06.12.2012 Views

GaN: Applications in RF Systems Beyond The PA - RF Micro Devices

GaN: Applications in RF Systems Beyond The PA - RF Micro Devices

GaN: Applications in RF Systems Beyond The PA - RF Micro Devices

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>GaN</strong>: <strong>Applications</strong> <strong>in</strong> <strong>RF</strong><br />

<strong>Systems</strong> <strong>Beyond</strong> <strong>The</strong> <strong>PA</strong><br />

Rama Vetury, <strong>RF</strong>MD


Outl<strong>in</strong>e<br />

• Properties of <strong>GaN</strong><br />

• System Challenges<br />

• System Advantages Afforded by <strong>GaN</strong><br />

• <strong>GaN</strong> Components<br />

• Summary


• <strong>GaN</strong> Is Natural Fit For High Power <strong>Applications</strong><br />

Properties of <strong>GaN</strong><br />

High<br />

Voltage<br />

High<br />

Current<br />

Density<br />

High<br />

Frequency<br />

High<br />

Power<br />

Amp


• <strong>GaN</strong> Also Enables <strong>Applications</strong> <strong>Beyond</strong> <strong>The</strong> H<strong>PA</strong><br />

Properties of <strong>GaN</strong><br />

Ruggedness<br />

Power<br />

Handl<strong>in</strong>g<br />

Low Loss,<br />

Low Noise<br />

UNREALIZED<br />

Potential<br />

Other<br />

<strong>RF</strong><br />

Functions


Challenges <strong>in</strong> <strong>RF</strong> systems<br />

Civilian &<br />

Military Radar<br />

Electronic Warfare<br />

• Efficiency<br />

• Weight<br />

• Size<br />

COST<br />

-OR -<br />

• <strong>The</strong>rmal Management<br />

CATV<br />

Cellular and<br />

Broadcast<br />

Communications<br />

Military and Mobile<br />

Communications


Communication <strong>Systems</strong><br />

• Key System Requirements<br />

• Range<br />

• Weight & Form Factor<br />

• Efficiency<br />

• Inter-operability / Waveform Versatility / SDR<br />

• Key <strong>RF</strong> Component Requirements (apart from <strong>PA</strong>)<br />

• Broadband, High Power & High Efficiency Switch<strong>in</strong>g Function<br />

• Low Noise & High Power VCO<br />

• Robust & Wideband LNA


Radar <strong>Systems</strong><br />

Passive Phased Array<br />

BeamFormer<br />

• Active Phased Array Radar <strong>Systems</strong> Advantages<br />

Active Phased Array<br />

• Low Loss, Higher Sensitivity<br />

• More Reliable, Graceful Degradation<br />

• Increased capability (multiple digital beamform<strong>in</strong>g, improved clutter attenuation)<br />

• Solid State T/R module Key Enabler of Advanced Active <strong>PA</strong>R systems<br />

• Fully <strong>GaN</strong> MMIC T/R module improves system design tradeoffs<br />

