6.0 The Fundamental Equations

Chap.06A Chemical Equilibrium pp.1-60 Chap.06A Chemical Equilibrium pp.1-60

tpub.scu.edu.tw
from tpub.scu.edu.tw More from this publisher

2


<strong>6.0</strong> <strong>The</strong> <strong>Fundamental</strong> <strong>Equations</strong><br />

• <strong>The</strong> First and Second Laws of thermodynamics are both<br />

relevant to the behavior of matter, and we can bring the<br />

whole force of thermodynamics to bear on a problem by<br />

setting up a formulation that combines them.<br />

3


Combining the First and Second Laws<br />

• <strong>The</strong> essential thermodynamic properties: T, U, S.<br />

• For isolated system: (q = 0)<br />

– Entropy as a good criterion for spontaneity and equilibrium.<br />

• For close system (constant composition, but not constant q ) :<br />

– Not a good criterion for constant (T, V ) or (T, P ).<br />

– Need two more thermodynamic properties as criterion.<br />

– Using Legendre transforms to generate two new functions.<br />

– Helmholtz free energy (A ) as criterion for constant T and V.<br />

– Gibbs free energy (G ) as criterion for constant T and p.<br />

• For open system:<br />

– Chemical potentials for each species of a system at equilibrium is the<br />

same.<br />

– Spontaneous mixing of two partially miscible liquids at specific T and<br />

P.<br />

4


5


6


6.1 <strong>The</strong> fundamental equation<br />

• We have seen that the First Law of thermodynamics may be<br />

written dU = dq + dw.<br />

• For a reversible change in a closed system of constant<br />

composition, and in the absence of any additional (nonexpansion)<br />

work, we may set dw rev = −p dV and (from the<br />

definition of entropy) dq rev =T dS, where p is the pressure of<br />

the system and T its temperature.<br />

• <strong>The</strong>refore, for a reversible change in a closed system,<br />

dU = T dS − p dV<br />

7


6.1 <strong>The</strong> fundamental equation<br />

• However, because dU is an exact differential, its value is<br />

independent of path. <strong>The</strong>refore, the same value of dU is<br />

obtained whether the change is brought about irreversibly or<br />

reversibly. Consequently, eqn<br />

dU = T dS − p dV<br />

applies to any change-reversible or irreversible- of a closed<br />

system that does no additional (non-expansion) work. We<br />

shall call this combination of the First and Second Laws the<br />

fundamental equation.<br />

• <strong>The</strong> fact that the fundamental equation applies to both<br />

reversible and irreversible changes may be puzzling at first<br />

sight. <strong>The</strong> reason is that only in the case of a reversible<br />

change may T dS be identified with dq and −pdV with dw.<br />

When the change is reversible, T dS > dq (the Clausius<br />

inequality) and −p dV > dw. <strong>The</strong> sum of dw and dq remains<br />

equal to the sum of T dS and −p dV, provided the<br />

composition is constant. 8


6.1 Properties of the internal energy<br />

• <strong>The</strong> eq. dU = T dS − p dV shows that the internal<br />

energy of a closed system changes in a simple way<br />

when either S or V is changed (dU ∝ dS and dU ∝ dV).<br />

<strong>The</strong>se simple proportionalities suggest that U should be<br />

regarded as a function of S and V. We could regard U as<br />

a function of other variables, such as S and p or T and V,<br />

because they are all interrelated; but the simplicity of<br />

the fundamental equation suggests that U(S,V ) is the<br />

best choice.<br />

• <strong>The</strong> mathematical consequence of U being a function of<br />

U<br />

U<br />

<br />

S and V is that we dUcan express dS<br />

an infinitesimal dV<br />

change<br />

S<br />

V<br />

V<br />

S<br />

dU in terms of changes dS and dV by<br />

9


• <strong>The</strong> two partial derivatives are the slopes of the plots of<br />

