04.09.2015 Views

pKa values and gas-phase acidities of superacid molecul

pKa values and gas-phase acidities of superacid molecul

pKa values and gas-phase acidities of superacid molecul

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

What is a <strong>superacid</strong>?<br />

• Superacidic medium:<br />

A Brønsted <strong>superacid</strong> is a medium, in<br />

which the chemical potential <strong>of</strong> the proton<br />

is higher than in pure sulfuric acid<br />

D. Himmel et al, Angew. Chem. Int. Ed. 2010, 49, 6885<br />

7<br />

What is a <strong>superacid</strong>?<br />

• Superacidic <strong>molecul</strong>e:<br />

Superacidic <strong>molecul</strong>e in a given medium is<br />

one that is more acidic than H 2 SO 4 in that<br />

medium<br />

8<br />

4


Whydoweneed aciditydata?<br />

• Acidity is a core parameter <strong>of</strong> an acidic<br />

<strong>molecul</strong>e<br />

• Rationalization <strong>and</strong> prediction <strong>of</strong><br />

mechanisms <strong>of</strong> chemical <strong>and</strong> industrial<br />

processes<br />

• Design <strong>of</strong> novel acids <strong>and</strong> bases<br />

• Development <strong>of</strong> theoretical calculation<br />

methods<br />

9<br />

How to measure solution <strong>acidities</strong> <strong>of</strong><br />

highly acidic <strong>molecul</strong>es?<br />

• H 0 scale<br />

• The classical approach<br />

• Different H 0<br />

refer to different media<br />

• H 0<br />

is rather a characteristic <strong>of</strong> a medium than <strong>of</strong> a<br />

