28.08.2015 Views

Thermoelectric Materials

Synopsis presentation - MIT Precision Compliant Systems ...

Synopsis presentation - MIT Precision Compliant Systems ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Thermoelectric</strong> <strong>Materials</strong><br />

Dan Lorenc<br />

Katrina Ellison<br />

March 12, 2009<br />

1


Moral of the Story<br />

• Biggest challenges for<br />

us:<br />

• Packaging<br />

• Integration<br />

• Bulk manufacturing<br />

http://www.thermoelectric.com/2005/images/te-1.jpg<br />

© Dan Lorenc and Katrina Ellison 2009<br />

3<br />

Slide


Physical Overview<br />

TH<br />

Current<br />

flow<br />

V+<br />

<strong>Thermoelectric</strong><br />

Material<br />

V-<br />

Tc<br />

Power output<br />

© Dan Lorenc and Katrina Ellison 2009<br />

Slide 4


History<br />

• 1821: Seebeck effect<br />

• 1834: Peltier effect<br />

• 1854: Thomson effect<br />

• 1910: Figure of merit<br />

• 1950: First space<br />

application<br />

First Thermopile<br />

circa 1840<br />

http://www.dself.dsl.pipex.com/MUSEUM/POWER/thermoelectric/<br />

thermoelectric.htm<br />

© Dan Lorenc and Katrina Ellison 2009<br />

5<br />

Slide


Applications<br />

• Cooling<br />

www.micropelt.com<br />

• Power generation<br />

• Space<br />

• Waste heat<br />

Radioisotope <strong>Thermoelectric</strong> Generator (RTG)<br />

Used on Voyager 1 & 2<br />

http://thermoelectrics.caltech.edu/history_page.htm<br />

www.nextbigfuture.com<br />

© Dan Lorenc and Katrina Ellison 2009 Slide 6


Strengths and Weaknesses<br />

Strengths<br />

High reliability<br />

Lightweight<br />

Quiet<br />

High scalability<br />

Weaknesses<br />

Low efficiency<br />

Expensive<br />

Exotic materials<br />

Difficult to manufacture<br />

© Dan Lorenc and Katrina Ellison 2009<br />

7<br />

Slide


Typical Specs<br />

Custom<br />

<strong>Thermoelectric</strong><br />

Nextreme<br />

Lincoln Lab<br />

Thot 260° C ~ 210° C 327° C<br />

Tcold 50° C ~ 90° C 107° C<br />

ΔT 210° C 120° C 220° C<br />

Imatched load 1.43 A 0.875 A -<br />

Vmatched load 4.33 V 0.28 V -<br />

Powermatched load 6.19 W 0.240 W -<br />

Size 1600 mm 2 5.12* mm 2 120 mm 2<br />

Power Density 0.39 W/cm 2 4.69 W/cm 2 18 W/cm 2<br />

Weight 25 g - 19 g (w/ combustor)<br />

Output Resistance 3.0 Ω 0.336 Ω -<br />

Cost $52.88 $75 -<br />

Watts per Dollar 0.12 0.0032 -<br />

* TE material size. Actual module size: 12.75 mm<br />

© Dan Lorenc and Katrina Ellison 2009<br />

8<br />

Slide


Practical Considerations: Thermal Contact<br />

http://www.customthermoelectric.com/app_notes/app_note_TEG%20Install.pdf<br />

• Module surface must be as smooth as possible<br />

for good thermal contact<br />

• Thermal Interface Material (TIM) needed<br />

between module and heat sink<br />

© Dan Lorenc and Katrina Ellison 2009<br />

9<br />

Slide


Practical Considerations: Clamping Force<br />

http://www.customthermoelectric.com/app_notes/app_note_TEG%20Install.pdf<br />

• Clamping force must be applied evenly<br />