U against S and V, respectively.<br />

• When this expression is compared to the<br />

thermodynamic relation, we see that, for systems of<br />

constant composition,<br />

T <br />

<br />

<br />

<br />

dU<br />

<br />

d S <br />

V<br />

P<br />

<br />

<br />

<br />

<br />

dU<br />

<br />

<br />

dV<br />

<br />

S<br />

10


Combination of 1st and 2nd law for close system<br />

– 1st law: dU = dq + dw.<br />

– 2nd law: dS > dq irrev /T and dS = dq rev /T .<br />

– If only PV-work involved, dw = - P dV<br />

– combine 1st law and 2nd law for close system: dU = T dS - P<br />

dV<br />

⇨ It is the fundamental equation in a close system involving only<br />

PV work, (an equation involves only state functions U, S, T, P,<br />

V ). It applies to both reversible and irreversible processes<br />

(state functions).<br />

⇨ Just like -P and V are conjugate variables for work, dw = - P dV ,<br />

now T and S are Ualso conjugate U<br />

variables for heat: dq rev = T dS .<br />

dU<br />

S V<br />

• Since internal energy<br />

d d<br />

S U (S,V<br />

<br />

) Vis <br />

an exact differential:<br />

<br />

<br />

<br />

V<br />

<br />

S<br />

T <br />

<br />

<br />

<br />

dU<br />

<br />

d S <br />

V<br />

P<br />

<br />

<br />

<br />

<br />

dU<br />

<br />

<br />

dV<br />

<br />

S<br />

11


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• Derivative of an extensive property with respect to an extensive<br />

property gives an intensive property.<br />

• U (T,P ) or U (T,V ) can not be used to calculate all the<br />

thermodynamic properties of system, only U (S,V ) will. And S<br />

and V are called the natural variables of U<br />

• If U = U (T,V ) =><br />

dU<br />

<br />

U<br />

<br />

<br />

V<br />

<br />

dV<br />

<br />

U<br />

<br />

<br />

T<br />

<br />

dT<br />

• At constant P, (∂U/∂V ) T , (∂U/∂T ) V are not convenient forms.<br />

T<br />

V<br />

1 <br />

α <br />

V <br />

<br />

x<br />

<br />

T<br />

<br />

P<br />

V<br />

<br />

<br />

T<br />

<br />

P<br />

<br />

<br />

U<br />

<br />

<br />

T<br />

<br />

<br />

<br />

<br />

P<br />

U<br />

<br />

<br />

T<br />

<br />

P<br />

<br />

<br />

U<br />

<br />

<br />

V<br />

<br />

π<br />

T<br />

T<br />

αV C<br />

12<br />

V<br />

<br />

<br />

T<br />

<br />

V<br />

P<br />

<br />

U<br />

<br />

<br />

T<br />

<br />

V<br />

π<br />

T<br />

U <br />

<br />

V<br />

T : internal pressure<br />

T


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• To show how measurable properties T, V of a close system<br />

