04.09.2015 Views

ESI-LC-MS Matrix Effect Toolbox

ESI-LC-MS Matrix Effect Toolbox

ESI-LC-MS Matrix Effect Toolbox

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Comparison of different methods aiming to account for/overcome matrix<br />

effects in <strong>LC</strong>/<strong>ESI</strong>/<strong>MS</strong> on the example of pesticide analyses<br />

Anneli Kruve, Ivo Leito Analytical Methods 2013, 5, 3035-3044<br />

http://dx.doi.org/10.1039/C3AY26551J<br />

<br />

<br />

<br />

Anneli Kruve


Electrospray ionization<br />

• <strong>ESI</strong> is used to connect<br />

<strong>LC</strong> and <strong>MS</strong><br />

• <strong>LC</strong> effluent is sprayed<br />

into small droplets<br />

• Droplets devide into<br />

smaller droplets<br />

• From the surface of<br />

small droplets ions can<br />

reach gas phase<br />

Nebulizer gas N 2<br />

+<br />

+<br />

+<br />

HP<strong>LC</strong> effluent<br />

Nebulizer<br />

+<br />

+<br />

+ + + + + + + + +<br />

Voltage ~3500 V<br />

+<br />

<strong>MS</strong><br />

Drying gas N 2<br />

Waste<br />

2


Contents<br />

• <strong>Matrix</strong> effects in <strong>LC</strong>-<strong>ESI</strong>-<strong>MS</strong>, their<br />

presence and evaluation<br />

• Approaches for combating matrix effects<br />

– Extrapolative dilution<br />

– Sample preparation<br />

– Accounting for matrix effects<br />

– <strong>ESI</strong> optimization to reduce matrix effects<br />

• Conclusions<br />

3


<strong>Matrix</strong> effect<br />

• Ionization efficiency in <strong>ESI</strong> depends on:<br />

– Solvent composition<br />

– <strong>ESI</strong> parameters<br />

– Compounds<br />

co-eluting with<br />

analyte<br />

Are not present<br />

in standards but<br />

are present in<br />

samples<br />

Are kept constant<br />

during analyses<br />

Same amount of<br />

analyte gives<br />

different signal<br />

in sample and in<br />

standard<br />

<strong>Matrix</strong> effect<br />

4


How does matrix effect look like?<br />

Intens.<br />

x10 5<br />

Analyte in standard<br />

4<br />

3<br />

2<br />

Analyte in sample<br />

1<br />

0<br />

12.0 12.5 13.0 13.5 14.0 14.5 15.0 Time [min]<br />

5


Combating matrix effect<br />

• Reducing matrix effects<br />

– Sample preparation<br />

– Dilution of the sample<br />

– Instrumental parameters<br />

• Taking matrix effect into account<br />

– Correcting results<br />

– Uncertainty<br />

6


Evaluation of matrix effect<br />

• Is expressed as a ratio of analyte signal in sample and in<br />

standard: %ME<br />

PeakArea<br />

% ME =<br />

Sample<br />

⋅100%<br />

PeakArea S tandard<br />

CalibrationGraphSlope<br />

% ME =<br />

CalibrationGraphSlope<br />

Sample<br />

Standard<br />

⋅100%<br />

• %ME 100% - no matrix effect<br />

• %ME100% - ionization enhancement<br />

7


Glyphosate calibration graph in<br />

cereals<br />

Slopes vs Peak Areas<br />

1.60E+07<br />

1.40E+07<br />

Standard<br />

Wheat<br />

Rye<br />

In case of wheat calibration<br />

graph becomes nonlinear -<br />

%ME is not constant<br />

1.20E+07<br />

In case of strong supression<br />

1.00E+07<br />

calibratin graph is linear<br />

Peak area<br />

8.00E+06<br />

6.00E+06<br />

4.00E+06<br />

2.00E+06<br />

0.00E+00<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0<br />

c (mg/kg)<br />

8


<strong>Matrix</strong> effect’s dependence on<br />

analyte concentration<br />

Garlic sample<br />

Aldicarb<br />

Methomyl<br />

Thiabendazole<br />

0 1 2 3 4 5<br />

c, mg/kg<br />

160%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

% M E<br />

• %ME depends on the<br />

analyte concentration<br />

in the sample<br />

• Risk of<br />

underestimated results<br />

at lower<br />

concentrations<br />

• %ME can not be used<br />

for correction of the<br />

analysis results<br />

9


Sample dilution<br />

%ME<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

0.00 0.20 0.40 0.60 0.80 1.00 1.20<br />

Dilution factor<br />

• The amount of<br />

co-eluting compounds<br />

is reduced<br />

• <strong>Matrix</strong> effect is<br />

reduced<br />

• <strong>Matrix</strong> effect may or<br />

may not be eliminated<br />

10


Calculated concentration (mg/kg)<br />

0.60<br />

6.00<br />

0.50<br />

0.45<br />

0.50<br />

A 5.00<br />

B<br />

0.40<br />

C<br />

0.40<br />

4.00<br />

0.35<br />

0.30<br />

0.30<br />

3.00<br />

0.25<br />

0.20<br />

0.20<br />

2.00<br />

0.15<br />

0.10<br />

0.10<br />

1.00<br />

0.05<br />

0.00<br />

0.00<br />

0.00<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

0 0.05 0.1 0.15 0.2 0.25 0.3<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

