on</strong> CAT (Graph 3)<br />

Graph. 6 Mean ± SD values <str<strong>on</strong>g>of</str<strong>on</strong>g> total protein (mg/100 mg tissue<br />

weight) in various groups (a 60 day assessment). a compared to<br />

c<strong>on</strong>trol, b when compared to lindane, NS n<strong>on</strong> significant, * significant<br />

(P \ 0.05), ** highly significant (P \ 0.01)<br />

Lindane induced kidney toxicity showed a significant<br />

decline (P \ 0.01) <str<strong>on</strong>g>of</str<strong>on</strong>g> 32.12 % in <strong>the</strong> CAT activity as<br />

compared to c<strong>on</strong>trol. A significant increase (P \ 0.01) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

58.91 % in A?L, 32.85 % in U?L and 51.97 % in<br />

U?A?L was observed when compared to lindane. The<br />

<strong>cow</strong> <strong>urine</strong> al<strong>on</strong>e group also showed a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> 9.82 % as<br />

compared to lindane but <strong>the</strong> decrease was not significant.<br />

The maximum % <str<strong>on</strong>g>of</str<strong>on</strong>g> increase was observed in <strong>the</strong> A?L<br />

group. The increasing order <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> enzyme level in all <strong>the</strong><br />

eight groups was as follow: L \ U?L \ C \ U?A?L \<br />

A?L \ U \ U?A \ A.<br />

Effect <strong>on</strong> GPx (Graph 4)<br />

Graph. 7 Mean ± SD values <str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous vitamin E (mg/g tissue)<br />

in various groups (a 60 day assessment). a compared to c<strong>on</strong>trol,<br />

b when compared to lindane, NS n<strong>on</strong> significant, * significant<br />

(P \ 0.05), ** highly significant (P \ 0.01)<br />

As compared to c<strong>on</strong>trol animals, <strong>the</strong> lindane intoxicated<br />

animals showed a significant decrease (P \ 0.01) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

45.19 % in <strong>the</strong> GPx levels. All <strong>the</strong> pretreatment groups<br />

showed promising results and brought about a significant<br />

rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 101.89, 146.37, and 215.30 % in <strong>the</strong> GPx levels in<br />

<strong>the</strong> groups A?L, U?L and U?A?L, respectively. The<br />

increasing order <str<strong>on</strong>g>of</str<strong>on</strong>g> GPx levels in various groups was as<br />

followed: L \ C \ A?L \ U?L \ U?A?L \ A \ U \<br />

U?A.<br />

Effect <strong>on</strong> GSH (Graph 5)<br />

Graph. 8 Mean ± SD values <str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous vitamin C (mg/g tissue)<br />

in various groups (a 60 day assessment). a compared to c<strong>on</strong>trol,<br />

b when compared to lindane, NS n<strong>on</strong> significant, * significant<br />

(P \ 0.05), ** highly significant (P \ 0.01)<br />

Effect <strong>on</strong> SOD (Graph 2)<br />

The SOD levels declined significantly (P \ 0.01) up to<br />

45.96 % in lindane intoxicated mice as compared to<br />

A significant decline (P \ 0.01) <str<strong>on</strong>g>of</str<strong>on</strong>g> 29.24 % was observed<br />

in <strong>the</strong> GSH levels after lindane intoxicati<strong>on</strong> as compared to<br />

c<strong>on</strong>trol animals. The pretreatment groups showed a n<strong>on</strong>significant<br />

decrease in <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> GSH as compared to<br />

c<strong>on</strong>trol which accounted to 0.10 % in <strong>the</strong> A?L group,<br />

6.69 % in U?L group and 12.37 % in U?A?L group. But<br />

when compared to lindane a significant increase (P \ 0.01)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 41.18, 31.87, and 23.84 % was seen in <strong>the</strong> respective<br />

groups A?L, U?L and U?A?L. The increasing order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

GSH levels in different groups was as follow: L \ U?<br />

A?L \ U?L \ U?A \ A?L \ C \ U \ A.<br />

Effect <strong>on</strong> protein (Graph 6)<br />

A significant decrease (P \ 0.01) <str<strong>on</strong>g>of</str<strong>on</strong>g> 15.01 % was observed<br />

in <strong>the</strong> total protein levels <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane intoxicated animals as<br />

compared to c<strong>on</strong>trol. The pretreatment groups A?L, U?L<br />

and U?A?L showed a significant rise (P \ 0.01) <str<strong>on</strong>g>of</str<strong>on</strong>g> 20.00,<br />

123


1972 Mol Biol Rep (2014) 41:1967–1976<br />

17.08, and 11.95 % respectively, in <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

protein as compared to lindane group. The best results were<br />

shown by <strong>the</strong> pretreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants<br />

which resulted in about 20.00 % rise in <strong>the</strong> total protein<br />

levels which had decreased to 15.01 % after lindane<br />

intoxicati<strong>on</strong>. The increasing order <str<strong>on</strong>g>of</str<strong>on</strong>g> protein levels in<br />

various groups is as follows: L \ U?A?L \ U?A \ U?<br />

L \ C \ A?L \ U \ A.<br />

Effect <strong>on</strong> endogenous vitamin E (Graph 7)<br />

A significant decrease (P \ 0.01) <str<strong>on</strong>g>of</str<strong>on</strong>g> 34.94 % was registered<br />

in <strong>the</strong> endogenous levels <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin E in lindane<br />

group as compared to c<strong>on</strong>trol. A?L, U?L and U?A?L<br />

groups significantly (P \ 0.01) alleviated <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vitamin E by 86.65, 47.30, and 92.32 %, respectively in<br />

comparis<strong>on</strong> to lindane group. The increasing order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vitamin E levels in all <strong>the</strong> groups was as follow:<br />

L \ U?L \ C \ U \ A?L \ U?A?L \ A \ U?A.<br />

Effect <strong>on</strong> endogenous vitamin C (Graph 8)<br />

As compared to c<strong>on</strong>trol, a significant decrease (P \ 0.01)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 50.95 % was observed in <strong>the</strong> endogenous levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vitamin C in animals toxicated with lindane. This decrease<br />

was alleviated significantly (P \ 0.01) when <strong>the</strong> different<br />

pretreatments were given. In comparis<strong>on</strong> to lindane treated<br />

animals, <strong>the</strong> animals <str<strong>on</strong>g>of</str<strong>on</strong>g> A?L, U?L and U?A?L group<br />

showed an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> 140.95, 100.51, and 107.18 %,<br />

respectively. The increasing order <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> vitamin C levels<br />

in all <strong>the</strong> eight groups was as follow: L \ U?L \ C \<br />

U?A?L\ A?L \ U \ U?A \ A.<br />

Discussi<strong>on</strong><br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present study clearly dem<strong>on</strong>strate that<br />

LPO significantly increased in kidney after in vivo treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lindane. Thus, results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present study are in<br />

agreement with previous reports where increase in LPO<br />

was also observed due to lindane in different tissues [11,<br />

22, 42, 48, 67]. Moreover, renal LPO levels also increase<br />

due to aflatoxin [61], CCl 4 [7], chlorpryfos-ethyl [46], lead<br />

[55], cisplatin [4] and gentamicin [1] toxicity. The increase<br />

in LPO results owing to increase in ROS or alternatively<br />

lindane might inhibit antioxidant molecules and antioxidant<br />

enzymes. The support for such an assumpti<strong>on</strong> comes<br />

from <strong>the</strong> findings that lindane reduces antioxidant molecules<br />

and antioxidant enzymes [8, 42, 48] which is also<br />

observed in <strong>the</strong> present study.<br />

The pretreatment with vitamin C, E, lipoic acid and <strong>cow</strong><br />

<strong>urine</strong> in <strong>the</strong> groups A?L, U?L and U?A?L significantly<br />

lowered <strong>the</strong> LPO levels as compared to mice treated with<br />

lindane al<strong>on</strong>e. Earlier reports have also shown that supplementati<strong>on</strong><br />

with vitamin C and E attenuated <strong>the</strong> LPO<br />

levels decreased due to cisplatin [4] and chlorpyrifos [46].<br />

Lipoic acid also ameliorates renal oxidative stress [6].<br />

Moreover, combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipoic acid and vitamin E [11],<br />

vitamin C, E, lipoic acid and resveratrol [8] and vitamin C,<br />

E and lipoic acid [42] ameliorated <strong>the</strong> lindane induced<br />

increased LPO levels.<br />

The results reveal that <strong>the</strong> pretreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants and <strong>cow</strong> <strong>urine</strong> (U?A?L) was <strong>the</strong> most<br />

effective in lowering <strong>the</strong> LPO levels followed by combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidant (A?L) and <strong>cow</strong> <strong>urine</strong> pretreatment<br />

(U?L).<br />

Due to increase in LPO <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> free radicals<br />

crosses <strong>the</strong> threshold level. Never<strong>the</strong>less, decrease in <strong>the</strong><br />

activities <str<strong>on</strong>g>of</str<strong>on</strong>g> CAT, SOD, GPx and GSH fur<strong>the</strong>r deteriorates<br />

<strong>the</strong> situati<strong>on</strong> and enhance <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid peroxides.<br />

It could be assumed that lindane might have caused LPO<br />

by inhibiting <strong>the</strong> antioxidant enzymes, molecule, vitamin E<br />

and C. The mechanism by which lindane induces oxidative<br />

stress involves <strong>the</strong> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> cyt P450 system resulting in<br />

<strong>the</strong> generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> superoxide radicals [21].<br />

Similar to earlier reports, results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present study<br />

also show a decrease in SOD and CAT levels in <strong>the</strong> lindane<br />

treated group and in all such cases <strong>the</strong> main culprit being<br />

superoxide radicals [9, 42, 48]. Renal SOD and CAT levels<br />

were also lowered due to chlorpryfos-ethyl [46], aflatoxin<br />

[61], CCl 4 [7], lead [55], cisplatin [4], alcohol [60] and<br />

gentamicin [1] toxicity.<br />

The decreased activity <str<strong>on</strong>g>of</str<strong>on</strong>g> SOD in kidney in lindane<br />

treated mice may be due to <strong>the</strong> enhanced lipid peroxidati<strong>on</strong><br />

or inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> antioxidative enzymes or<br />

could result from inactivati<strong>on</strong> by hydrogen peroxide or<br />

glycati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> enzyme [62]. This would cause an<br />

increased accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> superoxide radicals, which<br />

could fur<strong>the</strong>r stimulate lipid peroxidati<strong>on</strong>. A decrease in<br />

SOD activity favors <strong>the</strong> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> superoxide<br />

radicals,whichinturn inhibit CAT [33] asalsoseenin<br />

<strong>the</strong> present study.<br />

All <strong>the</strong> pretreatment groups showed alleviati<strong>on</strong> in <strong>the</strong><br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> SOD and CAT. Earlier reports have shown that<br />

vitamin C and E are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing <strong>the</strong> renal SOD<br />

and CAT levels [4, 7, 46]. Combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipoic acid,<br />

vitamin C, E and resveratrol [9] and lipoic acid and vitamin<br />

C and E [42] attenuated <strong>the</strong> SOD and CAT levels in brain<br />

and testis, respectively <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane treated mice. Am<strong>on</strong>gst<br />

<strong>the</strong> three pretreatments <strong>the</strong> maximum ameliorati<strong>on</strong> in <strong>the</strong><br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> SOD was observed in case <str<strong>on</strong>g>of</str<strong>on</strong>g> U?A?L group<br />

followed by U?L group and was least in A?L group.<br />

Moreover, in <strong>the</strong> present study <strong>the</strong> protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fered<br />

by combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants (A?L group) in ameliorating<br />

<strong>the</strong> CAT levels was <strong>the</strong> maximum followed by<br />

123


Mol Biol Rep (2014) 41:1967–1976 1973<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants and <strong>cow</strong> <strong>urine</strong> (U?A?L<br />

group) and minimum in <strong>the</strong> <strong>on</strong>ly <strong>cow</strong> <strong>urine</strong> (U?L) group.<br />

The reducti<strong>on</strong> in <strong>the</strong> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> SOD, CAT enzymes<br />

may result in a number <str<strong>on</strong>g>of</str<strong>on</strong>g> deleterious effects due to <strong>the</strong><br />

accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> superoxide ani<strong>on</strong> and hydrogen peroxide<br />

[58]. The eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H 2 O 2 is ei<strong>the</strong>r effected by CAT or<br />

GPx [69].<br />

The level <str<strong>on</strong>g>of</str<strong>on</strong>g> GPx in <strong>the</strong> exposed group were lowered<br />

which is in accordance with <strong>the</strong> earlier studies where lindane<br />

caused a similar decrease in <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> GPx in<br />

various tissues [42, 48]. Renal GPx levels were found to be<br />

decreased due to chlorpryfos-ethyl [46], aflatoxin [61],<br />

acetaminophen [27], cisplatin [4] and CCl 4 [7] toxicity.<br />

The decreased levels can be attributed to ei<strong>the</strong>r increased<br />

H 2 O 2 generati<strong>on</strong> or decreased GSH c<strong>on</strong>centrati<strong>on</strong> because<br />

GSH is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> substrates for GPx [57]. A decreased<br />

GSH c<strong>on</strong>centrati<strong>on</strong> was observed in <strong>the</strong> present study.<br />

Decreased activity <str<strong>on</strong>g>of</str<strong>on</strong>g> GPx may also result from radical<br />

induced inactivati<strong>on</strong> and glycati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> enzymes [26].<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> decreased GPx activity <strong>the</strong> accumulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> H 2 O 2 may cause inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SOD activity [10]. During<br />

oxidative stress, inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GPx may occur, and <strong>on</strong> <strong>the</strong><br />

o<strong>the</strong>r hand superoxide ani<strong>on</strong> (O 2 •- ) itself can inhibit peroxidase<br />

functi<strong>on</strong> [12]. So GPx must be c<strong>on</strong>sidered to be<br />

complementary to SOD [43].<br />

The pretreatment with vitamin C, E, lipoic acid and <strong>cow</strong><br />

<strong>urine</strong> in groups A?L, U?L and U?A?L significantly<br />

improved <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> GPx. It has been shown in earlier<br />

reports that vitamin C and E are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing <strong>the</strong><br />

renal GPx levels [4, 7, 46] and combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin C, E<br />

and lipoic acid ameliorated <strong>the</strong> testis GPx levels lowered<br />

due to lindane [42]. It is also c<strong>on</strong>cluded that <strong>the</strong> significant<br />

increase in <strong>the</strong> GPx levels was <strong>the</strong> maximum in case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

U?A?L group followed by U?L group and was least in<br />

A?L group.<br />

In <strong>the</strong> present study, <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> GSH were decreased<br />

significantly in lindane treated group indicating <strong>the</strong> oxidative<br />

stress caused by lindane as also reported earlier [8, 22, 42, 48,<br />

67]. Decrease in renal GSH levels has also been documented<br />

in a case <str<strong>on</strong>g>of</str<strong>on</strong>g> alcohol [60], aflatoxin [61], gentamicin [1, 29],<br />

acetaminophen [27] and cisplatin [4] toxicity.<br />

The decrease in <strong>the</strong> GSH level as observed in <strong>the</strong> present<br />

study can be due to increased utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GSH for<br />

metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid hydroperoxides by GPx or interacti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> GSH with free radicals. Similar analogy is being also<br />

drawn in <strong>the</strong> earlier reports [5, 23].<br />

The levels <str<strong>on</strong>g>of</str<strong>on</strong>g> GSH were significantly ameliorated after<br />

<strong>the</strong> pretreatment with combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants namely,<br />

vitamin C, E and a- lipoic acid (A?L group), <strong>cow</strong> <strong>urine</strong><br />

(U?L group) and combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants and <strong>cow</strong><br />

<strong>urine</strong> (U?A?L group). Earlier studies have shown that<br />

vitamin C, E and lipoic acid attenuates <strong>the</strong> decreased renal<br />

GSH levels [4, 29]. Lindane induced decreased GSH levels<br />

were ameliorated by combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipoic acid, vitamin C,<br />

E and resveratrol [8] and lipoic acid, vitamin C and E [42]<br />

in brain and testis, respectively. The significant increase in<br />

GSH levels in <strong>the</strong> pretreatment groups was least in<br />

U?A?L group; intermediate in U?L group and maximum<br />

in A?L group.<br />

The present study reveals that lindane inhibits GPx and<br />

CAT due to its capacity to generate ROS, which will result<br />

in H 2 O 2 accumulati<strong>on</strong>. The increased H 2 O 2 in turn could<br />

cause SOD inhibiti<strong>on</strong> resulting in increased producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

superoxide radicals. Thus, increased producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> superoxide<br />

radicals would inhibit both CAT and GPx. Treatment<br />

with <strong>the</strong> adopted formulati<strong>on</strong> reduced <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid<br />

peroxides indicating <strong>the</strong> effective antioxidant property <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> combinati<strong>on</strong> as well as <strong>cow</strong> <strong>urine</strong> al<strong>on</strong>e in <strong>the</strong> moderati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tissue damage.<br />