(constant composition) can be related to thermodynamic quantities<br />

like H :<br />

For enthalpy H = U + PV,<br />

dH = dU + P dV + V dP = (T dS – P dV ) + P dV + V dP<br />

As H (S, P ), enthalpy changes with natural variable of S, P,<br />

dH = T dS + V dP<br />

H<br />

<br />

<br />

S<br />

<br />

T<br />

Furthermore, dH as exact differential, the relations:<br />

<br />

<br />

<br />

p<br />

H<br />

<br />

<br />

P<br />

<br />

S<br />

V<br />

<br />

<br />

p<br />

<br />

H<br />

<br />

<br />

S<br />

<br />

p<br />

<br />

<br />

<br />

S<br />

<br />

<br />

<br />

S<br />

<br />

H<br />

<br />

<br />

P<br />

<br />

S<br />

<br />

<br />

<br />

p<br />

<br />

<br />

<br />

T<br />

<br />

<br />

P<br />

<br />

S<br />

<br />

<br />

<br />

<br />

V<br />

<br />

<br />

S<br />

<br />

P<br />

13


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

For Helmholtz free energy A = U - TS,<br />

dA = dU – T dS – S dT = (T dS – P dV) – T dS – S dT<br />

As free energy A (V, T ), changes with natural variable of V, T,<br />

dA = - S dT – P dV<br />

A<br />

<br />

<br />

T<br />

<br />

S<br />

Furthermore, dA as exact differential, we have<br />

V<br />

<br />

<br />

<br />

A<br />

<br />

<br />

V<br />

<br />

T<br />

P<br />

<br />

<br />

V<br />

<br />

A<br />

<br />

<br />

T<br />

<br />

V<br />

<br />

<br />

<br />

T<br />

<br />

<br />

<br />

T<br />

<br />

A<br />

<br />

<br />

V<br />

<br />

T<br />

<br />

<br />

<br />

V<br />

S<br />

<br />

<br />

V<br />

<br />

T<br />

<br />

P<br />

<br />

<br />

T<br />

<br />

V<br />

• Now the internal pressure T :<br />

π<br />

T<br />

<br />

U<br />

<br />

<br />

V<br />

<br />

T<br />

S<br />

<br />

T<br />

<br />

V<br />

<br />

T<br />

P<br />

<br />

P<br />

T<br />

<br />

T<br />

<br />

V<br />

P<br />

14


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

For Gibbs free energy G = U + PV – TS = H - TS,<br />

dG = dH – T dS – S dT = (T dS + V dP ) – T dS – S dT<br />

As free energy, G (P,T ) changes with natural variable of P, T,<br />

dG = - S dT + V dP<br />

G<br />

<br />

<br />

T<br />

<br />

Furthermore, dG as exact differential, we have<br />

p<br />

S<br />

<br />

<br />

<br />

G<br />

<br />

<br />

P<br />

<br />

T<br />

V<br />

<br />

<br />

P<br />

<br />

G<br />

<br />

<br />

T<br />

<br />

p<br />

<br />

<br />

<br />

T<br />

<br />

<br />

<br />

<br />

<br />

<br />

T<br />

<br />

G<br />

<br />

<br />

P<br />

<br />

T<br />

<br />

<br />

<br />

p<br />

<br />

<br />

<br />

<br />

S<br />

<br />

<br />

P<br />

<br />

T<br />

<br />

<br />

<br />

<br />

V<br />

<br />

<br />

T<br />

<br />

P<br />

15


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• 在 均 相 系 統 的 外 延 性 質 狀 態 函 數<br />

• U (S,V ), H (S,P ), A (T,V ), G (T,P ) 可 表 為 :<br />

dU = +T dS - P dV<br />

dA = - S dT - P dV<br />

dH = +T dS + V dP<br />

dG = - S dT + V dP<br />

+T dS<br />

dU<br />

dH<br />

-P dV<br />

dA<br />

dG<br />

+V dP<br />

-S dT<br />

16


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• Furthermore, from U (S,V ), H (S,P ), A (T,V ), G (T,P ) ) we<br />

have the four relations:<br />

<br />

<br />

<br />

U<br />

<br />

<br />

S<br />

<br />

V<br />

<br />

<br />

<br />

<br />

H<br />

<br />

<br />

S<br />

<br />

p<br />

T<br />

<br />

<br />

<br />

H<br />

<br />

<br />

P<br />

<br />

S<br />

<br />

<br />

<br />

<br />

G<br />

<br />

<br />

P<br />

<br />

T<br />

V<br />

<br />

<br />

<br />

U<br />

<br />

<br />

V<br />

<br />

S<br />

<br />

<br />

<br />

<br />

A<br />

<br />

<br />

V<br />

<br />

T<br />

P<br />

A<br />

<br />

<br />

T<br />

<br />

V<br />

G<br />

<br />

<br />

T<br />

<br />

p<br />

S<br />

17


Legendre transforms:<br />

A linear change of variables that involves subtracting the product of conjugate<br />