• Typical clamping pressure ~ 1275 kPa<br />

© Dan Lorenc and Katrina Ellison 2009<br />

10<br />

Slide


Form, F’ysics and Flows<br />

http://www.wikipedia.com<br />

© Dan Lorenc and Katrina Ellison 2009<br />

11<br />

Slide


Physics<br />

V = (S B<br />

− S A<br />

)(T 2<br />

− T 1<br />

)<br />

• Seebeck Effect<br />

• Peltier Effect<br />

• Thomson Effect<br />

dQ<br />

dt<br />

= Π AB<br />

I = (Π B<br />

− Π A<br />

)I<br />

q = ρJ 2 − µJ dT<br />

dx<br />

© Dan Lorenc and Katrina Ellison 2009<br />

12<br />

Slide


Physics<br />

• Thomson relations show<br />

these are all one effect<br />

Peltier Coefficient<br />

Thomson Coefficient<br />

∏ = S ⋅ T<br />

µ = T dS<br />

dT<br />

Seebeck Coefficient<br />

William Thomson (Lord Kelvin)<br />

www.abdn.ac.uk<br />

© Dan Lorenc and Katrina Ellison 2009<br />

13<br />

Slide


ZT Number<br />

Electrical Conductivity<br />

ZT = σS2<br />

λ<br />

Thermal Conductivity<br />

T<br />

• Dimensionless figure<br />

of merit<br />

• Linked to<br />

thermodynamic<br />

efficiency<br />

• Z is often used as<br />

well - simply drop T<br />

from each side<br />

© Dan Lorenc and Katrina Ellison 2009<br />

14<br />

Slide


Z vs. Efficiency<br />

<strong>Thermoelectric</strong>s Handbook: Macro to Nano p. 1-5<br />

© Dan Lorenc and Katrina Ellison 2009<br />

15<br />

Slide


Z of Practical <strong>Materials</strong><br />

Z (K^-1*10^3)<br />

4<br />

3<br />

2<br />

Sb-BiTe-Se<br />

Bi2Te3-75Sb2 Te3<br />

(n-type)<br />

4N-PbTe<br />

Bi2Te3-75Sb2 Te3<br />

(p-type)<br />

3N-PbTe<br />

ZT=1<br />

• Z has no fundamental<br />

limit<br />

• Theoretical max with<br />

current materials ~ 4<br />

• Best commercially<br />

available ~ 1<br />

1<br />

SiGe n-type<br />

SiGe p-type<br />

• Best synthesized in lab<br />

~ 2<br />

0<br />

-200 0 200 400 600 800<br />

Temperature (K)<br />

<strong>Thermoelectric</strong>s Handbook: Macro to Nano p. 1-9<br />

• Lincoln Lab material is<br />

PbTe<br />

© Dan Lorenc and Katrina Ellison 2009<br />

16<br />

Slide


Current Research: Nanostructuring<br />

Growth<br />

Direction<br />

Material 1<br />

Material 2<br />

Material 1<br />

Material 2<br />

Material 1<br />

Substrate<br />

• Allows creation of new<br />

lattice structures<br />

(“superlattices”) which<br />

reduce thermal<br />

conductivity<br />

ZT = σS2<br />

λ<br />

T<br />

• Utilizes thin-film<br />

manufacturing methods<br />

• Technique Lincoln Lab is<br />

using<br />

© Dan Lorenc and Katrina Ellison 2009<br />

17<br />

Slide


Current Research: Low-Dimensional <strong>Materials</strong><br />

• At least one dimension<br />

no wider than lattice<br />

constant<br />

• Most promising for<br />

large increases in ZT (up<br />

to ZT=4)<br />

http://en.wikipedia.org/wiki/File:UnitCell.png<br />

© Dan Lorenc and Katrina Ellison 2009<br />

18<br />

Slide


Current Decreasing Research: Thermal PGEC Conductivity <strong>Materials</strong><br />