• Range, Resolution, Efficiency<br />

• Size, Weight<br />

• Environmental Ruggedness<br />

LNA<br />

H<strong>PA</strong><br />

T/R<br />

T/R<br />

T/R<br />

BeamFormer<br />

Receiver<br />

Exciter


Radar <strong>Systems</strong><br />

GaAs<br />

LNA<br />

GaAs<br />

H<strong>PA</strong><br />

• All <strong>GaN</strong> MMIC T/R Enables<br />

• Limiter Reduction/Elim<strong>in</strong>ation<br />

• Circulator Elim<strong>in</strong>ation<br />

• Improved NF & Resolution<br />

• dc power distribution efficiency (48V)<br />

• System Benefits<br />

Limiter &<br />

Protection<br />

Circulator<br />

• Lower Cost<br />

• Improved Range & Search Volume<br />

<strong>GaN</strong><br />

Attenuator<br />

<strong>GaN</strong><br />

Phase Shifter<br />

<strong>GaN</strong><br />

Switch<br />

<strong>GaN</strong><br />

H<strong>PA</strong><br />

<strong>GaN</strong><br />

LNA<br />

<strong>GaN</strong><br />

Switch<br />

• Key <strong>GaN</strong> component Requirements<br />

– LNA<br />

– Robustness<br />

– Low NF, High DR<br />

– Switch<br />

– High Power, High Efficiency<br />

– H<strong>PA</strong><br />

– Power density, Efficiency, BW, Ga<strong>in</strong>


Commercial CATV Transmission<br />

• Key Next Gen System Requirements<br />

• ‘Fiber Deep’ architectures<br />

• Greater Throughput<br />

• Increased Bandwidth<br />

• <strong>GaN</strong> Enables<br />

• Better L<strong>in</strong>earity Amplifier<br />

• Fewer Repeaters<br />

• 20% Lower Energy Costs<br />

• System Insertion<br />

• Trunk Amplifiers<br />

• Optical Nodes<br />

• L<strong>in</strong>e Extenders<br />

Optical Node


<strong>GaN</strong> <strong>RF</strong> Components<br />

Ruggedness<br />

Power<br />

Handl<strong>in</strong>g<br />

Low Loss,<br />

Low Noise<br />

UNREALIZED<br />

Potential<br />

� <strong>GaN</strong> CATV Hi L<strong>in</strong>earity Amp<br />

� <strong>GaN</strong> LNA<br />

� <strong>GaN</strong> Switch<br />

� <strong>GaN</strong> VCO<br />

� <strong>GaN</strong> Mixer<br />

� <strong>GaN</strong> Ga<strong>in</strong> Block<br />

� <strong>GaN</strong> Phase shifters<br />

� <strong>GaN</strong> Var. Attenuators


CATV L<strong>in</strong>ear Amplifier Block Diagram<br />

Forward Path<br />

Input<br />

Return Path<br />

Output<br />

Push Pull Hybrid<br />

Duplex Filter<br />

Pre-Amplifier Output Amplifier<br />

Power Doubler Hybrid<br />

Return Path Amplifier Duplex Filter<br />

Reverse Hybrid<br />

Forward Path<br />

Output<br />

Return Path<br />

Input


CATV Hybrid L<strong>in</strong>ear Amplifier<br />

Block Diagram<br />

Simplified Schematic<br />

Port<br />

<strong>RF</strong><strong>in</strong><br />

TF<br />

TF1<br />

R<br />

R1<br />

R<br />

R2<br />

GaAsFET<br />

FET1<br />

R<br />

R3<br />

GaAsFET<br />

FET2<br />

� Ma<strong>in</strong>ta<strong>in</strong> L<strong>in</strong>earity<br />

� Increase Power<br />

� Elim<strong>in</strong>ate ESD protection<br />

� Lower Overall System Costs<br />

R<br />

R4<br />

GaAsFET<br />

FET3<br />

GaAsFET<br />

FET4<br />

Port<br />

24V<br />

XFERTAP<br />

XFer1<br />

Replace GaAs<br />

with <strong>GaN</strong><br />

Port<br />

<strong>RF</strong>out


L<strong>in</strong>earity Requirements<br />

• Key System Requirements<br />

• L<strong>in</strong>earity<br />

• Cost<br />

• L<strong>in</strong>earity Metrics<br />

• CIN<br />

• CTB<br />

• Xmod<br />

• Temperature Dependence<br />

• <strong>GaN</strong> Technology Advantages<br />

• Intr<strong>in</strong>sic L<strong>in</strong>earity<br />

• ESD Ruggedness<br />

• Temperature Capability<br />

550MHz 870MHz1GHz


Increase <strong>in</strong> L<strong>in</strong>ear Power<br />

3.5 dB<br />

For CIN = 67 dB<br />

Output level <strong>in</strong>creases 3.5 dB<br />

<strong>RF</strong>MD GaAs GaAs -1 GaAs -2<br />

equivalent to 13.5dB tilt and 56.5dBmV<br />

extrapolated to 1GHz<br />

� <strong>GaN</strong> - improved CIN - enables higher power capability


CIN over Temperature<br />

<strong>RF</strong>MD<br />

<strong>GaN</strong><br />

equivalent to 13.5dB tilt and 56.5dBmV extrapolated to<br />

1GHz<br />

Other<br />

GaAs<br />

Other<br />

GaAs<br />

� <strong>GaN</strong> - Improved Intr<strong>in</strong>sic L<strong>in</strong>earity vs GaAs<br />

