12.09.2015 Views

Rainfall daily gridded datasets for the periods 1980-2010 and 2020-2050

Corrado Camera - EWACC 2012 - Building Bridges

Corrado Camera - EWACC 2012 - Building Bridges

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Rainfall</strong> <strong>daily</strong> <strong>gridded</strong> <strong>datasets</strong> <strong>for</strong> <strong>the</strong><br />

<strong>periods</strong> <strong>1980</strong>-<strong>2010</strong> <strong>and</strong> <strong>2020</strong>-<strong>2050</strong><br />

Corrado Camera<br />

Nicosia, 6-9 December 2012<br />

EWACC – Young Scholars Forum


Outlines<br />

• Introduction<br />

• Contest <strong>and</strong> aim<br />

• Gridded <strong>datasets</strong> <strong>for</strong> past times<br />

• Available data <strong>and</strong> <strong>the</strong>ir reliability (Observational data)<br />

• Selection of <strong>the</strong> best interpolation technique<br />

• Gridded <strong>datasets</strong> <strong>for</strong> future times<br />

• Available data (RCMs)<br />

• Downscaling<br />

• Interpolation


Introduction<br />

Eastern Mediterranean heavily affected by future climate change<br />

Enhanced water scarcity<br />

Need <strong>for</strong> reliable adaptation measures


Introduction<br />

Very dry < 400 mm/y<br />

Very wet > 600 mm/y


Introduction<br />

DIMINISHING RAINFALL<br />

GRIDDED DAILY DATASETS<br />

RESOLUTION 1X1 KM<br />

Effects on hydrological regime<br />

Effects on groundwater recharge<br />

<strong>and</strong> surface water flow<br />

Effects on GW amount <strong>and</strong> quality<br />

UNDERSTAND<br />

?<br />

QUANTIFY<br />

MODELS<br />

Effects on man’s activities<br />

ADAPT


Datasets <strong>for</strong> past times<br />

INPUT OBSERVATIONAL DATA<br />

Period <strong>1980</strong> - <strong>2010</strong><br />

Now 74 stations (only Greek Cyprus)<br />

Target 130 stations (whole isl<strong>and</strong>)<br />

Daily data<br />

Gaps filled<br />

Data tested <strong>for</strong> homogeneity


Introduction to Interpolation Techniques<br />

• Few works with <strong>daily</strong> data, mainly monthly<br />

• General scheme simple (single) methods – complex (combined) methods<br />

SIMPLE METHODS<br />

Regression geographical variables<br />

• Linear multiple regression (LMR)<br />

• Geographically weighted regression<br />

(GWR)<br />

• Step Wise Regression (SW)<br />

Neighbouring interpolation<br />

• Inverse distance weighting (IDW)<br />

• Angular Distance weighting (ADW)<br />

• Kriging (KR)<br />

• Thin Plate Splines (TPS)<br />

COMBINED METHODS<br />

Regression + residuals interpolation<br />

Geographical variables:<br />

• Regression (LMR, GWR, SWLMR,<br />

SWGWR)<br />

Residuals after regression:<br />

• interpolation (IDW, ADW, KR, TPS)<br />

Sum two contributions


Variables <strong>for</strong> regression<br />

Variables representative of <strong>the</strong> processes<br />

Differences winter-summer<br />

AUTUMN-WINTER:<br />

L<strong>and</strong>-sea effects<br />

Orographic effects<br />

Mountain shadow effects<br />

SPRING-SUMMER:<br />

Convective processes<br />

Orographic effects<br />

Mountain shadow effects


Variables <strong>for</strong> regression<br />

SEASONAL MEANS FOR THE PERIOD <strong>1980</strong>-<strong>2010</strong> (IDW)


Variables <strong>for</strong> regression<br />

Six variables: 1) altitude, 2) distance from coast, 3) distance from <strong>the</strong><br />

mountains main ridge to <strong>the</strong> east <strong>and</strong> 4) to <strong>the</strong> west, 5) easting; 6) northing