<strong>molecul</strong>e<br />

• X-H vibrational frequencies<br />

• Indirect: characterizes<br />

hydrogen bond rather than acidity<br />

Stoyanov, et al JACS, 2006, 128, 8500<br />

• Equilibrium measurement (pK a ) in a low<br />

basicity solvent<br />

• Obvious, butalmostunusedappraoch!<br />

10<br />

5


Solvent<br />

• As low basicity as possible<br />

• As high ε as possible<br />

• As high pK auto as possible<br />

• Easy to purify, reasonably inert, electrochemically<br />

stable, transparent in UV, readily available, widely<br />

used<br />

• There is no ideal solvent<br />

• Wth increasing ε as a rule basicity also increases<br />

• Water cannot be used<br />

11<br />

Non-aqueous pK a <strong>values</strong>: not trivial<br />

• Processes are <strong>of</strong>ten more complex than<br />

simple ionic dissociation<br />

• Ion-pairing, homoconjugation, …<br />

• Measurement <strong>of</strong> a(SH + ) is not trivial<br />

• Traces <strong>of</strong> moisture can significantly affect<br />

results<br />

K. Kaupmees et al, J. Phys. Chem. A<br />

2010, 114, 11788<br />

• Working in an inert <strong>gas</strong> atmosphere (glovebox) is<br />

necessary<br />

12<br />

6


Acid-base reaction in a non-aqueous<br />

solvent<br />

K 1 K 2 K 3<br />

(AH) S + (:B) S (AH⋅⋅⋅:B) S (A¯:⋅⋅⋅HB + ) S or (A¯: HB + ) S <br />

HB complex HB complex contact ion pair<br />

K 3 K 4<br />

(A¯: // HB + ) S (A¯:) S + (HB + ) S<br />

solvent-separated ion pair free ions<br />

13<br />

Approach: Relative measurement<br />

• Measurement <strong>of</strong> pK a differences<br />

• ΔpK a<br />

<strong>values</strong><br />

• No need to measure a(SH + ) in solution<br />

• Many <strong>of</strong> the error sources cancel out,<br />

either partially or fully<br />

• Traces <strong>of</strong> moisture<br />

• Impurities in compounds<br />

• Baseline shifts <strong>and</strong> drifts<br />

• Technique: UV-Vis spectrometry<br />

14<br />

7


UV-Vis ΔpK a measurement<br />

Compound 1 Compound 2<br />

Absorbance (AU)<br />

Absorbance (AU)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

anion<br />

neutral<br />

190 240 290 340 390<br />

wavelength (nm)<br />

Mixture<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

anion<br />

NC<br />

NC<br />

CN<br />

CN<br />

CN<br />

OH<br />

CF 2 SO 2<br />

CN SO 2 CF 3<br />

0.2<br />

neutral<br />

0<br />

190 240 290 340 390<br />

wavelength (nm)<br />

SO 2 CF 3<br />

Absorbance (AU)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

neutral<br />

190 240 290 340 390<br />

wavelength (nm)<br />

0<br />

ΔpK<br />

a<br />

= 0.87<br />

= pK<br />

a<br />

anion<br />

(HA ) − pK<br />

(HA )<br />

-<br />

[A1]<br />

⋅[HA2]<br />

= − log K = log<br />

-<br />

[HA ] ⋅[A<br />

]<br />

2<br />

CF 2 SO 2<br />

SO 2 CF 3<br />

1<br />

a<br />

OH<br />

2<br />

SO 2 CF 3<br />

1<br />

15<br />

Acetonitrile (MeCN)<br />

• Advantages <strong>of</strong> MeCN:<br />

• Low basicity (B' = 160), low anion-solvating ability →<br />

