24.08.2015 Views

Check GAD antibody positivity with the Diamyd anti-GAD RIA plate*

GAD in Metabolic - Diamyd Medical AB

GAD in Metabolic - Diamyd Medical AB

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ReferencesT1DM and LADA Differ in<strong>GAD</strong>A Epitope SpecificityDChristiane Hampe, Rattan Juneja, Åke Lernmark, Jerry Palmeriabetes Mellitus is classifiedinto two major forms, Type1 and Type 2 diabetes. Type1 diabetes is characterizedby an autoimmune-mediateddestruction of betacells,leading to insulin deficiency. The autoimmunereaction involves both T cells and <strong>anti</strong>bodies directedagainst islet cell auto<strong>anti</strong>gens that can be detectedin <strong>the</strong> majority of Type 1 diabetes patients (1, 2).The main auto<strong>anti</strong>gens identified are insulin (3), <strong>the</strong>Mr 65,000 isoform of glutamic acid decarboxylase(<strong>GAD</strong>65) (4), and <strong>the</strong> tyrosine phosphatase-like IA-2<strong>anti</strong>gen (5). These auto<strong>anti</strong>bodies are often detectedlong before <strong>the</strong> clinical onset of Type 1 diabetes andare useful to predict disease risk (5, 6). <strong>GAD</strong>65 andIA-2 auto<strong>anti</strong>bodies (Ab) are readily detected bynow standardized (7), precise and reproducible radioimmunoassays(4, 7, 8) suitable for large scale analysisand population screening (6, 9). In contrast, classicalType 2 diabetes patients do not show evidence ofautoimmune beta cell destruction. Patients <strong>with</strong>Type 1 diabetes usually require insulin treatment at<strong>the</strong> time of diagnosis whereas Type 2 patients can besuccessfully treated by diet and oral agents for manyyears. These patients do not show evidence of autoimmunebeta cell destruction. A third group of patientsis referred to as latent autoimmune diabetes inadults (LADA) (10), Type 1.5 diabetes (11), or slowlyprogressive insulin dependent diabetes mellitus(SPIDDM) (12). These patients lose beta cell function,fail oral agents early and require insulin treatment(13, 14). Evidence for an underlying autoimmmunepathogenesis is provided by <strong>the</strong> observationthat many of <strong>the</strong>se patients have islet cell <strong>anti</strong>bodies(ICA), auto<strong>anti</strong>bodies to <strong>GAD</strong>65 (<strong>GAD</strong>65Ab) (10,15, 16), or both. The presence of <strong>GAD</strong>65Ab alone isa sufficient marker for future insulin requirementin younger patients (44 years or younger) while inolder patients <strong>positivity</strong> for both ICA and<strong>GAD</strong>65Ab is a stronger predictor of insulin requirement(17). The question has been raised whe<strong>the</strong>rType 1.5 diabetes represents a separate clinical diseaseor is a slowly progressive form of Type 1 diabetes(18, 19). Epitope mapping of <strong>GAD</strong>65Ab can assist in<strong>the</strong> classification of <strong>the</strong> underlying autoimmunity.Using both <strong>GAD</strong>65/67 fusion proteins (20, 21) and<strong>GAD</strong>65-specific recombinant Fab we and o<strong>the</strong>rswere able to identify phenotype-specific <strong>GAD</strong>65Abepitopes. <strong>GAD</strong>65Ab in newly diagnosed young Type1 diabetes patients recognize restricted epitopes primarilylocated at <strong>the</strong> combined middle-carboxyterminalconformational epitope of <strong>GAD</strong>65, while bindingto <strong>GAD</strong>67 or <strong>the</strong> N-terminus of <strong>GAD</strong>65 isdetected only at a low level. In contrast, <strong>GAD</strong>65Abpositive Type 1.5 diabetes patients exhibit a<strong>GAD</strong>65Ab epitope pattern that is characterized bybinding to both <strong>the</strong> N-terminus of <strong>GAD</strong>65 and to atentative conformational epitope formed of <strong>the</strong>middle and carboxyterminal part of <strong>GAD</strong>65 (22).This <strong>GAD</strong>65Ab epitope profile clearly differs fromthat found in Type 1 diabetes patients and moreresembles <strong>the</strong> broader <strong>GAD</strong>65Ab epitope specificityfound in <strong>GAD</strong>65Ab-positive healthy individuals andfirst-degree relatives (20). This difference in <strong>the</strong> bindingpattern of <strong>GAD</strong>65Ab of Type 1.5 diabetes patientscompared to that of Type 1 diabetes patientssupports <strong>the</strong> notion that <strong>the</strong> disease process maydiffer between <strong>the</strong>se two types of patients. We <strong>the</strong>reforesuggest that Type 1.5 diabetes might be a subtypeof Type 1 diabetes characterized by separateimmunologic features. <strong>GAD</strong>65Ab epitope patternsmay be useful to identify Type 1.5.Christiane Hampe, Ph.D., has a position asjunior faculty at <strong>the</strong> University of Washingtonin Seattle. Her research interests are <strong>the</strong> disssectionof <strong>the</strong> role of <strong>GAD</strong>65 