� <strong>GaN</strong> - Ma<strong>in</strong>ta<strong>in</strong>s L<strong>in</strong>earity Over Temperature Better than GaAs


CATV Technology Revolution<br />

GaAs to <strong>GaN</strong><br />

Revolution<br />

Si to GaAs Revolution<br />

� <strong>GaN</strong> offers improved L<strong>in</strong>earity AND improved Bandwidth


Why <strong>GaN</strong> for LNA ?<br />

• LNA Design Goals<br />

• OIP3 and NF<br />

• Bandwidth & Input and Output Match<br />

• Robustness & Manufacturability<br />

• Technology Choice<br />

• GaAs E-mode pHEMT<br />

• Design Choices<br />

• Active bias circuitry<br />

• Fully Monolithic Integration<br />

• <strong>GaN</strong> Advantages<br />

• Sub 1dB NF<br />

• OIP3 higher -> higher DR<br />

• Wide Band Performance<br />

• Survivability & Robustness<br />

OIP3 (dBm)<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

<strong>GaN</strong> ?<br />

OIP3 vs. Noise Figure<br />

for Commercial LNAs, Discretes & GBs<br />

pHEMT<br />

FET<br />

Low Noise<br />

HFET<br />

0 2 4 6 8<br />

Noise Figure (dB)<br />

HFET<br />

HBT


Fabricated <strong>GaN</strong> MMIC LNA-<strong>PA</strong><br />

<strong>GaN</strong> LNA <strong>PA</strong><br />

• RC feedback<br />

• Ls noise match<br />

• Wg = 1.2 mm<br />

• Vdd = 5-15V<br />

• Idd = 200-400mA<br />

Chip size - 1.7x1.7 mm 2


Noise Figure - High Bias<br />

Ga<strong>in</strong> (dB)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Ga<strong>in</strong> & Noise Figure<br />

15V/400mA<br />

Ga<strong>in</strong><br />

NF<br />

T = 25C<br />

Ga<strong>in</strong> @ -30C<br />

Ga<strong>in</strong> @ 25C<br />

NF @ -30C<br />

NF @ 25C<br />

NF ~ 0.25-0.45 dB<br />

T = -30C<br />

1 2 3 4 5 6 7 8<br />

Frequency (GHz)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Noise Figure (dB)


Noise Figure - Medium Bias<br />

Ga<strong>in</strong> (dB)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Ga<strong>in</strong> & NF over Temperature<br />

12V/200mA<br />

Ga<strong>in</strong><br />

NF<br />

T = -30C<br />

T = 25C<br />

1 2 3 4 5 6 7<br />

Frequency (GHz)<br />

Ga<strong>in</strong> @ -30C<br />

Ga<strong>in</strong> @ 25C<br />

NF @ -30C<br />

NF @ 25C<br />

NF ~ 0.1-0.2 dB<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Noise Figure (dB)


Wide-band S-par, High Bias<br />

Ga<strong>in</strong>, Return-Loss (dB)<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

S 21<br />

Vdd= 15V, Idd= 200mA<br />

Temperature = -30C, 0C, 25C<br />

S 11<br />

S 22<br />

0 1 2 3 4 5 6 7 8<br />

Frequency (GHz)


Output Compression at 2 GHz<br />

Pout (dBm), Ga<strong>in</strong>(dB),<br />

<strong>PA</strong>E(%)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Pout = -30C<br />

Ga<strong>in</strong> T=-30C<br />

<strong>PA</strong>E T=-30C<br />

Pout = 25C<br />

Ga<strong>in</strong> T= 25C<br />

<strong>PA</strong>E T= 25C<br />

Pout @ 2 GHz<br />

15V/400mA<br />

Ga<strong>in</strong><br />

Pout<br />

P1dB = 32.8 dBm<br />

<strong>PA</strong>E@P1= 25%<br />

1.59 W/mm @ P1dB<br />

<strong>PA</strong>E<br />

-20 -15 -10 -5 0 5 10 15 20 25<br />

P<strong>in</strong> (dBm)


Wide Band IP3 Performance<br />

Output IP3 (dBm)<br />

48<br />

46<br />

44<br />

42<br />

40<br />

38<br />

36<br />

34<br />

32<br />

30<br />

<strong>GaN</strong> MMIC Low Noise <strong>PA</strong><br />

15V, 400 mA<br />

12V, 400 mA<br />

5V, 400 mA<br />

5V, 200 mA<br />

1 2 3 4 5 6 7<br />

Frequency (GHz)<br />

IMS – Honolulu June 3-5, 2007,<br />

Kobayashi, et.al.


