20.08.2015 Views

Untitled

Untitled

Untitled

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

La théorie du chaos 95et que : f ∗ existe et vaut :Donc on a bien :f ∗ sup = f ∗ inf = f ∗f ∗ (ϕ k (x)) = f ∗ (x)3. Montrons que ∫ fdµ = ∫ f ∗ dµ µ presque partout.Ω ΩPosons : Dk N = {x ∈ Ω : k f ∗ < k+1 } où k ∈ Z, N 1N NOn a : ϕ −1 (Dk N) = DN k car :ϕ −1 (D N k ) = {x ∈ Ω : kN f ∗ (ϕ(x)) < k + 1N}ϕ −1 (D N k ) = {x ∈ Ω :De plus ∀ε : D N k ∩ B k N −ε = DN k car :Soit x ∈ D N k alors :kN lim supN→+∞Donc k − ε < sup N N1 1 NDonc x ∈ B kN −εDe plus µ(D N k ) < +∞ car DN kN−11 ∑Nn=0kN f ∗ (x) < k + 1N}ϕ −1 (D N k ) = DN kf(ϕ n (x)) supN1∑ N−1n=0 f(ϕn (x))⊆ Ω et µ(Ω) < +∞N−11 ∑NOn peut donc appliquer le corollaire précedent :∫fdµ ( k N − ε)µ(DN k ∩ B k−ε) ND N k ∩B kN−εn=0f(ϕ n (x))Ce qui implique :∫D N kfdµ ( k N − ε)µ(DN k )On a :f ∗ dµ k+1Nsur DN kDonc :∫∫D N kD N k∫f ∗ dµ D N kf ∗ dµ k + 1Nk + 1N∫1D N k

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!