21.08.2015 Views

Efficient and controlled synthesis of SWCNTs by enhanced direct ...

Efficient and controlled synthesis of SWCNTs by enhanced direct ...

Efficient and controlled synthesis of SWCNTs by enhanced direct ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Efficient</strong> <strong>and</strong> <strong>controlled</strong> <strong>synthesis</strong> <strong>of</strong><strong>SWCNTs</strong> <strong>by</strong> <strong>enhanced</strong> <strong>direct</strong> injectionpyrolytic <strong>synthesis</strong> (eDIPS) method <strong>and</strong>their applicationsGuadalupe Workshop 2011April 8 th -12 th , 2011Texas USATakeshi SaitoNational Institute <strong>of</strong> Advanced IndustrialScience <strong>and</strong> Technology (AIST)


Table <strong>of</strong> Contents1. Reminding our recent work inGMW20072. Impact <strong>of</strong> reaction temperature onthe tube diameter3. Main gas-phase intermediatesresponsible for SWCNT growth(Importance <strong>of</strong> gas-phase chemistry)4. Recent research progress inseparation works


Our recent work(GMW2007)


Background:<strong>SWCNTs</strong>’ Diameters <strong>and</strong> Applications0.4nm 1.0nm 2.0nm 3.0nm 4.0nmOptoelectronics光 電 子 材 料The smaller the tube diameter is,the more efficient the fluorescence is.Semiconductive materials半 導 体 用 途The b<strong>and</strong>gap varies in inverse proportion to the diameter.All tubes would be almost metallic.Fillers <strong>and</strong> electrodes導 電 性 フィラー/ 電 極 ( 金 属 的 性 質 )Crystalinity would be importantfor the toughness.Ultra-tough carbon fiber高 強 度 炭 素 繊 維Utilizing both inside <strong>and</strong>outside space <strong>of</strong> the tube.Adsorption materials吸 着 材 料Diameter control in these range→An enabling step for realization <strong>of</strong> SWCNT application!


Basic Facility <strong>of</strong> eDIPSSpray NozzleFeedstockH 2 +C H 2 24C 2 H 4 +H 2SprayNozzleMixerColumnMass FlowControllerMicro FeederReactionMechanismEvaporation<strong>of</strong> FeedstockDeposition ChamberCarrier Gas(Hydrogene)2 nd CarbonSource(Ethylene)Starting Materials & Typical Reaction Conditions‣ 1 st carbon source: Toluene etc.‣ 2 nd carbon source: Ethylene‣ Catalyst: Ferrocene‣ Promoter: Thiophene‣ Feedstock: HC:Ferro:Thio‣ Carrier gas: H 2 , ~7 slm including spray Close-up gas <strong>of</strong> ~2 <strong>of</strong> slm sprayInternal dia.: 260 µmexternal dia.: 510 µmDecomposition, Nucleation, <strong>and</strong>Surface ReactionSWCNTGrowthinGas-Phasee-DIPS: Enhanced Direct Injection Pyrolytic SynthesisSaito et al., J. Nanosci. Nanotech., 8 (2008) 6153-6157, Chem. Commun., (2009)3422-3424.


Diameter <strong>and</strong> chirality controllability ineDIPS Measured <strong>by</strong> NIR PL MappingDia.0.76nm0.92nm1.05nm1.17nm(7,5)Excitation Wavelength [nm](8,3)(6,5)(7,5)(7,6)(8,4)Dia.~ 0.8 nmE g ~ 1.2 eV1200ºC Ethylene 0~200sccmEthylene:0 Ethylene:150 Ethylene:200 Ethylene:25 Ethylene:50 Ethylene:100 sccmEmission Wavelength [nm]Saito et al., J. Nanosci. Nanotech., 8 (2008) 6153-6157.


Model <strong>of</strong> diameter control ineDIPS ProcessSize <strong>of</strong>Catalystparticles1 nm2 nmFlow DirectionDecompositon<strong>of</strong>TolueneDecomposition<strong>of</strong> C 2 H 4DiameterDistribution <strong>of</strong><strong>SWCNTs</strong>0 nm1 nm2 nm3 nmShift <strong>of</strong> the distribution4 nm5–10nm


Start <strong>of</strong> Mass Production <strong>and</strong>Free sample providingNIKKISO Carbon Nanotube Technology•April, 2007•NIKKISO CO., LTD.NIKKISO Proprietary


Impact <strong>of</strong> reaction temperaturein eDIPS system


SEM Images <strong>of</strong> SamplesFurnace temp.1200 ºC1150 ºC1100 ºC1000 ºC3.0 m300 nm


Raman Analysis <strong>of</strong>Reaction Temp. DependenceEx. 488 nmFurnace temp.1000 ℃156.5 cm -1(1.585 nm)1100 ℃1150 ℃1200 ℃197.9 cm -1(1.253 nm)d = 248/ω RBMJorio et al., PRL 86 (2001) 1118


Optical Absorption Analysis <strong>of</strong>Reaction Temp. Dependence1.61.4Wideintensity /a.u.1.210.80.60.4Furnace temp.1000 ºC1100 ºC1150 ºC1200 ºCTube Diameter0.2narrow00 1 2 3 4 5 6energy / eVOpposite trend from ACCVD!(Chem. Phys. Lett., 387(2004)198.)