<strong>GaN</strong> LNA<br />

OIP3 (dBm)<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

OIP3 vs. Noise Figure<br />

for Commercial LNAs, Discretes & GBs<br />

This <strong>GaN</strong> LNA<br />

0 2 4 6 8<br />

Noise Figure (dB)<br />

�LNA Result Validates <strong>GaN</strong> promise


Why <strong>GaN</strong> for <strong>RF</strong> Switches ?<br />

• <strong>GaN</strong>:<br />

• Eng<strong>in</strong>eer C OFF, low R on<br />

• high BKDN<br />

• high ID,max • Low R TH<br />

• High Max T CH<br />

• Si PIN:<br />

• Drive Current Dependence<br />

• GaAs pHEMT:<br />

• Lower BKDN<br />

Si PIN GaAs FET <strong>GaN</strong> FET<br />

Small Signal<br />

Insertion Loss<br />

Isolation<br />

Large Signal<br />

0.1dB Compression V & I Marg<strong>in</strong><br />

Switch<strong>in</strong>g Speed<br />

L<strong>in</strong>earity<br />

IIP3, 2nd & 3rd Harmonic<br />

Robustness<br />

High Power <strong>RF</strong> Switch Technology<br />

Comparision 1<br />

Need High<br />

Drive Current<br />

Degrade at<br />

Higher Power<br />

V & I Marg<strong>in</strong><br />

VSWR ruggedness<br />

Lower Max<br />

Temp<br />

BKDN, Max T<br />

Max <strong>RF</strong> Power<br />

System Factors<br />

Size<br />

Efficiency<br />

Complexity<br />

BKDN, Max T<br />

1 compared at f= 2GHz


S<br />

<strong>RF</strong>MD Switch Model<br />

TL3 R21<br />

R20<br />

TL4<br />

SRC4 PRC2<br />

SRC3<br />

• Simple small signal model<br />

chosen<br />

• Power Performance<br />

Estimated By<br />

• Device breakdown<br />

• Maximum Current<br />

• Good agreement between<br />

model & measurement<br />

G<br />

D<br />

(dB)<br />

(dB)<br />

0<br />

‐1<br />

‐2<br />

‐3<br />

‐4<br />

‐5<br />

‐6<br />

0<br />

‐10<br />

‐20<br />

‐30<br />

‐40<br />

‐50<br />

Insertion Loss<br />

Model<br />

Meas<br />

0 5 10 15 20<br />

Isolation<br />

Frequency (GHz)<br />

0 5 10 15 20<br />

Frequency (GHz)<br />

Model<br />

Meas<br />

40<br />

30<br />

20<br />

10<br />

0<br />

‐10<br />

‐20<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

degree<br />

degree


<strong>RF</strong>MD SPDT Switch<br />

Model Validation<br />

Bias Ron(Ohm‐mm)<br />

(V) Coff(pF/mm)<br />

Switch FOM<br />

(GHz)<br />

0 2.24 NA<br />

10 0.27 268<br />

20 0.20 359<br />

30 0.17 431<br />

40 0.14 508<br />

• SS FOM comparable to GaAs pHEMT<br />

•C OFF Bias Dependence<br />

• SPDT switch design<br />

- ss model based<br />

- Power based on Technology Metrics<br />

X9<br />

Simplified Topology<br />

Recieve1<br />

R2<br />

X6 X7<br />

R1 R4<br />

Port<br />

Vcontrol1<br />

Antenna1<br />

R<br />

R3<br />

Port<br />

Vcontrol2<br />

X8<br />

Transmit1


(dB)<br />

0<br />

‐0.2<br />

‐0.4<br />

‐0.6<br />

‐0.8<br />

‐1<br />

<strong>RF</strong>MD <strong>GaN</strong> Switch – Insertion Loss<br />

Insertion Loss<br />

Model<br />

Meas<br />

0.5 1 1.5 2 2.5 3<br />

Frequency (GHz)<br />

• Good agreement to Model<br />

• Excellent Performance to 3GHz<br />

(dB)<br />

0<br />

‐5<br />

‐10<br />

‐15<br />

‐20<br />

‐25<br />

‐30<br />

‐35<br />

Input Return Loss<br />

Model<br />

Meas<br />

0.5 1 1.5 2 2.5 3<br />

Frequency (GHz)