PGEC = “Phonon-Glass, Electron-<br />

Crystal”<br />

• High electrical conductivity<br />

• Low thermal conductivity<br />

Created by adding a loose “rattler”<br />

atom within the crystal structure<br />

http://www.nature.com/nmat/journal/v7/n10/thumbs/nmat2271-f1.jpg<br />

© Dan Lorenc and Katrina Ellison 2009<br />

19<br />

Slide


Manufacturing: Czochralski Method<br />

Molten material<br />

Formed Crystal<br />

© Dan Lorenc and Katrina Ellison 2009<br />

20<br />

Slide


Manufacturing: Zone Melting<br />

Impurities<br />

Molten Region<br />

Heating Elements<br />

Purified Crystal<br />

© Dan Lorenc and Katrina Ellison 2009<br />

21<br />

Slide


Manufacturing: Pressing<br />

Plunger<br />

Heaters<br />

Die<br />

<strong>Thermoelectric</strong> material<br />

© Dan Lorenc and Katrina Ellison 2009<br />

22<br />

Slide


Advanced Manufacturing Techniques<br />

<strong>Thermoelectric</strong>s Handbook<br />

• Contamination a problem<br />

• Electron-beam evaporation<br />

• Layered cutting into modules<br />

• Micromilling?<br />

www.micropelt.com<br />

© Dan Lorenc and Katrina Ellison 2009<br />

23<br />

Slide


Manufacturing: Sputter Deposition<br />

• Widely used for<br />

semiconductor<br />

applications, tool bit<br />

coating, etc.<br />

http://upload.wikimedia.org/wikipedia/en/7/72/Sputtering.gif<br />

• Utilized by companies<br />

marketing thin-film<br />

thermoelectrics<br />

© Dan Lorenc and Katrina Ellison 2009<br />

24<br />

Slide


Manufacturing: Epitaxy<br />

• Growth of<br />

monocrystalline thin-film<br />

material on substrate<br />

• Highest quality thin-film<br />

technique<br />

http://www.bel-india.com/BELWebsite/images/epitaxy1.jpg<br />

© Dan Lorenc and Katrina Ellison 2009<br />

25<br />

Slide


Manufacturing: Comparison<br />

Method Pros Cons<br />

Czochralski<br />

Zone Melting<br />

Pressing<br />

-Highest Quality<br />

standard technique<br />

-Well understood<br />

-Cheaper<br />

-Impurities OK<br />

-Cheapest<br />

-Exact Dimensions<br />

-Resistant to Shocks<br />

-Expensive<br />

-Post machining<br />

-Brittle<br />

-Post machining<br />

-Brittle<br />

-Lowest Quality<br />

Sputter<br />

Deposition<br />

Epitaxy<br />

- Versatile<br />

- Well-characterized<br />

- Precise<br />

- Highest Quality Thin<br />

Film Technique<br />

-<br />

- Expensive<br />

- Expensive<br />

© Dan Lorenc and Katrina Ellison 2009<br />

26<br />

Slide


References<br />

<strong>Thermoelectric</strong>s Handbook: Macro to Nano. CRC Press, 2006.<br />

Rowe, D.M. “General Principles and Basic Considerations”. pp. 1-2 : 1-14.<br />

Goldsmid, H.J. “A New Upper Limit to the <strong>Thermoelectric</strong> Figure-of-Merit”. pp. 10-1 : 10-10.<br />

Nurnus, J., H. Böttner, and A. Lambrecht. “Nanoscale <strong>Thermoelectric</strong>s”. pp. 48-1 : 48-23.<br />

Min, Gao. “<strong>Thermoelectric</strong> Module Design Theories”. pp-11-1:11-14.<br />

Cook, B.A. Harringa J.L. “Solid State Synthesis of <strong>Thermoelectric</strong> <strong>Materials</strong>”. pp. 19-1 : 19-14.<br />