Model <strong>of</strong> diameter control ineDIPS ProcessSize <strong>of</strong>Catalystparticles1 nm2 nmFlow DirectionDecompositon<strong>of</strong>TolueneDecomposition<strong>of</strong> C 2 H 4DiameterDistribution <strong>of</strong><strong>SWCNTs</strong>0 nm1 nm2 nm3 nmShift <strong>of</strong> the distribution4 nm5–10nm


Summary<strong>of</strong> RT impactContrary to the case <strong>of</strong> ACCVD, decreasingthe reaction temperature graduallyincreases the tube diameter in eDIPS.This result supports our model <strong>of</strong> diameter<strong>controlled</strong> <strong>synthesis</strong>, that is, the key factorfor controlling the diameter is not thenucleation (or aggregation) process <strong>of</strong>catalysts like in the other systems such asACCVD, but the supplied amount <strong>of</strong> carbonprecursor.


Narrow distribution samplesprepared <strong>by</strong> mix techniques♫ eDIPS Diameter Tuner ♫G-b<strong>and</strong>Xω RBM = 265 cm -1ω RBM = 183 cm -1ω RBM = 148 cm -1RBMC2H4TempD-b<strong>and</strong>d = 248/ω RBM0.936 nmZ1.36 nmY1.68 nm


Chirality distributioncharacterized <strong>by</strong> OAS <strong>and</strong> PL1.00.8SemiconductorMetalPL0.6(10, 3) (11, 1)(12,0)(11,2)(7, 7)(9, 5) (8, 6)(10, 4)0.4(6, 5)(7, 4)(9, 8)(9, 6)(10, 2)(7, 6)(8, 5)(9, 4)0.20.00.8 1.0 1.2 1.4Diameter (nm)Saito et al., J. Phys. Chem. C, 114 (2010) 10077.Relative Amount(10, 6)(13, 2)(12, 4)(11, 6)(10, 8)(13, 5)(10, 9)(12,7)(11,9)(14, 6)(12, 1)(11, 3)(8, 7)(10, 5)(11, 4)(9, 7)(8, 3)(8, 4)(9, 2)(6, 6)(7, 5)


CountsCountsCountsCountsCountsDia. histogramfrom TEM obs.201000.5 1.0 1.5 2.0 2.5201000.5 1.0 1.5 2.0 2.530201000.5 1.0 1.5 2.0 2.520 D1000.5 1.0 1.5 2.0 2.520 E10ABC00.5 1.0 1.5 2.0 2.5Diameter (nm)Variation <strong>of</strong> <strong>SWCNTs</strong>’ AbsorptionEthylene20 sccm15 sccm10 sccm5 sccm0 sccmSpectrum on their DiameterAbsorption (arb. unit)10.90.80.70.60.50.40.30.20.1Optical absorption0S 11 S 22 M 11ABCDE0.5 1.5 2.5Photon Energy (eV)between 0.5 diameters <strong>and</strong> peak positions:Clear <strong>and</strong> wide correlation between tube diameters <strong>and</strong> peak positions was observed !Photon Energy energy (eV) (eV)32.521.51M 11S 22S 11Experimentally determined relationM 11 : E = 2.60 / d0mS 22 : 0.5 E 0.7 = 1.73 0.9 / 1.1 d m1.3 1.5 (1)m (nm –1 )S 1/d m(nm -1 11 : E = 0.962 / d m )Saito et al., Appl. Phys. Express, 2 (2009) 095006.,ISO/DTS 10868 , MSIN2010


Main gas-phase intermediates<strong>and</strong> their chemistry in eDIPS


Model <strong>of</strong> diameter control inFixed ParameterseDIPS Process‣Temperature: 1200℃‣Carrier Gas : H 2DecompositonL/min <strong>of</strong> ositionDecomp-‣H 2 flow rate: 7.0‣Catalyst: Ferrocene1 st <strong>of</strong> 2 ndCarbon Carbon‣Promoter: Thiophene Source sourse‣Feedstock composition: HC:F:T = 100:4:21 nm(wt%)Size <strong>of</strong>Catalystparticles1 nm2 nmFlow Direction‣ Feed rate = 5μL/minResidence Time= 2.27 Sec.Experimental Variables‣Carbon Sources1 st : Aromatic HCs,DiameterDistribution <strong>of</strong><strong>SWCNTs</strong>0 nm2 nm3 nm4 nmShift <strong>of</strong> the distribution5–10nm2 nd : C 2 H 4 <strong>and</strong> C 2 H 6