variables from an extensive property of a system.<br />

For any state function f (X,Y), since df (X,Y) is exact differential;<br />

f f <br />

df dX dY m dX n dY<br />

X Y<br />

Y<br />

X<br />

now df = m dX+n dY with<br />

f f <br />

m n <br />

m n X Y<br />

Y<br />

X<br />

also <br />

Y<br />

X X Y<br />

f <br />

Now we define a new state function: gm,Y<br />

<br />

f X,Y<br />

<br />

X<br />

X Y<br />

g f mX<br />

dg df d mX m dX n dY m dX X dm X dm<br />

n<br />

dY<br />

<br />

For state function g (m,Y ): dg <br />

<br />

g g <br />

with - X and n <br />

m Y<br />

<br />

Y<br />

g<br />

m<br />

dm<br />

g<br />

Y<br />

Also dg is exact differential ====><br />

m<br />

<br />

<br />

Y<br />

<br />

<br />

<br />

<br />

<br />

f<br />

Y<br />

18<br />

<br />

<br />

<br />

<br />

<br />

X<br />

<br />

<br />

<br />

<br />

<br />

m<br />

dY<br />

<br />

<br />

<br />

<br />

<br />

X<br />

X<br />

Y<br />

dm<br />

<br />

<br />

<br />

<br />

m<br />

n dY<br />

<br />

<br />

<br />

<br />

n<br />

m<br />

<br />

<br />

<br />

Y


均 相 封 閉 系 統 的 熱 力 學 性 質 轉 換 :<br />

•<br />

dU<br />

<br />

-P<br />

dV<br />

T<br />

dS<br />

m P<br />

<br />

m T<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

U<br />

<br />

<br />

V<br />

<br />

U<br />

<br />

<br />

S<br />

<br />

dH<br />

T<br />

dS<br />

V<br />

dP<br />

V<br />

S<br />

H U PV U<br />

<br />

A U T<br />

S U<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

U<br />

<br />

<br />

V<br />

<br />

U<br />

<br />

<br />

S<br />

<br />

V<br />

S<br />

V<br />

S<br />

df<br />

m dX<br />

n<br />

dY<br />

g f mX<br />

dg<br />

X<br />

dm<br />

n<br />

dY<br />

dH<br />

V<br />

dP<br />

T<br />

dS<br />

dA<br />

S<br />

dT<br />

P dV<br />

m T<br />

<br />

m V<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

H<br />

<br />

<br />

S<br />

<br />

P<br />

H<br />

<br />

<br />

P<br />

<br />

S<br />

G H T<br />

S H <br />

U H V P H <br />

<br />

<br />

<br />

<br />

<br />

<br />

H<br />

<br />

<br />

S<br />

<br />

H<br />

<br />

<br />

P<br />

<br />

P<br />

S<br />

S<br />

P<br />

dG<br />

<br />

dU<br />

<br />

-S<br />

dT<br />

V<br />

-P<br />

dV<br />

T<br />

dP<br />

dS<br />

19


均 相 封 閉 系 統 的 熱 力 學 性 質 轉 換 :<br />

•<br />

dA<br />

<br />

m <br />

m <br />

dG<br />

<br />

S<br />

dT<br />

P dV<br />

P<br />

<br />

S<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

A<br />

<br />

<br />

V<br />

<br />

A<br />

<br />

<br />

T<br />

<br />

T<br />

V<br />

-S<br />

dT<br />

V<br />

dP<br />

G A P V A <br />

U A S T A -<br />

<br />

<br />

<br />

<br />

<br />

<br />

A<br />

<br />

<br />

V<br />

<br />

A<br />

<br />

<br />

T<br />

<br />

V<br />

T<br />

T<br />

V<br />

df<br />

m dX<br />

n dY<br />

g f mX<br />

dg<br />

X<br />

dm<br />

n<br />

dY<br />

dG<br />

V<br />

dP<br />

- S dT<br />

dU<br />

T<br />

dS<br />

- P dV<br />

m S<br />

<br />

<br />

<br />

<br />

G<br />

<br />

<br />

T<br />

<br />

P<br />

H G ST G <br />

<br />

<br />

<br />

G<br />

<br />

<br />

T<br />

<br />

P<br />

T<br />

dH<br />

T<br />

dS<br />

V<br />

dP<br />

m V<br />

<br />

<br />

<br />

<br />

G<br />

<br />

<br />

P<br />

<br />

T<br />

A G V P G <br />

<br />

<br />

<br />

G<br />

<br />

<br />

P<br />

<br />

T<br />

P<br />

dA<br />

<br />

P<br />

dV<br />

S dT<br />

20


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• 由 均 相 封 閉 系 統 的 狀 態 方 程 式 得 到 的 性 質 :<br />

dU<br />

<br />

-P<br />

dV<br />

T<br />

dS<br />

T <br />

<br />

<br />

<br />

U<br />

<br />

<br />

S<br />

<br />

T<br />

V<br />

<br />

d<br />

H<br />

<br />

<br />

S<br />

<br />

H T<br />

dS<br />

V<br />

P<br />

dP<br />

U<br />

<br />

P -<br />

-<br />

V<br />

<br />

S<br />

A<br />

<br />

<br />

V<br />

<br />

T<br />

P<br />

dU dH<br />

dA<br />

dG<br />

V<br />

V <br />

<br />

<br />

<br />

H<br />

<br />

<br />

P<br />

<br />

S<br />

<br />

<br />

<br />

<br />

G<br />

<br />

<br />

P<br />

<br />

T<br />

S<br />

A<br />

<br />

S <br />

<br />

T<br />

<br />

V<br />

G<br />

<br />

<br />

<br />

T<br />

<br />

P<br />

dA<br />

<br />

S<br />

dT<br />

P dV<br />

dG<br />

<br />

-S<br />

dT<br />

V<br />

dP<br />

21


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• For close system, we derive the Maxwell relations for state<br />

functions U=U (S,V ), H=H (S,P ), A=A (T,V ), G=G (T,P ) :<br />

Internal energy dU = T dS - P dV.<br />

U = H - PV = A + TS = G - PV + TS<br />

Enthalpy dH = T dS + V dP<br />

H = U + PV = A + PV + TS = G + TS<br />

Helmholtz free energy dA = - P dV - S dT<br />

<br />

<br />

A = U -TS = H -PV-TS = G -PV <br />

Gibbs free energy dG = V dP - S dT.<br />

G = U + PV - TS = H - TS = A + PV<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