Antioxidant defense system protects <strong>the</strong> aerobic organism<br />

from <strong>the</strong> deleterious effects <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive oxygen<br />

metabolites. Vitamin E, a major lipophilic antioxidant and<br />

vitamin C, play a vital role in <strong>the</strong> defense against oxidative<br />

stress [53]. In our study, <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin E and C were<br />

decreased significantly during lindane intoxicati<strong>on</strong>. This is<br />

in agreement with <strong>the</strong> previous reports that oxidative stress<br />

results in deficiency in vitamin C and E [60, 61]. The<br />

increased oxidative stress due to lindane intoxicati<strong>on</strong> might<br />

have resulted in excess utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin C and E,<br />

c<strong>on</strong>sequently, depleting <strong>the</strong>ir levels. The observed decrease<br />

in <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> kidney ascorbic acid and alpha tocopherol in<br />

lindane treated group could be as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> increased<br />

utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se antioxidants in scavenging <strong>the</strong> free<br />

radicals generated due to lindane.<br />

Moreover, it is well established that GSH in blood keeps<br />

up <strong>the</strong> cellular levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> active forms <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin C and<br />

vitamin E by neutralizing <strong>the</strong> free radicals. When <strong>the</strong>re is a<br />

reducti<strong>on</strong> in <strong>the</strong> GSH <strong>the</strong> cellular levels <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin C is also<br />

lowered, indicating that GSH, vitamin C, and vitamin E are<br />

closely interlinked to each o<strong>the</strong>r [61]. In agreement with<br />

<strong>the</strong>se reports, <strong>the</strong> decreased levels <str<strong>on</strong>g>of</str<strong>on</strong>g> GSH, vitamin C and<br />

vitamin E <strong>on</strong> lindane administrati<strong>on</strong> were observed in our<br />

study.<br />

The pretreatment with combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants in<br />

group A?L, with <strong>cow</strong> <strong>urine</strong> in group U?L and combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants and <strong>cow</strong> <strong>urine</strong> both in group U?A?L,<br />

resulted in significant increase in <strong>the</strong> endogenous levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vitamin C and E. The ameliorati<strong>on</strong> in <strong>the</strong> endogenous<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin C was <strong>the</strong> maximum in A?L group,<br />

followed by U?A?L group and minimum in U?L group.<br />

In c<strong>on</strong>trast, <strong>the</strong> significant increase in <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin<br />

E was <strong>the</strong> maximum in U?A?L group; intermediary in<br />

A?L group and least in U?L group. The increase in levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin C and E is obvious in <strong>the</strong> pretreatment groups<br />

A?L and U?A?L as <strong>the</strong>se were exogenously supplied<br />

with both vitamin C and E, however, <strong>the</strong> <strong>cow</strong> <strong>urine</strong> al<strong>on</strong>e<br />

123


1974 Mol Biol Rep (2014) 41:1967–1976<br />

(U?L) group also showed significant elevati<strong>on</strong> in <strong>the</strong><br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two vitamins. This could be attributed to <strong>the</strong><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> which is said to c<strong>on</strong>tain vitamins.<br />

The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> total proteins is important for estimating<br />

<strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> damage in <strong>the</strong> body. The protein pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

cells is indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> physiological status <str<strong>on</strong>g>of</str<strong>on</strong>g> animal and<br />

<strong>the</strong>re exists dynamic equilibrium between <strong>the</strong> syn<strong>the</strong>tic and<br />

degenerative pathways with <strong>the</strong>se biomolecules. In <strong>the</strong><br />

present study a decline in <strong>the</strong> total proteins was observed<br />

after lindane intoxicati<strong>on</strong> which can be due to decreased<br />

protein syn<strong>the</strong>sis or increased protein loss. Similar reducti<strong>on</strong><br />

in <strong>the</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> total proteins due to lindane have been<br />

reported [9, 42, 48]. It is also reported that renal toxicity<br />

due to CCl 4 [7] and gentamicin [1] causes a similar<br />

decrease in protein levels. Decreased protein levels could<br />

be attributed to decreased feed c<strong>on</strong>sumpti<strong>on</strong>, maldigesti<strong>on</strong><br />

or malabsorpti<strong>on</strong>, hepatic dysfuncti<strong>on</strong> [13, 47]. Reduced<br />

protein levels can also be ascribed to increased urinary<br />

excreti<strong>on</strong> owing to kidney damage [66] and glomerular<br />

apparatus or reduced protein syn<strong>the</strong>sis [39]. Prabhakaran<br />

and Devi [51] have proposed that a toxicant can affect <strong>the</strong><br />

protein c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tissue ei<strong>the</strong>r by inhibiting RNA<br />

syn<strong>the</strong>sis or inhibiting <str<strong>on</strong>g>of</str<strong>on</strong>g> amino acids into <strong>the</strong> polypeptide<br />

chain.<br />

The pretreatment groups showed an elevati<strong>on</strong> in <strong>the</strong><br />

protein levels which is in accordance with earlier reports<br />

where administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<strong>the</strong>r vitamin C, E or in combinati<strong>on</strong><br />

and combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin C, E and lipoic acid and<br />

resveratrol elevated <strong>the</strong> decreased protein levels [7, 9, 42].<br />

The most effective pretreatment was that <str<strong>on</strong>g>of</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antioxidants (A?L group); <strong>cow</strong> <strong>urine</strong> pretreatment group<br />

(U?L) was moderately effective and least effective was<br />

pretreatment with combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants and <strong>cow</strong><br />

<strong>urine</strong> both (U?A?L group).<br />

Hypoglycemic [44], cardio-respiratory effect [20],<br />

immunomodulatory [14], antigenotoxic and antioxidant<br />

properties in vitro [34], anticlastogenic [19] and chemoprotective<br />

[52] effects <str<strong>on</strong>g>of</str<strong>on</strong>g> distillate and redistillate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong> have been reported. Attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CCl 4 induced<br />

hepatotoxicity by Panchagavya ghrita (prepared by <strong>cow</strong><br />

milk, <strong>cow</strong> <strong>urine</strong>, <strong>cow</strong> dung, ghee and curd) [2] and <strong>cow</strong><br />

<strong>urine</strong> distillate [25] have also been reported. Efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>cow</strong> <strong>urine</strong> <strong>the</strong>rapy has been evaluated <strong>on</strong> cancer patients<br />

[28]. The ameliorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidative stress by fresh <strong>cow</strong><br />

<strong>urine</strong> has not been reported so far and this work seems to be<br />

<strong>the</strong> first report.<br />

Thus it is inferred that <strong>the</strong> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants<br />

taken in <strong>the</strong> present study are quiet helpful in mitigating and<br />

modulating <strong>the</strong> oxidative stress in <strong>the</strong> kidney caused due to<br />

lindane. Moreover, <strong>cow</strong> <strong>urine</strong> treatment also modulated <strong>the</strong><br />

oxidative stress parameters caused by lindane. From <strong>the</strong><br />

results it is apparent that <strong>the</strong> given combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants<br />

and <strong>cow</strong> <strong>urine</strong> act synergistically in reducing lindane<br />

induced dysfuncti<strong>on</strong>. The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

present study reveals <strong>the</strong> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> against<br />

oxidative stress. It can be safely c<strong>on</strong>cluded that <strong>the</strong> suggested<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin C, vitamin E, alpha lipoic<br />

acid and <strong>cow</strong> <strong>urine</strong> can prove to be beneficial in a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ailments. The highlight <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> investigati<strong>on</strong> is <strong>the</strong> efficiency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> against <strong>the</strong> pesticide toxicity which can open<br />

new insights in <strong>the</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> medicine. Cow <strong>urine</strong> can prove<br />

to be an effective co-remedy for oxidative stress. This study<br />

emphasizes <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants and <strong>cow</strong> <strong>urine</strong><br />

which could be beneficial in <strong>the</strong> <strong>the</strong>rapeutic world for <strong>the</strong><br />

treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> various disorders implicating oxidative stress.<br />

References<br />

1. Abdel-Raheem IT, Abdel-Ghany AA, Mohamed GA (2009)<br />

Protective effect <str<strong>on</strong>g>of</str<strong>on</strong>g> quercetin against gentamicin induced nephrotoxicity<br />

in rats. Biol Pharm Bull 32(1):61–67<br />

2. Achliya GS, Kotagale NR, Wadodkar SG, Dorle AK (2003)<br />

Hepatoprotective activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Panchagavya Ghrita against carb<strong>on</strong><br />

tetrachloride-induced hepatotoxicity in rats. Ind J Pharmacol<br />

35:308–311<br />

3. Adewole SO, Salako AA, Doherty OW, Naicker T (2007) Effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> melat<strong>on</strong>in <strong>on</strong> carb<strong>on</strong> tetrachloride-induced kidney injury in<br />

Wistar rats. Afr J Biomed Res 10:153–164<br />

4. Ajith TA, Usha S, Nivith AV (2007) Ascorbic acid and a-<br />

tocopherol protect anticancer drug cisplatin induced nephrotoxicity<br />

in mice: a comparative study. Clin Chim Acta 375:82–86<br />

5. Anbarasi K, Vani G, Balakrishna K, Shyamala CSD (2006) Effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bacoside A <strong>on</strong> brain antioxidant status in cigarette smoke<br />

exposed rats. Life Sci 78:1378–1384<br />

6. Bae EH, Lee JU, Kw<strong>on</strong> Ma S, Kim IJ, Frokiaer J, Nielsen S, Kim<br />

SY, Kim SW (2009) a-Lipoic acid prevents cisplatin-induced acute<br />

kidney injury in rats. Nephrol Dial Transplant 24:2692–2700<br />

7. Balahoroglu R, Dulger H, Ozbek H, Bayram I, Sekeroglu MR<br />

(2008) Protective effects <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants <strong>on</strong> <strong>the</strong> experimental liver<br />

and kidney toxicity in mice. Eur J Gen Med 5(3):157–164<br />

8. Bano M, Bhatt DK (2007) Neuroprotective role <str<strong>on</strong>g>of</str<strong>on</strong>g> a novel<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certain antioxidants <strong>on</strong> lindane (c-HCH) induced<br />

toxicity in cerebrum <str<strong>on</strong>g>of</str<strong>on</strong>g> mice. Res J Agric Bio Sci 3:664–669<br />

9. Bano M, Bhatt DK (2010) Ameliorative effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vitamin E, vitamin C, alpha-lipoic acid and stilbene resveratrol<br />

<strong>on</strong> lindane induced toxicity in mice olfactory lobe and cerebrum.<br />

Indian J Exp Biol 48:150–158<br />

10. Bast A, Haenen GRMM, Doelman CJA (1991) Oxidants and<br />

antioxidants: state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> art. Am J Med 91:25–135<br />

11. Bist R, Bhatt DK (2009) The evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha- lipoic<br />

acid and vitamin E <strong>on</strong> <strong>the</strong> lipid peroxidati<strong>on</strong>, gamma-amino<br />

butyric acid and serot<strong>on</strong>in level in <strong>the</strong> brain <str<strong>on</strong>g>of</str<strong>on</strong>g> mice (Mus musculus)<br />

acutely intoxicated with lindane. J Neurol Sci 276:99–102<br />

12. Blum J, Fridovich I (1985) Inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glutathi<strong>on</strong>e peroxidase<br />

by superoxide radical. Arch Biochem Biophys 240:500–508<br />

13. Brzoska MM, M<strong>on</strong>iuszko-Jak<strong>on</strong>iuk J, Pilat-Marcinkiewicz B,<br />

Sawicki B (2003) Liver and kidney functi<strong>on</strong> and histology in rats<br />

exposed to cadmium and ethanol. Alcohol Alcohol 38(1):2–10<br />

14. Chauhan RS, Singh BP, Singhal LK (2001) Immunomodulati<strong>on</strong><br />

with kamdhenu Ark in mice. J Immunol Immunopathol 71:89–92<br />

15. CIBRC (2005) Central Insecticide Board and Registrati<strong>on</strong><br />

Committee, Dept. Of Plant Protecti<strong>on</strong> and Quarantine, Ministry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, India. http://www.ipen.org/ipenweb/documents/<br />

work%20documents/lindanes%20dirty%20secret.pdf<br />

123


Mol Biol Rep (2014) 41:1967–1976 1975<br />

16. Cohen G, Dembiec D, Marcus J (1970) Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> catalase<br />

activity in tissue extracts. Anal Biochem 34:30–38<br />

17. Davies K (1995) Oxidative stress: <strong>the</strong> paradox <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic life.<br />

Biochem Soc Symp 61:1–31<br />

18. Desai ID (1984) Vitamin E methods for animal tissues. Methods<br />

Enzymol 105:138–143<br />

19. Dutta D, Devi SS, Krishnamurthi K, Chakrabarti T (2006) Anticlastogenic<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> redistilled <strong>cow</strong>’s <strong>urine</strong> distillate in humanperipheral<br />

lynphocytes challenged with manganese dioxide<br />

and hexavalent chromium. Biomed and Envir<strong>on</strong> Sci 19:487–494<br />

20. Elegbe RA, Oyebola DDO (1976) Cow’s <strong>urine</strong> pois<strong>on</strong>ing in<br />

Nigeria: <strong>the</strong> cardiotoxic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> in dogs. Trans R<br />

Soc Trop Med Hyg 71:127–132<br />

21. English D, Schell M, Siakotos A, Gabig TG (1986) Reversible<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neutrophil superoxide generating system by<br />

hexachlorocyclohexane: correlati<strong>on</strong> with effects <strong>on</strong> a subcellular<br />

superoxide-generating fracti<strong>on</strong>. J Immunol 137:283–290<br />

22. Fidan AF, Cigerci IH, Sozbilir NB, Kucukkurt I, Yuksel H, Keles<br />

H (2008) The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dose-dependent hexachlorocyclohexane<br />

(Lindane) <strong>on</strong> blood and tissue antioxidant defense systems,<br />

lipid peroxidati<strong>on</strong> and histopathological changes in rats.<br />

J Anim Vet Adv 7:1480–1488<br />

23. Flohe L (1982) Glutathi<strong>on</strong>e peroxidase brought into focus. In:<br />

Pryor WA (ed) Free radicals in biology. Academic Press, New<br />

York, p 233<br />

24. Goldstein RS, Schnellmann RG (1996) Toxic resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

kidney. Cassrrett and Doull’s toxicology, 5th edn. McGraw Hill,<br />

New York<br />

25. Gururaja MP, Joshi AB, Joshi H, Sathyanarayana D, Subrahmanyam<br />

EV, Chandrashekhar KS (2009) Attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong><br />

tetrachloride-induced hepatotoxicity by <strong>cow</strong> <strong>urine</strong> distillate in<br />

rats. Biomed Envir<strong>on</strong> Sci 22(4):345–347<br />

26. Hodgs<strong>on</strong> EK, Fridovich I (1975) The interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine<br />

erythrocyte superoxide dismutase with hydrogen peroxide and<br />

inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> enzyme. Biochemistry 14:5294–5299<br />

27. Isik B, Bayrak R, Akcay A, Sogut S (2006) Erdosteine against<br />

acetaminophen induced renal toxicity. Mol Cell Biochem 287:<br />

185–191<br />

28. Jain NK, Gupta VB, Garg R, Silawat N (2010) Efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong> <strong>the</strong>rapy <strong>on</strong> various cancer patients in Mandsaur district,<br />

India—a survey. Int J Green Pharm 4(1):29–35<br />

29. Kadkhodaee M, Khastar H, Faghihi M, Ghaznavi R, Zahmatkesh M<br />

(2004) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> co-supplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vitamins E and C <strong>on</strong> gentamicin-induced<br />

nephrotoxicity in rat. Exp Physiol 90(4):571–576<br />

30. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric<br />

assay <str<strong>on</strong>g>of</str<strong>on</strong>g> superoxide dismutase. Indian J Biochem<br />

Biophys 21:130–132<br />

31. Kelly JF (1997) The <strong>urine</strong> cure and o<strong>the</strong>r curious <strong>medical</strong> treatments.<br />

http://wfmu.org/LCD/_Articles/LCD_19/Urine.html<br />

32. Khanna RN, Das M, Anand M (2002) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> phenobarbitol<br />

and CCl 4 <strong>on</strong> <strong>the</strong> modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue retenti<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> hexachlorocyclohexane<br />

in rats. Biomed Envir<strong>on</strong> Sci 15:119–129<br />

33. K<strong>on</strong>o Y, Fridovich I (1982) Superoxide radical inhibits catalase.<br />

J Biol Chem 257:5751–5754<br />

34. Krishnamurthi K, Dutta D, Devi SS, Chakrabarti T (2004) Protective<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> distillate and redistillate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> in human<br />

polymorph<strong>on</strong>uclear leukocytes challenged with established<br />

genotoxic chemicals. Biomed Envir<strong>on</strong> Sci 17:57–66<br />

35. Kumar MR, Reddy KS, Reddy AG, Anjaneyulu Y, Kalakumar B,<br />

Reddy GD (2009) Ameliorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lead induced nephrotoxicity by<br />

certain adaptogens in broilers. Indian J Vet Pathol 33(2):19–190<br />

36. Lash HL, Qian W, Putt DA, Hueni SE, Elfarra AA, Krause RJ,<br />

Parker JC (2001) Renal and hepatic toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> trichloroethylene<br />

and its glutathi<strong>on</strong>e derived in rats and mice: sex-, species-, and<br />

tissue dependent differences. J Pharmacol Exp Ther 297(1):<br />

155–164<br />

37. Lightboy JH, Stevens<strong>on</strong> LM, Jacks<strong>on</strong> F, D<strong>on</strong>alds<strong>on</strong> K, J<strong>on</strong>es DG<br />

(2001) Comparative aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma antioxidant status in sheep<br />

and goats and <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental abomasal nematode<br />

infecti<strong>on</strong>. J Comp Pathol 124:192–199<br />

38. Lowry OH, Roesborough MJ, Farr AL, Randall RJ (1951) Protein<br />

measurement with Folin–Phenol reagent. J Biol Chem 193:265<br />

39. Lynch MJ, Raphael SS, Miller LD, Spare DD, Inwood MJH (1969)<br />

Medical laboratory technology and clinical pathology. W.B. Saunders<br />

Co., Igaku shoin Ltd, Philadelphia, Tokyo, pp 2–629<br />

40. Mor<strong>on</strong> MA, Depierre JW, Mannervick B (1979) Levels <str<strong>on</strong>g>of</str<strong>on</strong>g> glutathi<strong>on</strong>e,<br />

glutathi<strong>on</strong>e redutase, glutathi<strong>on</strong>e S-transferase activities<br />

in rat lung and liver. Biochem Biophys Acta 582:67–78<br />

41. Muzakova V, Kandar R, Vojtisek P, Skalicky J, Vankova R,<br />

Cegan A, Cervinkova Z (2001) Antioxidant vitamin levels and<br />

glutathi<strong>on</strong>e peroxidase activity during ischemia/reperfusi<strong>on</strong> in<br />

myocardial infarcti<strong>on</strong>. Physiol Res 50:389–396<br />

42. Nagda G, Bhatt DK (2011) Alleviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane induced toxicity<br />

in testis <str<strong>on</strong>g>of</str<strong>on</strong>g> Swiss mice (Mus musculus) by combined treatment<br />

with vitamin C, vitamin E and a-Lipoic acid. Indian J Exp<br />

Biol 49:191–199<br />

43. Nouri M, Rahbani-Nobar M, Argani H, Rokhforooz F (1999)<br />

Superoxide dismutase and glutathi<strong>on</strong>e peroxidase in hemodialyzed<br />

patients and renal transplant recipients and <strong>the</strong>ir relati<strong>on</strong>ship<br />

to osmotic fragility. Med J Islam Acad Sci 12(2):33–38<br />

44. Ojewole JA, Olusi SO (1976) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong>’s <strong>urine</strong> c<strong>on</strong>cocti<strong>on</strong><br />