Carbon Sources with DifferentPh+”sp 3 ”Hybridized MoitiesPh+”sp 2 ”Ph+”sp”CH 3StyreneHCCH 2PhenylacetyleneTolueneC CHp-XyleneH 3CCH 3AllylbenzeneH 2C C CH 2 H3-phenyl-1-propyneEthylbenzeneC 2H 5C H 2C CHPropylbenzeneC 3H 7DivinylbenzeneHH 2C CC CH 2H:No or Negligible Yields!CVD reactions were surely affected <strong>by</strong> the molecular structure!!


Propylbenzene Styrene Allylbenzene DivinylbenzeneC 3H 7SEM <strong>and</strong> TEM images <strong>of</strong>as-grown samplesHCCH 2CCH 2C CH 2 H H C H 2C CH 2 H×10K3.0 m3.0 m3.0 m3.0 m×100K300 nm300 nm300 nm300 nmInset scale bar: 4 nm 10nm 10nm 5nm


876543210Total carbon yield <strong>of</strong>as-grown <strong>SWCNTs</strong>Difinition:Carbon Yield =Weight <strong>of</strong> productx Carbonaceous Percentageevaluated <strong>by</strong> TGA.Toluenep-XyleneEthylbenzenePropylbenzenePhenylacetylene3-phenyl-1-propyneAllylbenzeneDivinylbenzeneStyrenesp ≤ sp 3


Thermal Decomposition PatternsStyrene<strong>of</strong> HCs with sp 2 MoitiesC=C+ C2H2 •C C+ C2H3 •Allylbenzene+ H2C-C=C•C-C=C+HC ••+ C2H3 •DivinylbenzeneC=C- C2H3 •+ C3H5 •• •-C2H3 •C3H4 +HC3H3 •+H2C=CC=C•Benzyne


Thermal Decomposition PatternsToluene<strong>of</strong> HCs with sp 3 MoitiesC•+ CH3 • C •<strong>of</strong> HCs with sp 3 Moitiesp-XyleneC•+ CH3 •C •+ HC+ HEthylbenzeneCC-CC-C •+ HCC •+ CH3 •PropylbenzeneC-C-C-HC-C-C •C •+ C 2 H 4C •-H+ • C2H5


Thermal Decomposition Patterns<strong>of</strong> HCs with sp MoitiesPhenylacetyleneC C•+ C2H •3-phenyl-1-propyne•CH2 C CC •+ C3H3 •Highly reactive!+ C2H •No production <strong>of</strong> <strong>SWCNTs</strong> from these species might be caused<strong>by</strong> the deactivation <strong>of</strong> catalyst surface passivated <strong>by</strong> the highlyreactive C2H radicals due to less H <strong>and</strong> smaller size


876543210Impact <strong>of</strong> C2H4 additionWITH C2H4 (5ccm)Remarkable points• Singificantenhancement insp3’s <strong>and</strong> styrene.• Detraction inproducts in othersp2’s.• No change (stillzero yield) in sp’s.Toluenep-XyleneEthylbenzenePropylbenzenePhenylacetylene3-phenyl-1-propyneAllylbenzeneDivinylbenzeneStyreneShukla <strong>and</strong> Saito et al., Chem. Commun., (2009) 3422-3424.Normalized Real Carbon Yield / mg


Roles <strong>of</strong> sp3 C2 <strong>and</strong> C1Neutral/Radical Speciessp 3 C2 Neutral SpeciesC2H6C – C fissionC – H fission2CH3sp 3 C1 RadicalC2H5sp 3 C2 RadicalC2H4sp 2 C2FeedstockToluene: Ferrocene:Thiophen = 100:4:2Flow rate = 5μL/minSecondary Carbon Source:C2H4 or C2H6


Comparison <strong>of</strong> Real Carbon Yieldon Addition <strong>of</strong> C2H4 <strong>and</strong> C2H6Same Gas Phase intermediate should be responsiblefor the growth in both casesShukla <strong>and</strong> Saito et al., Chem. Mater., 22 (2010) 6035-6043.


