31.07.2015 Views

Diffuse interface models in fluid mechanics

Diffuse interface models in fluid mechanics

Diffuse interface models in fluid mechanics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>in</strong> the Cahn-Hilliard model than <strong>in</strong> the van der Waals model, it is nevertheless a real difficulty toensure that these modifications do not <strong>in</strong>volve modifications on the mesoscopic characteristics ofthe flow.This analysis shows that the adaptation of physical diffuse <strong><strong>in</strong>terface</strong> <strong>models</strong> to mesoscopicproblems is rather difficult and tricky. We showed <strong>in</strong> particular that it is important to know thesharp <strong><strong>in</strong>terface</strong> model that the diffuse <strong><strong>in</strong>terface</strong> model must mimic. It is <strong>in</strong>deed a reference thathelps to develop the “equivalent” diffuse <strong><strong>in</strong>terface</strong> model. Moreover, we showed that the difficultycomes from the fact that we use only physical variables (mass density ρ or mass fractionc) and that these physical variables are important to characterize (i) the <strong><strong>in</strong>terface</strong> structure (thatis aimed at be<strong>in</strong>g modified) and (ii) bulk phases properties (pressure, chemical potential, etc).We showed that modify<strong>in</strong>g one feature without modify<strong>in</strong>g the other is difficult and tricky. Thesystem lacks degrees of freedom. This degree of freedom can come from the <strong>in</strong>troduction of anotherparameter whose ma<strong>in</strong> goal would be to characterize only the <strong><strong>in</strong>terface</strong> structure and notthe bulk properties. The phase-field variable ϕ often used <strong>in</strong> other applications of diffuse <strong><strong>in</strong>terface</strong><strong>models</strong> can be <strong>in</strong>terpreted as such a variable. It has recently been shown [Jamet and Ruyer,2004] that such a phase-field model<strong>in</strong>g is possible for liquid-vapor flows. The <strong>in</strong>troduction of thephase-field <strong>in</strong>deed allows to easily decouple the <strong><strong>in</strong>terface</strong> properties from the bulk properties.ReferencesJ. U. Brackbill, D. B. Kothe, and C. Zemach. A cont<strong>in</strong>uum method for model<strong>in</strong>g surface tension.J. Comp. Phys., 100:335–354, 1992.J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. I. <strong>in</strong>terfacial free energy. J.Chem. Physics, 28(2):258–267, 1958.J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. II. thermodynamic basis. J.Chem. Physics, 30(5):1121–1124, 1959a.J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. III. nucleation <strong>in</strong> a twocomponent<strong>in</strong>compressible <strong>fluid</strong>. J. Chem. Physics, 31(3):688–699, 1959b.J.-M. Delhaye, M. Giot, and M. L. Riethmuller. Thermohydraulics of two-phase systems for <strong>in</strong>dustrialdesign and nuclear eng<strong>in</strong>eer<strong>in</strong>g. Hemisphere Publish<strong>in</strong>g Corporation, 1981.F. Dell’Isola, H. Gou<strong>in</strong>, and G. Rotoli. Nucleation of spherical shell-like <strong><strong>in</strong>terface</strong>s by secondgradient theory: Numerical simulations. Eur. J. Mech. B/Fluids, 15(4):545–568, 1996.J. E. Dunn and J. Serr<strong>in</strong>. On the thermodynamics of <strong>in</strong>tersticial work<strong>in</strong>g. Arch. Rational Mech.Anal., 88:88–133, 1965.C. Fouillet. Généralisation à des mélanges b<strong>in</strong>aires de la méthode du second gradient et application à lasimulation numérique directe de l’ébullition nucléée. Thèse de doctorat, Université Paris VI, 2003.C. Fouillet, D. Jamet, and D. Lhuillier. A cont<strong>in</strong>uous <strong><strong>in</strong>terface</strong> model for the direct numerical simulationof phase-change <strong>in</strong> two-component liquid-vapor flows. In 2002 Jo<strong>in</strong>t ASME/EuropeanFluid Eng<strong>in</strong>eer<strong>in</strong>g Division Summer Conference, Montreal, Canada, July 14-18, 2002.G. P. Galdi, D. D. Joseph, L. Preziosi, and S. Rionero. Mathematical problems for miscible andcompressible <strong>fluid</strong>s with korteweg stresses. European Journal of Mechanics B Fluids, 10(3):253–267, 1991.H. Gou<strong>in</strong>. Energy of <strong>in</strong>teraction between solid surfaces and liquids. J. Phys. Chem. B, 102:1212–1218, 1998. doi: 10.1021/jp9723426.34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!