Regressions<br />

REGRESSION METHODS<br />

• Multiple linear regression (lmr)<br />

• Geographically weighted regression (gwr)<br />

• Step wise regression based on AIC (swr) AIC accuracy-complexity measure<br />

INTERPOLATION METHODS<br />

• Inverse Distance Weighting (IDW)<br />

• Angular Distance Weighting (ADW)<br />

• 3D Thin Plate Splines (3DTPS)<br />

• Kriging<br />

EVALUATION METHODS<br />

• CRE compound relative error<br />

• NRMSE normalized RMSE<br />

• MAE mean absolute error<br />

• R Pearson coefficient<br />

• RMSE root mean squared error<br />

• CSI critical success index<br />

• Test subset 36 days (rain 0, min, max, 3 rd , 6 th … 99 th percentile area average)<br />

• Evaluation - Ranking station by station, day by day


Ranking methods<br />

days<br />

stations<br />

Models Ave rank CRE # MAE # RMSE # NRMSE # R # CSI # CSI.extr # CRE # MAE # RMSE # NRMSE # R # CSI # CSI.extr #<br />

swlmridw<br />

1.93 0.70 1 1.80 2 2.75 1 0.14 1 0.49 1 0.50 3 0.29 2 0.74 2 1.80 2 4.73 2 0.07 3 0.96 2 0.82 3 0.86 2<br />

idw 2.64 0.71 2 1.85 5 2.79 3 0.14 2 0.49 2 0.47 4 0.23 4 0.62 1 1.85 5 4.71 1 0.07 5 0.97 1 0.83 1 0.91 1<br />

gwr-idw 2.86 0.75 4 1.77 1 2.83 4 0.14 4 0.49 3 0.51 1 0.31 1 0.86 7 1.77 1 4.74 3 0.07 1 0.96 4 0.82 2 0.85 4<br />

lmr-idw 3.36 0.72 3 1.83 4 2.79 2 0.14 3 0.48 4 0.51 2 0.29 3 0.75 3 1.83 3 4.79 5 0.07 4 0.96 3 0.81 5 0.86 3<br />

gwr 4.50 0.78 5 1.81 3 2.88 5 0.14 5 0.43 5 0.45 5 0.22 5 0.83 5 1.81 4 4.77 4 0.07 2 0.95 5 0.81 4 0.85 6<br />

swlmr 6.07 0.78 6 2.02 6 3.01 6 0.15 6 0.36 7 0.42 6 0.17 7 0.83 4 2.02 6 5.28 6 0.08 6 0.94 6 0.79 6 0.84 7<br />

lmr 6.64 0.81 7 2.07 7 3.08 7 0.15 7 0.36 6 0.41 7 0.18 6 0.86 6 2.07 7 5.37 7 0.08 7 0.93 7 0.78 7 0.85 5


Gridded <strong>datasets</strong> <strong>for</strong> future times<br />

DATA RETRIEVAL PERIOD <strong>2020</strong>-<strong>2050</strong><br />

Suitable source Climate Models (past calibration – future prediction)<br />

• GCMs Global - CO 2 emission scenarios - resolution 300 km<br />

• RCMs smaller areas (e.g. Europe) - dynamical downscaling GCM - resolution 25 km<br />

IPCC, 2007


Gridded <strong>datasets</strong> <strong>for</strong> future times<br />

6 RCMs from ENSEMBLES 2 models <strong>for</strong> 3 different <strong>for</strong>cing GCMs<br />

Institution Driving GCM Model Acronym<br />

CNRM ARPEGE_RM5.1 Aladin CNRM-RM5.1<br />

ETHZ HadCM3Q0 CLM ETHZ-CLM<br />

KNMI ECHAM5-r3 RACMO KNMI-RACMO2<br />

METNO BCM HIRHAM METNOHIRHAM<br />

METO-HC HadCM3Q0 HadRM3Q0 METO-HC_HadRM3Q0<br />

MPI ECHAM5-r3 REMO MPI-M-REMO<br />

Select one<br />

scores to evaluate models per<strong>for</strong>mance VS observed values:<br />

• point values<br />

• spatial trend<br />

Mean yearly<br />

value


Gridded <strong>datasets</strong> <strong>for</strong> future times<br />

MEAN ANNUAL RAINFALL (<strong>1980</strong>-<strong>2010</strong>) - OBSERVATIONS


