20.08.2015 Views

process

K-theory and Noncommutative Geometry.pdf

K-theory and Noncommutative Geometry.pdf

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Deformations of gerbes on smooth manifolds 359Proof. The proof can be obtained by applying Theorem 3.1 repeatedly.Let 1 , 2 2 Stack.G ˝ m/ 0 , and let Ç 1 , Ç 2 be two 1-morphisms between 1and 2 . Note that W MC 2 .G 0 ˝ m/ 2 .Ç 1 1 ; Ç1 2 / ! MC2 .H 0 ˝ m/ 2 . Ç 1 1 ; Ç 1 2 / isa bijection by Theorem 3.1. Injectivity of the map W Stack.G ˝ m/ 2 .Ç 1 ; Ç 2 / !Stack.H ˝ m/ 2 . Ç 1 ; Ç 2 / follows immediately.For the surjectivity, note that an element of Stack.H˝m/ 2 . Ç 1 ; Ç 2 / is necessarilygiven by for some 2 MC 2 .G 0˝m/.Ç 1 1 ; Ç1 2 / 2 and the following identity is satisfiedin MC 2 .H 1 ˝ m/. . 1 2 ı @0 0 Ç1 1 /; .@ 0 1 Ç1 2 ı 1 1 // 2: .Ç 2 2 ı .@1 0 ˝ Id// D ..Id ˝ @ 1 1 / ı Ç2 1 /:Since W MC 2 .G 1 ˝ m/. 1 2 ı @0 0 Ç1 1 ;@0 1 Ç1 2 ı 1 1 / 2 ! MC 2 .H 1 ˝ m/. . 1 2 ı @0 0 Ç1 1 /; .@ 0 1 Ç1 2 ı 1 1 // 2 is bijective, and in particular injective, Ç 2 2 ı.@1 0 ˝Id/ D .Id˝@1 1 /ıÇ2 1 ,and defines an element in Stack.G ˝ m/ 2 .Ç 1 ; Ç 2 /.Next, let 1 , 2 2 Stack.G ˝ m/ 0 , and let Ç be a 1-morphisms between 1and 2 . We show that there exists È 2 Stack.G ˝ m/ 1 . 1 ; 2 / such that È isisomorphic to Ç. Indeed, by Theorem 3.1, there exists È 1 2 MC 2 .G 0 ˝ m/ 1 . 1 ; 2 /such that MC 2 .H 0˝m/ 2 . È 1 ; Ç/ ¤;. Let 2 MC 2 .H 0˝m/ 2 . È 1 ; Ç/. Define 2MC 2 .H 1 ˝m/ 2 . . 1 2 ı@0 0 È1 /; .@ 0 1 È1 ı 1 1 // by D .@0 1 ˝Id/ 1 ıÇ 2 ı.Id ˝@ 0 0 /.It is easy to verify that the following identities holds:.Id ˝ 1 2 / ı .@1 2 ˝ Id/ ı .Id ˝ @1 0 / D @1 1 ı . 2 2 ˝ Id/;s0 1 D Id:By bijectivity of on MC 2 there exists a unique È 2 2 MC 2 .H 1˝m/ 2 .2 1ı@0 0 È1 ;@ 0 1 È1 ı1 1/ such that È 2 D . Moreover, as before, injectivity of implies that theconditions (3.6) are satisfied. Therefore È D .È 1 ; È 2 / defines a 1-morphism 1 ! 2and is a 2-morphism È ! Ç.Now, let 2 Stack.H ˝ m/ 0 . We construct 2 Stack.G ˝ m/ 0 in such a way thatStack.H˝m/ 1 . ;/ ¤ ¿. By Theorem 3.1 there exists 0 2 MC 2 .G 0 ˝m/ 0 suchthat MC 2 .H 0 ˝ m/ 1 . 0 ; 0 / ¤ ¿. Let Ç 1 2 MC 2 .H 0 ˝ m/ 1 . ;/. ApplyingTheorem 3.1 again we obtain that there exists 2 MC 2 .G 1 ˝ m/ 1 .@ 0 0 0 ;@ 0 1 0 / suchthat there exists 2 MC 2 .H 1 ˝ m/ 2 . 1 ı @ 0 0 Ç1 ;@ 0 1 Ç1 ı /. Then s0 1 is then a2-morphism Ç 1 ! Ç 1 ı .s0 1/, which induces a 2-morphism W .s1 0 / 1 ! Id.As a next step set 1 D ı .@ 0 0 .s1 0 // 1 2 MC 2 .G 1 ˝ m/ 1 .@ 0 0 0 ;@ 0 1 0 /, Ç 2 D˝.@ 0 0 / 1 2 MC 2 .H 1˝m/ 2 . 1 ı@ 0 0 Ç1 ;@ 0 1 Ç1 ı 1 /. It is easy to see that s0 11 D Id,s0 1Ç2 D Id.We then conclude that there exists a unique 2 such that.Id ˝ 2 / ı .@ 1 2 Ç2 ˝ Id/ ı .Id ˝ @ 1 0 Ç2 / D @ 1 1 Ç2 ı . 2 ˝ Id/:Such a 2 necessarily satisfies the conditions@ 2 2 2 ı .Id ˝ @ 2 0 2 / D @ 2 1 2 ı .@ 2 3 2 ˝ Id/;s0 2 2 D s1 2 2 D Id:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!