T<br />

<br />

<br />

V<br />

<br />

T<br />

<br />

<br />

P<br />

<br />

P <br />

<br />

T <br />

S<br />

S<br />

V<br />

V<br />

<br />

<br />

T<br />

<br />

p<br />

P<br />

<br />

<br />

<br />

S<br />

<br />

V<br />

<br />

<br />

S<br />

<br />

<br />

<br />

<br />

<br />

S<br />

<br />

<br />

V<br />

<br />

T<br />

p<br />

V<br />

S<br />

<br />

<br />

<br />

P<br />

<br />

T<br />

22


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• From U (S,V ), H (S,P ), A (T,V ), G (T,P ) we have<br />

H = U + PV = A + PV + TS = G + TS<br />

U = H - PV = A + TS = G - PV + TS<br />

G = U + PV - TS = H - TS = A + PV<br />

A = U - TS = H - PV - TS = G - PV<br />

23


Chemical Potential<br />

• In 1876 Gibbs introduced the concept of the chemical potential μ<br />

to the fundamental equations in order to discuss phase<br />

equilibrium and reaction equilibrium of of a species. For U:<br />

dU = T dS – P dV + μ 1 dn 1 + μ 2 dn 2 + …<br />

• If dn i moles of species i are added to system at constant S and V,<br />

there is a change in internal energy in terms of μ 1 dn 1 .<br />

• If a system contains N s different species, U is a function of its<br />

natural variables S, V and {n i }:<br />

dU = T dS –P dV +<br />

N S<br />

<br />

i 1<br />

μ d<br />

i<br />

n i<br />

• <strong>The</strong> natural variables of U are all extensive:<br />

N S<br />

U<br />

U<br />

<br />

<br />

dU<br />

dS<br />

dV<br />

<br />

<br />

S<br />

V<br />

, n<br />

V<br />

S<br />

, n<br />

i 1<br />

<br />

i<br />

i<br />

U<br />

<br />

<br />

ni<br />

<br />

S , V , n<br />

j i<br />

dn<br />

i<br />

24


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• <strong>Fundamental</strong> Equation: An expression show how the internal<br />