quite strong acids measurable<br />

• High polarity (ε = 36)<br />

• High pK auto<br />

(≥ 33)<br />

• Transparent in UV, easy to purify, reasonably inert,<br />

electrochemically stable, readily available, widely used<br />

• Limitations:<br />

• Very strong bases decompose MeCN<br />

• Already Et-P2(pyrr) slowly decomposes MeCN<br />

• Impossible to study the strongest <strong>superacid</strong>s<br />

16<br />

8


Self-consistent acidity<br />

scale in MeCN<br />

Acid pK a (AN) a Directly measured ΔpK a b<br />

1 9-C 6F 5-Fluorene 28.11<br />

2 (4-Me-C 6F 4)(C 6H 5)CHCN 26.96<br />

3 (4-NC 5F 4)(C 6H 5)NH 26.34<br />

4 (C 6H 5)(C 6F 5)CHCN 26.14<br />

5 (4-Me 2N-C 6F 4)(C 6F 5)NH 25.12<br />

6 (4-Me-C 6F 4)(C 6F 5)NH 24.94<br />

7 Octafluor<strong>of</strong>luorene 24.49<br />

8 Fluoradene 23.90<br />

9 9-COOMe-Fluorene 23.53<br />

10 Acetic acid 23.51<br />

11 (C 6F 5)CH(COOEt) 2 22.85<br />

12 2-NO 2-Phenol 22.85<br />

13 (4-Me-C 6F 4) 2CHCN 22.80<br />

14 (4-Me-C 6F 4)(C 6F 5)CHCN 21.94<br />

15 Benzoic acid 21.51<br />

16 9-CN-Fluorene 21.36<br />

17 (4-H-C 6F 4)(C 6F 5)CHCN 21.11<br />

18 (C 6F 5) 2CHCN 21.10<br />

19 (CF 3) 3COH 20.55<br />

20 (4-Cl-C 6F 4)(C 6F 5)CHCN 20.36<br />

21 2,4,6-Br 3-Phenol 20.35<br />

22 (2,4,6-Cl 3-C 6F 2)(C 6F 5)CHCN 20.13<br />

23 2,3,5,6-F 4-Phenol 20.12<br />

24 2,3,4,5,6-F 5-Phenol 20.11<br />

25 (2-C 10F 7)(C 6F 5)CHCN 20.08<br />

26 1-C 10F 7OH 19.72<br />

27 2,4,6-(SO 2F) 3-Aniline 19.66<br />

28 (2-C 10F 7) 2CHCN 19.32<br />

29 9-C 6F 5-Octafluor<strong>of</strong>luorene 18.88<br />

30 2-C 10F 7OH 18.50<br />

31 (4-CF 3-C 6F 4)(C 6F 5)CHCN 18.14<br />

32 4-C 6F 5-2,3,5,6-F 4-Phenol 18.11<br />

33 (4-H-C 6F 4)CH(CN)COOEt 18.08<br />

34 2,3,4,5,6-Cl 5-Phenol 18.02<br />

35 2,3,4,5,6-Br 5-Phenol 17.83<br />

36 (C 6F 5)CH(CN)COOEt 17.75<br />

37 4-Me-C 6H 4CH(CN) 2 17.59<br />

38 (2-C 10F 7)CH(CN)COOEt 17.50<br />

39 (4-Cl-C 6F 4)CH(CN)COOEt 17.39<br />

40 2,4-(NO 2) 2-Phenol 16.66<br />

41 4-CF 3-2,3,5,6-F 4-Phenol 16.62<br />

42 (4-NC 5F 4)(C 6F 5)CHCN 16.40<br />

43 (4-CF 3-C 6F 4) 2CHCN 16.13<br />

44 (4-CF 3-C 6F 4)CH(CN)COOEt 16.08<br />

45 (4-NC 5F 4)(2-C 10F 7)CHCN 16.02<br />

46 4-NC 5F 4-OH 15.40<br />

47 (4-NC 5F 4)CH(CN)COOEt 14.90<br />

1.15<br />

0.63<br />

0.20<br />

1.03<br />

0.64<br />

0.96<br />

0.67<br />

0.90<br />

0.60<br />

1.01<br />

0.21<br />

0.42<br />

0.40<br />

0.44<br />

0.38<br />

0.36<br />

0.06<br />

0.59<br />

1.49<br />

1.32<br />

1.96<br />

1.20<br />

0.45<br />

0.58<br />

1.05<br />

0.92<br />

0.42<br />

0.39<br />

1.02<br />

0.01<br />

0.43<br />

0.34<br />

1.19<br />

0.75<br />

0.77<br />

0.22<br />

0.32<br />

0.06<br />

1.12<br />

019<br />

1.78<br />

0.17<br />

-0.01<br />

1.49<br />

0.25<br />

0.76<br />

0.81<br />

0.79<br />

0.46<br />

0.19<br />

0.08<br />

1.10<br />

0.60<br />

1.35<br />

0.82<br />

0.68<br />

0.04<br />

0.26<br />

0.53<br />

0.26<br />

0.03<br />

0.03<br />

0.85<br />

0.73<br />