© Dan Lorenc and Katrina Ellison 2009<br />

27<br />

Slide


Reading List<br />

Chapter 1: <strong>Thermoelectric</strong>s Handbook<br />

Rowe, D.M. “General Principles and Basic Considerations”. pp. 1-2 : 1-14.<br />

Will be posted/emailed shortly.<br />

© Dan Lorenc and Katrina Ellison 2009<br />

28<br />

Slide


Solid-State Approaches<br />

• <strong>Thermoelectric</strong> (TE) and thermal photovoltaic (TPV)<br />

– Spacecraft power<br />

– Navy development<br />

– TE used for larger generators<br />

Heatsink<br />

– Limited micropower efforts Coolant air<br />

Fan<br />

in<br />

Teledyne TE Generator<br />

CERDEC Sponsor<br />

HC fuel in<br />

Voltage:<br />

Power:<br />

24V to 36V<br />

adjustable<br />

120 W<br />

Efficiency: ~3%<br />

Weight: 16.4 kg<br />

w/o fuel<br />

Fuel: Diesel, JP8<br />

Era: 1988<br />

Exhaust out<br />

Combustor<br />

Converter<br />

modules<br />

Electric<br />

power out<br />

• Share common conversion architecture<br />

– Air-breathing combustor at Th w/ optional recuperator<br />

– Converter<br />

– Heatsink to maintain Tc<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


TPV and TE Thermal Conversion<br />

• Thermal photovoltaic is a straightforward extension of traditional solar<br />

PV using photoelectric effect<br />

– Thermal source couples photons to semiconductor diode junction which<br />

has a quantum energy level structure<br />

– Photon energy greater than semiconductor bandgap is absorbed to create<br />

an electron-hole-pair<br />

– For TPV, the thermal source is local, typically heated by combustion<br />

processes<br />

– Characteristic temperatures are lower than solar, so lower bandgap<br />

devices are needed<br />

• <strong>Thermoelectric</strong> effect also related to energy absorption of charge<br />