energy U (S,V ) changes with natural variable of S, V<br />

• dU = T dS - P dV + μ<br />

i<br />

dn i where dU is an exact<br />

differential.<br />

i 1<br />

• Several important expressions can be derived from this relation,<br />

including the Maxwell relations.<br />

• <strong>The</strong> relations:<br />

•<br />

T <br />

<br />

<br />

<br />

U<br />

<br />

<br />

S<br />

<br />

show how measurable properties T, P of a open system can be<br />

related to thermodynamic quantities like U. Furthermore,<br />

U<br />

<br />

<br />

V<br />

S<br />

<br />

V<br />

<br />

<br />

<br />

V ,<br />

S<br />

<br />

n i<br />

<br />

N S<br />

<br />

P <br />

U<br />

<br />

<br />

S<br />

V<br />

<br />

S<br />

<br />

<br />

<br />

V<br />

<br />

<br />

<br />

25<br />

U<br />

<br />

<br />

V<br />

<br />

S ,<br />

<br />

<br />

<br />

<br />

n i<br />

<br />

T<br />

<br />

<br />

V<br />

<br />

S ,<br />

<br />

i<br />

<br />

<br />

<br />

<br />

U<br />

n<br />

i<br />

P<br />

<br />

<br />

S<br />

<br />

<br />

<br />

<br />

S , V ,<br />

n<br />

V , <br />

i n i<br />

n j i


Chemical Potential<br />

dU = T dS - P dV +<br />

N S<br />

<br />

i 1<br />

μ d<br />

i<br />

n i<br />

<br />

<br />

<br />

<br />

U<br />

<br />

<br />

S<br />

<br />

V<br />

U<br />

U<br />

<br />

dS<br />

dV<br />

<br />

d<br />

V<br />

<br />

n<br />

n<br />

<br />

, <br />

i<br />

S , ni<br />

<br />

i S<br />

, V , n<br />

<br />

j i<br />

n<br />

i<br />

• 若 系 統 性 質 可 依 其 自 然 變 數 的 函 數 決 定 , 則 任 ㄧ 內 涵 性 質 (T, P, μ i ) 均 可 為<br />

自 身 的 兩 種 外 延 性 質 的 比 值 . 此 三 式 可 稱 為 系 統 的 狀 態 函 數 . 對 內 能 的 馬<br />

克 斯 威 關 係 式 表 為 :<br />

<br />

<br />

<br />

T<br />

<br />

<br />

V<br />

<br />

T<br />

<br />

<br />

n<br />

<br />

i <br />

S ,<br />

n<br />

V , <br />

S,V,<br />

i n i<br />

n<br />

V, n<br />

i <br />

i<br />

P<br />

<br />

<br />

S<br />

<br />

μi<br />

<br />

<br />

S<br />

<br />

P<br />

<br />

<br />

<br />

n<br />

<br />

<br />

i <br />

μ <br />

<br />

i <br />

n<br />

<br />

j <br />

S,V,<br />

S,V,n<br />

n<br />

S, n<br />

i <br />

i<br />

j i<br />

μi<br />

<br />

<br />

V<br />

<br />

μ<br />

j <br />

<br />

<br />

n<br />

<br />

<br />

i <br />

S,V,n<br />

i j<br />

26


Chemical Potential<br />

• If we substitute the second law in the form dS ≥ δq/T and<br />

若 將 熱 力 學 第 二 定 律 的 形 式 換 成 不 同 的 表 示 : dS ≥ δq/T 與<br />

ƌw=-P ext dV+<br />

dU<br />

T<br />

dS<br />

P<br />

N S<br />

<br />

i 1<br />

ext<br />

μ i<br />

dn i<br />

dV<br />

<br />

N S<br />

<br />

i 1<br />

dn<br />

i<br />

, 則 內 能 變 化 量 dU<br />

• <strong>The</strong> internal energy remains constant if the infinitesimal change<br />

occurs at equilibrium under constant entropy, volume, and {n i }<br />

在 恆 體 積 , 固 定 成 份 與 恆 熵 值 下 的 平 衡 , 其 內 能 維 持 不 變 .<br />

(dU ) S,V,{n ≤ 0 .<br />

j}<br />

• <strong>The</strong> criterion for spontaneous change in the system involving PVwork<br />

and specified amounts of species., U must be approaching<br />

the minimum at constant S, V, and {n i }:<br />

在 恆 體 積 , 固 定 成 份 與 恆 熵 值 下 的 自 發 變 化 , 其 內 能 變 化 趨 向 於 最 低 值 .<br />

• <strong>The</strong> integrated form as:<br />

N S<br />

均 相 開 放 系 統 的 內 能 以 積 分 形 式 表 示 為 : U T<br />

S P V <br />

27<br />

i<br />

<br />

i 1<br />

in i


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• 由 均 相 開 放 系 統 的 狀 態 方 程 式 得 到 的 性 質 :<br />

U<br />

A<br />

<br />

P -<br />

-<br />

<br />

V<br />

V<br />

<br />

S<br />

T <br />

, n<br />

T , <br />

i n i<br />

P<br />

<br />

<br />

<br />

U<br />

<br />

<br />

S<br />

<br />

T<br />

U<br />

A<br />

V<br />

S<br />

A<br />

<br />

S <br />

<br />

T<br />

<br />

V<br />

H<br />

<br />

<br />

S<br />

<br />

, n<br />

P , <br />

i n i<br />

H<br />

G<br />

V<br />

V <br />

G<br />

<br />

<br />

<br />

T<br />

<br />

<br />

<br />

<br />

, n<br />

P , <br />

i n i<br />

H<br />

<br />

<br />

P<br />

<br />

S<br />

G<br />

<br />

<br />

P<br />

<br />

, n<br />

T , <br />

i n i<br />

28


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• 均 相 開 放 系 統 的 內 涵 性 質 的 狀 態 方 程 式 :<br />