0.04<br />

1.15<br />

0.54<br />

1.43<br />

0.73<br />

0.75<br />

0.71<br />

0.48 1.02<br />

0.41<br />

0.92<br />

1.92<br />

1.59<br />

0.10<br />

0.27<br />

0.27<br />

0.05<br />

0.70<br />

0.69<br />

1.75<br />

1.70<br />

1.51<br />

1.21<br />

0.63<br />

0.88<br />

0.37<br />

-0.01<br />

0.82<br />

1.46<br />

0.72<br />

1.03<br />

0.26<br />

1.02<br />

0.28<br />

0.29<br />

0.25<br />

0.00<br />

0.80<br />

0.06<br />

1.32<br />

47 (4-NC 5F 4)CH(CN)COOEt 14.90<br />

0.69<br />

0.19<br />

48 3-CF 3-C 6H 4CH(CN) 2 14.72<br />

0.15<br />

49 Saccharin 14.57 0.84<br />

0.71<br />

1.89<br />

50 4-Me-C 6F 4CH(CN) 2 13.87<br />

0.40<br />

51 (4-NC 5F 4) 2CHCN 13.46<br />

0.87<br />

0.45 0.89<br />

52 C 6F 5CH(CN) 2 13.01<br />

0.48<br />

0.03 0.04<br />

53 4-H-C 6F 4CH(CN) 2 12.98<br />

0.79<br />

0.74<br />

54 2-C 10F 7CH(CN) 2 12.23<br />

1.38 0.26<br />

55 Tos 2NH c 11.97 0.62<br />

56 4-NO 2-C 6H 4CH(CN) 2 11.61<br />

0.03<br />

57 4-MeO-C 6H 4C(=O)NHTf d 11.60<br />

0.28<br />

0.19 0.14<br />

58 4-Me-C 6H 4C(=O)NHTf 11.46<br />

1.21<br />

0.98<br />

59 (C 6H 5SO 2) 2NH 11.34 0.60<br />

0.60<br />

0.57<br />

60 4-Cl-C 6H 4SO 2NHTos 11.10<br />

0.49<br />

0.36<br />

61 C 6H 5C(=O)NHTf 11.06<br />

1.43<br />

0.10<br />

0.07<br />

62 Picric acid 11.00<br />

63 4-F-C 6H 4C(=O)NHTf 10.65<br />

0.91<br />

0.79<br />

0.87<br />

64 4-Cl-C 6H 4C(=O)NHTf 10.36 0.82<br />

0.54<br />

65 (4-Cl-C 6H 4SO 2) 2NH 10.20<br />

0.15<br />

0.56<br />

-0.01<br />

66 4-CF 3-C 6F 4CH(CN) 2 10.19<br />

0.13<br />

1.15<br />

0.14<br />

67 4-NO 2-C 6H 4SO 2NHTos 10.04 0.52<br />

1.20<br />

1.06<br />

0.73<br />

68 4-Cl-3-NO 2-C 6H 3SO 2NHTos 9.71 1.05 0.46<br />

69 4-NO 2-C 6H 4C(=O)NHTf 9.49 0.53<br />

0.23<br />

70 4-NO 2-C 6H 4SO 2NHSO 2C 6H 4-4-Cl 9.17<br />

2.3<br />

0.56 1.73<br />

71 TosOH 8.6<br />

1.21 0.23<br />

72 (4-NO 2-C 6H 4SO 2) 2NH 8.32<br />

1.3<br />

0.25<br />

73 1-C 10H 7SO 3H 8.02<br />

0.50<br />

0.19 1.04<br />

74 C 6H 5CHTf 2 7.85<br />

0.54 1.25<br />

75 4-Cl-C 6H 4SO 3H 7.3<br />

0.53<br />

76 3-NO 2-C 6H 4SO 3H 6.78 0.51<br />

77 4-NO 2-C 6H 4SO 3H 6.73<br />

78 4-MeO-C 6H 4C(=NTf)NHTf 6.54 0.51<br />

0.44 1.28 0.23<br />

79 4-Me-C 6H 4C(=NTf)NHTf 6.32<br />

0.75 0.23<br />

0.05<br />

0.62<br />

80 TosNHTf 6.30<br />

0.5<br />

0.16 0.35<br />

81 C 6H 5C(=NTf)NHTf 6.17 0.36<br />

1.11 0.47<br />

82 C 6H 5SO 2NHTf 6.02<br />

0.59<br />

0.26<br />

83 4-F-C 6H 4C(=NTf)NHTf 5.79 0.83<br />

1.64<br />

84 4-Cl-C 6H 4C(=NTf)NHTf 5.69<br />

0.77<br />

1.37<br />

85 2,4,6-(SO 2F) 3-Phenol 5.66<br />

1.25<br />

0.64<br />

86 4-Cl-C 6H 4SO 2NHTf 5.47<br />

0.42<br />

0.59<br />

0.71<br />

87 4-Cl-C 6H 4SO(=NTf)NHTos 5.27<br />

0.53<br />

88 4-NO 2-C 6H 4C(=NTf)NHTf 5.13 0.38<br />

1.20<br />

89 2,4,6-Tf 3-Phenol 4.93<br />

0.41<br />

1.1<br />

90 4-NO 2-C 6H 4SO 2NHTf 4.52<br />

0.05<br />

0.87<br />

91 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-4-Cl 4.47 1.10 1.15<br />