carriers in solids<br />

– Thermal and electrical conduction in non-insulating solids are<br />

manifestations of the same transport phenomena<br />

– Charge carriers act as working fluid with “specific heat”<br />

– Charge carrier thermal energy diffusion confined by voltage just as gas<br />

thermal energy diffusion confined by pressure<br />

– Carrier sign provides opportunity for negative voltage<br />

– Solid lattice introduces challenging but potentially beneficial added<br />

complexity<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


In Practice<br />

TPV Application<br />

+<br />

Potential<br />

Heat In<br />

(HC combustion)<br />

P-type<br />

N-type<br />

Heat Out<br />

Load<br />

hν > E bg<br />

Emitter<br />

T ~ 1000K<br />

-<br />

V(I,Th,Tl)<br />

Photodiode<br />

Qh(I,Th,Tl)<br />

Thomson Relations<br />

TE Application<br />

+<br />

Temperature<br />

Potential<br />

Heat In<br />

(HC combustion)<br />

P-type<br />

N-type<br />

Heat Out<br />

Load<br />

T ~ 700K<br />

-<br />

V(I,Th,Tl)<br />

TE couple<br />

Qh(I,Th,Tl)<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


In Practice<br />

volumetric heat<br />

generation<br />

TPV Application<br />

Material Heat Inelectrical<br />

(HC combustion)<br />

conductivity<br />

Thomson<br />

heat<br />

current<br />

density<br />

+<br />

1d spatial<br />

temperature<br />

gradient<br />

P-type<br />

N-type<br />

Potential<br />

Heat Out<br />

Load<br />

hν > E bg<br />

Emitter<br />

material Seebeck coefficient (ΔV/<br />

ΔT)<br />

T ~ 1000K<br />

-<br />

Photodiode<br />

V(I,Th,Tl)<br />

Qh(I,Th,Tl)<br />

Thomson Relations<br />

Relative Peltier heat<br />

(energy / charge)<br />

TE Application<br />

+<br />

Potential Color<br />

Temperature<br />

Heat In<br />

(HC combustion)<br />

N-type P-type<br />

P-type N-type<br />

Heat Out<br />

Load<br />

T ~ 700K<br />

-<br />

TE couple<br />

V(I,Th,Tl)<br />

Qh(I,Th,Tl)<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


Campus - Lincoln TPV ACC Effort<br />

• Joint research program to<br />

demonstrate micro size TPV<br />

– Blackbody radiation matched PV<br />

cells on both sides<br />

– Antireflective coatings and<br />

spectral filters<br />

– Matched PV cell and combustor<br />

dimensions<br />

– Thermal management for high<br />

temperature operation<br />

– Modular fabrication<br />

• Substantial progress<br />

demonstrated<br />

Top PV cell<br />

and filter<br />

Spacer<br />

Burner<br />

Spacer<br />

Bottom filter<br />

and PV Cell<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


Packaged 20W Portable Generator<br />

Featuring Lincoln NDSL TE Material<br />

3 in<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


Overview of <strong>Thermoelectric</strong>s<br />

• <strong>Thermoelectric</strong> materials provide solid-state, direct conversion<br />

between thermal and electrical energy<br />

– Obtain electrical power from heat (NASA RTGs)<br />

– Solid-state cooling (TE coolers for lasers, car seats, mini fridges)<br />

• Advantages: small size, no moving parts, quiet, no pollutants<br />

The key figure of merit is ZT (unitless)<br />

Seebeck<br />

Coefficient<br />

(=ΔV/ΔT)<br />

Electrical conductivity<br />

Temperature<br />

Device Conversion Efficiency<br />

T c =300 K<br />

ZT = 5<br />

ZT = 3<br />

ZT = 2<br />

ZT = 1<br />

ZT = 0.5<br />

Lattice and electronic<br />

thermal conductivity<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


Optimization of ZT<br />

Parameter values (arb. units)<br />

S<br />

ZT<br />

σ<br />

• Best TE materials today have ZT~1 at<br />

300 K, rising to ~1.5-2 at 600-1000 K<br />

• Difficulty of increasing ZT due to<br />

interplay between S, σ, and κ e<br />

– As carrier concentration increases, S<br />

decreases while σ and κ e increase<br />

– Maximum ZT typically at ~1x10 18 to 1x10 20<br />

cm -3 depending on material<br />

• Two approaches to increase ZT<br />

– Decrease κ L (phonon conductivity) through<br />

nanostructuring 1-4<br />

– Increase power factor (=S 2 σ) through<br />

electron filtering 5 or quantum confinement 6<br />

κ e<br />

1<br />

T.C. Harman et al., Science 297, 2229 (2002).<br />

2<br />

R. Venkatasubramanian et al., Nature 413, 597 (2001).<br />

3<br />

W. Kim et al., Phys. Rev. Lett. 96, 045901 (2006).<br />

4<br />

K.F. Hsu et al., Science 303, 818 (2004).<br />

5<br />

D. Vashaee and A. Shakouri, J. Appl. Phys. 95, 1233 (2004).<br />

6<br />

L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


Intrinsic ZT for Various <strong>Materials</strong><br />

• Lincoln performed<br />

pioneering work to<br />

demonstrate ZT<br />

enhancement<br />

– MBE grown<br />

spontaneous<br />

nanostructure<br />

– nano dot superlattice<br />

(NDSL)<br />

• Work continues in a<br />

number of material<br />

systems<br />

– Lincoln NDSL among<br />

the best<br />

– Inconsistent<br />

measurement results<br />

[1] T.M. Tritt et al., MRS Bulletin 31, 188 (2006). [2] B. Poudel et al., Science 320, 634 (2008). [3] H. Bottner et al., MRS Bulletin 31, 211 (2006).<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


Power Generation:<br />

100-µm-Thick n-NDSL<br />

10 W/cm 2<br />

= -235 µV/K<br />

T c = 25 °C<br />

= -187 µV/K<br />

• Electrical power generated from thermal gradient across sample<br />

• n-PbTe/PbSe NDSL: 1 mm 2 , 100 µm length, Sn/Ni/Au top and Sn bottom contact<br />

• Power density is 5-6x higher than previous best 1 100-µm-thick NDSL (G-207)<br />

• Power density is ~10x higher than TPV, ~100x higher than 1-sun solar cell<br />

1<br />

T.C. Harman et al., Appl. Phys. Lett. 88, 243504 (2006).<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