dU = T dS - P dV<br />

U<br />

<br />

P -<br />

<br />

V<br />

<br />

T <br />

T <br />

<br />

<br />

<br />

<br />

<br />

<br />

U<br />

<br />

<br />

S<br />

<br />

V<br />

H<br />

<br />

<br />

S<br />

<br />

P<br />

S<br />

, <br />

n i<br />

, <br />

n i<br />

, <br />

n i<br />

dH<br />

T<br />

dS<br />

V<br />

dP<br />

<br />

<br />

<br />

<br />

<br />

N S<br />

<br />

i 1<br />

N S<br />

<br />

i 1<br />

<br />

in i<br />

i<br />

dn i<br />

H U PV<br />

U<br />

<br />

A U T<br />

S U<br />

<br />

<br />

<br />

<br />

G H T<br />

S H <br />

<br />

<br />

<br />

<br />

<br />

<br />

U<br />

<br />

<br />

V<br />

<br />

U<br />

<br />

<br />

S<br />

<br />

S ,<br />

V ,<br />

H<br />

<br />

<br />

S<br />

<br />

<br />

<br />

P ,<br />

n i<br />

n i<br />

<br />

<br />

<br />

n i<br />

V<br />

S<br />

<br />

S<br />

P<br />

U<br />

A<br />

T<br />

S<br />

H<br />

G<br />

V<br />

V <br />

<br />

<br />

<br />

H<br />

<br />

<br />

P<br />

<br />

S<br />

, <br />

n i<br />

<br />

U H V P H <br />

<br />

<br />

<br />

H<br />

<br />

<br />

P<br />

<br />

S ,<br />

<br />

n i<br />

<br />

P<br />

29


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• 均 相 開 放 系 統 的 內 涵 性 質 的 狀 態 方 程 式 :<br />

dA = -S dT - P dV<br />

A<br />

<br />

P <br />

<br />

V<br />

<br />

dG<br />

-S<br />

dT<br />

V<br />

dP<br />

<br />

T<br />

A<br />

<br />

S <br />

<br />

T<br />

<br />

V<br />

G<br />

<br />

S -<br />

<br />

T<br />

<br />

P<br />

, <br />

, <br />

n i<br />

n i<br />

, <br />

n i<br />

<br />

<br />

<br />

<br />

N<br />

S<br />

<br />

i 1<br />

N S<br />

<br />

i 1<br />

<br />

i<br />

dn i<br />

G A P V A <br />

in i<br />

H G ST G<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

A<br />

<br />

<br />

V<br />

<br />

A<br />

<br />

U A S T A -<br />

<br />

T<br />

<br />

V ,<br />

G<br />

<br />

<br />

T<br />

<br />

T ,<br />

<br />

P ,<br />

<br />

<br />

n i<br />

n i<br />

<br />

n i<br />

T<br />

<br />

V<br />

<br />

T<br />

P<br />

U<br />

A<br />

T<br />

S<br />

H<br />

G<br />

V<br />

V <br />

<br />

<br />

<br />

G<br />

<br />

<br />

P<br />

<br />

T<br />

, <br />

n i<br />

<br />

A G V P G<br />

<br />

<br />

<br />

<br />

G<br />

<br />

<br />

P<br />

<br />

T ,<br />

<br />

n i<br />

<br />

P<br />

30


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• From U (S,V ), H (S,P ), A (T,V ), G (T,P ) we have<br />

H U PV<br />

G TS<br />

N S<br />

<br />

TS i n i<br />

i 1<br />

G<br />

<br />

N S<br />

<br />

i 1<br />

i<br />

n i<br />

U G<br />

PV<br />

TS<br />

TS<br />

PV<br />

<br />

N S<br />

G H - TS <br />

<br />

i 1<br />

U-TS<br />

PV<br />

<br />

in i<br />

A PV<br />

N S<br />

<br />

i 1<br />

in i<br />

A U - TS<br />

N S<br />

<br />

PV i<br />

n i<br />

i 1<br />

G PV<br />

31


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• 均 相 開 放 系 統 在 平 衡 下 有 固 定 的 內 涵 性 質 (T, P, μ i ) :<br />