Calculated concentration (mg/kg)<br />

Dilution factor<br />

Dilution factor<br />

Dilution factor<br />

Calculated concentration (mg/kg)<br />

No matrix effect<br />

Dilution eliminates<br />

matrix effect<br />

Dilution does not<br />

eliminate matrix effect<br />

Analyte concentration is<br />

calculated as the average<br />

of all the measurements<br />

Analyte concentration is<br />

the average of 3 most<br />

diluted samples<br />

Analyte concentration is<br />

estimated as the<br />

intercept of the plot<br />

11


Validation<br />

• 5 fruits and vegetables, spiked with 5<br />

pesticides at 2 concentration levels<br />

– 11 observations of situation A<br />

– 6 observations of situation B<br />

– 33 observations of situation C<br />

• According to E n scores all of the calculated<br />

concentrations agreed with the spiked<br />

concentrations<br />

12


Sample preparation<br />

180%<br />

160%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

Luke QuEChERS <strong>MS</strong>PD<br />

14<br />

aldicarb sulphoxide<br />

aldicarb sulphone<br />

demeton-S-methyl sulphoxide<br />

carbendazim<br />

methomyl<br />

thiabendazole<br />

methiocarb sulphoxide<br />

methiocarb sulphone<br />

aldicarb<br />

imazalil<br />

phorate sulphoxide<br />

phorate sulphone<br />

methiocarb<br />

Luke and <strong>MS</strong>PD result in less matrix effect


Thiodicarb<br />

• In all samples<br />

ionization<br />

enhancement was<br />

observed<br />

• Enhancement occured<br />

with all sample<br />

preparation methods<br />

Valge klaar (Rakvere)<br />

Blank solvent<br />

700%<br />

600%<br />

500%<br />

400%<br />

300%<br />

200%<br />

100%<br />

0%<br />

15<br />

Valge klaar (Tartu)<br />

Tellissaare<br />

Melba (Rakvere)<br />

Antonovka (Tartu)<br />

Kuldrenett (Tartu)<br />

Kuldrenett (Rakvere)<br />

Talvenauding<br />

Suislepp<br />

Pikniku<br />

%ME


“Seeing” matrix effect<br />

UV absorbance, mAU<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

Interfring<br />

compound<br />

Minimum in aldicarb<br />

peak in case of<br />

QuEChERS extract<br />

6000000<br />

5000000<br />

4000000<br />

3000000<br />

2000000<br />

<strong>MS</strong> signal, cps<br />

• Next to aldicarb a<br />

peak elutes in the UVchromatogram<br />

• The shape of aldicarb<br />

peak is distorted<br />

4<br />

1000000<br />

2<br />

0<br />

12.3 12.8 13.3 13.8 14.3<br />

0<br />

Retention time, min<br />

16


Correlation between the UV peak<br />

and matrix effect<br />

U V pe a k a re a<br />

450000<br />

400000<br />

350000<br />

300000<br />

250000<br />

200000<br />

150000<br />

• Measurements are<br />

carried out at different<br />

analyte<br />

concentrations!<br />

100000<br />

50000<br />

0<br />

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%<br />

%ME<br />

17


Hypothesis<br />

• If for aldicarb a compound causing matrix<br />

effect can be seen in UV, then for other<br />

analytes such compounds may exist also<br />

– Scanned mass spectra<br />

• Background ions<br />

19


Background ions<br />

• Are always there<br />

– Solvent impurities<br />

– Plasticizers<br />

• Originate from the sample<br />

– Co-extracted compounds<br />

Intensity changes<br />

due to matrix effect<br />

May cause matrix<br />

effect<br />

20


Scanned Spectra<br />

Garlic samples<br />

Standards<br />

Onion samples<br />

• PCA was used to<br />

select background ions<br />

varying most from<br />

standards to samples<br />

21


Correction of analysis results<br />

Average error (mg/kg)<br />

Average error (mg/kg)<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

Methomyl<br />

Carbendazime<br />

Thiabendazole<br />

Aldicarb<br />

Imazalil<br />

Methiocarb<br />

Training set<br />

n=1 n=2 n=3 n=4 n=5 n=6<br />

Number of linear combinations<br />

Test set<br />

n=1 n=2 n=3 n=4 n=5 n=6<br />

Number of linear combinations<br />

Methomyl<br />

Carbendazime<br />

Thiabendazole<br />

Aldicarb<br />

Imazalil<br />

Methiocarb<br />

• Background ions<br />

intensities together<br />

with analyte peak area<br />

were used in PLS<br />

regression to calculate<br />

the analyte<br />

concentration<br />