<strong>on</strong> plasma glucose c<strong>on</strong>centrati<strong>on</strong> in fasted rats. Trans R Soc Trop<br />

Med Hyg 71:241–245<br />

45. Omaye ST, Turbull TP, Sauberchich HC (1979) Selected methods<br />

for determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ascorbic acid in cells, tissues and fluids.<br />

Methods Enzymol 6:3–11<br />

46. Oncu M, Gultekin F, Karaoz E, Altuntas I, Delibas N (2002)<br />

Nephrotoxicity in rats induced by chlorpyrifos-ethyl and ameliorating<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants. Hum Exp Toxicol 21(4):223–230<br />

47. Osfor MMH, Ibrahim HS, Mohamed YA, Ahmed SM, Abd El<br />

Azeem AS, Hegazy AM (2010) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha lipoic acid and<br />

vitamin E <strong>on</strong> heavy metals intoxicati<strong>on</strong> in male albino rats. J Am<br />

Sci 6(80):56–63<br />

48. Padma VV, Sowmya P, Felix TA, Baskaran R, Poornima P<br />

(2011) Protective effect <str<strong>on</strong>g>of</str<strong>on</strong>g> gallic acid against lindane induced<br />

toxicity in experimental rats. Food Chem Toxicol 49:991–998<br />

49. Pathak ML, Kumar A (2003) Gomutra a descriptive study.<br />

Sachitra Ayurveda 7:81–84<br />

50. Poirier B, L-Bournville M, C<strong>on</strong>ti M (2000) Oxidative stress occur<br />

in absence <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperglycemia and inflammati<strong>on</strong> in <strong>the</strong> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

kidney lesi<strong>on</strong>s in normotensive obese rats. Nephrol Dial Transplant<br />

15:467–476<br />

51. Prabhakaran S, Devi KS (1993) Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> protein deficiency and<br />

exposure to HCH or malathi<strong>on</strong>e <strong>on</strong> lipid metabolism in pregnant<br />

rats. Indian J Biochem Biophys 30:234–238<br />

52. Raja W, Agarwal RC (2010) Chemoprotective <strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong> against 7, 12-dimethylbenz(a) antracene-induced skin papillomagenesis<br />

in mice. Acad J Can Res 3(1):7–10<br />

53. Ray G, Hussain SA (2002) Oxidants, antioxidants and carcinogenesis.<br />

Indian J Exp Biol 42:1213–1232<br />

54. Rotruck JT, Pope AL, Gan<strong>the</strong>r HE, Swans<strong>on</strong> AB (1973) Selenium:<br />

biochemical roles as a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> glutathi<strong>on</strong>e peroxidise.<br />

Science 179:588–590<br />

55. Salawu EO, Adeleke AA, Oyewo OO, Ashamu EA, Ishola OO,<br />

Afolabi AO, Adesanya TA (2009) Preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> renal toxicity<br />

from lead exposure by oral administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lycopersic<strong>on</strong> esculentum.<br />

J Toxicol Envir<strong>on</strong> Health Sci 1(2):022–027<br />

56. Sauviat MP, Pages N (2002) Cardiotoxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane: a gamma<br />

isomer <str<strong>on</strong>g>of</str<strong>on</strong>g> hexachlorohexane. J Soc Biol 196:339–348<br />

57. Scibior D, Skrzycki M, Podsiad M, Czeczot H (2008) Glutathi<strong>on</strong>e<br />

level and glutathi<strong>on</strong>e-dependent enzyme activities in blood serum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

patients with gastrointestinal tract tumors. Clin Biochem 41:852–858<br />

123


1976 Mol Biol Rep (2014) 41:1967–1976<br />

58. Searle AJ, Wils<strong>on</strong> RL (1980) Glutathi<strong>on</strong>e peroxidase: effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

superoxide, hydroxyl and bromine free radicals <strong>on</strong> enzyme<br />

activity. Int J Radiant Biol 37:213–217<br />

59. Shaikh ZA, Vu TT, Zaman K (1999) Oxidative stressasamechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic cadmium-induced hepatotoxicity and renal toxicity and<br />

protecti<strong>on</strong> by antioxidants. Toxicol Appl Pharmacol 154(3):256–263<br />

60. Shanmugam KR, Ramakrishna CH, Mallikarjuna K, Reddy KS<br />

(2010) Protective effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ginger against alcohol-induced renal<br />

damage and antioxidant enzymes in male albino rats. Indian J<br />

Exp Biol 48:143–149<br />

61. Sivanesan D, Begum H (2007) Preventive role <str<strong>on</strong>g>of</str<strong>on</strong>g> Gyanandropsis<br />

gynandra L., against aflatoxin B 1 induced lipid peroxidati<strong>on</strong> and<br />

defense mechanism in rat. Indian J Exp Biol 45(3):299–303<br />

62. Sozmen EY, Sozmen B, Delen Y, Onat T (2001) Catalase/superoxide<br />

dismutase (SOD) and catalase/paraox<strong>on</strong>ase (PON) ratios may<br />

implicate poor glycemic c<strong>on</strong>trol. Arch Med Res 32:283–287<br />

63. Srivastava A, Shivanandappa T (2005) Hexachlorocyclohexane<br />

differentially alters <strong>the</strong> antioxidant status <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> brain regi<strong>on</strong>s in<br />

rat. Toxicology 214:123–130<br />

64. Tasaduq SA, Singh K, Sethi S, Sharma SC, Bedi KL, Singh J,<br />

Jaggi BS, Johri RK (2003) Hepatocurative and antioxidant pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> HP-1, a polyherbal phytomedicine. Hum Exp Toxicol 22(12):<br />

639–645<br />

65. Vela C, Cristol JP, Maggi MF (1999) Oxidative stress in renal<br />

transplant recipients with chr<strong>on</strong>ic rejecti<strong>on</strong>: rati<strong>on</strong>ale for antioxidant<br />

supplementati<strong>on</strong>. Transplant Proc 31:1310–1311<br />

66. Verschurren RK, Engelina MD, Berkvens JB, Helleman PW,<br />

Rauws AG, Schuller PL, Vanesch GJ (1976) Toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> methyl<br />

mercuric chloride in rats (I) short term study. Toxicology 6(1):<br />

85–96<br />

67. Videla LA, Barros SBM, Junqueira VBC (1990) Lindane-induced<br />

liver oxidative stress. Free Rad Biol Med 9:169–179<br />

68. Wilber KM, Baerheim F, Shapiro OW (1949) The thiobarbituric<br />

acid reagent as a test for <strong>the</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unsaturated fatty acid by<br />

various reagents. Arch Biochem Biophys 24:304–311<br />

69. Zini A, Schlegel PN (1996) Catalase mRNA expressi<strong>on</strong> in <strong>the</strong><br />

male rat reproductive tract. J Androl 17:473–480<br />

123


ISSN NO 2320-5407 Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Research (2013), Volume 1, Issue 5, 71-78<br />

Journal homepage: http://www.journalijar.com<br />

INTERNATIONAL JOURNAL<br />

OF ADVANCED RESEARCH<br />

RESEARCH ARTICLE<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Anticancer properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Taxusbaccata and Badri <strong>cow</strong> <strong>urine</strong> in mice: Clinicohematological<br />

study<br />

Ankita Joshi, and R.S. Chauha<br />

1. Post Doctoral Fellow, Cell Culture Laboratory, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, G.B. Pant University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture<br />

and Technology, Patwadangar-263128, Nainital, Uttarakhand, INDIA.<br />

2. Campus Director, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, G.B. Pant University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture and Technology, Patwadangar-<br />

263128, Nainital, Uttarakhand, INDIA.<br />

Manuscript Info<br />

Manuscript History:<br />

Received: 12 June 2013<br />

Final Accepted: 23 June 2013<br />

Published Online: July 2013<br />

Key words:<br />

Badri<strong>cow</strong> <strong>urine</strong>,<br />

Taxusbaccata, Mice,<br />

Body weight, hematology.<br />

Abstract<br />

In <strong>the</strong> present investigati<strong>on</strong>, <strong>the</strong> anticancerous effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Taxusbacaata and<br />

distilled Badri <strong>cow</strong> <strong>urine</strong> was studied in mice for clinicohematology and<br />

body weight for a period <str<strong>on</strong>g>of</str<strong>on</strong>g> six m<strong>on</strong>th at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 days. The study<br />

revealed that <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> total leucocyte count (TLC), absolute lymphocyte<br />

count (ALC) and absolute neutrophil count (ANC) were significantly<br />

increased in <strong>the</strong> treated groups <str<strong>on</strong>g>of</str<strong>on</strong>g> mice ei<strong>the</strong>r by CUD al<strong>on</strong>e and in<br />

combinati<strong>on</strong> withTaxusbaccata extracts. At180th day, it was found that <strong>the</strong>re<br />

was an increase in body weight, Hemoglobin c<strong>on</strong>tent (Hb), total erythrocyte<br />

count (TEC), total leucocyte count (TLC), absolute lymphocyte count (ALC)<br />

and absolute neutrophil count (ANC) levels in CUD +A treated group as<br />

23%, 23.99%, 41%, 40%, 40.31%, and 40.13%, respectively. This clearly<br />

indicate <strong>the</strong>, increase in vitality and defence mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> body which in<br />

turn helps in fur<strong>the</strong>r healing <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer.<br />

Copy Right, IJAR, 2013,. All rights reserved.<br />

Introducti<strong>on</strong><br />

Cancer is a disease involving dynamic changes in<br />

genome and is characterized by <strong>the</strong> unc<strong>on</strong>trolled,<br />

uncoordinated and purposeless proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

malignant cells and <strong>the</strong>ir ability to spread, ei<strong>the</strong>r by<br />

growth in <strong>the</strong> adjacent tissue through invasi<strong>on</strong> or by<br />

implantati<strong>on</strong> at distant sites through metastasis.<br />

World cancer report issued by Internati<strong>on</strong>al Agency<br />

for Research <strong>on</strong> Cancer (IARC) reported in 2003 that<br />

cancer rate is set to increase at an alarming rate<br />

globally. The 5-year relative survival rate for all<br />

cancers diagnosed between 1999-2005 is 68%, up<br />

from 50% in 1975-1977. (Kinzler and Vogelstein,<br />

2002)(Jemal et al., 2011).<br />

In India about 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> obtains <strong>medical</strong><br />

help from private practiti<strong>on</strong>ers and half <str<strong>on</strong>g>of</str<strong>on</strong>g> those who<br />

seek medicinal help obtain it from alternative and<br />

traditi<strong>on</strong>al medicine (Kumar et al., 2004). Poverty<br />

and socioec<strong>on</strong>omic status are o<strong>the</strong>r hurdles in<br />

treatment (Pal and Mittal, 2004). American cancer<br />

society defines complementary and alternative<br />

medicines (CAM) simply as anything which is not<br />

c<strong>on</strong>venti<strong>on</strong>al (Zollman and Vickers, 1999; Park et al.,<br />

2003). There are various CAM used for cancer<br />

patient worldwide viz. Herbal medicine, acupuncture,<br />

Ayurveda, biological agents, traditi<strong>on</strong>al Chinese<br />

medicines, meditati<strong>on</strong> and yoga etc. However, use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

herbs for cancer treatment is very popular throughout<br />

<strong>the</strong> world.<br />

Distilled <strong>cow</strong> <strong>urine</strong> protects DNA and<br />

repairs it rapidly as observed after damage due to<br />

pesticides. It protects chromosomal aberrati<strong>on</strong>s by<br />

mitocycin in human leukocyte. Cow <strong>urine</strong> helps <strong>the</strong><br />

lymphocytes to survive and not to commit suicide<br />

(apoptosis). Pathogenic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> free radicals are<br />

prevented through <strong>cow</strong> <strong>urine</strong> <strong>the</strong>rapy. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong> <strong>on</strong>e can get <strong>the</strong> charm <str<strong>on</strong>g>of</str<strong>on</strong>g> a youth as it prevents<br />

<strong>the</strong> free radicals formati<strong>on</strong>. Taxus baccata,<br />

comm<strong>on</strong>ly known as THUNER, which is mainly<br />

found in high altitude area like, Patwadangar,<br />

Nainital India also had anticancer and antiviral<br />

properties. It is a small to medium-sized evergreen<br />

tree, growing 10-20 m tall, excepti<strong>on</strong>ally up to 28 m.<br />

It is relatively slow growing, but can be very l<strong>on</strong>glived,<br />

with <strong>the</strong> maximum recorded trunk diameter <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

71


ISSN NO 2320-5407 Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Research (2013), Volume 1, Issue 5, 71-78<br />

4 m probably <strong>on</strong>ly being reached in around 2,000-<br />

4,000 years. Thuner is <strong>the</strong> oldest plant at high altitude<br />

regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Uttarakhand. Most parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tree are<br />

toxic, except <strong>the</strong> bright aril surrounding <strong>the</strong> seed,<br />

enabling ingesti<strong>on</strong> and dispersal by birds. The major<br />

toxin is <strong>the</strong> alkaloid taxane. Phytochemical analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extracts <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves and bark showed <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lignans, flav<strong>on</strong>oid, glycosides, sterols, sugar, amino<br />

acid, and triterpenoid, alkaloids, steroids, tannins,<br />

mucilage, fixed oil, phenolic compounds and<br />

protein.The leaves are <strong>the</strong> principal source <str<strong>on</strong>g>of</str<strong>on</strong>g> taxol;<br />

<strong>the</strong> anti-cancer drug, but has not been widely<br />

exploited in this c<strong>on</strong>necti<strong>on</strong> (Hartzell, 2003).<br />

C<strong>on</strong>sidering <strong>the</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer as a<br />

disease <str<strong>on</strong>g>of</str<strong>on</strong>g> man and animals and complexity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>rapeutic approaches and <strong>the</strong>ir harmful side effects,<br />

it was planned to study <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Taxusbaccata<br />

preparati<strong>on</strong> al<strong>on</strong>g with <strong>cow</strong> <strong>urine</strong> distillate in mice as<br />

measured through clinical haematology<br />

Materials and Methods<br />

1. Extract preparati<strong>on</strong><br />

Extracts <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves and bark <str<strong>on</strong>g>of</str<strong>on</strong>g> T. baccata were<br />

prepared by applying <strong>the</strong> standard methods with<br />

different solvents like; Aqueous, ethanol, methanol<br />

and e<strong>the</strong>r as described by Govindachariet al., (1999)<br />

and Udupaet al., (1995).<br />

In-vivo study<br />

2. Experimental design<br />

Present study was performed in mice maintained in<br />

<strong>the</strong> experimental animal house in Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Biotechnology, G.B. Pant University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture<br />

and Technology, Patwadangar, Nainital, Uttarakhand,<br />

India. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 97 animals were equally divided into<br />

11 groups. The mice were housed in clean<br />

polypropylene cages and fed adlibitum with<br />

commercially available feed and water. The<br />

experiment was carried out in accordance with <strong>the</strong><br />

Instituti<strong>on</strong>al Animal Ethical Committee (IAEC), G.B.<br />

Pant University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture and Technology,<br />

Pantnagar, Uttarakhand, India. The 11 groups<br />

were:C<strong>on</strong>trol group(9 mice), Negativec<strong>on</strong>trol(DEN<br />

treated mice)(8 mice), CUD(without DEN)(8 mice),<br />

A (Aqueous extract <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> Taxusbaccata)(8<br />

mice), (Ethanolic extract <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Taxusbaccata)(8 mice), G(Methanolic extract <str<strong>on</strong>g>of</str<strong>on</strong>g> bark<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Taxusbaccata)(8 mice), H(E<strong>the</strong>r extract <str<strong>on</strong>g>of</str<strong>on</strong>g> Bark <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Taxusbaccata)(8 mice), CUD(Cow Urine<br />

Distillate)(with DEN)(8 mice), CUD+A(8 mice),<br />

CUD+B(8 mice), CUD + G(8 mice), CUD+H (8<br />

mice).<br />

Single dose <str<strong>on</strong>g>of</str<strong>on</strong>g> diethyl nitrosamine (DEN) @ 200<br />

μl/kg body weight was given to each mice <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

negative c<strong>on</strong>trol group and tests groups. 500 ml <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each extract were made by adding 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> extract in<br />

500ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water (Kumar et al., 2004b). The<br />

mice <str<strong>on</strong>g>of</str<strong>on</strong>g> 9 test groups were given different extracts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

taxusbaccata al<strong>on</strong>e and in combinati<strong>on</strong> with CUD<br />

(2ml/day/mice), daily p.o., from day 1 for 6 m<strong>on</strong>ths;<br />

however, <strong>the</strong> mice <str<strong>on</strong>g>of</str<strong>on</strong>g> negative c<strong>on</strong>trol group were<br />

maintained with routine feed and water.Body weight<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mice were taken regularly at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 day<br />

till <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment.Total leucocyte count<br />

(TLC), absolute neutrophil count (ANC), absolute<br />

leucocyte count (ALC), hemoglobin, total erythrocyte<br />

count (TEC) and hemoglobin (Hb) c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>the</strong><br />

experimental animals in different groups were<br />

determined regularly at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 day till <strong>the</strong><br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment as per in standard procedures<br />