U TS<br />

PV <br />

H TS<br />

<br />

A <br />

N<br />

PV<br />

<br />

N S<br />

<br />

i 1<br />

S<br />

<br />

i 1<br />

N<br />

G i<br />

n i<br />

G<br />

<br />

i<br />

<br />

<br />

n<br />

<br />

<br />

i <br />

i<br />

N<br />

n<br />

S<br />

<br />

i 1<br />

T , P ,<br />

<br />

S<br />

<br />

i 1<br />

i<br />

i<br />

n<br />

n j i<br />

<br />

n<br />

i<br />

i<br />

G<br />

<br />

G PV TS<br />

G P <br />

P<br />

<br />

G<br />

<br />

G TS<br />

G T<br />

<br />

T<br />

<br />

i<br />

G PV<br />

U<br />

<br />

i<br />

<br />

<br />

n<br />

<br />

i <br />

<br />

P , n<br />

G<br />

<br />

G P <br />

P<br />

<br />

S , V ,<br />

<br />

n j i<br />

<br />

i<br />

<br />

<br />

T , n<br />

H<br />

<br />

i<br />

<br />

<br />

n<br />

<br />

i <br />

i<br />

<br />

S , P ,<br />

<br />

n j i<br />

<br />

T ,<br />

n<br />

P , n<br />

<br />

i<br />

<br />

T<br />

<br />

<br />

A<br />

<br />

i<br />

<br />

<br />

n<br />

<br />

<br />

i <br />

G<br />

<br />

<br />

T<br />

<br />

T , V ,<br />

<br />

n j i<br />

<br />

i<br />

32


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

Example1 Calculation of molar thermodynamic properties for an ideal gas.<br />

Since the molar Gibbs energy of an ideal gas is given by<br />

G <br />

P<br />

G RT ln <br />

P <br />

<br />

<br />

<br />

Derive the corresponding expressions for V , U , H , S , and A.<br />

Ans: Using equation,<br />

G<br />

RT G<br />

G<br />

P <br />

V S <br />

<br />

P<br />

P<br />

<br />

R ln S <br />

T<br />

T<br />

T<br />

P <br />

P<br />

P<br />

P <br />

A G PV A RT ln H G T<br />

S G T S H <br />

P <br />

U G T S PV G T<br />

S PV H -PV<br />

H RT U <br />

G<br />

<br />

S -<br />

and U G T<br />

S -RT<br />

where<br />

T<br />

P<br />

Note that the internal energy U and enthalpy H of an ideal gas are<br />

independent of pressure and volume.<br />

-R ln<br />

P <br />

<br />

P <br />

33


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

• 均 相 開 放 系 統 的 平 衡 或 自 發 的 要 件 與 熱 力 學 基 本 關 係 :<br />

dU<br />

T<br />

dS<br />

P dV<br />

<br />

dH<br />

T<br />

dS<br />

V<br />

dP<br />

<br />

N<br />

N<br />

S<br />

<br />

i 1<br />

S<br />

<br />

i 1<br />

dA<br />

S<br />

dT<br />

P dV<br />

<br />

dG<br />

<br />

S<br />

dT<br />

V<br />

dP<br />

<br />

U<br />

<br />

<br />

<br />

ni<br />

<br />

H<br />

<br />

<br />

<br />

ni<br />

<br />

N<br />

S<br />

<br />

i 1<br />

N<br />

S<br />

<br />

i 1<br />

<br />

S , V , n<br />

<br />

S , P , n<br />

A<br />

<br />

<br />

<br />

ni<br />

<br />

G<br />

<br />

<br />

<br />

ni<br />

<br />

j i<br />

j i<br />

d<br />

<br />

d<br />

<br />

<br />

T , V , n<br />

T , P , n<br />

j i<br />

j i<br />

n<br />

n<br />

i<br />

d<br />

<br />

i<br />

n<br />

dn<br />

i<br />

i<br />

dU<br />

0<br />

S , V , n<br />

dH 0<br />

( P P )<br />

i<br />

S , P , n<br />

ext<br />

dA 0<br />

T , V , n<br />

dG<br />

0<br />

( P P , T T<br />

)<br />

T , P , n<br />

ext surr<br />

i<br />

i<br />

i<br />

34


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

For Irreversible<br />

Processes<br />

For Reversible<br />

Processes<br />

( dS ) V,U,{nj} > 0 ( dS ) V,U ,{nj} = 0<br />

( dU ) V,S,{nj} < 0 ( dU ) V,S,{nj} = 0<br />

( dH ) P,S,{nj} < 0 ( dH ) P,S,{nj} = 0<br />

( dA ) T,V,{nj} < 0 ( dA ) T,V,{nj} = 0<br />

( dG ) T,P,{nj} < 0 ( dG ) T,SP,{nj} = 0<br />

Table1 Criteria for Irreversibility and Reversibility for Processes<br />

Involving No Work or Only Pressure-Volume Work.<br />

35


<strong>Fundamental</strong> <strong>Equations</strong> of <strong>The</strong>rmodynamics<br />

Fig1 When a system undergoes<br />

spontaneous change at constant T<br />

and P, the Gibbs energy<br />

decreases until equilibrium is<br />

reached.<br />

36


37


38


39


40


41


42


43


44


45


46


47


48


49


50


51


52


53


54


55


56


57


58


59


60

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!