CHEMKIN-ResultShukla <strong>and</strong> Saito et al., Chem. Mater., 22 (2010) 6035-6043.1.40E-03C 2 H 4Mole Fraction <strong>of</strong> Species1.20E-031.00E-038.00E-046.00E-044.00E-042.00E-040.00E+00C 2 H 6C 2 H 2CH 4-0.1 0.1 0.3 0.5 0.7 0.9 1.1Downshift distance <strong>of</strong> reaction zone inside the reactor/cmImpact <strong>of</strong> SP 2 C2 Species,DominantSP 3 C1 Species,NegligibleBlack lines = C2H6Gray lines = C2H4C2H6 + H = C2H5+ H2C2H5 = C2H4 + HC2H6 = CH3 + CH32C2H3 = C3H3 + CH3


Summary Under the diluted conditions <strong>of</strong> carbonsources, SWCNTS were synthesized mainlyfrom the aromatic hydrocarbons with sp 2 -hybridized moieties. Analysis <strong>of</strong> the thermal decompositionpattern implies that C 2 H 3 <strong>and</strong>/or C 2 H 4 aresuperior gas-phase intermediatesresponsible for SWCNT growth in eDIPSsystem.


Length sorting <strong>and</strong> M/Sseparation <strong>of</strong> eDIPS-CNT


Effect <strong>of</strong> “Length”3TFT device reliability with Length <strong>of</strong><strong>SWCNTs</strong><strong>SWCNTs</strong> R<strong>and</strong>om networkFET channelL SDP error= P open +P short70μm40 251510lMetal:1/3L SD =50μm75M. Ishida <strong>and</strong> F. Nihey, Appl. Phys. Lett. 92, 163507 (2008).l short < l long < 1/10 L SD (ERROR < 1ppm)


Recent studies4• DNA-assisted Size ExclusionChromatography(M. Zheng, et.al., Nature Mat., 2003, 2, 338-342.)<strong>SWCNTs</strong> can be sorted as a function <strong>of</strong> retentiontime.• Length Fractionation <strong>of</strong><strong>SWCNTs</strong> Using Centrifugation(J. A. Fagan, et.al., Langmuir 2008, 24,13880-13889)<strong>SWCNTs</strong> can be sort at position <strong>of</strong> thecentrifugation tube.shortExcellent fractionation precision,BUT LOW-THROUGHPUT!!Long


Motivation5• Controlling length <strong>of</strong> <strong>SWCNTs</strong> is anticipated fromapplication side, such as printable electronics (CNT-ink).• Recent work <strong>of</strong> SEC is excellent in separating precision,but have a problem in processability.THIS WORKHere we propose a NEW & SIMPLE Experimentalprocess;“Multi-step cross-flow filtration”


Fractionation <strong>of</strong> Single Wall Carbon Nanotubes <strong>by</strong>Length Using Cross Flow Filtration MethodACS Nano, 4, 3606, (2010) Source<strong>SWCNTs</strong>suspensionPore1mRetentatePumpAPermeatePore0.45mA B C DFilterBPermeatePermeatePore C0.2m DCounts35%30%25%20%15%10%5%0%DCB0.2 0.45 1Length ( m)AABCD3-steps cross-flow filtration processes with different poresizemembranes successfully separate 4 samples with theclear tendency <strong>of</strong> sorting <strong>by</strong> length (range <strong>of</strong> 100nm - 1mm)with high yield <strong>of</strong> 75%.


Problem for electronic applications•Synthesized CNTs containsSemiconducting(sc-):Metallic (m-) CNT=2:1making device performance worse.Requirements: separation <strong>of</strong> sc- & m- CNTs•High-purity (>90% sc-CNT 1) )•High-yield (for production)•Ionic-free (e.g. Na + )Enrichment <strong>of</strong> sc-CNTswithout ionic species is required1)M. A. Topinka, et al., Nano Lett. 9 (2009) 1866.NT10, Montreal, Canada2010/07/02 38


Normalized Absorbance (arb. unit)1.60.8S 22M 111 2 3 4Photon Energy (eV)•Estimated fromAreal Intensities 1)•Assumption <strong>of</strong> sc-CNT(Pristine) as 67%UpperPristineLower40% 60%sc-CNTs67% 33%95%m-CNTs5%sc-CNT is 95% in lower layer.1)Y. Miyata et al., J. Phys. Chem. C 112 (2008) 13187.NT10, Montreal, Canada2010/07/02 39


1.4 nm CNTs 1.7 nm CNTs10.8Normalized Absorbance (arb. unit)0.60.4Normalized Absorbance (arb. unit)0.80.60.4S 22 M 110.2S 22M 111 2 3 41 2 3 4Photon Energy (eV)0.2Photon Energy (eV)1.4 <strong>and</strong> 1.7 nm CNTs are also separated.NT10, Montreal, Canada2010/07/02 40


AcknowledgmentFund:This work is partially supported <strong>by</strong> the NewEnergy <strong>and</strong> Industrial Technology DevelopmentOrganization (NEDO).Contributions:I appreciate the contributions <strong>of</strong> my podocs, Dr. B.Shukla <strong>and</strong> Dr. S. Ohmori, collaborators, Dr. K. Ihara <strong>and</strong>Dr. F. Nihey, technical assistant, Ms. Owada, Ms.Kobayashi, <strong>and</strong> Mr. Hashimoto.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!