(Chauhan, 2005).<br />

Results<br />

In-vivo study was carried out in mice using DEN as<br />

carcinogen and plant extracts al<strong>on</strong>e and/or<br />

combinati<strong>on</strong> with CUD as test material for a period<br />

six m<strong>on</strong>th.<br />

Body Weight<br />

Body weight <str<strong>on</strong>g>of</str<strong>on</strong>g> mice were taken in gram at an<br />

interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 days till <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment. Data <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

body weight change during experiment were givens<br />

in table-1. Initially, <strong>the</strong> mean bodyweight <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol<br />

was 21.47±1.21 gm and after 6 m<strong>on</strong>th <strong>the</strong> mean body<br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> mice was 25.86±1.87 gm. In DEN<br />

(negative c<strong>on</strong>trol) treated group <strong>the</strong> initial mean body<br />

weight at zero day <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment was 22.73±1.33 gm,<br />

which decreased to 19.16±1.81 gm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiment. But in CUD treated group mean body<br />

weight at zero day was 22.43±1.36 gm and at <strong>the</strong> end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> experiment it was 23.91±1.21 gm.CUD treated<br />

group in which <strong>the</strong> carcinogen has been given, <strong>the</strong><br />

initial mean body weight at zero day was 21.42±1.56<br />

gm. After <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment, <strong>the</strong> mean body<br />

weight was 21.06±1.91 gm. In test group A, <strong>the</strong> zero<br />

day mean body weight 23.13±1.54 gm, which<br />

marginally increased at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment to<br />

23.52±1.01gm.In <strong>the</strong> group CUD+A <strong>the</strong> mean in<br />

body weight at zero day was 21.36±1.47 gm which<br />

was 26.48±0.902 at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment. In <strong>the</strong><br />

group CUD+B, <strong>the</strong> mean body weight was<br />

22.76±1.44 gm at zero day and was 24.80±1.09 gm at<br />

<strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment. In CUD+G and CUD+H<br />

groups, <strong>the</strong> mean body weight at zero day was<br />

22.97±1.37 gm and 22.81±1.21 gm which was<br />

increased to 24.67±0.941 gm and 24.60±1.01 gm at<br />

<strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment. In group B, G and H, <strong>the</strong><br />

mean body weight at zero day was found 22.81±1.26<br />

gm, 22.41±1.32 gm and 22.51±1.28 gm respectively<br />

and at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment <strong>the</strong> body weight reaches<br />

72


ISSN NO 2320-5407 Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Research (2013), Volume 1, Issue 5, 71-78<br />

to 23.40±1.02, 23.33±1.91 and 23.28±1.89, respectively.<br />

Table 1: Body weight in gm <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental mice at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 days (Mean±SE).<br />

Groups/Days 0 Day 15 30 45 60 75 90 105 120 135 150 165 180<br />

C<strong>on</strong>trol 21.47±1.21* 22.52±1.32 22.92±1.47 23.17±1.07 23.19±1.36 24.31±1.41 24.56±1.53 25.07±1.43 25.19±0.947 25.37±1.12 25.69±1.49 25.72±0.989 25.86±1.87<br />

CUD (no 22.43±1.36* 22.48±1.29* 22.51±1.33 22.54±1.42* 22.61±1.62** 22.79±1.46 22.94±1.53 23.08±1.67* 23.48±1.82 23.54±1.29* 23.67±1.68 23.82±1.92 23.91±1.21**<br />

DEN)<br />

DEN 22.73±1.33** 23.12±1.42 23.49±1.36* 23.79±1.21* 24.01±1.36 24.67±1.17** 24.92±1.07* 25.16±0.941 24.01±1.21* 23.72±1.06 22.09±1.09* 21.87±1.31* 19.16±1.81<br />

CUD 21.42±1.56* 21.62±1.41* 21.71±1.52* 22.07±1.02 22.67±1.17** 22.89±1.19 23.12±1.23* 22.92±1.16 22.66±0.941 22.52±1.12 22.26±1.07 22.12±1.13* 21.06±1.91*<br />

A 23.13±1.54* 23.63±1.71 24.76±1.23 24.93±1.32** 25.11±1.16* 25.72±1.21 25.91±1.47 24.37±1.41** 24.87±1.31 23.85±1.03** 23.71±1.07 23.68±1.13 23.52±1.01*<br />

B 22.81±1.26 23.12±1.21** 23.71±1.28 23.91±1.17 24.11±1.24* 24.52±1.31** 25.03±1.28* 24.76±1.19* 24.10±1.07* 23.81±1.23 23.71±1.16* 23.67±1.09 23.40±1.02*<br />

G 22.41±1.32 22.91±1.61* 23.14±1.10** 23.57±1.17 23.87±1.36* 24.10±1.30 24.47±1.28 24.32±1.21* 24.10±1.07 23.73±1.22* 23.64±0.940 23.50±1.11 23.33±1.91*<br />

H 22.51±1.28* 22.68±1.31 22.91±1.12* 23.41±1.21** 23.62±1.31 23.82±1.40* 23.98±1.33 23.90±1.21 23.81±1.17 23.63±1.07 23.48±1.21 23.39±1.07** 23.28±1.89<br />

A+CUD 21.36±1.47** 21.73±1.32* 22.07±1.12** 22.39±1.39 22.87±1.42* 23.01±1.25 23.93±1.61** 24.03±1.71* 24.18±0.981** 25.81±1.42* 25.91±1.07* 26.36±1.03 26.48±0.902**<br />

B+CUD 22.76±1.44* 22.91±1.51* 23.57±1.07 23.91±1.40** 23.96±1.31 24.03±1.61 24.18±1.42* 24.43±1.27 24.89±1.19 24.97±1.36* 24.91±1.17 24.88±1.13 24.80±1.09<br />

G+CUD 22.97±1.37 23.07±1.27 23.46±1.21* 23.71±1.41** 23.96±1.31* 24.10±1.31* 24.57±1.19 24.81±1.17** 24.95±1.16* 24.89±1.27* 24.84±1.11 24.72±1.08* 24.67±0.941<br />

H+CUD 22.81±1.21* 22.90±1.20* 22.96±1.17 23.07±1.31 23.48±1.32** 23.69±1.20 23.84±1.23 23.96±1.19 24.97±1.23 24.90±1.21 24.78±1.31** 24.67±1.08 24.60±1.01*<br />

Significant difference in comparis<strong>on</strong> to c<strong>on</strong>trol (*p≤0.5 and **p≤0.01)<br />

Table 2: Total erythrocyte count (TEC) (x 10 6 /cumm) <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental mice at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 days (Mean±SE).<br />

Groups/Days 0 15 30 45 60 75 90 105 120 135 150 165 180<br />

C<strong>on</strong>trol 6.82±0.13 6.86±0.17 6.92±0.27 6.97±0.16 7.06±0.31 7.14±0.24 7.16±0.41 7.18±0.37 7.19±0.34 7.20±0.17 7.21±0.19 7.23±0.23 7.25±0.27<br />

CUD (NO<br />

DEN)<br />

6.29±0.52* 6.36±0.41* 6.52±0.63 6.70±0.13* 6.83±0.46 6.94±0.32 7.03±0.21** 7.19±0.61* 7.22±0.73* 7.25±0.49* 7.29±0.36 7.34±0.51** 7.40±0.42<br />

DEN 6.87±0.51 6.89±0.62** 6.96±0.71* 6.98±0.18* 7.08±0.42* 7.11±0.52* 7.01±0.63 6.94±0.87* 6.66±0.33* 6.06±0.61 5.04±0.12** 4.71±0.43 3.61±0.46*<br />

CUD 6.42±0.83 6.48±0.17 6.63±0.21* 6.69±0.47* 6.78±0.82* 6.83±0.27* 6.91±0.16* 7.03±0.51* 7.14±0.21 7.01±0.32** 6.81±0.27 6.71±0.61 6.68±0.53<br />

A 6.31±0.37** 6.38±0.41 6.48±0.28* 6.63±0.46* 6.89±0.72* 6.96±0.69 7.09±0.33* 7.47±0.38 7.34±0.28 7.12±0.48 7.19±0.59* 7.23±0.72 7.32±0.58<br />

B 6.33±0.61 6.45±0.42* 6.61±0.47 6.75±0.51 6.95±0.80 7.08±0.72** 7.22±0.61 7.45±0.56 7.29±0.51* 7.09±0.62 7.15±0.68* 7.21±0.52* 7.29±0.57**<br />

G 6.39±0.41 6.41±0.39 6.54±0.41* 6.71±0.43 6.90±0.53 7.05±0.62** 7.17±0.47 7.39±0.54** 7.06±0.57 6.89±0.62 7.05±0.41* 7.15±0.46 7.20±0.37<br />

H 6.37±0.52* 6.39±0.59* 6.53±0.47 6.68±0.45 6.70±0.52** 6.72±0.58 6.96±0.43 7.15±0.48 7.41±0.51** 7.69±0.48 7.35±0.61 7.23±0.42* 7.18±0.41**<br />

A+CUD 6.31±0.97** 6.46±0.818 6.79±0.17* 6.98±0.42** 7.09±0.78 7.35±0.18* 7.49±0.19** 7.83±0.63* 7.98±0.76 8.38±0.84 8.73±0.39** 8.83±0.36* 8.90±0.47<br />

B+CUD 6.37±0.53 6.40±0.61** 6.66±0.59 6.77±0.41* 6.81±0.47* 6.96±0.53 7.09±0.12 7.18±0.35 7.21±0.61* 7.40±0.69** 7.77±0.63 8.15±0.71 8.59±0.62*<br />

G+CUD 6.42±0.59* 6.44±0.53 6.79±0.49 6.83±0.50 6.93±0.60 7.07±0.59* 7.18±0.57 7.310.51 7.77±0.53 7.86±0.59 7.72±0.47* 8.19±0.44 8.51±0.42<br />

H+CUD 6.35±0.61 6.40±0.57 6.55±0.64** 6.72±0.51* 7.13±0.57 7.45±0.63 7.68±0.53* 7.88±0.56* 8.04±0.47** 8.13±0.52 8.29±0.56 8.44±0.48** 8.48±0.43*<br />

Significant difference in comparis<strong>on</strong> to c<strong>on</strong>trol (*p≤0.5 and **p≤0.01)<br />

Haematological parameters<br />

Data <str<strong>on</strong>g>of</str<strong>on</strong>g> TEC is expressed in number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cellsx10 6 /cumm and is menti<strong>on</strong>ed in Table 2. Initially<br />

<strong>the</strong> TEC <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol was 6.82±0.13 x 10 6 /cumm and<br />

after 6 m<strong>on</strong>th, TEC <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental mice was<br />

7.25±0.27 x 10 6 /cumm. In DEN treated (negative<br />

c<strong>on</strong>trol) group <strong>the</strong> initial TEC at zero day <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiments was 6.87±0.51 x 10 6 /cumm which<br />

decreased to 3.61±0.46 x 10 6 /cumm significantly at<br />

<strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment. But in CUD treated group, <strong>the</strong><br />

TEC at zero day was 6.29±0.52 x 10 6 /cumm and<br />

7.40±0.42 x 10 6 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment.<br />

CUD treated group in which <strong>the</strong> carcinogen had also<br />

been given, <strong>the</strong> initial TEC at zero day was 6.42±0.83<br />

x 10 6 /cumm. After <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment, it was<br />

6.68±0.53x 10 6 /cumm. In test group A, <strong>the</strong> zero day<br />

73


ISSN NO 2320-5407 Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Research (2013), Volume 1, Issue 5, 71-78<br />

TEC was 6.31±0.37 x 10 6 /cumm. The TEC decreased<br />

to 7.32±0.58 x 10 6 /cumm at 180 day <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment.<br />

In group CUD+A <strong>the</strong> total erythrocyte count, at zero<br />

day was 6.31±0.97 x 10 6 /cumm which was increased<br />

to 8.90±0.47 x 10 6 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment.<br />

Group CUD+B had 6.37±0.53 x 10 6 /cumm TEC at<br />

zero day and 8.59±0.62 x 10 6 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiment, respectively. In CUD+G and CUD+H<br />

groups <strong>the</strong> TEC at zero day were 6.42±0.59 x<br />

10 6 /cumm and 6.35±0.61 x 10 6 /cumm, respectively<br />

and were 8.51±0.42 x 10 6 /cumm and 8.48±0.43 x<br />

10 6 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment. In group B, G<br />

and H, <strong>the</strong> TEC at zero day was found 6.33±0.61 x<br />

10 6 /cumm, 6.39±0.41 x 10 6 /cumm and 6.37±0.52 x<br />

10 6 /cumm, respectively and at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment<br />

increased to 7.29±0.57 x 10 6 /cumm, 7.20±0.37 x<br />

10 6 /cumm and 7.18±0.41 x 10 6 /cumm.<br />

Data <str<strong>on</strong>g>of</str<strong>on</strong>g> TLC is expressed in no. <str<strong>on</strong>g>of</str<strong>on</strong>g> cells x 10 3 /cumm<br />

and is presented in Table-3.Initially <strong>the</strong> TLC count <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>trol group was 8.91±0.30 x 10 3 /cumm and after 6<br />

m<strong>on</strong>th <strong>the</strong> TLC was 12.11±0.04 x 10 3 /cumm. In DEN<br />

(negative c<strong>on</strong>trol) group <strong>the</strong> initial TLC at zero day<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> experiments was 9.12±3.20 x 10 3 /cumm which<br />

was decreased to 3.02±1.45 x 10 3 /cumm. But in CUD<br />

treated group, <strong>the</strong> TLC at zero day was 8.65±4.31 x<br />

10 3 /cumm and 9.53±4.67 x 10 3 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiment. In CUD treated group, <strong>the</strong> initial<br />

TLC at zero day was 9.02±5.31 x 10 3 /cumm which<br />

decreased to 7.81±3.11 x 10 3 /cumm. In test group<br />

like A, <strong>the</strong> zero day TLC was 9.08±5.68 x 10 3 /cumm<br />

which was decreased to 8.64±3.08 x<br />

10 3 /cumm.CUD+A had <strong>the</strong> zero day mean TLC<br />

count as 8.97±4.02 x 10 3 /cumm which was increased<br />

to 12.61±2.17 x 10 3 /cumm, at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment.<br />

Group CUD+B has 8.89±6.31 x 10 3 /cumm at zero<br />

day and was 10.55±3.18 x 10 3 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiment.In group B, G and H, <strong>the</strong> TLC at zero day<br />

was observed as 9.01±6.81 x 10 3 /cumm, 9.10±6.07 x<br />

10 3 /cumm and 9.07±7.03 x 10 3 /cumm, respectively<br />

and at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment 8.59±3.19 x 10 3 /cumm,<br />

8.33±3.61 x 10 3 /cumm and 8.30±4.1 x 10 3 /cumm<br />

respectively. In groups CUD+G and CUD+H <strong>the</strong><br />

TLC at zero day was 9.11±5.98 x 10 3 /cumm,<br />

9.03±6.19 x 10 3 /cumm and was 10.21±3.81 x<br />

10 3 /cumm and 10.05±3.14 x 10 3 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> experiment, respectively.<br />

Data <str<strong>on</strong>g>of</str<strong>on</strong>g> ALC is expressed in no. <str<strong>on</strong>g>of</str<strong>on</strong>g> cells x<br />

10 3 /cumm and is presented in Table-4.Initially <strong>the</strong><br />

ALC count <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol group was 4.30±0.69 x<br />

10 3 /cumm and after 6 m<strong>on</strong>th <strong>the</strong> ALC was 5.92±0.98<br />

x 10 3 /cumm. In DEN (negative c<strong>on</strong>trol) group <strong>the</strong><br />

initial ALC at zero day <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments was 4.41±0.81<br />

x 10 3 /cumm which was decreased to 1.36±0.47 x<br />

10 3 /cumm. But in CUD treated group, <strong>the</strong> ALC at<br />

zero day was 4.13±0.70 x 10 3 /cumm and 4.63±0.43 x<br />

10 3 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment.In CUD treated<br />

group, <strong>the</strong> initial ALC at zero day was 4.43±0.84 x<br />

10 3 /cumm which decreased to 3.76±0.53 x<br />

10 3 /cumm. In test group like A, <strong>the</strong> zero day ALC<br />

was 4.42±0.91 x 10 3 /cumm which was decreased to<br />

4.19±0.27 x 10 3 /cumm.CUD+A had <strong>the</strong> zero day<br />

mean ALC count as 4.39±0.87 x 10 3 /cumm which<br />

was increased to 6.16±0.42 x 10 3 /cumm, at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiment. Group CUD+B has 4.36±0.89 x<br />

10 3 /cumm at zero day and was 5.16±0.80 x<br />

10 3 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment.In group B, G and<br />

H, <strong>the</strong> ALC at zero day was observed as 4.40±0.94 x<br />

10 3 /cumm, 4.48±0.73 x 10 3 /cumm and 4.44±0.84 x<br />

10 3 /cumm, respectively and at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment<br />

4.18±0.94 x 10 3 /cumm, 4.01±0.37 x 10 3 /cumm and<br />

3.98±0.77 x 10 3 /cumm respectively. In groups<br />

CUD+G and CUD+H <strong>the</strong> ALC at zero day was<br />

4.41±0.80 x 10 3 /cumm, 4.42±0.79 x 10 3 /cumm and<br />

was 4.90±0.28 x 10 3 /cumm and 4.89±0.11 x<br />

10 3 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment, respectively.<br />

Data <str<strong>on</strong>g>of</str<strong>on</strong>g> ANC is expressed in no. <str<strong>on</strong>g>of</str<strong>on</strong>g> cells x<br />

10 3 /cumm and is presented in Table-5.Initially <strong>the</strong><br />

ANC count <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol group was 4.57±0.72 x<br />

10 3 /cumm and after 6 m<strong>on</strong>th <strong>the</strong> ANC was 6.00±0.99<br />

x 10 3 /cumm. In DEN (negative c<strong>on</strong>trol) group <strong>the</strong><br />

initial ANC at zero day <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments was<br />

4.69±0.83 x 10 3 /cumm which was decreased to<br />

1.49±0.52 x 10 3 /cumm. But in CUD treated group,<br />

<strong>the</strong> ANC at zero day was 4.38±0.78 x 10 3 /cumm and<br />

4.71±0.47 x 10 3 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment.<br />