0.31<br />

92 2,3,5-tricyanocyclopentadiene 4.16<br />

0.74<br />

0.50<br />

93 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-4-NO 2 3.75<br />

A. Kütt et al, J. Org. Chem. 2006, 71, 2829<br />

17<br />

A. Kütt et al, J. Org. Chem. 2011, 76, 391<br />

Properties <strong>of</strong> the MeCN acidity scale<br />

• Consistency, checked by circular<br />

validation measurements:<br />

• 93 acids, 203 relative acidity measurements<br />

• Consistency st<strong>and</strong>ard deviation: 0.03 pK a<br />

units<br />

• Anchored to Picric acid (pK a = 11.0)<br />

• pK a range: 3.7 .. 28.1<br />

• Useful tool for further studies<br />

• Acids in the lower part are <strong>superacid</strong>s<br />

• pK a<br />

(H 2<br />

SO 4<br />

) ≈ 8 in MeCN<br />

18<br />

9


67 4NO 2 C 6 H 4 SO 2 NHTos 10.04<br />

68 4-Cl-3-NO 2 -C 6 H 3 SO 2 NHTos 9.71<br />

69 4-NO 2 -C 6 H 4 C(=O)NHTf 9.49<br />

70 4-NO 2-C 6H 4SO 2NHSO 2C 6H 4-4-Cl 9.17<br />

71 TosOH 8.6<br />

72 (4-NO 2-C 6H 4SO 2) 2NH 8.32<br />

73 1-C 10 H 7 SO 3 H 8.02<br />

74 C 6H 5CHTf 2 7.85<br />

75 4-Cl-C 6 H 4 SO 3 H 7.3<br />

76 3-NO 2-C 6H 4SO 3H 6.78<br />

77 4-NO 2 -C 6 H 4 SO 3 H 6.73<br />

78 4-MeO-C 6 H 4 C(=NTf)NHTf 6.54<br />

79 4-Me-C 6H 4C(=NTf)NHTf 6.32<br />

80 TosNHTf 6.30<br />

81 C 6 H 5 C(=NTf)NHTf 6.17<br />

82 C 6 H 5 SO 2 NHTf 6.02<br />

83 4-F-C 6 H 4 C(=NTf)NHTf 5.79<br />

84 4-Cl-C 6 H 4 C(=NTf)NHTf 5.69<br />

85 2,4,6-(SO 2 F) 3 -Phenol 5.66<br />

86 4-Cl-C 6 H 4 SO 2 NHTf 5.47<br />

87 4-Cl-C 6H 4SO(=NTf)NHTos 5.27<br />

88 4-NO 2-C 6H 4C(=NTf)NHTf 5.13<br />

89 2,4,6-Tf 3-Phenol 4.93<br />

90 4-NO 2 -C 6 H 4 SO 2 NHTf 4.52<br />

91 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-4-Cl 4.47<br />

92 2,3,5-tricyanocyclopentadiene 4.16<br />

93 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-4-NO 2 3.75<br />

1.06 0.73<br />

1.05 0.46<br />

0.53<br />

0.23<br />

2.3<br />

0.56 1.73<br />

1.21 0.23<br />

0.19 1.04<br />

0.54<br />

0.53<br />

0.51<br />

0.51<br />

0.44 1.28<br />

0.75<br />

0.36<br />

0.77<br />

0.53<br />

0.38<br />

0.41<br />

1.25<br />

1.3<br />

0.25<br />

0.50<br />

0.59<br />

0.26<br />

0.83<br />

1.64<br />

0.64<br />

0.71<br />

0.05<br />

0.87<br />

1.10 1.15<br />

0.31<br />

0.74<br />

0.50<br />

0.23<br />

0.23<br />

0.05<br />

0.62<br />

0.5<br />

0.16 0.35<br />

1.11 0.47<br />

1.37<br />

1.25<br />

0.42<br />

0.59<br />

1.20<br />

1.1<br />

H 2 SO 4 pK a ca 8<br />

19<br />

1,2-Dichloroethane<br />

• Advantages <strong>of</strong> 1,2-DCE:<br />

• Very low basicity (B' = 40), low anion-solvating ability<br />

→ strong <strong>superacid</strong>s are measurable<br />

• pK auto<br />

unmeasurably high<br />

• Reasonably inert <strong>and</strong> stable, readily available, widely<br />

used, dissolves also many ionic compounds well<br />

• Transparent in UV down to 230 nm<br />

• Limitations:<br />

• ~Low polarity (ε = 10)<br />

• Ion-pair <strong>acidities</strong><br />

20<br />

10


1,2-DCE acidity<br />

scale<br />

• The most acidic<br />

equilibrium acidity<br />

scale in a constantcomposition<br />

medium<br />

• Relative <strong>acidities</strong><br />

• Not easy to anchor<br />

• Some <strong>values</strong><br />

available in<br />

literature, but<br />

are doubtful<br />

A. Kütt et al J. Org. Chem.<br />

2011, 76, 391<br />

No Acid pK a(DCE) Directly measured ΔpK ip <strong>values</strong> in DCE a pK<br />