<strong>RF</strong>MD <strong>GaN</strong> Switch – Isolation<br />

(dB)<br />

0<br />

‐10<br />

‐20<br />

‐30<br />

‐40<br />

‐50<br />

Isolation (<strong>RF</strong>C-<strong>RF</strong>)<br />

Model<br />

Meas<br />

0.5 1 1.5 2 2.5 3<br />

Frequency (GHz)<br />

• Measured Isolation less than simulated<br />

• Excellent Performance to 3GHz


<strong>RF</strong>MD <strong>GaN</strong> Switch - L<strong>in</strong>earity<br />

• Basic Limitations<br />

• On State: Resistance Increase<br />

• Off State:<br />

• Diode Turn On<br />

• Breakdown<br />

• <strong>GaN</strong> advantages<br />

• Higher Idss, Idmax<br />

• Decreased Ron non l<strong>in</strong>earity<br />

• BKDN > 100V<br />

• Allows for Voltage Marg<strong>in</strong><br />

• Eng<strong>in</strong>eer C OFF for Low Distortion


Power Handl<strong>in</strong>g (W)<br />

Power Performance<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Switch Off‐State Power Handl<strong>in</strong>g<br />

0 50 100 150<br />

Vbr‐Vpo (V)<br />

Off State Power<br />

Handl<strong>in</strong>g<br />

50% DeRated<br />

Power Handl<strong>in</strong>g (W)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Switch Power Handl<strong>in</strong>g vs Control<br />

‐100 ‐80 ‐60 ‐40 ‐20 0<br />

Control Voltage (V)<br />

Key <strong>GaN</strong> advantages<br />

- Higher Breakdown Voltage -> High Off State Power Handl<strong>in</strong>g<br />

- Larger Vcontrol possible<br />

- More Voltage Marg<strong>in</strong> for VSWR mismatch & process variation<br />

50% DeRated<br />

Power Handel<strong>in</strong>g


Insertion Loss (dB)<br />

Power Performance<br />

0<br />

‐0.1<br />

‐0.2<br />

‐0.3<br />

‐0.4<br />

‐0.5<br />

‐0.6<br />

‐0.7<br />

‐0.8<br />

‐0.9<br />

‐1<br />

Insertion Loss vs Power<br />

0 10 20 30 40<br />

Input Power (W)<br />

ON State Compression<br />

• Measured Insertion Loss<br />

- bias -40V<br />

• IL change < 0.1dB<br />

-Input Power ~ 38 W<br />

• Measurement System Limited


Summary<br />

�<strong>GaN</strong> CATV L<strong>in</strong>ear Amp<br />

�<strong>GaN</strong> LNA<br />

�<strong>GaN</strong> Switch<br />

� <strong>GaN</strong> VCO<br />

� <strong>GaN</strong> Mixer<br />

� <strong>GaN</strong> Ga<strong>in</strong> Block<br />

� <strong>GaN</strong> Phase shifters<br />

� <strong>GaN</strong> Var. Attenuators<br />

� Successful Demonstration of key <strong>GaN</strong> based components<br />

� Expect Successful Launch of other <strong>GaN</strong> based <strong>RF</strong> components <strong>in</strong><br />

Future<br />

Contributions by Kev<strong>in</strong> Kobayashi (<strong>GaN</strong> LNA) and Ra<strong>in</strong>er Hillermeier<br />

(<strong>GaN</strong> CATV amp) and David Hodge (<strong>GaN</strong> Switch) are acknowledged<br />

<strong>RF</strong>MD acknowledges support of AFRL (Monitor: Dr. John Blev<strong>in</strong>s)<br />

and ONR (Monitor: Dr. Paul Maki) <strong>in</strong> develop<strong>in</strong>g its core <strong>GaN</strong><br />

technology used <strong>in</strong> some of this work


References<br />

• www.microwaves101.com<br />

• International <strong>Micro</strong>wave Symposium, June 3-5, 2007, Kobayashi et.<br />

al.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!