In CUD treated group, <strong>the</strong> initial ANC at<br />

zero day was 4.51±0.97 x 10 3 /cumm which decreased<br />

to 3.88±0.56 x 10 3 /cumm. In test group like A, <strong>the</strong><br />

zero day ANC was 4.60±0.97 x 10 3 /cumm which was<br />

decreased to 4.30±0.31 x 10 3 /cumm.CUD+A had <strong>the</strong><br />

zero day mean ANC count as 4.46±0.89 x 10 3 /cumm<br />

which was increased to 6.25±0.45 x 10 3 /cumm, at <strong>the</strong><br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment. Group CUD+B has 4.41±0.92 x<br />

10 3 /cumm at zero day and was 5.24±0.82 x<br />

10 3 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment.In group B, G and<br />

H, <strong>the</strong> ANC at zero day was observed as 4.58±0.99 x<br />

10 3 /cumm, 4.56±0.75 x 10 3 /cumm and 4.51±0.87 x<br />

10 3 /cumm, respectively and at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment<br />

4.26±0.96 x 10 3 /cumm, 4.11±0.38 x 10 3 /cumm and<br />

4.09±0.79 x 10 3 /cumm respectively. In groups<br />

CUD+G and CUD+H <strong>the</strong> ANC at zero day was<br />

4.52±0.84 x 10 3 /cumm, 4.50±0.85 x 10 3 /cumm and<br />

was 5.01±0.29 x 10 3 /cumm and 4.96±0.12 x<br />

10 3 /cumm at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment, respectively.<br />

74


ISSN NO 2320-5407 Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Research (2013), Volume 1, Issue 5, 71-78<br />

Table 3: Total leucocyte count (TLC) (x 10 3 /cumm) count <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental mice at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 days (Mean±SE).<br />

Groups/Days 0 15 30 45 60 75 90 105 120 135 150 165 180<br />

C<strong>on</strong>trol 8.91±0.30 9.06±0.17 9.38±0.32 9.91±0.37 10.08±0.51 10.21±0.62 10.53±0.02 10.73±0.12 11.05±0.81 11.32±0.91 11.51±0.07 11.87±0.47 12.11±0.04<br />

CUD (NO 8.65±4.31 8.71±4.36** 8.86±4.51* 8.93±4.70 9.08±5.01* 9.13±5.21 9.18±3.24* 9.20±4.22 9.27±4.56** 9.32±4.61 9.38±4.28 9.46±4.39* 9.53±4.67<br />

DEN)<br />

DEN 9.12±3.20** 9.21±3.52* 9.43±4.07** 9.89±3.81 8.07±3.61 7.42±3.82 6.41±2.01 6.12±3.10* 5.87±2.12* 4.31±3.19 4.16±2.16 4.08±1.87* 3.02±1.45*<br />

CUD 9.02±5.31* 9.13±5.27 9.31±5.17 9.67±4.81** 9.89±4.72 10.07±4.55 9.91±4.31** 9.73±4.24 9.41±4.27* 9.01±3.69 8.23±3.16** 8.11±3.08* 7.81±3.11<br />

A 9.08±5.68* 9.15±5.51* 9.28±5.42 9.57±5.23 9.79±5.05** 9.98±4.93 9.78±4.61* 9.61±4.34 9.32±4.21* 8.91±4.07 8.83±3.21 8.79±3.12 8.64±3.08<br />

B 9.01±6.81* 9.11±6.72 9.19±6.61** 9.41±6.52 9.61±6.37* 9.77±5.83* 9.58±5.61 8.91±5.37 8.87±5.21* 8.81±5.08 8.79±4.61* 8.68±4.52 8.59±3.19**<br />

G 9.10±6.07 9.16±5.91* 9.24±5.82 9.33±5.74** 9.51±5.41* 9.67±5.34* 9.48±5.28 8.87±5.05 8.76±4.81 8.69±4.23* 8.59±4.07 8.41±3.82 8.33±3.61<br />

H 9.07±7.03 9.11±6.87 9.15±6.67** 9.21±6.41 9.38±5.91 9.47±5.80 9.31±5.47* 8.83±5.32** 8.73±5.16 8.62±4.77* 8.57±4.41* 8.46±4.21* 8.30±4.10<br />

A+CUD 8.97±4.02** 9.21±4.47 9.49±3.32 9.89±3.77* 10.08±2.01* 10.33±2.61* 10.69±3.16* 10.93±4.03 11.31±2.12** 11.67±3.41* 11.91±4.91* 12.25±3.53* 12.61±2.17**<br />

B+CUD 8.89±6.31* 9.12±6.27* 9.25±6.08 9.49±5.61* 9.68±5.32* 9.87±5.17* 9.67±5.03 9.47±4.71 9.73±4.57 9.84±4.31 10.08±4.17 10.67±4.08* 10.55±3.18<br />

G+CUD 9.11±5.98 9.18±5.81* 9.27±5.61 9.39±5.47* 9.59±5.27 9.71±5.17 9.51±5.09** 9.30±4.81 9.26±4.67 9.42±4.51 10.02±4.41** 10.17±4.32* 10.21±3.81*<br />

H+CUD 9.03±6.19 9.13±6.01 9.19±5.81** 9.27±5.72 9.44±5.51 9.59±5.42* 9.40±5.31 9.31±5.06* 9.12±4.87* 9.09±4.62* 9.51±4.41 9.88±4.17 10.05±3.14<br />

Significant difference in comparis<strong>on</strong> to c<strong>on</strong>trol(*p≤0.5 and **p≤0.01)<br />

Table 4: Absolute lymphocyte count (ALC) (x 10 6 /cumm) <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental mice at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 days (Mean±SE).<br />

Groups/Days 0 15 30 45 60 75 90 105 120 135 150 165 180<br />

C<strong>on</strong>trol 4.30±0.69 4.41±0.42 4.59±0.24 4.81±0.49 4.92±0.19 4.98±0.33 5.17±0.54 5.23±0.68 5.41±0.57 5.53±0.28 5.62±0.31 5.81±0.73 5.92±0.98<br />

CUD (NO 4.13±0.70* 4.24±0.72 4.31±0.69* 4.37±0.58* 4.43±0.42 4.45±0.39* 4.48±0.69** 4.49±0.84 4.52±0.92* 4.54±0.14 4.55±0.28* 4.61±0.63* 4.63±0.43<br />

DEN)<br />

DEN 4.41±0.81* 4.43±0.61 4.56±0.71 4.86±0.24* 3.92±0.92** 3.59±0.43* 3.05±0.64 2.94±0.59 2.81±0.36 2.08±0.31* 1.92±0.27* 1.90±0.17 1.36±0.47*<br />

CUD 4.43±0.84* 4.41±0.64 4.54±0.84 4.74±0.18 4.83±0.29 4.85±0.36 4.85±0.47* 4.72±0.53* 4.59±0.61 4.35±0.74* 3.96±0.89 3.89±0.92 3.76±0.53<br />

A 4.42±0.91 4.44±0.738 4.51±0.42** 4.67±0.75 4.78±0.94* 4.86±0.86 4.78±0.73 4.66±0.21** 4.53±0.28* 4.36±0.69 4.28±0.74** 4.25±0.18** 4.19±0.27*<br />

B 4.40±0.94 4.42±0.57 4.44±0.55 4.60±0.85 4.69±0.69 4.77±0.54** 4.65±0.22* 4.33±0.51 4.34±0.49* 4.26±0.16 4.24±0.21* 4.22±0.86 4.18±0.94*<br />

G 4.48±0.73* 4.41±0.82** 4.51±0.98* 4.56±0.37 4.64±0.76 4.76±0.41 4.62±0.47* 4.32±0.53 4.27±0.84 4.23±0.61 4.15±0.65 4.10±0.21* 4.01±0.37*<br />

H 4.44±0.84 4.40±0.34* 4.48±0.76 4.50±0.26** 4.54±0.86* 4.63±0.16 4.56±0.36 4.30±0.61* 4.24±0.42* 4.15±0.69** 4.16±0.48 4.09±0.59* 3.98±0.77<br />

A+CUD 4.39±0.87 4.49±0.29 4.62±0.59 4.84±0.43* 4.90±0.33 5.02±0.77 5.21±0.61 5.33±0.98 4.55±0.71 5.71±0.14 5.83±0.21* 5.98±0.63 6.16±0.42**<br />

B+CUD 4.36±0.89** 4.47±0.19* 4.51±0.41** 4.62±0.82* 4.74±0.27 4.83±0.87* 4.72±0.91** 4.61±0.84** 4.73±0.16** 4.76±0.72 4.91±0.18 5.21±0.68* 5.16±0.80<br />

G+CUD 4.41±0.80* 4.48±0.47 4.53±0.63 4.58±0.92 4.65±0.46** 4.74±0.18* 4.66±0.78 4.56±0.20 4.52±0.91 4.57±0.39* 4.87±0.65* 4.91±0.21 4.90±0.28<br />

H+CUD 4.42±0.79 4.45±0.77 4.48±0.27* 4.52±0.39 4.61±0.65 4.69±0.23 4.59±0.88 4.54±0.49 4.46±0.64* 4.43±0.72* 4.63±0.47 4.86±0.30* 4.89±0.11*<br />

Significant difference in comparis<strong>on</strong> to c<strong>on</strong>trol (*p≤0.5 and **p≤0.01)<br />

Table 5: Absolute Neutrophil count (ANC) (x 10 6 /cumm) <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental mice at an interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 days (Mean±SE).<br />

Groups/Days 0 15 30 45 60 75 90 105 120 135 150 165 180<br />

C<strong>on</strong>trol 4.57±0.72 4.50±0.43 4.67±0.29 4.90±0.51 5.00±0.23 5.07±0.38 5.22±0.55 5.32±0.69 5.50±0.59 5.61±0.37 5.71±0.37 5.90±0.77 6.00±0.99<br />

CUD (NO 4.38±0.78** 4.33±0.74** 4.40±0.72 4.44±0.60 4.52±0.45* 4.53±0.43 4.56±0.72 4.57±0.86* 4.60±0.97 4.62±0.19 4.67±0.34 4.70±0.65 4.71±0.47*<br />

DEN)<br />

DEN 4.69±0.83 4.56±0.65** 4.68±0.75 4.92±0.26 4.01±0.96 3.68±0.46 3.14±0.67** 3.00±0.61* 2.90±0.41 2.13±0.34 2.00±0.31 1.99±0.23* 1.49±0.52<br />

CUD 4.51±0.87 4.50±0.69* 4.60±0.89* 4.81±0.21 4.92±0.31 4.99±0.37 4.93±0.49 4.83±0.57 4.67±0.66** 4.47±0.77 4.07±0.92** 3.99±0.95* 3.88±0.56**<br />

A 4.60±0.97* 4.53±0.79 4.61±0.46 4.75±0.77 4.87±0.98 4.96±0.89* 4.86±0.74** 4.78±0.26 4.61±0.32 4.42±0.75* 4.39±0.77 4.36±0.23 4.30±0.31<br />

B 4.58±0.99* 4.51±0.58** 4.56±0.57** 4.68±0.87* 4.78±0.69* 4.85±0.56 4.77±0.26 4.40±0.55 4.40±0.51 4.38±0.19* 4.35±0.26 4.31±0.89 4.26±0.96<br />

G 4.56±0.75 4.54±0.86 4.62±0.99 4.64±0.39* 4.73±0.79* 4.80±0.43** 4.71±0.49 4.41±0.54** 4.35±0.85* 4.31±0.66* 4.26±0.66 4.18±0.24 4.11±0.38<br />

H 4.51±0.87** 4.52±0.37 4.53±0.80* 4.58±0.29 4.66±0.88 4.71±0.17* 4.61±0.38 4.39±0.63 4.32±0.46 4.27±0.74 4.25±0.53* 4.20±0.61 4.09±0.79<br />

A+CUD 4.46±0.89* 4.58±0.31* 4.70±0.61** 4.92±0.45* 4.99±0.35** 5.11±0.78* 5.32±0.64* 5.41±0.99* 5.62±0.74* 5.80±0.15** 5.91±0.23 6.10±0.65** 6.25±0.45*<br />

B+CUD 4.41±0.92 4.51±0.23 4.63±0.46 4.73±0.86 4.80±0.29* 4.91±0.89 4.80±0.93 4.70±0.86 4.81±0.18 4.89±0.74* 5.00±0.20* 5.30±0.69 5.24±0.82<br />

75


ISSN NO 2320-5407 Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Research (2013), Volume 1, Issue 5, 71-78<br />

G+CUD 4.52±0.84 4.56±0.49 4.61±0.66* 4.67±0.95* 4.77±0.48 4.80±0.20 4.73±0.79** 4.62±0.23 4.60±0.95* 4.68±0.44 4.98±0.67 5.00±0.24* 5.01±0.29*<br />

H+CUD 4.50±0.85* 4.54±0.81* 4.56±0.29 4.61±0.40 4.70±0.66* 4.75±0.25 4.67±0.90 4.61±0.50* 4.53±0.65 4.51±0.73 4.72±0.49** 4.95±0.32 4.96±0.12<br />

Table 6: Haemoglobin c<strong>on</strong>tent (Hb) <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental mice at regular interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 days (gm%, mean±SE).<br />

Groups/Days 0 15 30 45 60 75 90 105 120 135 150 165 180<br />

C<strong>on</strong>trol 12.45±1.42 12.47±1.51 12.53±1.52 12.51±1.42 12.55±1.47 12.50±1.44 12.52±1.41 12.55±1.37 12.56±1.35 12.58±1.39 12.62±1.34 12.66±1.21 12.68±1.36<br />

CUD(NO<br />

DEN)<br />

12.19±1.31* 12.21±1.42 12.27±1.51* 12.49±1.36 12.62±1.47* 12.85±1.51 12.99±1.62* 13.41±1.73* 13.53±1.81* 13.66±1.74* 13.70±1.32 13.76±1.21* 13.78±1.19<br />

DEN 12.40±1.36* 12.42±1.38 12.43±1.29 12.45±1.31** 12.46±1.33 12.25±1.36* 12.08±1.39 11.82±1.36* 11.65±1.30 10.52±1.32* 10.09±1.21 9.36±1.19* 8.02±1.07<br />

CUD 12.32±1.31 12.45±1.28** 12.86±1.33 12.90±1.37 13.06±1.29* 13.40±1.42 13.87±1.47 13.67±1.40* 13.46±1.33** 13.22±1.28* 12.79±1.21*<br />

12.09±1.19**<br />

12.34±1.28<br />

A 12.27±1.17** 12.43±1.27 12.84±1.29 12.87±1.32* 13.07±1.33 13.38±1.38* 13.85±1.41 14.04±1.43 13.95±1.47 13.80±1.27 13.76±1.23* 13.71±1.19 13.63±1.13<br />

B 12.31±1.40 12.39±1.35* 12.79±1.25 12.83±1.38** 13.03±1.27 13.30±1.30 13.79±1.37** 14.02±1.39* 13.95±1.41* 13.75±1.26 13.71±1.19** 13.67±1.21** 13.56±1.18<br />

G 12.34±1.28* 12.37±1.21 12.72±1.24** 12.79±1.41 13.04±1.32** 13.25±1.19** 13.72±1.29 13.96±1.26 13.91±1.25* 13.70±1.32* 13.65±1.27 13.61±1.21 13.49±1.29<br />

H 12.34±1.42 12.36±1.40 12.68±1.23** 12.74±1.21 12.95±1.31* 13.10±1.22 13.67±1.28 13.87±1.27 13.82±1.30 13.65±1.33* 13.59±1.24** 13.55±1.32* 13.40±1.25<br />

A+CUD 12.41±1.48* 12.48±1.47 12.89±1.36** 12.94±1.39 13.08±1.33* 13.42±1.41* 13.89±1.52* 14.06±1.47** 14.64±1.37 14.82±1.42 15.07±1.37 15.21±1.27 15.38±1.31*<br />

B+CUD 12.29±1.42* 12.40±1.37 12.81±1.27 12.85±1.36** 13.05±1.31 13.35±1.32 13.81±1.39 14.01±1.41 14.22±1.42 14.48±1.25 14.74±1.21* 14.89±1.22* 14.90±1.17*<br />

G+CUD 12.27±1.41 12.36±1.39** 12.76±1.21 12.80±1.29* 13.01±1.25 13.27±1.28 13.76±1.31* 13.98±1.30* 14.03±1.27* 14.33±1.21** 14.69±1.23 14.74±1.17 14.86±1.14<br />

H+CUD 12.30±1.39* 12.35±1.35 12.70±1.27* 12.76±1.23 12.98±1.33** 13.12±1.29* 13.70±1.20 13.90±1.24 13.97±1.26 14.08±1.31 14.62±1.28* 14.70±1.22 14.78±1.11**<br />

Significant difference in comparis<strong>on</strong> to c<strong>on</strong>trol (*p≤0.5 and **p≤0.01)<br />

Data <str<strong>on</strong>g>of</str<strong>on</strong>g> Hemoglobin is expressed in gm% and is<br />

presented in Table-6. Initially <strong>the</strong> Hb c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>trol was 12.45±1.42gm% and after 6 m<strong>on</strong>th <strong>the</strong><br />

Hb c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> mice was 12.68±1.36gm%. In DEN<br />

(negative c<strong>on</strong>trol) group <strong>the</strong> initial Hb c<strong>on</strong>tent at zero<br />

day <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment was 12.40±1.36gm%, which<br />

decreased to 8.02±1.07gm%, at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiment. But in CUD treated group, <strong>the</strong>ir Hb<br />

c<strong>on</strong>tent at zero day was 12.19±1.31gm% and<br />

13.78±1.19gm% at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment. In CUD<br />

treated group in which <strong>the</strong> carcinogen has been given,<br />

<strong>the</strong> initial Hb c<strong>on</strong>tent at zero day was<br />

12.32±1.31gm%, after <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment <strong>the</strong> Hb<br />

c<strong>on</strong>tent was 12.09±1.19gm%. In test group A, <strong>the</strong><br />

zero day Hb c<strong>on</strong>tent was 12.27±1.17gm%. The Hb<br />

c<strong>on</strong>tent increased to 13.63±1.13gm% at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiment. In group B, G and H, <strong>the</strong> Hb c<strong>on</strong>tent at<br />

zero day was found 12.31±1.40gm%,<br />

12.34±1.28gm% and 12.34±1.42gm%, respectively<br />

and at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment <strong>the</strong> Hb c<strong>on</strong>tent reached<br />

to 13.56±1.18gm%, 13.49±1.29gm% and<br />

13.40±1.25gm%, respectivelyCUD+A had Hb<br />

c<strong>on</strong>tent at zero day 12.41±1.48gm% which was<br />

increased to 15.38±1.31gm%, at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiment. Group CUD+B had 12.29±1.42gm% Hb<br />

c<strong>on</strong>tent <strong>on</strong> zero day which was increased to<br />

