10.09.2015 Views

Radio relics in cosmological MHD simulations

Radio relics in cosmological MHD simulations - Michigan State ...

Radio relics in cosmological MHD simulations - Michigan State ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Radio</strong> <strong>relics</strong> <strong>in</strong> <strong>cosmological</strong><br />

<strong>MHD</strong> <strong>simulations</strong><br />

Brian O’Shea<br />

Michigan State University<br />

With Sam Skillman, Jack Burns (CU/<br />

Boulder), Eric Hallman (Tech-X), Hao<br />

Xu, Mike Norman (UCSD), David<br />

Coll<strong>in</strong>s, Hui Li (LANL)


Some questions<br />

• What produces a radio relic?<br />

• What are the plasma conditions <strong>in</strong>side the<br />

relic?<br />

• How can <strong>cosmological</strong> <strong>simulations</strong> <strong>in</strong>form<br />

observations?


Some questions<br />

• What produces a radio relic?<br />

✓<br />

• What are the plasma conditions <strong>in</strong>side the<br />

relic?<br />

• How can <strong>cosmological</strong> <strong>simulations</strong> <strong>in</strong>form<br />

observations?


Our <strong>simulations</strong><br />

• <strong>MHD</strong> <strong>cosmological</strong> calculations us<strong>in</strong>g the Enzo<br />

AMR code (O’Shea et al. 2005;<br />

http://enzo-project.org)<br />

• 256 Mpc/h box, 1010 M⨀ dark matter particles,<br />

Δxm<strong>in</strong> = 7.8 kpc/h. All cells with |B| > 5x10 -8 G<br />

ref<strong>in</strong>ed to Lmax.<br />

• Sims start at z ~ 100, AGN <strong>in</strong>ject magnetic<br />

fields at z ~ 3, cluster allowed to evolve to z ~ 0.<br />

Skillman et al. 2012, ApJ, submitted


Gas Density<br />

FOV<br />

8 Mpc


10 8 K<br />

Gas Temperature<br />

FOV<br />

10 7 K<br />

8 Mpc


<strong>Radio</strong> emission us<strong>in</strong>g Hoeft & Bruggen (2007) model<br />

dP (⌫ obs )<br />

d⌫<br />

=6.4 ⇥ 10 34 erg s 1 Hz 1 A n e<br />

Mpc 2 10 4 cm 3<br />

⇠ e<br />

0.05 ( ⌫ obs<br />

1.4GHz ) s/2 ⇥ ( T 2<br />

7keV )3/2<br />

(B/µG) 1+(s/2)<br />

(B CMB /µG) 2 +(B/µG) 2 (M).


<strong>Radio</strong> emission us<strong>in</strong>g Hoeft & Bruggen (2007) model<br />

Area of shock<br />

Post-shock<br />

density, temp.<br />

dP (⌫ obs )<br />

d⌫<br />

Electron<br />

acceleration<br />

efficiency<br />

=6.4 ⇥ 10 34 erg s 1 Hz 1 A n e<br />

Mpc 2 10 4 cm 3<br />

⇠ e<br />

0.05 ( ⌫ obs<br />

1.4GHz ) s/2 ⇥ ( T 2<br />

7keV )3/2<br />

(B/µG) 1+(s/2)<br />

(B CMB /µG) 2 +(B/µG) 2 (M).<br />

Magnetic field<br />

strength<br />

Acceleration efficiency<br />

as f(Mach)


Comb<strong>in</strong>ed X-ray and radio emission


Temp<br />

YSZ<br />

Density<br />

All radio


Temp<br />

YSZ<br />

|B|<br />

Density<br />

All radio


Typical relic plasma properties:<br />

• 0.1-1 μG B-fields<br />

• Mach 2-6 shocks<br />

• ~10 -27 - 10 -28 g/cm 3 baryon density<br />

(10 -3 - 10 -4 cm -3 )<br />

• ~5x10 7 - 2x10 8 K plasma temperature


Appearance depends strongly on view<strong>in</strong>g angle!


Spectral <strong>in</strong>dex<br />

Between 300 MHz - 1.4 GHz<br />

Edge on<br />

Face on


Polarization - edge on<br />

(E-vectors)


Polarization - edge on<br />

Smoothed<br />

(E-vectors)


Polarization - face on


Polarization - face on<br />

Smoothed


What do we learn?<br />

• Cosmological structure formation naturally<br />

produces radio <strong>relics</strong> as a result of halo mergers<br />

• Gas at Mach 2-6, low density, very high<br />

temperature primarily responsible for emission<br />

• Relics correlate well with jumps <strong>in</strong> T, X-ray, (to a<br />

lesser extent) SZ<br />

• We f<strong>in</strong>d reasonable spectral <strong>in</strong>dices, magnetic<br />

field behavior (when compared to, e.g., sausage,<br />

toothbrush <strong>relics</strong>)


Observers beware!<br />

• We don’t need spectral ag<strong>in</strong>g to get a spectral<br />

gradient! Observed “ag<strong>in</strong>g” is likely real + LOS<br />

effects.<br />

• Some radio halos are not radio halos! View<strong>in</strong>g<br />

angle impacts spectral <strong>in</strong>dex, polarization<br />

fraction - and thus classification.


Thank you!<br />

Skillman et al. 2012, ApJ, submitted

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!