Part II<br />

Lincoln Laboratory Project Overview<br />

and<br />

Link to Campus Project<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


20 Watt Generator<br />

TE vs. TPV<br />

TPV, 25% combustor efficiency<br />

TPV, 70% combustor efficiency<br />

TPV, 50% combustor efficiency<br />

LL NDSL TE<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


20W TPV and TE System Comparison<br />

TPV<br />

(high eff.)<br />

TPV<br />

(high power)<br />

TE<br />

(optimum)<br />

Hot side temperature 1200K 1200K 600K<br />

Cold side temperature 320K 350K 380K<br />

Combustor Efficiency 70% 70% 80%<br />

Converter Efficiency 20.3% 18.2% 7.6%<br />

Device area 47 cm² 52 cm² 1.2 cm²<br />

Junction power density 0.46 W/cm² 0.40 W/cm² 18 W/cm²<br />

Combustor heat flux 2.3 W/cm² 2.2 W/cm² 25 W/cm²<br />

Overall efficiency 12.3% 13.3% 5.7%<br />

Converter / Combustor mass 146 gm 164 gm 19 gm<br />

Heatsink mass 126 gm 35 gm 116 gm<br />

System mass 364 gm 289 gm 300 gm<br />

Packaging issues<br />

Vacuum, high temperature braze, parasitic<br />

heat transfer effects<br />

Junction thermal stress,<br />

high temperature<br />

stability<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


Comparative System Performance<br />

500 MWe Steam Power<br />

6 month fuel<br />

• 60% mass reduction<br />

for 10 hour mission<br />

• Rechargeable<br />

• Logistics fuel<br />

5 MWe Gas Turbine<br />

6 hour fuel<br />

240 kW APU<br />

1 hour fuel<br />

Solid Oxide<br />

FC, 9 days<br />

Direct Meth<br />

FC, 3.5 days<br />

Palm Power<br />

35W JP8 Stirling<br />

3 days<br />

Air-cooled<br />

TPV, 1 day<br />

Air-cooled<br />

TE, 11 hrs<br />

Water-cooled<br />

TPV, 13 hr<br />

Water-cooled<br />

TE, 90 min<br />

DARPA WASP<br />

Zinc-Air<br />

Primary<br />

Reformed<br />

Meth FC, 9 hr<br />

Zinc-Air<br />

10hr<br />

BA-5590<br />

Li Primary<br />

BB-2590<br />

Li-ion secondary<br />

cell<br />

Zinc-Air<br />

30min<br />

Nanoparticle<br />

Li-ion cell<br />

Top Fuel Dragster<br />

w/ generator<br />

~5 sec<br />

NRL ARSENIC<br />

UGS<br />

ARMY Future<br />

Force Warrior<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


System Block Diagram<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory


Individual Junction Testing<br />

First thermo-element tested.<br />

In-situ Sn face down<br />

TE Device Junction Test Apparatus<br />

MITLL Engineering Division<br />

TE Measurement Apparatus<br />

MITLL Electrooptical <strong>Materials</strong> Group<br />

slide-<br />

GSH 3/15/2007<br />

• Extend previous material measurement work<br />

– T.C. Harman, C.J. Vineis<br />

– Thermal conductivity uncertainty<br />

• Develop device oriented measurement capability<br />

– Vacuum operation with heat flux measurement<br />

– Measure V(I,Th,Tl) and Q(I,Th,Tl)<br />

MIT Lincoln Laboratory


• Working module design<br />

completed<br />

– Thermal stress, passivation, and<br />

operational lifetime identified as<br />

critical risks<br />

– Still need insulating coating for hotside<br />

interconnects<br />

• Successfully soldered junctions<br />

to copper substrates<br />

– Soldered junctions under test:<br />

T < 200ºC so far<br />

• Moving forward with small<br />

module fabrication and testing<br />

– Substrate ordered<br />

– Fixturing design and fab proceeding<br />

Module Devleopment<br />

slide-<br />

GSH 3/15/2007<br />

MIT Lincoln Laboratory

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!