14.90±1.17gm% at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment. In<br />

CUD+G and CUD+H, <strong>the</strong> Hb c<strong>on</strong>tent at zero day was<br />

12.27±1.41gm%, 12.30±1.39gm% and was<br />

14.86±1.14gm% and 14.78±1.11gm% at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> experiment, respectively.<br />

Total Leucocyte count (TLC) in experimental mice<br />

76


ISSN NO 2320-5407 Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Research (2013), Volume 1, Issue 5, 71-78<br />

Absolute lymphocyte count (AlC) <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment <str<strong>on</strong>g>of</str<strong>on</strong>g> mice.<br />

Haemoglobin c<strong>on</strong>tent (Hb) in experimental mice<br />

Absolute neutrophil count (AlC) <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment <str<strong>on</strong>g>of</str<strong>on</strong>g> mice.<br />

Total erythrocyte count (TEC) in experimental mice<br />

Discussi<strong>on</strong><br />

In-vivo study with T. baccata leaves and bark extracts<br />

al<strong>on</strong>e and in combinati<strong>on</strong> with CUD were carried out<br />

in experimental mice for a period <str<strong>on</strong>g>of</str<strong>on</strong>g> six m<strong>on</strong>ths. With<br />

an observati<strong>on</strong> at 15 days interval in mice, an attempt<br />

was made to produce cancer using DEN and various<br />

clinicohematological parameters were observed. The<br />

body weight <str<strong>on</strong>g>of</str<strong>on</strong>g> mice was decreased substantially in<br />

DEN treated mice indicating in <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cancer, due to DEN.Ramji and You, (1992) reported<br />

that aflatoxin has been directly related to under<br />

weight status in children in Benin and Togo. Bedi et<br />

al.,(1996) reported decreased in body weight in<br />

Guinea fowl fed <strong>on</strong> aflatoxin B1. In present study<br />

body weight in DEN treated mice was decreased at<br />

<strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment. However, <strong>the</strong>re was increase<br />

in body weight in o<strong>the</strong>r test groups. This study<br />

showed that <strong>the</strong> weight loss in DEN treated group<br />

may be due to <strong>the</strong> carcinogenic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> DEN;<br />

however, herbal formulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> extracts and CUD<br />

were found to be a preventive agent against <strong>the</strong><br />

carcinogenic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> DEN. DEN is already known<br />

chemical carcinogen.Increased immunocompetence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an individual is a very essential parameter to<br />

prevent <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> cancers by several<br />

mechanisms, <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>the</strong> upregulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lymphocyte proliferati<strong>on</strong> and stimulati<strong>on</strong> activity,<br />

increased macrophage activity, higher antibody<br />

producti<strong>on</strong> and increased syn<strong>the</strong>sis and secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cytokines (IL-1, Il-2) plays significant role by<br />

enhancing <strong>the</strong> recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells by <strong>the</strong><br />

immune cells <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> body and cytotoxic activities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> tumor killing cells, <strong>the</strong> lymphocytes. Using herbs<br />

for cancer treatment can help <strong>the</strong> body to support its<br />

77


ISSN NO 2320-5407 Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Research (2013), Volume 1, Issue 5, 71-78<br />

healing power. In <strong>the</strong> present investigati<strong>on</strong>, both<br />

doses <str<strong>on</strong>g>of</str<strong>on</strong>g> QC (5 and 25 mg/kg) led to a significant<br />

decrease in <strong>the</strong> number as well as <strong>the</strong> mean area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

GST-P positive foci, TUNEL positive apoptotic cells,<br />

p53 positive hepatocytes, and restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular<br />

morphology. These results clearly indicate that<br />

quercetin inhibits diethylnitrosamine-induced hepatic<br />

preneoplastic lesi<strong>on</strong>s in medium-term rat liver<br />

bioassay. In <strong>the</strong> mice given T. baccataal<strong>on</strong>e and<br />

al<strong>on</strong>g with CUD. The body weight ei<strong>the</strong>r remain<br />

c<strong>on</strong>stant or enhanced substantially. These<br />

preparati<strong>on</strong>s as shown in <strong>the</strong> in-vitro study were<br />

having anti-carcinogenic effect, which might be<br />

altering <strong>the</strong> clinoco effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cancer caused by<br />

DEN.<br />

Various hematological parameters indicated <strong>the</strong><br />

leukocytosis, erythrocytosis higher hemoglobin<br />

c<strong>on</strong>tent in treated mice with T. baccata products<br />

al<strong>on</strong>g with indigenous <strong>cow</strong> <strong>urine</strong>. While, in DEN<br />

treated mice <strong>the</strong>re was leucopenia, erythropenia and<br />

decreased heamoglobin c<strong>on</strong>tent. These findings are<br />

fur<strong>the</strong>r supported by <strong>the</strong> fact that CUD had <strong>the</strong><br />

immunomodulatory property which caused<br />

leukocytosis leading to <strong>the</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> highly<br />

proliferating cells through <strong>the</strong>ir destructi<strong>on</strong> by <strong>the</strong><br />

white blood cells. Erythrocytosis and increased<br />

hemoglobin c<strong>on</strong>tent are <strong>the</strong> indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> good health<br />

and recovery and neutralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> DEN<br />

by T. baccata and CUD. Joshi et al., 2013<br />

investigated that <strong>the</strong> immunomodulatory effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

distilled Gir <strong>cow</strong> <strong>urine</strong> in rabbits<br />

throughhaematological parameters. The study<br />

revealed that <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> total leucocyte count<br />

(TLC), absolute lymphocyte count (ALC) and<br />

absolute neutrophil count (ANC) were significantly<br />

increased in Group II, in which <strong>the</strong> rabbits were<br />

given Gir <strong>cow</strong> <strong>urine</strong> distillate al<strong>on</strong>e and Gir <strong>cow</strong><br />

<strong>urine</strong> distillate with citric acid, respectively. In <strong>the</strong><br />

present study <strong>the</strong> ALC and ANC increased 40.31%<br />

and 40.13% inn extracts and/or CUD treated mice in<br />

comparis<strong>on</strong> to c<strong>on</strong>trol or DEN treated mice. Increase<br />

in TEC and Hb c<strong>on</strong>tent is an indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enhanced<br />

vitality <str<strong>on</strong>g>of</str<strong>on</strong>g> mice. Similarly leukocytosis,<br />

lymphocytosis and neutrophilia are <strong>the</strong> immune cell<br />

showing immunopoturtrati<strong>on</strong>, which is c<strong>on</strong>sidered<br />

protective against cancer and an indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a good<br />

prognosis (chauhan, 2005). It fur<strong>the</strong>r needs a detailed<br />

study for fur<strong>the</strong>r c<strong>on</strong>firmati<strong>on</strong>.<br />

Jemal A., Bray F., Center M.M., Ferlay J., Ward E.<br />

and Forman D. Global cancer statistics. CA: a cancer<br />

journal for clinicians, 2011, 61 (2): 69–90.<br />

Joshi A.,Bankoti K.,Bisht T. and Chauhan R.S.<br />

Immunomodulatory effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Gir <strong>cow</strong> <strong>urine</strong> distillate<br />

in Rabbits. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Immunology and<br />

Immunopathology, 2012, 14(1): 57-61.<br />

Kumar A.,Kumar P.,Singh L.K and Agrawal D.K.<br />

Pathogenic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> free radicals and <strong>the</strong>ir preventi<strong>on</strong><br />

throughCowpathy. The Indian Cow, 2004, 2:27-34.<br />

Zollman A. and Vickers G. Dervan.Understanding<br />

Cancer. Jeffers<strong>on</strong>, NC: McFarland (1999).<br />

Udupa A.L.,Kulkarni D.R. and Udupa S.L. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Tridaxprocumbens extract <strong>on</strong> wound healing, Int. J.<br />

Pharmacognosy, 1995, 1: 37-40.<br />

Ramji C and You W. Differential sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

human mammary epi<strong>the</strong>lial and breast carcinoma cell<br />

lines to curcumin .Br. Canc. Res. Treat., 1999,<br />

54(1):269-79.<br />

ParkI.K.,Qian D., KielM.,Becker M.W, Pihalja M.,<br />

Weissman I.L., Morris<strong>on</strong> S.J and Clarke M.F. "Bmi-1<br />

is required for maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> adult self-renewing<br />

haematopoietic stem cells". Nature. 2003, 423<br />

(6937): 302–5.<br />

Kinzler K.W and Vogelstein B.The genetic basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

human cancer.Medical Pub. Divisi<strong>on</strong>, 2002, 2:1-5.<br />

IARC.Cancer an entropic disease, 2003, 143: 112-<br />

131.<br />

Bedi P.S, Singh H.,Johri H.S and Agarwal R.N.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aflatoxin <strong>on</strong> growth and feed c<strong>on</strong>sumpti<strong>on</strong><br />

in Guinea fowl. XX World Poultry C<strong>on</strong>gress, 1996,<br />

4(3):665-667.<br />

Chauhan R.S. Cowpathy: A new versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ancient<br />

Science. Employment News, 2005, 30(15):1-2.<br />

Pal S and Mittal K. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative cancer<br />

medicine in India. Lancet<strong>on</strong>col.2004, 3: 394-395.<br />

Govindachari T.R., Suresh G. and Masailmani S.<br />

Antifungal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Azadirachtaindica leaf hexane<br />

extract fitoterpia, 1999, 70: 427-420.<br />

References<br />

Hartzell M. Carcinogenic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Taxusbacata in<br />

diabetic c<strong>on</strong>diti<strong>on</strong>., 2003, 45:147-168.<br />

***********<br />

78


Original Research Paper<br />

Lipid-lowering activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow <strong>urine</strong> ark in guinea pigs fed with a high<br />

cholesterol diet<br />

Chawda Hiren Manubhai 1 , Mandavia Divyesh Rasiklal 1 , Baxi Seema Natvarlal 2 , Vadgama<br />

Vishalkumar Kishorbhai 1 , Tripathi ‎Chandrabhanu Rajkishor 1* ‎<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacology, Government Medical College, Bhavnagar-364001, Gujarat, India<br />

2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pathology, Government Medical College, Bhavnagar-364001, Gujarat, India<br />

Article history:<br />

Received: Sep 28, 2013<br />

Received in revised form:<br />

Apr 5, 2014<br />

Accepted: May 14, 2014<br />

Vol. 4, No. 5, Sep-Oct 2014,<br />

354-363.<br />

* Corresp<strong>on</strong>ding Author:<br />

Tel: ‎+919825951678‎<br />

Fax: ‎+9102782422011‎<br />

cbrtripathi@yahoo.co.in<br />

Keywords:<br />

Antioxidant activity<br />

Cow <strong>urine</strong> ark<br />

Dyslipidemia<br />

Hypolipidemia<br />

Guinea pig<br />

Statin<br />

Abstract<br />

Objectives: Cow <strong>urine</strong> ark (CUA), known‎ as‎ “Amrita”‎ as‎<br />

menti<strong>on</strong>ed in Ayurveda, c<strong>on</strong>tains‎ anti-hyperglycemic and<br />

antioxidant effects. Therefore, we designed <strong>the</strong> present study to<br />

evaluate <strong>the</strong> lipid ‎lowering activity <str<strong>on</strong>g>of</str<strong>on</strong>g> CUA and its possible<br />

implicati<strong>on</strong> in metabolic syndrome.‎<br />

Materials and Methods: Thirty guinea pigs <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<strong>the</strong>r sex were<br />

divided into five groups: Group 1 and 2 serving as a vehicle ‎and<br />

sham c<strong>on</strong>trol, received normal and high fat diet for 60 days<br />

respectively; Group 3, 4 and 5 ‎received high fat diet for 60 days<br />

with CUA 0.8 ml/kg, 1.6 ml/kg and rosuvastatin (1.5 mg/kg) <strong>on</strong><br />

<strong>the</strong>‎last 30 days <str<strong>on</strong>g>of</str<strong>on</strong>g> study period, respectively. Serum lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

(total cholesterol, triglycerides, LDL-‎C, VLDL-C, HDL-C, total<br />

Cholesterol/HDL-C) and serum enzymes (ALT, AST, ALP, LDH<br />

and CK-MB) ‎were performed in each group at <strong>the</strong> beginning and<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> study. Histological study <str<strong>on</strong>g>of</str<strong>on</strong>g> liver and ‎kidney was d<strong>on</strong>e<br />

in each group.<br />

Results: CUA (0.8 ml/kg) significantly decreased <strong>the</strong> serum<br />

triglycerides and VLDL-C, but CUA (1.6 ml/kg) ‎decreased <strong>the</strong><br />

total serum Cholesterol, triglycerides and VLDL-C (p < 0.05).<br />

Higher dose (1.6 ml/kg) <str<strong>on</strong>g>of</str<strong>on</strong>g> ‎CUA also increased HDL-C level,<br />

significantly (p < 0.05). CUA reduced serum AST, ALP and LDH<br />

‎level, which was statistically significant as well, while it also<br />

decreased <strong>the</strong> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid in hepatocytes as ‎compared to<br />

sham c<strong>on</strong>trol.‎<br />

C<strong>on</strong>clusi<strong>on</strong>s: CUA reduced triglycerides, increased HDL-C and<br />

found to be hepatoprotective in ‎animals that are <strong>on</strong> a high fat diet.<br />

Please cite this paper as:<br />

Chawda Hiren M, Mandavia DR, Baxi SN, Vadgama VK, ‎Tripathi ‎CR‎.Lipid-lowering activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow <strong>urine</strong> ark<br />

in guinea pigs fed with a high cholesterol Diet. Avicenna J Phytomed, 2014; 4 (5): 354-363.<br />

Introducti<strong>on</strong><br />

Cardiovascular diseases (CVD) are<br />

emerging problem in developing countries<br />

‎(Freedman, 2003; Badim<strong>on</strong> et al., 2010).<br />

CVD may become <strong>the</strong> reas<strong>on</strong> for <strong>the</strong> loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 17.9 ‎milli<strong>on</strong> Potentially Productive<br />

Years <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Lost (PPYLL) in India, by<br />

2030 (Anchala et al., 2012). ‎Dyslipidaemia<br />

is well recognized risk factor for <strong>the</strong><br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular diseases<br />

AJP, Vol. 4, No. 5, Sep-Oct 2014 354


Lipid-lowering activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow <strong>urine</strong> ark ‎<br />

‎(Freedman, 2003; Badim<strong>on</strong> et al., 2010).<br />

Reactive oxygen species induce <strong>the</strong><br />

oxidative stress, ‎which play significant<br />

role in <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> CVD and<br />

a<strong>the</strong>rosclerosis. Liver, kidney ‎and heart are<br />

also under oxidative stress due to<br />

hyperlipidemia in CVD (Kwiterovich,<br />

‎1997; Vijayakumar et al., 2004). O<strong>the</strong>r<br />

crucial factors regarding CVD, associated<br />

morbidity and mortality, are <strong>the</strong> insulin<br />

resistance, diabetes, ‎elevated blood<br />

pressure, obesity and dyslipidaemia that<br />

are included in metabolic syndrome (Li et<br />

al., 2013). Modern life style like smoking,<br />

alcohol ‎c<strong>on</strong>sumpti<strong>on</strong> and junk food diet<br />

are major obstacles in <strong>the</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dyslipidaemia. ‎Elevated liver enzymes are<br />

<strong>the</strong> major risk factors associated with <strong>the</strong><br />

current allopathic treatment ‎for<br />

dyslipidaemia and thus, <strong>the</strong> alternative<br />

medicines from Ayurveda, have been<br />

getting attenti<strong>on</strong> ‎in <strong>the</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dyslipidaemia (Suanarunsawat et al.,<br />

2011). ‎<br />

Cow <strong>urine</strong>, known‎as‎“Amrita”‎or‎water‎<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> life as menti<strong>on</strong>ed in Ayurveda ‎(Dhama<br />

et al., 2005), is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ingredients <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Panchagavya Ghrita. Panchagavyapathy<br />

was proved to be effective in life<br />

threatening diseases such as diabetes,<br />

cancer and AIDS ‎(Dhama et al., 2005;<br />

Achliya et al., 2003; Jarald et al., 2008).<br />

Cow <strong>urine</strong> has medicinal ‎properties like<br />

antimicrobial, antifungal and anticancer<br />

which granted US Patents (No. ‎6,896,907<br />

and 6,410,059) (Randhawa, 2010). Several<br />

studies revealed that <strong>cow</strong> <strong>urine</strong> has<br />

‎antidiabetic and antioxidant activity<br />

(Sachdev et al., 2012; Krishnamurthi et al.,<br />

2004). ‎Therefore, <strong>the</strong> present study was<br />

planned to evaluate <strong>the</strong> lipid lowering<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow <strong>urine</strong> ark ‎(CUA) and also to<br />

know its possible implicati<strong>on</strong> in metabolic<br />

syndrome.‎<br />

Materials and Methods<br />

Drugs and Chemicals<br />

Cholesterol powder (analytical grade): was<br />

purchased from High Purity Laboratory<br />

Chemicals ‎Pvt. Ltd., Mumbai, India. Cow<br />

<strong>urine</strong> ark (CUA) was obtained from Go<br />

Vigyan‎Anushandhan Kendra, Sevadhanm,<br />

Devalpur, Nagpur, Maharashtra, India and<br />

(US Patent ‎No 6410 059/2002).<br />

Rosuvastatin Calcium powder: (Gift<br />

sample from Torrent ‎Pharmaceuticals Ltd.,<br />

Torrent <str<strong>on</strong>g>research</str<strong>on</strong>g> center, Ahmedabad.<br />