Gridded <strong>datasets</strong> <strong>for</strong> future times<br />

MEAN ANNUAL RAINFALL (<strong>1980</strong>-<strong>2010</strong>) - MODELS


Gridded <strong>datasets</strong> <strong>for</strong> future times<br />

FROM RCM TO OBSERVATIONAL POINTS<br />

ASSUMING<br />

Stationary climate <strong>for</strong> a 30 years period<br />

DOWNSCALING<br />

• Monthly base • Skewness<br />

• Mean<br />

• Pdry<br />

• Variance • Auto-correlation<br />

Change factors (α)<br />

USING<br />

P<br />

P<br />

P<br />

Fut<br />

Obs<br />

Fut<br />

RCMFut<br />

RCMFut<br />

P<br />

= where P<br />

= α<br />

RCMCon<br />

RCMCon<br />

P<br />

P<br />

Obs<br />

= α ⋅ P<br />

P = any variable


Gridded <strong>datasets</strong> <strong>for</strong> future times<br />

HOW TO PASS FROM STATISTICS TO COMPLETE DAILY RAINFALL TIMESERIES?<br />

Stochastic rainfall model - Neyman-Scott Rectangular Pulses (NSRP) model<br />

RAINFALL GENERATOR<br />

MODEL PARAMETERS<br />

Storm origin time (λ) [h -1 ]<br />

Number of raincells (ν) [-]<br />

Raincell origin delay (β) [h -1 ]<br />

Raincell intensity (ξ) [h/mm]<br />

Raincell duration (η) [h -1 ]<br />

Fitted from rainfall monthly statistics<br />

Arriving as a Poisson process<br />

Simulation as long as desired


Conclusions<br />

• General setting<br />

• Testing <strong>and</strong> implementing more interpolation methods<br />

• Implementing quantitative RCM skill score<br />

• <strong>Rainfall</strong> generator outputs<br />

• Extension of <strong>the</strong> work to o<strong>the</strong>r variables (e.g. temperature)<br />

ANY QUESTION OR SUGGESTION IS WELCOME<br />

• Adriana Bruggeman<br />

• Panos Hadjinicolau<br />

• Evangelos Tyrlis<br />

• Andries De Vries<br />

ACKNOWLEDGEMENTS<br />

• Nick Polydorides<br />

• Hakan Djuma<br />

• Stelios Pashiardis


References<br />

Burton A, Fowler HJ, Blenkinsop S, Kilsby CG (<strong>2010</strong>) Downscaling transient climate change using a Neyman-Scott Rectangular Pulses<br />

stochastic rainfall model. J Hydrol 381, 18-32.<br />

Kilsby CG, Jones PD, Burton A, Ford AC, Fowler HJ, Harpham C, James P, Smith A, Wilby RL (2007) A <strong>daily</strong> wea<strong>the</strong>r generator <strong>for</strong> use<br />

in climate change studies. Environ Modelling Software 22, 1705-1719.<br />

Frei C, Schär C (1998), A precipitation climatology of <strong>the</strong> alps from high-resolution rain-gauge observations, Int. J. Climatol., 18, 873–<br />

900.<br />

Haylock MR, et al (2008), A European high resolution <strong>gridded</strong> data set of surface temperature <strong>and</strong> precipitation <strong>for</strong> 1950-2006, J.<br />

Geophys. Res. 113, D20119, doi:10.1029/2008JD010201.<br />

Hofstra N, et al (2008), Comparison of six methods <strong>for</strong> <strong>the</strong> interpolation of <strong>daily</strong> European climate data, J. Geophys. Res. 113, D21110,<br />

doi:10.1029/2008JD010100.<br />

Hutchinson MF (1995) Stochastic space-time wea<strong>the</strong>r models from ground-based data. Agricultural <strong>and</strong> Forest Meteorology 73, 237-<br />

264.<br />

Maraun D, Wetterhall F, Ireson AM, Ch<strong>and</strong>ler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl, Venema VKC,<br />

Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (<strong>2010</strong>) Precipitation downscaling under climate change: recent<br />

developments to bridge <strong>the</strong> gap between dynamical models <strong>and</strong> <strong>the</strong> end user. Reviews of Geophysics 48, RG3003, 34 pp<br />

Perry M, Hollis D (2005), The generation of monthly <strong>gridded</strong> <strong>datasets</strong> <strong>for</strong> a range of climate variables over <strong>the</strong> UK, Int. J. Climatol.,<br />

25, 1041–1054, doi:10.1002/joc.1161.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!