20.08.2015 Views

Untitled

Untitled

Untitled

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

96 Geoffrey Nichil∫D N kf ∗ dµ k + 1N µ(DN k ) = k N µ(DN k ) + 1 N µ(DN k )∫ ∫f ∗ dµ fdµ + 1 N µ(DN k )D N kOr : Ω = ⋃ k∈Z DN k , ∀N 1 et les DN kDonc µ(Ω) = ∑ k∈Z µ(DN k )Et ∫ f ∗ dµ = ∑ ∫Ω k∈Zf ∗ dµDkNDonc ∑ ∫k∈Zf ∗ dµ ∑ ∫DkN k∈ZD’ou : ∫ f ∗ dµ ∫ µ(Ω)fdµ +Ω Ω NSi N → +∞ :∫D N kΩD N ksont disjoints.fdµ + 1 N∫f ∗ dµ Ω∑k∈Z µ(DN k )fdµ (1)On remplace maintenant f par −f, cela donne :∫ ∫(−f) ∗ dµ (−f)dµΩΩOr : (−f) ∗ sup = −finf ∗ donc : ∫ ∫− finf ∗ dµ −ΩD’où :Comme f ∗ inf = f ∗ sup = f ∗ on a :∫Avec (1) et (2) on obtient :Ω∫Ωf ∗ inf dµ ∫∫f ∗ dµ ∫Ω∫f ∗ dµ =ΩfdµΩfdµΩfdµ (2)Ωfdµ4. Conclusion : En appliquant la proposition 1 on obtient :limN−→+∞N−11 ∑Nn=0f(ϕ n (x)) = 1 ∫µ(Ω)fdµRemarque. Un système dynamique ( Ω; β ; µ; ϕ ) vérifiant le théorème de Birkhoff estappelé système ergodique.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!