(Batch no: ARD2110109)‎<br />

Animal preparati<strong>on</strong><br />

Thirty guinea pigs weighing 520 – 860<br />

g <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<strong>the</strong>r sex were procured from <strong>the</strong><br />

Central ‎Animal House <str<strong>on</strong>g>of</str<strong>on</strong>g> Government<br />

Medical College, Bhavnagar, which is<br />

registered in <strong>the</strong> ‎Committee for <strong>the</strong><br />

Purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>trol and Supervisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Experiments <strong>on</strong> Animals ‎(CPCSEA), New<br />

Delhi, India. CPCSEA guidelines were<br />

followed during animal ‎experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

study. The guinea pigs were housed in<br />

stainless steel cages under 12 ‎hour lightdark<br />

cycle room with c<strong>on</strong>trolled<br />

temperature at 23±2°C, being fed with<br />

standard ‎laboratory food and water ad<br />

libitum. After <strong>the</strong> proper acclimatizati<strong>on</strong><br />

for 15 days, <strong>the</strong>y were ‎divided into five<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> six guinea pigs.‎<br />

Group I: Normal diet plus distilled<br />

water (Vehicle c<strong>on</strong>trol); Group II: High fat<br />

diet plus ‎distilled water (Sham c<strong>on</strong>trol);<br />

Group III: High fat diet plus a lower dose<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CUA (0.8 ‎ml/kg); Group IV: High fat<br />

diet plus a higher dose <str<strong>on</strong>g>of</str<strong>on</strong>g> CUA (1.6<br />

ml/kg); Group V: High fat ‎diet plus<br />

rosuvastatin (1.5 mg/kg)‎<br />

Diet compositi<strong>on</strong> ‎<br />

Normal diet: in <strong>the</strong> morning, mixtures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cereals and pulses (60% wheat plus<br />

35% Bengal ‎gram plus 15% peanuts), total<br />

50 g/animal. In <strong>the</strong> evening: green leafy<br />

vegetables, 30 g/ ‎animal.‎ High fat diet: in<br />

<strong>the</strong> morning, cholesterol powder (500<br />

mg/kg) mixed with 10 g <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat and<br />

‎Bengal gram flour, followed by 40 g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

mixtures menti<strong>on</strong>ed above, in <strong>the</strong> normal<br />

diet/animal. ‎In <strong>the</strong> evening: green leafy<br />

vegetables, 30 g/animal.‎<br />

AJP, Vol. 4, No. 5, Sep-Oct 2014 355


Chawda Hiren et al.‎<br />

Methodology<br />

The study was c<strong>on</strong>ducted in Animal<br />

room, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacology,<br />

Government ‎Medical College, Bhavnagar,<br />

Gujarat, after approval from <strong>the</strong><br />

Instituti<strong>on</strong>al Animal Ethics ‎Committee <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> same institute. The baseline blood<br />

sample was collected from a lateral<br />

‎saphenous vein <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hind paw <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

guinea pig in overnight fasting state.<br />

Blood samples were‎ sent to Clinical<br />

Biochemistry Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> our institute<br />

which is accredited by Nati<strong>on</strong>al<br />

‎Accreditati<strong>on</strong> Board for Testing and<br />

Calibrati<strong>on</strong> Laboratories (NABL), for <strong>the</strong><br />

serum lipid ‎pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, liver and cardiac<br />

enzymes. Animals were separated into<br />

groups as menti<strong>on</strong>ed above. Throughout<br />

<strong>the</strong> study period in each group, diet ‎was<br />

given according to <strong>the</strong> respective group<br />

diet plan. During <strong>the</strong> last 30 days <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

experiment, animals <str<strong>on</strong>g>of</str<strong>on</strong>g> group I and II ‎were<br />

given distilled water daily, animals <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

group III, IV and IV were given a lower<br />

dose ‎<str<strong>on</strong>g>of</str<strong>on</strong>g> CUA, higher dose <str<strong>on</strong>g>of</str<strong>on</strong>g> CUA and<br />

rosuvastatin (1.5 mg/kg), respectively.<br />

‎Distilled water, CUA and rosuvastatin<br />

calcium were given orally by gavages<br />

feeding tube ‎in a daily basis <strong>on</strong> mornings<br />

in fasting state to ensure maximum<br />

absorpti<strong>on</strong>. Animals <str<strong>on</strong>g>of</str<strong>on</strong>g> all groups ‎were<br />

sacrificed after blood <str<strong>on</strong>g>collecti<strong>on</strong></str<strong>on</strong>g> from <strong>the</strong><br />

lateral saphenous vein in <strong>the</strong> overnight<br />

fasting ‎stat at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 days.<br />

Bloodsmples were sent to labratory for <strong>the</strong><br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> serum lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, liver<br />

and ‎cardiac enzymes. We obtained <strong>the</strong><br />

liver and kidney from each animal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

five groups ‎for histopathological analysis,<br />

which was d<strong>on</strong>e by senior faculty from <strong>the</strong><br />

Pathology ‎department <str<strong>on</strong>g>of</str<strong>on</strong>g> our institute.‎<br />

Serum lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

The serum levels <str<strong>on</strong>g>of</str<strong>on</strong>g> triglycerides, total<br />

cholesterol and high density lipoprotein<br />

cholesterol ‎(HDL-C) and Low density<br />

lipoprotein cholesterol (LDL-C) were<br />

analyzed by GPO PAP ‎METHOD, CHOD<br />

PAP METHOD, IMMUNOINHIBITION<br />

and ENZYME SELECTIVE ‎methods,<br />

respectively. Very low density lipoprotein<br />

cholesterol (VLDL-C) was calculated ‎by<br />

<strong>the</strong> Friedwald method (Friedewald et al.,<br />

1972) as well as <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total<br />

cholesterol and HDL-C.‎<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liver and cardiac enzymes<br />

Liver functi<strong>on</strong> was evaluated by serum<br />

alanine aminotransferase (ALT), aspartate<br />

‎aminotransferase (AST), and alkaline<br />

phosphatase (AP) levels. Cardiac injury<br />

was assessed ‎by measuring <strong>the</strong> serum level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> creatine kinase MB subunit (CK-MB)<br />

and lactate ‎dehydrogenase (LDH). ALT<br />

and AST were examined by UV KINETIC<br />

method and serum ‎alkaline phosphatase<br />

was determinedby PNP AMP KINETIC<br />

method. LDH and CK-MB ‎were analyzed<br />

by IMMUNO-INHIBITION and UV<br />

KINETIC, respectively.‎<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> CUA <strong>on</strong> <strong>the</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

animals<br />

Weighing <str<strong>on</strong>g>of</str<strong>on</strong>g> each animal in all groups<br />

was d<strong>on</strong>e before <strong>the</strong> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> study and<br />

also at <strong>the</strong> ‎end <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 days to rule out any<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> CUA <strong>on</strong> <strong>the</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> guinea<br />

pig.‎<br />

Histological analysis<br />

The liver and kidney were isolated,<br />

cleaned, dried, and fixed at 10% neutral<br />

buffer formalin ‎followed by paraffin<br />

embedding and stained with haematoxylin<br />

and eosin (H&E) dye. All<br />

‎histopathological slides were coded and<br />

evaluated by a pathologist blindly without<br />

‎knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> groups. Scalinggrades 0,<br />

1, 2, 3 and 4 were given for no change,<br />

slight, mild, ‎moderate and severe changes,<br />

respectively regarding <strong>the</strong>severity<br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> histopathological‎ results.‎<br />

Statistical analysis:‎<br />

All parameters were expressed as<br />

Mean±standard error <str<strong>on</strong>g>of</str<strong>on</strong>g> mean (S.E.M.).<br />

One-way ‎Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Variance (ANOVA)<br />

followed by Tukey-Kramer Multiple<br />

comparis<strong>on</strong> test was ‎used to compare <strong>the</strong><br />

AJP, Vol. 4, No. 5, Sep-Oct 2014 356


Lipid-lowering activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow <strong>urine</strong> ark ‎<br />

inter group differences <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile,<br />

liver enzymes, cardiac enzymes and ‎extent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> body weight gain at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 days.<br />

Paired t-test was used to compare intra<br />

‎group differences <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, liver<br />

enzymes, cardiac enzymes and extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

body weight ‎gain. Value <str<strong>on</strong>g>of</str<strong>on</strong>g> p


Chawda Hiren et al.‎<br />

Table 2. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment strategy <strong>on</strong> serum lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (% increment) <strong>on</strong> guinea pigsat <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

60 days treatment<br />

Treatment Groups(n = 6)<br />

Time<br />

Period<br />

Total<br />

Cholesterol<br />

(mg/dl)<br />

Triglycerides<br />

(mg/dl)<br />

HDL<br />

Cholesterol<br />

(mg/dl)<br />

LDL<br />

Cholesterol<br />

(mg/dl)<br />

VLDL<br />

Cholesterol<br />

(mg/dl)<br />

Total<br />

Cholesterol/<br />

HDL-C<br />

Vehicle c<strong>on</strong>trol (Group 1)<br />

Sham c<strong>on</strong>trol (Group 2)<br />

High fat diet plus CUA<br />

(0.8 ml/kg) (Group 3)<br />

High fat diet plus CUA<br />

(1.6 ml/kg) (Group 4)<br />

High fat diet plus<br />

Rosuvastatin<br />

(1.5 mg/kg) (Group 5)<br />

60<br />

Days<br />

60<br />

Days<br />

60<br />

Days<br />

60<br />

Days<br />

60<br />

Days<br />

- 2.4 ± 1.8 - 2.4 ± 1.8 - 2.4 ± 2.4 - 2.8 ± 3.8 - 2.3 ± 1.8 0.3 ± 3.4<br />

92 ± 22.8 * 29.8 ± 7.5 * 63.2 ± 45.4 161.93 ± 45.5 * 29.8 ± 7.5 * 54.2 ± 30.7<br />

42.9 ± 25.3 - 26. 5 ± 12.7 # 70.8 ± 36 ## 78.9 ± 34.9 - 26.5 ± 12.7 # 5.9 ± 30<br />

27.2 ± 8.5 - 37.1 ± 8.2 # 50.5 ± 16 ## 72 ± 21.7 - 37.1 ± 8.2 # - 8.85 ± 13.2<br />

4.5 ± 4.9 ** - 8.82 ± 2.3 ** 234 ± 31 ** - 18.9 ± 3.9 ** - 8.8 ± 2.3 ** - 67.9 ± 2.1 **<br />

Values are expressed as Mean ± standard error <str<strong>on</strong>g>of</str<strong>on</strong>g> mean; LDL: low density lipoprotein, VLDL: very low density<br />

lipoprotein, HDL: high density lipoprotein; CUA: Cow <strong>urine</strong> ark; * p< 0.05 as compared to vehicle c<strong>on</strong>trol,<br />

ANOVA followed by Tukey-Kramer Multiple comparis<strong>on</strong> test; ** p< 0.05 as compared to sham c<strong>on</strong>trol,<br />

ANOVA followed by Tukey-Kramer Multiple comparis<strong>on</strong> test;# p< 0.001 as compared to sham c<strong>on</strong>trol,<br />

ANOVA followed by Tukey-Kramer Multiple comparis<strong>on</strong> test; ## p< 0.05 as compared to rosuvastatin<br />

treatment group, ANOVA followed by Tukey-Kramer Multiple comparis<strong>on</strong> test.<br />

The baseline and 60 days values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

serum enzymes in each diet treatment<br />

group were shown (Table3).In sham<br />

c<strong>on</strong>trol, <strong>the</strong>re is a significant increase in<br />

ALT, AST, ALP, LDH and CK-MB level<br />

(p


Lipid-lowering activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow <strong>urine</strong> ark ‎<br />

Treatment Groups<br />

(n = 6)<br />

Time Period<br />

ALT<br />

(U/L)<br />

AST<br />

(U/L)<br />

ALP<br />

(U/L)<br />

LDH<br />

(U/L)<br />

CKMB<br />

(U/L)<br />

Vehicle c<strong>on</strong>trol<br />

(Group 1)<br />

Sham c<strong>on</strong>trol<br />

(Group 2)<br />

High fat diet plus<br />

CUA (0.8 ml/kg)<br />

(Group 3)<br />

High fat diet plus<br />

CUA (1.6 ml/kg)<br />

(Group 4)<br />

High fat diet plus<br />

rosuvastatin<br />

(1.5 mg/kg)<br />

(Group 5)<br />

Base line 53.46 ± 1.86 61.33 ± 7.95 94.8 ± 12.67 372.83 ± 44.03 268.8 ± 11.5<br />

60 Days 55.81 ± 2.86 63.33 ± 7.6 97.5 ± 9.5 377.16 ± 46.12 267.7 ± 17.6<br />

Base line 61.17 ± 6.21 50.33 ± 5.3 85.83 ± 11.7 311.5 ± 39.05 285 ± 34.74<br />

60 Days 104 ± 12.72 ** 162.4 ± 25.4 ** 145.6 ± 9.6 ** 456.5 ± 56.8 ** 360.23 ± 27.1 **<br />

Base line 57.14 ± 4.3 63.76 ± 14.9 126.5 ± 18.8 345.3 ± 22.6 433.56 ± 22.1<br />

60 Days 50.83 ± 9.9 * 72.66 ± 22.1 * 139.9 ± 9.07 194.16 ± 28.12 * 353.8 ± 36.5<br />

Base line 51 ± 1.3 73 ± 14.7 86.6 ± 15 283.6 ± 27.2 317.33 ± 22.5<br />

60 Days 63.8 ± 6.5 96.8 ± 14.6 124.3 ± 12.73 243.5 ± 37.4 * 297.6 ± 17.5<br />

Base line 63.26 ± 13.2 62.26 ± 9.65 103.6 ± 12.3 241 ± 46.64 374.5 ± 42.25<br />

60 Days 64.34 ± 5.5 169 ± 12.68 ** 161.5 ± 10.91 ** 301.8 ± 31.12 392.19 ± 28.3<br />

Values are expressed as Mean ± standard error <str<strong>on</strong>g>of</str<strong>on</strong>g> mean; ALT: Alanine aminotransferase, AST: Aspartate<br />

aminotransferase,AP: Akaline phosphatase , LDH: Lactate dehyrogenase, CK-MB: Creatine kinase-MB, CUA:<br />

Cow <strong>urine</strong> ark; *p


Chawda Hiren et al.‎<br />

Table 4. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment strategy <strong>on</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> guinea pigs<br />

Weight <str<strong>on</strong>g>of</str<strong>on</strong>g> animal in grams<br />

Treatment group<br />

Baseline<br />

60 days<br />

Vehicle c<strong>on</strong>trol 540.66 ± 6.14 554.16 ± 15.97<br />

Sham c<strong>on</strong>trol 632.33 ± 44.3 667.82 ± 45.32 *<br />

High fat diet plus CUA (0.8 ml/kg) 602.3 ± 29.3 637.6 ± 17.8 *<br />

High fat diet plus CUA (1.6 ml/kg) 604.3 ± 9.2 630.1 ±4.6 *<br />

High fat diet plus rosuvastatin(1.5mg/kg) 658 ± 36.8 682.5 ± 22.02 *<br />

Values are expressed as Mean ± standard error <str<strong>on</strong>g>of</str<strong>on</strong>g> mean; CUA: Cow <strong>urine</strong> ark; *p< 0.05 as compared to baseline<br />

value, paired t-test.<br />

Discussi<strong>on</strong><br />

In <strong>the</strong> present study, we selected guinea<br />

pig as <strong>the</strong> experimental animal for <strong>the</strong><br />

‎evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid lowering activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Cow <strong>urine</strong> ark (CUA). Lipoprotein<br />

metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> ‎guinea pigs is closest to<br />

human and several lines <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence<br />

proved that guinea pigs are ‎admirable<br />

models to assess hypolipidemic activity<br />

and lipoprotein metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs<br />

‎(Fernandez and Volek, 2006).‎<br />

The present study showed that 60 days<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high cholesterol diet feeding, ‎raised <strong>the</strong><br />

serum lipid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (total cholesterol,<br />

triglyceride, LDL-C and VLDL-C) and<br />

‎induced <strong>the</strong> histopathological changes in<br />

liver (Table 1, Figure 1 B). The liver plays<br />

a major role in ‎equilibrium cholesterol<br />

homeostasis (Suanarunsawat et al., 2011).<br />

High cholesterol diet ‎increases <strong>the</strong> hepatic<br />

cholesterol c<strong>on</strong>tent and is resp<strong>on</strong>sible for<br />

<strong>the</strong> elevated triglyceride syn<strong>the</strong>sis and<br />

‎cholesteryl ester-rich VLDL-C producti<strong>on</strong><br />

(Patel Y et al., 2011; Goldstein et al.,<br />

1983; ‎Demacker et al., 1991). The<br />

reducti<strong>on</strong> in <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g>hepatic LDL-‎C<br />

receptors is caused by high fat diet which<br />

diminishes cholesterol removal rate from it<br />

(Patel et al., 2011; Goldstein et al., ‎1983;<br />

Demacker et al., 1991). We opted a study<br />

period, 60 days, which is sufficient to<br />

‎produce fatty changes in guinea pigs, also<br />

supported by previous studies (Patel et al.,<br />

2011; ‎Ahmad-Raus et al., 2001). ‎<br />

In <strong>the</strong> present study, CUA <strong>the</strong>rapy for 30<br />

days was found to be highly ‎effective to<br />

reduce <strong>the</strong> total serum cholesterol,<br />

triglycerides, VLDL-C [p


Lipid-lowering activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow <strong>urine</strong> ark ‎<br />

Oxidative stress and free radical<br />

induced injuries play a major role in <strong>the</strong><br />

‎pathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases.<br />

Hyperlipidemia produces lots <str<strong>on</strong>g>of</str<strong>on</strong>g> free<br />

radicals and ‎oxidative stress in blood<br />

vessels al<strong>on</strong>g with a<strong>the</strong>rosclerosis<br />

progressi<strong>on</strong>, and it endangers ‎vital organs<br />

such as liver, kidney, heart and brain<br />

(Suanarunsawat et al., 2011).<br />

Augmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ‎serum levels <str<strong>on</strong>g>of</str<strong>on</strong>g> AST,<br />