1 Picric acid 0.0<br />

2 HCl -0.4 0.73 0.71<br />

1.48 0.36<br />

3 2,3,4,6-(CF 3) 5-C 6H-CH(CN) 2 -0.7<br />

1.09<br />

0.77 0.74<br />

4 4-NO 2-C 6H 4SO 2NHTos c -1.5<br />

2.08 1.00<br />

0.28 1.78<br />

5 HNO 3 -1.7<br />

1.01<br />

6 4-NO 2-C 6H 4SO 2NHSO 2C 6H 4-4-Cl -2.4 1.13<br />

0.88 0.08<br />

7 H 2SO 4 -2.5<br />

0.24<br />

0.12 1.26<br />

8 C 6(CF 3) 5CH(CN) 2 -2.6<br />

1.02 1.02 1.05<br />

9 (4-NO 2-C 6H 4-SO 2) 2NH -3.7 1.48<br />

0.47<br />

10 3-NO 2-4-Cl-C 6H 3SO 2NHSO 2C 6H 4-4-NO 2 -4.1<br />

0.80<br />

0.36<br />

11 (3-NO 2-4-Cl-C 6H 3SO 2) 2NH -4.5 1.35<br />

0.93<br />

0.39<br />

12 HBr -4.9<br />

0.62<br />

0.19<br />

13 4-NO 2-C 6H 4SO 2CH(CN) 2 -5.1 1.03<br />

0.80<br />

14 2,4,6-(SO 2F) 3-Phenol -5.9 1.33<br />

15 2,4,6-Tf 3-Phenol d -6.4 0.64<br />

16 CH(CN) 3 -6.5 0.94<br />

0.42 1.14 1.12<br />

17 4-Cl-C 6H 4SO(=NTf)NHTos -6.8 0.33 0.65<br />

0.51 0.05<br />

18 NH 2-TCNP e -6.8<br />

0.24<br />

0.20<br />

19 2,3,5-tricyanocyclopentadiene -7.0<br />

20 Pentacyanophenol -7.6 0.67 0.84<br />

21 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-4-Cl -7.6 1.77<br />

1.56<br />

22 HI -7.7<br />

1.64<br />

1.00<br />

0.98 1.13<br />

23 4-NO 2-C 6H 4SO 2NHTf -7.8 1.10 0.93<br />

1.04 1.01<br />

0.81<br />

24 Me-TCNP -8.6<br />

0.96<br />

0.90<br />

0.09<br />

25 3,4-(MeO) 2-C 6H 3-TCNP -8.7 0.13 1.42<br />

-0.02<br />

26 4-MeO-C 6H 4-TCNP -8.7<br />

0.12<br />

0.12<br />

27 C(CN) 2=C(CN)OH -8.8<br />

0.46 0.24<br />

0.28 1.61<br />

28 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-NO 2 -8.9 0.22<br />

0.59<br />

0.74<br />

29 2,4-(NO 2) 2-C 6H 3SO 2OH -8.9 0.67<br />

0.06<br />

0.59<br />

30 C 6F 5CH(Tf) 2 -9.0<br />

0.60<br />

0.52<br />

31 HB(CN)(CF 3) 3 -9.3 0.47 0.44<br />

1.33 0.13<br />

32 Ph-TCNP -9.4 1.56 1.62<br />

0.83 1.57<br />

33 HBF 4 -10.3<br />

1.23<br />

1.06<br />

34 FSO 2OH -10.5 0.26 1.34<br />

001<br />

21<br />

1,2-DCE acidity<br />

scale<br />

2,4-(NO 2) 2-C 6H 3SO 2OH<br />

H N<br />

45 [C(CN) 2=C(CN)] 2NH -11.8<br />

46 3,5-(CF 3) 5-C 6H 3-TCNP -11.8<br />

29 -8.9<br />

30 C 6F 5CH(Tf) 2 -9.0<br />

31 HB(CN)(CF 3) 3 -9.3<br />

32 Ph-TCNP -9.4<br />

33 HBF 4 -10.3<br />

34 FSO 2OH -10.5<br />

35 3-CF 3-C 6H 4-TCNP -10.5<br />

36 H-TCNP -10.7<br />

37 [C 6H 5SO(=NTf)] 2NH -11.1<br />

38 [(C 2F 5)2PO] 2NH -11.3<br />

39 2,4,6-(NO 2) 3-C 6H 2SO 2OH -11.3<br />