22


Results<br />

Average error<br />

Garlic Onion Garlic Garlic Standard Standard Solvent (mg/kg)<br />

Methomyl Spiked 0.89 0.87 0.48 0.89 1.49 0.90 0.00<br />

PLS 0.74 1.02 0.56 0.90 1.46 0.88 -0.13 0.10<br />

Solvent calibration 0.74 1.01 0.38 0.74 1.42 0.87 -0.07 0.11<br />

Carbendazim Spiked 0.25 0.25 0.14 0.25 0.42 0.25 0.00<br />

PLS 0.17 0.23 0.15 0.20 0.44 0.34 -0.02 0.05<br />

Solvent calibration 0.14 0.21 0.07 0.12 0.38 0.28 -0.02 0.07<br />

Thiabendazole Spiked 1.14 1.11 0.61 1.14 1.91 1.14 0.00<br />

PLS 0.84 1.07 0.92 0.78 2.14 1.41 -0.14 0.25<br />

Solvent calibration 0.65 0.90 0.30 0.38 1.74 1.18 -0.09 0.38<br />

Aldicarb Spiked 0.92 0.90 0.50 0.92 1.54 0.92 0.00<br />

PLS 1.20 0.85 0.78 0.55 1.34 1.00 0.05 0.22<br />

Solvent calibration 0.25 0.58 0.06 0.22 1.37 0.97 -0.11 0.43<br />

Imazalil Spiked 1.13 1.11 0.61 1.13 1.89 1.13 0.00<br />

PLS 1.25 0.83 1.19 0.91 1.89 1.29 0.09 0.27<br />

Solvent calibration 0.32 0.60 0.19 0.38 1.78 1.12 -0.20 0.49<br />

Methiocarb Spiked 0.99 0.97 0.54 0.99 1.66 1.00 0.00<br />

PLS 0.88 1.09 0.86 0.60 1.31 0.95 -0.01 0.24<br />

Solvent calibration -0.10 0.28 -0.11 -0.10 1.47 1.01 -0.12 0.69<br />

23


<strong>Matrix</strong> effect as an uncertainty<br />

source<br />

• If low uncertainty is not needed in the analysis<br />

then matrix effect can be included as an<br />

uncertainty source<br />

• <strong>Matrix</strong> effect graph approach<br />

• <strong>Matrix</strong>-matched calibration<br />

25


<strong>Matrix</strong> effect graph<br />

• Each calibration solution is prepared in a different<br />

matrix<br />

– Same commodity group<br />

– Different commodity groups<br />

26


Single-matrix<br />

calibration<br />

A<br />

i<br />

ε<br />

r<br />

i<br />

= b0 + b1<br />

⋅Ci<br />

+ ε<br />

i<br />

=<br />

b<br />

0<br />

ε<br />

i<br />

+ b<br />

1<br />

⋅C<br />

i<br />

Same commoditygroup<br />

calibration<br />

realtive unsigned residuals<br />

1.200<br />

1.000<br />

0.800<br />

0.600<br />

0.400<br />

0.200<br />

<strong>Matrix</strong> effect graph for Methiocarb<br />

eggplant<br />

beans<br />

garlic<br />

apple<br />

lemon<br />

rye<br />

gooseberries<br />

0.000<br />

Different commoditygroup<br />

calibration<br />

u<br />

r<br />

R<strong>MS</strong><br />

=<br />

Sample)<br />

n<br />

∑<br />

j=<br />

1<br />

(<br />

r<br />

ε )<br />

j<br />

n − 2<br />

u( A = u ⋅ A<br />

r<br />

R<strong>MS</strong><br />

2<br />

Sample<br />

27


Validation<br />

• 15 samples were spiked with 4 pesticides and the<br />

results were calculated<br />

• According to E n scores all of the calculated<br />

concentrations but one agreed with the spiked<br />

r<br />

concentrations while using u R<strong>MS</strong><br />

calculated in the<br />

same commodity group<br />

• Using different commodity groups results in<br />

higher uncertainty – all results agreed with spiked<br />

concentrations<br />

28


Is matrix effect dependent on<br />

something else ... ?<br />

• According to common understanding ... NO<br />

• <strong>ESI</strong> parameters influence on matrix effect was<br />

studied<br />

– 3 different optimization stratagies were used<br />

– Intensity optima and matrix effect optima do not<br />

coincide<br />

• <strong>Matrix</strong> effect can be reduced with appropriate <strong>ESI</strong>/<strong>MS</strong><br />

parameters<br />

– <strong>ESI</strong>/<strong>MS</strong> parameters DO influnce the %ME<br />

30


Parameter optima for standards<br />

and samples<br />

31


Summary<br />

• <strong>Matrix</strong> effect depends on ...<br />

– ... analytes, matrices and concentrations<br />

– ... sample preparation<br />

• Extrapolative dilution<br />

• Result correction via background ions<br />

• Uncertainty calculation<br />

• <strong>ESI</strong>/<strong>MS</strong> parameter optimization<br />

33


Thank you!<br />

Ivo Koit Minu pere Riin Karin Karl Merit Triin Maris Anna Anna-Helena Olga Kaisa<br />

Lauri Geven Artur Rain Elin Jaan Allan Lauri Signe Ivari Eva-Ingrid Erik Ester Marju<br />

Siret Kaarel Asko Hanno Gert Ragne Vahur Kristo Kerli Tapio Risto

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!