ALT, AP, LDH, and CK-MB suggested<br />

suppressed cardiac and ‎hepatic functi<strong>on</strong>s,<br />

due to <strong>the</strong> retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid in liver and<br />

heart in sham c<strong>on</strong>trol (Table 3 and ‎Figure<br />

1 B). CUA treatment decreased serum<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> ALT, AST and LDH (p < 0.05),<br />

and improvement in hepatocytes<br />

histopathologically also seen (Table 3 and<br />

Figure 1 C). CUA has ‎many volatile fatty<br />

acids; acetic acid 2 propenyl ester, acetic<br />

acid methyl ester, 2, 2, 3 ‎trichloro<br />

propi<strong>on</strong>ic acid, butanoic acid-3methyl,<br />

propyl ester, 1H indol-3-acetate, acetic<br />

acid ‎phenyl ester and quinoline. They are<br />

resp<strong>on</strong>sible for its antioxidant acti<strong>on</strong><br />

which is c<strong>on</strong>firmed ‎by <strong>the</strong> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

thiobarbituric acid, ascorbic acid, DPPH<br />

radical scavenging activity and ‎ABTS<br />

assay (Sachdev et al., 2012). Hence, <strong>the</strong><br />

antioxidant activity <str<strong>on</strong>g>of</str<strong>on</strong>g> CUA might be<br />

‎resp<strong>on</strong>sible for <strong>the</strong> cytoprotective acti<strong>on</strong><br />

that was found in our study. ‎<br />

Several studies reported that residual<br />

cardiovascular risk is still apparent in ‎spite<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> intensive statin <strong>the</strong>rapy. Residual<br />

cardiovascular risk with 80 mg<br />

atorvastatin was ‎22.4%, 12% and 8.7%,<br />

reported in <strong>the</strong> PROVE IT-TIMI study, <strong>the</strong><br />

IDEAL study and <strong>the</strong> ‎TNT study,<br />

respectively (Cann<strong>on</strong> et al., 2004; LaRosa<br />

et al., 2005; Pedersen et al., 2005).<br />

‎Residual cardiovascular risk in patients<br />

that were treated with statins is attributed<br />

to <strong>the</strong> triglycerides and ‎low HDL-C which<br />

is predominantly higher am<strong>on</strong>g diabetics<br />

than n<strong>on</strong> diabetics (Samps<strong>on</strong> et al., ‎2012).<br />

Diabetes has a triad <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid abnormality,<br />

including high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> triglycerides, low<br />

‎levels <str<strong>on</strong>g>of</str<strong>on</strong>g> HDL-C and small, dense LDL-C<br />

(Fruchart, 2013). CUA increases HDL-C<br />

as well ‎as reducing triglycerides (Table 1).<br />

These findings are in accordance with <strong>the</strong><br />

previous studies <str<strong>on</strong>g>of</str<strong>on</strong>g> ‎<strong>cow</strong> <strong>urine</strong> distillate in<br />

diabetic wistar albino rats (Gururaja et al.,<br />

2011). Thus, CUA may be ‎useful as an add<br />

<strong>on</strong> <strong>the</strong>rapy to reduce statin related residual<br />

CV risk in diabetic patients.‎<br />

Metabolic syndrome is a group <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interrelated metabolic abnormalities that<br />

includes ‎insulin resistance, diabetes,<br />

elevated blood pressure, obesity and<br />

dyslipidaemia (Li et al., ‎2013). CUA has<br />

lipid lowering, antidiabetic and antioxidant<br />

activities (Sachdev et al., ‎2012). Cow<br />

<strong>urine</strong> c<strong>on</strong>tains copper (Jain et al., 2010);<br />

while previous studies revealed an inverse<br />

‎associati<strong>on</strong> between diastolic blood<br />

pressure and dietary copper intake (Bo et<br />

al., 2008). ‎Cow <strong>urine</strong> has a diuretic acti<strong>on</strong><br />

which might be due to nitrogen, uric acid,<br />

phosphates and hippuric‎acid (Jain et al.,<br />

2010), Therefore <strong>cow</strong> <strong>urine</strong> may be<br />

effective as an antihypertensive that has<br />

<strong>the</strong> <strong>potential</strong> to‎ decrease all <strong>the</strong> metabolic<br />

abnormalities and also a possible<br />

‎implicati<strong>on</strong> in metabolic syndrome.‎<br />

Hence, <strong>the</strong> present study revealed that<br />

CUA has lipid lowering and ‎cytoprotective<br />

effects that may be implicated in metabolic<br />

syndrome. It is vital to menti<strong>on</strong> that this<br />

study has ‎several limitati<strong>on</strong>s since we did<br />

not evaluate molecular mechanism,<br />

objective evidence for ‎a<strong>the</strong>rosclerosis and<br />

metabolic syndrome.‎<br />

From <strong>the</strong> current study, we c<strong>on</strong>cluded<br />

that CUA reduces triglycerides, ‎improves<br />

HDL-C and hepatoprotective in animals<br />

with high fat diet; <strong>the</strong>refore it may be<br />

useful in ‎diabetic dyslipidemic patients.‎<br />

Acknowledgement‎<br />

We would like to thank Torrent<br />

Pharmaceuticals Ltd., Torrent <str<strong>on</strong>g>research</str<strong>on</strong>g><br />

center, Ahmedabad for providing<br />

rosuvastatin calcium powder as a free gift<br />

sample. ‎<br />

C<strong>on</strong>flict <str<strong>on</strong>g>of</str<strong>on</strong>g> interest<br />

There is not any clash <str<strong>on</strong>g>of</str<strong>on</strong>g> attentiveness<br />

in this study.<br />

AJP, Vol. 4, No. 5, Sep-Oct 2014 361


Chawda Hiren et al.‎<br />

References‎<br />

Achliya GS, Kotagale NR, Wadodkar SG,<br />

Dorle AK. 2003. Hepatoprotective activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ‎panchagavyaghrita against carb<strong>on</strong><br />

tetrachloride induced hepatotoxicity in rats.<br />

Indian J ‎Pharmacol, 35: 308-311.‎<br />

Ahmad-Raus RR, Abdul-Latif ES,<br />

Mohammad JJ. 2001. Lowering <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid<br />

compositi<strong>on</strong> ‎in aorta <str<strong>on</strong>g>of</str<strong>on</strong>g> guinea pigs by<br />

Curcuma domestica. BMC Complement<br />

Altern Med, 1: 6-11.‎<br />

Anchala R, Pant H, Prabhakaran D, Franco<br />

OH.2012.‎ ‘Decisi<strong>on</strong>‎ support‎ system‎ (DSS)‎<br />

‎for preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular disease<br />

(CVD) am<strong>on</strong>g hypertensive (HTN) patients<br />

‎ in‎ Andhra‎ Pradesh,‎ India’--a cluster<br />

randomised community interventi<strong>on</strong> trial.<br />

BMC Public ‎Health, 12: 393-399. ‎<br />

Badim<strong>on</strong> L, Vilahur G, Padro T.2010.<br />

“Nutraceuticals‎and‎a<strong>the</strong>rosclerosis:‎human‎<br />

trials.”‎‎CardiovasTher, 28: 202-215.‎<br />

Bo S, Durazzo M, Gambino R, Berutti C,<br />

Milanesio N, Caropreso A, Gentile L,<br />

Cassader‎M, Cavallo-Perin P, Pagano<br />

G.2008. Associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dietaryand serum<br />

‎copper with inflammati<strong>on</strong>, oxidativestress,<br />

and metabolic variables in adults. J Nutr,<br />

138: ‎305-310.‎<br />

Botham KM, Moore EH, De Pascale C, Bejta<br />

F. 2007.The inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophage foam<br />

‎cell formati<strong>on</strong> by chylomicr<strong>on</strong><br />

remnants.BiochemSoc Trans, 35: 454-458.‎<br />

Cann<strong>on</strong> CP, Braunwald E, McCabe CH, et al.<br />

Intensive versus moderate lipid lowering<br />

with ‎statins after acute cor<strong>on</strong>ary<br />

syndromes. N Engl J Med. 2004; 350:<br />

1495-1504.‎<br />

Demacker PN, Reijnen IG, Katan MB, Stuyt<br />

PM, Stalenhoef AF.1991. Increased<br />

removal ‎<str<strong>on</strong>g>of</str<strong>on</strong>g> remnants <str<strong>on</strong>g>of</str<strong>on</strong>g> triglyceride-rich<br />

lipoproteins <strong>on</strong> a diet rich in<br />

polyunsaturated fatty acids. Eur‎J Clin<br />

Invest, 21: 197-203.‎<br />

Dhama K, Chauhan RS, Singhal L.2005. Anti-<br />

Cancer activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong>: Current status<br />

‎and future directi<strong>on</strong>s. Int J Cow Sci, 1: 1-<br />

25.‎<br />

Fernandez ML, Volek JS.2006. Guinea pigs: a<br />

suitable animal model to study lipoprotein<br />

‎metabolism, a<strong>the</strong>rosclerosis and<br />

inflammati<strong>on</strong>. NutrMetab (L<strong>on</strong>d), 3: 17-23.‎<br />

Freedman‎ JE.2003.“High-fat diets and<br />

cardiovascular‎ disease.”Jacc,‎ 41:‎ 1750-<br />

1752.‎<br />

Friedewald WT, Levy RI, Fredricks<strong>on</strong><br />

DS.1972.Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

low-‎density lipoprotein cholesterol in<br />

plasma, without use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> preparative<br />

ultracentrifuge.Clin‎Chem, 18: 499-502.‎<br />

Fruchart JC.2013. Selective peroxisome<br />

proliferator-activated‎receptor‎α‎modulators‎<br />

‎(SPPARMα):‎ <strong>the</strong>‎ next‎ generati<strong>on</strong>‎ <str<strong>on</strong>g>of</str<strong>on</strong>g>‎<br />

peroxisome proliferator-activated receptor<br />

α-ag<strong>on</strong>ists. ‎CardiovascDiabetol, 12: 1-8.‎<br />

Gianturco SH, Ramprasad MP, S<strong>on</strong>g R, Li R,<br />

Brown ML, Bradley WA.1998.<br />

‎Apolipoprotein B-48 or its apolipoprotein<br />

B-100 equivalent mediates <strong>the</strong> binding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

‎triglyceride rich lipoproteins to <strong>the</strong>ir unique<br />

human m<strong>on</strong>ocytemacrophage receptor.<br />

‎ArteriosclerThrombVascBiol, 18: 968-976. ‎<br />

Goldstein JL, Kita T, Brown MS.1983.<br />

Defective lipoprotein receptors and<br />

a<strong>the</strong>rosclerosis.‎Less<strong>on</strong>s from an animal<br />

counterpart <str<strong>on</strong>g>of</str<strong>on</strong>g> familial<br />

hypercholesterolemia. N Engl J Med, 309:<br />

‎288-296.‎<br />

Gururaja M P, Joshi A B, Joshi H,<br />

Sathyanarayana D, Subrahmanyam EVS,<br />

Chandrashekhar‎KS.2011. Antidiabetic<br />

<strong>potential</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> in streptozotocin<br />

induced diabetic rats. Asian J ‎Tradit Med,<br />

6: 8-13.‎<br />

Jain NK, Gupta VB, Garg R, Silawat N.2010.<br />

Efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong> <strong>urine</strong> <strong>the</strong>rapy <strong>on</strong> various<br />

‎cancer patients in Mandsaur district, India:<br />

A survey. Int J Green Pharm, 4: 29-35.‎<br />

Jarald EE, Edwin S, Tiwari V, Garg R,<br />

Toppo E.2008. Antidiabetic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>cow</strong><br />

<strong>urine</strong> ‎and a herbal preparati<strong>on</strong> prepared<br />

using <strong>cow</strong> <strong>urine</strong>. Pharm Biol, 46: 789-792.‎<br />

Kawakami A, Aikawa M, Alcaide P,<br />

Luscinskas FW, Libby P, Sacks FM.2006.<br />

‎Apolipoprotein CIII induces expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vascular cell adhesi<strong>on</strong> molecule-1 in<br />

vascular ‎endo<strong>the</strong>lial cells and increases<br />

adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ocytic cells. Circulati<strong>on</strong>,<br />

114: 681-687.‎<br />

Krishnamurthi K, Dutta D, Sivanesan SD,<br />

Chakrabarti T.2004. Protective effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

distillate ‎and redistillate <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow's <strong>urine</strong> in<br />

human polymorph<strong>on</strong>uclear leukocytes<br />

challenged with ‎established genotoxic<br />

Chemicals. Biomed Envir<strong>on</strong> Sci, 17: 247-<br />

256.‎<br />

Kwiterovich‎ Jr.‎ PO.1997.‎ “The‎ effect‎ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dietary fat, antioxidants, and pro-oxidants<br />

<strong>on</strong> ‎blood lipids, lipoproteins, and<br />

AJP, Vol. 4, No. 5, Sep-Oct 2014 362


Lipid-lowering activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cow <strong>urine</strong> ark ‎<br />

a<strong>the</strong>rosclerosis.”‎ Journal‎ Am‎ Diabet‎<br />

Associati<strong>on</strong>, 97: 31-41.‎<br />

Lamb DJ, Avades TY, Ferns GA.2001.<br />

Biphasic modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<strong>the</strong>rosclerosis<br />

induced ‎by graded dietary copper<br />

supplementati<strong>on</strong> in <strong>the</strong> cholesterolfedrabbit.<br />

Int J ExpPathol, 82: ‎287-294.‎<br />

LaRosa JC, Grundy SM, Waters DD, Rader<br />

DJ, Rouleau JL, Belder R, Joyal SV, Hill<br />

‎KA, Pfeffer MA, Skene AM.2005.<br />

Intensive lipid lowering with atorvastatin in<br />

patients‎with stable cor<strong>on</strong>ary disease. N<br />

Engl J Med, 352: 1425-1435.‎<br />

Li M, Li Y, Liu J.2013. Metabolic syndrome<br />

with hyperglycemia and <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

‎ischemic stroke.Y<strong>on</strong>sei Med J, 54: 283-<br />

287.‎<br />

Palmer AM, Murphy N, Graham A.2004.<br />

Triglyceride-rich lipoproteins inhibit<br />

cholesterol ‎efflux to apolipoprotein (apo)<br />

A1 from human macrophage foam cells.<br />

A<strong>the</strong>rosclerosis, 173: ‎27-38. ‎<br />

Patel S, Puranik R, Nakhla S, Lundman P,<br />

Stocker R, Wang XS, Lambert G, Rye ‎KA,<br />

Barter PJ, Nicholls SJ, CelermajerDS.2009.<br />

Acute hypertriglyceridaemia in humans<br />

‎increases <strong>the</strong> triglyceride c<strong>on</strong>tent and<br />

decreases <strong>the</strong> anti-inflammatory capacity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

high ‎density lipoproteins. A<strong>the</strong>rosclerosis,<br />

204: 424-428.‎<br />

Patel Y, Vadgama V, Baxi S, Chandrabhanu,<br />

Tripathi B. 2011. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hypolipidemic‎activity <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf juice <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Catharanthusroseus (Linn.) G. D<strong>on</strong>n. in<br />

guinea pigs. Acta Pol ‎Pharm, 68: 927-935.‎<br />

Pedersen TR, Faergeman O, Kastelein JJ,<br />

Olss<strong>on</strong> AG, Tikkanen MJ, Holme I, Larsen<br />

‎ML, Bendiksen FS, Lindahl C, Szarek M,<br />

Tsai J.2005. High-dose atorvastatin vs<br />

usual-dose ‎simvastatin for sec<strong>on</strong>dary<br />

preventi<strong>on</strong> after myocardial infarcti<strong>on</strong>: <strong>the</strong><br />

IDEAL study: a ‎randomized c<strong>on</strong>trolled<br />

trial. JAMA, 294: 2437-2445.‎<br />

Randhawa GK.2010. Cow <strong>urine</strong> distillate as<br />

bioenhancer. J Ayurveda Integr Med, 1:<br />

240-‎241.‎<br />

Sachdev D O, Gosavi D D, Salwe K J.2012.<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antidiabetic, antioxidant<br />

effect ‎and safety pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> gomutra ark in<br />

Wistar albino rats.AncSci Life, 31: 84–89.‎<br />

Samps<strong>on</strong> UK, Fazio S, Lint<strong>on</strong> MF.2012.<br />

Residual cardiovascular risk despite<br />

optimal LDL ‎cholesterol reducti<strong>on</strong> with<br />

statins: <strong>the</strong> evidence, etiology,<br />

and<strong>the</strong>rapeuticchallenges. Curr‎A<strong>the</strong>roscler<br />

Rep, 14: 1-10.‎<br />

Suanarunsawat T, Ayutthaya WD, S<strong>on</strong>gsak T,<br />

Thirawarapan S, Poungshompoo<br />

S.2011.‎Lipid lowering and antioxidative<br />

activities <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous extracts <str<strong>on</strong>g>of</str<strong>on</strong>g> Ocimum<br />

sanctum L. ‎ leaves in rats fed with a highcholesterol<br />

diet. Oxid Med Cell L<strong>on</strong>gev,<br />

2011:962025. ‎doi:10.1155/2011/962025.<br />

Epub 2011 Sep 21. ‎<br />

Talayero B G, Sacks FM.2011. The Role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Triglycerides<br />

in<br />

A<strong>the</strong>rosclerosis.CurrCardiol‎Rep, 13: 544–<br />

552.‎<br />

Vijayakumar RS, Surya D, Nalini N.<br />

2004.“Antioxidant‎efficacy‎<str<strong>on</strong>g>of</str<strong>on</strong>g>‎black‎pepper‎<br />

(Piper ‎nigrum L.) andpiperine in rats with<br />

high fat diet induced oxidative stress.”‎<br />

Redox Report, ‎9: 105-110, 2004.<br />

AJP, Vol. 4, No. 5, Sep-Oct 2014 363

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!