40 [C(CN) 2=C(CN)] 2CH 2 -11.4<br />

41 TfOH -11.4<br />

42 C 6H 5SO(=NTf)NHTf -11.5<br />

43 TfCH(CN) 2 -11.6<br />

44 Br-TCNP -11.8<br />

+<br />

N P N<br />

48 4-Cl-C 6H 4SO(=NTf)NHTf -12.1<br />

47 Tf 2NH -11.9<br />

N<br />

49 Cl-TCNP -12.1<br />

• Ion pair <strong>acidities</strong><br />

• Counter-ion:<br />

• Aqueous pK a<br />

(H 0<br />

)<br />

<strong>values</strong> down to<br />

-10 .. -15<br />

50 (C 3F 7SO 2) 2NH -12.2<br />

51 (C 4F 9SO 2) 2NH -12.2<br />

52 CN-CH 2-TCNP -12.3<br />

53 (C 2F 5SO 2) 2NH -12.3<br />

54 CF 3-TCNP -12.7<br />

55 HClO 4 -13.0<br />

56 CF 2(CF 2SO 2) 2NH -13.1<br />

57 4-NO 2-C 6H 4SO(=NTf)NHTf -13.1<br />

58 HB(CN) 4 -13.3<br />

59 (FSO 2) 3CH -13.6<br />

60 Tf 2CH(CN) -14.9<br />

61 2,3,4,5-tetracyanocyclopentadiene -15.1<br />

62 CN-TCNP -15.3<br />

63 Tf 3CH f -16.4<br />

64 CF 3SO(=NTf)NHTf f -18<br />

0.67 0.06<br />

0.59<br />

0.60<br />

0.52<br />

0.47 0.44<br />

1.33 0.13<br />

1.56 1.62<br />

0.83 1.57<br />

1.23<br />

1.06<br />

0.26 1.34<br />

0.01<br />

0.21<br />

0.60 0.22<br />

0.58<br />

0.73 0.78 0.46<br />

0.84<br />

0.84<br />

0.89 0.91<br />

0.29<br />

0.28<br />

0.44 0.21<br />

0.10<br />

0.12<br />

0.47<br />

0.04<br />

0.07 0.09 0.49<br />

0.40 0.32 0.47<br />

0.36<br />

0.21 0.45<br />

0.19<br />

0.30 0.31<br />

1.06<br />

0.06<br />

0.69<br />

0.20 0.25<br />

0.01<br />

0.10<br />

0.10<br />

0.19<br />

0.15<br />

0.13<br />

0.27<br />

0.10<br />

0.02<br />

1.05 1.06<br />

0.72<br />

0.19<br />

0.19<br />

0.44<br />

1.76<br />

1.92<br />

2.16<br />

1.46<br />

1.73 0.22<br />

0.40<br />

0.21 0.23<br />

0.36<br />

0.47<br />

0.67<br />

0.40<br />

0.21<br />

0.44<br />

0.46<br />

0.80<br />

0.80 1.04<br />

0.40<br />

0.11<br />

0.56<br />

0.89 0.86<br />

1.29<br />

0.63<br />

1.04<br />

0.07<br />

0.42<br />

0.77<br />

0.73 0.75<br />

0.93<br />

0.93<br />

0.96<br />

0.43<br />

22<br />

0.29<br />

11


Important aspects for <strong>superacid</strong>s<br />

• Brønsted acidity<br />

• As strong as possible<br />

• "Clean" protonation desirable<br />

• Lewis acidity is usually not desirable<br />

• Stability under <strong>superacid</strong>ic conditions<br />

• Weak coordinating properties <strong>of</strong> the<br />

anions<br />

23<br />

Design <strong>of</strong> <strong>superacid</strong>ic <strong>molecul</strong>es<br />