and its auto<strong>anti</strong>bodiesin <strong>the</strong> pathogenesis of Type 1 diabetes.While <strong>the</strong>se auto<strong>anti</strong>bodies are widely acceptedas markers for <strong>the</strong> disease, preliminarydata indicate that disease-specific <strong>GAD</strong>65Abmodulate T cell responses. Hampe’s currentresearch goals are to understand <strong>the</strong> effect of<strong>GAD</strong>65Ab on processing and presentation of<strong>GAD</strong>65.1. Bonifacio E, et al,Islet auto<strong><strong>anti</strong>body</strong> markers in IDDM: risk assessmentstrategies yielding high sensitivity.Diabetologia 38:816-822, 19952. Landin-Olsson M, et al,Islet cell and o<strong>the</strong>r organ-specific auto<strong>anti</strong>bodies in allchildren developing Type 1 (insulin-independent) diabetesmellitus in Sweden during one year and in matchedcontrols.Diabetologia 32:387-395, 19893. Palmer JP, et al,Insulin <strong>anti</strong>bodies in insulin-dependent diabetics beforeinsulin treatment. Science 222:1337-1339, 19834. Grubin CE, et al,A novel radioligand binding assay to determine diagnosticaccuracy of isoform-specific glutamic acid decarboxylase<strong>anti</strong>bodies in childhood IDDM.Diabetologia 37:344-350, 19945. Verge CF, et al,Prediction of Type I diabetes in first-degree relativesusing a combination6. Bingley PJ, et al,Prediction of IDDM in <strong>the</strong> general population:Strategies based on combinations of auto<strong><strong>anti</strong>body</strong>markers.Diabetes 46:1701-1710, 19977. Mire-Sluis AR, et al,The development of a World Health Organisationinternational standard for islet cell <strong>anti</strong>bodies: <strong>the</strong> aimsand design of an international collaborative study.Diabetes Metab Res Rev 15:72-77, 19998. Verge CF, et al,Combined use of auto<strong>anti</strong>bodies (IA-2) auto<strong><strong>anti</strong>body</strong>,<strong>GAD</strong> auto<strong><strong>anti</strong>body</strong>, insulin auto<strong><strong>anti</strong>body</strong>, cytoplasmicislet cell <strong>anti</strong>bodies) in Type 1 diabetes: CombinatorialIslet Auto<strong><strong>anti</strong>body</strong> Workshop.Diabetes 47:1857-1866, 19989. Rolandsson O, et al,Glutamate decarboxylase (<strong>GAD</strong>65) and tyrosine phosphatase-likeprotein (IA-2) auto<strong>anti</strong>bodies index in aregional population is related to glucose intoleranceand body mass index.Diabetologia 42:555-559, 199910. Tuomi T, et al,Antibodies to glutamic acid decarboxylase reveallatent autoimmune diabetes mellitus in adults <strong>with</strong> anon-insulin-dependent onset of disease.Diabetes 42:359-362, 199311. Harris MI, et al,Classification of diabetes mellitus and o<strong>the</strong>r catagoriesof glucose intolerance. In: Keen H, DeFronzo R,Alberti K, Zimmet P, ed.The international textbook of diabetes mellitus.London: Wiley, 1992, 3-18.12. Ludvigsson J, et al,HLA-DR3 is associated <strong>with</strong> amore slowly progressiveform of Type 1 (insulin-dependent) diabetes.Diabetologia 29:207-210, 198613. Temple RC, et al,Insulin deficiency in non-insulin-dependent diabetes.Lancet 1:293-295, 198914. Gjessing HJ, et al,Fasting plasma c-peptide, glucagon stimulated plasmac-peptide, and urinary c-peptide in relation to clinicaltype of diabetes.Diabetologia 32:305-311, 198915. Groop LC, et al,Islet cell <strong>anti</strong>bodies identify latent Type 1 diabetes inpatients aged 35-75 years at diagnosis.Diabetes 35:237-241, 198616. Rowley MJ, et al,Antibodies to glutamic acid decarboxylase discriminatemajor types of diabetes mellitus.Diabetes 41:548-551, 199217. Turner R, et al,UKPDS 25: auto<strong>anti</strong>bodies to isle T cell cytoplasm andglutamic acid decarboxylase for prediction of insulinrequirement in Type 2 diabetes.UK Prospective Diabetes Study Group [published erratumappears in Lancet 1998 Jan 31;351 (9099): 376].Lancet 350:1288-1293, 199718. Juneja R, et al,Autoimmunity 29:65-83, 199919. Tuomi T, et al,Clinical and genetic characteristics of Type 2 diabetes<strong>with</strong> and <strong>with</strong>out <strong>GAD</strong> <strong>anti</strong>bodies.Diabetes 48:150-157, 199920. Hampe CS, et al,Recognition of Glutamic Acid Decarboxylase (<strong>GAD</strong>)by Auto<strong>anti</strong>bodies from Different <strong>GAD</strong> Antibody-Positive Phenotypes.J Clin Endocrinol Metab 85:4671-4679, 200021. Falorni A, et al,Diagnostic sensitivity of immunodominant epitopes ofglutamic acid decarboxylase (<strong>GAD</strong>65) auto<strong>anti</strong>bodiesepitopes in childhood IDDM.Diabetologia 39:1091-1098, 199622. Hampe CS, et al,<strong>GAD</strong>65 <strong><strong>anti</strong>body</strong> epitope patterns of Type 1.5 diabeticpatients are consistent <strong>with</strong> slow-onset autoimmunediabetes.Diabetes Care 25:1481-1482., 2002dmccad june 2003page 39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!