• "Acid-based" approach:<br />

• Pick a parent acid<br />

• Introduce substituents<br />

• electronegative, strong electron<br />

acceptors, highly polarizable<br />

CN CN<br />

O O<br />

H<br />

NC P CN<br />

NC<br />

O CN ΔΔG acid =<br />

47 kcal/mol<br />

ΔG acid = 303 256 kcal/mol<br />

(DFT B3LYP/6-311+G**)<br />

O CF 3<br />

S O<br />

ON<br />

F 3 C<br />

S<br />

OH<br />

ON<br />

S O<br />

ΔΔG acid =<br />

O CF 3 40 kcal/mol<br />

ΔG acid = 299.5 260 kcal/mol<br />

(DFT B3LYP/6-311+G**)<br />

Leito et al J. Mol. Stru.<br />

Theochem, 2007, 815, 43<br />

Koppel, Yagupolskii et al<br />

to be submitted<br />

24<br />

12


Basicity Centers on Substituents<br />

NC<br />

:<br />

CN<br />

NC<br />

:<br />

P<br />

CN<br />

H<br />

CN:<br />

N H<br />

. .<br />

CN<br />

:<br />

: :<br />

. .<br />

:<br />

O<br />

CF 3<br />

H<br />

S<br />

:<br />

N<br />

. O<br />

.:<br />

. .<br />

F 3 C<br />

S . OHO<br />

.<br />

:<br />

N<br />

. .<br />

S<br />

O<br />

:<br />

:<br />

CF . O<br />

.<br />

3<br />

It is not only about the acceptor<br />

power but also about basicity!<br />

25<br />

Design: Anion-based approach<br />

• Design an anion, which<br />

• Has delocalized charge<br />

• Is as stable as possible<br />

• Has as few as possible protonation sites <strong>and</strong><br />

those are <strong>of</strong> low basicity<br />

Not looking at any particular acidity<br />

center<br />

26<br />

13


Fluorine<br />

• Highly electronegative element<br />

• Decreases the basicity <strong>of</strong> nearby basicity centers<br />

• Has very low basicity itself<br />

• Many X-F bonds are extremely strong<br />

• C-F bond: 484 kJ/mol<br />

• High stability <strong>of</strong> fluorinated compounds<br />

• Small size<br />

• Polyfluorinated compounds have low steric strain<br />

Fluorination is intrinsically suitable<br />

for <strong>superacid</strong> design<br />

27<br />

Substituent properties<br />

Substituent<br />

σ F<br />

σ R σ α<br />

0.13<br />

-F<br />

0.57<br />

-0.33<br />

-CF 3<br />

0.46<br />

0.09<br />

-0.25<br />

-SO 2 CF 3<br />

0.18<br />

0.83<br />

0.26<br />

-0.58<br />

-CN<br />

0.54<br />

-0.46<br />

• Neither –F nor –CF 3 seem particularly<br />

impressive<br />

28<br />

14


-F <strong>and</strong> -CF 3 vs -CN<br />

Acid<br />

X OH<br />

(DFT B3LYP/6-311+G**)<br />

Gas-<strong>phase</strong> acidity (kcal/mol)<br />

-CN -F -CF 3<br />

325 340 330<br />

X<br />

X<br />

X<br />

-<br />

B X H +<br />

250<br />

277<br />

X<br />

X<br />

259<br />

290<br />

244<br />

X<br />

HBX 4<br />

213<br />

X<br />

X<br />

C X<br />

X<br />

-<br />

X<br />

X<br />

X X X<br />

X H +<br />

X<br />

225<br />


250<br />

256<br />

255.5 HSbF 6<br />

250.8 HAuF 6<br />

250<br />

243<br />

240<br />

HB(CF3 ) 4<br />

NC<br />

NC<br />

H<br />

NC CN<br />

C<br />

H<br />

H<br />

H<br />

H H<br />

Cl<br />

Cl<br />

Cl<br />

CN CN<br />

- H +<br />

CN NC P CN<br />

- B CN H + NC CN<br />

-<br />

Cl<br />

Cl<br />

H +<br />

Cl<br />

Cl Cl<br />

Acidity in the<br />

<strong>gas</strong> <strong>phase</strong><br />

Cl<br />

CCl<br />

Cl<br />

Cl<br />

225<br />

200<br />

225<br />

213<br />

C CN<br />

NC CN<br />

NC CN<br />

-<br />

F NC NC CN CN<br />

NC<br />

C<br />

F<br />

F<br />

H +<br />

F CN<br />

F F<br />

F<br />

F<br />

< 175<br />

F<br />

-<br />

F<br />

CN<br />

F F CF<br />

H +<br />

3<br />

C<br />

F 3 C<br />

CF 3<br />

CF F3 C CF 3 3<br />

-<br />

F<br />

F 3 C 3 C CF 3 CF 3<br />

F 3 C H +<br />

CF 3<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

H +<br />

Cl<br />

GA = 241 ± 29 kcal/mol<br />

- Meyer et al, JACS, 2009, 131, 18050<br />

-Kütt et alChem Phys Chem,<br />

2008<br />

- Kütt et al, JOC, 2008, 73, 2607<br />

- Leito et al, J Mol Stru Theochem.<br />

2007, 815, 41<br />

- Leito et al, JPC A, 2009, 113, 8421<br />

- Koppel et al, JACS, 2000,<br />

31<br />

122, 5114<br />

Thanks<br />

to all these<br />

people!<br />

32<br />

16


Collaboration<br />

• Y.L. Yagupolskii<br />

(IOC, Ukrainian Academy <strong>of</strong> Sciences, Kiev)<br />

• I. Krossing, D. Himmel<br />

(Freiburg University)<br />

• A.A. Kolomeitsev, G.-V. Röschenthaler<br />

(IIPC, University <strong>of</strong> Bremen)<br />

• M. Rueping (Aachen University)<br />

• V.M. Vlasov (IOC, Russian Academy o Sciences,<br />

Novosibirsk)<br />

• M. Mishima (IMCE, Kyushu University)<br />

33<br />

Overview:<br />

http://tera.chem.ut.ee/~ivo/HA_UT/<br />

34<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!